Content:
Presentation type:
BG – Biogeosciences

EGU24-1832 | Orals | MAL12-BG | BG Division Outstanding Early Career Scientist Award Lecture

Volatile Organic Compounds: mediators of forest-atmosphere interactions and indicators of forest vulnerability 

Eliane Gomes Alves

Volatile organic compounds (VOCs) are important mediators of forest-atmosphere interactions, regulating plant performance and atmospheric processes. Amazonian forests comprise the dominant source of VOCs to the global atmosphere. Yet, there is a poor understanding of how VOC emissions vary in response to ecophysiological and environmental controls in Amazonian ecosystems and even less understanding of how ecosystem emissions respond to climate extremes and land use change. I will summarize my work on VOC emissions from different ecosystems and scales in the Amazon and point out that VOCs can be indicators of forest stress and, therefore, a possible metric of forest vulnerability. First, I will present the state-of-the-art of VOC emissions and their interactions with the climate system in the Amazon. Next, I will demonstrate how these interactions can differ when considering different forest types and environmental stresses, including extremes of heat and drought. Finally, I will highlight the recent progress of VOC emissions investigated in the so-called "Amazon arc of deforestation" and indicate the potential of VOCs as a metric of forest vulnerability in climate modeling.

How to cite: Gomes Alves, E.: Volatile Organic Compounds: mediators of forest-atmosphere interactions and indicators of forest vulnerability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1832, https://doi.org/10.5194/egusphere-egu24-1832, 2024.

EGU24-12020 | Orals | MAL12-BG | Vladimir Ivanovich Vernadsky Medal Lecture

Reflections regarding our biogeochemical studies in lakes and marine environments 

Daniel Conley

My fascination with the biogeosciences started with the investigation of nitrogen (N) and phosphorus (P) enrichment of lakes stimulating the growth of diatoms leading to increased sedimentation and eventual depletion of dissolved silicate from the water column. At that time most research on the global Si cycle was focused on weathering and had not explored the complexity of the terrestrial biogeochemical cycle. Our research demonstrated that diatoms and phytoliths, e.g. biogenic silica that accumulates in the living tissues of growing plants, are transported from lakes and rivers on the continents into the oceans. The emerging understanding is that the flux and isotopic composition of dissolved silicate delivered to the ocean has likely varied over time mediated by a fluctuating continental pool.

 

An important question we addressed was if reductions of P and N could reduce eutrophication and degradation of freshwater and marine ecosystems. Our analysis explored the rationale for only P or only N reductions and concluded that dual–nutrient reduction strategies were needed for aquatic ecosystems. A focus on only P or only N reduction should not be considered unless there is clear evidence or strong reasoning that reducing the inputs of only one nutrient is justified in that ecosystem and will not harm downstream ecosystems.

 

The depletion of dissolved oxygen in bottom waters is one of the common responses of aquatic ecosystems to eutrophication. A classic example is the semi-enclosed brackish Baltic Sea. Our research has shown that the Baltic Sea is the largest anthropogenically induced hypoxic area in the world, which has increased 10-fold during the last century due to increased nutrient inputs. Concurrently, the coastal zone has experienced increasing hypoxia during the same period with the Baltic Sea coastal zone containing over 20% of all known sites suffering from hypoxia worldwide. Our research has highlighted the continuously growing problems of hypoxia and anoxia with eutrophication.

 

Altered global biogeochemical cycles is not only a feature of the Anthropocene but ongoing geological processes. Our recent research has focused on the use of silicon isotope signatures of unaltered sponges and radiolarians to estimate dissolved silicate drawdown as a proxy for the changes in the productivity of diatom communities in the Mesozoic oceans and how the ocean chemistry changed with the evolution of diatoms. Our major results to date suggest that dissolved silicate has been low in the oceans for at least the last 100 million years because of the extreme efficiency of dissolved silicate uptake by diatoms reducing ocean concentrations.

 

My continued enchantment with biogeochemical processes and collaboration with other creative scientists has lead to uncovering new biogeochemical pathways which stimulates the drive to learn more about how ecosystems operate.

How to cite: Conley, D.: Reflections regarding our biogeochemical studies in lakes and marine environments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12020, https://doi.org/10.5194/egusphere-egu24-12020, 2024.

BG1 – General Biogeosciences

EGU24-763 | ECS | Posters on site | BG1.1

The influence of pyrolysis time, moisture, and plant species on carbon bridgehead fraction of charcoal 

Vinothan Sivapalan and William Hockaday

Paleofire reconstructions are a challenging endeavor primarily due to the numerous factors involved in wildfire frequency, behavior, and regimes. These factors include, but are not limited to fuel composition, moisture, soil types, climate/weather conditions, and topographical features. Therefore, development of robust wildfire proxies requires vigorous experimental testing for multiple variables. Here, we explore the influence of pyrolysis time, moisture, and plant species on a novel proxy for fire intensity—carbon bridgehead fraction of charcoal. Experimentally, we have produced charcoals from three native Texas plants: live oak (Quercus sp.), Ashe juniper (Juniperus ashei), and broomsedge bluestem (Andropogon virginicus) under a range of temperature (300-700°C), moisture (0-100% moisture capacity), and time (0-1 hr) conditions in a tube furnace. Samples were analyzed using solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy with two experiments to calculate carbon bridgehead fraction: cross polarization – magic angle spinning (CP-MAS) to quantify total aromatic carbon and dipolar dephasing (DD) to quantify aromatic bridgehead carbon. Results reveal significant differences between vegetation types, with moisture delaying or slowing the rate of carbon bridgehead formation. Relationship between carbon bridgehead fraction and time are less clear and may be influenced by the formation of pyrolysis byproducts (such as pyroligneous acids and free radicals) and/or signal losses in the cross-polarization spectra. To assess the influence of these factors on carbon bridgehead fraction we plan to conduct additional analyses on our experimental charcoals, including electron paramagnetic resonance (EPR) spectroscopy to quantify the free radicals in samples and C elemental analysis to assess carbon observability by NMR. Future work involves ground truthing the proxy to modern wildfires and subsequently applying it to paleorecords.

How to cite: Sivapalan, V. and Hockaday, W.: The influence of pyrolysis time, moisture, and plant species on carbon bridgehead fraction of charcoal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-763, https://doi.org/10.5194/egusphere-egu24-763, 2024.

EGU24-1123 | ECS | Orals | BG1.1

Assessment of ecohydrological response of Himalayan Forest ecosystems to  forest fires 

Nagashree Ge and Ashutosh Sharma

Himalayan forests boast an incredible biodiversity, harboring a wide range of flora and fauna and playing a significant role in regulating water resources. Forest fires are one of the disturbances which constitute a major force influencing, even determining, the structure and functions of ecological components-populations, communities, and ecosystems. The ability to withstand disturbance is defined as resistance whereas resilience is the capacity to recover from disturbance. These two terms define the ecohydrological response to forest fire. This study insights on how remote sensing technique can be utilized for the measurement of ecohydrological response of a large extent of region subjected to forest fire based on resistance-resilience framework and how further implementation of these measures would help to know the changes in the interaction been vegetation and water cycle. Normalized burn ratio (NBR) is used to quantify the response.  The outcome of the study reveals that deciduous needled leaf forests are subjected frequently to forest fires compared to other classes of forests during 2002-2022. The regions considered for study showed moderate to high range of resistance but low resilience, signifying the region has gained and lost vegetations in the post-fire. There was a variation in rainfall and run-off occurred during the post-fire year for different burn severities. The present approach has the potential to quantify the response of ecosystems to the forest fire and related effects on hydrology of the region.

How to cite: Ge, N. and Sharma, A.: Assessment of ecohydrological response of Himalayan Forest ecosystems to  forest fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1123, https://doi.org/10.5194/egusphere-egu24-1123, 2024.

From March to April, widespread forest fires and agro-residue burning frequently occur in Southeast Asia, which release large amounts of gas species and aerosols and impact air quality over the wide source and downwind regions. In this study, we investigated the impact of biomass burning (BB) over Southeast Asia on particulate matter concentrations and aerosol properties in downwind areas of the low-latitude plateau from 1 March to 30 April 2019, with a focus on a typical pollution event in Kunming (KM), the capital of Yunnan Province, by using a wide variety of observations from the Chenggong ground monitoring station in Yunnan University, an air quality network in China, satellite retrievals and ERA-5 reanalysis data and numerical simulation. A regional pollution event contributed by BB pollutants from Southeast Asia and the India-Myanmar trough occurred in Yunnan Province on 31 March to 1 April 2019, which was the only typical pollution event that pollution transmission ran through central Yunnan Province from south to north since 2013, when the Airborne Pollution Action Plan was unveiled by China government. The daily mean PM2.5, PM1, and black carbon concentrations increased by 73.3 μg m−3 (78%), 70.5 μg m−3 (80%), and 7.7 μg m−3 (83%), respectively, and the scattering and absorbing coefficients increased by 471.6 Mm−1 and 63.5 Mm−1 , respectively, at the Chenggong station. The southwest winds exceeding 2 km vertically thick appeared in front of the India-Myanmar trough over the fire regions, pushing BB plumes northward into Yunnan Province. The model results show that 59.5% of PM2.5 mass produced by BB in Yunnan Province was sourced from the Myanmar-Thailand border, and 29.3% was from western Myanmar at a lower altitude (<4.9 km), which indicated that BB in the Myanmar-Thailand border was the dominant contributor.

How to cite: Fan, W., Li, J., Han, Z., and Wu, J.: Impacts of biomass burning in Southeast Asia on aerosols over the low-latitude plateau in China: an analysis of a typical pollution event, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1471, https://doi.org/10.5194/egusphere-egu24-1471, 2024.

EGU24-1756 | ECS | Orals | BG1.1

Direct Estimation of Carbon Emissions from High Latitude Fires: The Adapted FREM Approach 

Will Maslanka and Martin Wooster

Landscape fires are a widespread natural phenomenon that directly influences carbon cycling through the combustion of organic material. Space-based remote sensing, including Active Fire (AF), remains the only way to estimate wildfire activity accurately on the regional-to-global scale. Fire emission inventories generally fall into two categories. “Bottom-up” methodologies rely on observations of AF counts, Fire Radiative Power (FRP), or burned area to estimate the amount of biomass burned, or “Top-down” methodologies, which directly relate observations of FRP to landscape fire emission estimates. Bottom-up methods tend to have a reliance on uncertain parameters, such as pre-fire fuel load and combustion completeness, or a conversion factor between FRP and fuel consumption rate. The Fire Radiative Energy Emission (or FREM) approach is one such top-down methodology that has removed such a reliance, by directly relating FRP to observed rates of emissions, such as CO or aerosols, but has so far been used with geostationary FRP data only. Whilst very effective at lower latitudes, due to the poor spatial resolution and extreme viewing geometry of geostationary data at higher latitudes, the approach is not applicable for fires in this region in its current format. However, by using polar orbiting FRP data and making use of the high latitude orbital convergence, this study looks to adapt the FREM approach to deliver direct estimation of carbon emissions for high latitude (>60°N) landscape fires. We use direct observations of FRP, from Suomi-NPP, NOAA-20 and MODIS, along with observations of Total Column Carbon Monoxide from TROPOMI onboard Sentinel-5P. A series of cloud-free plumes and associated FRP data were identified in Deciduous and Evergreen Needleleaf biomes in North America and Russia in the summers of 2019 – 2023. The resulting emission coefficients and emission totals were compared to pre-existing top-down and bottom-up emission coefficients and totals from the FEER, GFAS, and GFED inventories for high latitude fires between 2018-2023. This adapted FREM approach is shown to provide direct emission estimates without recourse to significant assumptions and can do so in real time – opening up a new avenue for real-time fire emission estimation at high latitudes.

How to cite: Maslanka, W. and Wooster, M.: Direct Estimation of Carbon Emissions from High Latitude Fires: The Adapted FREM Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1756, https://doi.org/10.5194/egusphere-egu24-1756, 2024.

EGU24-2099 | ECS | Orals | BG1.1

Exploring the effect of vegetation photosynthesis phenology on wildfire dynamics 

Gengke Lai, Jialing Li, Jun Wang, Chaoyang Wu, Yongguang Zhang, Constantin M. Zohner, and Josep Peñuelas

2023 has witnessed a record-breaking extreme wildfire season in Canada from coast to coast, following closely to the unprecedented wildfire outbreaks in 2019/20 Australia and 2021 Siberia, causing far-reaching threats on terrestrial carbon stock, air quality, and human society. The heightened wildfire activity in specific regions prompts us to rethink the underlying factors driving the global wildfire dynamics. Climate change has been recognized as an important factor in amplifying wildfire risk, mainly through increasing temperature and reducing relative humidity. However, the role of vegetation productivity and phenology on wildfire dynamics remains elusive, even though which can exacerbate or mitigate the climate-induced fire risk. Importantly, changes in vegetation phenology can cause biophysical feedback to the climate system and land surface by modulating the exchanges of water and energy between land and the atmosphere. Considering the climate feedback of vegetation phenology, we hypothesize that peak photosynthesis timing (PPT) can contribute to wildfire activity. To explore it, we provide comprehensive analyses using multiple satellite-based photosynthesis observations from solar-induced chlorophyll fluorescence (SIF), and wildfire activity from national fire perimeters and MODIS global burned area records from 2001 to 2018, as well as diverse methodologies and models. In response to changes in various biological and climatic factors, we find PPT has advanced 1.10 ± 0.57 days per decade at a global scale. This earlier PPT acts to expand the extent of wildfires, with an increase in the global average burned fraction by 0.021% (~2.20 Mha) for every additional day of PPT advancement. Satellite observations and the Earth system modeling consistently reveal that this expansion is attributed to the intensified drought conditions during the potential fire season, induced by the earlier PPT that can modulate the global patterns of temperature, precipitation, and surface soil moisture. Furthermore, current fire-vegetation models participating in the FireMIP project underestimate the sensitivity of burned area to PPT, despite reproducing their negative correlation. Our findings highlight the importance of climate-vegetation-fire feedback loops in future prediction of wildfire dynamics and the strategy of climate change adaptation and mitigation.

How to cite: Lai, G., Li, J., Wang, J., Wu, C., Zhang, Y., Zohner, C. M., and Peñuelas, J.: Exploring the effect of vegetation photosynthesis phenology on wildfire dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2099, https://doi.org/10.5194/egusphere-egu24-2099, 2024.

EGU24-4071 | ECS | Posters on site | BG1.1 | Highlight

The Influence of Climate Teleconnections on Global Burned Area 

Yuquan Qu, Harry Vereecken, Sander Veraverbeke, and Carsten Montzka

Wildfires are known to be controlled by fuels and weather. Climate teleconnections may influence wildfires by altering fuel availability and fire weather. In this study, we used the random forest approach to systematically detect relationships between teleconnection climate indices (CIs) and burned area while accounting for different lag times. Results indicate that burned area is especially modulated by climate teleconnections in Africa and Australia. The Tropical Northern Atlantic (TNA) pattern was the most influential CI for the global burned area, followed by the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Pacific–North American (PNA) pattern. To study pathways of how teleconnections affect the burned area, we distinguished two classes of fire drivers: bottom-up fuel availability and top-down weather conditions. Bottom-up fuel drivers showed higher correlation with CIs than top-down weather drivers and served as mediators between teleconnections and wildfires. The mediating effect of top-down weather drivers was only apparent in specific seasons. Our study highlights that in teleconnection-wildfire hotspot regions, knowledge of the relation between CIs and drivers of wildfires could improve long-term wildfire predictability. We recommend that bottom-up fuel drivers should also be integrated into wildfire predictive frameworks as they play an important mediating role in linking teleconnections and wildfires.

How to cite: Qu, Y., Vereecken, H., Veraverbeke, S., and Montzka, C.: The Influence of Climate Teleconnections on Global Burned Area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4071, https://doi.org/10.5194/egusphere-egu24-4071, 2024.

EGU24-5191 | ECS | Orals | BG1.1 | Highlight

Impacts of land use change and interannual climate variability on biomass burning emissions, air quality and public health in Amazon 

Tsin Hung Leo Ng, Amos P. K. Tai, Stephen Sitch, Luiz Aragao, and Shixian Zhai

Biomass burning in Amazon Basin has a significant impact on regional climate and deteriorates regional air quality, which poses a threat to human and ecosystem health. The fire-induced pollution worsens during dry season (Jul to Nov) and shows a strong seasonal variation. Past research has demonstrated that the occurrence of wildfires in Amazon is not only influenced by deforestation, but also interannual climate variability, particularly droughts. Here we estimate the impacts of deforestation and droughts on fire emissions and regional air quality between 2010 to 2015 by using Global Fire Emission Database Version 4 (GFED v4) to drive a global 3-D atmospheric chemical transport model GEOS-Chem High Performance (GCHP) and further examine the effect of PM2.5 and O3 on premature mortality across the region. By comparing the “fire-on” and “fire-off” scenarios, we find that biomass burning alone in normal years (2011 and 2013) contributes 5.7 μg m-3 (47.6% of the total concentration) PM2.5, 0.08 ppm (46.3%) CO, 0.03 ppb (85.0%) NOx, and 9.5 ppb (41.2%) O3; and these numbers during drought years (2010, 2012, 2014 and 2015) increase to 19.6 μg m-3 (74.7%) for PM2.5, 0.20 ppm (67.0%) for CO, 0.19 ppb (97.4%) for NOx, and 15.6 ppb (52.0%) for O3. We find that these pollutants from wildfires mainly concentrate in the south-eastern Amazon and then transport southward, thus strongly impacting public health in the downwind regions. We estimate that premature mortality due to long-term exposure to particulate matter and ozone by applying the simulated concentration to the concentration-response functions from the European Environment Agency. We find that ~8,500 and ~10,400 deaths per year are attributable to PM2.5 and O3 exposure for 2010-2015 respectively. During drought years, we discover there are 2.8% and 3.4% more deaths than normal years for PM2.5 and O3 exposure. Our study shows the significance of biomass burning emissions in shaping the air quality in the Amazon region, and highlights the impact of drought events on enhancing biomass emissions, worsening regional air quality and causing public health issues. Therefore, it is important to address the underlying causes of biomass burning in the Amazon, such as deforestation and land use change, and droughts, to protect the region's ecosystems and mitigate the impacts of climate change.

How to cite: Ng, T. H. L., Tai, A. P. K., Sitch, S., Aragao, L., and Zhai, S.: Impacts of land use change and interannual climate variability on biomass burning emissions, air quality and public health in Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5191, https://doi.org/10.5194/egusphere-egu24-5191, 2024.

EGU24-5236 | ECS | Posters on site | BG1.1 | Highlight

Are there lightning Fires in the Amazon Rainforest? 

Cunhui Zhang, Thomas Janssen, Matt Jones, and Sander Veraverbeke

Tropical rainforests have exceptionally high biodiversity and store large amounts of carbon in biomass. However, large and frequent fires across tropical rainforests in the last decades threaten the ecosystem integrity of these ecosystems. The general belief is that fires in the Amazon rainforest are all human-ignited and that lightning fires do not occur in rainforests due to the predominant wet conditions. However, recent research indicates the possibility of lightning fires in tropical rainforests. Here, we aim to investigate the occurrence of lightning-ignited fires in the Amazon rainforest, a topic that has been largely overlooked in the current understanding of fire dynamics in this biome. We collected and analyzed data on lightning strikes, fire occurrences, and weather patterns derived from satellite imagery and climate datasets. The objective is to detect, quantify, and characterize lightning fires in the Brazilian Amazon rainforests, thereby providing new insights into the natural fire regime of this crucial ecosystem.

How to cite: Zhang, C., Janssen, T., Jones, M., and Veraverbeke, S.: Are there lightning Fires in the Amazon Rainforest?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5236, https://doi.org/10.5194/egusphere-egu24-5236, 2024.

EGU24-5348 | Posters on site | BG1.1

Wetlands in monoculture forests – how fire activity and different forest management strategies impact Sphagnum-dominated peatlands 

Katarzyna Marcisz, Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Thomas Theurer, Paweł Matulewski, and Dmitri Mauquoy

Monoculture forests are now a dominant forest type in Europe. Created for easier management and increased timber production, they are now witnessing many disturbances due to climate change, such as more frequent windthrows, droughts, fires or insect outbreaks. The functioning of forests impacts other elements of the landscape, including peatlands, which also have been affected by various natural and anthropogenic disturbances (e.g., drainage) that make them more vulnerable to drying and burning. We aim to recognize how peatland functioning has changed along with changing forest management strategies. For this we studied a Sphagnum-dominated peatland located in the Tuchola Pinewoods – one of the largest Scots pine (Pinus sylvestris) monoculture forest in Poland. We used high-resolution multi-proxy palaeoecology including pollen, plant macrofossils and testate amoebae, additionally focusing on a wide range of charcoal analyses: charcoal counts, charcoal morphological types, and Raman spectroscopy. Our results show that the studied peatland experienced several critical transitions in vegetation composition and hydrology over the last 600 years when new forest management techniques were introduced. A reduction in fire activity led to a dominance of Sphagnum and increased peat accumulation rates. Establishment of a monoculture forest further impacted the site and stabilized Sphagnum growth and acidity levels. We believe that these results can be helpful for the improvement of conservation planning for peatlands located in forested areas, especially in monoculture forests.

The study is funded by the National Science Centre, Poland (2020/39/D/ST10/00641).

How to cite: Marcisz, K., Bąk, M., Lamentowicz, M., Kołaczek, P., Theurer, T., Matulewski, P., and Mauquoy, D.: Wetlands in monoculture forests – how fire activity and different forest management strategies impact Sphagnum-dominated peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5348, https://doi.org/10.5194/egusphere-egu24-5348, 2024.

EGU24-5494 | ECS | Orals | BG1.1 | Highlight

Half of global burned area is due to managed anthropogenic fire: findings from a coupled socio-ecological modelling approach  

Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Tamsin Edwards, and James Millington

Globally, vegetation fires are a key component of many ecosystems and have substantial impacts on carbon emissions. Yet humans also use and manage fires for a huge range of purposes around the world, dependent on numerous social and biophysical factors. Existing representations of anthropogenic fire in dynamic global vegetation models (DGVMs) have been highly simplified, with readily available global variables (e.g. population density) used to estimate numbers of anthropogenic ignitions. Here, we present results from a novel coupled socio-ecological modelling approach to improve understanding of how human and biophysical factors combine to drive the spatio-temporal distribution of global fire regimes. Specifically, we present the integration of two process-based models. The first is the Wildfire Human Agency Model (WHAM!1), which draws on agent-based approaches to represent anthropogenic fire use and management. The second model is JULES-INFERNO2, a fire-enabled DGVM, which takes a physically-grounded approach to the representation of vegetation-fire dynamics.

The new WHAM-INFERNO model ensemble suggests that as much as half of all global burned area is generated by managed anthropogenic fires - typically small fires that are lit and spread according to specific land use objectives (such as crop residue burning). Furthermore, we demonstrate that including representation of managed anthropogenic fires in a coupled socio-ecological simulation can improve understanding of the biophysical drivers of unmanaged wildfires, by allowing clearer recognition of the role of anthropogenic land management in global fire regimes. Hence, WHAM-INFERNO is applied to understand how landscape fragmentation, wider land use change, and changes in human fire management have together led to observed recent declines in global burned area despite the warming climate. Overall, findings presented here have substantial implications for understanding of present and future fire regimes, indicating that changes to socio-economic systems are at least as important a consideration as climate change.  

1. Perkins, O., Kasoar, M., Voulgarakis, A., Smith, C., Mistry, J., and Millington, J. (2023). A global behavioural model of human fire use and management: WHAM! v1.0. EGUsphere, 1–42. 10.5194/egusphere-2023-2162.

2. Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G. (2016). INFERNO: a fire and emissions scheme for the UK Met Office’s Unified Model. Geosci. Model Dev. 9, 2685–2700. 10.5194/gmd-9-2685-2016.

How to cite: Perkins, O., Kasoar, M., Voulgarakis, A., Edwards, T., and Millington, J.: Half of global burned area is due to managed anthropogenic fire: findings from a coupled socio-ecological modelling approach , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5494, https://doi.org/10.5194/egusphere-egu24-5494, 2024.

EGU24-6077 | ECS | Orals | BG1.1

Updated Exposure Estimate for Indonesian Peatland Fire Smoke using Network of Low-cost Purple Air PM2.5 sensors 

Ailish M Graham, James B McQuaid, Thomas E L Smith, Hanun Nurrahmawati, Devina Ayona, Hasyim Mulawarman, Chaidir Adam, Dominick V Spracklen, Richard Rigby, and Shofwan A B Choiruzzad

Air pollutant emissions from wildfires on Indonesian peatlands lead to poor regional air quality across south-east Asia. Fine particulate matter (PM2.5) emissions are particularly high for peat fires leading to substantial population exposure to PM2.5. Despite this, air quality monitoring is limited in regions close to peat fires meaning the impacts of peatland fires on air quality is poorly understood and it is difficult to evaluate predictions from atmospheric chemistry models. To address this, we deployed a network of low-cost (Purple Air) PM2.5 sensors at 8 locations across Central Kalimantan, where peat fires are frequent. The sensors measured indoor and outdoor PM2.5 concentrations during August to December 2023. During the haze season (September 1st to October 31st), daily mean outdoor concentrations were 120 mg m-3 but peaked at >400 mg m-3. Indoor PM2.5 concentrations were only ~10% lower (mean 110 mg m-3), indicating that is difficult for the population to reduce their exposure to PM2.5 from fires. The reduction in mean PM2.5 concentrations between outdoor and indoor environments was larger in urban locations (-11%) compared with rural locations (-3%), suggesting urban housing may provide better protection from outdoor air pollution. To generate an updated assessment for the population’s exposure to peatland fire PM2.5 we combine the information from monitoring both indoor and outdoor PM2.5 concentrations with modelled ambient (outdoor) PM2.5 concentrations from the WRF-Chem atmospheric chemistry transport model. Our updated exposure assessment accounts for the population’s personal exposure to peatland fire PM2.5 for the first time.

How to cite: Graham, A. M., McQuaid, J. B., Smith, T. E. L., Nurrahmawati, H., Ayona, D., Mulawarman, H., Adam, C., Spracklen, D. V., Rigby, R., and Choiruzzad, S. A. B.: Updated Exposure Estimate for Indonesian Peatland Fire Smoke using Network of Low-cost Purple Air PM2.5 sensors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6077, https://doi.org/10.5194/egusphere-egu24-6077, 2024.

EGU24-6624 | ECS | Orals | BG1.1

Excessive fire occurrence in Romania from 2001 to 2022: Trends and drivers across ecoregions and land cover classes 

Till Mattes, Irene Marzolff, and Angelica Feurdean

Wildfire is an integral part of temperate ecosystems, but human activities have significantly altered fire regimes, including frequency, size, intensity and seasonality. Romania, located in central-eastern Europe, recently exhibited the highest biomass burning in Europe. However, little is known of the trends and determinants of fire recurrence, apart from the common use of fire to clear crop residues on arable land. This study utilizes satellite-based fire data (FIRMS) from 2001 to 2022 and land cover maps (CORINE) to investigate temporal trends in fire occurrence across ecoregions and land cover types in Romania and identify those most susceptible to fire.

Over 2001-2022, Romania witnessed a total of 0.44 fires/ km² averaging 0.02 fires/km²/yr. Our analysis revealed a declining trend in fire occurrence along an elevation gradient, from plains to hills, plateaus and mountains, aligning with the prevalence of the dominant land cover classes and climatic gradients. Agricultural land cover types demonstrated the highest fire incidence, with arable land exhibiting the highest rate (0.04 fires/km²/yr) and forests the lowest (below 0.01 fires/km²/yr). Following the accession of Romania to the EU in 2007 and the prohibition of agricultural fires, a reduction in burning on arable land (crop residues) can be observed, while the use of fire in other agricultural classes persisted or even increased, indicating a more complex effect of socio-economic developments on fire pattern. Specifically, areas more marginal for agriculture, such as complex agricultural fields interspaced with housing and natural vegetation continued to employ fire as a management tool.

Natural land cover classes, such as wetlands principally occupying the Danube Delta (0.06 fires/km²/yr) and natural grasslands (0.01 fires/km²/yr), also experienced substantial fire occurrences and an intensification in more recent periods. Given the rarity of naturally ignited fires (lightning) in Romania, the intentional use of fire to clear dry reed biomass for land regeneration appears to be prevalent also in moist areas. Remarkably, broadleaved and mixed forests burned more frequently than coniferous forests despite the latter having traits to convey high flammability and burn with high frequency. This feature suggests that fires in broadleaved forests, predominant at low and mid elevations, likely expanded from neighbouring agricultural lands.

Crucially, our analysis highlights that years with elevated fire occurrence coincide with extreme droughts and heatwaves (e.g., 2012, 2015), emphasizing the influence of extreme climate conditions in accelerating fire episodes and the spread of fires initiated in agricultural areas into natural and semi-natural habitats. Given the substantial occurrence of fires in agricultural land but also in natural habitats, such as wetlands and grasslands in Romania, research investigating the risks and vulnerability of these habitats to fire should be prioritized.

How to cite: Mattes, T., Marzolff, I., and Feurdean, A.: Excessive fire occurrence in Romania from 2001 to 2022: Trends and drivers across ecoregions and land cover classes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6624, https://doi.org/10.5194/egusphere-egu24-6624, 2024.

Wildfires have become more prevalent in recent years because of climate change. Meanwhile wildfires, as a major type of biomass burning, could emit a large amount of black carbon (BC) and brown carbon (BrC) to the atmosphere. Since BC and BrC play important roles in climate change, air pollution and human health issues, it is necessary to research their physicochemical properties to evaluate their impacts on urban areas. Here we present BC mass concentration and absorption coefficients measured by aethalometer (AE43), combing with the chemical constitutions acquired by GC-MS, during the record-breaking 2023 wildfire season in Canada. The back-trajectory analysis indicated that the smoke mainly came from north Quebec where the wildfires took place. We demonstrated how BC and BrC emitted by wildfires could affect urban regions after long-range transport.

How to cite: Li, H. and Ariya, P.: Measurement of Physicochemical Properties of Black Carbon and Brown Carbon and the Impacts of Canada Record-Breaking Wildfires in Summer 2023 , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6761, https://doi.org/10.5194/egusphere-egu24-6761, 2024.

EGU24-7467 | ECS | Posters on site | BG1.1

The Impact of Wildfires on Atmospheric Nitrogen Deposition in the United States: A Multiple Linear Regression-based Analysis 

Jiangshan Mu, Yingnan Zhang, Chenliang Tao, Zhou Liu, Yu Zhao, Lei Zhang, Yuqiang Zhang, and Likun Xue

Nitrogen deposition can exert a significant impact on global ecosystems. The increased occurrence of natural factors such as wildfires are becoming more important in atmospheric deposition especially with the continued decreases of the anthropogenic emissions in developed countries. In this study, we investigate the mechanisms by which the increasingly frequent wildfires affect nitrogen deposition in the United States using comprehensive datasets and multiple linear regression (MLR) methods. We found a downward trend in nitrogen deposition in the U.S. (-0.09 kgN ha yr-1), mainly due to the decreases in oxidative nitrogen deposition (-0.1 kgN ha yr-1). In contrast, reduced nitrogen deposition showed a slight increase (0.02 kgN ha yr-1). Our preliminary results show that wildfires contributed ~10% to the U.S. domestic deposition overall, but the magnitudes and signs of impact vary geographically, depending on the frequency and intensity of wildfires and the dominant deposition types. On average across the U.S., wildfires predominantly negatively contribute to wet deposition, while their contributions to dry deposition is smaller or slightly positive. Specifically, wildfires enhance dry deposition in the western U.S. while inhibiting wet deposition in the southeastern U.S. Wildfires exert a suppressive effect on both oxidized and reduced forms of nitrogen deposition in the southeastern U.S. Our study highlights the significant influence of wildfires on nitrogen deposition, underscoring the need to consider wildfire events in environmental management and policy-making.

How to cite: Mu, J., Zhang, Y., Tao, C., Liu, Z., Zhao, Y., Zhang, L., Zhang, Y., and Xue, L.: The Impact of Wildfires on Atmospheric Nitrogen Deposition in the United States: A Multiple Linear Regression-based Analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7467, https://doi.org/10.5194/egusphere-egu24-7467, 2024.

EGU24-7895 | ECS | Posters on site | BG1.1

Vegetation types influence fine-scale drought impact on land surface cooling and burn patterns in the Siberian coastal tundra 

Nils Rietze, Jakob Assmann, and Gabriela Schapeman-Strub

In 2020, the Northeastern Siberian lowland tundra faced an extreme drought and unprecedented wildfires. The burning of carbon-rich soils in this region can release large amounts of carbon, worsening climate change and Arctic warming.  However, we know little about of how droughts impact vegetation and how this vegetation might become fuel for large fires in the typically wet landscapes of the Northeastern Siberian lowland tundra. We studied the impact of the extreme summer drought in 2020 on the tundra vegetation and the resulting burn patterns in the Indigirka lowlands using a combination of in-situ, thermal, and multispectral remote sensing data from drone and high-resolution satellite imagery. The fine-scale vegetation types revealed increased landscape-wide drought susceptibility indicated by an overall loss of land surface cooling. This suggests a shift towards an energy budget dominated by sensible heat flux, which may feed back and intensify the heatwave.  Further, we found that mostly dry vegetation types were affected by fire in the NE Siberian coastal tundra, while wetter vegetation types did not burn, leading to a fine-scale heterogeneous burn pattern. Our results indicate that the enhanced drought susceptibility of vegetation types may have led to higher fire fuel connectivity of the tundra landscape. Consequently, this may have resulted in the large burn extents observed in 2019 and 2020. Our analysis is an effort toward the prediction of fire fuel connectivity and fire management in remote Arctic areas.

How to cite: Rietze, N., Assmann, J., and Schapeman-Strub, G.: Vegetation types influence fine-scale drought impact on land surface cooling and burn patterns in the Siberian coastal tundra, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7895, https://doi.org/10.5194/egusphere-egu24-7895, 2024.

EGU24-8017 | ECS | Posters on site | BG1.1

Combining stand-level and remote sensing data to model post-fire recovery of Mediterranean tree-forest communities – A case study in Spain. 

Raul Hoffren, Juan de la Riva, Darío Domingo, María Teresa Lamelas, Paloma Ibarra, Alberto García-Martín, and Marcos Rodrigues

Mediterranean forests are recurrently affected by wildfires. Fire activity is expected to accelerate in the future due to landscape homogenization, fuel accumulation, and climate warming. A key aspect to prevent and mitigate the negative impacts of wildfires on ecosystems is to understand the factors that govern the recovery of forest communities. This study analyzes the post-fire recovery potential of four representative Mediterranean tree-communities (Pinus halepensis, Pinus nigra, Pinus pinaster, and Quercus ilex) affected by large wildfires (> 500 ha) during the summer of 1994 in Spain. For this purpose, information collected in the field 25 years after the fires in 203 forest plots (131 burned and 72 unburned control plots) was coupled with remote sensing, geospatial, and forest inventory data, to build an empirical model capable of assessing recovery. Remote sensing data provided a proxy for burn severity, through the Composite Burn Index, and allowed modelling the local topography (slope and aspect) of the terrain. The geospatial data included climatic information on temperature and precipitation trends. These data were entered into the model, calibrated using Random Forest, to provide information on the degree of recovery, inferred from the similarity (in terms of vegetation height, aboveground biomass, species diversity) between the burned and unburned control plots. Results showed that only the 25% of the burned plots can be considered as recovered. The burn severity had a significant effect on the recovery albeit strongly modulated by local topography. Overall, the key features of the recovered plots were a low-to-moderate burn severity and a favorable topographical setting, especially the shading effect of steep northwestern slopes. Furthermore, a warmer and more humid climate improved the capacity of recovery. These results constitute a valuable tool for improving forest management and preserving ecosystem services.

How to cite: Hoffren, R., de la Riva, J., Domingo, D., Lamelas, M. T., Ibarra, P., García-Martín, A., and Rodrigues, M.: Combining stand-level and remote sensing data to model post-fire recovery of Mediterranean tree-forest communities – A case study in Spain., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8017, https://doi.org/10.5194/egusphere-egu24-8017, 2024.

Wildfires pose an increasing threat to boreal forest and tundra ecosystems in boreal North America (Alaska and northwestern Canada), as their frequencies rise under global warming. These fires exhibit strong interannual variability that is influenced by regional atmospheric circulation. However, potential impacts of remote boundary forcings on regional fires and the underlying mechanisms remain unclear. This study provides a comprehensive analysis on the impacts of spring sea surface temperature (SST) and sea ice on interannual variability of burned area in this region during fire season (summer) from 1997 to 2020 using GFED5 burned area, SST and sea ice concentration data from the Met Office Hadley Centre, and ERA5 reanalysis data. Results show that in spring a warmer SST in the East Pacific and reduction of sea ice in the northern Chukchi Sea lead independently to an increase in burned area in boreal North America. The correlation coefficients between the SST and sea ice factors with the burned area in boreal North America are 0.43 and –0.44 respectively. The SST-fire relationships can be explained as follows: A warm SST anomaly in the East Pacific triggers a northeastward-propagated Rossby wave, inducing a high-pressure anomaly over boreal North America in spring. Consequently, this circulation anomaly causes a higher surface temperature and thus vegetation growth or drying. As temperatures rise and lightning activity intensifies in summer, burned area increases. On the other hand, the process of sea ice affecting burned area is different. A reduction in sea ice coverage in the northern Chukchi Sea leads to a decrease in surface albedo, resulting in an increase in heat flux. The heat release persists from spring to summer and causes a high-pressure circulation anomaly in boreal North America in summer, which suppresses regional water vapor convergence and precipitation, reducing soil moisture and surface air humidity and increasing vapor pressure deficit (VPD) thereby promoting fuel flammability.

How to cite: Zhao, Z., Lin, Z., and Li, F.: Impacts of Spring East Pacific SST and Arctic Sea Ice on Interannual Variability of Summer Burned Area in boreal North America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8303, https://doi.org/10.5194/egusphere-egu24-8303, 2024.

EGU24-8506 | Orals | BG1.1

Anticipating future extreme wildfire events by coupling ignition and success of initial attack models 

Pere Joan Gelabert Vadillo, Adrian Jiménez Ruano, Fellice Catelo, and Marcos Rodrigues Mimbrero

In recent years, the EU Commission has enacted various firefighting policies to combat and diminish the adverse effects of wildfires. The Mediterranean area has experienced an observable extension of its wildfire season, coupled with rapid shifts in fire-weather dynamics, resulting in exceptionally severe wildfire occurrences. As of 2022, the EU has recorded an approximate total burned area of 792,902 hectares, with forests accounting for 66% of this figure (Rodrigues et al., 2023).

The main objective of this study is to anticipate extreme wildfire conditions by providing a synthetic product depicting the chances of a fire event starting and escaping containment. To do so, we combined empirical models of ignition likelihood and effectiveness of the initial attack stage. We employed machine learning techniques to calibrate binary regression models using historical wildfire ignition data and geospatial layer depicting the main drivers of ignition and containment, namely: accessibility, human pressure on wildlands, fuel moisture and availability. We illustrate our approach along the Mediterranean coastal region of Spain. Our approach enables us to predict wildfire contention capacity under diverse population growth and climate warming scenarios. This strategy aims to improve disaster risk reduction by pointing wildfire management zones and prioritizing intervention in high-risk areas.

Results indicate a high predictive ability to model human-caused wildfire ignition (AUC>0.80) but a modest capability to capture the containment capability (AUC≈0.70). Accessibility by road largely controls the spatial pattern of ignition and containment, with dead fuel moisture content modulating the temporal pattern of probability. We further illustrate the approach by providing insights into future SSP (Shared Socieconomic Pathways) scenarios by synthesizing both products into comprehensive management zones (Rodrigues et al., 2022).

 

References

Rodrigues, M., Camprubí, À.C., Balaguer-Romano, R., Megía, C.J.C., Castañares, F., Ruffault, J., Fernandes, P.M., Dios, V.R. de, 2023. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Science of The Total Environment 859, 160320. https://doi.org/10.1016/j.scitotenv.2022.160320

Rodrigues, M., Zúñiga-Antón, M., Alcasena, F., Gelabert, P., Vega-Garcia, C., 2022. Integrating geospatial wildfire models to delineate landscape management zones and inform decision-making in Mediterranean areas. Safety Science 147, 105616. https://doi.org/10.1016/j.ssci.2021.105616

How to cite: Gelabert Vadillo, P. J., Jiménez Ruano, A., Catelo, F., and Rodrigues Mimbrero, M.: Anticipating future extreme wildfire events by coupling ignition and success of initial attack models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8506, https://doi.org/10.5194/egusphere-egu24-8506, 2024.

EGU24-8507 | ECS | Posters on site | BG1.1

Unravelling Variability: Discrepancies in Amazonian Biomass Burning Emissions Under Different Emission Factor Scenarios  

Guilherme Mataveli, Matthew W. Jones, Gabriel Pereira, Saulo R. Freitas, Valter Oliveira, Esther Brambleby, and Luiz E.O. C. Aragão

Biomass burning (BB) plays a key role in the biosphere–atmosphere interaction. It is a major source of trace gases and aerosols that alters the atmosphere and the water cycle. Additionally, these emissions are often related to other detrimental impacts including biodiversity loss in fire-sensitive biomes, increase of respiratory diseases, and massive economic losses. BB emissions are used as inputs in models that estimate air quality and the effect of fires on Earth’s climate. Hence, an accurate estimation of BB emissions is paramount. While BB emissions spread over most of the global vegetated areas, the integration of orbital remote sensing and modelling is the most effective approach to estimate them from regional to global scales. BB emission estimation follows the relationship between burned biomass and the emission factor (EF - mass emitted of a given species, for example carbon dioxide, per mass of dry matter burned). The burned biomass can be estimated using two approaches: (i) based on the relationship among burned area, above-ground biomass, and combustion completeness; or (ii) based on fire radiative power (FRP), a quantitative measurement that is directly related to the rate of burned biomass and is estimated to each active fire detected by several orbital sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. EF values, which are Land Use and Land Cover (LULC) based, are required to estimate BB emissions independently on the approach adopted to estimate the burned biomass. Although novel approaches to improve the accuracy of BB emissions have been developed, the impact of EF values on the final estimated emissions remains uncertain. We have evaluated the impact of the EFs on the final estimate of fine particulate matter (PM2.5) emitted from BB in the Brazilian Amazon during a nineteen years’ time series (2002-2020) by running the PREP-CHEM-SRC emissions preprocessor tool under four EF scenarios: the tool original EF values based on the work of Andreae and Merlet (2001), the average EF values recently updated by Andreae (2019), and the minimum and maximum EF values also proposed by this author. The minimum (maximum) EF values were defined as the average EF value for each LULC class minus (plus) one standard deviation. The PM2.5 emissions were estimated at the spatial resolution of 0.1º using the FRP approach implemented on PREP-CHEM-SRC (3BEM_FRP model) having MODIS active fires as input, since this approach requires fewer inputs and the impact of the EFs over the emissions would be more evident. Our results showed that the annual average PM2.5 emission in the Amazon varied by 163% between the four EF scenarios (from1,426 Gg and 3,747 Gg), while the scenario based on the average values was the closest to the one based on PREP-CHEM-SRC original EF values (2,582 Gg and 2,213 Gg, respectively – an increase of 17%). These results contribute to the better understanding of how this single parameter impacts on the estimation of BB emissions.

How to cite: Mataveli, G., W. Jones, M., Pereira, G., R. Freitas, S., Oliveira, V., Brambleby, E., and E.O. C. Aragão, L.: Unravelling Variability: Discrepancies in Amazonian Biomass Burning Emissions Under Different Emission Factor Scenarios , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8507, https://doi.org/10.5194/egusphere-egu24-8507, 2024.

EGU24-8668 | ECS | Posters on site | BG1.1

Effect of long-range transported fire emissions on aerosol and cloud properties at high latitudes: In situ measurements and satellite observations 

Snehitha M. Kommula, Angela Buchholz, Yvette Gramlich, Tero Mielonen, Liqing Hao, Iida Pullinen, Lejish Vettikkat, Jorma Joutsensaari, Siegfried schobesberger, Petri Tiitta, Ari Leskinen, Dominic Heslin Rees, Sophie Haslett, Karolina Siegel, Chris Lunder, Paul Zieger, Radovan Krejci, Sami Romakkaniemi, Claudia Mohr, and Annele Virtanen

Global warming and climate change-induced rise in Earth’s temperature have increased the frequency of forest/wildfires over the past decade. Therefore, understanding the effect of fire emissions on aerosol-cloud interactions is crucial for improving Earth system models.

         We present observations from in-situ measurements of aerosol properties at the Puijo SMEAR IV station in eastern Finland and the Zeppelin Observatory in Ny-Ålesund, High Arctic. Both stations are frequently inside low-level clouds due to their topographic prominence. During the autumn of 2020, fire emissions from the same active fire region in south-eastern (SE) Europe reached both stations after ~2 - 8 days of atmospheric aging. This enabled us to investigate the changes in aerosol and cloud properties for clouds formed under the influence of aged fire emissions (referred to as the ‘fire’ period) and under cleaner conditions with no fire emission influence at these stations (‘non-fire’ period). The aerosol hygroscopicity parameter (κchem) was derived from the chemical composition data obtained from online aerosol mass spectrometers and was used to derive the number concentration of cloud condensation nuclei (NCCN) from the measured particle size distributions.

         At both stations, the aerosol number concentration in the accumulation mode and the cloud condensation nuclei concentration (NCCN) were higher during the fire period than during non-fire times. However, the aerosol hygroscopicity increased at Puijo but decreased a Zeppelin from the non-fire to fire period. At Puijo, in-situ measured cloud droplet number concentration (CDNC) was by a factor of ~7 higher when comparing fire to non-fire periods. This was in good agreement with the satellite observations (MODIS, Terra). At Puijo, the higher CCN concentrations during the fire period cause a depletion of the water vapor available for cloud droplet activation leading to larger observed activation diameters during cloud events despite the higher hygroscopicity of the aerosol particles.

         These observations show the importance of SE European fires for enhancing the CCN activity in Finland and the high Arctic. Results from this study emphasize the complex interplay between particle size and chemical composition, and how fires even from sources far away can have strong impacts in these remote regions.

How to cite: Kommula, S. M., Buchholz, A., Gramlich, Y., Mielonen, T., Hao, L., Pullinen, I., Vettikkat, L., Joutsensaari, J., schobesberger, S., Tiitta, P., Leskinen, A., Rees, D. H., Haslett, S., Siegel, K., Lunder, C., Zieger, P., Krejci, R., Romakkaniemi, S., Mohr, C., and Virtanen, A.: Effect of long-range transported fire emissions on aerosol and cloud properties at high latitudes: In situ measurements and satellite observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8668, https://doi.org/10.5194/egusphere-egu24-8668, 2024.

EGU24-9225 | ECS | Orals | BG1.1 | Highlight

Warming and cooling influences of North American boreal fires 

Max van Gerrevink, Sander Veraverbeke, Sol Cooperdock, Stefano Potter, Qirui Zhong, Michael Moubarak, Scott J. Goetz, Michelle C. Mack, James T. Randerson, Merritt R. Turetsky, Guido van der Werf, and Brendan M. Rogers

The Arctic-boreal region is warming rapidly, with consequences for northern ecosystems and global climate. Fires across the Arctic-boreal region are a major natural disturbance mechanism that initiate climate warming (positive) and cooling (negative) feedbacks. Understanding the net forcing effect from boreal fire on climate is crucial in managing and mitigating climate change impacts of boreal fires. Here we report radiative forcing estimates from boreal forest fires across Alaska and Western Canada (Arctic Boreal Vulnerability Experiment-domain). Our results integrate the effect of greenhouse gas emissions (warming) and aerosols emission (net cooling) have through direct combustion, post-fire vegetation recovery sequestering carbon (cooling), fire-induced permafrost degradation emitting CO2 and CH4 (warming), and changes in surface albedo (cooling). Alaskan fires are on average climate warming (1.34±2.95 W/m2 per burned area) – uncertainty given as spatial standard deviation, while Canadian fires show on average a climate cooling (‑2.26±2.48 W/m2 per burned area) effect. The emissions from the combustion of organic soils and post-fire permafrost thaw dominate the positive feedback for Alaskan fires, whereas the cooling effect of post-fire changes in surface albedo because of prolonged spring snow cover dominate for the western Canadian fires. Our work demonstrates large-scale spatial variability in the climate feedbacks from North American boreal forest fires. Such fine-scale spatial information on the warming and cooling influences of forest fires could be useful in designing forest management and fire suppression activities informed by climate impacts.

How to cite: van Gerrevink, M., Veraverbeke, S., Cooperdock, S., Potter, S., Zhong, Q., Moubarak, M., Goetz, S. J., Mack, M. C., Randerson, J. T., Turetsky, M. R., van der Werf, G., and Rogers, B. M.: Warming and cooling influences of North American boreal fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9225, https://doi.org/10.5194/egusphere-egu24-9225, 2024.

EGU24-9270 | ECS | Orals | BG1.1

What limits the growth of lightning fires in the remote northeast Siberian taiga? 

Thomas Janssen and Sander Veraverbeke

In recent years, boreal forests have experienced unprecedented fire activity. These fires have contributed substantially to carbon emissions and posed hazards to human health. In the remote northeast Siberian taiga, the vast majority of fires are ignited by lightning strikes and not by human activity. Furthermore, active fire suppression is largely absent in these remote areas, resulting in uncontrolled fire growth. Here, we present a detailed look at the places and times where these lightning fires do finally stop spreading and aim to identify the causes. We employ various remote sensing and geo-spatial datasets including fire weather as well as landscape variables such as the presence of surface water, road networks, woody fuel load, fire history, elevation and landcover, to pinpoint the limitations to fire growth along fire perimeters recorded between 2012 and 2022 at a 300-meter spatial resolution. We were able to attribute 87% of all fire perimeter locations to a statistically significant (p < 0.01) change in one or more of these fire limitations over either time (fire weather) or space (landscape). The analysis reveals that fire growth is mainly limited by a change in the vegetation (fuel type and fuel load) as well as a change to less favourable weather for fire spread, although there are clear regional differences in the importance of specific limitations. Overall, fire weather seems to be the most important limitation to fire growth in the north of the Siberian taiga where continuous permafrost is present. With a rising frequency of lightning strikes, droughts, and heatwaves in boreal regions, uncontrolled lightning fires have the potential to expand even further in the future, leading to significant implications for vulnerable permafrost landscapes and, consequently, the global carbon cycle.

How to cite: Janssen, T. and Veraverbeke, S.: What limits the growth of lightning fires in the remote northeast Siberian taiga?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9270, https://doi.org/10.5194/egusphere-egu24-9270, 2024.

EGU24-10145 | ECS | Posters on site | BG1.1

Burned area and climate extremes in different land covers in southeastern Australia 

Patrícia Páscoa, Ana Russo, Andreia Ribeiro, and Célia Gouveia

Large burned areas (BA) in southeastern Australia were regularly registered during hot and dry years, such as the Black Saturday (2009) and the Black Summer (2019-2020) extreme bushfires. These types of extreme climate conditions are expected to become more frequent, leading to an increased risk of large BA in this region.

In this work, the influence of drought conditions and hot events on the BA in southeastern Australia was assessed, using correlation and copula functions. Bivariate copula functions were fitted, and conditional probabilities of large BA given climate extremes were computed. Three classes of drought intensity were studied, namely moderate, severe, and extreme, as well as three thresholds for temperature extremes, namely the 80th, 90th, and 95th percentiles. Monthly BA were computed as the sum of the burned pixels in the fire season (from October to March), using data from the MODIS Burned Area product. The analysis was performed on forests, grasslands, and savannas separately. Drought conditions were assessed with SPEI at several time scales, computed with data from the CRU TS4.07 dataset. Maximum and minimum daily temperature were retrieved from the ERA5 dataset.

Results showed that the correlation between BA and SPEI was high in the current and previous 1 month for all land covers, being highest in savannas and lowest in grasslands. Short time scales of SPEI had the highest correlation on grasslands, and the opposite was observed in forests and savannas. The correlation with maximum temperature increased until 10-15 days before the fire event and surpassed 0.6 over forests. Minimum temperature presented much lower correlations and there was not a pronounced increase in the previous days, as observed with the maximum temperature.

The conditional probability of large BA increased with the intensity of the drought on all land covers, and it reached almost 100% probability of exceeding the 50th percentile of BA under extreme droughts on forests and savannas. For the case of the 80th percentile of BA, the probability was lower, but the difference given drought and non-drought conditions was larger than for the 50th percentile. On savannas and forests, the conditional probability was still high when considering SPEI in the previous 2 and 3 months.

Maximum temperature yielded a higher probability of BA for the two highest percentiles. Savannas presented the lowest probability of BA given hot events, and forests the highest. The probability increased up to 10 days before the fire. Overall, the probabilities obtained given drought conditions are higher than given hot events, particularly for larger fires. Moreover, high probabilities obtained with large time scales and longer lead times are indicative of the importance of drought conditions before the fire season and may help predict the occurrence of large BA.

 

Acknowledgments: This study was partially supported by FCT (Fundação para a Ciência e Tecnologia, Portugal) through national funds (PIDDAC) – UIDB/50019/2020, by project Floresta Limpa (PCIF/MOG/0161/2019), and by project 2021 FirEUrisk, funded by European Union’s Horizon 2020 research and innovation programme under the Grant Agreement no. 101003890). A.R. was supported by FCT through https://doi.org/10.54499/2022.01167.CEECIND/CP1722/CT0006. 

How to cite: Páscoa, P., Russo, A., Ribeiro, A., and Gouveia, C.: Burned area and climate extremes in different land covers in southeastern Australia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10145, https://doi.org/10.5194/egusphere-egu24-10145, 2024.

EGU24-10377 | ECS | Posters on site | BG1.1

Human land occupation regulates the effect of the climate on the burned area of the Cerrado biome 

Carlota Segura-Garcia, David Bauman, Vera L. S. Arruda, Ane Alencar, and Imma Oliveras Menor

The Brazilian Cerrado is a heterogeneous biome formed by a mosaic of savannas, grasslands, and smaller patches of denser woody forms. In this biome, fire is a natural disturbance agent that contributes to maintaining its open ecosystems and rich biodiversity. However, modern human activities and climate change are altering its fire regimes. In tropical savannas, land-use expansion is usually associated to a decrease in burned area primarily through land fragmentation, but also through active fire suppression. Meanwhile, climate change is fostering fire weather conditions, exacerbating fire activity. Hence, the two main drivers of fire could be pushing burned area in opposite directions, both with important ecological consequences for the Cerrado. However, it remains unclear how these two drivers interact, which is essential to devise effective fire management policies and conservation plans.

In this study, we use a causal inference framework to quantify the interaction between anthropic area percentage – as a proxy of human presence and fragmentation – and various climatic variables on their effects on Cerrado’s burned area. As well, we explore the spatial structure of temporal trends in burned area, anthropic expansion and climate change, and quantify the causal effect of the last two on the former.

We use geospatial data from different sources on a 0.2o grid over the Cerrado for the period 1985 to 2020. We use burned area and land use data from the MapBiomas project, and climate re-analysis data from ERA5 Land, CHIRPS and TerraClimate. We design our models using Directed Acyclic Graphs, a graphic representation of the causal relations between the predictors and burned area that informs variable selection for causal inference. Hence, based on these DAGs, we build multilevel Bayesian regression models to quantify the effects of the predictors and their interactions.

We find that a larger presence of land-use activities keeps burned area low and, importantly, hinders the effects of the climate. That is, while in landscapes composed mostly of native vegetation hotter and drier conditions increase burned area as expected; in anthropic landscapes, humans completely limit burned area responsiveness to climate. We also find spatially heterogeneous increasing and decreasing trends in burned area over the period, but concentrated in those areas of the Cerrado that were mostly natural in 1985. In these areas, a large anthropic expansion brought about a decrease in burned area, while we observe an increase in burned area in relation to climate change only in the areas that remained intact throughout the study period.

In conclusion, burned area in the Cerrado is shaped primarily by the extent of human presence in the landscape, even limiting the effects of the climate, while climatic effects become relevant in areas with larger tracts of native vegetation, suggesting that these areas may be more vulnerable to climate change.

How to cite: Segura-Garcia, C., Bauman, D., S. Arruda, V. L., Alencar, A., and Oliveras Menor, I.: Human land occupation regulates the effect of the climate on the burned area of the Cerrado biome, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10377, https://doi.org/10.5194/egusphere-egu24-10377, 2024.

EGU24-10606 | ECS | Orals | BG1.1

Characterizing lightning-ignited wildfire occurrences at sub-grid scales in orography-aware NOAA/GFDL land model LM4.2 

Rui Wang, Enrico Zorzetto, Sergey Malyshev, and Elena Shevliakova

Lightning ignitions are the dominant causes of wildfires in many regions, responsible for 80% of burned areas at high latitudes and about 70% of fires in the Amazon rainforest. With global wildfire activities and extreme fire events (e.g., intensity, duration, and size) increasing under the changing climate conditions, understanding the interactions between lighting, landscape characteristics, and wildfires is crucial for predicting and mitigating the impacts of climate change. Cloud-to-ground lightning activities are driven by a combination of large- and local-scale factors, e.g., local atmospheric circulations and convection and topography. Furthermore, the number of lightning strikes is predicted to increase by 10 – 30 % per degree warming. Decadal satellite observations have revealed Earth’s lightning hotspots at very high resolution, however, there is a paucity of fine-scale lightning strikes and lightning-ignited wildfires (LIW) in the Earth system and climate models. Currently, many climate and ESM  models do not include fires at all or simulate them with meteorological inputs and grid-average lightning at the scale of atmospheric models (25 to 100 km), introducing large uncertainties of LIW due to the lack of information at the scales relevant to fire dynamics.  Lack of information about lightning trends and variability hinders the prediction and projection of fires and their contribution to carbon and other atmospheric tracers and global warming. For example, in the US National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) ESM4.1 model, the fire model uses a climatology of lightning strikes from preindustrial to 2100.

In this presentation, we will demonstrate the implications of capturing subgrid lightning distributions in the GFDL land model LM4.2 for the global simulations of wildfire dynamics over the available records (1998-2013) and provide insights into future projections. LM4.2 captures sub-grid heterogeneity of land cover and use, soil geomorphology, and topography, facilitating the understanding of LIW distribution across global to regional and sub-grid scales. In this study, we leverage 0.1° × 0.1° lightning observations from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) in the GFDL LM4-HB to characterize fine-scale lightning strike distribution and associated LIW.

How to cite: Wang, R., Zorzetto, E., Malyshev, S., and Shevliakova, E.: Characterizing lightning-ignited wildfire occurrences at sub-grid scales in orography-aware NOAA/GFDL land model LM4.2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10606, https://doi.org/10.5194/egusphere-egu24-10606, 2024.

EGU24-10793 | ECS | Posters on site | BG1.1

A Decision Support System for Forest Fire Danger Notices in Ireland  

Padraig Flattery, Klara Finkele, Paul Downes, Alan Hally, and Ciaran Nugent

Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been employed operationally at Met Éireann to predict the risk of forest fires in Ireland. Around 11% or 770,000 ha of the total land area of Ireland is afforested, but there are also large areas of open mountain and peatlands covered in grasses, dwarf-shrub and larger woody shrub type vegetation which can provide fuel for spring wildfires under suitable conditions. After winter, vegetation can be dead or have a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, especially following prolonged dry periods.

Different decision support tools are available to different sectors, namely:

  • The General Public: who have access to fire weather index meteograms on Met Éireann’s public website.
  • Local Authorities, who have access to the ANYWHERE multi-hazard warning system, which provides multiple sources of information about fire danger and propagation.
  • The Department of Agriculture, Food and Marine (DAFM), who are provided with information and additional support from National and European partners and networks.

DAFM is the Forest Protection authority in Ireland responsible for issuing Forest Fire Danger Notices which improve preparedness for fire responses and are based on a range of factors including information provided by Met Éireann who calculate the FWI and FWI components using observation data at synoptic stations, and the predicted FWI for the next five days ahead based on numerical weather prediction data. This allows fire responders to build resilience and prepare for impending fires.

The FWI is determined based on the types of forest fuel and how quickly they dry out/get rewetted, and components of fire behaviour. The FWI represents the fire intensity as the rate of energy per unit length of fire front (kW/m). The components which provide the most accurate indication of risk under Irish conditions are the Fine Fuel Moisture Code and Initial Spread Index, based on the fuels involved and ignition patterns observed to date. Since 2022 Met Eireann provide the FWI as well as the individual components Fine Fuel Moisture Content and Initial Spread Index via the public website for synoptic stations. These indices are based on observations and a seven-day forecast into the future using ECMWF predictions. This allows all county councils responsible for wildfire preparedness to access this information swiftly and directly.

Met Éireann also use the ANYWHERE multi-hazard warning tool which allows for visualisation of multiple fire-related risk factors and warning indices to be viewed simultaneously. The ANYWHERE system, in combination with our station-based forecast and antecedent conditions, provide fire managers and response teams with excellent information with which to make decisions.

How to cite: Flattery, P., Finkele, K., Downes, P., Hally, A., and Nugent, C.: A Decision Support System for Forest Fire Danger Notices in Ireland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10793, https://doi.org/10.5194/egusphere-egu24-10793, 2024.

EGU24-10920 | ECS | Posters on site | BG1.1

Reconstructing 20th century burned area by combining global fire model input, satellite observations and machine learning 

Seppe Lampe, Lukas Gudmundsson, Vincent Humphrey, Inne Vanderkelen, Bertrand Le Saux, and Wim Thiery

The temporal coverage (∼2000 to present) of global burned area satellite observations limits many aspects of fire research e.g., long-term trend analysis, disentangling the effect of various drivers on fire behaviour and detection and attribution of changes to climate change. As a result, global fire models are more frequently being called upon to answer questions about past and future fire behaviour. Unfortunately, the limited temporal coverage of the observations also hinders the development and evaluation of these fire models. The current generation of global fire models from ISIMIP are able to simulate well some characteristics of regional fire behaviour such as mean state and seasonality. However, the performance of these models differs greatly from region to region, and aspects such as extreme fire behaviour are not well represented yet. Here, we explore the possibility of using machine learning algorithms to model burned area from the same input parameters that are passed to global climate models. Once trained, this data-driven model can be evaluated against regional proxies for past fire behaviour e.g., tree rings and charcoal records. Hopefully, this data-driven reconstruction can provide valuable insights on the 20th century burned area, and can help improve and evaluate fire models.

How to cite: Lampe, S., Gudmundsson, L., Humphrey, V., Vanderkelen, I., Le Saux, B., and Thiery, W.: Reconstructing 20th century burned area by combining global fire model input, satellite observations and machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10920, https://doi.org/10.5194/egusphere-egu24-10920, 2024.

EGU24-10947 | Orals | BG1.1 | Highlight

Burned area and fire emissions according to the fifth version of the Global Fire Emissions Database (GFED) 

Guido van der Werf, James Randerson, Dave van Wees, Yang Chen, Roland Vernooij, Louis Giglio, Joanne Hall, Douglas Morton, Kelley Barsanti, and Bob Yokelson

Quantifying burned area and associated fire emissions is paramount to understand how changing fire patterns affect radiative forcing and air quality. It is now well established that many fires are too small to be detected by coarse resolution satellite burned area products on which the Global Fire Emissions Database (GFED) relied. In the fifth version of GFED (GFED5) we therefore combine burned area derived from mapped coarse-resolution burned area from the MODIS sensor -which excels in detecting larger fires- with small-fire burned area. The latter is derived from MODIS active fire detections scaled to burned area using ratios constrained by higher-resolution burned area datasets from Landsat and Sentinel-2 for selected regions. Burned area in cropland regions was based on the Global Cropland Area Burned (GloCAB) dataset. Total global burned area is 61% higher than in GFED4s. We converted burned area to emissions using a simplified version of the CASA model used in previous GFED versions, but which now runs at a 500 m spatial resolution. This allows for better constrained modeled fuel loads based on field measurements. Although GFED5 emissions are aggregated to a 0.25 degree grid due to the statistical nature of deriving our burned area, we can now account for heterogeneity in fire processes within these large pixels. Emissions (3 Pg carbon per year) are roughly 50% higher than in GFED4 and we show how diverging trends in grassland versus forest ecosystems impact trends in total emissions. Finally, we show how converting fire carbon losses to trace gas and aerosol emissions is now better constrained due to the addition of several new emission factor measurement campaigns. In the savanna biome we now account for spatial and temporal variability in emission factors.

How to cite: van der Werf, G., Randerson, J., van Wees, D., Chen, Y., Vernooij, R., Giglio, L., Hall, J., Morton, D., Barsanti, K., and Yokelson, B.: Burned area and fire emissions according to the fifth version of the Global Fire Emissions Database (GFED), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10947, https://doi.org/10.5194/egusphere-egu24-10947, 2024.

EGU24-11206 | ECS | Posters on site | BG1.1 | Highlight

Global cloud-to-ground lightning data to inform wildfire ignition patterns 

Esther Brambleby, Sander Veraverbeke, Guilherme Mataveli, Manoj Joshi, and Matthew Jones

Lightning is recognised as a crucial wildfire ignition source worldwide, especially in remote regions including boreal and temperate forests where large carbon stocks are held. The societal consequences of these wildfires, as well as their contribution to climate change, can be immense. The occurrence of lightning is projected to increase in these areas under climate change, however robust assessments of lightning contribution to wildfire risk have been restricted to selected regions due to the narrow spatial extent of cloud-to-ground lightning records. Consequently, evaluations of lightning-fire relationships using existing global lightning observational datasets have been limited to considering the total amount of lightning. Only cloud-to-ground lightning can ignite a wildfire, therefore when considering impacts on wildfire risk it is essential to distinguish between lightning types.

Using Vaisala’s unique Global Lightning Dataset (GLD360), which discriminates between cloud lightning and cloud-to-ground lightning strikes, we present our preliminary analyses of the spatial patterns and seasonality of cloud-to-ground lightning. Here, we show the regional variation in the lightning frequency and the cloud-to-ground fraction, as well as the strength (current) and polarity of cloud-to-ground lightning strikes.

By considering cloud-to-ground lightning strikes only, we characterise the spatial and seasonal variation in lightning events with the potential to ignite wildfires. Combining global observations of lightning strikes with observations of individual fires and coincident meteorology will advance our mechanistic understanding of wildfire ignition potential in a range of weather conditions, improve the process representation of the ignition process in global models, and refine projections of changing wildfire risks under climate change.

How to cite: Brambleby, E., Veraverbeke, S., Mataveli, G., Joshi, M., and Jones, M.: Global cloud-to-ground lightning data to inform wildfire ignition patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11206, https://doi.org/10.5194/egusphere-egu24-11206, 2024.

This research delves into the dynamics of forest fires across various Indian regions, particularly during the unique COVID-19 lockdown period. The study's core focus is on the interaction between forest fires, climatic factors, and vegetation indices in a scenario of reduced human activity. It employs a multidimensional methodology, integrating satellite imagery and climatic data from periods before, during, and post-lockdown. The lockdown provides a critical opportunity to assess the impact of decreased human interference on forest fire patterns. Advanced statistical techniques are used to analyze the relationship between vegetation indices, fire occurrences, and meteorological conditions. This approach aims to uncover the underlying mechanisms driving these relationships, moving beyond simple trend identification. The research offers a nuanced perspective by differentiating natural factors from human influences. This distinction is vital in understanding the environmental dynamics during the lockdown. The findings have significant implications, offering insights for policymakers and environmentalists in enhancing forest fire management strategies. Emphasizing the need for a comprehensive understanding of environmental interactions, this study contributes to forming more informed and sustainable approaches to natural disaster management in the face of global challenges like climate change and pandemics.

How to cite: Kate, R. and Bhattacharya, J.: Forest Fires during COVID-19: Assessing Environmental Interactions and Fire Dynamics Amidst Reduced Human Intervention in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11291, https://doi.org/10.5194/egusphere-egu24-11291, 2024.

EGU24-11432 | ECS | Posters on site | BG1.1 | Highlight

Northern high latitude peat fires: from lab to modelling  

Dimitra Tarasi, Eirini Boleti, Katie Blackford, Matthew Kasoar, Emmanouil Grillakis, Guillermo Rein, Hafizha Mulyasih, and Apostolos Voulgarakis

Climate warming is occurring most rapidly at high latitudes, heightening the vulnerability of carbon-rich peatlands to fire. Northern peatlands comprise the largest terrestrial carbon store, and exert a net cooling effect on the climate. Warmer and drier conditions due to the anticipated climate change are expected to contribute substantially to increased fire severity and frequency in the northern high latitudes, potentially shifting peatlands from being carbon sinks to being greenhouse gas emission sources. Therefore, peat fires, which are considered the largest and most persistent fires on Earth, can significantly impact the global carbon cycle, atmospheric composition, climate, air quality, and human health. Representing peatland fire feedbacks to climate in Earth system models is essential for accurately predicting the future of the climate system. Here, we present the first steps of an effort to distill lab results on peat burning and emissions into global fire modelling. Since peat moisture content and the depth of burn have been experimentally proved to be critical for the representation of peat fires, we aim to incorporate those mechanisms into a global model functionality. More specifically, we aim to represent the mechanistic understanding of the ignition and spread of peat fires in INFERNO-peat, the peat module of the JULES-INFERNO global fire model. To assess the added value of our updated model, we compare the simulated burnt area and carbon emissions with observation-based products. As boreal regions remain a big mystery for the future of our planet, our improved model representation of peat fires in northern high latitudes contributes to a better understanding of future atmospheric composition, radiative forcing and climate. 

How to cite: Tarasi, D., Boleti, E., Blackford, K., Kasoar, M., Grillakis, E., Rein, G., Mulyasih, H., and Voulgarakis, A.: Northern high latitude peat fires: from lab to modelling , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11432, https://doi.org/10.5194/egusphere-egu24-11432, 2024.

EGU24-11599 | ECS | Orals | BG1.1

Comparison and validation of state-of-the-art fire emissions models for the Amazon 

Dave van Wees, Vincent Huijnen, Matthias Forkel, Jos de Laat, Niels Andela, and Christine Wessollek

Amazon forest conservation is critical for reaching net-zero carbon emissions and protecting regional biodiversity but these efforts are at risk from deforestation, fire and drought. In particular, accurate quantification of carbon losses from forest and deforestation fires are required to understand long-term impacts of fire on the carbon cycle and inform management strategies. Recent developments in the detection of burned area, near-real time tracking of fire patch metrics, and higher-resolution fire emissions models allow for improved estimates of carbon losses from fire. Nevertheless, independent validation of these novel approaches often remains elusive, leading to large disagreement between different emissions inventories.

Here, we compare carbon emissions estimates from several state-of-the-art fire emissions models, including a 500-m resolution GFED version, GFAS, and the Sense4Fire project, in a case-study for the Amazon region. Where necessary, we have updated the models to extend to 2022 and to include the most recent version of model input data from MODIS (Collection 6.1). We analysed the added years of data to elucidate recent trends in fire-related carbon emissions across the Amazon and adjacent biomes. For validation, we ingested the CO emissions from the considered fire emissions models into an atmospheric transfer simulation (IFS-COMPO) and compared those to column CO observations from Sentinel-5P TROPOMI. Finally, we propose an optimization methodology for matching modelled CO concentrations to observations with the objective of constraining regional carbon losses from fire. Results provide novel insights into carbon losses from fire across different fire types and land use practices, and can be extended to global scale for improved estimates of global fire emissions.

How to cite: van Wees, D., Huijnen, V., Forkel, M., de Laat, J., Andela, N., and Wessollek, C.: Comparison and validation of state-of-the-art fire emissions models for the Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11599, https://doi.org/10.5194/egusphere-egu24-11599, 2024.

EGU24-11809 | ECS | Posters on site | BG1.1

Analysing the effects of postfire oak afforestation on the provision of ecosystem services 

Luis Filipe Lopes, Erika S. Santos, Leónia Nunes, Paulo M. Fernandes, and Vanda Acácio

Forests play a substantial role in generating externalities and supporting services essential for maintaining key ecosystem functions and processes. Fire has long been a natural element of forest dynamics, contributing to model the structure, composition, and diversity of vegetation. However, changes in fire regimes in recent decades in Europe (e.g., more frequent and severe fires) have led to negative ecological, social, and economic impacts, particularly marked by a decline in the provision of ecosystem services. Mediterranean Europe, being a region highly prone to wildfires and currently experiencing a change in fire regimes, exemplifies this situation.

In this study, we aim to understand the effects of postfire oak afforestation on the provision of ecosystem services (ES). We analysed 15 afforestation projects with the deciduous Pyrenean oak (Quercus pyrenaica) carried out in 1994-2006 in similar soil type (Cambisols) in the North and Center of Portugal, including seven pure and eight mixed oak stands. For each project area, we identified an adjacent control area affected by the same fire event but without oak afforestation or evident management. In 2021-2022, for each project and control areas, we collected field data on: site conditions, stand characteristics, forest biometry, understory vegetation (height and cover), floristic richness and diversity, oak natural regeneration and litter. At the moment of data collection, the majority of projects (10) were 12 to 17 years old, with the remaining projects (5) having been implemented 21 to 25 years ago. Collected data was used to quantify provisioning ecosystem services (wood volume) and regulation and maintenance services (forest and litter carbon, fire protection, maintenance of nursery populations, habitats, and seed dispersal).

Afforested areas supplied more provisioning services (higher wood volume), as a consequence of a higher tree density when compared to non-afforested areas. Total carbon content and litter carbon were not significantly different between afforested and control areas. Nevertheless, afforested and control areas exhibited distinct patterns concerning carbon in the different forest layers: carbon in the tree layer was significantly higher in afforested areas, while carbon in the understory layer was significantly higher in control areas. Afforested areas also showed a significantly higher fire protection service, as a consequence of lower fuel load from regular understory shrub management. Lastly, we found no significant differences in services related to maintenance of nursery populations and habitats (estimated with floristic species and diversity), and seed dispersal (estimated with oak natural regeneration), although afforested areas presented a higher number of oak seedlings.

Our study shows that postfire afforestation in oak forests may have a positive, null or negative impact on ES, depending on the service under analysis, highlighting the existence of trade-offs among multiple ES. We emphasize the importance of a comprehensive understanding of the impacts of postfire afforestation on ES to guide postfire management, aiming to enhance forest resilience in the face of predicted climate change.

How to cite: Lopes, L. F., Santos, E. S., Nunes, L., Fernandes, P. M., and Acácio, V.: Analysing the effects of postfire oak afforestation on the provision of ecosystem services, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11809, https://doi.org/10.5194/egusphere-egu24-11809, 2024.

EGU24-11962 | Orals | BG1.1

The Great Fuel Moisture Survey: developing fundamental wildfire science and sustainable community owned agency in traditionally non-fire prone societies 

Nicholas Kettridge, Katy Ivison, Alistair Crawford, Gareth Clay, Claire Belcher, Laura Graham, and Kerryn Little

New fire vulnerable communities are emerging in traditionally non-fire prone regions of the world. But these communities are often largely unaware of the developing threat and do not hold the core wildfire knowledge to galvanise collective community-based action to mitigate the risk. Furthermore, we urgently require knowledge of fuel moisture dynamics and flammability of fuels in such regions to provide accurate assessments of fire danger at the national scale. Here we characterise the moisture content and flammability of heather through engaged environmental science, demonstrating the potential of the approach to develop a public consciousness and knowledge of wildfire within communities. Fuel sampling kits were sent to 150 samplers who collected ~1000 vegetation samples across the UK (from Land’s End to John O’Groats) over a period of two days during a single period of high fire danger. The validity of the volunteer approach for collecting high quality fuel moisture data was also assessed from the analysis of a separate ~1500 samples collected by 17 samplers in a single test plot. The approach provides a simple nationally available entry point for residents traditionally unaware of both the wildfire risk and the management of their community for wildfire mitigation. Empowering samplers offers potential future opportunity to create meaningful local datasets, to build communities, and in doing so give a strong voice to residents in regional and national policy discussions.

How to cite: Kettridge, N., Ivison, K., Crawford, A., Clay, G., Belcher, C., Graham, L., and Little, K.: The Great Fuel Moisture Survey: developing fundamental wildfire science and sustainable community owned agency in traditionally non-fire prone societies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11962, https://doi.org/10.5194/egusphere-egu24-11962, 2024.

EGU24-11965 | ECS | Posters on site | BG1.1

Effects of 2018 wildfire on soil properties in a peatland within the Peak District National Park (central England) 

Luigi Marfella, Mark A. Ashby, Georgia Hennessy, Rossana Marzaioli, Flora A. Rutigliano, and Helen C. Glanville

Peatland soil is a valuable component of natural capital by constituting the largest terrestrial carbon sink (~30% of the global soil carbon) and an essential freshwater source. Despite covering only ~3% of the Earth’s surface, peatlands provide crucial ecosystem services i.e. water-quality improvement and climate regulation by storing carbon in peat. However, peat degradation due to anthropogenic activities (e.g. drainage) as well as global climate change exposes this ecosystem to fire risk.
This study assessed the medium-term (~5 years) impacts of the 10 August 2018 wildfire within The Roaches Nature Reserve. This area spans the southeastern sector of the Peak District National Park and Special Area of Conservation (SAC-UK0030280). According to the Staffordshire Wildlife Trust (responsible authority for Reserve management), the human-caused fire broke out in a wooded area and aided by wind, spread to the peatland. Here, we integrated soil analyses and vegetation surveys of a burnt and unburnt area i) to assess possible correlations between soil biogeochemical properties and vegetation cover with ii) remote sensing to collect data on fire severity exploring temporal and spatial wildfire impacts.
Processing of satellite imagery highlighted a high-severity fire impact within the perimeter of the burned area, which predicts alteration of soil characteristics. Preliminary outcomes on the soil indicated deacidification and reduced water content in the burned peat remains 5 years post-fire.
Given that global peatland conservation is an important tool for addressing climate-change, this research appears necessary to develop effective management strategies, including rewetting of peatlands postfire.

How to cite: Marfella, L., Ashby, M. A., Hennessy, G., Marzaioli, R., Rutigliano, F. A., and Glanville, H. C.: Effects of 2018 wildfire on soil properties in a peatland within the Peak District National Park (central England), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11965, https://doi.org/10.5194/egusphere-egu24-11965, 2024.

The ignition, spread, and severity of wildfires are driven largely by weather conditions (Jain et al. 2020: https://doi.org/10.1139/er-2020-0019; Liu et al. 2013: https://doi.org/10.1371/journal.pone.0055618).  The main tool for weather prediction across the globe is a set of physical, coupled atmosphere/ocean models, called numerical weather prediction (NWP).  Despite rapid improvements in the last few decades, NWP alone is not sufficient for wildfire prediction, because it does not resolve every process related to wildfire.  One solution is to post-process NWP with statistical models, which correct the NWP model towards better resolving processes related to the phenomenon of interest (here, wildfire).  This post-processing is called model-output statistics (MOS) and typically involves linear regression.  However, recent work has advanced MOS by incorporating more powerful statistical models from deep learning (DL).  We use DL to predict extreme fire weather and behaviour at multi-day lead times throughout the United States.

 

For fire weather, we have trained U-nets -- a type of deep neural network -- to predict at lead times of 3-240 hours over the United States.  The output (target) variables are seven indices from the Canadian Fire Weather Index System (CFWIS), computed from the ECMWF Reanalysis version 5 (ERA5).  These seven indices include the fine-fuel moisture code (FFMC), initial-spread index (ISI), overall fire-weather index (FWI), etc.  Meanwhile, the input (predictor) variables come from five sources.  The first is a forecast time series of atmospheric state variables (height, temperature, humidity, and wind) from the Global Forecast System (GFS) NWP model.  The second is a forecast time series of surface and subsurface moisture (soil moisture, accumulated precipitation, and snow depth) from the GFS.  The third is a set of constant fields (terrain height/slope/aspect, land-sea mask, etc.) describing the underlying terrain.  The fourth is a lagged time series of CFWIS over the past several days, i.e., past target values.  The fifth is a forecast time series of CFWIS indices, computed by applying the CFWIS functions directly to GFS-forecast weather variables.  These are the uncorrected (GFS-only) CFWIS forecasts, to be corrected by the U-net.

 

For fire behaviour, we have trained random forests -- ensembles of decision trees -- to predict fire radiative power (FRP) at lead times of 1-48 hours over the United States.  The labels (correct answers) for FRP are obtained from the Regional ABI and VIIRS Emissions (RAVE) merged satellite product.  Predictors for the random forest include the first three sources listed for the U-net above, plus a lagged time series of FRP over the past 24 hours, i.e., past target values.

 

Both models -- the U-net for fire weather and the random forest for fire behaviour -- are trained with built-in uncertainty quantification.  Thus, at every lead time and grid point, both models provide an expected value and an estimate of their own uncertainty.  We will present objective evaluation results (for both the mean forecast and uncertainty) and explainable artificial intelligence (XAI) to understand what the models have learned, e.g., which spatiotemporal weather patterns in a given area are most conducive to extreme fire weather/behaviour.

How to cite: Lagerquist, R. and Kumler, C.: Using deep learning to improve multi-day forecasts of extreme fire weather and behaviour throughout the United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12223, https://doi.org/10.5194/egusphere-egu24-12223, 2024.

EGU24-12320 | ECS | Orals | BG1.1

Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction: Case Studies from South Korea and Italy 

Hyun-Woo Jo, Shelby Corning, Pavel Kiparisov, Johanna San Pedro, Andrey Krasovskiy, Florian Kraxner, and Woo-Kyun Lee

Forest fires pose a growing global threat, exacerbated by climate change-induced heat waves. The intricate interplay between changing climate, biophysical, and anthropogenic factors emphasizes the urgent need for sophisticated predictive models. Existing models, whether process-based for interpretability or machine learning-based for automatic feature identification, have distinct strengths and weaknesses. This study addresses these gaps by integrating human domain knowledge, crucial for interpreting forest fire dynamics, into a machine learning framework. We introduce FLAM-Net, a neural network derived from IIASA's wildfire Climate impacts and Adaptation Model (FLAM), melding process-based insights of FLAM with machine learning capabilities. In optimizing FLAM-Net for South Korea, new algorithms interpret national-specific forest fire patterns, and multi-scale applications, facilitated by U-Net-based deep neural networks (DN-FLAM), yield downscaled predictions. Successfully tailored to South Korea's context, FLAM-Net and DN-FLAM reveal spatial concentration near metropolitan areas and the east coastal region, with temporal concentration in spring. Performance evaluation yields Pearson's r values of 0.943, 0.840, and 0.641 for temporal, spatial, and spatio-temporal dimensions. Projections based on Shared Socioeconomic Pathways (SSP) indicate an increasing trend in forest fires until 2050, followed by a decrease due to increased precipitation. During the optimization process of FLAM-Net for Italy, optimal parameters for sub-areas are identified. This involves considering biophysical and anthropogenic factors at each grid, contributing to improved localized projection optimization by utilizing various sets of optimal parameters. There by, this process illuminates the intricate connections between environmental factors and their interpretation in the dynamics of forest fires. This study demonstrates the advantages of hybrid models like FLAM-Net and DN-FLAM, seamlessly combining process-based insights and artificial intelligence for interpretability, accuracy, and efficient optimization. The findings contribute scientific evidence for developing context-specific climate resilience strategies, with global applicability to enhance climate resilience.

How to cite: Jo, H.-W., Corning, S., Kiparisov, P., San Pedro, J., Krasovskiy, A., Kraxner, F., and Lee, W.-K.: Integrating Human Domain Knowledge into Artificial Intelligence for Hybrid Forest Fire Prediction: Case Studies from South Korea and Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12320, https://doi.org/10.5194/egusphere-egu24-12320, 2024.

EGU24-12529 | ECS | Orals | BG1.1 | Highlight

GlobalRx: A global assemblage of regional prescribed fire records for use in assessments of climate change impacts 

Alice Hsu, Jane Thurgood, Adam Smith, Liana Anderson, Hamish Clarke, Stefan Doerr, Paulo Fernandes, Crystal Kolden, Cristina Santín, Tercia Strydom, and Matthew Jones and the GlobalRx Consortium

Prescribed (Rx) and controlled fires are an important land management tool used globally for a variety of reasons, including the reduction of hazardous fuel loads, ecological conservation, agriculture, and natural resource management. Its use has important implications for wildfire risk, biodiversity, and carbon storage. However, the use of Rx and controlled fires is highly dependent upon weather conditions, requiring a weather window during which a careful balance of temperature, moisture, and wind ensure that the burns achieve their objectives while minimizing ecological damage or risk to human lives or assets. The planning and execution of Rx burns must also consider how these weather conditions interact with the local vegetation and ecology. As fire weather is projected to grow more extreme under the impacts of climate change, there is a growing need to monitor this effect on the ability to carry out Rx burning.

Here, we introduce a new dataset, GlobalRx, which includes around 140,000 records of Rx and other controlled fires from 16 countries, encompassing 207 ecoregions and 13 biomes around the world. For each record, we have geolocated values of various metrics of fire weather and fire danger (e.g. fire weather indices, vapour pressure deficit) from the ERA5 meteorological reanalysis, as well as the biome, ecoregion, fuelbed type, and protected area status from global thematic layers. We demonstrate the usefulness of this dataset for analyzing viable meteorological windows under which Rx fires may be conducted across diverse environmental settings in the present climate, as well as how these Rx burning windows may shift under the threats of climate change. This dataset has potential to shed light on how Rx burning windows may shift under future climate change, as well as opportunities to understand other drivers and effects of Rx burning.

This project has been supported by valuable contributions from non-public data from a consortium of data providers: Parks Canada, South Africa National Parks, Brazilian Institute of the Environment and Renewable Natural Resources, East-Pyrenees Prescribed Burning Team, Institute for Nature Conservation and Forests (Portugal), Regional Forest Fire Service (Italy), Russian Federal Forestry Agency, H2020 LifeTaiga Project, Government of the Principality of Asturias, Council of Andalucía, Council of Galicia, Forestry England, National Forestry Commission of Mexico, ZEBRIS Geo-IT GmbH, Hokkaido University, Pau Costa Foundation, Asian Forest Cooperation Organization.

How to cite: Hsu, A., Thurgood, J., Smith, A., Anderson, L., Clarke, H., Doerr, S., Fernandes, P., Kolden, C., Santín, C., Strydom, T., and Jones, M. and the GlobalRx Consortium: GlobalRx: A global assemblage of regional prescribed fire records for use in assessments of climate change impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12529, https://doi.org/10.5194/egusphere-egu24-12529, 2024.

EGU24-13237 | Posters on site | BG1.1

The role of fire radiative power to estimate fire-related smoke pollution. 

Rita Durao, Catarina Alonso, Ana Russo, and Célia Gouveia

The intensity of a wildfire can be assessed based on its released energy, obtained through remote measurements of the fire's radiative power. Since the Fire Radiative Power (FRP) is proportional to the amount of burned biomass and therefore to smoke production. Higher FRP values are associated with more severe fires, suggesting higher levels of smoke production and, consequently, higher emissions of particulate matter and other pollutants. The specific composition of smoke emissions can vary depending on factors such as the type of vegetation burned, the temperature of the fire, and the combustion conditions. In general, fire smoke is composed of a variety of air pollutants, including gases (NOx, CO, VOCs, O3, PAHs, etc) and particulate matter (PM). The objective of this work is to evaluate the ability of FRP, to be used as an indicator of fire smoke pollution. Particulate matter (PMx) and carbon monoxide (CO) concentrations emitted during recent wildfires in Portugal are analyzed to assess the link between pollution concentration levels and fire intensity over the affected areas, taking into account the spatial and temporal characteristics of each event. For this purpose, two particularly severe fires with significant impacts on air quality in central and southern Portugal were analyzed namely the ones taking place in October 2017 and August 2018. Concentrations of PMx and CO were evaluated through CAMS data, and the radiative power through the FRP product of the SEVIRI/MSG disseminated by LSA-SAFThe results show that the emitted pollutant concentrations significantly exceeded the established daily target limit values (air quality and public health guidelines). The fire intensity, based on the emitted Radiative Energy (FRE) derived from FRP, aligns with the known severity of these events, consistent with the observed concentrations of air pollutants, being demonstrated that the FRP can be associated with smoke production, especially PMx emissions during a fire. Thus, the proposed methodology using FRP can be a valuable tool for assessing the impact of wildfires on air quality and understanding the potential for smoke dispersion over fire-affected regions. The role of FRP as an indicator of air pollution highlights the potential use of FRP in assisting in management activities, operational planning, and emergency intervention during ongoing fires. 

Acknowledgments: This study is partially supported by the European Union’s Horizon 2020 research project FirEUrisk (Grant Agreement no. 101003890); and by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES on behalf of DHEFEUS -2022.09185.PTDC and the project FAIR- 2022.01660.PTDC).

How to cite: Durao, R., Alonso, C., Russo, A., and Gouveia, C.: The role of fire radiative power to estimate fire-related smoke pollution., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13237, https://doi.org/10.5194/egusphere-egu24-13237, 2024.

EGU24-13416 | ECS | Posters on site | BG1.1

Two decades of fire-induced albedo change and associated radiative effect over sub-Saharan Africa 

Michaela Flegrova and Helen Brindley

Fire is an important, widespread Earth-system process, influencing local ecosystems and climate around the globe. Over half of global burned area occurs in Africa, with over 10% of the continent affected by fire every year. Fire temporarily alters the surface properties, including surface albedo, causing long-lasting changes to the surface radiation budget.

We present the analysis of 20 years of fire and albedo data in Africa, using the MODIS product suite. We show that fire causes an average immediate albedo decrease, recovering exponentially with a time constant of several weeks. While the magnitude of albedo changes shows large spatial and temporal variations and a strong land cover type (LCT) dependency, exponential recovery is observed in the majority of LCTs. We show that fires cause long-term brightening, observing on average a small positive albedo change 10 months after a fire, but we find this is driven almost exclusively by slow vegetation recovery in the Kalahari region.

Using downward surface shortwave flux estimates we calculate the fire-induced surface radiative forcing (RF), peaking at 5±2 Wm−2 in the burn areas, albeit with a significantly smaller effect when averaged temporally and spatially. We find that the average long-term RF is negative because of the brightening observed.

Our temporal analysis does not indicate a decrease in overall fire-induced RF, despite a well-documented reduction in burning in Africa in the recent decades, suggesting that the RF of individual fires is increasing because of higher levels of downward surface shortwave flux. We hypothesise this may be due to lower levels of smoke aerosols in the atmosphere.

How to cite: Flegrova, M. and Brindley, H.: Two decades of fire-induced albedo change and associated radiative effect over sub-Saharan Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13416, https://doi.org/10.5194/egusphere-egu24-13416, 2024.

EGU24-14202 | Posters on site | BG1.1 | Highlight

Evaluation of global fire simulations in CMIP6 Earth system models 

Fang Li, Xiang Song, Sandy Harrison, and Zhongda Lin

       Fire is the primary form of terrestrial ecosystem disturbance globally and a critical Earth system process. So far, most Earth system models (ESMs) have incorporated fire modeling, with 19 out of them submitted fire simulations to the CMIP6. Transitioning from CMIP5 to CMIP6, much more models submitted fire simulations and the dominant fire scheme has evolved from GlobFIRM to the Li scheme. However, it remains unknown how well CMIP6 ESMs perform in fire simulations. This study provides the first comprehensive evaluation of CMIP6 fire simulations, through comparisons with multiple satellite-based datasets and the Reading Paleofire Database of global charcoal records (RPD).

        Our results show that most CMIP6 models simulate the global amounts of present-day burned area and fire carbon emissions within the range of satellite-based products, and reproduce observed major features of spatial pattern and seasonal cycle as well as the relationships of fires with precipitation and population density, except for models employing the GlobFIRM fire scheme. Additionally, most CMIP6 models can reproduce the response of interannual variability of tropical fires to ENSO, except for some models incorporating the SPITFIRE fire scheme. From 1850 to 2015, CMIP6 models generally agree with RPD, with some discrepancies in southern South America before 1920 and in temperate and eastern boreal North America, Europe, and boreal Asia after 1990. Compared with CMIP5, CMIP6 has solved the serious issues of CMIP5 which simulates the global burned area less than half of observations, fails to capture the high burned area fraction in Africa, and underestimates seasonal variability. CMIP6 fire carbon emissions simulations are also closer to RPD. However, CMIP6 models still fail to capture the present-day significant decline in observed global burned area and fire carbon emissions partly due to underestimation in anthropogenic fire suppression, and fail to reproduce the spring peak in NH mid-latitudes mainly due to an underestimation of crop fires. Based on our findings, we identify potential biases in fire and carbon projection based on CMIP6 models. We also provide suggestions for the fire scheme development, and bias correction methods when generating multi-source merged fire products.

How to cite: Li, F., Song, X., Harrison, S., and Lin, Z.: Evaluation of global fire simulations in CMIP6 Earth system models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14202, https://doi.org/10.5194/egusphere-egu24-14202, 2024.

EGU24-14446 | ECS | Posters on site | BG1.1

Wildland Fire Smoke and Emissions Tradeoff Decision Support 

Laurel Sindewald, Shawn Urbanski, Karin Riley, Christopher Eckerson, Alex Dye, and Rachel Houtmann

In 2023, 6,551 wildfires across Canada burned 184,961 km2 of the landscape—about 5% of Canadian forests—emitting nearly 480 megatonnes of carbon, with emissions leading to air quality warnings as far away as Washington DC, USA. In early June, the air quality index in New York City was over 400, and by mid-June, smoke plumes passed above Europe. As wildland fires of increasing severity occur with increasing frequency, driven by global climate change and decades of fire suppression, societies near and far from high-risk ecosystems face increased exposure to wildfire emissions that may have both acute and long-term health impacts. Prescribed fire interventions show promise for reducing the risk of large wildfires in fire-prone ecosystems, but implementing prescribed fire can be difficult, in part due to concerns about the potential health impacts of prescribed fire smoke on nearby communities. To provide decision support for land managers aiming to reduce wildfire risk with prescribed fire treatments, we will produce a geospatial database of daily pollutant emissions and fire intensity from simulations of prescribed and wildland fires over a 20-year period for: 1) a baseline scenario of no management actions, 2) one or more scenarios of prescribed fire locations and timing based on interaction with tribes and Okanogan-Wenatchee National Forest (OWNF) managers, and 3) scenarios of prescribed fire locations and timing based on fire paths, locations of highly valued resources, areas available and suitable for treatment, determined by the research team. We can accomplish this by iterating between FSim, the Large Fire Simulator, which stochastically simulates large wildfire ignition and spread across a LANDFIRE fuels landscape, and FFE-FVS, the Forest Vegetation Simulator with the Fire and Fuels Extension, which simulates post-fire regeneration, forest growth, management actions including prescribed fire, fuel dynamics, and fuel consumption and pollutant emissions from prescribed fires and wildfires. Because FSim takes a Monte Carlo approach, simulating fires over 10,000 or more hypothetical fire seasons comprised of daily weather sequences, we will be able to estimate the probability of each landscape pixel burning in a wildfire and the conditional probability of that pixel burning at different flame lengths, allowing us to provide emissions estimates within a risk-assessment framework for managers. The framework will allow land managers to quantify the likelihood that smoke impacts from near-term prescribed fire treatments will be offset by reductions in severe smoke events from future wildfires. Additionally, the smoke event geospatial datasets may provide input into atmospheric transport models which could be used to simulate regional to national scale smoke impacts. We will pilot the project in Okanogan-Wenatchee National Forest, Washington, USA, working with the forest’s managers to design fuel treatment scenarios that will yield realistic fire occurrence trajectories and emission estimates to inform near-term prescribed fire operations. As a U.S. Federal Bipartisan Infrastructure Law Research & Development “proof of concept” project, the Wildland Fire Smoke and Emissions Tradeoff Decision Support project will inform U.S. Forest Service management policy and strategy around the use of prescribed fire in other National Forests in the U.S.

How to cite: Sindewald, L., Urbanski, S., Riley, K., Eckerson, C., Dye, A., and Houtmann, R.: Wildland Fire Smoke and Emissions Tradeoff Decision Support, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14446, https://doi.org/10.5194/egusphere-egu24-14446, 2024.

EGU24-14748 | ECS | Posters virtual | BG1.1

Reconstructing human-fire-vegetation inter-relationships in a protected dry tropical forest, Mudumalai National Park, southern India 

Prabhakaran Ramya Bala, Nithin Kumar, Diptimayee Behera, Anoop Ambili, and Raman Sukumar

Tropical dry forests are recognized globally as the first frontier of human land-use change, due to multiple factors that make them amenable to human occupation, especially with the use of fire. However, in southern India, biodiversity ‘hotspots’ with human habitation are not uncommon with a long-term co-existence of humans in pristine environments. This points to the need for more accurate evidence-based (using charcoal, pollen, phytoliths) understanding of if, when and how land use and land cover changes impact regional vegetation-fire relationships. We reconstruct the environmental history for Mudumalai National Park, a fire-prone dry forest with >30% of the park subject to annual fires and a west-to-east rainfall-vegetation gradient. We examined a 150 cm sediment profile from an excavation in a seasonal wetland in the wettest part. The record spans 1200 years in time (bracketing radiocarbon dates) with very low macrocharcoal counts (mean - 4), with highest numbers in the surface and near-surface layers. Molecular fire proxies Polycyclic Aromatic Hydrocarbons (PAHs) were also found present - Phenanthrene (Phe), Anthracene (Ant), Fluoranthene (Fl), Pyrene (Py), Benzo[ghi]fluoranthene (Bghi), Benz[a]anthracene (BaA), Chrysene (Chr), Benzo(b)fluoranthene (BbF), Benzo(k)fluoranthene (BkF), Benzo[e]pyrene (BeP), Benzo[a]pyrene (BaP), and Perylene (Pry). Notably, Fl, Py, Bghi, BbF, BaA,and BeP constituted 90% of the total concentrations. Diagnostic ratios of PAHs for source determination pointed at a pyrogenic source consistently across all samples. Paleovegetation proxies n-alkanes (C14-C33) were analyzed and the average chain length (ACL) showed a transition towards higher chain lengths towards the surface indicating a change towards grass sources (C31, C33) in addition to woody biomass-derived compounds (C27, C29). Further analysis to characterize the human-fire-vegetation relationships is underway and to our knowledge, as the first report from a protected forest in India, our study offers critical insights for forest fire management in forested landscapes.

How to cite: Ramya Bala, P., Kumar, N., Behera, D., Ambili, A., and Sukumar, R.: Reconstructing human-fire-vegetation inter-relationships in a protected dry tropical forest, Mudumalai National Park, southern India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14748, https://doi.org/10.5194/egusphere-egu24-14748, 2024.

EGU24-14762 | Orals | BG1.1

Climate change has increased fire PM2.5 and its associated health burden 

Chaeyeon Park, Kiyoshi Takahashi, Shinichiro Fujimori, Thanapat Jansakoo, Chantelle Burton, Huilin Huang, Sian Kou-Giesbrecht, Christopher Reyer, Matthias Mengel, and Eleanor Burke

Climate change has influenced fire activities, altering the fire risk associated with air pollution and human health. However, the specific contribution of climate change to fire risks on air pollution and health burden has not yet been discovered. In this study, three fire-vegetation models were employed to simulate fire aerosol emissions under two simulations over the past six decades: an observation climate scenario and a counterfactual scenario where the long-term climate change trend is removed. Combining fire aerosol emissions with a chemical transport model and an avoidable mortality risk model, we calculated global fire PM2.5 and its associated mortality. By comparing the results under the two simulations, we demonstrated the climate change has increased the fire PM2.5 and its mortality. The findings indicated an increase in fire mortality over the six decades: 46,401 in the 1960s and 98,748 in the 2010s, with 3-8% attributed to climate change. Clear relationships were observed between the contribution of climate change to fire mortality and relative humidity or air temperature in some regions. This suggests that fire risks in these regions are sensitive to climate change and necessitate the development of adaptation strategies to mitigate risks in the future.  

How to cite: Park, C., Takahashi, K., Fujimori, S., Jansakoo, T., Burton, C., Huang, H., Kou-Giesbrecht, S., Reyer, C., Mengel, M., and Burke, E.: Climate change has increased fire PM2.5 and its associated health burden, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14762, https://doi.org/10.5194/egusphere-egu24-14762, 2024.

EGU24-14891 | Orals | BG1.1

Fire hazard trajectories under climate change and management scenarios 

Marcos Rodrigues, Pere Gelabert, Teresa Lamelas, Raúl Hoffrén, Juan de la Riva, Darío Domingo, Cristina Vega-García, Paloma Ibarra, Aitor Ameztegui, and Lluís Coll

In this work we showcase the in-progress results from the FirePATHS project (PID2020-116556RA-I00). The project aims to assess the evolution of fire danger under different emission and forest management scenarios through the explicit interaction of the climate-vegetation-fire system. For this purpose, a methodological framework combining different simulation models of the elements of this system is proposed. The core of the process lies in the modeling of vegetation dynamics at stand scale according to different trajectories of climatic evolution to characterize the state and typology of fuels and the subsequent simulation of potential fire behavior during the 21st century.

We analyzed a set of 114 Pinus halepensis plots, surveyed in the field during 2017;  68 plots burned during the summer of 1994 and 46 unburned control stands. We used the medfate model to simulate forest functioning and dynamics, which provides the necessary fuel model parameters to be entered into fire behavior models (Fuel Characteristics Classification System, implemented in medfate as well). The combination of these two approaches provides time-varying estimates of fire behavior metrics (e.g., flame length or rate of spread). The simulation was conducted under SSP climate scenarios (SSP 126, 245, 370 and 585) depicting different levels of climate warming, vegetation dynamics and, hence, fire danger. Likewise, we devised a set of forest management prescriptions aimed at reducing climate vulnerability of tree communities and reducing extreme wildfire potentials. A baseline scenario with no management was also assessed.

We observed very contrasting trajectories between burned and control stands, with the first leading to increasing fuel loads, except in SSP 585. Fire potentials depicted a significant increase in surface fire behavior, with adaptive and mitigation management being able to mitigate it to some extent.

How to cite: Rodrigues, M., Gelabert, P., Lamelas, T., Hoffrén, R., de la Riva, J., Domingo, D., Vega-García, C., Ibarra, P., Ameztegui, A., and Coll, L.: Fire hazard trajectories under climate change and management scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14891, https://doi.org/10.5194/egusphere-egu24-14891, 2024.

EGU24-15398 | Posters on site | BG1.1

Effects of recent increase in anomalous fires and smokes at high latitude regions on regional atmosphere 

Kwon-Ho Lee, Kwanchul Kim, and Dasom Lee

Spatiotemporal patterns and trends of atmospheric aerosols in high latitude region have been analyzed. Aerosol observation data from 2000-2022 acquired from the earth observing satellites including the Moderate Resolution Imaging Spectroradiometer (MODIS), the Ozone Monitoring Instrument (OMI), or geostationary satellites such as the Geostationary Korea Multi-Purpose Satellite-2A (GK-2A) . Results showed that Aerosol Optical Thickness (AOT) over the high latitude region has gradually decreased before 2016. However, AOT has increased significantly over the past 8 years. This increase was clearly shown in North America and North Asia, and was associated with an increase with fire activities. Smoke plumes originated from fire active fires transported eastward with meteorology, but occasionally moved toward the Arctic region. The occurrence of fires and the production and transport of aerosols will be a consequence or factor of the recent rapid climate change.

Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A01062804).

 

How to cite: Lee, K.-H., Kim, K., and Lee, D.: Effects of recent increase in anomalous fires and smokes at high latitude regions on regional atmosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15398, https://doi.org/10.5194/egusphere-egu24-15398, 2024.

EGU24-15436 | ECS | Posters on site | BG1.1

Investigation of spatiotemporal variability in South American wildfire emissions and its impacts on CO concentrations 

Maria Paula Velasquez Garcia, Richard Pope, Steven Turnock, and Martyn Chipperfield

Wildfires in South America are a significant concern, causing high emissions and deforestation rates. They affect air quality, radiation balance, and sensitive ecosystems like the Amazon rainforest. Wildfires are expected to intensify with future land use and climate changes, making it crucial to enhance decision-making tools. Models of atmospheric composition, combined with wildfire emissions inventories, support decision-making by simulating events and their impacts on air quality. There are currently a range of wildfire/biomass burning emission inventories, which all use different approaches. This can lead to substantial differences in estimated emissions and thus impacts on atmospheric composition estimation.  This study aims to assess four inventories (2004-2022) in South America: Global Fire Emissions Database (GFED), Fire INventory from NCAR (FINN), Global Fire Assimilation System (GFAS) and Brazilian Biomass Burning Emission Model (3BEM-FRP), focussing on carbon monoxide (CO) given its relatively large emission and complementary satellite missions retrieving atmospheric CO. Our results analyse the temporal consistency in the emission seasonal cycles from the inventories and quantify the spatial agreement/differences between them. We also exploit the Measurements Of Pollution In The Troposphere (MOPITT) retrieved CO to assess the links between emission inventory tendencies with that of the atmospheric temporal evolution. Finally, we use an offline version of the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) model, within the Joint UK Land Environment Simulator (JULES) framework to investigate simulated skill of emissions of CO against the observational constraints above as INFERNO is the fire model of choice in the UK Earth System Model (UKESM).

How to cite: Velasquez Garcia, M. P., Pope, R., Turnock, S., and Chipperfield, M.: Investigation of spatiotemporal variability in South American wildfire emissions and its impacts on CO concentrations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15436, https://doi.org/10.5194/egusphere-egu24-15436, 2024.

EGU24-15518 | Posters on site | BG1.1

Integrating stakeholders’ opinion in land management to build climate resilience in the context of fire risk 

Valentina Bacciu, José Costa Saura, Grazia Pellizzaro, Bachisio Arca, Pierpaolo Duce, Donatella Spano, and Costantino Sirca

The Mediterranean region, already a climate change hotspot, is experiencing milder winters, hotter and drier summers, and increased extreme weather events, leading to longer fire seasons and increasing fire impacts. The socio-economic consequences of wildfires are significant, including the loss of human lives, infrastructure, and economic activity. Additionally, wildfires contribute significantly to climate change, accounting for up to 20% of global greenhouse gas emissions annually. Climate change is expected to worsen these conditions in the near future.

Given these circumstances, it is necessary to accelerate the transition towards the implementation of integrated and holistic fire management approaches aligned with future hazards. In the framework of The HUT project (The Human-Tech Nexus - Building a Safe Haven to cope with Climate Extremes), financed by the Horizon Europe program, the "Ogliastra-DEM8" case study (located in Sardinia, Italy) is aimed at responding to this necessity.

In particular, the main objective of The HUT is to mitigate the effects of climate-related events, by integrating and leveraging best practices and successful multi-disciplinary experiences and focusing on the prevention and preparedness phases of the disaster risk management cycle. In this context, the specific aim of the "Ogliastra-DEM8" case study is to provide the scientific/knowledge base needed to help policymakers and decision-makers defining adaptation and mitigation strategies that are effective in reducing fire impacts and associated costs in the short to medium-term under a changing climate. Towards this end, innovative tools (e.g., fire simulators, catastrophe insurance products, nature-based solutions) and stakeholder engagement, including participatory methods, will be developed.

This work presents the first phase of the work aimed at evaluating enablers and barriers to multi-hazard/systemic risk reduction by (i) reviewing the literature from other projects based in Sardinia, (ii) mapping and engaging stakeholders during an initial round of workshops, and (iii) debating fire-smart land management and adaptation options. Preliminary results indicate key barriers such as stakeholder conflicts, administrative silos, lack of political will, and funding complexities. All these elements contributed to varying degrees to the lack of a comprehensive approach towards integrated and sustainable management of the entire territory. On the other hand, enablers include stakeholder engagement, evidence of performance and co-benefits, and community awareness.

Further work will integrate stakeholder opinions into fire exposure and risk mapping under climate change conditions, with the goal of selecting and co-designing with them which fire-smart land management and adaptation options can be applied and where to protect the most important and vulnerable communities and ecosystems.

How to cite: Bacciu, V., Costa Saura, J., Pellizzaro, G., Arca, B., Duce, P., Spano, D., and Sirca, C.: Integrating stakeholders’ opinion in land management to build climate resilience in the context of fire risk, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15518, https://doi.org/10.5194/egusphere-egu24-15518, 2024.

EGU24-16087 | Posters on site | BG1.1

Assessing post-fire soil erosion and water contamination risk in European fire-affected catchmentswith WEPPcloud-EU WATAR watershed model 

Jonay Neris, Carmen Sánchez-García, Marta Basso, Roger Lew, Anurag Srivastava, Mariana Dobre, Pete Robichaud, Erin Brooks, Cristina Santin, and Stefan Doerr

Soil and ash are key sources of sediment, carbon, nitrogen, and associated pollutant movement following a wildfire. Their transport into freshwater systems can pose severe environmental and socio-economic implications including impacts to water quality and aquatic ecosystems, disruptions to drinking water supply and high remediation costs, as well as the depletion of carbon and nutrients from areas affected by erosion. We assessed the risk of soil erosion, ash and contaminant transport, and water contamination in three burned European catchments in Central Europe (Germany and the Czech Republic), Portugal and Spain using the European Water Erosion Prediction Project cloud interface with the Wildfire Ash Transport and Risk (WEPPcloud-EU WATAR) watershed model. The watersheds varied in size from 100 to 22,000 ha and represent distinct climatic conditions. To our knowledge, this is the first application of this model in European post-fire scenarios. We calibrated and validated the model using catchment runoff data (where available) and nearby streamflow data from both pre- and post-fire periods when runoff data was unavailable. Additionally, we used sediment transport data (where available) along with ash contaminant content data to calibrate and validate erosion and ash transport rates. Model performance was assessed using statistics like Nash-Sutcliffe Efficiency (NSE), coefficient of determination (R2) and percent bias (PBias (%)). Once the model was calibrated and validated, we estimated the post-fire risk of soil erosion, ash transport, and ash pollutant concentrations in the affected areas. The simulations provided the probabilities of occurrence and return periods for severe erosion events, as well as for ash and contaminant transport events. Based on these simulations, we identified hillslopes that were the main sources of runoff, erosion, ash and contaminant transport. This information is important to managers who can prioritize the application of mitigation treatments and prevention plans. Given the projected increase in fire weather in many regions in Europe, our findings suggest that the WEPPcloud-EU WATAR model is an increasingly useful tool in predicting and mitigating soil erosion and water contamination impacts of European burnt catchments.

How to cite: Neris, J., Sánchez-García, C., Basso, M., Lew, R., Srivastava, A., Dobre, M., Robichaud, P., Brooks, E., Santin, C., and Doerr, S.: Assessing post-fire soil erosion and water contamination risk in European fire-affected catchmentswith WEPPcloud-EU WATAR watershed model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16087, https://doi.org/10.5194/egusphere-egu24-16087, 2024.

EGU24-16263 | ECS | Orals | BG1.1

Fire, permafrost, and people: Late Holocene fire regimes and their impacts on lake systems in Yakutia, Siberia 

Ramesh Glückler, Elisabeth Dietze, Stefan Kruse, Andrei Andreev, Boris K. Biskaborn, Evgenii S. Zakharov, Izabella Baisheva, Amelie Stieg, Shiro Tsuyuzaki, Kathleen Stoof-Leichsenring, Luidmila A. Pestryakova, and Ulrike Herzschuh

The Republic of Sakha (Yakutia), the coldest permanently inhabited region on Earth, is characterized by unique ecological relationships between larch forest, permafrost, and wildfires. Together, they can stabilize each other, preserving the larch-dominated biome. Abundant lakes have important cultural and subsistence-related functions and are dynamically connected to warming permafrost processes. Recently intensified wildfire seasons, however, raised questions regarding the causes and impacts of long-term (centennial to millennial) fire regime changes. Despite recent progress, eastern Siberia is still sparsely covered by reconstructions of long-term fire history. This also limits any evaluation of fire regime impacts on permafrost lake development and catchment erosion. Past studies have shown the benefit of combining paleoecological fire reconstructions with geochemical data to shed light on fire regime changes and their impacts on lake catchments, as well as traces of potential human land use.

We present nine new records of Late Holocene wildfire activity, based on macroscopic charcoal in lake sediments (including information on charcoal particle sizes, morphologies, and length to width ratios), accompanied by sediment geochemistry data from high-resolution XRF core scanning. The studied lakes are located in the Lena-Amga interfluve of the Central Yakutian Lowlands, the Verkhoyansk Mountains, and the Oymyakon Highlands. The new data cover both thermokarst and glacial lakes, and a range from remote to rural settings and low to high elevations. Charcoal concentration in the lowland lakes is on average three times as high as in the highland lakes. Contrary to our hypothesis, charcoal concentration in most lakes is negatively correlated to many XRF-derived lithogenic elements indicating detrital input from catchment erosion (e.g., Ti, K). Reminiscent of earlier findings [1], multiple lowland sites share a signal of sharply decreasing biomass burning around 1300 CE. This coincides with the initial settlement of the Sakha people and increased catchment erosion. The new fire reconstructions allow for the evaluation of potential human impacts on past fire regime changes in Yakutia, while improving the region’s representation in global synthesis studies.

[1]  Glückler R. et al. (2021): Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record. Biogeosciences 18 (13): 4185–4209. https://doi.org/10.5194/bg-18-4185-2021.

How to cite: Glückler, R., Dietze, E., Kruse, S., Andreev, A., Biskaborn, B. K., Zakharov, E. S., Baisheva, I., Stieg, A., Tsuyuzaki, S., Stoof-Leichsenring, K., Pestryakova, L. A., and Herzschuh, U.: Fire, permafrost, and people: Late Holocene fire regimes and their impacts on lake systems in Yakutia, Siberia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16263, https://doi.org/10.5194/egusphere-egu24-16263, 2024.

EGU24-16293 | ECS | Posters on site | BG1.1 | Highlight

Global atmospheric impacts of aerosols emitted from the 2023 Canadian wildfires 

Iulian-Alin Rosu, Matt Kasoar, Eirini Boletti, Mark Parrington, and Apostolos Voulgarakis

Wildfires are a central but relatively unexplored component of the Earth system. Severe wildfire events can lead to intense destruction of both nature and property, as was the case during the anomalously intense 2023 Canadian wildfire event. Last year, approximately 5% of the total forest area of Canada burned [1] [2], which is the highest wildfire damage Canada has ever sustained [1].

Conditions pertaining to climate change and modifications in atmospheric conditions are considered to be responsible for this record series of wildfires [3]. Increasing mean temperatures and decreasing humidity in the region has exacerbated wildfire risk. Carbon emissions from the 2023 Canadian wildfires have been the highest on record [4], including large amounts of carbonaceous aerosol which can exert substantial atmospheric radiative forcing. Also, Canadian fire emissions contributed around 20% of global emissions from vegetation fires. Thus, beyond the well-known health risks of wildfire emission compounds, it is important to also study the consequences of these emissions on large-scale atmospheric composition and meteorological behavior.

In this work, the global and regional atmospheric impact of the previously mentioned series of wildfires is investigated using the EC-Earth3 and UKESM1 earth system models. Simulated atmospheric conditions with and without the wildfire emissions, as provided by the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS), are compared through atmospheric modelling in the context of the Canadian 2023 fire season. The investigation reveals the connections between the emissions produced by this series of wildfires and atmospheric phenomena of importance, such as large-scale circulation, temperature patterns, and precipitation.

[1] "Fire Statistics". Canadian Interagency Forest Fire Centre. Retrieved January 4, 2024.

[2] The State of Canada’s Forests: Annual Report 2022. Canadian Minister of Natural Resources.

[3] Barnes, Clair, et al. "Climate change more than doubled the likelihood of extreme fire weather conditions in eastern Canada." (2023).

[4] “Copernicus: Emissions from Canadian wildfires the highest on record – smoke plume reaches Europe”. Atmosphere Monitoring Service, Copernicus. Retrieved January 4, 2024.

How to cite: Rosu, I.-A., Kasoar, M., Boletti, E., Parrington, M., and Voulgarakis, A.: Global atmospheric impacts of aerosols emitted from the 2023 Canadian wildfires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16293, https://doi.org/10.5194/egusphere-egu24-16293, 2024.

EGU24-16592 | ECS | Posters on site | BG1.1 | Highlight

Exploring the role of post-fire erosion as a carbon sink mechanism 

Antonio Girona-García, Diana Vieira, Stefan Doerr, and Cristina Santín

Wildfires release approximately 2.1 Pg C to the atmosphere each year. The impact of wildfires on the carbon cycle, however, extends well beyond direct emissions, involving complex interactions among various source and sink processes. One such process, the enhanced post-fire soil organic carbon (SOC) erosion, remains unquantified as a potential C sink mechanism. Post-fire SOC erosion functions as a C sink when the subsequent burial and stabilization of eroded C offsite, coupled with the recovery of net primary production and SOC content onsite, outweigh the C losses to the atmosphere during post-fire transport of SOC. In this work, we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as C sink. In addition, we estimate its magnitude at continental scale following the 2017 wildfire season in Europe, showing that SOC erosion can indeed play a quantitatively significant role in the overall C balance of wildfires. 

How to cite: Girona-García, A., Vieira, D., Doerr, S., and Santín, C.: Exploring the role of post-fire erosion as a carbon sink mechanism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16592, https://doi.org/10.5194/egusphere-egu24-16592, 2024.

EGU24-16676 | ECS | Orals | BG1.1

Study of greenhouse gases emitted by biomass burnings with a decade of infrared observation of CO2 and CH4 by IASI 

Victor Bon, Cyril Crevoisier, and Virginie Capelle

Biomass burnings are one of the major sources of greenhouse gases in the atmosphere, impacting air quality, public health, climate, ecosystem dynamics, and land-atmosphere exchanges. In the tropics, South America represents about 10 % of the tropical emissions and present a large diversity of biomes and fire conditions. Over the last two decades, satellite observations have provided crucial information, notably via active fires detection, Fire Radiative Power (FRP) estimates and burned area (BA) measurements from imagers such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Global inventories (e.g., GFED, GFAS, FEER, QFED, etc.) heavily rely on these satellite-derived indicators to estimate emissions from biomass burnings. However, emissions derived from these various models can significantly differ among them and large uncertainties persist regarding fire emissions, their variability, and their links with several drivers (e.g., type of combustion, vegetation, transport, etc.).

In this context, we propose a novel approach to estimate emissions from biomass burnings by directly using greenhouse gas concentrations in the atmosphere derived from spaceborne observations. Leveraging a decade of observations from the Infrared Atmospheric Sounding Radiometer (IASI) on-board the three Metop satellites, we have access to an unprecedented spatial coverage of global mid-tropospheric CO2 and CH4 concentrations twice a day (9:30 AM/PM LT). From this dataset, we developed the Daily Tropospheric Excess (DTE) method, which is based on the use of the diurnal cycle of biomass burnings and the vertical transport of their emissions to link the observed diurnal variations of the mid-tropospheric CO2 and CH4 concentrations to burnings activities.

We will demonstrate the relevance of the DTE for analyzing CO2 and CH4 emissions from various type of burnings, biomes, and human activities across South America. This will be achieved by comparing DTE with existing indices of fire characteristics such as FRP and BA from MODIS/SUOMI satellite observations, alongside global emissions databases like GFED and GFAS. Globally, we will show that their spatial distribution, seasonal intensity, and interannual variability are consistent with each other, even if some differences have been found and will be discussed. Additionally, geostationary data from GOES-R, MSG, and Himawari-8 satellites will be used to analyze the impact of observation times on the differences observed between the various datasets and the DTE.

How to cite: Bon, V., Crevoisier, C., and Capelle, V.: Study of greenhouse gases emitted by biomass burnings with a decade of infrared observation of CO2 and CH4 by IASI, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16676, https://doi.org/10.5194/egusphere-egu24-16676, 2024.

EGU24-17593 | Orals | BG1.1

Effect of combustion conditions on aerosol particle emissions from savanna and grassland fires 

Ville Vakkari, Angela Buchholz, Liqing Hao, Mika Ihalainen, Kerneels Jaars, Kajar Köster, Viet Le, Pasi Miettinen, Arya Mukherjee, Saara Peltokorpi, Iida Pullinen, Stefan J. Siebert, Olli Sippula, Markus Somero, Lejish Vettikkat, Annele Virtanen, Pasi Yli-Pirilä, Arttu Ylisirniö, and Pieter G. van Zyl

Fire is an integral part of savanna and grassland biomes and globally approximately half of landscape fire emissions originate from savannas and grasslands. Emissions of trace gases and aerosol particles from landscape fires are characterised by emission factors (EFs), which denote the amount of emitted substance per mass of combusted biomass. EFs vary depending on both the biomass that is consumed in the fire and the combustion characteristics of the fire, i.e. the ratio of flaming to smouldering combustion. However, emission inventories tend to use only one average EF for each biome.

Here, we use a set of 27 laboratory experiments to characterise the effect of combustion characteristics on submicron aerosol EFs from savanna and grassland biomass acquired from South Africa as well as boreal forest floor samples from Finland. Combustion experiments were carried out at the ILMARI facility in Kuopio, Finland from May to June 2022 under an open stack mimicking natural burning and dilution. Sample was injected into a 29 m3 environmental chamber for ageing studies. Chemical and physical properties of both fresh and aged smoke were observed with a host of instruments including e.g. AMS, FIGAERO-CIMS, VOCUS, SP2 and SMPS. The ratio of flaming to smouldering combustion was characterised by modified combustion efficiency (MCE), i.e. CO2/(CO2+CO).

The increase of organic aerosol EF with increasing smouldering fraction (i.e. decreasing MCE) was very similar for both the grassland and savanna combustion experiments. Surprisingly, also the boreal forest floor EFs closely follow the same trend, where smouldering-dominated combustion EFs are more than 10 times higher than EFs for flaming combustion. We observed also that the submicron aerosol particle size distribution shifts towards larger sized particles with increasing smouldering fraction. Furthermore, both the number and the mass of the size distribution cannot be fully characterised with a single log-normal size distribution, which needs to be considered when converting mass emissions into number size distribution in simulations.

How to cite: Vakkari, V., Buchholz, A., Hao, L., Ihalainen, M., Jaars, K., Köster, K., Le, V., Miettinen, P., Mukherjee, A., Peltokorpi, S., Pullinen, I., Siebert, S. J., Sippula, O., Somero, M., Vettikkat, L., Virtanen, A., Yli-Pirilä, P., Ylisirniö, A., and van Zyl, P. G.: Effect of combustion conditions on aerosol particle emissions from savanna and grassland fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17593, https://doi.org/10.5194/egusphere-egu24-17593, 2024.

EGU24-17935 | Posters on site | BG1.1

The FLARE Workshop perspective on Fire’s Role in the Carbon Cycle 

Chantelle Burton, Stephen Plummer, Noah Liguori-Bills, Morgane Perron, Douglas Kelley, Miriam Morrill, Boris Vannière, Joanne Hall, Stijn Hantson, Matthias Forkel, Christoph Völker, Kebonye Dintwe, Cristina Santin, Jessie Thoreson, Benjamin Poulter, Matthew Jones, and Douglas Hamilton

Fire substantially influences and modulates the global carbon cycle through numerous processes, interactions, and feedbacks. Fires are also strongly intertwined with human activities; people act both as drivers of change through ignitions, suppression, land-cover change, prescribed burning, and climate change, and are affected in return by changes in fire regimes. 

Despite fire’s many complex interactions throughout the Earth System, it is often viewed only as a destructive process, and one that solely acts as a source of atmospheric carbon. In terms of fire’s carbon budget, the release of carbon only represents the very initial stages of the process, missing the drivers and complex ways in which fire shapes plant species evolution and ecosystem trajectories, nutrient cycling and redistribution, carbon allocation, deposition and sequestration over different spatiotemporal scales. Therefore, there is a clear need to fully understand the role of fire in the Earth System holistically. However, different aspects of fire’s role in the carbon cycle are often studied by different communities and disciplines, hindering this much-needed integrated understanding. 

Through the Fire Learning AcRoss the Earth Systems (FLARE) workshop (September 2023) we brought together fire scientists across multiple disciplines to facilitate transdisciplinary discussion. We propose that the visualization of fire processes as carbon colours across the Earth System can be a thematic tool for unifying disciplines. It explores all aspects of fire and smoke implications for living systems and opens questions about fire’s role in carbon budgets, afforestation, and climate change and related mitigation strategies. We also identified several scientific challenges for the community where, by working together, we can address some fundamental questions for fire’s role in the carbon cycle, such as: What is the contribution of fire and of individual fire events to the global carbon cycle? How do changes in fire regimes influence ecosystem stability across different timescales? How do future changes in fire regimes influence global climate, allowable emissions and carbon budgets, and temperature mitigation ambitions? In this presentation, we explore how we can bring a more interdisciplinary approach to fire science to address these fundamental questions.

How to cite: Burton, C., Plummer, S., Liguori-Bills, N., Perron, M., Kelley, D., Morrill, M., Vannière, B., Hall, J., Hantson, S., Forkel, M., Völker, C., Dintwe, K., Santin, C., Thoreson, J., Poulter, B., Jones, M., and Hamilton, D.: The FLARE Workshop perspective on Fire’s Role in the Carbon Cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17935, https://doi.org/10.5194/egusphere-egu24-17935, 2024.

EGU24-18169 | ECS | Posters on site | BG1.1 | Highlight

What makes a fire grow extremely large? 

Rebecca Scholten, Tirtha Banerjee, Yang Chen, Ajinkya Desai, Tianjia Liu, Douglas Morton, Sander Veraverbeke, and James Randerson

Wildfires are an important disturbance in global ecosystems and are a critical driver of trends in the land carbon budget. Fire is an extreme phenomenon, with the largest burned area often occurring during extreme fire seasons generating large fires. Days with fire conditions conducive to fire ignition and spread are increasing in a warming climate in many regions of the world, contributing to increases in fire occurrence and annual burned area. However, the climate, fuel, and weather conditions that lead to extremely large fires in different biomes are poorly understood.

Here, we explore the temporal evolution of extremely large fires in temperate and boreal regions using new satellite-derived fire event tracking datasets optimized to match higher resolution time series of fire progression from aircraft and other sources. We aimed to understand the specific environmental conditions required for the development of a large fire. Our analysis revealed a disproportionate impact of multiple fire ignitions in creating large fires through merging. Our findings suggest that the largest fires in both biomes may be commonly created through multiple fires growing together. We hypothesize that a combination of physical and anthropogenic factors may accelerate merging, making these fires extremely difficult to contain and more robust to environmental controls regulating extinction. In our analysis, we use the Fire Events Database, the Arctic-boreal Fire Atlas, and GOFER, which enable attribution of ignition sources. Our analysis may contribute to an improved understanding of the influence of large-scale lightning storms in creating extremely large and destructive fire events.

How to cite: Scholten, R., Banerjee, T., Chen, Y., Desai, A., Liu, T., Morton, D., Veraverbeke, S., and Randerson, J.: What makes a fire grow extremely large?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18169, https://doi.org/10.5194/egusphere-egu24-18169, 2024.

EGU24-18811 | Posters virtual | BG1.1

Taking advantage of satellite data, large datasets of fire records and cloud computing for modelling potential fire severity useful for better assess fire risk 

José Maria Costa Saura, Valentina Bacciu, Donatella Spano, and Costantino Sirca

Fire risk analyses, usually focused on fire hazard (i.e. the probability of fire occurrence), often neglect an important issue such as the sensitivity/vulnerability (i.e., the degree of potential damage, sensus IPCC) of different locations within the area of interest.  Such lack of consideration comes from past data processing constrains that limited fire severity studies to analyse only single or few fire events. Nowadays, online data repositories and processing platforms (e.g. Google Earth Engine) allow to easily integrate and process a vast amount of data from multiple sources that might prove useful for developing tailored tools for decision making. Here, we present an example for predicting potential fire severity based on the analysis of more than 1 000 fire events from southern France and western Italy which integrates climate, topographical and remote sensing variables. Furthermore, we assessed if the model “used” the explanatory variables under a meaningful biophysical sense.   Using the random forest algorithm and the relativized difference of the Normalized Burn Ratio (rdNBR) as proxy of fire severity, we reach to explain up to 75% of the variability in the data with most of the variables showing a clear and interpretable effect. Our results suggests that this type of approach might prove useful for better address fire risk assessments.

How to cite: Costa Saura, J. M., Bacciu, V., Spano, D., and Sirca, C.: Taking advantage of satellite data, large datasets of fire records and cloud computing for modelling potential fire severity useful for better assess fire risk, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18811, https://doi.org/10.5194/egusphere-egu24-18811, 2024.

EGU24-18894 | ECS | Posters virtual | BG1.1

Mapping open burning of agricultural residues from Earth Observations 

Eduardo Oliveira, João Gata, Diogo Lopes, Leonardo Disperati, Carla Gama, and Bárbara Silva

Agricultural residue burning is a common practice in various regions of the world, which may have several environmental impacts, including on air quality, and the potential for triggering wildfires. In Portugal, this practice is particularly prevalent during the wet season, spanning from October to April. It involves open field burning of pruning residues and extensive burning to clear shrubbery, creating pastures for livestock. This research, conducted within the framework of the PRUNING project - Mapping open burning of agricultural residues from Earth Observations and modelling of air quality impacts- aims to explore the potential for detecting such events through satellite remote sensing.

The primary focus of this study is to assess the limitations of satellite remote sensing detection, with the overarching aim of integrating these findings into a systematic monitoring framework for open burning of agricultural residues. Additionally, the study aims to predict pollutant emissions and assess their impacts on air quality, providing valuable insights for environmental management and sustainable agricultural practices.

To achieve this goal, an in-depth analysis of known burning events was conducted using infrared thermal sensors. Multiple products, including Fire Radiative Power and fire masks from various sensors (e.g., MODIS, VIIRS, and Sentinel 3), were employed to characterize these known open field burning events. The results of this work allow verifying the tradeoffs effects associated with spatial, spectral, and temporal resolutions for each sensor, elucidating their impacts on the precision and accuracy of event detections. In parallel, this study evaluated the accuracy of the MINDED-FBA method in characterizing these known events. This automatic detection method, allows incorporating data from higher spatial resolution sensors (e.g., Sentinel-1, Sentinel-2, Landsat), for determining the extent of burned areas through multiple multispectral indices. In this context, the MINDED-FBA method may also be used to validate thermal anomalies detection products. Finally, the results of this work have also been compared to a national level register database of open burning, provided by the ICNF (Institute for Nature Conservation and Forests).

How to cite: Oliveira, E., Gata, J., Lopes, D., Disperati, L., Gama, C., and Silva, B.: Mapping open burning of agricultural residues from Earth Observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18894, https://doi.org/10.5194/egusphere-egu24-18894, 2024.

EGU24-18941 | Orals | BG1.1

Arctic peat fire emissions estimated from satellite observations of fire radiative power 

Johannes Kaiser, Kerstin Stebel, Philipp Schneider, and Vincent Huijnen

Exceptional wildfire activity occurred in the Arctic during the last years due to pronounced heat episodes. The Arctic has an abundance of peat and soils with organic content. When peat is burnt, the carbon flux into the atmosphere is virtually irreversible and this process may become of global significance for Arctic fires. Furthermore, smoke from smoldering fires (below-ground, peat) has a different chemical composition than smoke from flaming fires. It is therefore important to distinguish peat fires and above-ground, potentially flaming fires in fire emission estimation.

The operational Copernicus Atmosphere Monitoring Service (CAMS) is tracking global fire activity and emissions with its Global Fire Assimilation System (GFAS) as a near-real time service. GFAS uses satellite-based observations of fire radiative power (FRP), which links observed thermal radiation directly to the biomass combustion rate, i.e. amount of biomass burnt and corresponding emission of carbon into the atmosphere, based on satellite retrievals from MODIS and VIIRS. 

Here, we present a partitioning of the Arctic fire activity represented in GFAS into smoldering below-ground and potentially flaming above-ground fires using two approaches: (1) masking the fire activity maps with published peat maps and (2) analysing the observed diurnal cycles of the fire activity at all locations. We subsequently apply adapted emission factors and compare the resulting emission estimates to the standard values produced by CAMS for carbon, carbon monoxide, nitrogen dioxide and aerosols.

Furthermore, we may confront the fire emission estimates with independent atmospheric smoke observations by feeding them into IFS-COMPO, which is used to generate hindcasts of atmospheric composition, including tropospheric columns of CO and NO2. This allows an evaluation of the estimated trace gas emissions, by comparing the model simulations to satellite retrievals of carbon monoxide and nitrogen dioxide. It thus provides an independent assessment of the estimated fire emissions, and, in turn, carbon flux.

How to cite: Kaiser, J., Stebel, K., Schneider, P., and Huijnen, V.: Arctic peat fire emissions estimated from satellite observations of fire radiative power, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18941, https://doi.org/10.5194/egusphere-egu24-18941, 2024.

EGU24-18977 | Orals | BG1.1 | Highlight

Global seasonality of small-scale livelihood fire 

Matthew Kasoar, Cathy Smith, Ol Perkins, James Millington, and Jayalaxshmi Mistry

Landscape fires are increasingly represented in dynamic global vegetation models to understand impacts on carbon emissions and climate. Deliberate human fire use and management influence landscape fire characteristics, varying in space and time depending on social, economic, and ecological factors. For example, fire is used variously in rural livelihoods involving e.g., agriculture, hunting, gathering, and for other cultural practices, often depending on the time of year. Yet existing global fire models typically represent human fire use as a constant function of gridded datasets such as population density or gross domestic product.

Recently, initiatives have begun to draw together available data on global fire use from across multiple disciplines and disparate sources into coherent databases. We draw on information from one of these databases, the Livelihood Fire Database (LIFE), which includes case studies in 587 locations worldwide, to assess the availability of data on seasonality of anthropogenic fires associated with small-scale rural livelihoods. By defining seasonal cycles relative to the local variation of precipitation and evapotranspiration at each case study location, we look for patterns in the spatiotemporal nature of anthropogenic fires associated with different fire-use purposes - such as clearing vegetation for agriculture, maintaining pasture for livestock, or driving game when hunting - and consider the potential for this analysis to inform fire models.

For many fire types, especially those related to hunting, gathering, human wellbeing, and social signalling, there are limited quantitative data available, but it is possible to draw qualitative insights from case studies. Where quantitative data are available, we find some correspondence between fire seasonality and the intended fire-use purpose, suggesting that distinguishing between distinct fire-use purposes could improve the representation of human fire use in fire models, and consequently the seasonal cycle of fire emissions. Case studies demonstrate that environmental and social conditions drive variation in fire use for the same purpose, reiterating that a wide range of factors influence human behaviour and that assumptions of uniform drivers of anthropogenic fire may be misleading. Many of the fires now being revealed in global burned area data by new fine-scale remote sensing products are likely human-set; continued collection, collation, and analyses of data on human fire use globally is important to ensure appropriate anthropogenic representation in fire models.

How to cite: Kasoar, M., Smith, C., Perkins, O., Millington, J., and Mistry, J.: Global seasonality of small-scale livelihood fire, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18977, https://doi.org/10.5194/egusphere-egu24-18977, 2024.

EGU24-19223 | ECS | Posters virtual | BG1.1

Monitoring wildfires from satellite, integration in Copernicus services and characterizing atmospheric impacts from the regional to the global scales 

Dominika Leskow-Czyżewska, Stephan Bojinski, Julien Chimot, Andrea Meraner, Mark Parrington, and Federico Fierli

Satellite-borne observations offer the possibility to monitor wildfires and their impact worldwide. In addition, satellite products are increasingly used in early warning and forecasting systems for fire management. Europe is implementing a long-term and reliable observational programme and, within this frame, EUMETSAT, the European meteorological satellite operator, provides numerous observational products ranging from near-real-time wildfire identification (e.g. fire radiative power) to atmospheric impacts (e.g. major pollutants and smoke). 

Our presentation will focus on the satellite data value chain, e.g. the integration in the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS). To do that, we will firstly present datasets addressing wildfires (e.g. Fire Radiative Power, atmospheric composition, and smoke) currently generated at EUMETSAT and its Satellite Applications Facility (SAF). We will also introduce upcoming (based on the Flexible Combined Imager on-board the Meteosat Third Generation) and future products (Sentinel-4 and 5), with an example of potential joint use for a past intense fire case in the Mediterranean (Greece, August 2023).  

We will then show the entire value chain, including how the data is used in the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS), with an example on the recent intense and anomalous fire season in Canada (spring to summer 2023). This will show how distinct phases of wildfires management – from early warnings up to the impacts on yearly emissions – can be monitored with the synergy of satellite data and Copernicus forecast and analysis. Finally, we will touch also on the user support activities within EUMETSAT in this area. 

How to cite: Leskow-Czyżewska, D., Bojinski, S., Chimot, J., Meraner, A., Parrington, M., and Fierli, F.: Monitoring wildfires from satellite, integration in Copernicus services and characterizing atmospheric impacts from the regional to the global scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19223, https://doi.org/10.5194/egusphere-egu24-19223, 2024.

EGU24-19330 | Orals | BG1.1

Burned Area Mapping with Sentinel-2 based on reflectance modelling and deep learning – preliminary global calibration and validation 

Marc Padilla, Ruben Ramo, Sergio Sierra, Bernardo Mota, Roselyne Lacaze, and Kevin Tansey

Current global burned area products are available at coarse spatial resolutions (300-500 m), what leads to large amounts of errors, hindering an accurate understanding of fire-related processes. This study proposes a global calibration method for a sensor-independent burned area algorithm, previously used with 300 m Sentinel-3 Synergy data, and here implemented with 20 m Sentinel-2 MSI imagery. A binomial model that combines reflectance-based burned area predictions constrained by spatio-temporal densities derived from VIIRS active fires is calibrated using a reference dataset generated from Landsat imagery at a sample of 34 units across the globe. Preliminary leave-one-out cross-validation analyses show promisingly high accuracies (Dice of coefficient of 84.8%, commission error ratio of 13.2%, omission error ratio of 17.1% and relative bias of -4.5%), especially taking into account the mismatch of acquisition dates between reference and algorithm input data, what introduces apparent errors on the validation results.

How to cite: Padilla, M., Ramo, R., Sierra, S., Mota, B., Lacaze, R., and Tansey, K.: Burned Area Mapping with Sentinel-2 based on reflectance modelling and deep learning – preliminary global calibration and validation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19330, https://doi.org/10.5194/egusphere-egu24-19330, 2024.

EGU24-19716 | ECS | Posters on site | BG1.1

"Fire impacts in the Cerrado: Integrating LiDAR and field data to monitor vegetation structure and post-fire recovery." 

Manoela Machado, Wesley da Cruz, Maria Antonia Carniello, Emily Sturdivant, Francisco Navarro-Rosales, Marcia Macedo, Wayne Walker, and Imma Oliveras Menor

Fire is a natural disturbance capable of altering plant distributions and community assemblages, influencing species evolution through the selection of traits and strategies, and affecting biogeochemical cycles. This powerful tool of landscape transformation can negatively impact even a fire-dependent ecosystem when natural fire regimes are altered. In recent times, interactions between human activities in the Cerrado (e.g., deforestation and intentional fires used to clear land), and a hotter and drier climate (due to climate change), have altered natural fire regimes causing more frequent and intense fire events, negatively impacting biodiversity, human health, and the regional climate. These fire-disturbed areas are widespread and highly vulnerable to future degradation from compounding disturbances, but they still harbour valuable biodiversity and carbon stocks that deserve protection and restoration. Monitoring the impacts of fire disturbance on vegetation structure and the potential pathways of recovery is critical to understand and protect resilient ecosystems under a rapidly changing climate. Robust monitoring requires the integration of modelled and field-based data tools and techniques. Field inventories alone are insufficient to capture the spatiotemporal variability of impacts of fire on native vegetation and should be coupled with remotely sensed data, among which, LiDAR (light detection and ranging) is unparalleled in characterising 3-D vegetation structure. Thus, the combination of LiDAR and forest inventory data is ideally suited for scaling the impacts of fire on forest vegetation and associated carbon stocks. In this study, we are assessing key metrics of vegetation structure derived from a combination of LiDAR and field data collected at the Experimental Station Serra das Araras, Mato Grosso state, Brazil. This field site comprises Cerrado vegetation that has been subject to three experimental fire treatments: every year, every two years, and every three years beginning in 2017, as well as fire suppression for over three decades. We are investigating whether key vegetation structural metrics can capture different fire treatments and identify spatial patterns of disturbance. We are also assessing if these patterns are different when comparing LiDAR data collected with a handheld scanner versus an airborne drone. This study aims to refine our methods and improve our understanding of vegetation structure responses across a gradient of fire disturbance regimes and potential post-fire recovery trajectories, which are key not only for ecological studies but also for emerging carbon markets – one of several mechanisms aimed at achieving climate change mitigation, conservation, and sustainable development outcomes. We hope to improve the process of carbon stock mapping in disturbed ecosystems and use the outputs to drive scenarios modelling at larger scales, providing a more comprehensive assessment of what future Cerrado carbon dynamics might look like under a range of possible disturbance/recovery dynamics.

How to cite: Machado, M., da Cruz, W., Carniello, M. A., Sturdivant, E., Navarro-Rosales, F., Macedo, M., Walker, W., and Oliveras Menor, I.: "Fire impacts in the Cerrado: Integrating LiDAR and field data to monitor vegetation structure and post-fire recovery.", EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19716, https://doi.org/10.5194/egusphere-egu24-19716, 2024.

EGU24-20564 | ECS | Orals | BG1.1 | Highlight

Future global wildfire regimes under high and low climate mitigation efforts  

Olivia Haas, Colin Prentice, and Sandy P. Harrison

There is growing concern over future trajectories of burning on Earth. One the one hand, some regions have seen the emergence of large and novel wildfires, whilst satellite observations continue to show declining burnt area globally, most notably in the tropics. Quantifying the response of global wildfire regimes to future changes in especially challenging given that wildfires are driven by climate, vegetation, and human activities, and that these different factors may have contrasting and opposing effects.

Using global empirical models of burnt area, fire size and fire intensity we explore the trajectory of future fire regimes under high and low climate change mitigation efforts. The models are driven by lightning ignitions, climate, vegetation properties, topography, and human factors. Making use of a set of sensitivity analysis, we show a global shift in wildfire patterns by the end of the 21st century even with warming kept below 1.5°. Burning will generally be reduced in tropical regions but larger and more intense wildfires will occur in extra-tropical regions. Under low mitigation, increases in burnt area worldwide overwhelm the human-driven decline, with up to a 60% increase in burnt area by the end of the century. However, fire size and intensity will be increasingly limited by dryness and vegetation fragmentation.

These results suggest that even under high climate change mitigation, fire management strategies must urgently be revised as current fire-suppression policies will no longer be effective in much of the world. Regional-level fire management, led by local stakeholders, should be encouraged. Wildfire risk and management must also be incorporated into mitigation scenarios that rely on extending forest area if these mitigation scenarios want to remain realistic.

How to cite: Haas, O., Prentice, C., and Harrison, S. P.: Future global wildfire regimes under high and low climate mitigation efforts , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20564, https://doi.org/10.5194/egusphere-egu24-20564, 2024.

EGU24-2140 | ECS | Posters on site | BG1.3 | Highlight

Enhanced methane concentrations measured over the Amazon rainforest 

Linda Ort, Lenard Lukas Röder, Peter Hoor, Jos Lelieveld, and Horst Fischer

Recently, global mean methane concentrations have increased strongly. Methane is one of the most important greenhouse gases and plays a key role in atmospheric chemistry. Especially, due to its long lifetime of approx. 10 years and its significant effect on Earth’s climate change, a detailed knowledge of its source regions and their temporal evolution is crucial.

In this study, we present a unique data set of methane measured in situ over the Amazon rainforest region during the wet season in the CAFE Brazil (Chemistry of the Atmosphere Field Experiment) aircraft campaign from December 2022 to January 2023 in Manaus, Brazil. Methane was measured with an infrared quantum cascade laser absorption spectrometer on board the High Altitude and LOng-range aircraft (HALO). These observations show enhanced concentrations of methane in and above the boundary layer of the Amazon rainforest. Locally, dry air mixing ratios of up to approx. 2100 ppbv could be measured up to 4 km of altitude. Detailed analysis shows only a small contribution from anthropogenic sources. Especially over permanent wetlands and deforested areas, the methane concentrations were enhanced. Furthermore, the data has been compared to satellite measurements from the National Oceanic and Atmospheric Administration (NOAA), indicating good agreement in the free troposphere. Nevertheless, the mean levels directly above the Amazon rainforest are approx. 100 ppbv higher than the global background. Moreover, a global distribution based on airborne data from several campaigns (PHILEAS 2023, CAFE Brazil 2022/23, SouthTrac 2019, CAFE Africa 2018, WISE 2017, ATom 2016/17, OMO 2015, ESMVal 2012) shows that the methane surface concentrations over the Amazon rainforest has a local maximum. This calls for more detailed investigations of methane near the surface in the Amazon and raises an important question: Have we underestimated the Amazon rainforest as a significant source of the global methane budget?

How to cite: Ort, L., Röder, L. L., Hoor, P., Lelieveld, J., and Fischer, H.: Enhanced methane concentrations measured over the Amazon rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2140, https://doi.org/10.5194/egusphere-egu24-2140, 2024.

Land and freshwater ecosystems play a significant role in affecting the global methane budget. With future warming, the increase of methane emissions could create large positive feedbacks to the global climate system.  We have used observation data of methane fluxes from diverse land and freshwater ecosystems to calibrate and evaluate extant land and freshwater biogeochemistry models of the Terrestrial Ecosystem Model (TEM) and the Arctic Lake Biogeochemistry Model (ALBM) to quantify the global methane emissions for the past few decades and the 21st century in a temporally and spatially explicit manner. Land ecosystems could emit methane from wetlands while uplands could uptake atmospheric methane. TEM simulates that global wetlands emissions are 212 ± 62 and 212 ± 32 Tg CH4 yr−1 due to uncertain parameters and wetland type distribution, respectively, during 2000–2012. After combining the global upland methane consumption of −34 to −46 Tg CH4 yr−1, we estimate that the global net land methane emissions are 149–176 Tg CH4 yr−1 due to uncertain wetland distribution and meteorological input. During 1950–2016, both wetland emissions and upland consumption increased during El Niño events and decreased during La Niña events. For freshwater ecosystems, we find that current emissions are 24.0 ± 8.4 Tg CH4 yr−1 from lakes larger than 0.1 km2. Future projections under the RCP8.5 scenario suggest a 58–86% growth in emissions from lakes.  Warming enhanced methane oxidation in lake water can be an effective sink to reduce the net release from global lakes. Additionally, these studies identify the key biogeochemical and physical processes of controlling methane production, consumption, and transport in various hotspot emission regions.  We also highlight the need for more in situ methane flux data, more accurate wetland and lake type and their area distribution dynamics information to better constrain the quantification uncertainty of global biogenic methane emissions across the landscape.

How to cite: Zhuang, Q.: Quantifying global biogenic methane emissions from land and freshwater ecosystems across the landscape , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2178, https://doi.org/10.5194/egusphere-egu24-2178, 2024.

EGU24-2479 | ECS | Posters on site | BG1.3

The UFLUX ensemble of multiple-scale carbon, water, and energy fluxes. 

Songyan Zhu and Jian Xu

In light of the challenges posed by climate change, global governments, including the United Kingdom (UK), have committed to addressing and mitigating the impacts of climate change, emphasizing the pursuit of Net Zero objectives. The terrestrial ecosystems on a global scale, functioning as pivotal carbon reservoirs, assume a critical role in climate change mitigation, especially within the context of an imminent scenario marked by accelerated warming and drying conditions. Recognizing that the carbon sequestration capacity of ecosystems is intricately linked to their energy and water cycling dynamics, this study presents the Uniform FLUXes (UFLUX)-ensemble dataset (https://sites.google.com/view/uflux) that accurately quantifies carbon, water, and energy fluxes across ecosystems in a consistent and mutually comparable manner. The UFLUX ensemble, relying on the upscaling of in-situ eddy covariance (EC) tower measurements using satellite vegetation proxies and meteorology reanalysis, constitutes the methodological foundation of this research.

The UFLUX originated from our prior investigations into filling gaps in EC fluxes. This is due to the analogous nature of the procedures involved in flux gap-filling and upscaling, wherein both entail the interpolation/extrapolation of fluxes, albeit in the temporal and spatial domains, respectively. The fluxes in UFLUX are upscaled through the application of a uniform set of algorithms and environmental determinants, aiming to mitigate the sources of uncertainty. The UFLUX methodology has demonstrated effectiveness in capturing the global CO2 fertilization effect. Furthermore, it has exhibited resilience to agricultural management interventions and has adeptly captured flux variability at a high spatial resolution of 20 meters in southwest England. These accomplishments lay the groundwork for generating the UFLUX-ensemble dataset.

The resulting UFLUX-ensemble dataset incorporates 60 members considering specific advantages of multiple satellite and meteorology reanalysis products. Aligned with the Net Zero vision articulated by nations, and recognizing the imperative of addressing data storage requirements, the dataset is made available on three scales: 1) daily 100-m resolution for the UK, 2) half-yearly 100-m resolution for Europe, and 3) monthly 0.25°×0.25°resolution for the entire globe. This diverse data provision is designed to assist climate actions, particularly in countries grappling with specific socio-economic challenges. A rigorous technical validation underscores the merits of the UFLUX ensemble, demonstrating its ability to capture 0.8 % of the flux variability with errors amounting to 0.76 g C m-2 d-1 and 11.67 W m-2. The UFLUX-ensemble dataset serves as a valuable resource, offering insights to inform land management practices, including nature-based solutions, with the overarching objective of augmenting carbon sequestration in terrestrial ecosystems and contributing to the realization of a carbon-neutral future.

How to cite: Zhu, S. and Xu, J.: The UFLUX ensemble of multiple-scale carbon, water, and energy fluxes., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2479, https://doi.org/10.5194/egusphere-egu24-2479, 2024.

EGU24-2492 | Orals | BG1.3

Future CH4 budgets as modelled by a fully coupled Earth system model using prescribed GHG concentrations vs. interactive CH4 sources and sinks 

Ulas Im, Kostas Tsigaridis, Susanne Bauer, Sabine Eckhardt, Drew Shindell, Lise Lotte Sørensen, and Simon Wilson

We have used the NASA Goddard Institute for Space Studies (GISS) Earth system model GISS-E2.1 to study the future budgets and trends of global and regional CH4 under different emission scenarios. GISS-E2.1 is one of the few ESMs that can be driven by anthropogenic CH4 emissions, as well as interactive natural sources such as wetlands, and can simulate the tropospheric CH4 chemistry. In frame of the recent short-lived climate forcers (SLCFs) assessment by the Arctic Monitoring and Assessment Programme (AMAP), we used the GISS-E2.1 model with prescribed long-lived greenhouse gas (GHG) concentrations. In the present study, we have supplemented these simulations using the interactive CH4 sources and sinks in order to quantify the model performance and the sensitivity to CH4 sources and sinks. We have used the Current Legislation (CLE) and the Maximum Feasible Reduction (MFR) emission scenarios from the Eclipse V6b emission database to simulate the future chemical composition and climate impacts from 2015 to 2050. We have also simulated 1995-2014 in order to evaluate the model performance following the AMAP-SLCF protocol.

The prescribed GHG version underestimates the Global Atmospheric Watch (GAW) surface CH4 observations during the period between 1995 and 2023 by 1% [-8.4%-2.0%], with a correlation (r) of 0.71 [-0.41 0.99]. The largest underestimations are over the continental emission regions such as North America, Europe, and Asia, while biases are smallest over oceans. On the other hand, the simulation with interactive sources and sinks underestimates the GAW observations more than the prescribed simulation, by 18.5% [-25% -10.4%], with a lower r of 0.36 [-0.82 0.93]. Opposite to the prescribed simulation, the biases are largest over oceans and smaller over the continents, however they are still larger over land than the prescribed simulation. The interactive simulation, with large sources virtually over land and strong sink over oceans, has a land/ocean ratio larger than 1 while the prescribed simulation has this ratio equal to 1 as it distributes the global prescribed CH4 concentration equally in longitude over a given latitude. This clearly shows that the interactive sources and sinks should be represented in models in order to realistically simulate the chemical composition and the oxidative capacity of the atmosphere.

As expected, the MFR scenario simulates lower global surface CH4 concentrations and burdens compared to the CLE scenario, however in both cases, global surface CH4 and burden continue to increase through 2050 compared to present day.  In the CLE scenario, increases are largest over the equatorial belt, in particular over India and East China, while the MFR scenario shows increases over the whole Southern Hemisphere, however much smaller compared to CLE. Finally, the interactive simulation shows that the chemical CH4 sink increases in the CLE scenario, while it slightly decreases in the MFR, leading to a larger CH4 lifetime in the MFR scenario compared to in the CLE scenario.

How to cite: Im, U., Tsigaridis, K., Bauer, S., Eckhardt, S., Shindell, D., Sørensen, L. L., and Wilson, S.: Future CH4 budgets as modelled by a fully coupled Earth system model using prescribed GHG concentrations vs. interactive CH4 sources and sinks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2492, https://doi.org/10.5194/egusphere-egu24-2492, 2024.

Radiocarbon can be used as an independent and objective tracer to evaluate fossil fuel CO2 (CO2ff) emissions, because of its complete depletion in fossil fuel sources. Here, we present a study on the CO2ff emissions reduction during the COVID-19 lockdowns in 2020 based on atmospheric Δ14CO2 observation at Chinese background sites. We observed obvious enhancements (several per mill to dozens of per mill) of atmospheric Δ14CO2 during the COVID-19 lockdowns compared with that in the same period. A preliminary analysis showed that these enhancements indicate several percepts to dozens of percents CO2ff emissions reduction from Eurasia (exclude China) and different parts in China during the COVID-19 lockdowns.

How to cite: Niu, Z.: Decrease in fossil fuel CO2 emissions during COVID-19 lockdowns based on  Δ14CO2 observation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3721, https://doi.org/10.5194/egusphere-egu24-3721, 2024.

EGU24-4150 | ECS | Posters on site | BG1.3

Satellite-driven model to upscale Irish CO2 Net Ecosystem Exchange (ICONEEx) 

Wahaj Habib and John Connolly

Climate change poses a significant environmental challenge for humanity, and accurately predicting its intensity as well as its impact on terrestrial ecosystems is crucial. To achieve this, monitoring, modelling, and mapping greenhouse gas (GHG) exchanges between the biosphere and the atmosphere is essential. Monitoring is also important to achieve the European Union’s goal to achieve a balance between GHG emissions and removals by 2050 and maintain negative emissions thereafter. While in situ measurement techniques, such as the eddy covariance flux tower (ECFT), have been used for decades to measure ecosystem-level exchanges of carbon, such as Net Ecosystem Exchange (NEE) of CO2, their footprint is limited to only 1 km². To overcome this limitation, satellite remote sensing data has been used to upscale these measurements to regional and global scales, but previous work has relied on low-resolution remote sensing data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (at 250m or 500m spatial resolution).

 

This study aims to use a combination of high-resolution remote sensing data and measurements from in situ ECFT data to model the NEE of CO2 across ~92% of Ireland's terrestrial area, covering major land covers such as wetlands (coastal and peatlands), grassland, and forestry. The model will integrate datasets from both ESA (Copernicus Sentinel-1 and 2) and NASA (MODIS PAR) with the light response curve parameters derived from the ECFT data in Ireland, to model NEE CO2 at a national scale. The results will be useful for monitoring, reporting, and verifying NEE across a range of ecosystems in Ireland. They can also be used to enhance National Inventory Reporting and national ambitions on climate, influence targeted policymaking, and verify land management decisions.

How to cite: Habib, W. and Connolly, J.: Satellite-driven model to upscale Irish CO2 Net Ecosystem Exchange (ICONEEx), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4150, https://doi.org/10.5194/egusphere-egu24-4150, 2024.

EGU24-4196 | Orals | BG1.3

Drivers of ocean carbon sink variability across spatial scales 

Galen McKinley, Amanda Fay, Dustin Carroll, and Dimitris Menemenlis

Since the preindustrial era, the ocean has removed roughly 40% of fossil CO2 from the atmosphere, and it will eventually absorb at least 80% of human CO2 emissions. While there is no doubt that the ocean is a critical player in the global carbon cycle, many uncertainties remain and the drivers and magnitude of interannual-to-decadal timescale variability remain poorly constrained. A key question is the extent to which external forcing, specifically the variability of the atmospheric pCO2 growth rate, or internal ocean variability is the dominant mechanism of variability. We use a suite of experiments from the ECCO-Darwin data-assimilative ocean biogeochemistry model to isolate and explore the impact of these two drivers. We demonstrate that at the global scale, external and internal variability equally drive ocean sink variability. However, as the spatial scale becomes more regional, internal variability becomes increasingly dominant. To diagnose the future evolution of the global-scale ocean carbon sink in response to a changing atmospheric growth rate, both skillful observation-based products and data-assimilative models will be required.   

How to cite: McKinley, G., Fay, A., Carroll, D., and Menemenlis, D.: Drivers of ocean carbon sink variability across spatial scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4196, https://doi.org/10.5194/egusphere-egu24-4196, 2024.

EGU24-4472 | Posters on site | BG1.3

Greenhouse gas emissions and their trends over the last three decades across Africa 

Mounia Mostefaoui, Philippe Ciais, Matthew Joseph McGrath, Philippe Peylin, Prabir K. Patra, and Yolandi Ernst

 A key goal of the Paris Agreement (PA) is to reach net-zero greenhouse gas (GHG) emissions by 2050 globally, which requires mitigation efforts from all countries. Africa’s rapidly growing population and gross domestic product (GDP) make this continent important for GHG emission trends. In this project we study the emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in Africa over 3 decades. We compare bottom-up (BU) approaches, including United Nations Convention Framework on Climate Change (UNFCCC) national inventories, FAO, PRIMAP-hist, process-based ecosystem models for CO2 fluxes in the land use, land use change and forestry (LULUCF) sector and global atmospheric inversions. For inversions, we applied different methods to separate anthropogenic CH4 emissions. The BU inventories show that, over the decade 2010–2018, fewer than 10 countries represented more than 75 % of African fossil CO2 emissions. With a mean of 1373 Mt CO2 yr−1, total African fossil CO2 emissions over 2010–2018 represent only 4 % of global fossil emissions. However, these emissions grew by +34% from 1990–1999 to 2000–2009 and by +31% from 2000–2009 to 2010–2018, which represents more than a doubling in 30 years. This growth rate is more than 2 times faster than the global growth rate of fossil CO2 emissions. The anthropogenic emissions of CH4 grew by 5 % from 1990–1999 to 2000–2009 and by 14.8 % from 2000–2009 to 2010–2018. The N2O emissions grew by 19.5 % from 1990–1999 to 2000–2009 and by 20.8 % from 2000–2009 to 2010–2018. When using the mean of the estimates from UNFCCC reports (including the land use sector) with corrections from outliers, Africa was a mean source of greenhouse gases of 2622 (min: 2186, max: 3239) Mt CO2 eq. yr−1 from all BU estimates (the min–max  indicate range uncertainties) and of +2637 (min: 1761, max: 5873) Mt CO2 eq. yr−1 from top-down (TD) methods during their overlap period from 2001 to 2017. Although the mean values are consistent, the range of TD estimates is larger than the one of the BU estimates, indicating that sparse atmospheric observations and transport model errors do not allow us to use inversions to reduce the uncertainty in BU estimates. The main source of uncertainty comes from CO2 fluxes in the LULUCF sector, for which the spread across inversions is larger than 50 %, especially in central Africa. Moreover, estimates from national UNFCCC communications differ widely depending on whether the large sinks in a few countries are corrected to more plausible values using more recent national sources following the methodology of Grassi et al. (2022). The medians of CH4 emissions from inversions based on satellite retrievals and surface station networks are consistent with each other within 2 % at the continental scale. The inversion ensemble also provides consistent estimates of anthropogenic CH4 emissions with BU inventories such as PRIMAP-hist. For N2O, inversions systematically show higher emissions than inventories, either because natural N2O sources cannot be separated accurately from anthropogenic ones in inversions or because BU estimates ignore indirect emissions and underestimate emission factors. 

How to cite: Mostefaoui, M., Ciais, P., McGrath, M. J., Peylin, P., Patra, P. K., and Ernst, Y.: Greenhouse gas emissions and their trends over the last three decades across Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4472, https://doi.org/10.5194/egusphere-egu24-4472, 2024.

EGU24-5271 | ECS | Orals | BG1.3

Peatland IPCC emission factors in the light of new EC carbon flux time series 

Nicolas Behrens, Klaus-Holger Knorr, and Mana Gharun

Peatlands are the world’s largest storage of soil organic carbon. While natural peatlands act as sinks of atmospheric carbon, drainage and disturbance (e.g., due to land use and climate change) turn peatlands into net carbon sources. Greenhouse gas (GHG) emissions from drained peatlands are therefore part of national GHG-emission reports, guided by the IPCC wetlands supplement. Herein, default emission factors (EF) are defined both for drained and rewetted peatlands, the former split into tropical and boreal/temperate wetlands, the latter further sub-categorized into nutrient poor and rich peatlands. These default emission factors are to date largely based on a limited number of static chamber-based studies, many measured over relatively short periods of time (1-3 years). As carbon flux measurements on peatlands have gained more attention, recent publications have added several new datasets to the EF calculations, significantly reducing the EF and narrowing confidence intervals. However, the final values are still almost entirely derived from chamber-based measurements with inherent limitations and uncertainties.

The Eddy-Covariance (EC) method is an alternative, established method to quantify carbon fluxes from ecosystems, spatially and temporally integrated (typically every 30 min throughout the year, representing a “flux-footprint” covering a whole ecosystem). As EC-based measurements are increasingly applied and such data are now available from several disturbed peatlands over several years, it is plausible to revise the default EFs. In this study we compile global EC time series for CO2 fluxes from disturbed peatlands of different land use categories with a focus on drained and rewetted peatlands affected by no or by  minor extensive management practices.  We investigate the diurnal, seasonal and annual variability of the fluxes. The net carbon emissions are compared to the EFs currently in use. With available ancillary data such as climate, water table depths, nutrients, ecosystem type and (succession-) state of the ecosystem we asses controlling factors for carbon fluxes. This investigation yields important context to evaluate the uncertainty and reliability of default emission factors for disturbed peatlands. Additionally, we apply a process-based model (CoupModel) to an own study-site to generate a higher-tier emission factor, including seasonality and climate variations.

How to cite: Behrens, N., Knorr, K.-H., and Gharun, M.: Peatland IPCC emission factors in the light of new EC carbon flux time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5271, https://doi.org/10.5194/egusphere-egu24-5271, 2024.

EGU24-5576 | ECS | Orals | BG1.3

The greenhouse gas budget of terrestrial ecosystems in China since 2000 

Yuanyi Gao, Xuhui Wang, Kai Wang, Yuxing Sang, Yilong Wang, Yuzhong Zhang, Songbai Hong, Yao Zhang, Wenping Yuan, and Shilong Piao

As one of the world’s economic engine and the largest greenhouse gases (GHGs) emitter of fossil fuel in the past two decades, China has expressed the recent ambition to reduce GHG emissions by mid-century. The status of GHG balance over terrestrial ecosystems in China, however, remains elusive. Here, we present a synthesis of the three most important long-lived greenhouse gases (CO2, CH4 and N2O) budgets over China during the 2000s and 2010s, following a dual constraint bottom-up and top-down approach. We estimate that China’s terrestrial ecosystems act as a small GHG sink (-29.0 ± 207.5 Tg CO2-eq yr-1 with the bottom-up estimate and -75.3 ± 496.8 Tg CO2-eq yr-1 with the top-down estimate). This net GHG sink includes an appreciable land CO2 sink, which is being largely offset by CH4 and N2O emissions, predominantly coming from the agricultural sector. Emerging data sources and modelling capacities have helped achieve agreement between the top-down and bottom-up approaches to within 25% for all three GHGs, but sizeable uncertainties remain. 

How to cite: Gao, Y., Wang, X., Wang, K., Sang, Y., Wang, Y., Zhang, Y., Hong, S., Zhang, Y., Yuan, W., and Piao, S.: The greenhouse gas budget of terrestrial ecosystems in China since 2000, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5576, https://doi.org/10.5194/egusphere-egu24-5576, 2024.

EGU24-6021 | Orals | BG1.3

Non-intuitive differences in Ninos-driven CO2 flux variability and long-term changes in the tropical Pacific and Atlantic 

Jerry Tjiputra, Shunya Koseki, and Pradeebane Vaittinada Ayar

Both the tropical Pacific and Atlantic upwelling systems are modulated by their respective Ninos (ENSO and Atlantic Nino), which significantly affect the regional and global climate variability. Coincidentally, two of largest ocean carbon outgassing systems are also located in these domains. As a result, the interannual variability of ocean CO2 fluxes in these regions have predominant imprint on the globally integrated variations (Landschutzer et al., 2016). In contrast to the effect of anomalously cold surface temperature, the upwelling of deep-water rich in dissolved inorganic carbon is understood to be the main driver for the mean CO2 outgassing. In the tropical Pacific, El Nino (La Nina) leads to a suppressed (stronger) upwelling condition and an anomalously weaker (stronger) carbon outgassing. On the other hand, the Atlantic Nino and Nina exert considerable variability in the surface freshwater and temperature, which leads to spatially heterogeneous responses in the contemporary CO2 fluxes. In both systems, we discover a critical role of subsurface alkalinity in regulating the observed variability, primarily through altering the surface buffering capacity (Koseki et al., 2023). We show that bias in CMIP6 Earth system models in simulating the mean contemporary alkalinity state in the tropical Pacific leads to contrasting future impacts (Vaittinada Ayar et al., 2022) and could have ramifications on the climate carbon cycle feedback. 

 

References

Koseki, S., J. Tjiputra, F. Fransner, L. R. Crespo, and N. S. Keenlyside (2023), Disentangling the impact of Atlantic Nino on sea-air CO2 fluxes, Nature Communications, 14, 3649, https://doi.org/10.1038/s41467-023-38718-9.

Landschützer, P., N. Gruber, and D. C. E. Bakker (2016), Decadal variations and trends of the global ocean carbon sink, Global Bio- geochem. Cycles, 30, 1396–1417, http://doi.org/10.1002/2015GB005359.

Vaittinada Ayar, P., L. Bopp, J. R. Christian, T. Ilyina, J. P. Krasting, R. Séférian, H. Tsujino, M. Watanabe, A. Yool, and J. Tjiputra (2022), Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario, Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022.

How to cite: Tjiputra, J., Koseki, S., and Vaittinada Ayar, P.: Non-intuitive differences in Ninos-driven CO2 flux variability and long-term changes in the tropical Pacific and Atlantic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6021, https://doi.org/10.5194/egusphere-egu24-6021, 2024.

EGU24-7267 | ECS | Posters on site | BG1.3

Recent increasing trend of global CO2 growth rate due to a slowdown in terrestrial carbon uptake 

Chaerin Park and Sujong Jeong

The global atmospheric CO2 growth rate is a product of the combined effects of emissions and uptake from both anthropogenic and natural carbon sources. Therefore, an evaluation of the global CO2 growth rate should be preceded to understand the global carbon-climate process. In this study, we analyzed the long-term changes in the global CO2 growth rate from 1991 to 2020, using data from 42 global sites and model simulations to assess recent changes in the global carbon-climate feedback process. Our results indicate that the annual CO2 growth rate has increased by 0.032 ppm yr-2 since the 2000s. A comprehensive assessment of carbon cycle components contributing to atmospheric CO2 growth rate changes reveals that the strengthening of this rate is linked to a decline in terrestrial carbon absorption over the last decade. This decline is primarily associated with a slowdown in the increasing trend of Net Primary Productivity. Consequently, the reduced terrestrial carbon uptake in recent decades contributed to an approximately 3 ppm increase in global CO2 concentration by 2020. Our findings highlight that the vegetation's carbon uptake capacity can no longer offset anthropogenic CO2 emissions, underscoring the importance of achieving global carbon neutrality in climate change mitigation.

 

This work was supported by Korea Environment Industry & Technology Institute(KEITI) through Project for developing an observation-based GHG emissions geospatial information map, funded by Korea Ministry of Environment(MOE) (RS-2023-00232066)

How to cite: Park, C. and Jeong, S.: Recent increasing trend of global CO2 growth rate due to a slowdown in terrestrial carbon uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7267, https://doi.org/10.5194/egusphere-egu24-7267, 2024.

EGU24-7366 | Orals | BG1.3

Quantifying permafrost C-cycling by fusing process-models and observations  

Luke Smallman and Eleanor Burke

Globally permafrost soils store huge quantities of carbon (C) in dead organic matter (DOM). Currently, the permafrost region is estimated to be a small net C sink. However, as the climate warms permafrost soils have begun to thaw, making a massive quantity of DOM available for potential decomposition and likely shifting the region to a net source of C. Process-models of terrestrial ecosystems are a vital tool in evaluating our understanding of ecosystem function, but also in generating forecasts of C emissions under varied climate change scenarios in support of decision support. But different models contain competing hypothesise of ecosystem functioning, leading to divergent forecasts despite convergent estimates of contemporary net C emissions. These process-models also result in contrasting estimates of the internal C-cycling. We currently lack a consistent, rigorous observational constraint on ecosystem C-stocks and dynamics (particularly below ground) due to varied challenges across both in-situ and satellite-based Earth Observation (EO). Here, we present a Bayesian model-data fusion approach (CARDAMOM) which combines diverse observations of terrestrial ecosystems (e.g. leaf area, soil C, biomass, net C exchange) to calibrate an intermediate complexity model (DALEC). CARDAMOM generates a probabilistic estimates of DALEC parameters at pixel scale based on local information. Using these local calibrations, DALEC offers a probabilistic, data-constrained estimate of current ecosystem C-cycling including its internal dynamics, which can be used to evaluate large scale process-models. We evaluate process-model estimates of key ecosystem properties, e.g. DOM residence time, and their climate sensitivity. Through this process we can identify and exclude process-models which are inconsistent with data from forecast analyses.

How to cite: Smallman, L. and Burke, E.: Quantifying permafrost C-cycling by fusing process-models and observations , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7366, https://doi.org/10.5194/egusphere-egu24-7366, 2024.

EGU24-8175 | Orals | BG1.3

Estimating methane emissions at high northern latitudes using regional data and global inverse modelling 

Luana Basso, Christian Rödenbeck, Victor Brovkin, Goran Georgievski, and Mathias Göckede

Atmospheric methane levels (the second largest contributor to climate change) have more than doubled over the last 200 years, though with highly variable trends over time. The relative contribution of different sources and sinks to the global CH4 budget remains uncertain despite ongoing efforts to improve the estimates based on various approaches, and particularly the causes for an accelerated increase in recent years remain unclear. Therefore, understanding and quantifying methane sources at global to regional scales is essential to reduce uncertainties in the global methane budget and its feedback with the climate system.

Within the Arctic region, wetlands and lakes constitute a major natural source of methane. With temperatures rising at rates at least twice the global average over the last decades, Arctic permafrost is increasingly thawing. Associated disturbance processes hold the potential to increase methane emissions, and as a consequence result in a positive feedback to climate change. However, until now neither observations nor model estimates could provide clear evidence of such a trend in emissions. As a consequence, current and possible future contributions of Arctic ecosystems to the accelerated increase in the global atmospheric methane levels remain highly uncertain.

To help reduce methane emission uncertainties in the high northern latitudes, we estimated global CH4 fluxes to the atmosphere using the Jena CarboScope Global Inversion System, with a strong focus of our analysis on the Arctic region. We used wetland flux from JSBACH model as prior and assimilated atmospheric observations from regional networks available over the last years for the region above 60°N latitude (a total of 23 towers) to quantify the methane emissions over this region between 2010 to 2020. We found a clear seasonal pattern with emission peaks during July and August. As a sensitivity test to evaluate the improvement to constrain the Arctic methane fluxes with the assimilation of the regional data, we also conducted an inversion using just the global background surface stations (a total of 30 global stations). We found higher mean annual methane flux to the atmosphere when assimilating the regional data, with the largest difference between May to August. These estimates were finally evaluated against an ensemble of inverse model estimates from Global Methane Project available for the period between 2010 to 2017.

How to cite: Basso, L., Rödenbeck, C., Brovkin, V., Georgievski, G., and Göckede, M.: Estimating methane emissions at high northern latitudes using regional data and global inverse modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8175, https://doi.org/10.5194/egusphere-egu24-8175, 2024.

EGU24-8349 | ECS | Posters on site | BG1.3

Drivers and trends in Land-use change and associated carbon emissions over Indonesia 

Ida Bagus Mandhara Brasika, Pierre Friedlingstein, Stephen Sitch, and Michael O'Sullivan

Indonesia is currently known as one of the three largest contributors of carbon emissions from land and land cover change (LULCC) globally, together with Brazil & the Democratic Republic of Congo. However, there is a limited reliable data on LULCC across Indonesia, leading to a lack of agreement on drivers and trends in carbon emissions. This can also be seen in the annual global carbon budget (GCB). Here, we assess the new satellite-based land cover dataset from Mapbiomas over Indonesia to illustrate how changes in forest and agriculture (mainly palm oil) areas across Indonesia determine trends in carbon emissions from land use change (ELUC). ELUC is simulated with a process-based Dynamic Global Vegetation Model, JULES-ES using annually varying LULCC maps from Mapbiomas as input. Our results show that the forest loss and agriculture expansion have a strong correlation and trend in the last two decades. Furthermore, palm oil plantation is the major contribution to the forest-agriculture dynamics, mainly appearing in Kalimantan & Sumatera island. This dynamic has a major impact on Indonesia ELUC with a positive trend in ELUC of 0.06 PgC/yr2 since 2000 . The use of the satellite-based dataset, Mapbiomas, is shown to improve our understanding of the LULCC dynamics over Indonesia, hopefully contributing to a reduction of the ELUC uncertainty for Indonesia and the SE Asia region.

How to cite: Brasika, I. B. M., Friedlingstein, P., Sitch, S., and O'Sullivan, M.: Drivers and trends in Land-use change and associated carbon emissions over Indonesia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8349, https://doi.org/10.5194/egusphere-egu24-8349, 2024.

EGU24-8601 | ECS | Posters on site | BG1.3

Estimation of methane emissions at European scale with a special focus on Austria 

Sophie Wittig, Anjumol Raju, Seyed Omid Nabavi, Martin Vojta, Peter Redl, Antje Hoheisel, Marcus Hirtl, Christine Groot Zwaaftink, and Andreas Stohl

In recent years, methane (CH4) has attracted increasing scientific attention as the second most abundant anthropogenic greenhouse gas (GHG) in the atmosphere. Due to the high reduction potential and the relatively short atmospheric lifetime of around 9 years, mitigation measures can become effective within a relatively short period of time. However, the current estimates of CH4 fluxes from emission inventories are still subject to uncertainties at both global and regional scale.

An effort to reduce uncertainties from those bottom-up flux estimates is given by inverse modelling, which provides a robust tool to verify GHG emissions by combining GHG observations as well as atmospheric transport modelling and statistical optimization.

In this study, we use an inverse modelling approach to estimate CH4 fluxes at European scale for the year 2022. Additionally, we use the European in-situ observation network to explore the feasibility of reducing uncertainties in CH4 fluxes in Austria, a European country with a limited availability of stationary observations. This work is part of the Austrian ASAP18 flagship project “GHG-KIT: Keep it traceable”.

Hereby, the inverse modelling tool FLEXINVERT is used, which is based on the backward simulations of the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle). In particular, we investigate to what extent prolonged backward trajectories of 50 to 100 days contribute to better constrain the CH4 fluxes. In an attempt to estimate background concentrations as accurately as possible, we use global CH4 concentration fields obtained with the chemical transport model FLEXPART (CTM).

How to cite: Wittig, S., Raju, A., Nabavi, S. O., Vojta, M., Redl, P., Hoheisel, A., Hirtl, M., Groot Zwaaftink, C., and Stohl, A.: Estimation of methane emissions at European scale with a special focus on Austria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8601, https://doi.org/10.5194/egusphere-egu24-8601, 2024.

EGU24-9459 | Posters on site | BG1.3

The methane record at the ICOS background station at Plateau Rosa: identification of source areas in Europe 

Giulia Zazzeri, Francesco Apadula, Andrea Lanza, and Stephan Henne

Methane and carbon dioxide mole fractions are measured continuously at the atmospheric station at Plateau Rosa since 2018, with a Picarro cavity ring down spectrometer G2301. The station, at 3480 meter MSL, represents an ideal location for, on one hand, measurements of background air and, on the other hand, intercepting air with recent boundary layer contact. Since 2021 the site contributes as an atmospheric station to the ICOS network.

In this study we present the methodology used to filter background data, and we provide an analysis of the continuous record of CH4 since 2018. We used Hysplit back trajectories and the FLEXPART atmospheric transport model coupled with EDGAR inventories to identify source areas in Europe. We focused our analysis on April 2022, when the CH4 increment above the baseline was consistently high.

We demonstrate how the CH4 mole fraction data measured at the station at Plateau Rosa provide information on the global CH4 trend, and that, with our continuous record, we can detect high emissions events over Europe.

How to cite: Zazzeri, G., Apadula, F., Lanza, A., and Henne, S.: The methane record at the ICOS background station at Plateau Rosa: identification of source areas in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9459, https://doi.org/10.5194/egusphere-egu24-9459, 2024.

EGU24-9609 | ECS | Posters on site | BG1.3

Terrestrial Carbon Flux Dynamics in the Southern American Temperate Region: Insights from Dynamic Global Vegetation Models and GOSAT XCO2 Measurements   

Sanam Noreen Vardag, Lukas Artelt, Eva-Marie Metz, Sourish Basu, Martin Jung, and André Butz

Understanding terrestrial carbon fluxes is a prerequisite for accurately predicting the global biospheric uptake and release of CO2 under climate change and other environmental stressors. Terrestrial carbon fluxes in the southern hemisphere still exhibit quite large uncertainties due to limited measurements and a lack of comprehensive process understanding. This study focuses on the South American Temperate (SAT) region, employing various Dynamic Global Vegetation Model (DGVM) models (TRENDY v9) to investigate carbon flux dynamics. We find significant discrepancies between these DGVM models in terms of both phasing and magnitude. To address this, atmospheric XCO2 measurements from the Greenhouse Gases Observing Satellite (GOSAT) during the period 2009-2018 are incorporated into an atmospheric inversion using the model TM5-4DVar to obtain net CO2 fluxes. We identify DGVM models that match the inversion results, particularly showing the same phasing and similar magnitude of net ecosystem exchange (NEE) as the inversion results. The matching DGVMs show that the increase in NEE during the mid of the year is driven by an early increase in heterotrophic respiration whereas the autotrophic respiration remains in phase with the gross primary production (GPP) and is delayed with respect to heterotrophic respiration. The observed flux behavior is linked to the onset of rainfall in the semi-arid regions of SAT, resembling findings in Australia by Metz et al. (2023). We hypothesize that soil rewetting processes in semi-arid areas play an important role in constraining the global carbon budget and should be represented more accurately in global carbon cycle models to improve the estimation of the global carbon budget.  

 

Metz, E.-M., Vardag, S.N., Basu, S., Jung, M., Ahrens, B., El-Madany, T., Sitch, S., Arora, V.  K., Briggs, P. R., Friedlingstein, P., Goll, D.S., Jain, A.K.,  Kato, E., Lombardozzi, D., Nabel,J .E. M. S., Poulter, B., Séférian, R., Tian, H., Wiltshire, A., Yuan, W., Yue, X., Zaehle, S.,  Deutscher, N.M.,  Griffith, D.W.T., Butz, A. Soil respiration–driven CO2 pulses dominate Australia’s flux variability. Science, 379, 1332-1335, https://doi.org/10.1126/science.add7833, 2023. 

How to cite: Vardag, S. N., Artelt, L., Metz, E.-M., Basu, S., Jung, M., and Butz, A.: Terrestrial Carbon Flux Dynamics in the Southern American Temperate Region: Insights from Dynamic Global Vegetation Models and GOSAT XCO2 Measurements  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9609, https://doi.org/10.5194/egusphere-egu24-9609, 2024.

EGU24-10840 | ECS | Orals | BG1.3 | Highlight

A new synthesis of Arctic-boreal carbon fluxes for improved carbon budget estimates 

Anna Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie Kuhn, Susan Natali, Brendan Rogers, Mathias Goeckede, Kyle Arndt, Jennifer Watts, Tiffany Windholz, and Simran Madaan

The Arctic-boreal zone and its permafrost regions have historically been sparsely measured for carbon dioxide and methane fluxes. This data sparsity has created significant uncertainties in Arctic-boreal carbon budget estimates. However, over the past decade, the availability of Arctic-boreal carbon flux data has increased substantially. Yet, it remains scattered across different repositories, papers, and unpublished sources, making it hard to estimate more accurate Arctic-boreal carbon budgets. To address this research gap, we have compiled a database of Arctic-boreal carbon fluxes (ABCFlux v2) from flux repositories, literature, and site principal investigators, which will be openly distributed. The database includes carbon dioxide fluxes of gross primary production, ecosystem respiration, and net ecosystem exchange, and plant-mediated, diffusive, ebullitive, and storage methane fluxes measured with eddy covariance and chamber techniques with supporting methodological and environmental metadata from terrestrial (including wetland) and freshwater ecosystems. It has in total over 12,000 site-months and 30,000 unique monthly flux values, therefore almost doubling earlier synthesis efforts in the region. Here, we present preliminary results on carbon flux magnitudes across key land cover types and multidecadal trends based on the in-situ data and machine-learning based upscaling. These indicate, for example, that the Arctic-boreal region has been an increasing annual terrestrial net ecosystem CO2 sink with the boreal biome primarily driving this trend. This collaborative initiative, involving contributions from over 100 researchers, serves as an important step in reducing uncertainties in Arctic-boreal carbon budgets and enhancing our understanding of climate feedbacks.

How to cite: Virkkala, A., Wargowsky, I., Vogt, J., Kuhn, M., Natali, S., Rogers, B., Goeckede, M., Arndt, K., Watts, J., Windholz, T., and Madaan, S.: A new synthesis of Arctic-boreal carbon fluxes for improved carbon budget estimates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10840, https://doi.org/10.5194/egusphere-egu24-10840, 2024.

EGU24-11622 | Orals | BG1.3

Constraining atmosphere-terrestrial-aquatic carbon cycle processes at national and ecoregional scales with radiocarbon data: Introducing the Radiocarbon Inventories of Switzerland (RICH) project 

Timothy Eglinton, Heather Graven, Frank Hagedorn, Soenke Szidat, Alexander Brunmayr, Margaux Duborgel, Dylan Geissbuehler, Thomas Laemmel, Luisa Minich, Benedict Mittelbach, Timo Rhyner, and Margot White

New constraints on carbon exchanges between atmospheric, terrestrial and aquatic systems are needed to reduce uncertainty in future predictions of the global carbon cycle and climate change. Radiocarbon is a powerful tool for studying the carbon cycle due to its to its ~5700-year half-life that sheds light on processes occuring on centennial to millenial timescales, as well as the 14C “bomb spike” resulting from above-ground nuclear weapons testing in the mid-20th Century that serves as a tracer of carbon flow among more rapidly cycling pools. The “Radiocarbon Inventories of Switzerland” (“RICH”) project is a collaborative initiative that involves undertaking a first-of-its-kind, national-scale 14C survey spanning all major carbon pools and encompassing the five different Swiss ecoregions. The project is acquiring a comprehensive “snapshot” of 14C measurements for carbon species in the atmosphere, soils and the hydrophere (e.g. 14C in atmospheric and soil-derived gas samples, 14C in bulk samples and different sub-fractions of soil, water and sediment samples), and developing historical context through 14C analysis of natural archives and of archived samples spanning the pre-bomb era to the present. The measurements are being used to study various carbon cycle processes, including turnover rates of different soil carbon fractions, budgets of riverine carbon, and anthropogenic emissions of CO2 and CH4. New, integrated atmospheric-terrestrial-aquatic carbon cycle models are being developed and calibrated, and existing models are being evaluated. This presentation will outline the goals and scope of the RICH project, and provide illustrations of the information that is now flowing from this collaborative undertaking. The project structure is envisioned to serve as template that can be  adapted in carbon cycle studies on regional to global scales, and the scientific outcomes will be relevant not only to Switzerland but also to the broader understanding of carbon cycle processes.

How to cite: Eglinton, T., Graven, H., Hagedorn, F., Szidat, S., Brunmayr, A., Duborgel, M., Geissbuehler, D., Laemmel, T., Minich, L., Mittelbach, B., Rhyner, T., and White, M.: Constraining atmosphere-terrestrial-aquatic carbon cycle processes at national and ecoregional scales with radiocarbon data: Introducing the Radiocarbon Inventories of Switzerland (RICH) project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11622, https://doi.org/10.5194/egusphere-egu24-11622, 2024.

EGU24-12156 | Posters on site | BG1.3

Constraining CO2 fluxes over Europe using FLEXINVERT and in-situ measurements 

Anjumol Raju, Sophie Wittig, Martin Vojta, Omid Nabavi, Peter Redl, Antje Hoheisel, Marcus Hirtl, Christine Groot Zwaaftink, and Andreas Stohl

Atmospheric carbon dioxide (CO2) is a significant greenhouse gas, and its concentration has increased by 51% compared to the pre-industrial value. Concerning its impact on the earth’s climate system, there is an urge to reduce CO2 emissions, hence mitigating global warming and climate change. This requires adequate knowledge of its source-sink distribution and quantification of the CO2 budget. Inverse modeling has emerged as an effective tool to constrain greenhouse gas (GHG) fluxes using the spatiotemporal pattern of atmospheric concentration measurements. In this regard, this study focuses on estimating CO2 fluxes over Europe using the Bayesian inverse modelling framework FLEXINVERT during the year 2021. In-situ CO2 concentrations were taken from various locations across Europe (World Data Centre for Greenhouse Gases, WDCGG) and data were averaged every 3 hours. The Lagrangian Particle Dispersion Model FLEXPART (FLEXible PARTicle) is employed to calculate the source-receptor relationship (SRR). The FLEXPART model has been run backward in time to trace back the particles (released from the locations of observation sites) for 10 days. Background CO2 concentrations are calculated using the sensitivity of concentration at the termination points from FLEXPART and the global 3D concentration from the FLEXible PARTicle-chemical transport model (FLEXPART-CTM). The uncertainty reduction, calculated from posterior and prior flux uncertainties, indicates how well the prior fluxes are optimized. In addition, longer backward simulations can be carried out to assess the impact of transport on background CO2 concentrations and the uncertainty reduction.

How to cite: Raju, A., Wittig, S., Vojta, M., Nabavi, O., Redl, P., Hoheisel, A., Hirtl, M., Zwaaftink, C. G., and Stohl, A.: Constraining CO2 fluxes over Europe using FLEXINVERT and in-situ measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12156, https://doi.org/10.5194/egusphere-egu24-12156, 2024.

EGU24-12441 | ECS | Posters on site | BG1.3

Estimating methane sources and sinks by assimilating satellite data in a global atmospheric inverse system. 

Nicole Montenegro, Marielle Saunois, Antoine Berchet, Adrien Martinez, Philippe Bousquet, and Isabelle Pison

Methane (CH4) is the second most important greenhouse gas, contributing to approximately 30% of the additional greenhouse effect since 1750. Its varied sources and relatively short lifetime in the atmosphere (~9 years) offer interesting mitigation opportunities. To develop practical strategies for mitigating climate change, precise quantification of methane fluxes and a better understanding of its spatial distribution and biogeochemical cycling are imperative. The observations currently used to infer methane sources and sinks face limitations affecting calculation accuracy. Surface stations measuring CH4 are sparse and notably absent in major emitting regions. In contrast, satellite-derived data, while providing broader coverage, present systematic errors and estimate atmospheric composition with an accuracy range of 1-10%. Additionally, passive satellite shortwave infrared (SWIR) measurements exhibit higher sensitivity near surface emission sources but are less effective in high latitude regions. Conversely, passive satellite thermal infrared (TIR) measurements have a higher sensitivity between the free troposphere and the stratosphere.Current worksare currently being developed to integrate TIR and SWIR to obtain consolidated CH4 information on the vertical atmospheric profile. This studyaims on improving methane flux estimates using the top-down approach, which integrates observations, flux priors, and an atmospheric chemical transport model utilizing Bayesian methodology. This will be perfomed on the inversion system developed at the LSCE (Community Inversion Framework – CIF) using the global transport model LMDz. We analyze the information provided by different observing systems (TIR, SWIR and surface network) at the global scale and for a period between June 2018 and June 2020. In a first step, the sensitivity of the fluxes to the observations is estimated. In a second step, Observing System Simulation Experiments are performed to evaluate the performance of the different observations system to retrieve the target fluxes. Considering both steps, observing systems are chosen to provide the best information in terms of sensitivity and spatial representation (vertical and horizontal).

How to cite: Montenegro, N., Saunois, M., Berchet, A., Martinez, A., Bousquet, P., and Pison, I.: Estimating methane sources and sinks by assimilating satellite data in a global atmospheric inverse system., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12441, https://doi.org/10.5194/egusphere-egu24-12441, 2024.

EGU24-12480 | ECS | Orals | BG1.3

Reassessing the pre-industrial air-sea carbon flux considering the ocean alkalinity budget 

Alban Planchat, Laurent Bopp, and Lester Kwiatkowski

Disparities in estimates of the ocean carbon sink, whether derived from global ocean biogeochemical models or from data products based on observations of surface ocean pCO2, question our ability to accurately assess ocean carbon uptake and its trend over recent decades. A potential factor contributing to the inconsistency between data products and model-based estimates is the pre-industrial air-sea carbon flux that is required to isolate the anthropogenic component from the total air-sea carbon flux estimated from observations. This pre-industrial air-sea carbon flux is thought to stem at the global scale from an imbalance between riverine carbon discharge to the ocean and sediment carbon burial.  Using a mass-balanced approach and comprehensive estimates of carbon inputs to the ocean by rivers and groundwater as well as carbon burial in marine sediments, Regnier et al. (2022) estimated that the pre-industrial ocean was outgassing 0.65 ± 0.30 petagrams of carbon per year. This updated estimation was used in the latest Global Carbon Budget (Friedlingstein et al., 2023) to derive an estimate of the ocean carbon sink over recent decades. In this study, we use a series of ocean biogeochemical pre-industrial simulations with varying assumptions related to carbon riverine input and burial to develop a theoretical framework to determine the ocean carbon outgassing and its spatial distribution. Building upon previous efforts, we integrate a carbon mass-balance approach with consideration of the ocean alkalinity budget. While conventionally assumed that the global alkalinity inventory was in equilibrium during the pre-industrial era — with riverine alkalinity discharge offset by CaCO3 burial — we demonstrate that an imbalance in the pre-industrial ocean alkalinity budget could significantly affect the carbon outgassing flux. This novel conceptual framework allows us to reestimate the pre-industrial carbon flux while considering the ocean alkalinity budget. Furthermore, it provides a simple method to reevaluate this flux in light of new assessments of carbon or alkalinity sources and sinks, while also covering their uncertainty ranges.

How to cite: Planchat, A., Bopp, L., and Kwiatkowski, L.: Reassessing the pre-industrial air-sea carbon flux considering the ocean alkalinity budget, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12480, https://doi.org/10.5194/egusphere-egu24-12480, 2024.

EGU24-12481 | Orals | BG1.3 | Highlight

Methane’s record rise 2020-2023: likely causes, impacts and consequences 

Martin R. Manning, Euan G. Nisbet, Sylvia E. Michel, Xin Lan, Ed Dlugokencky, David Lowry, Rebecca E. Fisher, and James L. France

From 2020, the atmospheric methane burden has grown at the fastest rate in the detailed observational record. This rise has been accompanied by an unprecedented plunge in d13C(CH4). The causes of recent accelerated growth are as yet uncertain but the geographic spread of growth and the rapid isotopic plunge suggest strong rises in isotopically light emissions from both Tropical and Boreal wetlands. These emissions may be due to rising precipitation and temperatures in parts of the tropics, and by rising temperatures in northern Canada, Siberia, and Europe. Over the longer period since 2007, methane’s actual growth is comparable to methane’s growth in the ‘worst case’ very high baseline emission scenario RCP8.5 (8.5 W/m2 forcing increase relative to pre-industrial). If the recent trend were to continue for more than another decade it could make the 2°C target as hard to achieve as the 1.5°C target is now. Natural feedbacks to climate warming in wetlands need to be included in future modelling and should be incorporated in climate modelling projects such as CMIP7. Methane’s recent accelerated growth also has wide implications for climate negotiations as it reduces the permissible total anthropogenic greenhouse gas emissions if the Paris Agreement is to be achieved. Strong growth in non-anthropogenic methane emissions, driven by feedback impacts on natural and quasi-natural sources, was not expected in modelling at the time of the Paris Agreement and shows the urgency of improving our understanding of the feedback impacts of climate change. The simplest way to limit methane’s growth is for all nations,  including non-signatory countries, to cut anthropogenic emissions urgently and sharply, meeting or exceeding the targets of the Global Methane Pledge.

How to cite: Manning, M. R., Nisbet, E. G., Michel, S. E., Lan, X., Dlugokencky, E., Lowry, D., Fisher, R. E., and France, J. L.: Methane’s record rise 2020-2023: likely causes, impacts and consequences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12481, https://doi.org/10.5194/egusphere-egu24-12481, 2024.

EGU24-12756 | Posters on site | BG1.3

Identifying the origins of the global carbon budget imbalance using oxygen 

Nicolas Mayot, Corinne Le Quéré, and Andrew Manning

Despite major advances in the estimation of all fluxes in the global cycles of carbon and oxygen, mathematical imbalances continue to arise when these fluxes are combined. Between 1997 and 2022, the global budget imbalances (BIM) for CO2 and O2 budgets – a quantification of the missing sources and/or sinks of CO2 and O2 – are -18 Tmol/yr and 41 Tmol/yr, respectively. The CO2 BIM has tended to become increasingly negative over the last decade, while the O2 BIM has tended to become increasingly positive. To identify the origins of the BIMs, we carried out a systematic analysis of the combination and permutation of all available individual flux estimates provided by a sub-set of contributors to the Global Carbon Budget 2023 update. We first examine the possibility that inaccuracies in the ocean air-sea fluxes contributes to the CO2 and O2 BIM. We show that the interannual variability of the air-sea O2 flux required for a reduction of the O2 BIM tends to be close to that simulated by several ocean models. An in-depth analysis of the Southern Ocean has confirmed their ability to simulate reasonable interannual variability in the air-sea fluxes of O2 and CO2. We conclude that in order to simultaneously reduce the negative trend in CO2 BIM and the positive trend in O2 BIM in the recent decade, a reduction in the increasing trend in the terrestrial CO2 sink over the last decade is most likely required.

How to cite: Mayot, N., Le Quéré, C., and Manning, A.: Identifying the origins of the global carbon budget imbalance using oxygen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12756, https://doi.org/10.5194/egusphere-egu24-12756, 2024.

EGU24-13094 | ECS | Posters on site | BG1.3

High-Resolution Inversion Modeling of Carbon Dioxide and Methane Emissions in Europe: Assessing Accuracy and  Dynamics 

Anteneh Getachew Mengistu, Aki Tsuruta, Maria Tenkanen, Tiina Markkanen, Maarit Raivonen, Antti Leppänen, Antoine Berchet, Rona Thompson, Hannakaisa Lindqvist, and Tuula Aalto

Accurate estimation of critical greenhouse gas fluxes, particularly carbon dioxide (CO2) and methane (CH4), is vital for shaping effective climate change policies. Leveraging the state-of-the-art Community Inversion Framework (CIF), we estimate high-resolution emissions across Europe (-12°E to 37°E, 35°N to 73°N). Using the Lagrangian Particle Dispersion Model (FLEXPART) with ECMWF meteorological data, we calculate surface flux footprints at 0.2° × 0.2° resolution, enhancing comparisons with national inventories. Assimilating data from 40+ in-situ observations, including ICOS and non-ICOS stations, our 4-dimensional variational optimization refines prior high-resolution flux estimates. Diverse sources contribute to the total flux, including fossil fuel emissions, biomass burning, land emissions, air-sea exchange. Flux corrections enhance accuracy, yielding posterior estimates with reduced bias and heightened correlation. Major CH4 emitters (France, Germany, Italy, Spain, Poland, and the UK) collectively contribute 72% of total emissions. The EU27 + UK average is 16.47 ± 1.33 Tg CH4/yr. Posterior anthropogenic emissions reveal a regional mean reduction of > 5 gC/m2/month in summer compared to prior estimates, highlighting seasonal emission dynamics.

How to cite: Mengistu, A. G., Tsuruta, A., Tenkanen, M., Markkanen, T., Raivonen, M., Leppänen, A., Berchet, A., Thompson, R., Lindqvist, H., and Aalto, T.: High-Resolution Inversion Modeling of Carbon Dioxide and Methane Emissions in Europe: Assessing Accuracy and  Dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13094, https://doi.org/10.5194/egusphere-egu24-13094, 2024.

EGU24-13246 | ECS | Posters on site | BG1.3

Recent methane surges reveal heightened emissions from tropical inundated areas 

Xin Lin, Shushi Peng, Philippe Ciais, Didier Hauglustaine, Xin Lan, Gang Liu, Michel Ramonet, Yi Xi, Yi Yin, and Zhen Zhang and the Coauthors

Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.4 and 17.6±0.5 ppb yr-1), reaching their highest level since the commencement of ground-based observations in the early 1980s. Here we use an ensemble of atmospheric inversions informed by surface or satellite methane concentration observations to infer emission changes during these two years relative to 2019. We found a global increase of methane emissions of 20.3±9.9 Tg CH4 in 2020 and 24.8±3.1 Tg CH4 in 2021. The emission rise was dominated by tropical and boreal regions with inundated areas, as a result of elevated groundwater table. Strong, synchronous, and persistent emission increases occurred in regions such as the Niger River basin, the Congo basin, the Sudd swamp, the Ganges floodplains and Southeast Asian deltas and the Hudson Bay lowlands. These regions alone contributed about 70% and 60% of the net global increases in 2020 and 2021, respectively. Comparing our top-down estimates with simulation of wetland emissions by biogeochemical models, we find that the bottom-up models significantly underestimate the intra- and inter-annual variability of methane sources from tropical inundated areas. This discrepancy likely arises from the models’ limitations in accurately representing the dynamics of tropical wetland extents and the response of methane emissions to environmental changes. Our findings demonstrate the critical role of tropical inundated areas in the recent surge of methane emissions and highlight the value of integrating multiple data streams and modeling tools to better constrain tropical wetland emissions.

How to cite: Lin, X., Peng, S., Ciais, P., Hauglustaine, D., Lan, X., Liu, G., Ramonet, M., Xi, Y., Yin, Y., and Zhang, Z. and the Coauthors: Recent methane surges reveal heightened emissions from tropical inundated areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13246, https://doi.org/10.5194/egusphere-egu24-13246, 2024.

EGU24-13846 | Posters on site | BG1.3

Reduced Southern Ocean CO2 uptake due to the positive SAM trend 

Laurie Menviel, Paul Spence, Andrew Kiss, Matthew Chamberlain, Hakase Hayashida, Matthew England, and Darryn Waugh

While the Southern Ocean (SO) provides the largest oceanic sink of carbon, some observational studies have suggested that the SO total CO2 (tCO2) uptake exhibited large (~0.3 GtC/yr) decadal-scale variability over the last 30 years, with a similar SO tCO2 uptake in 2016 as in the early 1990s. Here, using an eddy-rich ocean, sea-ice, carbon cycle model, with a nominal resolution of 0.1°, we explore the changes in total, natural and anthropogenic SO CO2 fluxes over the period 1980-2021 and the processes leading to the CO2 flux variability.

The simulated tCO2 flux exhibits decadal-scale variability with an amplitude of ~0.1 GtC/yr globally in phase with observations. Notably, two stagnation in tCO2 uptake are simulated between 1982 and 2000 as well as since 2012, while a re-invigoration is simulated between 2000 and 2012. This decadal-scale variability is primarily due to changes in natural CO2  (nCO2) fluxes south of the polar front associated with variability in the Southern Annular Mode (SAM). Positive phases of the SAM lead to enhanced SO nCO2 outgassing due to higher surface natural dissolved inorganic carbon (DIC) brought about by a combination of Ekman-driven vertical advection and DIC diffusion at the base of the mixed layer. The pattern of the CO2 flux anomalies indicate a dominant control of the interaction between the mean flow south of the polar front and the main topographic features. While positive phases of the SAM also lead to enhanced anthropogenic CO2 (aCO2) uptake south of the polar front, the amplitude of the changes in aCO2 fluxes is only 25% of the changes in nCO2 fluxes. Due to the larger nCO2 outgassing compared to aCO2 uptake as the SH westerlies strengthen and shift poleward, the SO tCO2 uptake capability thus reduced since 1980 in response to the shift towards positive phases of the SAM.

 

How to cite: Menviel, L., Spence, P., Kiss, A., Chamberlain, M., Hayashida, H., England, M., and Waugh, D.: Reduced Southern Ocean CO2 uptake due to the positive SAM trend, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13846, https://doi.org/10.5194/egusphere-egu24-13846, 2024.

EGU24-14038 | ECS | Orals | BG1.3

Sea surface pCO2 variability on different time scales in the East China Sea based on high-frequency time-series observations 

Yaohua Luo, Zhirong Zhang, Jinshun Chen, Yi Xu, Fuqing Cao, Tao Huang, Xianghui Guo, and Minhan Dai

We examined the sub-seasonal to interannual variability and multi-year trend of sea surface CO2 partial pressure (pCO2) and air-sea CO2 flux at a coastal site of the East China Sea (31⁰N, 122.8⁰E) based on high-frequency time-series data collected by a buoy since 2013. Seasonal average sea surface pCO2 was highest in autumn, but the lowest value can appear in winter or spring, depending on the biological productivity in spring. The seasonal amplitude of pCO2 was up to 123 μatm. Based on property-property relationships and a simple mass budget model, we found that temperature change, biological activity, water mixing and air-sea CO2 exchange all made significant contributions to the seasonal variation of pCO2. From winter to summer, seasonal warming and atmospheric CO2 uptake elevated the pCO2, while net biological production, weakened vertical mixing and the retreat of the Yellow Sea Coastal Water (YSCW) lowered the pCO2. Conversely, from summer to winter, seasonal cooling and CO2 emission lowered the pCO2, while respiration, enhanced vertical mixing and the YSCW intrusion raised them up. Over short-term timescale, biological production and respiration frequently drew down or elevated the pCO2 by 150-400 μatm within 5-10 days during warm months. When biological activity was suppressed during cold months, such short-term variations were dominated by water mixing with a smaller pCO2 amplitude of 5-60 μatm within 2-6 days. This site was a sink of atmospheric CO2 in winter and spring, but a CO2 source in summer and autumn. Annually, it was a moderate CO2 source in 2014 (air-sea CO2 flux was 2.88 ± 11.02 mmol m2 d1), a weak CO2 sink in 2016 (-0.21 ± 12.23 mmol m2 d1), and a weak CO2 source in the combined year of the first half of 2017 and the second half of 2018 (0.40 ± 9.11 mmol m2 d1). The relatively high CO2 source in 2014 was likely due to the weaker biological production in spring and more typhoon passage in autumn. From 2013 to 2019, the wintertime sea surface pCO2 didn’t follow the increasing trend of the atmospheric pCO2, leading to an enhancing carbon sink in winter.

How to cite: Luo, Y., Zhang, Z., Chen, J., Xu, Y., Cao, F., Huang, T., Guo, X., and Dai, M.: Sea surface pCO2 variability on different time scales in the East China Sea based on high-frequency time-series observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14038, https://doi.org/10.5194/egusphere-egu24-14038, 2024.

EGU24-14545 | ECS | Posters on site | BG1.3

Soil CH4 and N2O fluxes from drained and undrained peatland forests in the Baltic region. 

Muhammad Kamil Sardar Ali, Thomas Schindler, Hanna Vahter, Ain Kull, Ülo Mander, Andis Lazdiņš, Ieva Līcīte, Arta Bārdule, Aldis Butlers, Dovilė Čiuldienė, Egidijus Vigricas, Jyrki Jauhiainen, Raija Laiho, and Kaido Soosaar

Peatland ecosystem degradation and changes made in hydrology by artificial drainage may affect the biogeochemistry of peatlands and, together with projected global warming, may lead to significant changes in greenhouse gas (GHG) fluxes. Drainage of peatlands increases organic matter's aerobic decomposition, changes native vegetation, and may decrease the storage of C. The vegetative characteristics of forest ecosystem types may change a net GHG sink peatland to a source in drained organic soils.

However, soil CH4 and N2O fluxes in peatlands are spatially and temporally (interannual, seasonal) variable, and detailed data from drained nutrient-rich organic soils in the hemiboreal zone is lacking. We conducted a study spanned over two years comprising drained (n=18) and undrained (n=7) peatland forests with dominant tree species of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), birch (Betula sp.), and black alder (Alnus glutinosa) spread across Estonia, Latvia, and Lithuania. Instantaneous fluxes of CH4 and N2O were measured monthly for the whole year using the manual static chamber method. Environmental parameters in soil, such as soil water level (WTL), moisture, and temperatures at depths (0-40 cm), were monitored continuously, and detailed soil chemical analyses were conducted. To constrain the factors regulating temporal fluxes of various environmental conditions and differentiate annual emissions between land use in the Baltic region.

The results show that all drained forest soils were annual CH4 sinks (−37.0 ± 4.5 μg C m−‍2 h−‍1), while undrained forests were emitters on average 388.5 ± 142. Mean annual CH4 uptake is significantly higher in deep-drained soils −45.5 ± 3.6 μg C m−‍2 h−‍1 (WTL > −50cm) than in poorly drained soils (p<0.05), regardless of dominant tree species. The in situ and annual CH4 fluxes statistically correlated with soil water level and temperature. Most of the drained sites emitted N2O (49.4 ± 17.8 μg N m−‍2 h−‍1); drained wet forest sites were higher emitters (84.7 ± 32.4) than drier sites (23.67 ± 15.6) in comparison to tree species. The instantaneous N2O fluxes were directly controlled by soil surface temperature and oxygen concentration of soil water, whereas variability in annual N2O emissions was associated with soil water content. Moreover, soil nutrient status regulated by specific ground vegetation functional groups has significantly impacted the emissions of nutrient-rich organic soils.

This research was supported by the LIFE programme project "Demonstration of climate change mitigation potential of nutrients-rich organic soils in the Baltic States and Finland" (2019-2023, LIFE OrgBalt, LIFE18 274CCM/LV/001158).

How to cite: Sardar Ali, M. K., Schindler, T., Vahter, H., Kull, A., Mander, Ü., Lazdiņš, A., Līcīte, I., Bārdule, A., Butlers, A., Čiuldienė, D., Vigricas, E., Jauhiainen, J., Laiho, R., and Soosaar, K.: Soil CH4 and N2O fluxes from drained and undrained peatland forests in the Baltic region., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14545, https://doi.org/10.5194/egusphere-egu24-14545, 2024.

EGU24-14672 | Orals | BG1.3

Multiple approaches for quantifying fuels, combustion dynamics, and regional fire emissions in the Amazon and Cerrado 

Matthias Forkel, Christine Wessollek, Niels Andela, Jos de Laat, Vincent Huijnen, Daniel Kinalczyk, Christopher Marrs, Dave van Wees, Ana Bastos, Philippe Ciais, Dominic Fawcett, Johannes W. Kaiser, Erico Kutchartt, Carine Klauberg, Rodrigo Vieira Leite, Wei Li, Carlos Silva, Stephen Sitch, Jefferson Goncalves De Souza, and Stephen Plummer

Fires in the Amazon are of great concern because they threaten the integrity of the tropical forest biome, the carbon cycle, and air quality. Fire emissions depend on the burning behaviour of vegetation biomass, woody debris, and litter. However, the effects of fuels on the combustion process and on the composition of fire emissions are simplified in current fire emission inventories and models. Several new fire emission approaches have recently been developed to better quantify fire emissions by either making use the improved spatial resolution of modern satellite observations or by developing new modelling approaches. 

Here we compare several current and novel approaches to quantify fuel consumption and fire emissions for the Amazon and Cerrado for the fire season in 2020. The approaches include the widely used GFAS, a top-down approach based on Sentinel-5p observations (KNMI.S5p), a bottom-up approach based on active fire observations from VIIRS (GFA.S4F), two bottom-up approaches based on MODIS burned area data (500-m version of GFED, REFIT.AC), a data-model fusion approach with dynamic emission factors that integrates several Earth observation products (TUD.S4F), and three dynamic global vegetation models in diagnostic mode with prescribed burned area. The different approaches to estimate fire emission show that forest and deforestation fires dominate the regional total fire emissions. However, large differences exist in the very high emissions of individual fires that mainly contribute to the regional total fire emissions. We found a higher agreement in estimated CO and NOx emissions between approaches for savannah fires (normalised RMSE < 20%) than for forest and deforestation fires (nRMSE 30%). We estimate that only 10% of all fire events contribute between 85% and 97% of the regional total fire emissions. By using the TUD.S4F data-model fusion approach with dynamic emission factors, we show that most fire CO emissions originate from the burning of woody debris, which burns with low combustion efficiency and hence has higher emission factors for CO. Comparisons with regional field-based investigations show, however, large differences in estimates of surface fuel loads and fuel consumption. Our results demonstrate the advantage of exploring several complementary fire emission approaches to better understand the underlying processes and to account for regional to global fire emissions and their uncertainties.

How to cite: Forkel, M., Wessollek, C., Andela, N., de Laat, J., Huijnen, V., Kinalczyk, D., Marrs, C., van Wees, D., Bastos, A., Ciais, P., Fawcett, D., Kaiser, J. W., Kutchartt, E., Klauberg, C., Leite, R. V., Li, W., Silva, C., Sitch, S., Goncalves De Souza, J., and Plummer, S.: Multiple approaches for quantifying fuels, combustion dynamics, and regional fire emissions in the Amazon and Cerrado, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14672, https://doi.org/10.5194/egusphere-egu24-14672, 2024.

EGU24-14775 | ECS | Orals | BG1.3

Global coastal ocean CO2 trends over the 1982–2020 period 

Alizee Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle

The development of high-quality controlled databases of sea surface partial pressure of CO2 (pCO2) combined with robust machine learning-based mapping methods that fill pCO2 gaps in time and space, enable us to quantify the oceanic air-sea CO2 exchange and its spatiotemporal variability only based on in-situ observations (pCO2-products). However, most existing pCO2-products do not explicitly include the coastal ocean or have a spatial resolution that is too coarse (e.g., 1°) to capture the highly heterogeneous spatiotemporal dynamics of pCO2 in these regions thus limiting our ability to resolve long-term trends and the interannual variability of the coastal air-sea CO2 exchange (FCO2).

To address this limitation, we updated the global coastal pCO2-product of Laruelle et al. (2017) using a 2-step machine learning interpolation technique (relying on Self Organizing Maps and a Feed Forward neural Network) combined with the most extensive monthly time series for coastal waters from the Surface Ocean CO2 Atlas (SOCAT), spanning from 1982 to 2020 to reconstruct monthly high spatial resolution (0.25°) continuous coastal pCO2 maps. This updated coastal pCO2-product is then used to reconstruct the temporal evolution of the global coastal FCO2 based on observations.

Our results show that since 1982, the extended coastal ocean, covering an area of 77 million km² in this study, has been acting as an atmospheric CO2 sink, removing -0.4 Pg C yr-1 (-0.2 Pg C yr-1 with a narrower coastal domain roughly equivalent to continental shelves) from the atmosphere. Moreover, the intensity of this CO2 sink has been increasing over time at a rate of 0.1 Pg C yr-1 per decade (0.03 Pg C yr-1 decade-1 in the narrower domain). The long-term change in the air-sea CO2 flux is largely driven by the air-sea pCO2 gradient, dominated by the sea surface pCO2, however wind speed and sea-ice coverage play significant roles, regionally. This new coastal pCO2-product provides a valuable constraint for understanding the strengthening of the global coastal ocean CO2 sink, fill the coastal gap in synthesis studies such as the Global Carbon Budget and serves as a benchmark for evaluating emerging results of ocean biogeochemical models.

How to cite: Roobaert, A., Regnier, P., Landschützer, P., and Laruelle, G. G.: Global coastal ocean CO2 trends over the 1982–2020 period, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14775, https://doi.org/10.5194/egusphere-egu24-14775, 2024.

EGU24-15244 | Orals | BG1.3

A consistent budgeting of terrestrial carbon fluxes  

Julia Pongratz, Lea Dorgeist, Clemens Schwingshackl, and Selma Bultan

As the remaining carbon budget to limit global warming in line with the Paris Agreement is rapidly shrinking, accurate estimates of the emissions from land-use and land cover change (ELUC) and the terrestrial natural CO2 sinks (SLAND) are crucial. In current carbon budgeting approaches, the ELUC and SLAND estimates are conceptually not consistent, since they stem from two different model families that differ in how CO2 fluxes are attributed to environmental or land-use changes. Consequently, anthropogenic and natural budget terms are not fully distinguished. ELUC is estimated by bookkeeping models, which typically use time-invariant carbon densities representing contemporary environmental conditions. They thus assume a steady environmental state and neglect changes in environmental conditions preceding or succeeding a land-use change event, e.g., denser growing forests in response to rising atmospheric CO2 concentrations, which emit more when cleared for agricultural land. SLAND is estimated by dynamic global vegetation models, which account for environmental changes but assume that the land cover distribution remained at its pre-industrial state. They thus include carbon sinks in forests that in reality were cleared decades ago. Here we suggest an approach for consistent budgeting of ELUC and SLAND by integrating the response of vegetation and soil carbon to environmental changes, derived from dynamic global vegetation models, into a spatially explicit bookkeeping model (BLUE). A set of dedicated simulations allows us to disentangle and re-attribute environmental and land-use components of the land-atmosphere CO2 exchange. Our results show that land is a cumulative net source of CO2 since 1850, which contrasts current global carbon budgets indicating a net sink. The underlying reason is both a higher estimate of ELUC than previously suggested as well as a smaller land sink: The implementation of environmental changes increases global ELUC over time (14% compared to current estimates for 2012-2021) mainly due to increased emissions from deforestation and wood harvest, which are only partly offset by increased sinks through reforestation/afforestation and other regrowing vegetation. Our SLAND estimate calculated under actual land cover amounts to 3.0 GtC yr-1 for 2012-2021, which is substantially lower both globally and regionally compared to estimates assuming pre-industrial land cover: we find a SLAND is smaller by 0.7 GtC yr-1 in 2012-2021, i.e., 19% lower as compared to the conventional approach using pre-industrial land cover. The overestimate of SLAND under pre-industrial land cover is particularly pronounced in regions with strong ecosystem degradation, such as Southeast Asia, Brazil, and Equatorial Africa. The consistent estimation of terrestrial carbon fluxes is thus essential not only to provide a tangible estimate to monitor the progress of net-zero emission commitments and the remaining carbon budget, but also to highlight the need to protect remaining natural ecosystems for climate regulation. Our approach provides greater consistency with atmospheric inversions and provides a finer split of anthropogenic and natural fluxes useful for a direct comparison of global carbon cycle models to national greenhouse gas inventories.

How to cite: Pongratz, J., Dorgeist, L., Schwingshackl, C., and Bultan, S.: A consistent budgeting of terrestrial carbon fluxes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15244, https://doi.org/10.5194/egusphere-egu24-15244, 2024.

EGU24-16495 | Orals | BG1.3

Mean, Seasonal Cycle, Trends, and Storage of the Southern Ocean carbon cycle in the RECCAP2 assessment (1985-2018) 

Lavinia Patara, Judith Hauck, Luke Gregor, Cara Nissen, Mark Hague, Precious Mongwe, Seth Bushinsky, Scott C. Doney, Nicolas Gruber, Corinne Le Quéré, Manfredi Manizza, Matthew Mazloff, and Pedro M. S. Monteiro

The Southern Ocean has long been known to be an important region for ocean CO2 uptake, and one which is especially sensitive to changes in the overlying climate. Here we assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2 (RECCAP2). These include global ocean biogeochemical models (GOBMs), surface ocean pCO2-products, data-assimilated models, and interior ocean biogeochemical observations. Over this period the Southern Ocean acted as a sink for CO2, with magnitudes which are roughly half of those reported by RECCAP1 for the same region and timeframe. Close agreement is found between GOBMs and pCO2-products, partly due to some compensation of seasonal and regional differences. Seasonal analyses revealed agreement in driving processes in winter (with uncertainty in the magnitude of outgassing), whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the balance of non-thermal processes of biology and mixing/circulation. The data sets emphasize strong latitudinal variations in the mean and seasonality of the CO2 flux and asymmetries in the mean and amplitude of the CO2 flux between Atlantic, Pacific and Indian sectors. The present-day net uptake is to first order a response to rising atmospheric CO2. This drives large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere driven by the changing climate. The GOBMs show, however, a 20% spread and an overall underestimate of Cant storage in the ocean interior. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs. This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured.

How to cite: Patara, L., Hauck, J., Gregor, L., Nissen, C., Hague, M., Mongwe, P., Bushinsky, S., Doney, S. C., Gruber, N., Le Quéré, C., Manizza, M., Mazloff, M., and Monteiro, P. M. S.: Mean, Seasonal Cycle, Trends, and Storage of the Southern Ocean carbon cycle in the RECCAP2 assessment (1985-2018), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16495, https://doi.org/10.5194/egusphere-egu24-16495, 2024.

EGU24-16630 | ECS | Posters on site | BG1.3

Methane emissions from Dutch peatlands measured by a national eddy covariance network 

Alexander Buzacott, Bart Kruijt, Laurent Bataille, Hanne Berghuis, Jan Biermann, Quint van Giersbergen, Christian Fritz, Reinder Nouta, Merit van den Berg, Ype van der Velde, and Jacobus van Huissteden

Drained peatlands need to be rewetted to reduce carbon dioxide (CO2) emissions caused by microbial peat oxidation and to limit soil subsidence. Raising groundwater levels will subsequently increase the chance of methane (CH4) emissions, a much more potent greenhouse gas (GHG) gas than CO2. While intact peatlands are long-term carbon sinks and have a net cooling effect, despite the CH4 emissions, how disturbed peatlands will respond to rewetting is less certain. There are several rewetting strategies outside of returning the land to unproductive uses, such as paludiculture (agriculture on inundated soils) and installing water infiltration systems (WIS) in pastures.

In the Netherlands, more than 85% of the peatlands are used for agriculture and have been extensively drained. Rewetting these peatlands is necessary to reduce CO2 emissions, however the effect this will have on CH4 emissions needs to be understood such that optimal rewetting strategies can be chosen to minimise GHG emissions. In this presentation, we report our efforts into monitoring CH4 emissions across Dutch peatlands with a network of eddy covariance (EC) systems since 2020 for the Netherlands Research Programme on Greenhouse Gas Dynamics in Peatlands and Organic Soils (NOBV) project. Fluxes of CO2 and CH4 have been observed across 20 field sites that cover the current Dutch peatland extent using a combination of permanent and mobile (alternating between two paired sites) EC towers that measured the land uses of paludiculture, semi-natural, pastures with WIS, pastures with high and low groundwater levels, and a lake. We focus on the main drivers of CH4 emissions in Dutch peatlands, evaluate the impact of land use on annual CH4 emissions, and emission upscaling.

How to cite: Buzacott, A., Kruijt, B., Bataille, L., Berghuis, H., Biermann, J., van Giersbergen, Q., Fritz, C., Nouta, R., van den Berg, M., van der Velde, Y., and van Huissteden, J.: Methane emissions from Dutch peatlands measured by a national eddy covariance network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16630, https://doi.org/10.5194/egusphere-egu24-16630, 2024.

EGU24-18116 | Orals | BG1.3

Reviewing differences and uncertainties in land-use CO2 flux estimates 

Wolfgang Obermeier, Clemens Schwingshackl, Raphael Ganzenmüller, Ana Bastos, Philippe Ciais, Giacomo Grassi, Ingrid Luijkx, Stephen Sitch, and Julia Pongratz

CO2 fluxes from land use and land-use change (FLUC) are a major source of carbon to the atmosphere. They are composed of gross emissions, mainly from deforestation, peat burning, and peat drainage, and gross removals, mainly from re- and afforestation. The importance of FLUC for climate change mitigation strategies is increasing due to the potential of storing large carbon amounts via re- and afforestation, harvested wood products, and other vegetation-based carbon dioxide removal methods, such as bioenergy with carbon capture and storage. Yet, FLUC estimates remain largely uncertain and show substantial discrepancies between different quantification methods, which makes it challenging to provide reliable projections of their potential future evolution.

 

Here, we review the main characteristics, uncertainties, and discrepancies of individual methods used to estimate FLUC, and we highlight promising steps to reduce FLUC uncertainties and to harmonize the various FLUC estimates. Differences between the approaches are mainly due to differing definitions and assumptions, such as the definition of anthropogenic fluxes and managed land (leading to a gap in FLUC of ~1.8 GtC/yr in 2000-2020 between FLUC estimates by bookkeeping models used in the Global Carbon Project and inventory-based estimates reported by countries to the United Nations Framework Convention on Climate Change) and the inclusion of environmental effects on carbon stocks (leading to a gap of ~0.4 GtC/yr in 2000-2020 between FLUC estimates from dynamic global vegetation models and bookkeeping models). Furthermore, the individual estimation methods have large uncertainties, mainly arising from the usage of differing land-use forcing data, missing observational constraints, differences in how models implement individual processes, and the degree of implementation of land use practices in models.

 

To improve the confidence in the individual FLUC estimates, we argue for a systematic model evaluation and an improved parametrization of models, in particular regarding land-use forcing data, carbon densities of vegetation and soils, and the represented processes. Alongside, remaining framework inconsistencies, such as a precise and consistent definition of FLUC and the consideration of transient C densities need to be resolved. This undertaking requires developments in several directions. Earth observations may provide data on carbon densities in vegetation and soil at high spatial resolution, improved estimates of forest regrowth rates as well as impacts of forest management. Models need to be further improved to consider all relevant land-use processes and provide more fine-granular output to guarantee that the different estimates are comparable and/or translatable into each other.

 

Providing harmonized and more accurate FLUC estimates is essential to improve the stocktake of countries' land use-related CO2 emissions, to provide an accurate budget of the global carbon cycle, and to effectively plan and monitor land-based carbon dioxide removal methods.

How to cite: Obermeier, W., Schwingshackl, C., Ganzenmüller, R., Bastos, A., Ciais, P., Grassi, G., Luijkx, I., Sitch, S., and Pongratz, J.: Reviewing differences and uncertainties in land-use CO2 flux estimates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18116, https://doi.org/10.5194/egusphere-egu24-18116, 2024.

EGU24-19922 | Posters on site | BG1.3

Ocean biogeochemical reconstructions to estimate historical ocean CO2 uptake 

Raffaele Bernardello, Valentina Sicardi, Vladimir Lapin, Pablo Ortega, Yohan Ruprich-Robert, Etienne Tourigny, and Eric Ferrer

Given the role of the ocean in mitigating climate change through CO2 absorption, it is important to improve our abil ity to quantify the historical ocean CO2 uptake, including its natural variability, for carbon budgeting purposes. In this study we present an exhaustive intercomparison between two ocean modelling practices that can be used to reconstruct the historical ocean CO2 uptake. By comparing the simulations to a wide array of ocean physical and biogeochemical observational datasets, we show how constraining the ocean physics towards observed temperature and salinity results in a better representation of global biogeochemistry. We identify the main driver of this improvement to be a more realistic representation of large scale meridional overturning circulation together with improvements in mixed layer depth and sea surface temperature. Nevertheless, surface chlorophyll was rather insensitive to these changes, and, in some regions, its representation worsened. We identified the causes of this response to be a combination of a lack of robust parameter optimization and limited changes in environmental conditions for phytoplankton. We conclude that although the direct validation of CO2 fluxes is challenging, the pervasive improvement observed in most aspects of biogeochemistry when applying data assimilation of observed temperature and salinity is encouraging; therefore, data assimilation should be included in multi-method international efforts aimed at reconstructing the ocean CO2 uptake.

How to cite: Bernardello, R., Sicardi, V., Lapin, V., Ortega, P., Ruprich-Robert, Y., Tourigny, E., and Ferrer, E.: Ocean biogeochemical reconstructions to estimate historical ocean CO2 uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19922, https://doi.org/10.5194/egusphere-egu24-19922, 2024.

EGU24-20295 | Orals | BG1.3

A water mass transformation method applied to diagnosing ocean carbon uptake 

Neill Mackay, Jan Zika, Taimoor Sohail, Tobias Ehmen, and Andrew Watson

The ocean is a strong sink for anthropogenic CO2, absorbing around a quarter of emissions since the industrial era. Quantifying the ocean carbon sink is necessary for constraining the global carbon budget; however, discrepancies remain between estimates of the ocean carbon sink over the last 30 years from observation-based data products and those from numerical models. Moreover, larger regional uncertainties highlight the need for a better understanding of the drivers of ocean carbon sink variability, to help improve models and to better constrain future climate projections. A comprehensive understanding of the sink must include knowledge of (1) the air-sea flux of CO2, (2) the accumulation of carbon in the ocean interior, and (3) how it is redistributed within the ocean by changes in the physical circulation. This characterisation is typically achieved using numerical models, which are constrained by resolution and the need to parameterise processes including physical mixing at the sub-grid scale.

We present a novel method for characterising the ocean carbon sink from a combination of oceanographic datasets, and for reconciling our knowledge of the ocean’s uptake of CO2 with that of interior carbon storage rates. Our Optimal Transformation Method (OTM) uses a water mass framework to diagnose the transport and mixing of tracers such as heat, salt, and carbon consistent with observed interior changes and estimates of boundary forcings. The water mass framework has the advantage that the transport and mixing of conservative tracers are diagnosed exactly, with no need for parameterisation. We validate OTM using outputs from a data-assimilating biogeochemical ocean model and demonstrate its ability to recover the model’s ‘true’ air-sea CO2 fluxes when initialised with biased priors. OTM reduces root-mean-squared errors between diagnosed air-sea CO2 fluxes and the model truth from prior to solution by up to 71%, while simultaneously estimating inter-basin transports of heat, freshwater, and carbon consistent with the model. Following successful validation, we apply OTM to a combination of observational data products to diagnose estimates of the ocean’s uptake and redistribution of carbon since 1990, utilising reanalyses of air-sea heat and freshwater fluxes, interior temperature and salinity, air-sea CO2 fluxes, and machine-learning reconstructions of interior ocean carbon.

How to cite: Mackay, N., Zika, J., Sohail, T., Ehmen, T., and Watson, A.: A water mass transformation method applied to diagnosing ocean carbon uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20295, https://doi.org/10.5194/egusphere-egu24-20295, 2024.

EGU24-20413 | Posters on site | BG1.3

Quantifying unaccounted greenhouse gas emissions due to the war in Ukraine – driver analysis, emission estimation, and implications to emission reporting 

Rostyslav Bun, Gregg Marland, Tomohiro Oda, Linda See, Enrique Puliafito, Zbigniew Nahorski, Matthias Jonas, Vasyl Kovalyshyn, Iolanda Ialongo, Orysia Yashchun, and Zoriana Romanchuk

Quantifying greenhouse gas (GHG) emissions is a critical task for climate monitoring and mitigation actions.  Under the Paris Agreement, for example, accounting and reporting of GHG emissions are mandatory for Parties.  Reported emissions are often calculated using activity data approaches.  The robustness of the activity data collection is a key for obtaining accurate emission estimates; however, in a period of open conflict or war, the systems for data collection can be desperately damaged and destroyed and thus the ability of achieving robust GHG estimates and transparent reporting can be significantly hampered.  Also, military emissions, which are thought to be often poorly quantified, should increase significantly than peace times. 

We attempted to quantify GHG emissions during the first 18 months of the 2022/2023 full-scale war in Ukraine.  We first identified major, war-related, emission drivers and processes from the territory of Ukraine.  We analyzed publicly available data and used expert judgment to estimate emissions from (1) the use of bombs, missiles, barrel artillery, and mines; (2) the consumption of oil products for military operations; (3) fires at petroleum storage depots and refineries; (4) fires in buildings and infrastructure facilities; (5) fires on forest and agricultural lands; and (6) the decomposition of war-related garbage/waste.  Those sources are often not covered by current GHG inventory guidelines, and thus are not likely to be included in national inventory reports. 

Our estimate of the war-related emissions of carbon dioxide (CO2), methane, (CH4) and nitrous oxide (N2O) for the first 18 months of the war in Ukraine is 77 MtCO2-eq. with a relative uncertainty of ±22 % (95 % confidence interval).  It is important to note that these emissions are considered to be emissions from Ukraine in reporting because the emissions occurred within the territory of Ukraine.  The current emission accounting system (e.g. UNFCCC) is not designed to account war/conflict time emissions adequately.  The uncertainties due to the unaccounted emissions are also aliasing to our global and regional carbon budget calculations.

How to cite: Bun, R., Marland, G., Oda, T., See, L., Puliafito, E., Nahorski, Z., Jonas, M., Kovalyshyn, V., Ialongo, I., Yashchun, O., and Romanchuk, Z.: Quantifying unaccounted greenhouse gas emissions due to the war in Ukraine – driver analysis, emission estimation, and implications to emission reporting, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20413, https://doi.org/10.5194/egusphere-egu24-20413, 2024.

EGU24-20466 | Orals | BG1.3 | Highlight

Fire-precipitation interactions control biomass carbon and net biome production across the world’s largest savanna 

Mathew Williams, David Milodowski, Smallman Luke, Iain McNicol, Kyle Dexter, Casey Ryan, Mike O'Sullivan, Aude Valade, Gabi Hegerl, and Stephen Sitch

Miombo woodlands are the world’s largest savanna, covering 2-3 M km2, and are the dominant land cover in the dry tropics of southern Africa. Here we quantify the dynamics of the miombo region carbon cycle, diagnosing stocks and fluxes and their interactions with climate and disturbance, and evaluate their representation in Trendy land surface models (LSMs). We produce a constrained multi-year analysis (2006-2017) using earth observation time series of total wood C (Cwood) and leaf area index to calibrate an intermediate complexity ecosystem model forced with observed climate, deforestation and burned area. Statistical analyses determine the relationships between carbon cycling, environmental and disturbance variables, and evaluate LSMs. The analysis suggests that the regional net biome production is neutral, 0.0 Mg C ha-1 yr-1 (95% Confidence Interval -1.7 - 1.6), with fire emissions contributing ~1.0 Mg C ha-1 yr-1 (95% CI 0.4-2.5). Spatial variation in biogenic fluxes and C pools is strongly correlated with mean annual precipitation. Burned area is also positively correlated with these pools and fluxes. Areas that are more frequently burned tend to have greater precipitation, and shorter residence time of Cwood. Fire-related mortality from Cwood to dead organic matter likely exceeds fire-related emissions from Cwood to atmosphere, and likely exceeds natural rates of Cwood mortality. LSMs match the biogenic fluxes of the analysis, but diverge on C stocks, timings of heterotrophic respiration and magnitude of fire emissions. The analysis suggests that climate, through precipitation, drives spatial variability in Cwood and GPP across the region. Fire disturbance is the major driver of losses from Cwood. Larger annual precipitation is correlated with both greater GPP and greater fire disturbance. These factors have opposing but unbalanced impacts on Cwood, but the precipitation-GPP effect dominates. Patterns of C cycling across the region are a complex outcome of climate controls on production, and vegetation-fire interactions.

How to cite: Williams, M., Milodowski, D., Luke, S., McNicol, I., Dexter, K., Ryan, C., O'Sullivan, M., Valade, A., Hegerl, G., and Sitch, S.: Fire-precipitation interactions control biomass carbon and net biome production across the world’s largest savanna, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20466, https://doi.org/10.5194/egusphere-egu24-20466, 2024.

It has been advocated that nitrogen (N) availability plays an essential role in mediating plant and microbial growth in cold environment, and could thus regulate the direction and magnitude of permafrost carbon (C)-climate feedback. However, compared to widely concerned N, little is known about soil phosphorous (P) availability and its biological acquisition strategies in permafrost environment. Here we explored soil microbial P acquisition strategies using shotgun metagenomics across the Tibetan permafrost area, encompassing a large scale survey spanning 1,000 km. In contrast to the traditional opinion that microorganisms in cold area usually obtain P mainly through mineralization process, our results revealed that the P cycling genes responsible for solubilization, mineralization and transportation were widespread, illustrating multiple microbial strategies for acquiring P in permafrost regions. Moreover, the higher gene abundance related to solubilization and mineralization as well as an increased ration of MAGs carrying these genes were detected in the active layer, while the greater abundance of low affinity transporter gene (pit) and proportions of MAGs harbouring pit gene were observed in permafrost deposits, reflecting a stronger potential for P activation in active layer but an enhanced P transportation potential in permafrost deposits. Taken together, these results highlight that besides microbial P mineralization, multiple P-related acquisition strategies and their differences among various soil layers should be considered simultaneously to improve model prediction for the responses of biogeochemical cycles in permafrost ecosystems to climate change.

How to cite: Wang, L. and Yang, Y.: Divergent microbial phosphorous acquisition strategies between active layer and permafrost deposits, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2973, https://doi.org/10.5194/egusphere-egu24-2973, 2024.

EGU24-3208 | ECS | Orals | BG1.4 | Highlight

Seagrasses' role as a reverse sedimentary phosphate pump 

Neta Soto, Gilad Antler, and Avner Gross

Seagrasses are marine-flowing plants that form an important coastal ecosystem. Although occupying less than 0.2% of the ocean’s surface, seagrasses store over 15% of the accumulated global carbon storage in the ocean’s sediments. Thus, Seagrass meadows play a pivotal role in mitigating climate change by carbon sequestration. Seagrasses are widely distributed in oligotrophic tropical waters despite the low nutrient levels in the water column due to their ability to absorb nutrients from the sediment porewater. Moreover, seagrasses can actively mobilize unavailable nutrients e.g., iron and phosphorus in the rhizosphere via multiple biogeochemical interactions. This provides them with an important advantage over pelagic photoautotrophs, which are limited by the availability of nutrients in the water column. Despite their ability to transport nutrients from sinks e.g., sediments to the water column where they can be recycled trough grazing or decomposition, the potential role of seagrass as a revers sedimentary phosphate pump remains unclear. The aim of this study is to examine the effect of seagrass disappearance on phosphate flux in marine coastal environments. In a series of incubation experiments, the change in the phosphate release was examined in different tissues of seagrass Halophila stipulacea. The results showed that the while the highest decomposition rate of the rhizomes was the fastest, the highest phosphate release rate was measured in the leaves, despite having similar phosphate content. Since the leaves mostly decompose in the water column, the released phosphate is made available to planktonic photoautotrophs and further enhances more carbon fixation. Overall, we suggest that in oligotrophic environments seagrasses act as a reverse phosphate pump by accessing phosphate in the sediment and later translocating it to the aboveground parts and releasing in the water column, thus fertilizing planktonic photoautotrophs and enhancing further carbon sequestration.

How to cite: Soto, N., Antler, G., and Gross, A.: Seagrasses' role as a reverse sedimentary phosphate pump, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3208, https://doi.org/10.5194/egusphere-egu24-3208, 2024.

EGU24-3472 | Orals | BG1.4

Elevated atmospheric CO2 increased soil plant available and soil organic phosphorus in a mature temperate oak (Quercus robur L.) forest 

Amin Soltangheisi, Adam Pinder, Keegan Blazey, Robert T. Grzesik, Miles Marshall, Angeliki Kourmouli, Carolina Mayoral, Kris M. Hart, Sami Ullah, Iain P. Hartley, A. Robert MacKenzie, and Andy R. Smith

Enhanced productivity of forest ecosystems in response to rising levels of anthropogenically generated atmospheric carbon dioxide (CO2) has the potential to mitigate against climate change by sequestering carbon in woody biomass and soils. However, the physiological response of trees to elevated atmospheric CO2 may be constrained by the availability of soil nutrients, predominantly nitrogen and phosphorus (P). Here, we assess the impact of elevated atmospheric CO2 on P cycling in a temperate 180-year-old oak (Quercus robur L.) forest exposed to free-air CO2 enrichment (ambient + 150 ppm) for six years. Soil cores were collected to a depth of 1 m in July 2023 and separated into three horizons and three layers (O, A, B, 30-50, 50-70, 70-100 cm) before analysis using the Hedley1 sequential P fractionation and the DeLuca2biological based P extraction techniques. Plant available P in soil pore water and total organic P from the O horizon increased by 84 and 128%, respectively, whilst organic P extracted with phosphatase increased by 62% under elevated CO2. Total organic P in soil horizons beyond the B horizon (> 15 cm) decreased under elevated CO2 in comparison with ambient CO2. As soil organic P is derived from the turnover of both vegetation and microbial biomass, increased soil organic P in the O horizon may be due to the faster turnover of organic matter or an increase in the net primary productivity of the forest. Soil P cycling in this forest ecosystem appears to be predominantly influenced by biological rather than chemical processes, since elevated CO2 only affected the organic P and not inorganic P fractions. Forest productivity may be constrained by P limitation in future elevated CO2 environments, if there is faster organic matter turnover which is probably the case in our study.

1Hedley, M. J., Stewart, J. W. B., & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976.

2DeLuca, T. H., Glanville, H. C., Harris, M., Emmett, B. A., Pingree, M. R., de Sosa, L. L., Cerdá-Moreno, C. & Jones, D. L. (2015). A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 88, 110-119.

How to cite: Soltangheisi, A., Pinder, A., Blazey, K., Grzesik, R. T., Marshall, M., Kourmouli, A., Mayoral, C., Hart, K. M., Ullah, S., Hartley, I. P., MacKenzie, A. R., and Smith, A. R.: Elevated atmospheric CO2 increased soil plant available and soil organic phosphorus in a mature temperate oak (Quercus robur L.) forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3472, https://doi.org/10.5194/egusphere-egu24-3472, 2024.

EGU24-4491 | Posters on site | BG1.4

Silicone availability and NaCl water type enhances the phosphorus release from sediments in coastal forest catchments in Akita, Japan 

Atsushi Hayakawa, Yuka Kuroe, Ayumi Kawata, Kazuya Nishina, Yuichi Ishikawa, and Tadashi Takahashi

[Background] Phosphorus (P) availability in soils and sediments is a critical parameter influencing primary production in terrestrial and aquatic ecosystems, controlled by both P chemical fractions in solid phase and solution composition. A recent study using Arctic soils reported that the addition of Si to the soil released P bound to Fe(II) compounds, but reports on other soils and sediments are limited. In our previous study, we detected higher P concentrations in stream water and iron-bound P content in river sediments in the marine sedimentary rock catchments of the Akita coastal area compared to catchments in the adjacent igneous rock area. Furthermore, high-P stream waters were NaCl water type with relatively lower Ca2+ and higher SiO2 concentrations. In this study, we evaluated the effects of different solution compositions and amorphous Si addition on P solubilization in sediments using river sediments from marine sedimentary and igneous rock regions. [Method] We tested each five river sediments (<2 mm) in the headwaters of western Akita Prefecture, Japan, where the surface geology is composed of marine sedimentary rocks and igneous rocks. Available Si (easily water-soluble Si) was measured by a long-term flooded incubation in distilled water at 30°C for 30 days. In the P dissolution incubation, four types of treatment solutions (distilled water, 1 mM NaCl and NaHCO3 solutions, and 0.5 mM CaCl2 solution) were added to 0.5 g sediment and in the Si addition treatment, amorphous Si (hydrophilic fumed silica, AEROSIL300) was also added. SRP, DOC and pH in the solution were measured after shaking for 48 hours. A statistical analysis was performed using a linear mixed model (LMM) with SRP, DOC and pH in the liquid phase as objective variables. The surface geology, four types of solutions, and the Si addition as explanatory variables. Additionally, each five sediment was treated as a random effect. [Results and discussion] Easily water-soluble Si content in sediments was significantly higher in marine sedimentary rock areas (p < 0.001), indicating that the easily soluble Si causes higher SiO2 concentration in stream water. The incubation results showed Si addition significantly increased P concentration in the liquid phase (p < 0.001), and combined Si addition with NaHCO3 treatment further increased P concentration. Conversely, CaCl2 treatment significantly decreased the liquid-phase P concentration. The influence of surface geology on extracted P concentration was not significant. Si addition did not affect pH (p = 0.58) and DOC (p = 0.90), while the effects of solution composition on pH and DOC were also significant; NaHCO3 solution increased pH and DOC while CaCl2 solution decreased pH and DOC. In conclusion, in marine sedimentary rock areas in coastal Akita with NaCl water type where Ca2+ concentration is relatively low and sediments have higher easily soluble Si, P release from sediments easily occurs and a high P concentration keeps in the liquid phase.

How to cite: Hayakawa, A., Kuroe, Y., Kawata, A., Nishina, K., Ishikawa, Y., and Takahashi, T.: Silicone availability and NaCl water type enhances the phosphorus release from sediments in coastal forest catchments in Akita, Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4491, https://doi.org/10.5194/egusphere-egu24-4491, 2024.

EGU24-6352 | ECS | Posters on site | BG1.4

Phosphorous in the seabed sediments of the Gulf of Riga, Baltic Sea: Fe-Mn concretions as main carriers of mobile phosphorous  

Markus Ausmeel, Martin Liira, Päärn Paiste, Aivo Lepland, and Sten Suuroja

Baltic Sea is a geologically young semi-enclosed brakish-water body which water exchange with the ocean has been gradually declining. Approximately 85 million people live in the Baltic Sea's catchment area, resulting in significant human impact on the basin's ecosystem. Eutrophication due to anthropogenic discharge of nutrients is considered to be the most serious environmental problem which leads to a greater growth of phytoplankton and algae, deterioration of water quality, and lack of oxygen in near-bottom water masses. As a result of recent large-scale input of nutrients, phosphorus has accumulated in the seabed sediments from where it can be remobilized and released into the water column under favorable conditions (hypoxic or anoxic). Marine sediments contain phosphorus in various components i.e. fractions, but not all of them are affected by remobilization. Therefore, knowing how phosphorus fractions are distributed in seabed sediments is important.

One part of the Baltic Sea that has received little attention, but will significantly affect the entire Baltic Sea in the future, is the Gulf of Riga. The Gulf of Riga accounts for less than 5% of the total area of the Baltic Sea and less than 2% of the total water volume. Due to its shallowness and limited connection with the open Baltic Sea, the Gulf of Riga is strongly influenced by riverine input. Intense agriculture, rapid development of industry, and urbanization have resulted in high loads of nutrients into the Gulf of Riga already since the 1960s.

Phosphorus fractions and their vertical distribution were studied from the sea-bottom sediments from the Gulf of Riga and other coastal areas of western Estonia. The amount of potentially mobile phosphorus stored in the surface sediments of the Gulf of Riga is several times higher than in other accumulation areas of the Baltic Sea, with concentrations as high as 980 mg/kg(dw). A strong correlation between Mn and mobile phosphorus concentration suggests that Fe-Mn concretions control the amount of phosphorus in the sediments of the Gulf of Riga. Although the bottom waters of the Gulf of Riga are currently predominantly oxic, a decreasing trend of deep-layer oxygen concentrations and more frequent hypoxia in the Gulf of Riga during previous decades have been documented. Considering the large amount of potentially mobile phosphorus in the sediments of the Gulf of Riga, surpassing the annual total phosphorus input to the Baltic Sea, a substantial release of phosphorus could be inevitable, possibly impacting the entire Baltic Sea ecosystem.

How to cite: Ausmeel, M., Liira, M., Paiste, P., Lepland, A., and Suuroja, S.: Phosphorous in the seabed sediments of the Gulf of Riga, Baltic Sea: Fe-Mn concretions as main carriers of mobile phosphorous , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6352, https://doi.org/10.5194/egusphere-egu24-6352, 2024.

EGU24-7212 | ECS | Orals | BG1.4

Vivianite verified in early Cambrian strata in northwestern China: Implications for phosphorus recycling in ancient anoxic oceans 

Xuyang Cao, Pengcheng Ju, Yigui Han, Lihui Lu, and Dong Shao

In modern low sulfate and anoxic (euxinic) waters, the precipitation of mineral vivianite (an easily oxidized hydrated ferrous-iron phosphate) has played a crucial role in restraining the limiting nutrient element phosphorus (P) recycling back to the water column and consequently decreasing primary productivity. Although such low sulfate and anoxic conditions were widespread in ancient coastal oceans, vivianite has not been directly discovered in the paleo-sediments, which hampers the understanding of P cycling in ancient anoxic environments. Here, we combined techniques of scanning electron microscopy-energy dispersive X-ray spectroscopy, focused ion beam-transmission electron microscopy and P K-edge X-ray absorption near edge structure spectroscopy to analyze samples of P-bearing siliceous rocks and shales from the early Cambrian Yurtus Formation in the Tarim Craton, northwest China. Our results have demonstrated that micron- to nano-scale vivianite crystals are well preserved in the rocks and the vivianite dominates the P phase in some samples. The cherty matrix of the rocks most likely increased the chances of preservation of the oxidation-sensitive vivianite. In light of recent advances, we suggest that vivianite was a crucial P phase in ancient continental margin sediments, spanning most time from the Neoarchean to the early Cambrian. During this interval, the precipitation of vivianite was likely aided by the prevalent dynamic ocean euxinic conditions linked with the seawater sulfate reservoir and the flux of organic matter settling. We propose a negative feedback mechanism in which vivianite precipitation from ancient euxinic waters restricted P availability for biota, reduced marine primary productivity, and possibly abated the rate of Earth's oxygenation and associated evolution of life. This work was financially supported by NSFC projects (grants 42072264, 41730213) and Hong Kong RGC GRF (17307918).

How to cite: Cao, X., Ju, P., Han, Y., Lu, L., and Shao, D.: Vivianite verified in early Cambrian strata in northwestern China: Implications for phosphorus recycling in ancient anoxic oceans, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7212, https://doi.org/10.5194/egusphere-egu24-7212, 2024.

EGU24-9578 | ECS | Posters on site | BG1.4

Lithology-constrained phosphorus (P) releasement 

Shenghui Ouyang

Phosphorus (P), as an indispensable nutrient element in Earth’s biological system, exerts a pivotal role on the burial of organic carbon over million-year time scales. By producing oxygen and consuming carbon dioxide, organic carbon burial may have paved the path for multicellular organisms by reforming the anoxic atmosphere to an oxic one. Organic carbon burial, on long time scales, is ultimately limited by continental P influx released by chemical weathering of P-bearing minerals. As crystalline rocks characterized by prominent discrepancy in P-bearing mineral composition undergoing various dominant weathering forces on surficial environment, P availability for organic carbon burial could be controlled by lithology. To decipher the conundrum of P releasement, a catchment scale case study was conducted, encompassing a series of lithologies following the crystalline rock order. Preliminary data suggests that the P release efficiency is lithology-constrained, indicating an enhanced P releasement in felsic catchment. The result gives us a hint that felsic crust would export more P to the ocean and promote the organic carbon burial, the lithology-constrained P releasement also enlightens us a new perspective to understand the coevolution among crust, atmosphere and life.

How to cite: Ouyang, S.: Lithology-constrained phosphorus (P) releasement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9578, https://doi.org/10.5194/egusphere-egu24-9578, 2024.

EGU24-9674 | ECS | Orals | BG1.4

Linking phosphorus research to impact: advances and challenges in mapping soil phosphorus pools 

Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Daniel S. Goll, Xianjin He, Vera Mulder, Yingping Wang, Edwin Alblas, and Emmanuel Frossard

Improved management of phosphorus (P) is essential for achieving a range of Sustainable Development Goals (SDGs), including maintaining food security, preserving water quality, and mitigating climate change. This requires an integration of comprehensive mechanistic understanding with accurate spatial data. In this interdisciplinary review, we combine insights from empirical P research, digital soil mapping, biogeochemical modeling, and environmental law to critically examine the current state, pinpoint challenges and propose novel pathways for desperately needed P maps. We first elucidate the relevance of spatial data on P for different SDGs. Subsequently, we summarize the current efforts in mapping P pools at regional to global scales, and discuss the challenges of mapping “available P” due to substantial local scale variability and poor correlation with predictors relative to other soil properties. The practical applicability of these recently published maps is tested by evaluating them with independent measurement data. Finally, we outline ways forward to enhance the accuracy and reliability of P maps, as a basis for science-informed management of P resources.

How to cite: Helfenstein, J., Ringeval, B., Tamburini, F., Goll, D. S., He, X., Mulder, V., Wang, Y., Alblas, E., and Frossard, E.: Linking phosphorus research to impact: advances and challenges in mapping soil phosphorus pools, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9674, https://doi.org/10.5194/egusphere-egu24-9674, 2024.

EGU24-14368 | Orals | BG1.4

Phosphorus Cycling and Transport in Phosphorus Saturated Soils of the Chesapeake Bay Watershed, USA 

Gurpal Toor, Jesse Radolinski, Emileigh Lucas, Charles Burgis, Bradley Kennedy, Fajun Sun, and Patricia Steinhilber

Long-term application of organic products (manure, biosolids, other wastes) and inorganic phosphatic fertilizers have created hot spots of phosphorus (P) saturated soils in intensive animal production regions worldwide. In such regions, P losses from P-saturated (i.e., legacy P) soils continue to plague efforts to improve water quality. Understanding the P cycling and fluxes from these P-saturated soils is critical to advancing our knowledge and developing strategies to manage P in soils and curb P losses. This presentation will discuss P cycling and transport in agricultural catchments (with Maize-Soybean rotation) from the lenses of P chemistry in soils and hydrologic responses from soils to further advancements in managing the P cycle in the soil-plant-water continuum for agricultural sustainability and environmental protection.

How to cite: Toor, G., Radolinski, J., Lucas, E., Burgis, C., Kennedy, B., Sun, F., and Steinhilber, P.: Phosphorus Cycling and Transport in Phosphorus Saturated Soils of the Chesapeake Bay Watershed, USA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14368, https://doi.org/10.5194/egusphere-egu24-14368, 2024.

EGU24-14436 | ECS | Orals | BG1.4

Balancing crop production, water quality and the use of finite P reserves by using the soil P sorption capacity in revised fertilizer recommendations 

Maarten van Doorn, Debby van Rotterdam-Los, Gerard H. Ros, and Wim de Vries

Phosphorus (P) is an essential nutrient for plant growth and is applied to agricultural soils in the form of organic manure or inorganic fertilizer. To guide farmers in achieving optimal crop yields, P fertilizer recommendations are in place with the rationale to bring soils to a “target soil P status” following the classic build-up and maintenance approach. The target soil P status where crop yield is not limited by P deficiencies is generally operationalized as the soil P status at which 90-99% of the potential crop yield is found in long-term fertilization field experiments. Though these fertilizer recommendations allow for an economic optimization of crop yield versus P inputs, environmental objectives are barely considered. In our research, we revised the classic build-up and maintenance approach to balance crop production, water quality and the use of finite P reserves. This revision requires insights into the P sorption capacity of soils (PSC) and its saturation with P. We identify the oxalate extraction method as a key component of this approach since it quantifies the PSC from the combined measurement of amorphous iron- and aluminium-(hydr)oxides and the total pool of reversibly bound P. For the Netherlands, we show the implications of the approach for P fertilizer use. We quantified soil amorphous iron- and aluminium(hydr)oxides contents at a 25m resolution across the soil depth profile using a Digital Soil Mapping approach and used these predictions to translate agronomic soil P data to new insights to optimize P fertilizer use. We finally argue that agronomic P target levels should be lowered in soils with a low PSC to decrease the risk of P leaching and in soils with a high PSC to ensure judicious use of finite P reserves.

How to cite: van Doorn, M., van Rotterdam-Los, D., Ros, G. H., and de Vries, W.: Balancing crop production, water quality and the use of finite P reserves by using the soil P sorption capacity in revised fertilizer recommendations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14436, https://doi.org/10.5194/egusphere-egu24-14436, 2024.

EGU24-16417 | ECS | Orals | BG1.4

31P NMR Reveals Predominance of Small Molecules in Organic Phosphorus within NaOH-EDTA Soil Extracts 

Lenny Haddad, Andrea Vincent, Reiner Giesler, and Jürgen Schleucher

Organic phosphorus (P) plays a crucial role in maintaining the health and productivity of soils. Understanding the composition of organic phosphorus in soils is thus relevant to a range of disciplines, spanning from agricultural sciences to ecology. Over the past few decades, efforts have been directed towards characterizing and quantifying various soil organic P compounds and determining their turnover rates. Despite these efforts, the precise nature of soil organic P remains unclear, particularly that of orthophosphate monoesters, which dominate 31P NMR spectra of NaOH-EDTA extracts globally.

Typically, the monoester region of 1D 31P NMR spectra appears as a series of sharp signals "sitting" on a broad background where the broad background can account for a substantial part of the monoester region. This is prompting questions about how to integrate and identify these signals and to what extent this fraction may be ecologically important. To investigate this monoester background, we employed 1D 31P NMR and 2D 1H-31P NMR1, along with 31P transverse relaxation (T2)2 measurements to calculate intrinsic linewidths. We related this linewidth to molecular weight to unveil the nature of the observed background. Analysing seven soils from different ecosystems, we observed linewidths ranging from 0.5 to 3 Hz for both resolved monoester signals and the background. This suggests that the background comprises numerous, possibly exceeding 100, sharp signals associated with small (<1.5 kDa) organic P molecules.

Organic P in the form of nucleic acids, phospholipids, P-containing metabolites, and phosphorylated proteins dominate the P content of live leaves, leaf litter and microbial tissues. Furthermore, P-containing metabolites are exuded by roots and are present in a vast array of organisms. Evidence that the background potentially can contain a large number of small metabolites is thus not surprising and may account for an important part of the organic P pool given that the background accounts for about 55% of the monoester region. Our findings warrant further research specifically addressing to what extent this pool may play for plant and microbial P nutrition.

We provide recommendations for treating 31P NMR spectra to accurately quantify phosphomonoester species, representing a crucial step in linking observed P speciation to its bioavailability. Our findings align with previous 31P NMR studies detecting background signals in soil-free samples and new evidence suggesting that alkali-soluble soil organic matter consists of self-assemblies of small organic compounds mimicking large molecules.

1Vestergren, J.; Vincent, A. G.; Jansson, M.; Persson, P.; Ilstedt, U.; Gröbner, G.; Giesler, R.; Schleucher, J. High-Resolution Characterization of Organic Phosphorus in Soil Extracts Using 2D 1H–31P NMR Correlation Spectroscopy. Environmental Science & Technology 2012, 46 (7), 3950–3956. https://doi.org/10.1021/es204016h.

2Vincent, A. G.; Schleucher, J.; Gröbner, G.; Vestergren, J.; Persson, P.; Jansson, M.; Giesler, R. Changes in Organic Phosphorus Composition in Boreal Forest Humus Soils: The Role of Iron and Aluminium. Biogeochemistry 2012, 108 (1), 485–499. https://doi.org/10.1007/s10533-011-9612-0.

How to cite: Haddad, L., Vincent, A., Giesler, R., and Schleucher, J.: 31P NMR Reveals Predominance of Small Molecules in Organic Phosphorus within NaOH-EDTA Soil Extracts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16417, https://doi.org/10.5194/egusphere-egu24-16417, 2024.

EGU24-16549 | ECS | Posters on site | BG1.4

A meta-analysis of global soybean plant growth and yield improvement in response to phosphorus addition 

Hannah Walling, Mariana Rufino, Jose Rotundo, Lucas Borras, Shane Rothwell, John Quinton, and Phil Haygarth

Application of phosphorus (P) fertiliser to soybean accounts for a large proportion of the global consumption of P as an agricultural fertiliser. Despite this key a knowledge gap exists surrounding the mechanisms of P fertiliser uptake and how it interacts with nitrogen fixation processes and yield improvements.

This paper aims to improve the understanding of P cycling in global cropping systems and will present a global meta-analysis of published data quantifying the effect of P fertiliser application on soybean above- and below-ground plant response variables. 790 paired observations (P fertiliser treatment and control treatment) were synthesised from 81 peer-reviewed articles that reported soybean response, including seed yield and nodulation, to P addition under a range of different environmental conditions.

We tested the hypothesise that:

  • soybean productivity will increase following P addition, with this response being driven by below-ground processes;
  • environmental conditions, particularly soil chemical properties would explain the variance in the observed response.

Analysis of these observations showed an overarching increase in soybean plant response following P addition. We found that several environmental and experimental conditions, particularly soil phosphorus status and phosphorus fertiliser rate influence the response of soybean to phosphorus addition, highlighting the complexities of sustaining P use across such a globally cultivated crop.

We recommend further experimental work needs to be conducted, which controls for such factors and allows for the improved mechanistic understanding of below-ground processes, to inform better use of finite P resources.

How to cite: Walling, H., Rufino, M., Rotundo, J., Borras, L., Rothwell, S., Quinton, J., and Haygarth, P.: A meta-analysis of global soybean plant growth and yield improvement in response to phosphorus addition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16549, https://doi.org/10.5194/egusphere-egu24-16549, 2024.

EGU24-17700 | ECS | Posters on site | BG1.4

Vivianite as a phosphorus sink in estuarine systems: The case study of the Brillantes mudflat, Loire, France 

Mohammed Barhdadi, Aurélia Mouret, Christine Barras, Guillaume Morin, Grégoire Maillet, Matthieu Durand, Meryem Mojtahid, Eric Bénéteau, Nicolas Dubosq, and Edouard Metzger

Phosphorus (P) is a key nutrient controlling primary production in aquatic systems. In coastal systems, the P cycle involves dynamic interactions between terrestrial, aquatic and sedimentary compartments. Over the last century, human activities such as deforestation, intensive agricultural practices and the disposal of municipal and industrial wastes have increased P inputs to coastal ecosystems. As a result, this increase in P inputs has led to an increase in the occurrence of algal blooms and higher oxygen demand in estuaries. In the Loire estuary, dissolved oxygen deficits have been a recurrent and worrying issue for several decades despite the improvement of water quality over the last 30 years due to reduced wastewater discharge and better effluent treatment. In this context, the burial of bioavailable P may influence the recovery of waters from eutrophication. The major P burial phases are apatite, organic P and iron-bound P. The results of sequential chemical extraction and pore water analysis carried out over a 5m-long sediment core from the intertidal Brillantes mudflat in the Loire estuary indicated a greater abundance of the iron-bound P compared to other phases. Iron-bound P occurs in two different forms: phosphorus bound to iron oxides and in the iron phosphate mineral known as vivianite. Vivianite is a ferrous iron phosphate mineral formed under reducing and low sulphate conditions in sediments where organic matter serve as electron donor for ferric iron reduction. Results of sequential chemical extraction of freeze-dried sediment samples combined with pore water data and scanning electron microscope–energy dispersive x-ray spectroscopy (SEM-EDXS) on resin-embedded sediment samples indicated that vivianite-type minerals may act as an important sink for P at the studied site. Authigenic vivianite crystals were found below the shallow sulphate/methane transition zone (SMTZ) at 94 cm depth and contain significant amounts of manganese, as observed in freshwater sediments. We therefore hypothesise that anthropogenic over-fertilization of coastal regions in the last century may have increased the importance of vivianite authigenesis in surface sediments. Consequently, vivianite is likely to be an important sink for P in estuarine systems worldwide.

This study is part of a PhD financed by the European Project Life REVERS’EAU.

How to cite: Barhdadi, M., Mouret, A., Barras, C., Morin, G., Maillet, G., Durand, M., Mojtahid, M., Bénéteau, E., Dubosq, N., and Metzger, E.: Vivianite as a phosphorus sink in estuarine systems: The case study of the Brillantes mudflat, Loire, France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17700, https://doi.org/10.5194/egusphere-egu24-17700, 2024.

EGU24-19011 | Orals | BG1.4

Microbial phosphorus limitiation with soil age along a chronosequence on the Galapagos Islands 

Katharina Maria Keiblinger, Sebastian Socianu, Maria Rechberger, Martin Gerzabek, and Franz Zehetner

The Galápagos archipelago, a volcanic island chain, is comprised of a series of progressively older islands with increasingly weathered soils away from the volcanic hotspot. Volcanic soils are known for their high phosphate sorption capacity. In this study, we explore differences in soil microbial abundance and activity across a soil age gradient (1.5 to 1070 ka) to understand how soil microorganisms are affected by soil development, shifting soil characteristics and P sorption over extensive periods.

Basal respiration, substrate-induced respiration and microbial biomass P decreased with soil development, suggesting increasing nutrient limitation for soil microbes. Also, soil enzymatic stoichiometry revealed a limitation driven mainly by P and not by N or C. C- and N-acquiring exoenzyme activities peaked at 26 ka with lower activities in younger and older soils. Phosphatase activity increased with soil age, indicating microbial P limitation in the older soils. This is only partly in line with  P sorption-desorption characteristics along the studied weathering sequence. Phosphate sorption capacity was high in the 4.3 ka soils likely due to amorphous soil constituents. A change towards 2:1-type crystalline clays after 26 ka of soil weathering led to weaker P sorption and stronger desorption, and acidification and increased P occlusion in Al and Fe (hydr)oxides became an important factor for microbial P limitation in the older soils.

Our results reveal striking differences in soil properties on the Galápagos Islands, suggesting relatively little nutrient constraints for soil microbes, despite strong P sorption, in the younger volcanic soils but growing P limitation in the older, highly weathered soils. These observations have important bearings on nutrient cycling and may therefore also affect the evolution of plant and animal species on this unique archipelago.

How to cite: Keiblinger, K. M., Socianu, S., Rechberger, M., Gerzabek, M., and Zehetner, F.: Microbial phosphorus limitiation with soil age along a chronosequence on the Galapagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19011, https://doi.org/10.5194/egusphere-egu24-19011, 2024.

EGU24-20517 | Posters on site | BG1.4

A spatial perspective on internal phosphorus cycling in morphologically complex eutrophic lakes: the importance of stratification 

Tom Jilbert, Siqi Zhao, Jussi Vesterinen, and Juha Niemistö

Many eutrophic lakes suffer from long term accumulation of legacy phosphorus (P) in sediments. Repeated cycling of P between sediments and water column leads to delayed recovery from eutrophication even after abatement of external loading. Moreover, in complex multi-basin lake systems, legacy P can be internally redistributed over time, leading to spatial heterogeneity in regeneration and burial of P and consequent impacts on water quality. Few studies have attempted to map such internal variability in individual lakes in the context of understanding long term recovery from eutrophication. Here we use a combination of sediment trap deployments through one full stratification cycle (May-October 2021), sediment core biogeochemical analyses, and mass balance calculations, to quantify P cycling in Lake Hiidenvesi, a dimictic lake with 5 sub-basins in southern Finland. We show that exchange of P between sediments and water column is more intense in shallow (approximately 0-10 m depth) non-stratified sub-basins, due to both sediment resuspension and diffusive fluxes across the sediment-water interface. In contrast, deeper stratified sub-basins serve as P sinks by promoting sedimentation in relatively quiescent conditions. Due to lateral exchange of water and suspended materials between sub-basins, P is shuttled towards long term burial in deeper, downstream sub-basins. Budget calculations show that net sediment P burial exceeds external loading on the whole-lake scale, indicating a long-term trend towards recovery from eutrophication. However, temporary retention and repeated recycling of legacy P in the shallower upstream sub-basins continues to impact negatively on water quality, despite external loading reductions. The results have implications for understanding the timescales of recovery and for targeting restoration actions aimed at modifying internal P cycling to improve water quality.

How to cite: Jilbert, T., Zhao, S., Vesterinen, J., and Niemistö, J.: A spatial perspective on internal phosphorus cycling in morphologically complex eutrophic lakes: the importance of stratification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20517, https://doi.org/10.5194/egusphere-egu24-20517, 2024.

EGU24-20917 | Posters on site | BG1.4

Controls on global patterns of dissolved organic phosphorus utilisation in the surface ocean 

Bei Su, Xianrui Song, Solange Duhamel, Claire Mahaffey, Clare Davis, Ingrid Ivančić, Shuo Zhou, and Jihua Liu

          Utilisation of dissolved organic phosphorus (DOP) by marine microbes as an alternative phosphorus (P) source when phosphate is scarce can help sustain non-Redfieldian carbon:nitrogen:phosphorus ratios and efficient ocean carbon export. Alkaline phosphatase (AP) is an important enzyme group that facilitates the remineralisation of DOP to phosphate and thus its activity is a promising proxy for DOP-utilisation, particularly in P-stressed regions. In order tounderstand the global spatial patterns and rates of microbial DOP utilization and their environmental controls, we compiled a Global Alkaline Phosphatase Activity Dataset (GAPAD) with 4083 measurements collected from 79 published manuscripts and one database and further investigated the possible mechanisms controlling global ocean APA. We find that DOP concentration, salinity, excess phosphate (P*), and chlorophyll a concentrations are critical factors in predicting global patterns of APA, which together explain as much as 39% of the variance in the observed APA dataset. Among all environmental factors, DOP concentration explains the most variance in the observed APA data and is negatively correlated with APA. P* is negatively correlated with APAwhile chlorophyll a concentration is positively correlated.  Moreover, wind speed, dust iron deposition rate, and zinc concentration are also possible important environmental factors controlling APA. Using structural equation modeling, DOP and P* concentrations have a total negative effect on APA of -0.36. and -0.2 respectively, while chlorophyll a concentration and salinity have a total positive effect of 0.16 and 0.24. Via a set of numerical competition experiments between an AP-producing phytoplankton and a non AP-producing competitor, AP-producing phytoplankton are found to have an advantage in regions with low P*, but only alongside sufficiently high DOP and DIN concentrations. This trend arises due to the trade-off between P acquisition and N allocation to AP synthesis and is not affected by varying the model assumptions regarding nutrient supplies, N-demand, and key physiological traits.  Extending our results to the global ocean using DIN, DIP, and DOP datasets enables us to pinpoint key regions where optimal conditions for DOP-utilisation are prevalent. These findings align closely with the patterns illuminated by our APA dataset. Our results show that on a global scale, when phosphate limitation is severe, plankton utilize DOP through producing AP, and this will help understand the biogeographical shift of different microbial groups in response to future climate change. Further work is needed to include the parallel role of the trace metal co-factors iron and zinc in driving AP synthesis and its spatial distribution in our modelling experiments.

How to cite: Su, B., Song, X., Duhamel, S., Mahaffey, C., Davis, C., Ivančić, I., Zhou, S., and Liu, J.: Controls on global patterns of dissolved organic phosphorus utilisation in the surface ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20917, https://doi.org/10.5194/egusphere-egu24-20917, 2024.

EGU24-21673 | Posters on site | BG1.4

Beyond “Redfield ratio”: Oxygen exchange between water and phosphate can provide insights into carbon dynamics in soils 

Federica Tamburini, Maja Siegenthaler, and Chiara Pistocchi

Phosphorus (P) is essential for cellular metabolism. Many metabolic pathways and processes depend on it, including energy production through ATP, DNA and RNA synthesis, and protein phosphorylation during post-translational signaling adaptation.

In marine sediments and oceanic water, the stoichiometric ratio between carbon and phosphorus has been found to vary with latitude, but in algae and phytoplankton, which are responsible for primary production and CO2 uptake from the atmosphere, this ratio is relatively constant. This constant ratio is known as the Redfield ratio and  it is often used as a constraint in modeling.

In soils, where microorganisms control nutrient cycling and consequent carbon sequestration, the C:P is more variable both in soil and microbial biomass. First, microorganisms exhibit a wide range of metabolic adaptations to environmental pressure, and the physical and mineralogical properties of the soil play a significant role in nutrient control, e.g. through sorption/desorption reactions. Due to these complexities, using nutrient ratios for modeling soil organic carbon dynamics and predicting the impact of anthropogenic influences on global changes is challenging. Is it possible to find a connection between carbon and phosphate that encompasses the "Redfield" ratio and reflects their tight link in cellular metabolism?

By examining the oxygen isotope composition in inorganic phosphate (δ18O-Pi), we can determine the extent of oxygen exchange between water and phosphate, which is controlled by biological processes. Intracellularly, this exchange occurs through phosphoryl transfer, a fundamental process in cellular phosphate cycling. 

During the last 10 years, we conducted a series of incubation experiments where we measured CO2 respiration and δ18O in resin and microbial cytosolic phosphate in soils from different environments. These incubations were performed with waters of varying 18O isotopic composition. By analyzing δ18O in microbial cytosolic phosphate at the beginning and end of the incubation, we could measure the level of oxygen exchange between water and phosphate.

Comparing the results from these incubations, we observed a significant correlation between the percentage of oxygen exchange and the cumulative CO2 respired during the incubation. This correlation was consistent  through different soil ages, mineralogy, phosphate levels, and incubation length. When normalizing the percentage of oxygen exchange to moles of oxygen exchanged per moles of carbon respired, it appears that for every mole of oxygen exchanged due to phosphoryl transfer, there is a nearly fixed amount of carbon respired. This suggests that the moles of oxygen exchanged through phosphoryl transfer recorded in soil microbial phosphate can provide information about metabolic carbon expenditure.

This finding would provide new insights on the link between P and C in soil microbial biomass. The controlled nature of the incubation experiments may not fully reflect the biological activity in soil environments, so it would be necessary to perform field-based incubation experiments to confirm the link between carbon respiration and phosphorus microbial cycle. This information could potentially improve our understanding of carbon dynamics and be used for further modeling purposes.

How to cite: Tamburini, F., Siegenthaler, M., and Pistocchi, C.: Beyond “Redfield ratio”: Oxygen exchange between water and phosphate can provide insights into carbon dynamics in soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21673, https://doi.org/10.5194/egusphere-egu24-21673, 2024.

EGU24-21972 | Posters on site | BG1.4

Exploring spatial distribution and characterization of inorganic and organic phosphorus in temperate soils using NanoSIMS  

Kaiyu Lei, Franziska Barbara Bucka, Carmen Höschen, Yahan Hu, and Ingrid Kögel-Knabner

For a comprehensive understanding of the phosphorus (P) storage and cycling in temperate soils, it is necessary to explore further the bonding pathways of organic P (Po) and inorganic P (Pi) to mineral surfaces and soil organic matter (SOM), and their interconnections with organic carbon (OC) at a micro-scale other than conventional bulk analysis. In the past decade, nanoscale secondary ion mass spectrometry (NanoSIMS) has been increasingly recognized as a promising imaging technique to understand soil biogeochemical processes, particularly in exploring organo-mineral associations in soils at the microscale (Mueller et al., 2023). However, its application in studying P, and the identification and distinction of Po and Pi remains challenging, hindering a comprehensive understanding of the P cycling in soils.

In our study, four temperate soil types, including Cambisol, Luvisol, Phaeozem and Fluvisol, were taken from Bavarian Forest in South-East Germany. The pH of these soils ranges from 5.4 to 6.3, with poor to medium P stocks but distinct Po stocks in fine fractions (<20 μm). Previous bulk studies have hinted at different pathways in P bonding to mineral surfaces and SOM. NanoSIMS was employed to further explore and visualize these bonding pathways. Recent advancements in NanoSIMS technology, particularly improved O- sources for cation detection and the capability for 31P- and 31P16O2- detection enable us to identify and distinguish Po and Pi at a microscale by 31P16O2-/31P- ratio, in which a lower ratio in specific areas corresponds to a more dominant presence of Po, and vice versa.

From NanoSIMS images, preliminary results reveal that a proportion of Po associates with either clay minerals or Fe (hydr)oxdies without assimilating into SOM. This Po fraction is suspected to originate from highly decomposed SOM, where N has either been assimilated by microorganisms or leached away, and Po is stabilized to mineral surfaces due to strong bonding strength. In contrast, the Po assimilated into SOM is associated with various cations, including Ca, Al and Fe, which may suggest the origin from particulate organic matter. Interestingly, the fine plant residue is depleted in Po in the fine fraction.

In conclusion, our study provides valuable insights into distinguishing different bonding pathways of these P forms within clay minerals, Fe (hydro)oxides, and SOM by using advanced NanoSIMS data, and emphasizes the interconnection with OC and Po and Pi in the fine fraction.

Reference: Mueller, C. W., Hoeschen, C., Koegel-Knabner, I., 2023. Understanding of soil processes at the microscale—Use of NanoSIMS in soil science. Encyclopedia of Soils in the Environment (Second Edition). Elsevier. 10.1016/B978-0-12-822974-3.00045-8

How to cite: Lei, K., Bucka, F. B., Höschen, C., Hu, Y., and Kögel-Knabner, I.: Exploring spatial distribution and characterization of inorganic and organic phosphorus in temperate soils using NanoSIMS , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21972, https://doi.org/10.5194/egusphere-egu24-21972, 2024.

EGU24-22214 | Orals | BG1.4

Heterogeneous Dissolved Organic Phosphorus Composition and Bioavailability in Marine Systems 

Sonya Dyhrman, Kathleen Ruttenberg, Danielle Hull, and Sherril Leon Soon

The critical role of Dissolved Organic Phosphorus (DOP) in supporting primary production has spurred efforts to characterize DOP composition so that insight may be gained into its bioavailability and cycling in aquatic systems. The degree to which DOP is bioavailable to primary producers will determine, in part, the extent of carbon uptake and sequestration.  Ascertaining DOP composition has proven to be an analytically challenging endeavor.  As a consequence, the DOP pool remains poorly characterized, and our predictive power relative to DOP-bioavailability, and coupled carbon cycling, remains limited. Analytical impediments to characterizing DOP composition in natural waters include its low concentration, requiring pre-concentration before compositional features can be probed via spectroscopy, and the fact that organic phosphorus compounds are not easily amenable to standard organic geochemical approaches, such as chromatographic or mass spectrophotometric methods, particularly in salt water. While 31-Phosphorus Nuclear Magnetic Resonance (31P-NMR) spectroscopy has provided intriguing information on the distribution of the 2 major DOP compound types (phosphoesters, phosphonates), the crucial question of DOP bioavailability cannot be addressed by this method. We present novel DOP molecular weight distribution and bioavailability data, generated using a coupled sequential ultrafiltration-bioavailability approach from a marine water column depth profile and locations across a gradient in phosphate concentration in the Atlantic and Pacific Oceans.  There is substantial compositional variability in the marine DOP pool, both in the pattern of DOP molecular weight distribution at different sites, as well as the distribution of bioavailable mono- and diesters of phosphate across molecular weight fractions.  In some cases, a substantial fraction of DOP in different molecular weight size classes is non-reactive to the two enzymes used to assay potential bioavailability, raising the interesting possibility of non-bioavailable DOP. The significance of recognizing that the oceanic DOP pool is compositionally heterogeneous, and variably bioavailable, lies in that fact that such information is a prerequisite to building ecosystem models that capture the influence of P biogeochemistry on primary production and carbon cycling in aquatic systems.

How to cite: Dyhrman, S., Ruttenberg, K., Hull, D., and Leon Soon, S.: Heterogeneous Dissolved Organic Phosphorus Composition and Bioavailability in Marine Systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22214, https://doi.org/10.5194/egusphere-egu24-22214, 2024.

Biogenic volatile organic compounds (BVOCs) are carbon compounds released by plants through secondary metabolism. In the global background of nitrogen (N) deposition, plants respond to environmental changes by altering BVOCs and photosynthetic strategies. However, there is very little research on the release and photosynthetic characteristics of BVOCs in bamboo in response to N deposition. Therefore, we took Pleioblast amarus as a research object and conducted pot experiments to set up four different nitrogen deposition levels (referred to as "N deposition") (0 kg N hm-2-a-1(N0), 30 kg N hm-2 a-1(N1), 60 kg N hm-2 a-1(N2), and 90 kg N hm-2 a-1(N3)) to explore the effects of different N deposition levels on the release and photosynthetic characteristics of BVOCs in leaves, and analyzed the correlation between the indicators. The results showed that: (1) the percentage of isoprene emission from Pleioblast amarus bamboo leaves increased with the increase of N deposition level (significantly positively correlated), but the N deposition level did not significantly affect the total number of BVOCs; (2) the increase of N deposition level significantly increased the net photosynthetic rate and isoprene (ISO) emission rate of leaves, with the highest ISO emission rate under N3 treatment, which was 80. 39%, 75.07%, and 50.84% higher than N0, N1, and N2, respectively; (3) ISO emission rate and total BVOCs emission of Sanming bitter bamboo were significantly positively correlated with net photosynthetic rate and photosynthetic effective radiation of leaves, but ISO emission rate and total BVOCs emission were significantly negatively correlated with chlorophyll b and total chlorophyll content (P≤0.05). In conclusion, the increase in nitrogen deposition led to a remarkable increase in isoprene emissions from Sanming bitter bamboo leaves. 

How to cite: Li, L. and Liu, X.: Effects of nitrogen deposition on volatile organic compounds composition, isoprene emissions and photosynthetic characteristics of Pleioblast amarus, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2236, https://doi.org/10.5194/egusphere-egu24-2236, 2024.

EGU24-2534 | Posters on site | BG1.6

Rice cultivation under continuous flooding vs alternate wetting and drying: implications for biomass, nitrogen cycling and greenhouse gas flux 

Sami Ullah, Megha Kaviraj, Yafei Guo, Gianni Micucci, and Fotis Sgouridis

Rice uses 34-43% of the global irrigation water and is responsible for the usage of 24-30% of the world's total freshwater. More than 75% of rice produced in India is cultivated using the traditional continuous flooding (CF) irrigation method, which is a labour-intensive, time, water and energy-consuming process and a key source of global methane emissions. Alternate Wetting and Drying (AWD) is a popular water-saving approach trailed in Asia including India to reduce water use and methane emissions, whilst sustaining rice production. AWD is a method of periodic soil saturation followed by drying compared to CF. The objective of this research was to evaluate greenhouse gas (GHG) fluxes and internal and external nitrogen cycling processes as influenced by AWD and CF management regimes. A mesocosm experiment was set up in the laboratory using imported Indian paddy soil where Jasmine rice (var KDML 105) was grown. Our results depicted that plant biomass (52.57%), root biomass (28.57%), height (24.77%), effective tiller number (45.15%), stem sheath diameter (53.38%) and stomatal conductance (66.49%) were significantly (p<0.05) higher in CF compared to AWD treatment. A similar trend was observed in rice leaf chlorophyll (Chl a, b and total chl) contents. Interestingly, the chlorophyll a and b ratio observed was higher (1.63) in AWD compared to CF (1.03) conditions. This was likely during the process of chlorophyll b degradation and conversion to Chl a, thus resulting in the increase of a to b ratio to cope with the stress by maintaining the leaf photosynthetic efficacy. Soil enzyme activity revealed that β-glucosidase (BG), β-N-acetyl-glucosaminidase (NAG), and acid phosphatase (AP) were higher in AWD, whereas leucine aminopeptidase (LAP) activity was significantly higher in CF. Higher LAP activity might be a response to limited nutrient availability, as LAP helps to release amino acids that serves as a source for N mineralization and N supply. The 15N isotope tracing study revealed that denitrified N2O flux was significantly (p<0.05) higher in CF compared to AWD where source partitioning (% N2O denitrified) was 99.32% in CF and 27.01% in AWD. Higher gross mineralization was observed under AWD (3.92 ± 0.31µg-1 g-1 d-1) due to the promotion of aerobic microbial activity compared to CF (1.31 ± 0.31µg-1 g-1 d-1). A similar trend was observed for the consumption and immobilization of NH4+ and gross nitrification rates. GHG emissions rate viz., CH4-C, CO2-C, and N2O-N emissions were significantly higher under CF by 61, 3 and 72.%, respectively. Moreover, the global warming potential projected was higher under CF averaging at 10.92 mg kg-1 soil compared to 2.19 mg COkg-1 soil under AWD. Reduced GHG emissions under AWD provides for a significant negative feedback to global warming potential and future initiatives should keep emphasizing the optimization of this practice for its significant contribution to both climate change mitigation and sustainable agriculture.

How to cite: Ullah, S., Kaviraj, M., Guo, Y., Micucci, G., and Sgouridis, F.: Rice cultivation under continuous flooding vs alternate wetting and drying: implications for biomass, nitrogen cycling and greenhouse gas flux, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2534, https://doi.org/10.5194/egusphere-egu24-2534, 2024.

EGU24-2749 | ECS | Posters on site | BG1.6

Molecular transformation of organic nitrogen in Antarctic penguin guano-affected soil 

Libin Wu, Ming Sheng, Xiaodong Liu, and Pingqing Fu

Organic nitrogen (ON) is an important participant in the Earth’s N cycle. Previous studies have shown that penguin feces add an abundance of nutrients including N to the soil, significantly changing the eco-environment in ice-free areas in Antarctica. To explore the molecular transformation of ON in penguin guano-affected soil, we collected guano-free weathered soil, modern guano-affected soil from penguin colonies, ancient guano-affected soil from abandoned penguin colonies, and penguin feces from the Ross Sea region, Antarctica, and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) was used to investigate the chemical composition of water-extractable ON. By comparing the molecular compositions of ON among different samples, we found that the number of ON compounds (>4,000) in weathered soil is minimal, while carboxylic-rich alicyclic-like molecules (CRAM-like) are dominant. Penguin feces adds ON into the soil with > 10,000 CHON, CHONS and CHN compounds, including CRAM-like, lipid-like, aliphatic/ peptide-like molecules and amines in the guano-affected soil. After the input of penguin feces, macromolecules continue to degrade, and other ON compounds tend to be oxidized into relatively stable CRAM-like molecules, this is an important transformation process of ON in guano-affected soils. We conclude the roles of various forms of ON in the N cycle are complex and diverse. Combined with previous studies, ON eventually turns into inorganic N and is lost from the soil. The lost N ultimately returns to the ocean and the food web, thus completing the N cycle. Our study preliminarily reveals the molecular transformation of ON in penguin guano-affected soil and is important for understanding the N cycle in Antarctica.

How to cite: Wu, L., Sheng, M., Liu, X., and Fu, P.: Molecular transformation of organic nitrogen in Antarctic penguin guano-affected soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2749, https://doi.org/10.5194/egusphere-egu24-2749, 2024.

EGU24-3699 | Posters on site | BG1.6 | Highlight

Nitrite stimulates HONO and NOx but not N2O emissions in Chinese agricultural soils during nitrification 

Dianming Wu, Yaqi Song, Yuanchun Yu, and Peter Dörsch

The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggest that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are the main source in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight the important role of NO2 in stimulating HONO and NOx emissions from dryland agricultural soils. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.

How to cite: Wu, D., Song, Y., Yu, Y., and Dörsch, P.: Nitrite stimulates HONO and NOx but not N2O emissions in Chinese agricultural soils during nitrification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3699, https://doi.org/10.5194/egusphere-egu24-3699, 2024.

EGU24-4369 | ECS | Orals | BG1.6

Constraining the denitrification process in conventional and regenerative agriculture 

Gianni Micucci, Fotis Sgouridis, Stefan Krause, Iseult Lynch, Niall P. McNamara, Felicity Roos, Leake Jonathan, and Sami Ullah

In this study, we aimed to constrain and characterize the dynamics of denitrification in three different fields: one conventional arable and two types of pasture (“leys”). During a one-year field campaign, denitrification was measured using our newly developed method combining the application of 15N tracer and artificial atmosphere for the incubation of soil cores under field conditions (Micucci, 2022), while total N2O emissions were measured using static flux chambers during parallel incubations. Our objectives were to determine the best way to upscale soil core denitrification measurements and trace the fate of applied synthetic nitrogen fertilizer via denitrification in conventional agriculture in comparison to pastures under regenerative agriculture practices.

We determined that the best way to derive field-scale fluxes of denitrification was to use the core method to calculate the source partitioning coefficient (SPC) and product ratio (PR) and use these metrics in combination with static chamber data. The SPC is defined as the proportion of total N2O emissions that originates from denitrification while the product ratio measures the proportion of denitrification product emitted as N2O rather than N2.

During the field campaign, we estimated that 22 kgN ha-1 were lost via denitrification in the arable field, amongst which 15.17 were attributed to fertilizer application, representing around 8% of the 200 kgN ha-1 applied. Furthermore, 9 % of the denitrified fertilizer was emitted as N2O rather than N2. On the other hand, the unfertilized ley emitted only 2.6 kgN ha-1 via denitrification annually. Overall, the total N2O emissions in the fertilizer arable field were responsible for around 2 t eqCO2 ha-1 year-1 compared to 0.15 in the unfertilized ley, highlighting the importance of land management in strategies of greenhouse gas emission reduction.

How to cite: Micucci, G., Sgouridis, F., Krause, S., Lynch, I., McNamara, N. P., Roos, F., Jonathan, L., and Ullah, S.: Constraining the denitrification process in conventional and regenerative agriculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4369, https://doi.org/10.5194/egusphere-egu24-4369, 2024.

EGU24-4706 | ECS | Orals | BG1.6

How does nitrogen control soil organic matter composition? – A theory and model 

Chun Chung Yeung, Harald Bugmann, Frank Hagedorn, and Olalla Díaz-Yáñez

Current soil biogeochemical models have difficulties matching the observed composition of soil organic matter (i.e., the relative proportions of deadwood, raw litter, organic horizon, particulate organic carbon, and mineral-associated organic carbon). In reality, nitrogen (N) controls microbial decomposition and physiological processes, whereas in most models it is merely considered a plant nutrient. In addition, many N fertilization studies have shown that N exerts different effects on different C pools via changing exoenzyme activities, microbial growth, and necromass production via microbial turnover. These divergent effects control SOM composition and have C-cycle consequences.

We expanded the CENTURY model by incorporating multiple hypothesized microbial responses to nitrogen availability, including 1) decomposition reduction of recalcitrant substrates when N is in excess; 2) decomposition stimulation of high C:N substrates when N limitation is alleviated; 3) microbial adaptation of turnover rate; 4) microbial adaptation of CUE; and 5) secondary feedback to decomposition via changes in microbial biomass in response to N. We systematically tested multiple model variants using two sets of simulations, one along a natural N gradient in Swiss forests, and another one with artificially increased N input (i.e., simulating an N-fertilization experiment). We evaluated the simulated outputs using data on soil organic matter fraction stocks, their relative proportions, and temporal responses under N addition.

From the simulation results, we identified the necessary processes to explain the temporal response pattern of different C pools to N addition, in accordance with findings from meta-analyses. In addition, we identified patterns of SOM composition over a natural gradient of N supply (no artificial N addition), which can again be explained by the N-driven processes we implemented. We conclude that considering the direct effects of nitrogen as a key additional constraint on microbial processes is essential to improve the realism and accuracy of soil biogeochemistry models.

How to cite: Yeung, C. C., Bugmann, H., Hagedorn, F., and Díaz-Yáñez, O.: How does nitrogen control soil organic matter composition? – A theory and model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4706, https://doi.org/10.5194/egusphere-egu24-4706, 2024.

EGU24-5161 | ECS | Orals | BG1.6

On the Contribution of Atmospheric Nitrogen Deposition to Nitrogen Burden in an Eutrophic Lake in Eastern China 

Weikun Li, Xia Wang, Zhongyi Zhang, Xiaodong Liu, and Lei Geng

Atmospheric deposition of natural and anthropogenic sourced reactive nitrogen (Nr, mainly including NH3, NH4+, NOx, NO3- and etc.) has substantial influence on terrestrial and aquatic ecosystems, driving global nutrient imbalances and increasing risks to human health. Although it has been demonstrated that atmospheric Nr deposition has a substantial impact on nitrogen pools in remote and/or sensitive lakes, there is a scarcity of systematic evaluations regarding atmospheric Nr deposition's impact on the nitrogen burden in eutrophic lakes with riverine input as the primary source. Utilizing a regional chemical transport model, combined with observations of riverine nitrogen input, we investigate the contribution of atmospheric Nr deposition to a eutrophic Lake Chaohu in eastern China. The results indicate that riverine total nitrogen (TN) input to the lake was 11553.3 t N yr-1 and atmospheric TN deposition was 2326.0 t N yr-1 in the year of 2022. For Nr species which are directly available for the biosphere supporting algae and plant growth, riverine NH4+ input was 1856.1 t N yr-1 and atmospheric NHx (NH3 and NH4+) deposition was 824.5 t N yr-1. The latter accounts for ~ 1/3 of total NHx input to the lake. For NOy (HNO3 and NO3-) species, atmospheric deposition was estimated to also contributes a similar amount to the NHx species. The results suggest that even in regions with dense human activities with primary riverine N input, atmospheric deposition of Nr could also contribute significantly to the bio-available nitrogen in lake systems, and addressing eutrophication in Lake Chaohu and other eutrophic lakes will also need to consider the reduction of NH3 and NOx (i.e., NO + NO2, the precursor of NOy) emissions, in addition to the mitigation of riverine N input.

How to cite: Li, W., Wang, X., Zhang, Z., Liu, X., and Geng, L.: On the Contribution of Atmospheric Nitrogen Deposition to Nitrogen Burden in an Eutrophic Lake in Eastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5161, https://doi.org/10.5194/egusphere-egu24-5161, 2024.

EGU24-5244 | ECS | Posters on site | BG1.6

Surges in global N2O fluxes from saltmarshes are driven by increasing porewater nitrate and ammonium concentrations 

Devon Collier-Woods, Sami Ullah, and Sophie Comer-Warner

Saltmarshes have the potential to sequester large amounts of carbon, however, the value of stored carbon may be partially offset by emissions of the potent greenhouse gas nitrous oxide (N2O). Increased nutrients [NO3- and NH4+] have been shown to increase N2O emissions from saltmarshes, however, a global-scale analysis of this relationship has not been performed. Here, we present a global meta-analysis to investigate the relationship between N2O fluxes and porewater nitrogen and determine the relative importance of porewater NO3- and NH4+ as key drivers of enhanced saltmarsh N2O fluxes. Both porewater NO3- and NH4+ were significantly, positively correlated with N2O fluxes (p < 0.01), explaining 25 and 18% of the variation in fluxes, respectively. We estimate a global saltmarsh N2O flux of 0.012 Tg N2O yr-1, which is six times higher than the current estimate (0.0021 Tg N2O yr-1), representing an offset of 19% of the estimated global saltmarsh carbon burial. Using predicted future increases in riverine DIN export, our meta-analysis suggests that 17-31% of the estimated global saltmarsh carbon burial could be offset by a surge in N2O emissions under chronic mineral N pollution. This meta-analysis indicates the importance of reducing nutrient inputs into saltmarshes to reduce N2O fluxes and maximise their negative radiative forcing.

How to cite: Collier-Woods, D., Ullah, S., and Comer-Warner, S.: Surges in global N2O fluxes from saltmarshes are driven by increasing porewater nitrate and ammonium concentrations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5244, https://doi.org/10.5194/egusphere-egu24-5244, 2024.

EGU24-5701 | ECS | Orals | BG1.6

Regionalized nitrogen balances of Switzerland 

Anina Gilgen, Simon Baumgartner, Ernst Spiess, and Frank Liebisch

For the agri-environmental monitoring of Switzerland, nitrogen balances on farm level for all Swiss farms were calculated and aggregated in order to obtain regionalized nitrogen balances. This monitoring attempts to incorporate as much existing data as possible to minimize multiple data collections from farmers. Data from the agricultural policy information system of Switzerland was used as basis for the calculation. This database contains information on livestock numbers, the crops grown, and the direct payments received for each farm. This information was supported with different data sources from federal offices, cantons, agricultural associations, and research institutions. Balances were calculated as a soil-surface balance according to the OECD method, which includes N input via organic and mineral fertilizers, biological N-fixation, atmospheric N-deposition, and seedlings as well as N outputs via plant yields.

The regional balances showed a high variability, resulting in an average N surplus of around 105 kg N per hectare of utilized agricultural area in cantons with highly intensive livestock farming and around 16 kg N in cantons with more extensive farming practices, i.e. in mountain regions. On national scale, highest N input occurred via organic fertilizers, whereas mineral fertilizers and biological N-fixation account for around 15% of the total input each.

Our approach of calculating N balances on farm level for the whole Swiss farming system has some limitations, which are mainly due to missing or incomplete data sources.  As an example, the use of mineral fertilizers had to be estimated by application data of a rather small sample of farms (~300 farms). Nevertheless, the obtained results show that this methodology is a promising tool to gain a regional overview of the environmental status of Swiss farms. Over the years, this approach will be refined and new data (e.g. additional administrative data, satellite data) can be incorporated in order to better estimate the N balances of Swiss farms.

How to cite: Gilgen, A., Baumgartner, S., Spiess, E., and Liebisch, F.: Regionalized nitrogen balances of Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5701, https://doi.org/10.5194/egusphere-egu24-5701, 2024.

EGU24-5728 | ECS | Orals | BG1.6

Advances in measuring low N2O fluxes by a portable gas analyser and manual chambers 

Nathalie Ylenia Triches, Maija Marushchak, Anna Virkkala, Timo Vesala, Martin Heimann, and Mathias Göckede

Nitrous oxide (N2O) is one of the most important greenhouse gases with a global warming potential of about 298 times stronger than carbon dioxide (CO2) over a period of 100 years. From 1800 to 2023, the atmospheric concentration of N2O has increased from 273 to 336 ppbv, whereby more than half of this rise is due to the addition of fertilisers and manure on agricultural soils. Whilst these managed, nutrient-rich soils have been relatively well studied, little is known about N2O fluxes in nutrient-poor ecosystems (e.g., the Arctic).

Since many Arctic soils contain very low amounts of available nitrogen, in the past it has been generally assumed that Arctic soils are not a significant source of N2O. Only recently, several studies have reported significant N2O emissions from organic-rich Arctic soils; however, due to methodological challenges, extensive investigations on N2O fluxes in Arctic soils have been limited. As a result, the importance of N2O fluxes from this region to the global budget remains highly uncertain. 

With the recent advances in portable GHG analyser technology, extensive manual chamber measurements based on in-situ N2O concentration measurements can provide novel information to close this knowledge gap. However, guidelines on measuring techniques (e.g., chamber closure time) and data quality (e.g., no flux vs. low flux) are still lacking. In this study, we provide new insights on N2O fluxes in a nutrient-poor ecosystem and give general practical guidelines for measuring low N2O fluxes with a portable gas analyser and manual chambers. In May, July, and September 2023, we used a portable N2O/CO2 analyser to measure N2O fluxes in a thawing sub-Arctic permafrost peatland in northern Sweden. Recommendations on practical use in the field are given to support future N2O research with portable gas analysers. 

How to cite: Triches, N. Y., Marushchak, M., Virkkala, A., Vesala, T., Heimann, M., and Göckede, M.: Advances in measuring low N2O fluxes by a portable gas analyser and manual chambers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5728, https://doi.org/10.5194/egusphere-egu24-5728, 2024.

EGU24-5816 | ECS | Orals | BG1.6

2152 

Meng Yao and Ronghua Kang

It has been recognized recently that trees can assimilate NO2 directly through leaf stomata. Both laboratory and field studies have measured the foliar NO2 deposition velocity, which could be determined by some environmental factors, e.g. light irradiation intensity, ambient NO2 concentration, and leaf characteristics. However, the NO2 uptake capacity and allocation of foliar uptake NO2 under these environmental factors remain unclear. To clearly understand the foliar NO2 uptake process and refine the forest NO2 uptake models, we conducted a dynamic 15NO2 fumigation experiment.

We selected Fraxinus mandshurica (F. mandshurica), Pinus koraiensis (P. konraiensis), Quercus mongolica (Q. mongolica), and Larix gmenilii (L. gmenilii) saplings, four dominant tree species in temperate forests of northeastern China, as our experimental materials. Meanwhile, we chose a pair of broad-leaved and coniferous tree species (F. mandshurica and P. konraiensis) to perform fumigation experiment under dark/light irradiation and another pair (Q. mongolica and L. gmenilii) to perform fumigation experiment with soil N addition. All saplings were dynamically fumigated with 50 ppb 15NO2 for 8 h and destructively sampled immediately after fumigation. We rinsed the samples surface with purified water, dried and grinded all samples, then measured the 15N abundance in leaves, twigs, stems and roots with EA-IRMS.

The results showed that tree saplings can absorb NO2 under both dark and light irradiation treatments. The total 15N recovery ranged between 30 to 80% under the light condition in all species. Under the dark condition, the total 15N recovery were (29.8±9.16) % and (1.1±0.47) % for F. mandshurica and P. konraiensis, which were significantly lower than under the light condition, (59.6±5.2) % and (8.8±2.5) %, respectively. With the soil N addition, the total 15N recovery in Q. mongolica ((56.2±8.8) %) were significantly larger than non-N addition ((27.6± 4.8) %), while L. gmenilii showed the opposite result that the total 15N recovery ((31.7±7.8) %) significantly decreased, compared to that without N addition ((73.6±4.3) %). These results are likely attributed to different amount of N demand for different tree species, more N needed for Q. mongolica than L. gmenilii. Moreover, coniferous species could assimilate more N through foliar uptake than broad-leaved species, probably due to bigger leaf surface areas of coniferous trees. After 8 h fumigation, the largest proportion of 15NO2 was recovered in leaves in all species and treatments, accounting for 60-97%, which indicates that NO2 stays in leaves in a short-term period after foliar assimilation. However, further studies are needed to explore the transformation of foliar incorporated NO2 to other organs in a long-term scale.

This study quantified the foliar NO2 uptake capacity of different tree species and figured out the effects of light irradiation and soil nitrogen availability on foliar NO2 uptake. Our results would provide references for the model estimation of canopy NO2 uptake magnitude at a regional scale.

How to cite: Yao, M. and Kang, R.: 2152, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5816, https://doi.org/10.5194/egusphere-egu24-5816, 2024.

EGU24-6942 | ECS | Orals | BG1.6

Improving Agricultural Nitrogen Use Efficiency to Reduce Air Pollution in China 

Biao Luo and Amos P. K. Tai

Chinese agriculture has long been characterized by low nitrogen use efficiency (NUE) associated with substantial ammonia (NH3) loss, which contributes significantly to fine particulate matter (PM2.5) pollution. However, the knowledge gaps in the spatiotemporal patterns of NH3 emissions and the states of nitrogen management of agricultural systems render it challenging to evaluate the effectiveness of different mitigation strategies and policies. Here we explored the NH3 mitigation potential of various strategies and its subsequent effects on PM2.5 pollution, and their effectiveness in improving NUE of Chinese agricultural systems. We developed and used a nitrogen flow model for evaluating NUE of different crop and livestock types at a provincial scale in China. We then used the bottom-up NH3 estimates to drive an air quality model (GEOS-Chem High Performance, GCHP) to provide an integrated assessment of four improved nitrogen management scenarios: improving NUE of crop systems (NUE-C), increasing organic fertilizer use (OUR), improving NUE of livestock systems (NUE-L) and combined measures (COMB). The total agricultural NH3 emission of China was estimated to be 11.2 Tg NH3 in 2017, of which 46.24% and 53.76% are attributable to fertilizer use and livestock animal waste, respectively, and emission hotspots can be identified in the North China Plain. Our results show that grain crops have higher NUE than fruits and vegetables, while high livestock NUE can be found in pork and poultry, and NUE for the entire crop and livestock systems are both better in Northeast China than the rest of China. We also found that agricultural NH3 emissions can be reduced from 11.2 Tg to 9.1 Tg, 9.3 Tg, 9.9 Tg and 6.8 Tg, and consequently annual population-weighted PM2.5 reductions are estimated to be 1.8 µg m–3, 1.6 µg m–3, 1.3 µg m–3 and 4.1 µg m–3 under NUE-C, OUR, NUE-L and COMB scenarios, respectively. Our results are expected to provide decision support policy making concerning agricultural NH3 emissions.

How to cite: Luo, B. and Tai, A. P. K.: Improving Agricultural Nitrogen Use Efficiency to Reduce Air Pollution in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6942, https://doi.org/10.5194/egusphere-egu24-6942, 2024.

EGU24-9564 | ECS | Posters on site | BG1.6

Progressive decline in topsoil nitrogen pool upon decadal warming in a permafrost ecosystem 

Bin Wei and Yuanhe Yang

Nitrogen (N) plays an important role in mediating many aspects of permafrost carbon cycle, such as plant productivity, soil organic matter decomposition and the production of greenhouse gases. In contrast to the well-recognized effects of climate warming on soil organic carbon stocks and vulnerability, the fates and pools of soil N has received little attention in permafrost ecosystems.

Here, based on a decadal warming experiment in a permafrost ecosystem on the Tibetan Plateau, we assessed changes in soil N stocks over a 10-year time-scale, and in situ measured the majority of N-cycling processes involving biological N fixation and soil N transformation, and the preferential plant uptake of different N forms, and above- and belowground litter decomposition and N release, and N leaching losses as well as high-resolution nitrous oxide (N2O) flux during the growing season.

Our results showed that experimental warming progressively reduced topsoil N stocks but had no effect in the deeper soils on a 10-year time-scale. The observed decline in topsoil N pools could be due to the fact that decadal warming enhanced plant N uptake and intensified N leaching and gaseous losses. Specifically, warming treatment had a negligible effect on ecosystem biological N fixation rate, but increased the above- and belowground plant N pools. Meanwhile, simulated warming accelerated belowground litter N release and soil N transformation rate, and enhanced plant uptake of organic N. However, warming intensified the topsoil inorganic N leaching losses and N2O flux during the growing season.

These findings highlight that progressive N limitation could occur in permafrost ecosystems under continuous climate warming due to the re-allocation of N pool from soils to plants and the losses of N through leaching and gases flux, which would make the future trajectory of permafrost carbon cycle and its feedback to climate warming more complex than previously thought.

How to cite: Wei, B. and Yang, Y.: Progressive decline in topsoil nitrogen pool upon decadal warming in a permafrost ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9564, https://doi.org/10.5194/egusphere-egu24-9564, 2024.

EGU24-10360 | ECS | Posters on site | BG1.6

Mitigation measures of crop cultivation to reduce climate-impacting emissions from denitrification 

Jaqueline Stenfert Kroese, Caroline Buchen-Tschiskale, Johannes Cordes, Rene Dechow, Klaus Dittert, Bryan Dix, Kathrin Fuchs, Andreas Gattinger, Jörg-Michael Greef, Balazs Grosz, Michael Hauschild, Jarrah Mahboube, Johannes Kühne, Henrike Mielenz, Thade Potthoff, Clemens Scheer, Franz Schulz, Conor Simpson, Benjamin Wolf, and Reinhard Well

The joint project 'Measures to reduce direct and indirect climate-impacting emissions caused by denitrification in agricultural soils - MinDen' addresses the topics of reducing nitrous oxide emissions and improving nitrogen efficiency through modeling, the evaluation of possible mitigation measures and the evaluation of denitrification on spatial scale. Gaseous emissions from denitrification cause N losses relevant to crop cultivation and cause direct N2O emissions from crop cultivation. Climate protection measures in crop production in the areas of fertilization, soil cultivation and crop rotation have hardly been researched with regard to the role of denitrification. Crop management that optimizes N efficiency and minimizes N emissions at the same time has therefore not yet been reliably defined. The overall objective of the present project is to identify practicable crop management measures to minimize N2 and N2O emissions from denitrification for arable cropping systems in Germany by improving the knowledge on denitrification-related N losses through field and laboratory studies and using it for parameterization, validation and application of simulation models. Our objectives are as follows:

  • Regionalization of N losses due to denitrification in Germany based on existing models
  • Determination of the effect of crop protection measures on N2 and N2O losses on field scale
  • Testing of mitigation options on the model, laboratory and field scale, taking into account the topsoil and subsoil for different soils
  • Further development of denitrification models to improve the mapping of mitigation measures using existing and new field data
  • Testing of mitigation options for Germany using the improved models, taking into account yield, economic efficiency, technology requirements, N2O emissions, N efficiency, fertilizer requirements, NH3 emissions and nitrate leaching.

We provide an overview of the approach and the current status of the joint project, which started at the beginning of 2023.

How to cite: Stenfert Kroese, J., Buchen-Tschiskale, C., Cordes, J., Dechow, R., Dittert, K., Dix, B., Fuchs, K., Gattinger, A., Greef, J.-M., Grosz, B., Hauschild, M., Mahboube, J., Kühne, J., Mielenz, H., Potthoff, T., Scheer, C., Schulz, F., Simpson, C., Wolf, B., and Well, R.: Mitigation measures of crop cultivation to reduce climate-impacting emissions from denitrification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10360, https://doi.org/10.5194/egusphere-egu24-10360, 2024.

Title: Drought and eCO2 Effects on Oak Seedlings Growth, Soil Fertility, and Greenhouse Gases Fluxes

 

Authors: Rehab Al Mutairi, Nicholas Kettridge and Sami Ullah

 

Objective/Purpose:

This study explores the impact of water stress legacy and elevated CO2 on oak seedlings' growth, stomatal conductance, soil nutrient availability, and greenhouse gas (GHGs) fluxes. The research aims to unravel the intricate interplay of these factors under controlled glasshouse conditions.

 

Methods/Approach:

The experiment, conducted from mid-May to August 2023 at the University of Birmingham campus, involved oak seedlings grown under ambient CO2 and elevated CO2 chambers, subjected to two soil volumetric moisture levels (10% for drought, 30% for non-drought). Various parameters, including oak growth, stomatal conductance, soil nutrient availability, and GHGs flux, were measured and recorded throughout the three-month period. Additional analyses, including biomass, soil extracellular enzyme activities, microbial biomass of N and C, and net N mineralization, were conducted at the experiment's conclusion.

 

Key Findings/Results:

The study revealed compelling insights into the response of oak seedlings to drought stress and elevated CO2 conditions. Under drought scenarios, both under ambient and elevated CO2  environments, oak biomass and growth were notably diminished. Particularly, the roots exhibited a substantial increase in biomass, suggesting a coping strategy in search of water and nutrient resources of the seedlings. Stomatal conductance exhibited a decline under elevated carbon dioxide (eCO2), indicating a water-saving mechanism employed by plants. Additionally, extracellular enzyme activities were impacted by environmental conditions: a reduction was observed under drought stress. This reduction in enzyme functions aligns with a concurrent decrease in nutrient availability, highlighting a correlation between nutrient levels and enzyme activity reduction during drought conditions.

 

Conclusion/Implications:

The findings underscore the vulnerability of oak seedlings to drought stress, highlighting the importance of soil moisture management for their optimal growth. Additionally, the differential response between ambient and elevated CO2  levels emphasizes the need for nuanced considerations in future climate change scenarios. These insights contribute to our understanding of ecosystem responses to concurrent drought and elevated CO2 conditions.

 

Keywords:

Oak seedlings, Drought stress, Elevated CO2, Soil fertility, Greenhouse gas fluxes, Stomatal conductance, Biomass, Microbial biomass, Net N mineralization.

 

 

 

 

 

How to cite: Almutairi, R.: Drought and eCO2 Effects on Oak Seedlings Growth, Soil Fertility, and Greenhouse Gases Fluxes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11614, https://doi.org/10.5194/egusphere-egu24-11614, 2024.

EGU24-12116 | Orals | BG1.6

Examining the natural nitrogen biogeochemical cycling and impacts across South African ecosystems 

Rebecca M. Garland, Mogesh Naidoo, Katye Altieri, Phesheya Dlamini, Gregor Feig, Kerneels Jaars, Lerato Sekhohola, Pieter van Zyl, Nomsa Muthelo, Jabulile Leroko, Pelenomi Sakwe, Tamryn Hamilton, Tiaan van Niekerk, Pedro Bixirao Neto Marinho, and Kathleen Smart

The biogeochemical nitrogen (N) cycle in South Africa is influenced by, and in turn influences a number of crucially important global change processes. However, the natural N cycling in South Africa is not well-understood. The “Emissions, deposition, impacts - Interdisciplinary study of N biogeochemical cycling (EDI-SA)” project is working to improve our baseline understanding of the natural biogeochemical cycling of N in non-industrialized ecosystems across South Africa. This includes quantifying N fluxes from emissions through to deposition, identifying linkages between N cycling and related species such as sulphur (S) and ozone, and evaluating ecosystem impacts. Previous work has focused on the impact of atmospheric deposition of N and S species on ecosystems at sites almost exclusively on the industrialized Highveld. This has left large gaps of knowledge in the biogeochemical cycling and ecosystem impacts, particularly within the diverse natural ecosystems found across South Africa. In order to address this gap, EDI-SA is applying a more holistic approach using measurements (from two South African Research Infrastructures; EFTEON and BIOGRIP) and modelling to investigate multiple linkages within the biogeochemical cycling of N with a focus on improving the understanding of the natural cycling. The project is applying a variable resolution sampling approach to investigate processes which occur at multiple spatial scales, and applying multiple measurement techniques including atmospheric measurements, stable isotope analysis of aerosol particles, rainwater and soil, and analysis of soil chemistry and biology. This contribution will detail the approach of this interdisciplinary project, highlight results from the first soil and air sampling campaigns, as well as the atmospheric composition modelling that assesses the relative importance and impacts of N emissions from soil across South Africa. This baseline understanding will allow future research to assess the potential changes to N biogeochemical cycling into the future in a changing climate.  

How to cite: Garland, R. M., Naidoo, M., Altieri, K., Dlamini, P., Feig, G., Jaars, K., Sekhohola, L., van Zyl, P., Muthelo, N., Leroko, J., Sakwe, P., Hamilton, T., van Niekerk, T., Bixirao Neto Marinho, P., and Smart, K.: Examining the natural nitrogen biogeochemical cycling and impacts across South African ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12116, https://doi.org/10.5194/egusphere-egu24-12116, 2024.

Nitrogen is a fundamental plant nutrient and the most important fertilizer in modern agriculture. At the same time nitrate based nitrogen loss from agroecosystems becomes an increasing environmental problem in ground- and surface waters. The lysimeter station Brandis in Saxony, Germany, provides detailed observations of water and solute fluxes under representative agricultural landuse since 1981. Despite substantial efforts and success in regulation and assessment of fertilizer needs and the reduction of fertilization excess, the seepage water analysis reveals increasing or stagnating levels of nitrate concentration in groundwater recharge in a broad range of soil types. This apparent decoupling between input and output is evident in all soil types under investigation and raises some important questions concerning the nitrate loss in agricultural soils:

  • Which part of the soil N-cycle contributes to the seepage water nitrate export?
  • What are the main drivers of nitrate loss in agricultural soils?
  • Can residence times of mineral fertilizer nitrogen be estimated?
  • Will reduced fertilization excess lead to timely reductions in nitrate loss to the groundwater?

We investigated these questions with long-term solute balances and state-of-the-art isotope methods. Analysis of source δ 15N ratios in soil, atmospheric deposition and fertilizer in combination with a 5-year campaign of δ15N and δ18O analysis of seepage water nitrate allows a source identification with dual-isotope plots and mixing models. The results clearly show that the main source of nitrate loss with the seepage water is the soil organic matter pool in all investigated soils. Analysis of the long-term nitrogen balances and the soil samples show furthermore a substantial accumulation of fertilization excess within the upper meter of agricultural soils and indicate that the residence time of nitrogen in the lysimeters might be substantially longer than water residence times. Isotope analysis in combination with mixing model analysis suggest that the nitrate loss is mainly driven by nitrification of this nitrogen legacy in the post-harvest period. Thus, the results hold an explanation why the current regulation efforts have not yet led to the desired reductions in nitrogen loadings of seepage water fluxes. Furthermore, the apparent decoupling between nitrogen input in agricultural soils and the seepage water output makes a timely reduction of nitrate concentrations, by reductions in fertilization excess alone, in groundwater recharge unlikely.

How to cite: Werisch, S., Alexandra, T., and Diana, B.: Insights into nitrogen dynamics and nitrate loss from agricultural soils based on long-term lysimeter observations and a 5-year isotope measurement campaign, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12647, https://doi.org/10.5194/egusphere-egu24-12647, 2024.

EGU24-13239 | ECS | Orals | BG1.6

Resolving nitrogen gaseous pathways in the atmosphere-plant-microbial-soil continuum in the NOAA/GFDL Earth System Modeling Framework 

Maureen Beaudor, Elena Shevliakova, Sergey Malyshev, and Minjin Lee

Representing plant-microbe-soil organic matter interactions and their coupling with land surface processes are critical to understanding of ecosystem responses to climate change. More specifically, microbes play an important role in the nitrogen (N) cycle by providing acquisition pathways for plants and overcoming N limitation through mycorrhizal symbiosis and bacterial fixation. Even though biological nitrogen fixation acts as a primary N source for the organisms, ecosystem N availability is still strongly affected by N losses, including atmospheric volatilization.

One of the major challenges to accurately representing N availability in Earth System Models (ESM) is the representation of the atmospheric losses that are not necessarily controlled by the organisms. For instance, the conversion of soil ammonium into gaseous ammonia (i.e., volatilization) is driven by ambient environmental conditions and not directly controlled by the biological demand of plants and soil microbes. Thus, rapid losses of N via volatilization (e.g., after precipitation events) could induce feedback on soil microbial activity and plant growth by impeding biological assimilation.

Even though the representation of ammonia emissions is progressively integrated into ESMs, the focus has been mainly on parameterizing losses from agricultural or managed ecosystems. However, ammonia volatilization from natural soils occurs worldwide and can reach 9 TgN/yr, a non-negligible source, especially in alkaline drylands. Up to now, no proper representation of emissions of ammonia, applicable to unmanaged lands, has been included in ESMs and challenged by observations. In the future, these emissions are likely to follow the rising trends of nitrogen deposition and increasing precipitation due to climate change.

Here we describe a mechanistic parameterization of ammonia emissions in natural ecosystems with explicit treatment of microbes and vegetation dynamics in the fully integrated terrestrial component of the GFDL ESM, LM4.2-GIMICS-N. We apply observational constraints, including measurements of soil 15N isotope and estimates of nitrogen fluxes (BNF, nitrification, mineralization, and ammonia exchange) at different sites to reduce uncertainty in the model simulations. Finally, we examine the main drivers of ammonia volatilization across various ecosystems by considering aridity, soil pH, and nitrogen deposition as well as the key environmental conditions such as precipitation, temperature, and soil moisture.

How to cite: Beaudor, M., Shevliakova, E., Malyshev, S., and Lee, M.: Resolving nitrogen gaseous pathways in the atmosphere-plant-microbial-soil continuum in the NOAA/GFDL Earth System Modeling Framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13239, https://doi.org/10.5194/egusphere-egu24-13239, 2024.

EGU24-15243 | Posters on site | BG1.6

A Sphagnum incubation study using 15N-labelled atmospheric N2 reveals contrasting potential for biological N2 fixation at three medium-polluted Central European peat bogs 

Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Frantisek Buzek, Ivana Jackova, Eva Prechova, Frantisek Veselovsky, and Jan Curik

Microbial N2-fixation helps to sustain carbon accumulation in pristine peatlands and to remove CO2 from the atmosphere. Recent work has provided evidence that this energetically costly process is not completely downregulated at sites with higher availability of reactive nitrogen (Nr). We studied nitrogen (N) cycling at three high-elevation, mainly rain-fed, Sphagnum-dominated peat bogs in the northern Czech Republic receiving medium to high amounts of reactive nitrogen (Nr) via atmospheric deposition. 15N/14N isotope ratios were determined in Nr deposition, along vertical peat profiles, and in a laboratory incubation study using fresh Sphagnum and 15N-enriched atmospheric N2. Our objective was to assess the potential for biological N2-fixation at the selected study sites in light of various biogeochemical parameters. Historically, all the peat bogs experienced similar changes in atmospheric Nr (mainly NO3--N and NH4-N) inputs. Nr depositions at all three sites peaked between 1980 and 1990. During that time period, the highest annual depositions were close to 10 kg ha-1 yr-1 at the slightly more polluted site Uhlirska (UHL) than at Male mechove jezirko (MMJ) and Brumiste (BRU). Since ca. 1990, atmospheric deposition of Nr has been steadily decreasing. Living Sphagnum had variable N concentrations with similar means for all three sites (1.1, 1.0 and 0.9 wt. % at MMJ, BRU and UHL, respectively). Downcore, peat density remained nearly constant at MMJ but increased at BRU and UHL. Ash contents were below 10 wt. % at least to the depth of 20 cm. With an increasing peat depth, both N concentration and δ15N values generally increased, while C/N ratios tended to decrease. At depths > 10 cm, N/P ratio was lower at UHL than at the other two sites and remained nearly constant downcore. N/P ratio at MMJ increased from ~10 to ~20 with an increasing depth, whereas the N/P ratio exhibited a zigzag vertical pattern at BRU, reaching a value of 40 in deeper segments. The potential for biological N2-fixation was investigated using a replicated laboratory incubation of fresh Sphagnum in a closed system following an application of 98 % enriched atmospheric N2. The experiment lasted for 7 days. The control Sphagnum samples had δ15N values of -4.0 ‰ (BRU and UHL) and -3.7 ‰ (MMJ). At the end of the incubation, the δ15N significantly increased only in MMJ moss reaching + 70 ‰, while it remained unchanged in BRU and UHL moss. Biological N2 fixation was thus recorded at only at MMJ, a site with the lowest N/P ratio in the topmost 2-cm thick sections. Potential N2 fixation rates at MMJ were similar to values previously reported for Finland (Leppänen et al. 2015) but ~7 times lower than at sites located in Patagonia, Chile (Knorr et al. 2016).

References

Leppänen et al., 2015. Plant and Soil, 389, 185-196.

Knorr et al., 2016, Global Change Biology 21, 2357–2365.

How to cite: Stepanova, M., Novak, M., Cejkova, B., Buzek, F., Jackova, I., Prechova, E., Veselovsky, F., and Curik, J.: A Sphagnum incubation study using 15N-labelled atmospheric N2 reveals contrasting potential for biological N2 fixation at three medium-polluted Central European peat bogs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15243, https://doi.org/10.5194/egusphere-egu24-15243, 2024.

EGU24-15470 | Orals | BG1.6

Long-term soil warming causes acceleration of soil nitrogen losses in a temperate forest studied by 15N isotope fractionation 

Wolfgang Wanek, Michaela Bachmann, Ye Tian, Steve Kwatcho Kengdo, Jakob Heinzle, Erich Inselsbacher, Werner Borken, and Andreas Schindlbacher

Climate warming was shown to strongly affect the biogeochemical cycles in global forests, reducing soil carbon storage and accelerating soil nitrogen (N) and phosphorus cycling. In a long-term soil warming experiment in a temperate old-growth forest in Achenkirch, Austria, we recently showed faster root turnover and growth, decreases in microbial biomass, carbon use efficiency and soil carbon storage, increases in ecosystem phosphorus limitation, and varied responses of the soil N cycle in warmed plots (+4 ° C above ambient for 14 years). In this study we therefore employed natural stable isotope techniques to better understand ecosystem-level responses of the N cycle in Achenkirch, studying the abundance of 15N and 14N (expressed as δ15N values) in a wide range of soil nitrogen pools (bulk soil N, root N, microbial biomass N, extractable organic N, ammonium, nitrate) and employed isotope fractionation models to explain the patterns found dependent on soil warming. Specific N cycle processes such as mineralization, nitrification and denitrification cause substantial isotope fractionation (against the heavy stable isotope 15N), leading to 15N enrichment of the residual substrates and 15N depletion of the cumulative products, depending on the fraction on substrates consumed and the isotope fractionation factor of that process. Other processes such as diffusion, (de)sorption and depolymerization exert negligible isotope fractionation. We found a significant warming effect on the isotopic signatures of root N and the soil ammoniumpool, i.e. a 15N enrichment in these pools. 15N enrichment of tree fine roots, considered to be isotopic integrators of the plant available N pool, suggest increased soil N cycling and greater soil N losses in warmed plots causing a 15N enrichment of the soil inorganic N pool (ammonium and nitrate). The increased 15N enrichment in ammonium of warmed soils highlights an increased activity of nitrifiers, with greater fractions of ammonium oxidized to nitrate causing the observed 15N enrichment of ammonium. However, soil nitrate did not show the expected 15N depletion imparted by nitrifiers but matched or even exceeded δ15N values of soil ammonium. Isotope fractionation calculations indicated that >50% of the soil nitrate produced was lost, particularly through denitrification promoting gaseous N losses in the form of NO, N2O and/or N2 and less through nitrate leaching. Natural 15N abundance studies thereby hold great potential for evaluating the status quo of the complex N cycle in terrestrial ecosystems and to monitor in situ responses to climate change with minimal invasion and improved time integration.

How to cite: Wanek, W., Bachmann, M., Tian, Y., Kwatcho Kengdo, S., Heinzle, J., Inselsbacher, E., Borken, W., and Schindlbacher, A.: Long-term soil warming causes acceleration of soil nitrogen losses in a temperate forest studied by 15N isotope fractionation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15470, https://doi.org/10.5194/egusphere-egu24-15470, 2024.

EGU24-15569 | Posters on site | BG1.6 | Highlight

The anaerobic soil volume as a controlling factor of denitrification  

Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbeyram, Alexandra Kravchenko, Hans-Jörg Vogel, and Reinhard Well

Denitrification is a major component of the nitrogen cycle in soil that returns reactive nitrogen to the atmosphere. Denitrification activity is often concentrated spatially in anoxic microsites and temporally in ephemeral events, which presents a challenge for modelling. The anaerobic fraction of soil volume can be a useful predictor of denitrification in soils. Here, we provide a review of this soil characteristic, its controlling factors and its estimation from basic soil properties.

The concept of the anaerobic soil volume and its link to denitrification activity has undergone several paradigm shifts that came along with the advent of new oxygen and microstructure mapping techniques. The current understanding is that hotspots of denitrification activity are partially decoupled from air distances in the wet soil matrix and are mainly associated with particulate organic matter (POM) in the form of fresh plant residues or manure. POM fragments harbor large amounts of labile carbon that fuels local oxygen consumption and, as a result, these microsites differ in their aeration status from the surrounding soil matrix.

Current denitrification models link the anaerobic soil volume fraction to bulk oxygen concentration in different ways but take almost no account of microstructure information, such as the distance between POM and air-filled pores. Based on meta-analyses, we derive new empirical relationships to estimate conditions for the formation of anoxia at the microscale from basic soil properties and we outline how these empirical relationships could be used in the future to improve prediction accuracy of denitrification models at the soil profile scale.

How to cite: Schlüter, S., Lucas, M., Grosz, B., Ippisch, O., Zawallich, J., He, H., Dechow, R., Kraus, D., Blagodatsky, S., Senbeyram, M., Kravchenko, A., Vogel, H.-J., and Well, R.: The anaerobic soil volume as a controlling factor of denitrification , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15569, https://doi.org/10.5194/egusphere-egu24-15569, 2024.

Direct emission of the greenhouse gases methane and nitrous oxide (N2O) constitute a significant fraction of the overall carbon footprint of wastewater treatment. Measurement methods to identify emission sources and to quantify emissions are key in mitigating these direct emissions. Nitrous oxide is formed in biological nitrogen removal process units, which are the main source of N2O emission from wastewater treatment.

Liquid phase sensors (LPS) have recently been developed and installed at various Danish wastewater treatment plants to measure N2O concentrations in the liquid phase of biological nitrogen removal tanks. These sensors can be used to implement adjustments on the operation of the plant (for example duration of aeration), which affects N2O emission. In addition, LPS can be utilized to calculate N2O emission through mass transfer modelling. However, there is a need for validation of liquid-based modelled emission rates against measurement methods, which measure direct N2O emission rates. In this study, emission rates determined by two remote sensing methods, the tracer gas dispersion method (TDM) and Eddy covariance method (EC) were compared to LPS derived N2O emission rates.

TDM relies on continuous, controlled release of a gaseous tracer at the source combined with downwind measurements of concentration of target gas (N2O here) and tracer gas (often acetylene - C2H2).  This method is well-established, validated, and has been used to quantify fugitive emissions from various sources such as landfills, composting plants, biogas plants, etc. EC is a stationary method, which relies on high-frequency measurements of N2O concentration and wind vector on a tower near the source. EC can be set up for continuous monitoring, while TDM as applied here is a discrete measurement method.

In the study, N2O emission rates were measured over a period of 1.5 years at a relatively large wastewater treatment plant in the greater Copenhagen area. TDM measurements were conducted on 15 measurement days covering both periods of relatively high and low N2O emission rates. TDM measurements were compared to LPS derived emission rates, where N2O emission was measured using sensors in four of eight process units for biological nitrogen removal. Overall, daily average emission rates between approximately 0.38 and 13.4 kg N2O h-1 were measured. High emission rates of 120 kg N2O h-1 were observed on a day, where plant maintenance is believed to be the cause of unusual high emission. Emission rates from simultaneous TDM measurements and LPS derived values (n=43) showed good correlation (R2=0.70). On average, emission rates from TDM were 35% higher than LPS rates. The model implementation to derive LPS determined emission rates was further developed during the study, and the listed results were the final values after some correction. Several factors can explain the difference – including liquid sensor drift, which for the specific sensors tends towards lower N2O concentration readings than actual concentrations. Continuous EC measurements showed the same emission dynamics as measured by the liquid sensors located inside the footprint of the station.

How to cite: Fredenslund, A., Kissas, K., and Scheutz, C.: Comparison of liquid phase and remote sensing measurements of nitrous oxide emission from biological nitrogen removal at a wastewater treatment facility, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16147, https://doi.org/10.5194/egusphere-egu24-16147, 2024.

EGU24-16927 | ECS | Posters on site | BG1.6

In-situ treatment of nitrate polluted groundwater by chemoautotrophic denitrification: flow-through tank experiments 

Adrian Simon Seeholzer, Anja Wunderlich, Ruben Steib, and Florian Einsiedl

Nitrate in groundwater can be converted microbially into N2. However, the lack of anoxic conditions (oxygen concentrations < 50 μmol/L) in the aquifer linked with the limitation of microbial available organic and inorganic electron donors may lead to insufficient denitrification in aquifers and nitrate concentration above the drinking water limit of 50 mg/L can be observed. In view of the increasing drinking-water scarcity associated with climate change and the continuing increase in nitrate concentrations in near-surface aquifers, it is urgently necessary and prudent to develop practicable and cost-effective methods to reduce nitrate to harmless N2.
Faced with the increasing nitrate pollution in groundwater, we want to develop a new cost-effective in-situ remediation technology by hydrogen/methane coupled denitrification. We hypothesize that the simultaneous injection of the two water soluble electron donors H2 and CH4 into groundwater may significantly enhance the rate of nitrate consumption by activation of denitrifying chemolithoautotrophic microorganisms that are already present in the groundwater.
Here we show the experimental set-up of the 2D-model aquifer (6 m x 1,8 m), the sampling strategy and show first results of the methane injection experiment. Measurements are performed along the flow direction and at several depths. Concentration profiles and stable isotope composition of methane (δ13C) and nitrate (δ15N) linked with oxygen concentrations shed light on the hydrogen-methane coupled denitrification potential in the model aquifer.

How to cite: Seeholzer, A. S., Wunderlich, A., Steib, R., and Einsiedl, F.: In-situ treatment of nitrate polluted groundwater by chemoautotrophic denitrification: flow-through tank experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16927, https://doi.org/10.5194/egusphere-egu24-16927, 2024.

EGU24-17028 | Orals | BG1.6

Quantifying tree canopy nitrification across European forests 

Rossella Guerrieri, Joan Joan, Stefania Mattana, Emilio Casamayor, Josep Peñuelas, and Maurizio Mencuccini and the Collaborators at the ICP Forests sites

Fluxes and chemical composition of precipitation is substantially changed after passing through tree canopies, particularly in the case of atmospheric nitrogen compounds, with important implications on forest nitrogen cycling. The causes of these changes, however, have mostly focused on the passive role of foliar surfaces to scavenge pollutants from the atmosphere and to ion exchange processes, while biological processes involving microbes hidden in the phyllosphere have been less investigated. We combined triple oxygen isotopes approach and molecular analyses with the aim of quantifying canopy nitrification and identify microbes responsible for it, respectively. Ten sites included in the European ICP Forests monitoring network, chosen along climate and nitrogen deposition gradients, were selected to include the two most dominant tree species in Europe (Fagus sylvatica L. and Pinus sylvestris L.). Specifically, in this study we: 1) estimated the relative contribution of nitrate derived from biological canopy nitrification vs. atmospheric deposition by using δ18O and Δ17O of nitrate collected in water samples, i.e., in the open field (bulk deposition) and underneath tree canopies (throughfall); 2) quantified the functional genes related to nitrification for the two dominant tree species in European forests by using next-generation sequence analyses. Based on the isotope approach, we found that up to 80% of the nitrate reaching the soil via throughfall derived from biological transformations in the phyllosphere, equivalent to a flux of gross canopy nitrification of up to 5.76 kg N ha-1 y-1. The fraction of microbiologically derived nitrate increased with raising nitrogen deposition, thus suggesting that the process can be substrate limited. Molecular analyses confirmed the presence on foliar surfaces of bacterial and archaeal autotrophic ammonia oxidisers and bacterial autotrophic nitrite oxidisers across the investigate European forests. Our study demonstrates the potential of integrating stable isotopes with molecular analyses to advance our understanding on key processes underpinning forest nitrogen cycling, which should no longer exclude microbial processes occurring in the phyllosphere.

How to cite: Guerrieri, R., Joan, J., Mattana, S., Casamayor, E., Peñuelas, J., and Mencuccini, M. and the Collaborators at the ICP Forests sites: Quantifying tree canopy nitrification across European forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17028, https://doi.org/10.5194/egusphere-egu24-17028, 2024.

EGU24-17096 | ECS | Orals | BG1.6

Co-application of organic amendments and urea-N in a loamy soil reduced the N2O emission factor but substantial amounts of organic C were lost as CO2. 

Georgios Giannopoulos, Elpida Pasvadoglou, Georgios Kourtidis, Lars Elsgaard, George Zanakis, and Ioannis Anastopoulos

Under the framework of Circular Economy, EU Green Deal, and UN Sustainable Development Goals the addition of organic amendments to agricultural soils is highly promoted as a cost-efficient solution to improve soil quality and agrosystem sustainability. Nonetheless, their agronomic use comes with an uncertainty of their potential to release ample plant-available N, and to emit soil greenhouse gases.

This mesocosm study investigated short-term (90 d) soil N dynamics of a loamy soil receiving four organic amendments (50 t ha-1) (i) cow manure compost (CMC), (ii) food waste compost (FWC), (iii) used digestate substrate (UDS) and (iv) municipal sewage sludge (MSS), without and with N fertilization (160 kg N ha-1; urea). An unamended soil mesocosm was included as a control (C). During the incubation soil NO2-, NO3-, NH4+, N2O and CO2 were regularly monitored.

During the incubation, org. amendments did not affect NH4+ availability (AUC) compared to unamended soil, except MSS treatment which had 5.7x more NH4+ than C. The co-application of urea increased available NH4+ by 2.9x, 4.1x, 4.4x, 4.6x, and 5.9x for MSS, UDS, CMC, FWC, and C, respectively. There was no difference in available NO2- among org. amendment treatments and the C, except MSS (2.4x). There was a substantial and temporal accumulation of NO2- (2.4x to 3.6x) when urea was co-applied with org. amendments. Co-application of urea with org. amendments increased AUC NO3- in all treatments ranging to 2.7x from 13.6x, except MSS. Considering cum. CO2 we did not observe any differences between org. amended treatments without and with urea. However, org. amendments increased cum. N2O emission by 1.4x, 1.6x, and 3x, for UDS, FWC, and MSS, and reduced by 0.6x for CMC relative to C, respectively. The co-application of urea increased cum. N2O emissions for MSS, UDS, and CMC by 6%, 65%, and 90%, respectively, and reduced by 58% for FWC, compared to the corresponding org. treatment without urea.

Interestingly, co-application of urea with org. amendments reduced N2O emission factor (EF) by 4x, 6x, 6x, and 9x, relative to org. amendments without urea, for CMC, MSS, UDS and FWC, respectively. However, the EF N2O exceeded 1% in most cases. Treatments with urea lost substantial amounts of org. C as CO2-equivalent emissions, for instance, UDS+U and MSS+U lost 22% and 68%, respectively.  

In conclusion, our preliminary results indicate that the co-application of org. amendments with urea-N could potentially fuel soil N2O emissions, thus offsetting any favorable aspects of the aforementioned policies. Org. amendment, urea-N, and their interaction were significant factors (p≤0.05) driving CO2 and N2O emissions. The quality and composition of the amendments may stimulate soil microbial N transformations, and further investigation will elucidate the intrinsic role of soil microbes and their dynamics in regulating CO2 and N2O emissions from soils.

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers”; Project #01053 awarded to P.I. Dr Georgios Giannopoulos. This project was co-implemented with industrial partner Corteva Agriscience Hellas SA.     

How to cite: Giannopoulos, G., Pasvadoglou, E., Kourtidis, G., Elsgaard, L., Zanakis, G., and Anastopoulos, I.: Co-application of organic amendments and urea-N in a loamy soil reduced the N2O emission factor but substantial amounts of organic C were lost as CO2., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17096, https://doi.org/10.5194/egusphere-egu24-17096, 2024.

EGU24-17469 | Orals | BG1.6

Evaluating temporal patterns in wood δ15N in Swedish forests as an indicator of changing N limitation 

Michael Gundale, Kelley Bassett, Lars Östlund, Jonas Fridman, Steven Perakis, and Sandra Jämtgård

Boreal forests play an important role in the global carbon (C) cycle, and their productivity is strongly limited by nitrogen availability.  Thus, understanding whether nitrogen availability in boreal forests is changing has important implications for understanding past, present, and future trends of forest growth. We utilized a unique archive of tree cores collected by the Swedish National Forest Inventory, to evaluate temporal patterns (1950-2017) of wood δ15N, which is commonly used as an indicator of N limitation. First, we focused on an area of ca. 55,000 sq. km in central Sweden to evaluate how sensitive the wood δ15N approach is to tree age and two alternative sampling methodologies: a) analysis of single trees sampled in the present, versus b) tree chronologies constructed from multiple trees of the same age sampled during different decades.  By analysing 1038 woods samples, and covering two key boreal tree species (Picea abies and Pinus sylvestris), we found strong trends of declining δ15N through time, suggestive of progressive N limitation.  We further found that temporal patterns were highly sensitive to method choice, where the multiple tree approach supported by the tree core archive showed much stronger temporal patterns than reliance on more conventional contemporary sampling approaches, where N mobility appeared to obscure temporal patterns.  We further found that temporal trends were relatively insensitive to tree age class. Using the more powerful Multiple Tree Approach, we further evaluated δ15N values from an additional 1000 P. abies and P. sylvestris wood samples covering the entire forested area of Sweden and spanning the same time period, to investigate how temporal patterns in wood δ15N varied in areas with historically high N deposition (Southern Sweden) versus low N deposition (Northern Sweden).  These data help address current debates regarding whether temporal patterns in δ15N are indicative of oligitrophication (i.e. progressive N limitation), or are instead the result of changing δ15N signatures from nitrogen deposition inputs.  

How to cite: Gundale, M., Bassett, K., Östlund, L., Fridman, J., Perakis, S., and Jämtgård, S.: Evaluating temporal patterns in wood δ15N in Swedish forests as an indicator of changing N limitation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17469, https://doi.org/10.5194/egusphere-egu24-17469, 2024.

EGU24-17865 | ECS | Posters on site | BG1.6

The effect of nano fertilizers on wheat vegetative characters 

Thanawan Buacharoen, Yafei Guo, Eugenia Valsami - Jones, and Sami Ullah

The effect of nano fertilizers on Wheat vegetative characters

Thanawan Buacharoen1, Yafei Guo1, Eugenia Valsami-Jones1*, and Sami Ullah1

*Authors to whom correspondence should be addressed.

1School of Geography, Earth and Environmental Science, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

Wheat is the primary staple cereal in the world. It was the highest cultivation in 2018. According to the British Survey of Fertilizer Practice, total nitrogen use in Great Britain was reduced between 2021 and 2022. At the same time, the total phosphate did not change. Meanwhile, the usage of the total potash has increased compared to last year.  
Conventional fertilizer, which consists of nitrogen, phosphorous, and potassium nutrients, will release Greenhouse gas emissions. The other option to solve this problem is the nano fertilizer. Plants can easily absorb a tiny particle of nano fertilizer, reducing greenhouse gas emissions into the air. Therefore, this study focused on nano fertilizers' effect on plant growth. 

The first set of 30-day-old wheat plants was treated with amorphous calcium phosphate (nano - ACP), a potassium-bearing variant of the ACP (nano ACP - NPK) and a urea and potassium-bearing variant of the ACP (nano - UNPK). Moreover, three conventional fertilizers, which have the same nutrient quantity as same as nano fertilizers, were applied to the second set of plants to be a positive control. On the other hand, blank treatment was used to be a negative control. After harvesting the wheat plants, the shoot length and fresh weight were measured. Also, the ammonium concentration in the soil was examined with the colorimetric method. Maximum root weight was found in the wheat treated with nano–ACP (Average± SD. = 0.39±0.20). The nano ACP - NPK gave the highest value of shoot weight (Average ± SD. = 0.9 ± 0.10), number of seeds (84 seeds) and shoot length (Average ±SD.= 63.33 ± 4.29). However, the maximum ammonium concentration was found in the soil treated with nano ACP. All treatments' seed weight and shoot length differ at the P – value of less than 0.5. Our finding suggests that the nano fertilizers had enhanced vegetative characteristics compared with the conventional fertilizers.

Key word; amorphous calcium phosphate (nano - ACP), potassium-bearing variant of the ACP (nano ACP - NPK) and urea and potassium-bearing variant of the ACP (nano - UNPK)        

How to cite: Buacharoen, T., Guo, Y., Valsami - Jones, E., and Ullah, S.: The effect of nano fertilizers on wheat vegetative characters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17865, https://doi.org/10.5194/egusphere-egu24-17865, 2024.

EGU24-19499 | ECS | Orals | BG1.6

Increased irrigation frequency reduces N2O, but not overall denitrification losses (N2O+N2) from an intensively managed pasture following ruminant urine deposition and nitrogen fertilisation. 

Johannes Friedl, Daniele De Rosa, Clemens Scheer, Michael Fitzgerald, Peter R. Grace, and David W. Rowlings

Intensively managed pasture systems receive large inputs of nitrogen (N) in the form of fertiliser and through the  deposition of ruminant urine, creating hot-spots for denitrification which results in variable amounts of nitrous oxide (N2O) and dinitrogen (N2) emitted. Here we investigated the potential of increased  irrigation frequency to reduce N2O and N2 emissions from an intensively managed pasture in the subtropics after ruminant urine deposition. Irrigation volumes were estimated to replace evapotranspiration and were applied either once (Low-Frequency) or split into four applications (High-Frequency). This irrigation schedule was applied 3 times over the 60 day monitoring period, and fluxes of N2O and N2 were  measured using the 15N gas flux method. In line with farming practice, simulated urine patches (equivalent of 80 g N m-2 applied) were also fertilised three times with 2 g urea N m-2 to show the combined effects of urinary and fertiliser N on N2O and N2 emissions. Highest N2O emissions of up to 60 mg N2O-N m-2 day-1 were observed briefly after urine deposition, decreasing thereafter, resulting in cumulative N2O losses of 169.9 mg N2O-N m-2 from the Low-Frequency treatment. Denitrification was dominated by N2, accounting for more than 89% of  N2O+N2 emitted. Irrigation treatments had no effect on cumulative N2 losses of more than 2700 mg N2-N m-2. However, High frequency irrigation reduced cumulative N2O losses by 35%. Our findings suggest that under conditions of high N availability, increased irrigation frequency can reduce the environmental impact (N2O) of denitrification, but not overall N losses via this pathway. The response of N2O emissions may further indicate that less frequent, but more intense rainfall events will shift the product ratio of denitrification towards N2O, increasing environmentally harmful N losses from intensively managed pasture systems.

How to cite: Friedl, J., De Rosa, D., Scheer, C., Fitzgerald, M., Grace, P. R., and Rowlings, D. W.: Increased irrigation frequency reduces N2O, but not overall denitrification losses (N2O+N2) from an intensively managed pasture following ruminant urine deposition and nitrogen fertilisation., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19499, https://doi.org/10.5194/egusphere-egu24-19499, 2024.

EGU24-20301 | ECS | Orals | BG1.6

Browning and mining increase the nitrous oxide production in sediments of large boreal lakes during winter 

Carlos Palacin-Lizarbe, Stefan Bertilsson, Henri J. Siljanen, Moritz Buck, Lukas Kolh, Dhiraj Paul, Marion Maréchal, Hannu Nykänen, Tong Liu, Mikko Kiljunen, Sanni L. Aalto, Antti J. Rissanen, Christina Biasi, Anssi Vainikka, and Jukka Pumpanen

There is limited knowledge on the N (nitrogen) cycling in winter, on the role of organic matter quality on N cycling, and on the microbes involved.

We studied Lake Viinijärvi and Lake Höytiäinen, large boreal lakes in Finland, each lake with clear-water and brown-water sides. Viinijärvi has an additional side affected by mining activities in the catchment showing higher nitrate and sulphate levels. During winter of 2021 we sampled 5 sites at the beginning and at the end of the ice-covered period. Using the Isotope Pairing Technique we incubated sediment cores with 15NO3- and quantified the products of 1) complete denitrification (N2), 2) truncated denitrification (nitrous oxide, N2O), and 3) dissimilatory nitrate reduction to ammonium (DNRA, NH4+) to infer the process rates. We characterized the DOM using FT-ICR MS. We explore the genetic potential (DNA) of the sediment microbiome by using several sequencing techniques.

During winter the sediment-water interface is an active compartment. The top sediment microbiome has heterotrophic bacteria with flexible metabolism, breaking-down OM during winter despite most of the DOM is recalcitrant. Impacts of browning and mining with major differences between sites. The genetic potential of the sediment microbiome indicates more DNRA and N2O consumption in clear-waters, while in the mining-impacted site and brown-water sites the dominant pathway depends on the sediment layer with truncated denitrification in top layer, and methanogenesis and N-fixation in sub-top layer. The N2O production (d14), that fits the genetic potential, is highest in the mining-impacted site (35-43 µmol N/m2/d), followed by the brown-water sediments (6-11 µmol N/m2/d), with the lowest rates in the clear-water sediments (0-1 µmol N/m2/d).

How to cite: Palacin-Lizarbe, C., Bertilsson, S., Siljanen, H. J., Buck, M., Kolh, L., Paul, D., Maréchal, M., Nykänen, H., Liu, T., Kiljunen, M., Aalto, S. L., Rissanen, A. J., Biasi, C., Vainikka, A., and Pumpanen, J.: Browning and mining increase the nitrous oxide production in sediments of large boreal lakes during winter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20301, https://doi.org/10.5194/egusphere-egu24-20301, 2024.

One of the most pressing issues in intensive agriculture is how we can reduce post-harvest losses of nitrogen (N) on agricultural land. In terms of N use efficiency, the focus so far has been on optimizing the amount and timing of N fertilization, including spatially targeted application (precision agriculture). However, we must be aware that this will not be sufficient to solve the problem of N surplus. The mineralization of crop residues and soil organic matter, especially after harvest, can lead to very high mineral N concentrations in the soil, which ultimately result in high N losses, mainly in the form of nitrate leaching, but also as nitrous oxide (N2O) if the excess N is not immobilized before winter. In crop rotations that do not allow the cultivation of a catch crop, e.g. before winter cereals, the N immobilization potential is by far not high enough to immobilize the available mineral N. In this case, a different approach than plant N immobilization is required to immobilize the excess N before winter.

Here, we present results from laboratory incubations and field trials with different soils under a wide range of conditions based on the stimulation of microbial biomass growth by readily available organic soil amendments. They show that effective immobilization of mineral N in large quantities (almost 100 % reduction of nitrate concentration in the soil) is possible for several months, even under winter conditions. A consistent picture emerges from the results, suggesting that the optimal and longest-lasting effect of N immobilization can be achieved with nitrogen-free organic compounds that are moderately available to microorganisms (i.e., within several weeks rather than a few days). If the microorganisms are offered compounds that are too readily available (extreme case: glucose), a rapid stimulating effect can be triggered, which, however, does not last long enough to immobilize N for several months due to too early remineralization. If too recalcitrant organic compounds are introduced into the soil, the utilization of the additional carbon source takes too long to lead to effective N immobilization. We can therefore say that we have taken a significant step forward in understanding the mechanisms and timing of microbial N immobilization and remobilization, which may prove key to solving the N surplus problem in agriculture. However, the extent to which such management measures can be implemented in agricultural practice also depends on the political framework conditions that make them economically feasible.

How to cite: Brüggemann, N., Zhao, K., and Reichel, R.: How can we reduce post-harvest nitrogen losses on agricultural land? Evaluating the potential of easily degradable, nitrogen-free organic soil additives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20772, https://doi.org/10.5194/egusphere-egu24-20772, 2024.

EGU24-21470 | Orals | BG1.6

Off-target effects of biological nitrification inhibitors on soil microbial substrate use and enzyme activity in an agricultural soil  

Iris Karbon, Konstanze Madani, Judith Prommer, Paula Rojas, Andrew Giguere, Christopher Sedlacek, Taru Sandén, Heide Spiegel, Petra Pjevac, and Lucia Fuchslueger

High nitrification rates and substantial nitrogen (N) losses through nitrate leaching and N2O emissions make current agricultural practices unsustainable, contributing to greenhouse gas emissions and environmental pollution. Synthetic nitrification inhibitors (SNIs) can be amended with N-fertilizers to reduce the conversion of ammonia to nitrate by soil nitrifiers. SNIs aim to increase agricultural nitrogen use efficiency (NUE), but they have several disadvantages (e.g., costs, ineffectiveness in the field, possible accumulation in the food chain). The use of biological nitrification inhibitors (BNIs), naturally occurring in plant root exudates, could become an alternative to SNIs. Potential BNIs should be highly specifically targeting nitrification, but for most known BNIs it is unclear if and how they affect other soil microorganisms and biogeochemical processes.

This study aimed to investigate possible off-target effects of BNIs in agricultural soils. We tested the effect of two candidate BNIs (Methyl 3-(4-hydroxyphenyl)propionate and DL-limonene) in slurry assays on soil microbial communities from a typical Austrian agricultural field (Linz, pH 6.89±0.12, fertilized with 120 kg N ha-1 yr-1), and compared them to a known SNI (nitrapyrin), and two further nitrification inhibitors (phenylacetylene and octyne). The slurries were incubated for eight days and CO2 production, pH, as well as nitrate- and N2O accumulation were measured. At the end of the incubation, we analyzed fluorescence-based enzyme activity, as well as microbial substrate use efficiency using ‘Biolog©’ assays to test the influence on general microbial activity, selected microbial soil processes, and the effectiveness of nitrification inhibition, respectively.

Our results showed that both tested BNIs significantly reduced net nitrification rates, but also affected other biogeochemical processes, even though limonene lost some effectiveness during the incubation. MHPP was heavily respired by heterotrophic microorganisms, leading to a drop in pH and heterotrophic competition for the remaining ammonium, therefore likely acting as an indirect nitrification inhibitor. Extracellular enzymes were also affected: MHPP led to increased potential β-glucosidase activity, while nitrapyrin led to a decrease in potential phosphatase activity. General soil microbial substrate use diversity seemed to be unaffected by the input of either BNIs or SNIs. Whether or not the observed off-target effects are positive and what they mean for the large-scale application of BNIs in the agricultural industry remains to be further investigated.

How to cite: Karbon, I., Madani, K., Prommer, J., Rojas, P., Giguere, A., Sedlacek, C., Sandén, T., Spiegel, H., Pjevac, P., and Fuchslueger, L.: Off-target effects of biological nitrification inhibitors on soil microbial substrate use and enzyme activity in an agricultural soil , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21470, https://doi.org/10.5194/egusphere-egu24-21470, 2024.

EGU24-5418 | Orals | BG1.8

AmazonFACE – A large-scale Free Air CO2 Enrichment Experiment in the Amazon rainforest  

Anja Rammig and David Lapola and the AmazonFACE Team

Tropical rainforests play an important role in the global carbon cycle. They store massive amounts of biomass in their trees and soils, and contribute to climate mitigation by removing carbon from the atmosphere through photosynthesis. It is assumed that plant responses to rising atmospheric CO2 concentrations may have induced an increase in biomass and thus, increased the carbon sink in forests worldwide. Rising CO2 directly stimulates photosynthesis (the so-called CO2-fertilization effect) and tends to reduce stomatal conductance, leading to enhanced water-use efficiency, which may provide an important buffering effect for plants during adverse climate conditions and also have implications for water resources by reducing the loss of soil moisture through transpiration. For these reasons, current global climate simulations consistently predict that undisturbed tropical forests will continue to sequester more carbon in aboveground biomass. However, several lines of evidence point towards a decreasing carbon sink strength of the Amazon rainforest in the coming decades, potentially driven by nutrient limitation, droughts or other factors. Mechanistically modelling the effects of rising CO2 in the Amazon rainforest are hindered by a lack of direct observations from ecosystem scale CO2 experiments. To address these critical issues, we are currently building a free-air CO2 enrichment (FACE) experiment in an old-growth, highly diverse, tropical forest in the Brazilian Amazon and we here present our main hypotheses that underpin the AmazonFACE experiment.  We focus on possible effects of rising CO2 on carbon uptake and allocation, phosphorus cycling, water-use and plant-herbivore interactions, and discuss relevant ecophysiological processes, which need to be implemented in dynamic vegetation models to estimate future changes of the Amazon carbon sink. We give an update on the state of the experiment construction, present the sampling strategy and discuss our approach to upscale tree-level responses to stand scale. 

How to cite: Rammig, A. and Lapola, D. and the AmazonFACE Team: AmazonFACE – A large-scale Free Air CO2 Enrichment Experiment in the Amazon rainforest , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5418, https://doi.org/10.5194/egusphere-egu24-5418, 2024.

EGU24-5862 | Posters on site | BG1.8

Landscape-scale And Spatially Explicit Representation of vegetation dynamics and ecosystem carbon stocks in a hyperdiverse tropical forest ecosystem (LASER) 

Florian Hofhansl, Peter Hietz, Werner Huber, Anton Weissenhofer, and Wolfgang Wanek

Tropical vegetation dynamics and ecosystem carbon (C) stocks typically vary with local topography and forest disturbance history. Yet, neither remote sensing nor vegetation modeling captures the underlying mechanistic processes determining ecosystem functioning and therefore the resulting estimates often do not match field observations of vegetation C stocks, especially so in hyperdiverse tropical forest ecosystems. This mismatch is further aggravated by the fact that multiple interacting factors, such as climatic drivers (i.e., temperature, precipitation, climate seasonality), edaphic factors (i.e., soil fertility, topographic diversity) and diversity-related parameters (i.e., species composition and associated plant functional traits) in concert determine ecosystem functioning and therefore affect tropical forest C sink-strength.

Here, we propose a novel framework designed for integrating in-situ observations of local plant species diversity with remotely sensed estimates of plant functional traits, with the goal to deduce parameters for a recently developed trait- and size-structured demographic vegetation model. Plant-FATE (Plant Functional Acclimation and Trait Evolution) captures the acclimation of plastic traits within individual plants in response to the local environment and simulates shifts in species composition through demographic changes between coexisting species, in association with differences in their life-history strategies.

Our framework may be used to project the functional response of tropical forest ecosystems under present and future climate change scenarios and thus should have crucial implications for assisted restoration and management of tropical plant species threatened by extinction.

How to cite: Hofhansl, F., Hietz, P., Huber, W., Weissenhofer, A., and Wanek, W.: Landscape-scale And Spatially Explicit Representation of vegetation dynamics and ecosystem carbon stocks in a hyperdiverse tropical forest ecosystem (LASER), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5862, https://doi.org/10.5194/egusphere-egu24-5862, 2024.

EGU24-7786 | ECS | Posters on site | BG1.8

Using Landsat composites to document temporal change within Amazonian forest vegetation 

Rajit Gupta, Kalle Ruokolainen, and Hanna Tuomisto

Deforestation of the Amazon rainforest biome has been of considerable international concern, as extensive forest loss has negative impacts on global carbon storage, hydrological cycles and biodiversity. Ongoing climatic change is predicted to make these effects worse, as climatic models suggest that increasing temperatures will often be accompanied by decreasing precipitation. Such change would put the continued existence of the rainforest biome at risk, as moisture-demanding species would be replaced by more drought-resistant ones. Field observations already indicate that even those Amazonian forests that are not directly affected by deforestation have started to change, and that they grow faster, store less carbon and contain more lianas than before. However, field measurements can only be carried out in a limited number of sites, and these only cover a minute part of the entire Amazon biome. To get a more complete understanding of the changes within the remaining Amazonian forests, we are carrying out broad-scale analyses using Landsat imagery. We first did pixel-based compositing using all image acquisitions within a 10-year time window in order to obtain a clean cloud-free reflectance surface. Two such composites were produced for different time periods (2000-2009 and 2013-2022) in order to identify potential changes across the forested landscape. The results are expected to identify areas where significant but non-obvious changes in the structure and/or function of the forest could be happening, and thereby to facilitate in assessing the degree of threat to the ecosystem

How to cite: Gupta, R., Ruokolainen, K., and Tuomisto, H.: Using Landsat composites to document temporal change within Amazonian forest vegetation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7786, https://doi.org/10.5194/egusphere-egu24-7786, 2024.

EGU24-8693 | ECS | Orals | BG1.8

Vertical Variability in Leaf Traits and Environmental Conditions: Implications for Evapotranspiration and Net Ecosystem Exchange above the Amazon Rainforest 

Raquel González Armas, Daniël Rikkers, Hugo de Boer, Vincent de Feiter, Sebastiaan de Haas, Oscar Hartogensis, Wouter Mol, Martin Janssens, Bert Heusinkveld, Chiel van Heerwaarden, Hella van Asperen, Luiz Machado, Cléo Quaresma, Eric Bastos Görgens, and Jordi Vilà Guerau de Arellano

Land-surface representations in weather and climate models simplify the characterization of vegetation as a single layer with bulk environmental conditions. This approach overlooks the vertical variability in leaf traits and environmental conditions within the canopy. This research explores the vertical variability of plant ecophysiology and environmental measurements within the Amazon tropical rainforest during daytime, specifically at the ATTO site, during the late dry season.

To characterize the canopy and its vertical variability, we categorized the canopy into three layers: the top layer (approximately the upper third of the canopy, 18-27 m), the medium layer (approximately the medium third of the canopy, 9-18 m), and the low layer (approximately the lower third of the canopy, 0-9 m) where leaf gas exchange measurements were conducted. Utilizing these layers, we developed a multi-layer model representation that calculates water and CO2 fluxes based on within canopy on-site observations. We conducted sensitivity analyses of the rainforest multi-layer representation to discern the significance of capturing vertical variability in leaf traits and environmental conditions for deriving net fluxes of water and CO2 of the forest.

Current results show that measured leaf traits exhibit vertical variation within the canopy, indicating larger productivity in the top layer compared to the medium and low layers. Environmental conditions, such as incoming radiation in the top layer, fluctuate due to cloud presence. Temperature peaks in the top layer and reaches a minimum at mid-canopy. This results in a non-uniform mixing of the canopy air, maintaining a stable layer within the forest canopy that can potentially affect the distribution of scalars within the canopy. Ongoing analyses explore the similarities and differences between the CO2 exchange between the multi-layer representation and CO2 fluxes from eddy covariance systems, as well as the sensitivity of the former to vertical variability in leaf traits and environmental conditions. By doing so, we aim to gain knowledge on the relevance (or irrelevance) of characterizing vertical variability in land-surface representations and on important processes that may not be well captured yet by land-surface representations.

How to cite: González Armas, R., Rikkers, D., de Boer, H., de Feiter, V., de Haas, S., Hartogensis, O., Mol, W., Janssens, M., Heusinkveld, B., van Heerwaarden, C., van Asperen, H., Machado, L., Quaresma, C., Bastos Görgens, E., and Vilà Guerau de Arellano, J.: Vertical Variability in Leaf Traits and Environmental Conditions: Implications for Evapotranspiration and Net Ecosystem Exchange above the Amazon Rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8693, https://doi.org/10.5194/egusphere-egu24-8693, 2024.

EGU24-10409 | ECS | Orals | BG1.8 | Highlight

The Blind Spot in active tropical forest restoration: unknown impacts on soil carbon 

Nadine Keller, Andrea Jilling, Jun Ying Lim, Lian Pin Koh, Elia Godoong, and Mark A. Anthony

Restoring formerly degraded ecosystems is a promising nature-based solution to mitigate climate change and ensure the provisioning of ecosystem services. Consequently, ecosystem restoration is prominent on both governmental and private agendas (e.g., the Bonn Challenge, airline carbon off-sets by planting trees). Two opposing strategies are employed to promote forest restoration: active versus passive (e.g. natural regeneration) restoration. Assessing how these two approaches influence biodiversity hot spots such as tropical rainforests is uniquely important, but the benefits and limitations of these two techniques have not been thoroughly compared.

Among all tropical moist forests globally, forests of Asia-Oceania have experienced the highest disturbance rates in the past three decades, among which Sabah, Malaysian Borneo, contains forests with past managements to strategically assess long-term forest recovery following active and passive restoration strategies.

How overall forest carbon balance, including carbon storage in the soil, is affected by active versus passive restoration, remains a blind spot not only at this site, but also globally. Given that up to half of the total carbon stored in secondary tropical rainforests can be stored belowground, and that this carbon has slower turn-over rates than above-ground vegetation, Sabah is a perfect testing ground to examine how common forest restoration influences below-ground carbon dynamics and total forest carbon balance.

To address this, we collected soil samples in 15 actively restored and 15 naturally regenerating forest plots in INFAPRO, a restoration project in Sabah. This site was severely, selectively logged for two decades and then actively restored by planting (mainly) Dipterocarpacaea (i.e., diptertocarps) seedlings more than 20 years ago. These trees associate with ectomycorrhizal fungi that mediate important soil biochemical cycles as root-inhabiting tree symbionts.

At this restoration site, active restoration enhanced tree diversity, promoted rare species, and increased above-ground carbon density in living vegetation in comparison to natural regeneration. We hypothesize that active restoration, including the planting of diptertocarps, further enhances the presence of ectomycorrhizal fungi, leading to a suppression of free-living microbial decomposition of plant litter inputs (i.e., the Gadgil effect), and an increase in total soil carbon storage. While this may increase total soil carbon storage, the more persistent fraction that is mineral-associated may decrease. This is due to slowed plant litter decomposition and thus less production of compounds that absorb onto mineral surfaces in addition to less microbial necromass inputs sticking to minerals due to the lower growth efficiency by ectomycorrhizal fungi compared to free-living microbes.

This knowledge on soil carbon storage and its persistence is a much needed contribution to holistic assessments of active restoration compared to natural regeneration. Empirical results on soil carbon analyses will be generated by the time of the EGU conference.

How to cite: Keller, N., Jilling, A., Lim, J. Y., Koh, L. P., Godoong, E., and Anthony, M. A.: The Blind Spot in active tropical forest restoration: unknown impacts on soil carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10409, https://doi.org/10.5194/egusphere-egu24-10409, 2024.

EGU24-10719 | ECS | Posters on site | BG1.8

Multiple plant root strategies improve phosphorus acquisition under elevated CO2 in the Amazon rainforest 

Nathielly Martins and the AmazonFACE team

The impact of elevated atmospheric CO2 concentrations on forest productivity depends on the capacity of plants to balance the additional CO2 with the demand for additional nutrients. One hypothesis states that plants may allocate the extra carbon belowground in producing and maintaining fine roots to alleviate nutrient limitation. In the Amazon basin, where approximately 60% of the forest is on old and weathered soil, the litter layer is an important nutrient source. In some regions, root mats growing in the litter layer can be observed, where the roots intercept the newly mineralized nutrients before they reach the soil and may bind to the mineral matrix. To improve their nutrient uptake capacity, trees can either modify their root morphology to a ‘do-it-yourself” strategy, increasing root length and branching intensity or alternatively, they can outsource the same function by investing in symbioses with mycorrhizal fungi. Additionally, fine roots can stimulate microbial decomposition of recalcitrant substrates (e.g., wood debris) by exuding low molecular weight organic compounds (LMWO) and increasing P mobilization by phosphatase activity without changing decomposition. These strategies could also vary depending on the growing depth of roots due to the different physical conditions between the organic upper and mineral layers. However, little is known about the role of trait differences in roots under higher CO2 concentrations.

To increase our understanding of belowground responses of understory plants to elevated CO2 concentrations, we set up an Open-Top Chamber experiment in a lowland forest in the Central Amazon. We observed that under eCO2, root productivity did not change in the litter layer but showed a decreased pattern in the soil layer. Moreover, plants intensified root foraging in the litter layer by increasing their specific root length more than threefold under elevated CO2. In contrast, roots in the soil mineral layer followed an “outsourcing” strategy by increasing arbuscular mycorrhizal colonization by 117%. In addition, our results showed a decrease in the organic P in litter without a change in C decomposition under higher CO2 concentrations, suggesting a direct P mobilization.

Our results suggest that plants may plastically adjust resource acquisition strategies to increase nutrient uptake efficiency and be able to directly affect P mobilization from the litter layer. We conclude that this ability of plants to adapt their P acquisition strategies in response to eCO2 by tackling different sources within the litter-soil continuum and maximizing nutrient acquisition represents an important mechanism to support the CO2 fertilization effect and might affect the resilience of the Amazonian rainforest to climate change, and thus global carbon balance.

How to cite: Martins, N. and the AmazonFACE team: Multiple plant root strategies improve phosphorus acquisition under elevated CO2 in the Amazon rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10719, https://doi.org/10.5194/egusphere-egu24-10719, 2024.

EGU24-10823 | Posters on site | BG1.8

Seasonal variation of water isotopes in different forest ecosystems in the Central Amazon  

Flavia Durgante, Jochen Schöngart, Maria Teresa Fernandez Piedade, Susan Trumbore, Sam P. Jones, Didier Gastmans, Shujiro Komiya, Rafael Oliveira, Gerd Gleixner, Jost Lavric, Heiko Moossen, Heike Geilmann, Bianca Weiss, Maira Macedo, Lorena Maniguage Rincon, Priscila Amaral de Sá, and Florian Wittmann

The Central Amazon comprises mosaics of forest ecosystems with different water dynamics and soil characteristics. The water dynamics from each ecosystem affect the evaporation signal seasonally expressed in the water isotopes (δ18O and δD). The recognition of the evaporative signal from different forest segments is essential for the development of hydrological and eco-hydrological studies in the complex Amazon biome. In this study, we used stable isotopes to evaluate how the water dynamics of different forest ecosystems affect seasonal water evaporative signals in each environment. We monitored water isotope signals from 2018-2020 in different compartments (precipitation, soil, stream, groundwater, river, lake, and flooded areas) of two non-flooded forests (clay soils - “plato” and sandy soils – “campinarana”) and three flooded forests (pristine igapó, disturbed igapó and várzea). We found that the soil water sampled by lysimeters in the upland forest seasonally expresses the isotope signal from the rainwater (Local Meteorical Water Line-LMWL) without a strong evaporative overprint. The water isotope signal from flooded forests is more variable. The isotopic composition of pristine rivers has an overlapping signal from the rain isotope signal (LMWL). However, water from the river downstream from the very large hydropower dam (Balbina) has a strong evaporative signal. During the flooded period, the water within the flooded forests has a more evaporated signal than the signal from the source (such as the river or lakes). During the non-flooded period, the water isotope signal from the soil inside the flooded forest corresponds to the rainwater signal. To the best of our knowledge, these represent the first description of the water isotope signals from the compartments in different Central Amazonian forest ecosystems. They illustrate and identify the high variation of the evaporative signal from the complex Amazon biome, knowledge that is essential to understanding how different forest ecosystems influence water recycling in the Amazon hydrological cycle.

How to cite: Durgante, F., Schöngart, J., Piedade, M. T. F., Trumbore, S., Jones, S. P., Gastmans, D., Komiya, S., Oliveira, R., Gleixner, G., Lavric, J., Moossen, H., Geilmann, H., Weiss, B., Macedo, M., Rincon, L. M., Sá, P. A. D., and Wittmann, F.: Seasonal variation of water isotopes in different forest ecosystems in the Central Amazon , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10823, https://doi.org/10.5194/egusphere-egu24-10823, 2024.

EGU24-11089 | ECS | Orals | BG1.8

Seasonal drought reduces microbial diversity and functional richness in the Amazon 

Jessica Finck, Dan Frederik Lange, Beto Quesada, Bruno Takeshi Tanaka Portela, Sávio José Filgueira Ferreira, Fernando Dini Andreote, Erika Kothe, and Gerd Gleixner

Tropical rainforests such as the Amazon are of high importance as a global carbon sink. Due to its well-known nutrient limitation, the Amazon rainforest relies heavily on rapid microbial decomposition of biomass to release freshly available nutrients for plant growth. Despite the fundamental importance of decomposers for this ecosystem, little is known about the biodiversity of such microbiomes, their functional activity, and spatial and seasonal variability. We used 16S rDNA and ITS rDNA sequencing to analyze the microbial communities of the Amazon’s terra firme and the much drier white-sand ecosystems during the dry and wet seasons in 2022. Bacterial microbiomes differed significantly between seasons, displaying lower bacterial species richness and diversity in response to seasonal drought. In contrast, fungal richness and diversity differed strongly between sites, but were less affected by seasonal variation, suggesting their hyphae network and associations with plants as potential protectors against drought effects. Fungal and bacterial communities alike showed lower abundance of taxa involved in organic matter decomposition following seasonal drought. These changes were also reflected at the functional level, with samples collected during the dry season and at white-sand sites featuring lower abundances of decomposition and denitrification pathways. Soil hydro-chemical data also emphasizes how prolonged drought may limit soil nutrient supply via local microbiomes. Our results suggest that the reduced nutrient availability and soil connectivity during drought and within the white-sand ecosystem lower microbial activity and functional redundancy, henceforth demonstrating a strong impact of ecosystem type and drought on tropical microbiomes and their functional capacities. Our results further highlight that the observed increase in droughts in the Amazon rainforest may additionally limit nutrient supply through the microbial community, limiting carbon sequestration in the ecosystem with negative consequences for the global climate system.

How to cite: Finck, J., Lange, D. F., Quesada, B., Portela, B. T. T., Ferreira, S. J. F., Andreote, F. D., Kothe, E., and Gleixner, G.: Seasonal drought reduces microbial diversity and functional richness in the Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11089, https://doi.org/10.5194/egusphere-egu24-11089, 2024.

EGU24-11932 | ECS | Posters on site | BG1.8 | Highlight

Attributing future Amazon forest loss to land-use change and climate change 

Selma Bultan, Sebastian Bathiany, Niklas Boers, Raphael Ganzenmueller, Gergana Gyuleva, Yiannis Moustakis, and Julia Pongratz

The Amazon rainforest is of vital importance for biodiversity, regional climate, as well as global water and carbon cycling. However, over the past decades, ecosystem functions of the Amazon rainforest have diminished through a combination of increasing anthropogenic pressure in form of land-use change and intensifying natural disturbances. Recent studies suggest that unabated deforestation and climate change could tip large parts of the Amazon towards a different, savanna-like vegetation state. Although such a scenario could lead to severe impacts on the climate system from regional to global scales, a holistic assessment of the risk of large-scale Amazon forest loss due to land-use change and climate change in the 21st century is currently lacking. 

Here, we use data from multiple CMIP6 Earth System Models under two low climate mitigation scenarios to attribute Amazon forest loss until 2100 to land-use change and climate change, applying a novel ensemble member approach. We find that around 1 mio. km2 of forest will diminish by 2100, corresponding to a loss of around one fifth of the pre-industrial forest area. Historically and over the first half of the 21st century, land-use change is the main driver of forest loss, whereas forest loss due to climate change increases non-linearly beyond 2°C global warming and even exceeds forest loss caused by land-use change by the end of the century in some models. We further find a consistent increase in the probability of abrupt (rather than gradual) forest loss with progressing deforestation and climate change. 

Overall, our results highlight that under plausible low mitigation socio-economic pathways 1) the Amazon rainforest will substantially diminish due to anthropogenic climate and land-use change and 2) the risk of forest loss due to climate change increases significantly beyond 2°C global warming. This stresses the urgent need for increased efforts to reduce deforestation and forest degradation through forest protection, conservation and sustainable land-use practices and for climate mitigation efforts in line with the Paris Agreement.

How to cite: Bultan, S., Bathiany, S., Boers, N., Ganzenmueller, R., Gyuleva, G., Moustakis, Y., and Pongratz, J.: Attributing future Amazon forest loss to land-use change and climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11932, https://doi.org/10.5194/egusphere-egu24-11932, 2024.

EGU24-12275 | ECS | Posters virtual | BG1.8

Plant nutrient resorption efficiency in a Central Amazon rainforest 

Julyane Santos, Sabrina Garcia, Laynara Lugli Lugli, Izabela Aleixo, Tomas Domingues, Bruno Takeshi, Ana Oliveira, Juliane Menezes, David Lapola, and Carlos Quesada

Nutrient resorption efficiency (RE) occurs before leaf abscission, with nutrients being actively transported via phloem through abscission zones from senescent leaves to be used in other parts of the plant. It is an essential nutrient conservation strategy for tropical plants growing on soils depleted of P (phosphorus) and other rock-derived elements (K; potassium, Ca; calcium, and Mg; magnesium), influencing nutrient cycling in these ecosystems. The environment heavily influences resorption; therefore, a better understanding of nutrient resorption processes in tropical trees, which act as a carbon sink, is important when facing the rapid climatic changes. Thus, our objective was to investigate the resorption of five macro elements (C; carbon, N; nitrogen, P, K, Ca, and Mg) and three micronutrients (Fe; iron, Zn; zinc, and Mn; manganese), and the effects of leaf longevity, foliar nutrient concentration, and canopy position in RE in a lowland forest tree community in Central Amazon. The study was conducted in two experimental plots at the AmazonFACE Program (Free-Air CO2 Enrichment) in Manaus, Amazonas, Brazil. Two 40 m scaffolding towers in the center of the plot granting access to the canopy of the twelve tree species studied. Young, mature, and senesced leaves were collected, totaling 188 leaves, from 2018 to 2019 for nutrient laboratory analysis. We found that K, P, and N were the most resorbed nutrients (42%, 33%, and 7%, respectively), while Zn, Fe, and Ca were the most accumulated (-65%, -27%, and -21%, respectively). Additionally, we found that C, N, P, Fe, and Zn resorption positively correlated with their concentration in leaves. Likewise, P, N, Mg, K, and C resorption positively correlated with leaf longevity. On the other hand, canopy position influenced the resorption of three elements: C, K, and Zn resorption. Our results suggest that P was the scarcest nutrient stored in leaves; the higher resorption efficiencies for K and P than for N suggest higher plant internal nutrient recycling of K and P, likely due to their scarcity in the soil during leaf senescence, species with longer leaf life span are often assumed to have higher nutrient resorption efficiency than species with short leaf life span to reduce nutrient loss, species in the community studied can optimize leaf anatomy and physiology to make the best use of the variable light encountered regarding of its position on the forest vertical profile. These trends suggest that nutrient resorption from senescent leaves may be a general adaptive strategy for conserving nutrients by plants in tropical forests growing on nutrient-poor soils, which should be considered when predicting future scenarios.

How to cite: Santos, J., Garcia, S., Lugli, L. L., Aleixo, I., Domingues, T., Takeshi, B., Oliveira, A., Menezes, J., Lapola, D., and Quesada, C.: Plant nutrient resorption efficiency in a Central Amazon rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12275, https://doi.org/10.5194/egusphere-egu24-12275, 2024.

EGU24-12352 | Posters on site | BG1.8

Tropical forests: a source of CO! 

Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Shujiro Komiya, Sam P Jones, Santiago Botía, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Justus Notholt, and Susan Trumbore

CO is an indirect greenhouse gas because it reacts with OH, therefore increasing the lifetime of methane: its possible indirect radiative forcing has been estimated as larger than that of N2O. Previous studies have indicated that temperate and boreal forests act as a net sink for CO, but the role of tropical rain forest ecosystems has not been investigated. We present the first CO flux measurements from tropical forest and forest soils, and can show that tropical rain forests are a net source of CO to the atmosphere.

During two intensive field campaigns at tropical rain forest fieldsite ZF2 (Manaus, Brazil), soil CO fluxes were determined by use of flux chambers. In addition, nighttime vertical CO concentration profiles were measured and different micro-meteorological techniques were applied to estimate ecosystem CO fluxes. Furthermore, we performed nocturnal CO concentration measurements in a seasonally inundated valley, which was hypothesized as a potential hotspot for ecosystem CO emissions.

Soil CO fluxes ranged from -0.19 (net soil uptake) to 3.36 (net soil emission) nmol m-2 s-1, averaging ∼1 nmol CO m-2 s-1. Fluxes varied with season and topographic location, with highest fluxes measured in the dry season in a seasonally inundated valley. Nocturnal canopy air profiles show consistent decreases in CO mixing ratios with height, which requires positive surface fluxes between 0.3 and 2.0 nmol CO m-2 s-1. Similar fluxes are derived using a canopy layer budget method, which considered the nocturnal increase in CO over time (1.1 to 2.3 nmol CO m-2 s-1). Using wet season concentration profiles of CO, the estimated valley ecosystem CO production exceeded the measured soil valley CO fluxes, indicating a potential contribution of the valley stream to overall CO emissions.

Based on our field observations, we expect that tropical rain forest ecosystems are a net source of CO. Extrapolating our first observation-based tropical rain forest soil emission estimate of ∼1 nmol m-2 s-1, a global tropical rain forest soil emission of ∼16.0 Tg CO yr-1 is suggested. Total ecosystem CO emissions might surpass this estimate, considering that valley streams and inundated areas could serve as local CO emission hotspots. To further improve tropical forest ecosystem CO emission estimates, more in-situ tropical forest soil and ecosystem CO flux measurements are essential.

How to cite: van Asperen, H., Warneke, T., Carioca de Araújo, A., Forsberg, B., José Filgueiras Ferreira, S., Röckmann, T., van der Veen, C., Bulthuis, S., Komiya, S., P Jones, S., Botía, S., Ramos de Oliveira, L., de Lima Xavier, T., da Mata, J., de Oliveira Sá, M., Ricardo Teixeira, P., Andrews de França e Silva, J., Notholt, J., and Trumbore, S.: Tropical forests: a source of CO!, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12352, https://doi.org/10.5194/egusphere-egu24-12352, 2024.

EGU24-13403 | Posters on site | BG1.8

Understanding the role of temperature in forest edges: a remote sensing approach in the Brazilian Amazon 

Skye Hellenkamp, Paulo Brando, and Bela Starinchak

Land surface temperature (LST) is a dominant influence on the health and productivity of ecosystems. Deforestation in the Brazilian Amazon has led to extensive land-use transitions from forests to pastures and industrialized agriculture. This has resulted in elevated land surface temperatures, with impacts on the energy, water, and carbon cycles. Forest fragmentation increases the area of forest edges, where exposure to sunlight, wind, and bordering land-uses alters the forest microclimate. While the changes in forest edge temperature due to bordering land-use transitions is acknowledged, the magnitude of these changes between specific agricultural land management practices has yet to be determined. This case study uses a remote sensing approach to investigate forest edge temperatures in Mato Grosso, Brazil, with a primary goal of discerning how distinct agricultural practices, such as cover cropping or double cropping, can potentially mitigate adverse temperature impacts on forest edges. These findings will strengthen the understanding of forest edge temperatures, with a focus on the potential of sustainable land management, contributing to broader conservation efforts in the Amazon Rainforest. 

How to cite: Hellenkamp, S., Brando, P., and Starinchak, B.: Understanding the role of temperature in forest edges: a remote sensing approach in the Brazilian Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13403, https://doi.org/10.5194/egusphere-egu24-13403, 2024.

EGU24-14471 | Orals | BG1.8

Constraining uncertainty in terrestrial tropical carbon flux dynamics requires capturing local biogeochemical influences on structure and function 

Elsa Ordway, Gregory Asner, David Burslem, Stuart Davies, Simon Lewis, Mohamad Mohiza, Nilus Reuben, O'Brien Michael, Phillips Oliver, Qie Lan, Sabrina Russo, Xiangtao Xu, Marcos Longo, and Paul Moorcroft

Spatial heterogeneity in tropical forest productivity and resulting rates of carbon uptake and storage emerge from variation in ecosystem structure and functional traits reflecting differences in climate, edaphic conditions, evolutionary history, and natural and anthropogenic disturbance histories. Yet, models poorly represent this heterogeneity. Remote sensing data provide landscape-scale measures of tropical forest heterogeneity in structure and functional traits that can be used to advance terrestrial biosphere models. To examine whether forest functional traits related to photosynthetic capacity can be used to improve predictions of tropical biomass dynamics and carbon fluxes, we parameterized the Ecosystem Demography model version 2.2 (ED2.2) using canopy traits derived from visible to shortwave infrared (VSWIR) airborne imaging spectroscopy data across an edaphic gradient in Borneo. We find significant site-level differences in relationships between SLA and foliar nutrient concentrations, suggesting that remotely sensed foliar traits can be used to capture variation in photosynthetic capacity at large, edaphically varying spatial scales. We further show that plant functional types parameterized with site-constrained trait values yield more accurate predictions of canopy demography, forest productivity and above-ground biomass dynamics than simulations that depend solely on parameterization of edaphic conditions. However, the most substantial improvements result from allowing for site-level variation in background disturbance rates in the model. Our study reveals the importance of capturing tropical forest heterogeneity in terrestrial biosphere models, particularly as it relates to nutrient availability and disturbance processes. 

How to cite: Ordway, E., Asner, G., Burslem, D., Davies, S., Lewis, S., Mohiza, M., Reuben, N., Michael, O., Oliver, P., Lan, Q., Russo, S., Xu, X., Longo, M., and Moorcroft, P.: Constraining uncertainty in terrestrial tropical carbon flux dynamics requires capturing local biogeochemical influences on structure and function, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14471, https://doi.org/10.5194/egusphere-egu24-14471, 2024.

EGU24-14707 | Orals | BG1.8 | Highlight

Do local-scale climate tipping points exist in Amazon forests, and can they warn of impending basin-scale tipping point vulnerability? 

Scott Saleska, Natalia Restrepo-Coupe, Kleber Silva Campos, Luciana Alves, Valeriy Ivanov, Marcos Longo, Raimundo de Oliveira Jr., Rodrigo Silva, Marielle Smith, Raphael Tapajos, and Tyeen Taylor

The risk of a tipping point for Amazon forests — a perturbation threshold beyond which abrupt, irreversible (or difficult to reverse) changes in forest function and large-scale tree die-off occur — motivates much recent Amazon forest science and policy work to understand and reduce the risk. However, virtually all the science to date focuses on tipping points as a basin-wide phenomenon. To understand how large-scale tipping points may be triggered, we urgently need to study mechanisms of tipping point onsets at local-scales in pivotal forests.

 Here, we used 12+ years of observations (spread over two decades from 2001-2020) of water and energy fluxes from eddy covariance measurements, and associated ecological and meteorological observations in the eastern Amazon basin, to investigate the potential for hydrological extremes to induce a “local scale” tipping point.  We focused on forest transpiration capacity (the capacity of vegetation to convert available energy into latent heat, quantified as the ratio of transpiration to incoming radiation, T/R) because transpiration in eastern Amazon forests is the basis for precipitation recycling on which forests to the west depend.

Our observations encompassed two strong El Niño droughts, in 2002-2003 and in 2015-2016. Both events were characterized by similarly reduced rainfall; however, the 2015 El Nino was further amplified by an ongoing warming trend, which made for a hotter drought with higher atmospheric vapor demand, exacerbating the drought effects on the forest. 

This amplification of drought by warming was apparently sufficient to cause widely divergent responses to the two droughts.  The forest responded positively to the 2002 drought, with increases in canopy conductance (Gs) and in evapotranspiration, consistent with a stable forest transpiration capacity (T/R) that saw proportional increases in T in response to higher R. By contrast, the transpiration capacity (sustained through two decades of previous dry seasons and the 2002 El Nino drought) collapsed during the 2015 drought.  Notably, the forest’s ability to transpire did not return with the rain as the drought ended, but remained low for several years. Thus, we concluded that the difference between the 2002 and 2015 El Nino’s was sufficient to push the forest past a “tipping point” threshold in forest transpiration function, into an alternate state of reduced function in which it remained trapped until the forest could regenerate the canopy with new leaves.  

This discovery of the phenomenon of local-scale short-term tipping point dynamics in forest canopy function opens the door to investigating and understanding how basin-scale tipping points may emerge from local phenomena, and how careful local observations may provide early warnings of impending larger-scale forest vulnerability.

How to cite: Saleska, S., Restrepo-Coupe, N., Silva Campos, K., Alves, L., Ivanov, V., Longo, M., de Oliveira Jr., R., Silva, R., Smith, M., Tapajos, R., and Taylor, T.: Do local-scale climate tipping points exist in Amazon forests, and can they warn of impending basin-scale tipping point vulnerability?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14707, https://doi.org/10.5194/egusphere-egu24-14707, 2024.

EGU24-14880 | Orals | BG1.8 | Highlight

Biodiversity-mediated ecosystem functioning in the Amazon: a remote sensing approach 

Maria J. Santos and Diego Villamaina

The megadiverse system of the Amazon contributes to many local and global ecosystem processes with potential to trigger an irreversible shift in the functioning of our planet. Yet, Amazon’s biodiversity is complex and remains mostly understudied. Biodiversity distribution patterns likely affect the functioning of this crucial system, yet large scale systematic assessments are still lacking. Herein we examine how can optical remote sensing contribute to understanding biodiversity patterns in the Amazon. We use the spectral diversity approach to map the heterogeneity of spectral signatures as a proxy for heterogeneity in canopy composition using Sentinel-2 imagery over the entire basin. Our map is able to reproduce patterns of primary, secondary and deforested areas, and within the forest areas, the patterns of spectral richness and spectral turnover resemble those expected for the Amazon system, with rapid turnover in species composition closer to the waterways and more stable plant community compositions away from the waterways. We then examine whether the locations with higher or lower spectral variability correspond to different community and trait compositions. We examine the relationship between spectral richness and turnover and the presence of hyperdominant trees in the Amazon. We also examine the multivariate trait space including Specific leaf area (SLA), Leaf dry matter content (LDMC), Leaf nitrogen content (LNC), and Leaf Phosphorous content (LPC) along the gradient of spectral variability to find that trait syndromes vary along the gradient of spectral diversity. These results show that biodiversity biodiversity gradients among the Amazon may explain differences in ecosystem functioning and that approaches such as the spectral heterogeneity may start to shed some light into such relationships, especially over entire and important ecosystems like the Amazon. Further examinations of these processes and relationships are therefore required and will contribute to our better understanding of the feedbacks between biodiversity and earth system processes.

How to cite: Santos, M. J. and Villamaina, D.: Biodiversity-mediated ecosystem functioning in the Amazon: a remote sensing approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14880, https://doi.org/10.5194/egusphere-egu24-14880, 2024.

EGU24-15363 | ECS | Posters on site | BG1.8

Fire trends on ATTO footprint over the last two decades 

Gisela Dajti, David Urquiza, Hella van Asperen, Sam Jones, Shujiro Komiya, Jost Lavric, Stijn Hantson, and Santiago Botía

The Amazon Tall Tower Observatory is located in the central Amazon (S 02 08.9°, W 059 00.2°) inside the Uatumã Sustainable Development Reserve and has been monitoring continuously the atmospheric composition since 2013. The site is set up with two measurement towers of 80 meters and a tall tower of 325 meters for continuous monitoring of trace gases and aerosols. The surface influence (hereafter footprint) of the research station covers a large area to the east and northeast with the fetch extending for hundreds of kilometres, overlapping with the main branch of the Amazon River reaching the city of Belém (during the dry season) and large swaths of primary forest over the Amapá state (during the wet season).  We have analysed trends in fire counts (using MODIS thermal anomalies) and burned area (GFED4 and GFED5, Global Fire Emission Database 4th and 5th version) over the last two decades (2000-2023) inside the ATTO footprint and found that both show increasing and significant trends for the months of June (14,68 fire counts/year) July (42,23 fire counts/year), August (59,6 fire counts/year) and September (148,6 fire counts/year). Spatially, fires are located on easternmost part of the footprint and there is no evidence of a spatial trend approaching ATTO. Interestingly, in October the mean longitude of the fire counts over the period of interest shows a trend migrating from -56°W to -54°W, but with no significant trend in fire counts. We complement these results by analysing mole fractions of carbon monoxide (a proxy for biomass burning) at ATTO for an overlapping period (2013-2023). In addition, we provide links to the environmental drivers explaining these trends and spatial patterns. Observing biogenic greenhouse gases enhances our understanding of the Amazonian rainforest’s carbon budget, influenced by climatic conditions, land use alteration and other anthropogenic impacts.  

How to cite: Dajti, G., Urquiza, D., van Asperen, H., Jones, S., Komiya, S., Lavric, J., Hantson, S., and Botía, S.: Fire trends on ATTO footprint over the last two decades, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15363, https://doi.org/10.5194/egusphere-egu24-15363, 2024.

EGU24-16499 | ECS | Posters on site | BG1.8

NO and O3 mixing ratios above the canopy in the rainforest 

Carolina Monteiro, Anywhere Tsokankunku, Hartwig Harder, and Stefan Wolff

Nitrogen oxides (NOx = NO and NO2) are chemical compounds that affect and control the abundance of ozone (O3) and hydroxyl radicals (OHx = OH and HO2), the main oxidizing agents in the atmosphere. In pristine environments, these oxidizers react with biogenic volatile organic compounds (BVOCs), such as isoprenes, to produce oxidized secondary organic products. Further reaction with NOx leads to the formation of nitrates. Nitrates deposit on surfaces and grow aerosol particles which eventually act as cloud condensation nuclei. This makes NOx an important atmospheric component, even in low concentrations. Therefore, NOx measurements are being made at the Amazon Tall Tower Observatory (ATTO) research site in the central Amazon forest basin, a pristine region.

Here we present the measurements of NO, O3 and meteorological parameters collected at the Walk-up tower, at a height of approximately 40 m, just above the canopy.  

How to cite: Monteiro, C., Tsokankunku, A., Harder, H., and Wolff, S.: NO and O3 mixing ratios above the canopy in the rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16499, https://doi.org/10.5194/egusphere-egu24-16499, 2024.

EGU24-18326 | ECS | Posters on site | BG1.8

Mapping Phosphorus Forms in the Pan-Amazon Region: A Machine Learning Approach 

Joao Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara F. Lugli, Carlos A. Quesada, Luis Carlos C. Hurtarte, Mateus D. de Paula, and David M. Lapola

Phosphorus (P) is a key driver of terrestrial productivity. However, the lack of spatial data on various P forms in soils hinders the large-scale application of process-based vegetation models. To address this, we used a model selection approach based on Random Forest regression models to predict different P forms (total, available, organic, inorganic, and occluded P) in the pan-Amazon region. Our models were trained and tested using data from 108 sites of the RAINFOR network, including soil group and textural properties, geolocation, nitrogen (N) and carbon (C) contents, terrain elevation and slope, soil pH, and mean annual precipitation and temperature. The models were then applied to several spatially explicit datasets to predict the target P forms. The resulting maps depict the distribution of total, available, organic, inorganic, and occluded P forms in the topsoil profile (0 - 30 cm) at a spatial resolution of 5 arcminutes. Our models achieved a good level of mean accuracy (77.37 %, 76,86 %, 75.14 %, 68.23 %, and 64.62% for the total, available, organic, inorganic, and occluded P forms, respectively). Our results reveal a clear gradient of soil development and nutrient content, with the mapped area generally exhibiting very low total P concentration status. Total N was the most important variable for predicting all target P forms. Despite some gaps in the training and testing data, most of the area could be mapped with a good level of accuracy. Our maps can aid in the parametrization and evaluation of process-based terrestrial ecosystem models and promote the testing of new hypotheses about P availability and soil-vegetation feedbacks in the pan-Amazon region.

How to cite: Darela-Filho, J. P., Rammig, A., Fleischer, K., Reichert, T., Lugli, L. F., Quesada, C. A., Hurtarte, L. C. C., de Paula, M. D., and Lapola, D. M.: Mapping Phosphorus Forms in the Pan-Amazon Region: A Machine Learning Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18326, https://doi.org/10.5194/egusphere-egu24-18326, 2024.

EGU24-18954 | Posters on site | BG1.8 | Highlight

Amazonian understory response to elevated CO2 

Tomas Domingues, Amanda Damasceno, Sabrina Garcia, Izabela Aleixo, Juliane Menezes, Iokanam Pereira, Martin De Kauwe, Vanessa Ferrer, Katrin Fleischer, Thorsten Grams, Flávia Santana, Iain Hartley, Bart Kruijt, Laynara Lugli, Nathielly Martins, Richard Norby, Bruno Portela, Anja Rammig, Carlos Quesada, and David Lapola and the AmazonFACE team

The response of plants to increasing atmospheric CO2 concentration depends on several factors such as life history of specific species, availability of water, nutrients and light, and the ecological context that the plants are found. Although several experiments with elevated CO2 (eCO2) have been done worldwide, none was performed in the Amazon forest understory focusing in a community growing naturally. The understory of the central Amazon is limited by both light and phosphorus. Understanding how such ecosystem responds to eCO2 is important to foresee how the forest will function in the future. Also, quantifying the response of this forest compartment helps to constrain Ecosystem Models that compute carbon and water fluxes.

For this study, we used the open-top chamber (OTC) approach, with a CO2 enrichment of +250 ppm above the ambient concentration. Eight OTC were installed (4 with ambient CO2 and another 4 with eCO2) in the understory of a natural forest in the Central Amazon, approximately 70 km from Manaus city. The eCO2 experiment started in November 2019 and, after 120 days, we quantified the average community response of the following photosynthetic parameters: light saturated carbon assimilation rate (Asat), stomatal conductance (gs), transpiration rate (E), intrinsic water use efficiency (iWUE), apparent quantum yield (Φ), light compensation point (LCP), maximum carboxylation capacity (Vcmax), maximum electron transport rate (Jmax). After 240 days of treatment, we quantified mean individual leaf production and accumulated leaf production, leaf area (Lfarea). After 300 days, we quantified the increment in base diameter (BD), height (Ht) and relative growth rate (RGR).

Under eCO2, we observed increases in Asat (67%), Jmax (19%), Φ (56%), and iWUE (78%), in agreement with the hypothesis that plants near the light compensation point respond strongly to eCO2. We also detected an increase in Lfarea (51%) and BD (65%), indicating that the extra primary productivity was not allocated to growth in height, but to supporting more light intercepting organs (leaf and conducting tissues). No detectable changes were observed for the other variables.

Apart from the expected increase in assimilation rates, understory plants in Central Amazon responded positively to eCO2 by increasing their ability to capture and use light (leaf size, Φ, and Jmax). The increment in leaf area while maintaining E rates signifies that this forest compartment will increase its contribution to the whole forest water fluxes to the atmosphere. That might be related to the prevailing acquisitive strategy necessary for competing for phosphorus brought by water flow through plants. As a possible consequence, this forest might be less resistant to extreme drought associated with El Niño years.

Funding: Coordination for the Improvement of Higher Education Personnel - CAPES (grants 312589/2022-0) and São Paulo Research Foundation-FAPESP processes numbers (2022/07735-5) and (2015/02537-7). 

How to cite: Domingues, T., Damasceno, A., Garcia, S., Aleixo, I., Menezes, J., Pereira, I., De Kauwe, M., Ferrer, V., Fleischer, K., Grams, T., Santana, F., Hartley, I., Kruijt, B., Lugli, L., Martins, N., Norby, R., Portela, B., Rammig, A., Quesada, C., and Lapola, D. and the AmazonFACE team: Amazonian understory response to elevated CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18954, https://doi.org/10.5194/egusphere-egu24-18954, 2024.

EGU24-19868 | ECS | Orals | BG1.8

Assessing the relative importance of soil moisture and temperature on the nighttime CO2 flux: two contrasted ecosystems study cases in West Africa 

Renaud Koukoui, Ossénatou Mamadou, Djideme Franck Houénou, Bernard Heinesch, Jean-Martial Cohard, Mamadou Bousso, Christophe Peugeot, and Basile Kounouhéwa

In the context of global warming and rapid increase of population particularly in West Africa where forest ecosystems are threatened by land use conversion, understanding the biophysical variables influencing the ecosystem respiration (Reco) becomes vital for predicting the carbon balance in response to climate change. Using the Eddy Covariance method, and without an automatic chamber system, a key step to determine Reco is to use nighttime Net Ecosystem Exchange (NEE) data to establish a functional relationship using Reco main driver’s as an input.  However, to ensure that the input variable(s) used in this relationship is the most relevant governing this process, especially in tropical regions where both data and studies are scarce, it remains therefore an important prerequisite to examine the relative importance of potential drivers. This prior analysis is especially needed because: (1) the main driver may differ according to the climate and locations; (2) collinearity between some potential drivers could be a complex issue in identifying the main one; (3) the scale of influence of these drivers on the nighttime CO2 emission at some sites is still unknown. In our study, we therefore investigated the relative importance and scale of influence of soil moisture (Hsoil) and temperature (Tsoil) at different depths on the nighttime NEE. Since variations of the net CO2 flux exchanged can differ from one site to another, in this study we used data acquired from 2008 to 2017 above two contrasted ecosystems: a mixed culture (Nalohou, lat. 9.74°N, long. 1.60°E) and an open clear forest (Bellefoungou, lat. 9.79°N, long.1.72°E) located in Sudanian climate, Northern Benin. Both sites belong to the AMMA-CATCH (African Monsoon Multidisciplinary Analysis-Coupling of the Tropical Atmosphere and Hydrological Cycle) observatory. Two methods have been then deployed: the first one which is the Mutual Information, was used to identify the relative importance of Hsoil and Tsoil in controlling the nighttime NEE; the second one, the wavelet transform allows determining the scales of influence of these variables on nighttime NEE. We found that periodicity of nighttime NEE response to the two variables differs according to the season.  Soil moisture appears as the most important variable in the nighttime NEE variation whatever ecosystems and seasons analyzed. During wet seasons, nighttime NEE response to soil moisture exhibits a periodicity lower than 64 nights with synchronization every 07 nights, while this synchronization can extend from 12 to 14 nights during the dry season. This fast response of nighttime CO2 emissions to soil moisture during the wet season results from a significant increase in precipitation. During the dry seasons, without precipitation, soil moisture decreases, and this reduces the water available to plant growth and microorganism activity, thus reducing the amount of CO2 emitted. Moreover, sporadic rainfall events rewet the soil, leading to spontaneous CO2 emissions. Soil temperature is secondary in importance, but its impact can vary; it is less relevant during the dry season, or more redundant in the wet season, for both sites. It is also out of phase with nighttime CO2 emissions regardless of the season.

How to cite: Koukoui, R., Mamadou, O., Houénou, D. F., Heinesch, B., Cohard, J.-M., Bousso, M., Peugeot, C., and Kounouhéwa, B.: Assessing the relative importance of soil moisture and temperature on the nighttime CO2 flux: two contrasted ecosystems study cases in West Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19868, https://doi.org/10.5194/egusphere-egu24-19868, 2024.

EGU24-19990 | ECS | Posters on site | BG1.8

Quantifying the photosynthetic capacity of dominant tree species in a humid lowland tropical forest of the Congo Basin 

Thomas Sibret, Marc Peaucelle, Felicien Meunier, Marijn Bauters, David Ellsworth, Kristine Crous, Pascal Boeckx, and Hans Verbeeck

The Congo basin is home to the second largest tropical forest in the world Therefore, it plays a crucial role in the global carbon cycle. Yet very few field based data on related processes exist. Gaining knowledge on a species level is also crucial for understanding these ecosystems. Leaf chamber measurements allow to measure photosynthetic capacity on a leaf level and by so, quantify the photosynthetic capacity of individual species. Moreover, they allow to quantify a plant´s reaction to environmental parameters such as light, atmospheric CO2 concentration and temperature. Such data is crucial to improve the calibration and robustness of global vegetation models. These models are key tools to estimate the global carbon budget and ecosystem responses to climate change as a part of the Intergovernmental Panel on Climate Change exercises.

To date, no such data exists for the forests of the Congo Basin which prevents us to properly understand forest dynamics and resilience to global changes.In this research, we quantify leaf level carbon uptake and its response to light, CO2 and Temperature for dominant tree species within the footprint of the CongoFlux tower in Yangambi (DR Congo).

As such, we deliver the first in-field leaf-level photosynthetic parameters dataset for a lowland tropical forest of the Congo Basin. Doing this, we explore the controls of interspecific variation in photosynthetic capacity including plant guild, species and vertical canopy position. Our study takes place at the research site of CongoFlux, Yangambi (DR Congo).

How to cite: Sibret, T., Peaucelle, M., Meunier, F., Bauters, M., Ellsworth, D., Crous, K., Boeckx, P., and Verbeeck, H.: Quantifying the photosynthetic capacity of dominant tree species in a humid lowland tropical forest of the Congo Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19990, https://doi.org/10.5194/egusphere-egu24-19990, 2024.

EGU24-20160 | Orals | BG1.8 | Highlight

Investigating the impact of lianas on global tropical forests 

Hans Verbeeck, Sruthi Moorthy Krishna Moorthy, Kim Calders, and Félicien Meunier

Lianas (woody vines) are an iconic feature of tropical forests as they represent on average 25% of all woody stems. Lianas are structural parasites that use the stems of self-supporting plants to reach the top of the canopy. From there, they strongly compete with trees for above- (light) and below-ground (water nutrients) resources. Despite their importance, lianas are completely neglected by terrestrial models. To fill this gap, we developed the first mechanistic representation of lianas in a state-of-the-art vegetation model, the Ecosystem Demography model version 2 (ED2.2). Model simulations revealed the critical role of liana for forest biogeochemical cycles (e.g., tree gross and net productivity decreases when lianas are present with the magnitude of the reduction varying with liana abundance) but also for the energy balance (e.g., lianas increase forest albedo and buffer the microclimate of forest understorey). 

 

In addition, we used a combination of terrestrial lidar scanning and a meta-analysis of field and drone observations of tree shape and structure to evaluate the impacts of lianas on tree allometries. In total, we gathered 45,000+ observations of individual tree height, 1.000+ observations of tree crown areas and 150+ tree quantitative structure models over more than 40 sites spread over the tropics, together with liana infestation levels. Those datasets converged to identify a key role of lianas on the shape and structure of tree in tropical forests, independently of the tree species. Liana heavy infestation was responsible for a strong reduction of tree height (-10.7%), crown area (-12.6%), branch length (-45.9%), and overall aboveground carbon stocks (-19.6%). We estimated the global potential liana impact on aboveground tree carbon stocks to be 13.5 Tg over the tropics, or about 7% of the total tropical forest biomass.

 

How to cite: Verbeeck, H., Krishna Moorthy, S. M., Calders, K., and Meunier, F.: Investigating the impact of lianas on global tropical forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20160, https://doi.org/10.5194/egusphere-egu24-20160, 2024.

EGU24-20858 | Posters virtual | BG1.8 | Highlight

GhanaFLUX: Meauring carbon fluxes in an African Rainforest 

Frederick Otu-Larbi, Caleb Mensah, Nana Agyemang Prempeh, Naomi Kumi, and Richard Kyere-Boateng

A new carbon flux tower has been established in the tropical rainforest of Ghana to measure carbon fluxes as well as emissions of biogenic volatile organic compounds. African tropical forests constitute about 20% of Global Tropical Forest cover but have been understudied due to a lack of in-situ observations. The establishment of GhanaFLUX in the Bia-Tano forest reserve in western Ghana will help to fill this gap, allowing in-depth assessments of carbon sequestration and storage in African forests. Here, we present a snapshot of the facilities available at GhanaFLUX, and measurements taken in the first year of operation. We show time series analysis of carbon dioxide and meteorological datasets obtained from GhanaFLUX, highlighting the seasonal variations in these observations. We also share some of our experiences and challenges during the establishment and operation of the flux site to guide researchers who are planning to set up new sites in challenging environments like rainforests. 

How to cite: Otu-Larbi, F., Mensah, C., Agyemang Prempeh, N., Kumi, N., and Kyere-Boateng, R.: GhanaFLUX: Meauring carbon fluxes in an African Rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20858, https://doi.org/10.5194/egusphere-egu24-20858, 2024.

EGU24-416 | ECS | Posters on site | BG1.10

The dissolution pattern of the flattened otolith of Pacific cod using the stepwise acid dissolution method 

Keito Aonuma, Yusuke Yokoyama, Yosuke Miyairi, Masayuki Chimura, Tomonori Hamatsu, Osamu Sakai, and Guido Plaza

The inner ear of fish contains calcium carbonate (CaCO3)-based crystals called otoliths, which play an essential role in hearing and balance. During otolith formation, new calcium carbonate is deposited in layers on the surface of the existing part and the part is no longer affected by metabolism. This feature means that each layer of the otolith retains the trace element ratios and isotope ratios it had at the time of formation. By analysing this preserved information, it is possible to make estimates about the environment and habitat at that time.

The stepwise acid dissolution method has been used in several studies as a technique for analysing the radiocarbon isotope ratios preserved in otoliths. In this method, phosphoric acid is used to dissolves the otolith from the outermost to the innermost layers. It has the advantage that a large amount of carbon can be collected from a single otolith, compared to the mechanical methods for the calcium carbonate sampling from each layer of the otolith.

However, this method involves dissolving the otolith in acid and the pattern of dissolution cannot be controlled minutely by the experimenter. Pacific cod (Gadus macrocephalus) otolith used by us is flattened and the dissolution pattern of such otoliths is not yet known. Furthermore, no direct observation of the otolith dissolution process has been made in relation to previous studies.

In this study, we dissolved three Pacific cod otoliths in phosphoric acid to directly confirm the process of otolith dissolution in the stepwise acid dissolution method. We removed each otolith from the acid one or more times during the dissolution process, weighed it and observed the change in the shape of the otolith and the layer structure exposed on the otolith surface. As the dissolution progressed and the otoliths became smaller, we polished them to check that the internal layered structure had not been destroyed by acid penetration.

As a result, we found that the serrated structures present on the outer edges of the otoliths are maintained when they are dissolved from the outside by acid. We also confirmed that acid dissolution from the outside does not destroy the inner layer structure, even microstructures such as daily rings. The validity of the stepwise acid dissolution method would be strengthened by these results. On the other hand, the otoliths were thinner as a result of acid dissolution, exposing the more inner layers on the flat surface. This is due to the thin vertical thickness of the flattened otoliths. This observation suggests that the collected carbon may be mixed with the carbon collected from more inner layer. This carbon mixing is able to be taken into account with future work. In addition, care should be taken when using this method near the nucleus, as the final stage of dissolution results in multiple holes in the otolith.

How to cite: Aonuma, K., Yokoyama, Y., Miyairi, Y., Chimura, M., Hamatsu, T., Sakai, O., and Plaza, G.: The dissolution pattern of the flattened otolith of Pacific cod using the stepwise acid dissolution method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-416, https://doi.org/10.5194/egusphere-egu24-416, 2024.

EGU24-815 | ECS | Orals | BG1.10

From sediments to the atmosphere: a mass spectrometry approach revealing structural dissimilarities of common NOM components 

Alexander Zherebker, Oliver Babcock, Roman Vasilevich, and Chiara Giorio

Natural organic matter (NOM) is a complex mixture of thousands of organic molecules that reflects environmental conditions and chemical transformations occurring nowadays or in the past. Fourier transform mass spectrometry (FTMS) resolves isobaric constituents and it is widely applied to obtain aquatic, terrigenous and aerosol NOM fingerprints. Traditionally, comparison of mass peak intensities is used to make a distinctive conclusion about samples behavior, but it has the limitation of omitting structural information on the corresponding ions. Due to the stochastic character of NOM synthesis, drastically different samples may appear as resembling, which hampers mechanistic study of NOM dynamics and its attribution to the source. Here we present how implementation of chemical and isotopic tagging in combination with FTMS helps to overcome this issue. The developed approach provides an upper boundary for the presence of specific structural features, e.g. functional groups, in individual NOM components. This facilitates a clear distinction between different NOM samples, which would share isobaric ions, and provides insights on isomeric complexity of these ions. The advantages of the method were demonstrated on two sets of samples. Firstly, we collected permafrost peat cores from different depths in the European Arctic region, which varied in corresponding botanical conditions, peat degradation and oxidation states. Selective deuteromethylation and bromination coupled to FTMS enabled to capture structural differences between shared ions, which differed in carboxylic functionality and aromaticity. Surprisingly, structural differences were found for ions, which abundance positively correlated with peat characteristics and geo-temporal conditions. The second set included aerosol particles collected in marine, rural and urban areas. Application of in-source H/D exchange for FTMS analysis of extracted NOM enabled to enumerate functional groups in shared ions and point molecular constituents with similar and distinct structural features. The observed trends serve to better understand aerosol formation processes and accompanied conventional formula-based statistical analysis including better understanding of Kendrick mass defect series.

How to cite: Zherebker, A., Babcock, O., Vasilevich, R., and Giorio, C.: From sediments to the atmosphere: a mass spectrometry approach revealing structural dissimilarities of common NOM components, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-815, https://doi.org/10.5194/egusphere-egu24-815, 2024.

EGU24-1109 | ECS | Orals | BG1.10

Post fire Black Carbon alteration: Rapid changes in a supposedly inert pool 

Oliver Donnerhack, Patrick Liebmann, Philipp Maurischat, and Georg Guggenberger

Forest fires are among the most influential disturbances in ecosystems and have varying effects on the soil depending on fire intensity and biomass consumption. The significant decline in biodiversity in European forests due to centuries of non-sustainable forest management, combined with worsening drought from climate change, has greatly increased vulnerability to wildfires. Incomplete combustion during fires leads to the formation of black carbon (BC), a group of substances known for their persistence in soil. However, studies suggest that medium-condensed BC species may have lower chemical and spatial stability and are therefore potentially more mobile and consequently only serve as temporary carbon sinks.

In order to assess the mobilization of BC, we investigate short-term changes in BC under field conditions, particularly of the low-condensed BC, and call into question the established concept of the general stability of BC pools. We investigated the dynamics of BC alterations during the post-fire period within one winter, following a late summer forest fire. We selected two comparable sites featuring spruce-dominated forest stands with different geologic parent material and weather conditions, particularly with respect to the amount of precipitation during the observation period. We sampled soil profiles down to 40 cm depth shortly after the fire event in late summer and after a 6-month period in late spring. After performing density fractionation to separate the mineral associated organic matter (MAOM) from particulate organic matter (POM), we analysed the BC content in the MAOM fraction using benzene polycarboxylic acids (BPCA) analysis.

The results show a high content of low to medium condensed BPCAs directly after fire, which decreased, especially the medium condensed BPCA marker, during the observation period. Taking into account the fast change in medium BPCA values in the MAOM fraction, we conclude that the general assumption that BC is in principle a stable, long-term carbon sink needs to be addressed more carefully.

How to cite: Donnerhack, O., Liebmann, P., Maurischat, P., and Guggenberger, G.: Post fire Black Carbon alteration: Rapid changes in a supposedly inert pool, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1109, https://doi.org/10.5194/egusphere-egu24-1109, 2024.

EGU24-1180 | ECS | Orals | BG1.10

Net CO2 release during chemical weathering in the north-western Himalaya: A dominant role of pyrite oxidation 

Rakesh Kumar Rout, Gyana Ranjan Tripathy, Satyabrata Das, and Santosh K. Rai

Oxidation of pyrites plays a key role in global chemical and climatic cycles. In particular, interaction of sulfuric acid produced through this process with carbonates releases CO2 to the atmosphere. This CO2 source counterbalances the CO2 consumed during silicate weathering in river basins, and hence, may influence earlier-suggested linkage between silicate weathering and global cooling events. In this study, we have investigated the dissolved major ions and sulfur isotopes of Indus headwaters to quantify the net effect of sulfide oxidation on the CO2 budget. This research is an attempt to evaluate the coupling between global Cenozoic cooling event and Himalaya weathering - ­a hypothesis which overlooked the CO2 supply via sulfide and organic oxidation. Towards this, we have employed sulfur isotopes (δ34S) as a proxy for riverine sulfate sources, mainly due to its distinct composition for the two major end-members [pyrite (~ -12 ‰) and gypsum (~ 17 ‰); [1]]. The average sulfate concentrations for the Indus headwaters are found to be higher than the regional rainfall, global average for rivers, and other major Himalayan rivers (e.g., Ganga and the Brahmaputra). Consistently, the mean δ34S for the Indus headwaters is also depleted with respect to that reported for the Ganga (~ 2 ‰) and Brahmaputra (~ 4 ‰) outflows [1-5]. Also, the sulfur isotopic values for the Indus headwaters are systematically depleted by 3 to 4 ‰ than that reported earlier for Indus mainstream [3]. These lighter δ34S values for the headwaters hint at relatively higher sulfide oxidation in the northwestern (NW) Himalaya compared to central and eastern Himalayas. Also, these processes are found to be more intense in the mountainous regions than in the floodplains. These observations are consistent with the basin lithology dominated by Paleozoic carbonates and organic-rich shales, and higher glacial coverage. Estimation of sulfide-derived cations from carbonate weathering and silicate-derived cations indicate that the chemical weathering in the Indus headwaters serve as a net source of CO2 to the atmosphere. This finding is in contrast with previous suggestion of significant CO2 removal during the Himalaya weathering and hence, challenges the role of land surface processes in the NW Himalaya in regulating the Cenozoic cooling event.

 

 

References

[1] Burke et al., (2018), Earth Planet. Sci. Lett., 496, 168-177.

[2] Chakrapani et al., (2009), J. Asian Earth Sci., 34, 347-362.

[3] Karim and Veizer, (2000), Chem. Geol., 170, 153-177.

[4] Kemeny et al., (2021), Geochim. Cosmochim. Acta, 294, 43-69.

[5] Turchyn et al., (2013), Earth Planet. Sci. Lett., 374, 36-46.

How to cite: Rout, R. K., Tripathy, G. R., Das, S., and Rai, S. K.: Net CO2 release during chemical weathering in the north-western Himalaya: A dominant role of pyrite oxidation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1180, https://doi.org/10.5194/egusphere-egu24-1180, 2024.

EGU24-1546 | Posters on site | BG1.10

Soil chemistry and hydrophobicity caused by four 2021-22 western U.S. megafires. 

Vera Samburova, Eric Schneider, Christopher Rüger, Brad Sion, Lukas Friederici, Yasaman Raeofy, Markus Berli, Palina Bahdanovich, Hans Moosmüller, and Ralf Zimmermann

In the past decade, the size, frequency, and severity of wildfires have increased around the world, especially in forests of the western United States, where ecosystems are dominated by dry conifer forests. It is known that fires can greatly affect not only air quality, climate, forest, and fauna, but also soil. The heat from fires can alter soil chemistry and change soil water repellency (SWR). SWR can reduce soil infiltration, which can increase surface runoff, erosion, and the potential for flooding and mud and debris slides. The increased frequency and intensity of western U.S. wildfires due to the rapidly changing climate poses an important question: What are the short- and long-term effects of wildfires on soil’s hydrologic responses, including SWR, and what is the role of fire-induced chemistry in SWR?

In the summer and fall of 2021 and 2022, there were four mega-wildfires (Caldor, Dixie, Beckwourth Complex, and Mosquito) in the Eastern Sierra Nevada mountains (California, USA). These wildfires provided us an opportunity to collect post-fire soil and ash samples and study the effects of fires on the physical and chemical properties of soils. We collected over 80 samples and performed multiple water-droplet penetration time (WDPT) tests in the field and, in the laboratory, apparent contact angle (ACA) measurements with the goniometer technique. For all four fires, a significant increase in SWR was observed between unburned and burned soils, with WDPT increasing from <1 s to 600 s (maximum measured value) and ACA values increasing between 1.1 and 9 times (p-value < 0.001). Our WDPT and ACA measurements of the samples collected 6 months and 1 year after the 2021 megafires (Dixie, Caldor, and Beckwourth Complex megafires) showed no significant changes in SWR for unburned and burned soils. The chemical analysis of organic constituents of unburned and burned soils with ultra-high-resolution mass spectrometry (thermogravimetry atmospheric pressure photoionization in combination with Fourier transform ion cyclotron resonance mass spectrometry or TG APPI FT-ICR MS) suggests that burned soils became water-repellent due to the formation and/or deposition of aromatic organic species (e.g., polycyclic aromatic hydrocarbons or PAHs) on the soil surface during fires. We found a positive correlation (R2 = 0.813) between the ACA values of analyzed fire-affected samples and aromaticity derived from the TG APPI FT-ICR MS spectra.

These results of our research highlight the importance of future research on the chemical composition of post-fire soils and the need to study the long-term effects of fires on soil properties.

How to cite: Samburova, V., Schneider, E., Rüger, C., Sion, B., Friederici, L., Raeofy, Y., Berli, M., Bahdanovich, P., Moosmüller, H., and Zimmermann, R.: Soil chemistry and hydrophobicity caused by four 2021-22 western U.S. megafires., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1546, https://doi.org/10.5194/egusphere-egu24-1546, 2024.

EGU24-1595 | ECS | Posters virtual | BG1.10

Hyperspectral Reflectance of Pre- and Post-Fire Soils: Toward Remote Sensing of Fire-Induced Soil Hydrophobicity 

Yasaman Raeofy, Vera Samburova, Markus Berli, Brad Sion, and Hans Moosmüller

Recently, wildfire activity and intensity in the western U.S. have greatly increased, mainly due to a warming climate, population growth, land use changes, and fuel accumulation. Disastrous effects during fires include loss of human lives and infrastructure, ecosystem disturbances, and emissions of carbon dioxide and air pollutants. In addition, wildfires modify physical and chemical soil properties and can cause Fire-Induced Soil Hydrophobicity (FISH), which reduces water infiltration into the soil and accelerates runoff during precipitation events. This may induce cascading disasters including flooding, landslides, and deterioration of water quality. To predict and mitigate such disasters, FISH is generally quantified at a few fire-affected locations using a manual infiltration test. However, this limited spatial coverage poorly represents FISH on a watershed scale as needed for prediction and mitigation purposes.

Watershed-wide, high-resolution monitoring of FISH is only practical using airborne or satellite-based remote sensing, for example utilizing solar reflectance spectra to characterize and monitor physical and chemical properties of fire-affected soils. Such spectra depend on light scattering and absorption at the soil surface. For this study, we have sampled ash, burned, and unburned soils, fresh (0 month), 1 year, and 2 years after three recent California (US) megafires: the Dixie (2021, 3,890 km2), Caldor (2021, 897 km2), and Beckwourth Complex (2021, 428 km2) fires. We studied the optical, chemical, and physical properties of all our samples. Optical hyperspectral reflectance spectra (350–2,500 nm) were obtained using natural solar (blue sky) illumination and a spectroradiometer (ASD FieldSpec3), operated in reflectance mode.  For all three fires, the results show that 700 nm wavelength reflectance of ash samples collected 1 and 1.5 years after the fire decreased between 36% and 76% compared to that of samples collected right after the fires. Additionally, significantly higher visible reflectance has been found for unburned compared to burned soil samples in each fire region that was studied. Fourier-transform infrared (FTIR) measurements were used to characterize the carbonate content of soil and ash samples demonstrating a positive relationship between carbonate content and visible reflectance, indicating a possible contribution of carbonate to the reflectance of soil/ash samples.

How to cite: Raeofy, Y., Samburova, V., Berli, M., Sion, B., and Moosmüller, H.: Hyperspectral Reflectance of Pre- and Post-Fire Soils: Toward Remote Sensing of Fire-Induced Soil Hydrophobicity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1595, https://doi.org/10.5194/egusphere-egu24-1595, 2024.

EGU24-1957 | ECS | Orals | BG1.10

Bacterial decomposition of dissolved organic matter: including the colloidal perspective 

Erika Andersson, Lars Tranvik, Marloes Groeneveld, Anders Tunlid, Per Persson, and Ulf Olsson

Dissolved organic matter (DOM) is a major carbon pool and considered the most bioavailable and most mobile fraction of organic matter. DOM is generally defined as the organic matter passing a filter pore size of 0.2 or 0.45 µm, and this size cut off means that DOM not only contains dissolved molecules but also colloidal objects and aggregates up to a few hundred nanometres. The properties of this colloidal DOM fraction, such as for example size, shape, and surface charge, will affect its actual bioavailability and mobility in the environment. Although previously not well studied, there has recently been a growing interest in this colloidal fraction of DOM.

We have studied DOM extracted by water from a boreal spruce forest soil, filtered through a 0.2 µm pore size. By using a combination of spectroscopy techniques, such as NMR, and light (SLS, DLS), X-ray (SAXS) and neutron (SANS) scattering techniques, we can access chemical and physical information on both the molecular and colloidal fractions of DOM.

Our results show that the colloidal DOM has a homogenous chemical composition, and that carbohydrates is the dominating chemical component in both the colloidal and molecular DOM. The colloids have a mass fractal structure which does not change upon dilution and they are electrostatically stabilised against aggregation. In a lab scale study, we investigated the bacterial decomposition of this DOM during a two-month incubation. The molecular fraction of DOM was quickly decomposed. However, no change was observed for the colloidal DOM, constituting ca. 50% of the carbon, indicating that it persisted bacterial decomposition.

Our results suggest that colloidal properties could be an important but hitherto overlooked aspect to the central question of what dictates organic matter reactivity and persistency in different environments and across different time scales. Our current work extends from soil solution to aquatic ecosystems, to assess the ubiquity of the colloidal fraction of DOM.

How to cite: Andersson, E., Tranvik, L., Groeneveld, M., Tunlid, A., Persson, P., and Olsson, U.: Bacterial decomposition of dissolved organic matter: including the colloidal perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1957, https://doi.org/10.5194/egusphere-egu24-1957, 2024.

EGU24-2117 | Orals | BG1.10

Biochar enhanced microbial carbon use efficiency, while reducing mineralization of added and native soil organic carbon 

Kristiina Karhu, Subin Kalu, Aino Seppänen, Kevin Mganga, Outi-Maaria Sietiö, and Bruno Glaser

Biochar can increase long-term soil organic carbon (SOC) storage due to its polyaromatic structure. In addition to the recalcitrant carbon (C) contained in the biochar itself, biochar can also increase SOC storage by adsorption or organic matter on its surfaces, and reduced decomposition rate of native SOC (negative priming). Limited number of studies have looked at how biochar affects decomposition and stabilization of fresh C inputs, and native SOC decomposition. To fill this knowledge gap, we conducted a laboratory incubation study, where we followed the fate of added 13C-labeled glucose in a fine-textured agriculturally used soil (Stagnosol) amended with two different biochar levels corresponding to 15 and 30 Mg ha-1 in field conditions. Biochar addition reduced mineralization of SOC and added 13C glucose, while increasing microbial biomass and microbial carbon use efficiency (CUE). Most of the added biochar, as well as remaining 13C were found in the free particulate organic matter (POM) fraction after 6 months, indicating that added 13C glucose was preserved within the biochar particles. Our closer study of 13C amino sugar fraction extracted from the biochar particles revealed that the microbes that had efficiently grown on the added 13C glucose in the presence of biochar, were retained as dead microbial residues inside the biochar pores. This microbial route could provide a way for additional formation of rather recalcitrant C in the form of microbial residues in the presence of biochar, which could with time contribute to building SOC stock in biochar amended soils beyond the C present in biochar itself. We found that biochar also increased the portion of occluded POM in the treatments without 13C glucose addition, demonstrating that increased soil occlusion following biochar addition reduced SOC mineralization. The effects were found to be dose-dependent, i.e. higher biochar application rate resulted in lower mineralization rate of native SOC and of added 13C-glucose.

How to cite: Karhu, K., Kalu, S., Seppänen, A., Mganga, K., Sietiö, O.-M., and Glaser, B.: Biochar enhanced microbial carbon use efficiency, while reducing mineralization of added and native soil organic carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2117, https://doi.org/10.5194/egusphere-egu24-2117, 2024.

Elevated concentration levels of geogenic ammonium in groundwater arise from the mineralization of nitrogen-containing natural organic matter in various geological settings worldwide, especially in alluvial-lacustrine and coastal environments. However, the difference in enrichment mechanisms of geogenic ammonium between these two types of aquifers remains poorly understood. To address this knowledge gap, we investigated two representative aquifer systems in central Yangtze (Dongting Lake Plain, DTP) and southern China (Pearl River Delta, PRD) with contrasting geogenic ammonium contents. The use of optical and molecular characterization of DOM combined with hydrochemistry and stable carbon isotopes has revealed differences in DOM between the two types of aquifer systems and revealed contrasting controls of DOM on ammonium enrichment. The results indicated higher humification and degradation of DOM in DTP groundwater, characterized by abundant highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by highly unsaturated compounds and CHO+N molecular formulas in highly unsaturated compounds, respectively. In contrast, the DOM in PRD groundwater was more biogenic, less degraded, and contained more aliphatic compounds in addition to highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by aliphatic compounds and polyphenols and CHO+N molecular formulas in highly unsaturated compounds and polyphenols, respectively. As DOM degraded, the ammonium production efficiency of DOM decreased, contributing to lower ammonium concentrations in DTP groundwater. In addition, the CHO+N(SP) molecular formulas were mainly of microbial-derived and gradually accumulated with DOM degradation. In this study, we conducted the first comprehensive investigation into the patterns of groundwater ammonium enrichment based on DOM differences in various geological settings.

How to cite: Xiong, Y.: Characteristics of Dissolved Organic Matter Contribute to Geogenic Ammonium Enrichment in Coastal versus Alluvial-lacustrine Aquifers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3292, https://doi.org/10.5194/egusphere-egu24-3292, 2024.

EGU24-3355 | Posters on site | BG1.10

NOM quality differences in sediments of land based aquacultures – insights by liquid chromatography-high resolution mass spectrometry 

Peter Herzsprung, Carolin Waldemer, Matthias Koschorreck, and Oliver Lechtenfeld

Natural organic matter (NOM) was widely investigated in natural waters, sea water, river water, lake water, groundwater. The highest molecular resolution of NOM can be achieved by Fourier-transform ion cyclotron resonance mass spectroscopy (FT-ICR-MS). This analytical tool generates molecular formulas (MF) for thousands of NOM components. By coupling liquid chromatography to FT-ICR-MS insights into the polarity (hydrophilic versus hydrophobic) of NOM compounds can be achieved.

Anthropogenic inputs have an imprint on NOM and it changes its overall composition. Aquaculture is one of the fastest growing sectors of food production by covering over 8 Mio ha. The consequences of fish farming for the organic matter quality in fish pond waters and sediments are poorly understood. Here we investigated the stages of pollution by comparison the water extractable organic matter (WEOM) in the sediment at the main site of fish feed application and open water sediments at different distances (transect) to the feeding site.

Full profile HPLC-FTICR-MS chromatograms were segmented into approx. one-minute wide segments between 10 and 15 Min (five segments), the main eluting region of WEOM. MF were calculated for the mass range 150 - 1000 Da with an error threshold of 1 ppm using in-house software considering the following carbon (C), hydrogen (H), oxygen (O), nitrogen (N) and sulphur (S) elements: 12C0–60, 13C0–1, 1H0–122, 16O0–40, 14N0–8, 32S0–3, and 34S0–1.

For all retention times, N3, N4, N5, N6, N7 (CHNO) MF with 0.2 < O/C < 0.5 and 1.5 < H/C < 2.0 showed relative higher intensities in the feeding center compared to the distant sites. For some MF like C20H37N5O7, C22H39N5O7, C24H42N6O10 the intensity was more than five times higher in the center compared to open water site. Such components can be suggested to be oligopeptides (Leu-Asn-Thr-Ile, Glu-Pro-Lys-Ile, Leu-Leu-Asp-Ser-Gln as possible isomeric solutions). The sediment in the feeding center exhibited a prevalence of CHNOS and CHOS2 MF, whereas N1, N2, CHOS1, and CHO displayed relatively uniform intensities along the transect, with some instances of slightly higher intensities observed away from the feeding site. The number and abundance of CHNOS MF decreased with increasing retention time (decreasing polarity). Notably, these compounds appear to be inherently hydrophilic, characterized by predominantly low molecular weights (< 400 Da).

The results obtained suggest the following biogeochemical processes: Initially, the protein-rich fish feed undergoes hydrolysis, leading to the formation of oligopeptides. Subsequent partial desamination of these molecules facilitates their interaction with inorganic sulphides, resulting in the formation of CHNOS MF. Notably, the component C8H13N1O3S1, exhibiting a five-fold intensity at the feeding site, appears to correspond to one of the possible metabolites (Sulfanylpropanoyl-proline).

The results indicate a potential overfertilization with easily biodegradable protein-rich substances. The WEOM quality seems highly affected by additional input of CHNO, CHNOS and CHOS.

How to cite: Herzsprung, P., Waldemer, C., Koschorreck, M., and Lechtenfeld, O.: NOM quality differences in sediments of land based aquacultures – insights by liquid chromatography-high resolution mass spectrometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3355, https://doi.org/10.5194/egusphere-egu24-3355, 2024.

EGU24-3667 | ECS | Orals | BG1.10

Rapid lateral transport of fresh dissolved organic matter to the deep ocean in the NE Atlantic 

Bingbing Wei, Michael Seidel, Gesine Mollenhauer, Hendrik Grotheer, Jenny Wendt, Thorsten Dittmar, and Moritz Holtappels

Deepwater formation in the North Atlantic Ocean is a major gateway for dissolved organic matter (DOM) transport into the deep ocean. Despite focusing on vertical mixing, lateral transport of DOM from productive shelf regions is underexplored. Previous research suggested substantial offshore DOM transport on the Irish and Hebrides Margin via the bottom Ekman Drain. Our in-depth bottom water DOM analyses of carbon isotopes in combination with ultrahigh-resolution mass spectrometry (FT-ICR-MS) indicated that downwelling in this region leads to higher DOM concentrations (by 7–11 μM) and younger radiocarbon ages (by 190–330 yrs) compared to DOM of the central Northeast Atlantic at similar depths. During downslope transport, conservative mixing shapes the molecular composition of recalcitrant DOM, while minor particulate organic matter degradation contributes to producing less-refractory DOM with terrigenous signals. Consequently, the bottom Ekman transport emerges as a rapid and efficient channel for transporting fresh DOM into the deep North Atlantic Ocean, acting as a crucial carbon sink for atmospheric CO2.

How to cite: Wei, B., Seidel, M., Mollenhauer, G., Grotheer, H., Wendt, J., Dittmar, T., and Holtappels, M.: Rapid lateral transport of fresh dissolved organic matter to the deep ocean in the NE Atlantic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3667, https://doi.org/10.5194/egusphere-egu24-3667, 2024.

EGU24-3890 | ECS | Posters on site | BG1.10

Carbon cycling in coexisting marine ecosystems: Cold seeps and coral reefs in Northern Norway 

Muhammed Fatih Sert, Knut Ola Dølven, Sebastian Petters, Timo Kekäläinen, Janne Jänis, Jorge Corrales-Guerrero, and Bénédicte Ferré

Cold seeps and cold water corals (CWCs) coexist on Northern Norway's continental shelf at the Hola trough between Lofoten and Vesterålen. Here, cold seeps release methane from the seabed, yet only a limited amount reaches the atmosphere. The remaining methane dissolves and disperses in nearby seeps. Methane is unreactive for most microorganisms in the water column, yet it is a unique energy and carbon source for methane-oxidizing bacteria (MOB). MOBs metabolize methane and release carbon dioxide as the end product of oxidation. Increasing carbon dioxide may constrain pH-sensitive CWCs in the region. We investigated the biogeochemistry of carbon, carbon isotopes, nutrients, dissolved organic matter (DOM) compositions and microbial diversity through water column profiles and water samples collected in June 2022. Preliminary results indicated that elevated methane increases dissolved inorganic carbon concentrations and modifies carbon isotopic compositions. Additionally, DOM compositions implied a positive correlation between prokaryotic diversity and protein-like DOM components at cold seeps and the entire water column near CWCs, suggesting analogous microbial modifications. Our preliminary conclusion suggests cold seeps and CWCs symbiotically coexist in Northern Norway continental shelves; however, enhanced water temperatures and consequent increase in methane release at cold seeps may mitigate the functioning of CWCs in future.

This study is supported by the Research Council of Norway, project number 320100, through the project EMAN7 (Environmental impact of Methane seepage and sub-seabed characterization at LoVe-Node 7).

How to cite: Sert, M. F., Dølven, K. O., Petters, S., Kekäläinen, T., Jänis, J., Corrales-Guerrero, J., and Ferré, B.: Carbon cycling in coexisting marine ecosystems: Cold seeps and coral reefs in Northern Norway, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3890, https://doi.org/10.5194/egusphere-egu24-3890, 2024.

EGU24-5444 | ECS | Orals | BG1.10

Efficiency of Biological Carbon Pump: Insights from Compound-Specific Amino Acid δ15N 

Chen Li, Zhimin Jian, and Haowen Dang

As a vital component of the global carbon cycle, the ocean’s biological carbon pump determines the amount of carbon fixed by primary production in the surface waters. The efficiency of this biological pump is closely interconnected with the nitrogen cycle, which regulates nutrient inventory and primary productivity rates. Additionally, the structure of the upper ocean ecosystem influences the efficiency of the biological pump by determining how much fixed carbon is exported to the deep ocean. Compound-specific nitrogen isotope (δ15NAA) is a novel proxy that could provide valuable insights into both aspects of these questions. The δ15NAA could unravel isotopic information of source nitrogen and show δ15N changes associated with trophic processes. This study generates sedimentary δ15NAA, as well as bulk sediment δ15N and organic δ15N records from a western equatorial Pacific site (MD10-3340) covering the last 140 kyr. Our results demonstrate an overall agreement among three proxies, all indicating distinct precessional variations in source nitrate δ15N and potential changes in nutrient inventory. More importantly, the δ15NAA signatures suggest an inverse relationship between animal trophic activity in the surface water and the degradation of organic matter precipitating through the water column. Higher ecosystem trophic position is found during glacial periods, accompanied by inactive organic matter recycling, which implies a greater potential for carbon burial in deep reservoirs. Together, we suggest that the δ15NAAsignatures can provide a detailed picture of carbon cycle coupled with nitrogen cycle.

How to cite: Li, C., Jian, Z., and Dang, H.: Efficiency of Biological Carbon Pump: Insights from Compound-Specific Amino Acid δ15N, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5444, https://doi.org/10.5194/egusphere-egu24-5444, 2024.

EGU24-5586 | Orals | BG1.10

Temporal and spatial changes in DOM revealed by FT-ICR MS 

Catherine Moody, Nicholle Bell, Logan Mackay, and Ezra Kitson

DOM from peatlands is a collection of complex molecules, but also a significant source of carbon to aquatic pathways. It has a wide impact on aquatic ecosystems, providing an energy source for microbes and buffering capacity for water chemistry changes. The composition of DOM in drinking water reservoirs also impacts on chemical and energy demands of treatment processes, and is an area of growing concern for UK drinking water providers.

DOM was extracted from water collected from peatland headwater streams and reservoirs in the UK. The DOM was analysed with elemental analysis and FT-ICR MS to determine how the composition changes as water moves through the catchment. A combination of spatial and temporal sampling strategies allowed seasonal and catchment characteristics to be investigated (from 2018-2021, and 53-61°N).

There were significant trends in DOM composition metrics across a north/south gradient, with higher lipid content, and lower carbohydrate and peptide content in northern sites than southern sites. Samples collected in 2021 had several significant composition differences to other years. Monthly sampling showed the largest changes in DOM composition coincided with the end of the growing season (September in the UK).

These results show variable DOM in headwaters can be, and how reservoirs act to buffer the most extreme changes, resulting in more stable DOM compositions in reservoirs. Understanding how DOM composition is impacted by season, climate and catchment characteristics will have important ramifications for drinking water providers, and will help catchment managers plan land use changes and timing of water draw-off from peatland reservoirs.

How to cite: Moody, C., Bell, N., Mackay, L., and Kitson, E.: Temporal and spatial changes in DOM revealed by FT-ICR MS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5586, https://doi.org/10.5194/egusphere-egu24-5586, 2024.

EGU24-6501 | Orals | BG1.10

Variations in binding properties of dissolved organic matter along river-ocean continuum 

Pablo Lodeiro, Joao C. A. Macedo, Calin David, Carlos Rey-Castro, Jaume Puy, María Martínez-Cabanas, Roberto Herrero, Manuel E. Sastre de Vicente, and José L. Barriada

The binding properties of dissolved organic matter (DOM) play a crucial role in the biogeochemical cycles of trace metals and carbon. The composition of DOM is anticipated to exert influence over the magnitude and distribution of the intrinsic ion binding affinities that occur over a continuum of values, referred to as the affinity spectra. These spectra encompass many different organic acid groups that contribute to the nuanced binding characteristics of DOM. The total proton binding capacity represents the maximum sites available for other chemical species that may compete with protons for the same DOM binding sites, particularly in the case of metals. Consequently, the study of proton binding by DOM becomes the initial step to investigate deeper into metal binding mechanisms. Here, we research the variability in proton binding exhibited by DOM extracted from the Ebro and Mero Rivers (NNE and NW of Spain), and at the Atlantic Ocean and Mediterranean Sea. Our approach combines the non-ideal competitive adsorption (NICA) isotherm, offering insights into chemical binding on heterogeneous ligands, with the Donnan electrostatic model, which accounts for polyelectrolytic effects, i.e., the non-specific binding. This methodology enables us to pinpoint potential shifts in DOM binding affinities and derive a comprehensive set of intrinsic binding parameters for DOM. Importantly, these parameters are thermodynamically consistent and remain independent of the specific conditions of the samples, enhancing the extrapolation to future environmental changes.

 

Acknowledgements: Authors thank Agencia Española de Investigación for the financial support through the research projects PID2020-117910GB-C21 and -C22/AEI/10.13039/501100011033. P.L. acknowledges current support from the Ministerio de Ciencia, Innovación y Universidades of Spain and University of Lleida (Beatriz Galindo Senior award number BG20/00104)

References:

[1] Lodeiro, P., Rey-Castro, C., David, C., Humphreys, M. H., Gledhill, M., 2023. Proton Binding Characteristics of Dissolved Organic Matter Extracted from the North Atlantic. Environmental Science & Technology 57, 21136–21144.

[2] Waska, H., Brumsack, H.-J., Massmann, G., Koschinsky, A., Schnetger, B., Simon, H., Dittmar, T., 2019. Inorganic and organic iron and copper species of the subterranean estuary: Origins and fate. Geochimica et Cosmochimica Acta 259, 211–232.

[3] Heerah, K. M.,  Reade, H. E., 2023. Towards the identification of humic ligands associated with iron transport through a salinity gradient. Scientific Reports 12:15545.

How to cite: Lodeiro, P., Macedo, J. C. A., David, C., Rey-Castro, C., Puy, J., Martínez-Cabanas, M., Herrero, R., Sastre de Vicente, M. E., and Barriada, J. L.: Variations in binding properties of dissolved organic matter along river-ocean continuum, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6501, https://doi.org/10.5194/egusphere-egu24-6501, 2024.

EGU24-6516 | ECS | Posters on site | BG1.10

Spatio-temporal dimensions of organic carbon-mineral interactions in a source-to-sink system 

Nora Gallarotti, Bernhard Peucker-Ehrenbrink, Sophia Johannessen, Lisa Bröder, Reto Wijker, Britta Voss, Negar Haghipour, and Timothy Eglinton

Rivers play a key role in the global carbon cycle by transferring organic carbon (OC) from the terrestrial biosphere to marine sediments, which act as an important long-term carbon sink. Associations between biospheric OC and mineral phases can alter OC stability and hydrodynamic properties, thereby influencing its transport and storage patterns within a river basin and dictating the fate of terrestrial biospheric OC discharged to the ocean. While research has mainly investigated the formation of these associations within soils, open questions remain on how these interactions evolve over space and time.

The Fraser River Basin in British Columbia, Canada drains regions with distinctive lithological and climatic gradients allowing the simultaneous study of leaf-wax-specific isotopic compositions (δ2H, δ13C) and inorganic geochemical signatures (εNd) of sediments as tracers of the provenance of biospheric OC and detrital mineral phases, respectively. In addition, bulk radiocarbon (D14C) serves as a tool to constrain biospheric OC residence times. Here, to investigate seasonal variations in the geochemical signatures of OC and its mineral host in sediments exported by the Fraser River to the Strait of Georgia using samples from a time-series sediment trap deployed cover the course of a year adjacent to the river mouth.

Both εNd and D14C follow a seasonal pattern by which aged OC (-176 to -140‰) is mostly transported during high discharge events such as the freshet in June and heavy rainstorms occurring in the upper basin in fall. During the former event, the geochemical signature (εNd: -9.2 to -7.2) points towards the Coastal Range affecting the detrital mineral composition more strongly, which shifts towards a greater proportion of Rocky Mountains-sourced sediment (εNd: -11.7 to -9.1) during the second high discharge event. Biomarker specific δ2H will further elucidate the extent to which the provenance of biospheric OC coincides with the mineral detrital load. Further, comparison with geochemical signatures of fluvial sediments within the Fraser basin, together with corresponding signatures in river-proximal sediments deposited in the Strait of Georgia allow for OC-mineral interactions to be assessed from a source-to-sink perspective.

This coupled investigation of organic and inorganic tracers provides new insights into terrestrial organic carbon export and the role of organo-mineral interactions on riverine organic carbon dynamics. These findings also have important ramifications for the interpretation of sedimentary archives.

How to cite: Gallarotti, N., Peucker-Ehrenbrink, B., Johannessen, S., Bröder, L., Wijker, R., Voss, B., Haghipour, N., and Eglinton, T.: Spatio-temporal dimensions of organic carbon-mineral interactions in a source-to-sink system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6516, https://doi.org/10.5194/egusphere-egu24-6516, 2024.

EGU24-6629 | ECS | Orals | BG1.10

Different dissolved organic matter (DOM) sources sustain microbial life in beach subterranean estuary 

Grace Abarike, Simone Brick, Bert Engelen, and Jutta Niggemann

Dissolved organic matter (DOM) is diverse in composition and serves as substrate for microbial metabolism. Within subterranean estuaries (STEs), DOM is introduced from different sources along the groundwater flow paths. These different DOM sources make it challenging to disentangle degradation pathways, especially in high-energy beaches with dynamic porewater advection and changing redox conditions. We performed sediment incubations in flow-through reactors (FTRs) to investigate how DOM from different sources is transformed by STE microbial communities. We used sediment and groundwater from the STE of a high-energy beach on Spiekeroog Island (Germany). Intertidal beach sediments were incubated for 13 days in FTRs with groundwater of low (~1.6) and high salinity (~29.1) as marine and terrestrial endmember, respectively, in triplicate setups, and additional control FTRs with artificial seawater of respective salinities. The FTRs ran under oxic conditions with recirculating advective flow. Porewater samples were taken daily for quantification of dissolved organic carbon (DOC) and nutrient concentrations, and samples from the start and the end of the incubation were taken for the analysis of microbial community composition, microbial cell numbers, and DOM composition. DOM samples were isolated through solid phase extraction and molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Over the course of the incubation, DOC concentrations increased, presumably from sediment leaching and potentially also by primary production in light-exposed parts of the setup, as oxygen concentrations also increased. The DOM composition of the porewater samples at start and end of the incubation was highly diverse, with a total of up to 2900 different molecular formulae detected in each sample. As expected, the low salinity porewater had a more terrestrial DOM signature with a higher proportion of aromatic compounds compared to the DOM in the high salinity porewater. In all setups, the DOM composition changed significantly from start to end. We observed an increase in DOM lability in both endmember setups indicating the mobilization of fresh DOM from sediments and/or microbial activity, including primary production. Interestingly, the changes observed were similar for both DOM endmembers. Our results indicate that the microbial communities of the high-energy beach STE thrive on a similar fraction of DOM, independent of its source.

How to cite: Abarike, G., Brick, S., Engelen, B., and Niggemann, J.: Different dissolved organic matter (DOM) sources sustain microbial life in beach subterranean estuary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6629, https://doi.org/10.5194/egusphere-egu24-6629, 2024.

EGU24-7088 | ECS | Posters on site | BG1.10

Using a novel N-15 natural abundance approach to quantify soil nitrogen transformations in biochar-treated vineyard soils. 

Kate Kingston, Zhihong Xu, Chris Pratt, Brendan Mackey, Paul Petrie, and Yihan Li

The increased frequency and intensity of climate extremes challenges vineyards to adapt and mitigate to ensure the survival of grape vines (Vitis vinifera) to meet the growing demand for quality wine.  Regenerative Viticulture (RV) is a novel approach with a strong focus on increasing soil carbon (C) stocks to regenerate vineyard soil that is largely degraded and in poor health.  When soil health and fertility is low, this impacts vine health and reduces its ability to fight disease and pests and withstand extreme climatic events. We hypothesised that biochar would increase nitrogen (N) cycling and retention and that these would differ in relation to the distinct physiochemical properties of the two vineyard soils.   Conscious of contributing to a sustainable circular economy, we utilised viticulture industry waste to produce biochar’s to compare with standard pine biochar.  Biochar was produced with three feedstocks at different pyrolysis temperatures, grape marc (475°C), vine pruning (450°C) and pine (600°C).  Soil (0 - 10 cm depth) was collected from under vines from vineyards at the South Burnett (heavy texture) and Granite Belt (sandy texture) regions in Queensland, Australia. We used a novel 15N natural abundance approach in a laboratory incubation experiment to investigate the potential of using biochar, a C-dense material produced by high temperature pyrolysis of organic materials in limited oxygen conditions as a suitable climate smart RV method for vineyard soils.  A short three-day laboratory incubation followed by microdiffusion was conducted to quantify the impacts of the three biochars on N transformations in the two soils.  Soil moisture was controlled at 60% and 90% water holding capacity (WHC) and biochar applied at 0% and 10% (w/w), with samples harvested on incubation days 0 and 3. Preliminary results indicate that in the short term for both experimental soils, biochar stimulated microbial activity, increased N availability and water use efficiency and reduced N loss through denitrification.  The results indicate that fungicides use in vineyards impacted the underlying soil health and microbial communities and influencing N cycling.  For the long term impact, the potential to use biochar for increase biodiversity and ecosystem recovery as a climate smart RV method in vineyards needs to be trialled in the field.  This is to establish the long-term effects of C accumulation and improved N cycling on soil health, biodiversity, vine resilience under extreme natural weather events, and on wine grape quality and quantity.

How to cite: Kingston, K., Xu, Z., Pratt, C., Mackey, B., Petrie, P., and Li, Y.: Using a novel N-15 natural abundance approach to quantify soil nitrogen transformations in biochar-treated vineyard soils., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7088, https://doi.org/10.5194/egusphere-egu24-7088, 2024.

EGU24-7317 | ECS | Orals | BG1.10

Reactivity of hydrogen sulfide toward organic compounds with sulfur-sulfur bonds 

Irina Zweig and Alexey Kamyshny

The presence of organic molecules containing sulfur-sulfur bonds was identified in both water columns and sediments of natural aquatic systems. While processes leading to formation of these compounds were intensively studied during recent decades, the kinetics and mechanisms of reactions responsible for their decomposition remain poorly understood. This study focuses on the kinetics and products of the reactions of dimethyl disulfide, dimethyl trisulfide, and cyclic polysulfide lenthionine (1,2,3,5,6-pentathiepane) with hydrogen sulfide at the pH and temperature ranges typical of environmental conditions. The findings reveal that under environmental conditions (pH≥5), the overall reaction rates are primarily controlled by the reaction of bisulfide anion (HS-) rather than hydrogen sulfide. The activation energy and the order of the reaction with respect to bisulfide anion is dimethyl disulfide < dimethyl trisulfide < lenthionine, while the order of the reaction with respect to organosulfur compounds is lenthionine < dimethyl trisulfide < dimethyl disulfide. The rates of the reactions between linear dimethyl polysulfides with bisulfide anion were found to be higher than the rates of their reactions with cyanide and hydroxyl anions, but lower than the rates of their photodecomposition. These results suggest that rapid decomposition of organosulfur compounds in sulfidic aphotic natural aquatic systems should be controlled by HS- decomposition pathway. Products of the decomposition of dimethyl disulfide and dimethyl trisulfide include methanethiol, higher dimethyl polysulfides, and inorganic polysulfides. The cyclic polysulfides were shown to be more stable than their linear analogs, resulting in their preferential preservation during the maturation process.

How to cite: Zweig, I. and Kamyshny, A.: Reactivity of hydrogen sulfide toward organic compounds with sulfur-sulfur bonds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7317, https://doi.org/10.5194/egusphere-egu24-7317, 2024.

EGU24-7593 | Posters on site | BG1.10

Towards an online ramped oxidation approach for thermal dissection and serial radiocarbon measurement of complex organic matter 

Marco A. Bolandini, Daniele De Maria, Negar Haghipour, Lukas Wacker, Jordon D. Hemingway, Timothy I. Eglinton, and Lisa Bröder

Radiocarbon (14C) measurements provide a powerful tool to deconvolute sources and dynamics of organic matter in the environment. However, interpretation of conventional bulk-level 14C data is challenging due to the myriad components comprising organic matter in soils and sediments. Thermally ramped oxidation provides one approach for overcoming this limitation, and involves subjecting a sample to gradually increasing temperatures, serially oxidizing the OC to CO2. Collected over prescribed temperature ranges ('thermal fractions'), this CO2 is then analyzed for 14C content using accelerator mass spectrometry (AMS). While effective, current ramped oxidation methods are mostly 'offline', involving manual collection and subsequent AMS analysis of evolved CO2, hindering sample throughput and reproducibility.

Here, we introduce a compact, online ramped oxidation (ORO) setup in which CO2 from discrete thermal fractions is directly collected and measured for 14C by AMS equipped with a gas ion source. The setup comprises two modules: (i) an ORO unit with two sequential furnaces - the first, ramped from room temperature to 900 °C, holds the sample; the second, maintained at 900 °C, includes a catalyst ensuring complete oxidation to CO2; and (ii) a dual-trap interface (DTI) collection unit with two parallel molecular sieve traps alternately collecting and releasing CO2 from a given fraction for direct injection into the AMS.

Preliminary results indicate reproducible data, evident in both thermograms and F14C results. Analysis of natural reference samples reveals that measured 14C values and their associated uncertainties align with those reported in the literature using conventional “off-line” ramped oxidation methods, affirming the utility of the new ORO-DTI-AMS setup.

Our goal is to apply this new method for comprehensive investigation of a range of natural samples, with a particular focus on the improved understanding of the fate of OC held in permafrost soils in the context of on-going climate and carbon cycle change in high latitude ecosystems.

How to cite: Bolandini, M. A., De Maria, D., Haghipour, N., Wacker, L., Hemingway, J. D., Eglinton, T. I., and Bröder, L.: Towards an online ramped oxidation approach for thermal dissection and serial radiocarbon measurement of complex organic matter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7593, https://doi.org/10.5194/egusphere-egu24-7593, 2024.

Subterranean estuaries underlying high-energy beaches are efficient turnover sites for dissolved organic matter (DOM) and nutrients from marine and terrestrial waters. In addition, leaching of beach wrack during tidal inundation and precipitation can contribute to DOM and nutrient loads. However, the combined impact of diverse environmental settings on the release of DOM and nutrients from beach wrack has so far not been studied, although e.g., salinity oscillations and temporary exposure to sunlight are common in high-energy beach subterranean estuaries. Here, we present the results of an extensive beach wrack leaching experiment taking beach wrack type, age, sunlight exposure, and leaching matrix into consideration. A combination of UVA irradiation, advanced wrack age, and leaching by low-salinity artificial rainwater resulted in high dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) releases of mmoles- to moles per kg dry weight in the macroalga Fucus sp. Furthermore, jellyfish wrack released millimoles of TDN in artificial seawater incubations. Ultra-high-resolution analyses of DOM revealed a prevalence of molecular formulae resembling biochemical building blocks such as sugars, amino acids, and vitamins, indicating that the released DOM could be of substantial nutritional value for the heterotrophic microbial communities on and near beach wrack. An interesting finding was the high abundance of aromatic and humic-like DOM released from macroalgal beach wrack, which may impact typically used marine and terrestrial source- and sink proxies. As such, beach wrack DOM and nutrients could further complicate biogeochemical distribution patterns in the subterranean estuary.

How to cite: Waska, H. and Banko-Kubis, H.: Experimental comparison of dissolved organic matter and nutrients leached from beach wrack by sea- and rainwater: A nutritional boost for the sandy beach subterranean estuary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8750, https://doi.org/10.5194/egusphere-egu24-8750, 2024.

EGU24-10047 | Orals | BG1.10

Carbonate-associated organic matter: A form of “dissolvable” organic matter? 

Mary Zeller, Bryce Van Dam, Amy McKenna, Christian Lopes, Christopher Osburn, James Fourqurean, Kominoski John, and Michael Böttcher

Carbonate-associated organic matter (CAOM) is the organic matter associated with carbonate minerals, and a survey of carbonate-rich surface sediments suggests that it is incorporated at a consistent amount scaling with the internal surface area of the carbonate grains. As the carbonate sediment is sensitive to changes in saturation state due to benthic biogeochemical processing, we predicted that CAOM could exhibit interesting biogeochemical cycling, based on its potential to bridge particulate and dissolved pools of organic matter. Here, we report on a study in a seagrass meadow in central Florida Bay, USA. We utilize a combination of inorganic stable isotope (C, S, O) and high resolution mass spectrometry (21T FT ICR-MS) techniques to explore the carbon and sulfur cycles here, with a particular emphasis on dissolved organic matter (DOM) characterization. CAOM is examined similar to standard solid phase extraction (SPE-DOM) methods, after first washing carbonate sediment and dissolving it incompletely under a mild hydrochloric acid treatment. The δ34S and δ18O of sulfate, as well as the δ13C of dissolved inorganic carbon (DIC), suggest that the promotion of sulfide oxidation in the seagrass rhizosphere drives rapid carbonate dissolution and re-precipitation cycles. Sulfide oxidation, as well as elevated sulfide concentration, promotes sulfurization of CAOM, which is more sulfurized than porewater and surface water, as 42% of CAOM formulas vs 28% of surface water are sulfurized. Furthermore, a substantial quantity of molecular formulas present in the overlaying surface waters (90% of formulas, 97% by relative abundance) are also present in CAOM. Despite the CAOM sample containing nearly twice the number of formulas compared to surface water, due in part to its higher dissolved organic carbon concentration, these shared formulas make up 75% of the abundance of CAOM formulas. We argue that repeated coupled sulfur and inorganic carbon cycles, intensified by seagrasses, leads to increased sulfurization and release of CAOM, affecting DOM quality in the broader aquatic system. We estimate that approximately 9% of the particulate organic carbon (POC) stored in the sediments of this site are CAOM. Our results suggest that CAOM here is a form of “dissolvable” organic carbon which cycles much more rapidly than POC more broadly.

How to cite: Zeller, M., Van Dam, B., McKenna, A., Lopes, C., Osburn, C., Fourqurean, J., John, K., and Böttcher, M.: Carbonate-associated organic matter: A form of “dissolvable” organic matter?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10047, https://doi.org/10.5194/egusphere-egu24-10047, 2024.

EGU24-10209 | ECS | Posters on site | BG1.10

Apparent Aging and Rejuvenation of Terrestrial Organic Carbon Along the River-Estuary-Coastal Ocean Continuum 

Meng Yu, Timothy Eglinton, Pengfei Hou, Negar Haghipour, Hailong Zhang, Zicheng Wang, and Meixun Zhao

The balance between remineralization and sedimentary burial of terrestrial organic carbon (OCterr) in large river-dominated marginal seas influences atmospheric CO2 inventory on a range of timescales. Here we systematically investigate the evolution of OCterr along the river-estuary-coastal ocean continuum for three fluvial systems discharging to the Chinese marginal seas. The 14C-depleted characteristics of bulk OC and molecular components of riverine suspended sediments and marine sediments suggest that the Chinese marginal seas are a significant sink of pre-aged OCterr. Lower plant-wax fatty acid 14C contents suggest selective degradation of labile OC within estuaries, resulting in apparent aging of OCterr, followed by an apparent rejuvenation in OCterr in shelf sediments, the latter likely reflecting inputs from proximal sources that contribute younger OCterr. This selective degradation, aging and rejuvenation of OCterr along the continuum confounds the use of plant wax lipid 14C to constrain lateral transport times, and sheds light on more complex OCterr dynamics in marginal seas.

How to cite: Yu, M., Eglinton, T., Hou, P., Haghipour, N., Zhang, H., Wang, Z., and Zhao, M.: Apparent Aging and Rejuvenation of Terrestrial Organic Carbon Along the River-Estuary-Coastal Ocean Continuum, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10209, https://doi.org/10.5194/egusphere-egu24-10209, 2024.

EGU24-11112 | ECS | Orals | BG1.10

Exploring CO2 Cycling in Karst Critical Zones: Lessons from Milandre Cave 

Sarah Rowan, Marc Leutscher, Sönke Szidat, and Franziska Lechleitner

We know that the concentrations of CO2 and DIC in the subsurface are often magnitudes higher than in the soil zone, and therefore we need to understand this reservoir and its vulnerability to change. Understanding the critical zone in the context of CO2 input, cycling dynamics, and export is essential as this carbon is particularly vulnerable to changes in water table rise which may result in rapid release of CO2 into the atmosphere. Cave environments provide an accessible natural window into the critical zone as they connect meteoric water, soils, the unsaturated vadose zone, and saturated zone. We conducted a two year monitoring campaign at Milandre cave in northern Switzerland, analyzing pCO2, d13CO2, and 14CO2 at various environmental interfaces, including the soil zone, within the epikarst, and in the cave itself. Forest soils maintained stable, modern 14C signatures and low d13C indicating year-round contribution of CO2 from C3 tree and plant root respiration. Conversely, meadow soils exhibited notable seasonality in F14C, suggesting a dominance of respiration from older soil pools in the winter months. Distinct variations in CO2 concentrations were observed within the cave, influenced by temperature driven ventilation dynamics. Keeling plot analysis revealed a consistent contributing endmember of C3 vegetation. However, similarities between the F14C of the meadow soils and cave CO2 suggests a significant contribution of meadow soil CO2 into the cave. These findings offer vital insights into the nuanced dynamics of CO2 sources and cycling processes within the critical zone of Milandre Cave, shedding light on the influences of seasonal variation and ecological influences of critical zone carbon and the export of carbon from terrestrial ecosystems.

How to cite: Rowan, S., Leutscher, M., Szidat, S., and Lechleitner, F.: Exploring CO2 Cycling in Karst Critical Zones: Lessons from Milandre Cave, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11112, https://doi.org/10.5194/egusphere-egu24-11112, 2024.

EGU24-11285 | Orals | BG1.10

Global expression of bomb radiocarbon in Earth's surface carbon reservoirs 

Timothy Eglinton and the Bomb-spike team

The Earth’s carbon cycle encompasses myriad processes that connect different reservoirs containing diverse forms of carbon that turnover and exchange on a wide range of spatial and temporal scales. Increased atmospheric CO2 from anthropogenic perturbation of the carbon cycle associated with fossil fuel combustion and land-use change reflects the release of carbon from stable, slow-cycling reservoirs.  Much current research seeks to quantify carbon transfer from slow to fast cycling reservoirs, as well as the ability of different carbon reservoirs, particularly the terrestrial biosphere and the oceans, to compensate for these increased CO2 emissions through carbon uptake and storage. Determination of the turnover time and rate of transfer of carbon between reservoirs is crucial in this regard. Radiocarbon, 14C, represents a powerful tool to address this question by virtue of its ~ 5700-year half-life that allows processes occurring on centennial to millennial timescales to be resolved. Superimposed on natural abundance 14C variations, above-ground nuclear weapons testing during the mid-20th Century created an abrupt spike in atmospheric radiocarbon (“bomb spike”) that has subsequently permeated into and moved through various Earth surface carbon reservoirs, serving as a useful tracer of carbon cycle processes occurring on annual to decadal timescales. Numerous studies have exploited this signal for assessment of turnover or transit times within and through carbon pools, atmospheric and oceanic circulation, ecosystem functioning and source attribution. However, much 14C data currently tends to be compartmentalized, with a focus on specific reservoirs or geographic locations.

In this study, we evaluate the global expression of the radiocarbon bomb spike across the different Earth surface active carbon reservoirs (terrestrial biosphere, soils, freshwater aquatic systems, and marine carbon reservoirs). We compile 14C data from existing and nascent databases as well as new measurements, including direct observations and records from natural archives spanning the pre-bomb period to the present, to develop an overview of the general features of 14C (timing, amplitude and character of the bomb peak) within each reservoir over this time interval.  In addition to using this information to refine our understanding of the interactions between different reservoirs, this study seeks to (i) identify gaps and biases in data with a view to motivating further 14C studies, (ii) underline the value of systematic data reporting, as well as careful archiving of samples for future 14C analysis, (iii) inform isotope-enabled carbon cycle and earth system models, and (iv) serve as benchmark against which to gauge future carbon cycle changes.

How to cite: Eglinton, T. and the Bomb-spike team: Global expression of bomb radiocarbon in Earth's surface carbon reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11285, https://doi.org/10.5194/egusphere-egu24-11285, 2024.

EGU24-11446 | ECS | Orals | BG1.10

Pyrogenic Carbon production in eucalypt forests: implications for the carbon cycle in fire-prone ecosystems 

Minerva García-Carmona, Cristina Santín, and Stefan Doerr

Wildfires play an important role in the carbon cycle, influencing both atmospheric carbon concentrations and terrestrial carbon storage. Pyrogenic carbon (PyC) derived from incomplete biomass combustion during wildfires is currently considered a relevant carbon sink at the global level. In order to assess the quantitative importance of PyC production, accurate data on PyC generation in different ecosystems and under a range of fire conditions are needed. In this study, we focus on the fire-prone continent of Australia, specifically on eucalypt forests, which are the most common type of native forests. Eucalypt forests, subjected frequently to both wildfires and human-prescribed fires, provide an important context for understanding PyC dynamics.
We conducted comprehensive pre-fire and postfire fuel inventories and quantified all pyrogenic materials generated in three representative eucalypt forests in Sydney, Melbourne, and Perth. Experimental fires, simulating low to medium-severity wildfires, were used to quantify PyC conversion rates in the main fuel components: forest floor, understory, down wood, and overstory (comprising only tree bark as these fires did not affect the crowns).
Our results show an average pyrogenic carbon conversion rate of 24% for eucalypt forests. This translates to 9 t C ha-1 of the carbon affected by the fire being emitted to the atmosphere, while 3 t C ha-1 is transformed into PyC, underscoring the relevance of PyC in carbon budgets from eucalypt forest fires. The conversion rates varied substantially among fuel components, with the bark component exhibiting the highest conversion rate, at approximately 40%, and the down wood component displaying the lowest rate at around 15%. Intermediate conversion values were reported for forest floor and understory components. 
Given the recurrent nature of fires in eucalypt forests in Australia, both naturally and under human-prescribed conditions, our findings suggest that PyC production plays a significant role in the carbon cycle, of sufficient magnitude to be considered in global carbon budget estimations.

How to cite: García-Carmona, M., Santín, C., and Doerr, S.: Pyrogenic Carbon production in eucalypt forests: implications for the carbon cycle in fire-prone ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11446, https://doi.org/10.5194/egusphere-egu24-11446, 2024.

EGU24-11885 | Orals | BG1.10

Radiocarbon measurements of archived fish scales reconstruct past carbon cycle changes in a peri-alpine lake 

Margot White, Benedict Mittelbach, Timo Rhyner, Negar Haghipour, Thomas Blattmann, Martin Wessels, Nathalie Dubois, and Timothy Eglinton

Climate change and other anthropogenic impacts such as nutrient pollution result in perturbations to freshwater systems that alter aquatic carbon cycling. In the alpine Rhine basin, for example, long-term monitoring over the past four decades has documented increasing water temperatures that cause a decrease in the solubility of CO2. However, this same dataset records a small increase in the concentration of dissolved inorganic carbon (DIC) over the same period. This requires increasing inputs of DIC to aquatic systems and an acceleration of the carbon cycle, but the source of this additional carbon is not clear. Possible explanations include increased weathering of bedrock or increased soil organic matter respiration, with sharply contrasting implications for carbon storage and turnover. Radiocarbon (14C) is an ideal tool to distinguish between these different scenarios, as bedrock weathering will contribute 14C-depleted (fossil) DIC whereas increased soil respiration will contribute DIC that is more 14C-enriched (younger). Furthermore, large changes in the atmospheric radiocarbon content over the past century resulting from the testing of nuclear weapons provide a strong signal with which to track the exchange between aquatic and atmospheric carbon pools by examining how lake water DI14C changes through time. Here we focus on Lake Constance, a large peri-alpine lake fed mostly by the alpine Rhine River. We measured natural abundance radiocarbon in archived fish scales collected from Lake Constance over the past 100 years to reconstruct changes in lake water DI14C. These fish scales come from young fish caught in the lake who feed primarily on phytoplankton and thus reflect the 14C of the lake DIC pool. Preliminary measurements of fish scales from the pre-bomb period were 0.78 to 0.79 Fm, reflecting the addition of 14C dead rock-derived carbon from the dissolution of carbonate rocks within the catchment. These values are 14C-depleted compared to present day water column DIC values of 0.82 to 0.84 Fm, where the bomb spike signal persists. Results from fish scales will ultimately be compared with other archives of water column DI14C currently in development, including 14C of chlorophyll degradation products and zooplankton exoskeletons isolated from varved lake sediments. These records permit us to investigate how carbon cycling in the lake and its catchment has responded to anthropogenic perturbations such as warming and nutrient pollution over the past century, with the eventual goal of calibrating isotope enabled carbon cycle models.

How to cite: White, M., Mittelbach, B., Rhyner, T., Haghipour, N., Blattmann, T., Wessels, M., Dubois, N., and Eglinton, T.: Radiocarbon measurements of archived fish scales reconstruct past carbon cycle changes in a peri-alpine lake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11885, https://doi.org/10.5194/egusphere-egu24-11885, 2024.

EGU24-11886 | Posters on site | BG1.10

Direct radiocarbon measurements of dissolved inorganic carbon from environmental water using a gas ion source  

Negar Haghipour, Charlotte Schnepper, Thomas Blattmann, Kayley Kundig, Maxi Castrillejo, Nuria Casacuberta, Timothy I. Eglinton, and Margot E. White

An increasing demand for radiocarbon analysis of small samples has led to the development of various methods to further improve and simplify the CO2 extraction needed for accelerator mass spectrometer (AMS) measurements. Here, the performance of a direct feeding system of CO2 from dissolved inorganic carbon (DIC) from small water samples (<6 ml) and direct AMS measurement via a gas ion source coupled to a gas interface system (GIS) is presented and compared to the conventional preparation by graphitization that demands significantly larger samples (> 60 ml).

Seawater samples collected from Sargasso Sea, southeast of and lake water samples collected from Lake Constance have been prepared by both methods. The extraction of CO2 gas from samples for GIS measurement is performed using a carbonate handling system (CHS-Ionplus AG) through purging the headspace, acidifying the water, and sparging out the CO2. The preparation time is greatly reduced compared to conventional analysis that requires the labor-intensive graphitization step. The yielded 14C results from the direct CO2 measurements are in good agreement with values obtained from graphite measurements. The observed deviation between the two methods is below the uncertainty of radiocarbon gas measurement (~7‰).

This new approach will facilitate understanding of carbon cycle dynamics in many different environments and applications where a high throughput (up to 80 sample/day) is required. The new method is suitable for groundwater, pore water, seawater, freshwaters from lakes, rivers and glacial settings. Furthermore, it enables the analysis of small milliliter-scale samples and those containing low DIC concentrations.

How to cite: Haghipour, N., Schnepper, C., Blattmann, T., Kundig, K., Castrillejo, M., Casacuberta, N., Eglinton, T. I., and White, M. E.: Direct radiocarbon measurements of dissolved inorganic carbon from environmental water using a gas ion source , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11886, https://doi.org/10.5194/egusphere-egu24-11886, 2024.

EGU24-12192 | Posters on site | BG1.10

There to remain? Pyrogenic carbon production of savanna fires 

Cristina Santin, Carmen Sánchez-García, Minerva García-Carmona, Tercia Strydom, Philippa Ascough, and Stefan H. Doerr

Southern African savanna fires account for ~30% of the annual global carbon (C) emissions from vegetation fires, but their impact on the global C cycle extends beyond direct emissions During fire, part of the C burnt is converted to pyrogenic carbon (PyC), which is more resistant to degradation than original biomass and acts as a buffer to global fire C emissions when stored in soils or sediments. Despite its recognized importance for the C cycle, how much PyC is produced and how much of it stays in savanna ecosystems is still not well known, with no information yet for Southern African savannas. To address this research gap, we quantified how much PyC was produced during four fires in Kruger National Park (South Africa) and how much PyC was stored in surface soils. We also characterized the chemical and thermal recalcitrance of this PyC. Our results will be discussed in the broader context of C emissions from savanna fires as well as the role PyC plays as a C sequestration mechanism through its accumulation in soils, redistribution and ex-situ transport.

How to cite: Santin, C., Sánchez-García, C., García-Carmona, M., Strydom, T., Ascough, P., and Doerr, S. H.: There to remain? Pyrogenic carbon production of savanna fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12192, https://doi.org/10.5194/egusphere-egu24-12192, 2024.

EGU24-12381 | ECS | Posters on site | BG1.10

Assessing the biodegradability of dissolved organic carbon in freshwater systems: A method evaluation study 

Danielle Green, Fereidoun Rezanezhad, Scott Smith, Stephanie Slowinski, and Philippe Van Cappellen

Dissolved organic carbon (DOC) is an important contributor to both carbon cycling and other biogeochemical processes in aquatic ecosystems. The biodegradable fraction of DOC can be microbially degraded over time, producing carbon dioxide (CO2), a greenhouse gas. In addition, microbial degradation-resistant DOC can accumulate in water bodies, causing chemical and physical changes to aquatic systems. Although biodegradable DOC (BDOC) is widely studied, there is no agreed-upon standard method for assessing its biodegradability. Here, we aimed to develop and evaluate a new method for determining BDOC in freshwater samples. Our method includes filtering water samples to below 0.22 µm, to remove existing microbial cells, prior to inoculating the samples with a concentrated microbial inoculum produced by stepwise isolation of microbial cells from a peat sample. In addition, we added solutions containing nitrogen and phosphorus (in the forms of NH4NO3 and K2HPO4, respectively) to ensure that the microbes were not nutrient-limited. The samples were then capped with foam stoppers and incubated in the dark at 25⁰C on a shaker for 28 days to allow constant aeration during BDOC degradation. When applied to five freshwater samples collected from rivers, stormwater ponds, and a lake, and a glucose control, we observed that the amount of BDOC in the natural samples ranged from 15% to 53% and was 90% in the glucose control. Rates of BDOC degradation were calculated from DOC measurements at six sampling time points between days 0 and 28. We found that the DOC trends with time were best explained by two successive phases for BDOC degradation in all of the samples: an initial, fast, phase of BDOC degradation followed by a second, slower, phase of BDOC degradation where the rate constant for the second phase was between 5.57 and 565 times slower than for the initial phase. Changes in chemical characteristics of DOC measured using absorbance and fluorescence parameters including specific ultraviolet absorbance at 254 nm (SUVA254), humification index (HIX), and parallel factor analysis (PARAFAC) at each sampling time revealed that the initial, fast, phase of BDOC degradation often represents the utilization of small, non-aromatic compounds while the later, slower, phase of BDOC degradation often represents the utilization of more complex, aromatic compounds. The presented method provides a new approach to measure and characterize BDOC degradability and degradation kinetics that can be applied to future studies on biogeochemical processes in aquatic ecosystems.

How to cite: Green, D., Rezanezhad, F., Smith, S., Slowinski, S., and Van Cappellen, P.: Assessing the biodegradability of dissolved organic carbon in freshwater systems: A method evaluation study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12381, https://doi.org/10.5194/egusphere-egu24-12381, 2024.

EGU24-12504 | ECS | Posters on site | BG1.10

Burning poop: carbon dynamics in herbivore dung during southern-African savanna fires 

Carmen Sánchez-García, Cristina Santín, Tercia Strydom, and Stefan Doerr

Herbivores play a vital role in the functioning of savanna ecosystems. They ingest plants, modifying the vegetation cover, and disperse nutrients across the landscape in the form of dung. Fire in savanna is also a key nutrient recycling pathway, making elements readily available through the resultant ash and smoke. Wildfire ash, known for its susceptibility to be transported by wind and water, plays a key role in redistributing pyrogenic organic matter and nutrients across the landscape. However, our level of understanding of ash characteristics from burnt dung is very low. In addition, and due to its high carbon content, dung also adds to the wildland fuels for fires, alongside vegetation. Given that savannas are the dominant source of global Cemissions from fires, assessing the role of burnt dung in C dynamics is, therefore, also crucial for more accurate estimations of the overall C released during savanna fires.

We quantified C losses from dung combustion during fire in four savanna sites burnt by experimental fires in Kruger National Park (South Africa). We also analysed chemical properties, including major nutrients and metals, of dung and dung-derived ash. The studied dung came from large herbivores (zebra, elephant, giraffe, buffalo and wildebeest). The concentration of carbon and nitrogen in burnt dung was significantly lower than unburnt dung (carbon: 41 and 4.1%, nitrogen: 1.1 and 0.3% in unburnt and burnt dung, respectively). The carbon released from dung burning accounted for up to 6% of the carbon released from vegetation burning, emphasizing the substantial role of dung in carbon emissions during savanna fires. Our results also highlight burnt dung as a hotspot for minerals and nutrients with chemical characteristics different to those found in vegetation ash (e.g., phosphorus: 9,195 and 6,158 mg kg-1, copper: 55.8 and 28.1 mg kg-1 in dung-derived and vegetation ash respectively). This is likely to affect local soil physical and chemical properties and hence enhance ecosystem diversity.

How to cite: Sánchez-García, C., Santín, C., Strydom, T., and Doerr, S.: Burning poop: carbon dynamics in herbivore dung during southern-African savanna fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12504, https://doi.org/10.5194/egusphere-egu24-12504, 2024.

EGU24-13692 | ECS | Posters on site | BG1.10

Unveiling the role of soil water: Identifying primary sources of dissolved organic matter in surface waters 

Livia Vieira Carlini Charamba, Tobias Houska, Klaus Kaiser, Klaus-Holger Knorr, Stephan Krüger, Tobias Krause, Huan Chen, Pavel Krám, Jakub Hruška, and Karsten Kalbitz

Dissolved organic matter (DOM) is crucial for various ecological processes, playing essential roles in carbon and nutrient cycling. In forested catchments, litter input contributes to soil organic matter, influencing DOM composition in surface waters. The transition of DOM from soil organic matter to the dissolved state significantly impacts ecological balance and highlights the role of specific soil horizons in the catchment for stream water. DOM fingerprints, reflecting variations and similarities, act as valuable indicators for identifying primary DOM sources. The increasing trend in dissolved organic carbon (DOC) concentrations in surface waters underscores the urgency to understand contributing sources comprehensively. This study aims to characterize DOM along the terrestrial-aquatic continuum, identifying sources in stream water.

Soil, soil water, and stream water samples were collected biweekly for approximately two years at various depths in the Sosa drinking water reservoir catchment (Ore Mountains, Saxony, Germany). Two sub-catchments (one with a significant peatland component and one with predominantly mineral soils) were considered, each with two streams. The soil and soil water samples included four different soil types that characterize the entire catchment, i.e., intact and degraded peatland, cambisol, podzol. Pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was employed to characterize DOM in both solid and aqueous samples. Rstudio was used as a semiautomatic data processing aiming to achieve consistent compound identification. A principal component analysis (PCA) and cluster analysis were used to identify DOM sources in stream water.

PCA results showed a clear distinction between solid and aqueous samples. Overlaps were observed among soil water and stream water samples, revealing shared organic compound sources and potential transfer pathways. Fluctuations and degradation patterns were noted across seasons, especially for soil water samples. Cluster analysis revealed that soil water DOM from peat horizons predominantly influenced upstream stream water DOM in peatland-dominated areas. Downstream, the DOM composition changed and was influenced by soil water from the cambisol and the podzol (mineral soils). Concerning the sub-catchment composed mainly of mineral soils, stream water reflected DOM of deep mineral horizons of cambisols and podzols. Forest floor soil water from cambisol had no to very little effect in both sub-catchments, however, soil water of the podzol forest floor slightly contributed to the streams located in the mineral soil-dominated sub-catchment. Thus, the results show that the primary source of DOM in the Sosa catchment came from soil water of deep mineral soil horizons and that stream proximity was a primary factor influencing the influx of allochthonous DOM into stream water.

The research emphasized that DOM composition in the four streams closely resembled soil water DOM and analyzing the composition of the solid organic soil horizons did not help to identify the potential DOM source of the streams. Therefore, although recognizing intrinsic stream processes is important, successful source identification requires analysis of DOM in soil water from major catchment soil types. Proximity to stream water played a critical role as the predominant factor contributing to the introduction of allochthonous DOM into stream water.

How to cite: Vieira Carlini Charamba, L., Houska, T., Kaiser, K., Knorr, K.-H., Krüger, S., Krause, T., Chen, H., Krám, P., Hruška, J., and Kalbitz, K.: Unveiling the role of soil water: Identifying primary sources of dissolved organic matter in surface waters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13692, https://doi.org/10.5194/egusphere-egu24-13692, 2024.

EGU24-14728 | Orals | BG1.10

Transformations of soil organic matter induced by volatile organic compounds 

Laura Meredith, Juliana Gil Loaiza, Adrian Castro, Antonette DiGuiseppe, Gemma Purser, Zhaoxin Zhang, Qunli Shen, Kolby Jardine, Romy Chakraborty, Eoin Brodie, and Malak Tfaily

Volatile organic compounds (VOCs) are diverse and prevalent metabolites exchanged in microbial systems but are often overlooked as vectors of soil organic matter (SOM) transformations. Roots, litter, aboveground vegetation, and microbial metabolism are all sources of VOCs to soil; however, little is known about how they can contribute to soil carbon (C) cycling. VOCs have been shown to contribute to key soil C pools including microbial biomass, dissolved organic matter, particulate organic matter, and mineral-associated organic matter (MAOM), suggesting that they can participate in critical soil C stabilization pathways such as the microbial necromass conduits to MAOM. Yet, we still lack an understanding of the specific VOC-induced transformations in SOC, hindering the characterization of this process across soil and volatile compounds.

 

To address this research gap, we conducted a soil incubation study to evaluate the contributions of VOCs to SOM composition. We hypothesized that VOCs would impact SOM composition and soil carbon pool magnitudes. We evaluated whether the diversity and quality of soil metabolites change in response to weekly additions of five individual VOCs over a 3-month period: methanol, acetone, acetaldehyde, isoprene, and alpha-pinene. In our study, we utilized soil matrices from a semi-arid agroecosystem, alongside sterile (irradiated) soil controls and silica controls, enabling us to distinguish between biotic and abiotic interactions. We monitored CO2 concentrations regularly as a proxy for microbial activity. Destructive triplicate samples were harvested each month for metabolite extraction and high-resolution SOM analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FTICRMS). We found that VOCs stimulated SOM transformations and generally increased the number of lipids and amino sugars—markers of microbial biomass. VOCs a-pinene, acetaldehyde, and methanol had the most unique compounds, suggesting that these VOCs may support biomass production and its transformation, while isoprene and acetone had no unique compounds and may have predominantly been used for catabolic, CO2-producing processes. With this study, we aim to grow understanding of the role of VOCs in soil C cycling and their contribution to soil ecological and metabolic interactions related to carbon stabilization.

How to cite: Meredith, L., Gil Loaiza, J., Castro, A., DiGuiseppe, A., Purser, G., Zhang, Z., Shen, Q., Jardine, K., Chakraborty, R., Brodie, E., and Tfaily, M.: Transformations of soil organic matter induced by volatile organic compounds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14728, https://doi.org/10.5194/egusphere-egu24-14728, 2024.

EGU24-15386 | ECS | Posters on site | BG1.10

Dissolved Organic Matter from Coastal Vegetated Ecosystems Through the Lens of Carbon Sequestration 

Dariya Baiko, Thorsten Dittmar, Philipp Böning, and Michael Seidel

Coastal vegetated ecosystems (CVEs) are highly productive habitats whose role in coastal biogeochemical cycles cannot be understated. The high productivity of salt marshes, seagrass meadows, and mangrove forests is channeled into the sediments and into the sea in form of particulate and dissolved organic matter (DOM). While labile DOM is degraded within a short time frame, recalcitrant DOM compounds can remain in the oceanic water column for hundreds to thousands of years. However, so far, DOM has received little consideration in carbon sequestration approaches. In sulfidic porewater of CVEs, DOM can undergo abiotic sulfurization, producing dissolved organic sulfur (DOS), which may render it resistant to biodegradation. Thus, the formation of DOS in CVEs can act as a link between labile and recalcitrant pools of DOM and provide the means of carbon transport across and beyond ecosystem boundaries. We analyzed DOM as well as inorganic nutrients in samples from temperate (German) and tropical (Malaysian) mesotidal CVEs. Unprecedentedly high porewater DOC concentrations were found in both temperate salt marshes as well as in tropical mangroves. High proportions of DOS in the DOM pool demonstrated accumulation of sulfurized compounds in the porewater. Molecular DOM patterns deduced from ultrahigh-resolution mass spectrometry (FT-ICR-MS) analysis indicated that up to 50% of the several thousand molecular formulas identified were characteristic of the analyzed CVEs. Adjacent habitats shared a substantial proportion of DOM molecular formulas indicating lateral transfer of organic material. This emphasizes that the potential for carbon dioxide removal of CVEs extends beyond the areas with above-ground biomass.

How to cite: Baiko, D., Dittmar, T., Böning, P., and Seidel, M.: Dissolved Organic Matter from Coastal Vegetated Ecosystems Through the Lens of Carbon Sequestration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15386, https://doi.org/10.5194/egusphere-egu24-15386, 2024.

EGU24-15535 | ECS | Orals | BG1.10

The climate control of soil organic carbon dynamics inferred from speleothem radiocarbon ages 

Gang Xue, Yanjun Cai, Peng Cheng, Franziska Lechleitner, Haiwei Zhang, Yanhong Zheng, Yingying Wei, Shouyi Huang, Ling Yang, Xing Cheng, Yanbin Lu, Jie Zhou, Le Ma, Hai Cheng, and Lawrence Edwards

The complexity of processes affecting soil organic carbon (SOC) turnover on spatio-temporal scales often hinders the extrapolation of results from specific sites to larger scales. This study presents Holocene speleothem U-Th ages paired with 14C ages of carbonate and dissolved organic carbon (DOC) through three caves located on a north-south transect through China. The deviations of speleothem 14CDOCages from the U-Th ages show clearly spatial variability, and they are positively correlated with mean ages of modern SOC and soil turnover time, suggesting that deviations can be used to infer the SOC turnover. We further demonstrate that slow SOC turnover (large deviation) was associated with weak monsoon (low temperature/less precipitation) on temporal scales. Our findings reveal that climate dominates the speleothem 14CDOCages and SOC turnover. As global warming likely will intensify, the accelerated turnover of SOC, particularly at higher latitude areas, may partially offset the existing soil carbon stock. 

How to cite: Xue, G., Cai, Y., Cheng, P., Lechleitner, F., Zhang, H., Zheng, Y., Wei, Y., Huang, S., Yang, L., Cheng, X., Lu, Y., Zhou, J., Ma, L., Cheng, H., and Edwards, L.: The climate control of soil organic carbon dynamics inferred from speleothem radiocarbon ages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15535, https://doi.org/10.5194/egusphere-egu24-15535, 2024.

EGU24-15782 | ECS | Posters on site | BG1.10

Lambda-Miner: Enhancing Reproducible Natural Organic Matter Data Processing with a Semi-Automatic Web Application  

Johann Wurz, Anika Groß, Kai Franze, and Oliver Lechtenfeld

As the volume and complexity of data in environmental sciences continue to grow, the need for data management and reproducible processing methods becomes increasingly crucial. In the specific research domain of natural organic matter (NOM), there is currently no standardized tool for data processing, particularly for the management of data and its respective metadata. We developed and present the Lambda-Miner - a semi-automatic web application for data processing of ultrahigh-resolution mass spectrometry data of NOM. The platform provides an end-to-end data processing pipeline and supersedes manual steps via standardized data and metadata management. It empowers users to execute interactive workflows for mass spectra calibration, assignment of molecular formulas by specific rules to peak masses, and validation of these formulas according to specific sets of rules. Peak data as well as sample and measurement metadata are stored in a relational database management system (RDBMS). The Lambda-Miner thus facilitates reproducible, standardized data processing which builds a common repository for mass data, metadata (such as sample type and geolocation), intermediate, and final results in a format suitable for subsequent analyses. The combination of this information in one place enables meta-analyses such as long-term quality control studies and software optimization assays. The Lambda-Miner supports domain-specific requirements for research data management and contributes to achieving FAIR data principles in the domain of NOM analytics. The Lambda-Miner allows researchers to process their ultrahigh-resolution mass spectrometry data of NOM within minutes and linking it to features such as extraction efficiency, accumulation time, and relation of total assigned current to total ion current. Processed data can be downloaded in an interoperable format, facilitating individual data processing or visualization. The current implementation of the Lambda-Miner is designed for studying NOM with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allowing formula assignments with widely used elemental compositions of NOM in the mass range from 0 to 1000 Da. But its modular structure makes it easy to adjust and extend the implementation for other kind of analyses or instrumentations. With its adaptability and focus on reproducibility, the Lambda-Miner introduces a valuable tool for advancing standardized data storage, processing, and analysis in the study of Natural Organic Matter.

How to cite: Wurz, J., Groß, A., Franze, K., and Lechtenfeld, O.: Lambda-Miner: Enhancing Reproducible Natural Organic Matter Data Processing with a Semi-Automatic Web Application , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15782, https://doi.org/10.5194/egusphere-egu24-15782, 2024.

EGU24-16215 | ECS | Orals | BG1.10

Detection and exclusion of false molecular formula assignments via mass error distributions in ultrahigh resolution mass spectra from natural organic matter. 

Shuxian Gao, Elaine Jennings, Limei Han, Boris Koch, Peter Herzsprung, and Oliver Lechtenfeld

Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of molecular formulas (MFs) in natural organic matter (NOM). However, multiple assignments (MultiAs) occur when the several chemically plausible MFs are assigned to one single mass peak. MultiAs for a mass peak consist of one common core MF but different “formula residuals”, or replacement pairs, and increase as more heteroatoms and isotopes are being considered during the assignment process. This poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. A number of approaches have been proposed to rule out false assignments based on structural constraints or isotopologue detection and intensity ratios. But this becomes increasingly challenging for low abundance mass peaks or when stable isotope labeling (e.g. with 15N, 2H) is employed. Here, we present a new approach based on mass error distributions for the identification of true and false-assignments among MultiAs. An automatic workflow was developed for the detection and exclusion of false assignments in MultiAs based on their recurring replacement pairs and Kendrick mass defect values. The workflow can validate MFs for mass peaks that are close to detection limit or where naturally occurring isotopes are rare (e.g. 15N) or absent (e.g. P, F), substantially increasing the reliability of MFs assignments and broadening the applicability of UHRMS in characterization of NOM, e.g. for organic nitrogen and organic phosphorus in different environmental compartments, which are key components for global elemental cycles.  

How to cite: Gao, S., Jennings, E., Han, L., Koch, B., Herzsprung, P., and Lechtenfeld, O.: Detection and exclusion of false molecular formula assignments via mass error distributions in ultrahigh resolution mass spectra from natural organic matter., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16215, https://doi.org/10.5194/egusphere-egu24-16215, 2024.

EGU24-16483 | ECS | Orals | BG1.10

Radiocarbon signatures of dissolved black carbon in early winter water masses from the Beaufort Sea 

Linn Speidel, Negar Haghipour, Thomas Blattmann, Lisa Bröder, Julie Lattaud, Alysha I. Coppola, and Timothy I. Eglinton

Black carbon (BC) is a fraction of organic carbon resulting from the incomplete combustion of biomass and fossil fuels. The production and fate of BC is a topic of great interest in the context of ongoing climate change, as the intensity and severity of fires is increasing. The recalcitrant nature enables BC to buffer these changes by removing biomass-derived carbon into longer cycling pools. BC is mainly produced on land and a portion is transported in both particulate and dissolved form by the rivers to the oceans. Dissolved BC (DBC) cycles on millennial timescales, thereby storing BC as fraction of Dissolved Organic Carbon (DOC) in the marine DOC pool before deposition to sediments or complete degradation. However, there is currently limited information on the cycling, transport and evolution of modern riverine DBC, and how it contributes to the deep ocean DOC pool.
The arctic and boreal regions are well recognized as a nexus for climate change, given amplified rates of change in average temperatures and summer precipitation, which exacerbate carbon cycle feedbacks, including enhanced BC production by intensified wildfire seasons. The Beaufort Sea in the Arctic Ocean is composed of different water masses, with Pacific water masses entering from the Chukchi Sea, and arctic rivers - in particular the Mackenzie River - being the major source of freshwater that delivers both terrestrial DOC and DBC. Presently, information on the sources and fate of BC in the Arctic Ocean remains sparse.
Here, we report DBC concentrations and Δ14C values in the Beaufort Sea during early winter conditions. Distinct water masses were sampled, including the outflow of the Mackenzie River and the Pacific water jet on the shelf break, during two cruises in 2021 and 2022 that spanned the coast of north Alaska to the Amundsen Gulf. Preliminary radiocarbon results show that DBC on the shelf break is up to five millennia old. We discuss our findings in the context of regional hydrography and carbon cycle processes.

How to cite: Speidel, L., Haghipour, N., Blattmann, T., Bröder, L., Lattaud, J., Coppola, A. I., and Eglinton, T. I.: Radiocarbon signatures of dissolved black carbon in early winter water masses from the Beaufort Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16483, https://doi.org/10.5194/egusphere-egu24-16483, 2024.

EGU24-16551 | ECS | Orals | BG1.10

Prediction of soil pyrogenic carbon contents from Rock-Eval® thermal analysis: a machine-learning based model 

Johanne Lebrun Thauront, Severin Luca Bellè, Marcus Schiedung, Amicie Delahaie, Marija Stojanova, François Baudin, Pierre Barré, and Samuel Abiven

Pyrogenic carbon (PyC) is a continuum of aromatic and condensed organic molecules. It represents about 15 % of organic carbon in soils and sediments1. However, there is a discrepancy in the literature regarding quantification of PyC: different methods that are currently considered as reference differ largely in their results1,2. Indeed, most methods used to quantify PyC are based on different operational principles (e.g. chemical, thermal or physical stability of PyC, molecular markers) and consequently, they do not cover the same range of the PyC continuum2. In addition, most of them are expensive and/or time consuming. Here, we propose a new PyC quantification method based on Rock-Eval® thermal analysis, thought to be rapid, inexpensive and comparable to the previous methods toolbox. Rock-Eval® thermal analysis has been successfully introduced to the field of soil carbon analysis in the last two decades and allowed to distinguish between various pools of soil carbon (inorganic carbon, stable and active organic carbon) using a single analysis of combined pyrolysis and thermal oxidation3,4. In this study, we formulate the hypothesis that Rock-Eval® thermal analysis in combination with predictive modelling is suitable to quantify PyC in soil matrices.

To build and validate such a model, we chose soil samples originating from contrasting climate zones and parent material and with varying properties including clay content and mineralogy, iron oxide speciation and content, pH, cation-exchange capacity and organic carbon content. We measured PyC using a set of established methods (i.e. CTO-375, BPCA and HyPy) and acquired Rock-Eval® thermograms. Then, we identified the relevant features for PyC quantification in the thermograms by applying several machine-learning approaches. This work adds a new soil carbon pool to the ones already accessible from Rock-Eval® thermal analysis and allows an efficient and rapid quantification of PyC in soils, which is needed for large-scale studies of soil carbon pools.

(1) Reisser, M.; Purves, R. S.; Schmidt, M. W. I.; Abiven, S. Pyrogenic Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and Stocks. Front. Earth Sci. 2016, 4 (August), 1–14. https://doi.org/10.3389/feart.2016.00080.

(2) Hammes, K.; Smernik, R. J.; Skjemstad, J. O.; Schmidt, M. W. I. Characterisation and Evaluation of Reference Materials for Black Carbon Analysis Using Elemental Composition, Colour, BET Surface Area and 13C NMR Spectroscopy. Appl. Geochemistry 2008, 23 (8), 2113–2122. https://doi.org/10.1016/j.apgeochem.2008.04.023.

(3) Disnar, J. R.; Guillet, B.; Keravis, D.; Di-Giovanni, C.; Sebag, D. Soil Organic Matter (SOM) Characterization by Rock-Eval Pyrolysis: Scope and Limitations. Org. Geochem. 2003, 34 (3), 327–343. https://doi.org/10.1016/S0146-6380(02)00239-5.

(4) Cécillon, L.; Baudin, F.; Chenu, C.; Houot, S.; Jolivet, R.; Kätterer, T.; Lutfalla, S.; Macdonald, A.; Van Oort, F.; Plante, A. F.; Savignac, F.; Soucémarianadin, L. N.; Barré, P. A Model Based on Rock-Eval Thermal Analysis to Quantify the Size of the Centennially Persistent Organic Carbon Pool in Temperate Soils. Biogeosciences 2018, 15 (9), 2835–2849. https://doi.org/10.5194/bg-15-2835-2018.

How to cite: Lebrun Thauront, J., Luca Bellè, S., Schiedung, M., Delahaie, A., Stojanova, M., Baudin, F., Barré, P., and Abiven, S.: Prediction of soil pyrogenic carbon contents from Rock-Eval® thermal analysis: a machine-learning based model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16551, https://doi.org/10.5194/egusphere-egu24-16551, 2024.

EGU24-16627 | Posters on site | BG1.10

Direct analysis of marine dissolved organic matter using LC-FT-ICR MS 

Oliver Lechtenfeld, Jan Kaesler, Elaine Jennings, and Boris Koch

Marine dissolved organic matter (DOM) is an important component of the global carbon cycle, yet its intricate composition and the sea salt matrix pose major challenges for chemical analysis. The current view on marine DOM as assessed with ultrahigh resolution mass spectrometry (UHR-MS) is largely based on SPE-extracts known for its consistent underestimation of e.g. the mean nominal oxidation state of carbon (NOSC) and molecular weight as compared to bulk measurements. We introduce a direct injection, reversed-phase liquid chromatography Fourier-transform ion cyclotron resonance (FT-ICR) MS approach to analyze marine DOM without the need for solid-phase extraction. Effective separation of salt and DOM is achieved with a large chromatographic column and an extended isocratic aqueous step. Post-column dilution of the sample flow with buffer-free solvents and implementing a counter gradient reduced salt buildup in the ion source and resulted in excellent repeatability. With this method over 5,500 unique molecular formulas were detected from just 5.5 nmol of carbon in 100 µL filtered Arctic Ocean seawater. We observed highly linear detector response for variable sample carbon concentrations and a high robustness against the salt matrix. We could demonstrate the bias of SPE in marine DOM on a molecular level leading to a predominant detection of less polar DOM, while neglecting a large fraction of polar, heteroatom-rich DOM. In addition, a substantial fraction of terrestrial-derived DOM was previously overlooked in solid-phase extracted marine DOM. Overall, the direct analysis of seawater offers fast and simple sample preparation and avoids fractionation introduced by extraction. The method facilitates studies in environments, where only minimal sample volume is available e.g. in marine sediment pore water, ice cores, or permafrost soil solution. The small volume requirement also supports higher spatial (e.g. in soils) or temporal sample resolution (e.g. in culture experiments). Chromatographic separation adds further chemical information to molecular formulas, enhancing our understanding of marine biogeochemistry, chemodiversity, and ecological processes.

How to cite: Lechtenfeld, O., Kaesler, J., Jennings, E., and Koch, B.: Direct analysis of marine dissolved organic matter using LC-FT-ICR MS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16627, https://doi.org/10.5194/egusphere-egu24-16627, 2024.

EGU24-17503 | ECS | Orals | BG1.10

Sediment source and transport along the Iberian Margin 

Sara Campderrós, Leopoldo D. Pena, Jaime Frigola, Ester Garcia-Solsona, Eduardo Paredes, Negar Haghipour, Heather M. Stoll, and Isabel Cacho

The Iberian Margin is a dynamic margin, affected by complex sedimentary and oceanographic processes. The Mediterranean Outflow Water (MOW) is a prominent water mass that flows along the Iberian margin and interacts with the sediment on the slope. However, more information about how MOW interacts with sediment delivery, distribution, deposition along the margin is needed. In this study we combine Nd, Sr and Pb isotopes on fine-grained detrital sediments (< 63 μm) and 14C measurements in planktonic foraminifera (G. bulloides) in 25 coretop sediment samples collected along the entire Iberian Margin (from the Gulf of Cadiz to the “Cachucho” mount in the Cantabrian Sea). Nd, Sr and Pb isotopes were used to (i) identify the main source areas of terrigenous sediments coming from the Iberian Peninsula and (ii) trace the distribution of these sediments along the Iberian Margin. Additionally, 14C data in planktonic foraminifera were used to obtain radiocarbon ages, that allowed us to date the coretop sediments. Results from Nd, Sr and Pb isotopes allow us to identify three main terrigenous sediment source provinces in the Iberian margin, depicting a prominent south to north gradient. Moreover, large age discrepancies in coretop sediments are strongly associated with the main pathway of MOW, thus suggesting erosion and lateral transport of sediments along the main path of the MOW.

How to cite: Campderrós, S., Pena, L. D., Frigola, J., Garcia-Solsona, E., Paredes, E., Haghipour, N., Stoll, H. M., and Cacho, I.: Sediment source and transport along the Iberian Margin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17503, https://doi.org/10.5194/egusphere-egu24-17503, 2024.

EGU24-17520 | ECS | Posters on site | BG1.10

A multi-method approach to characterise and quantify pyrogenic carbon in tropical urban agroecosystems.  

Stephen Boahen Asabere, Ankit Ankit, Tino Peplau, Simon Drollinger, Christopher Poeplau, Daniela Sauer, and Axel Don

Pyrogenic carbon (PyC) is produced by the incomplete combustion of biomass. It is chemically inert and nutrient-deficient, making it relatively stable in soils. PyC can thus form an important pool of total soil organic carbon (TOC) for C preservation in soils. Despite its significance, data on the nature, level, and relative contribution of PyC to TOC in tropical urban agroecosystems is largely non-existent. In this study, we aim to determine the content and chemical composition of PyC in urban arable soils of Kumasi, a rapidly expanding city in Ghana, West Africa. PyC is likely enriched in these soils, mainly due to soot deposition from traffic, combined with widespread burning of household waste and use of charcoal for cooking.

We sampled topsoils (0–10 cm) from arable fields under four levels of urbanisation intensity (UI), from low to high UI. We employed a range of analytical techniques including visual, chemothermal, thermogravimetric, and biomarker analysis, as well as fourier transformed infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Visual assessment indicated that ≥80% of all bulk soil samples contained charred macro particles, pointing to PyC enrichment in the urban arable soils. Separating TOC into particulate organic C (POC, ≥63 µm particle size) and mineral-associated organic C (MAOC, <63 µm), chemothermal assessment revealed that PyC contributed less than 0.1% to each fraction under all urban intensity conditions. These PyC levels increased notably along with increasing UI in both TOC fractions. Thereby, median PyC levels in the MAOC fraction (7.8–20.4 mg kg-1) were markedly higher compared to those of the POC fraction (0.1–0.3 mg kg-1). This finding highlight a noticeable PyC contribution to TOC preservations in Kumasi’s tropical urban arable soils, although overall contribution is low. Ongoing thermogravimetric, FTIR spectroscopy, NMR spectroscopy, and biomarker analysis will further detail the amount and chemical composition of PyC in these soils. For instance, we will integrate diagnostic ratios of polycyclic aromatic hydrocarbons with masoccharide anhydrides in order to decouple the relative amount of PyC from biomass and that of fossil fuel.

By characterising the chemical nature of PyC with this wide range of analytical techniques, insights into the source and transformation of PyC in a tropical urban agricultural context can be provided. This will lead to better understanding of the role of PyC in the urban soil carbon cycle and its implications for urban sustainability and global C sequestration efforts.

How to cite: Asabere, S. B., Ankit, A., Peplau, T., Drollinger, S., Poeplau, C., Sauer, D., and Don, A.: A multi-method approach to characterise and quantify pyrogenic carbon in tropical urban agroecosystems. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17520, https://doi.org/10.5194/egusphere-egu24-17520, 2024.

EGU24-18669 | Orals | BG1.10

Pyrogenic carbon: Is it a sink in the global carbon cycle? And why we can’t be sure. 

Matthew Jones, Alysha Coppola, and Cristina Santín

Fires play a critical role in modulating the quantity and quality of carbon (C) stored in the terrestrial biosphere, including in aboveground vegetation and soils. Via riverine transport routes, fires also affect the quantity and quality of C delivered to the global oceans.

The mission of this talk is to set the scene on the multifaceted ways in which fire impacts the global C cycle, with a special focus on the widely-overlooked role of pyrogenic C.

We will begin by summarising how fires impact on terrestrial stores of C, starting with natural cycles of disturbance and recovery that influence total stocks of C on the terrestrial landscape. We will then demonstrate how shifting fire regimes, related to climate change and changes in land use, are perturbing the cycle of C and influencing the quantity of C stored on the landscape. Increased fire frequency and intensity generally promotes a loss of C from landscapes, especially in cases where vegetation cannot recover completely in the shortening time available between disturbance events.

Set within the broader cycle of biogenic C is a sub-cycle of highly recalcitrant ‘pyrogenic’ C – a by-product of incomplete combustion during fires. We will highlight how the special properties of this pyrogenic C promote its longevity in terrestrial stores in a manner that can offset (or ‘buffer’) losses of total C. The process of pyrogenic C storage has been widely overlooked in models of the global C cycle leading to C accounting errors, however we will highlight some recent examples of its implementation in land surface models and the lessons learned from doing so.

Due to its exceptional longevity in terrestrial pools, pyrogenic C has enhanced odds of reaching the global oceans via rivers. We will discuss the disproportionate export of pyrogenic C to the global oceans (relative to biogenic C) and how this leads to an unusual potential for long-term C sequestration.

Finally, we will provide an overview of the current understanding of the global budget of pyrogenic C, integrating best estimates for the fluxes of C to and from terrestrial stores and to and from marine stores. We will also highlight how uncertainties in the magnitude of fluxes in the C cycle lead to poor understanding of whether pyrogenic C currently acts as a sink or source of C to the atmosphere. We will underscore the particular need to constrain the decomposition rates and residence times of pyrogenic C in soils and marine stores if we are to build a complete picture of its role in the global C cycle.

How to cite: Jones, M., Coppola, A., and Santín, C.: Pyrogenic carbon: Is it a sink in the global carbon cycle? And why we can’t be sure., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18669, https://doi.org/10.5194/egusphere-egu24-18669, 2024.

EGU24-19168 | Orals | BG1.10

Molecules and microbes: monitoring peatland health below the surface 

Nicholle Bell, Ezra Kitson, Gianluca Trifiro, and Richard York

Peatlands are organic matter rich (with over 60% organic matter) ecosystems that act as ‘carbon sinks’, storing many times the carbon stored by Earth’s forests. Peatlands act as sponges storing excess water from rain events and releasing it slowly, a mechanism that not only mitigates floods but also filters drinking waters. However, peatlands can only conduct these vital services when healthy and functioning, with a near surface water table and anoxic acidic conditions below the surface. Unfortunately, 80% of UK peatlands have been assessed as damaged mainly via drainage for repurposing the land for other uses. Rewetting peatlands by installing dams is one of the most common methods to restore these damaged bogs. While there is a large amount of evidence that rewetting restores the water table, questions remain whether rewetting successfully restores peatlands to their full health. To answer this question, we need to know what is happening below the surface and examine the roles of key players in peat formation and carbon cycling, namely the microbes and the carbon-containing molecules. It is not clear which of these players is more important, or how they depend on each other. To address this question, we are using the latest technologies (DNA/RNA sequencing, NMR spectroscopy and FT-ICR mass spectrometry) to uncover who they are, how they interact and how they are impacted by drainage and rewetting. The task is not easy as peat is an uncharacterised complex mixture on a molecular and microbial level and the key players could be found in different phases (solid or liquid). In this presentation, I will provide a brief overview of what insights the technologies we are using provide for below the surface characterisation of UK peatlands.

How to cite: Bell, N., Kitson, E., Trifiro, G., and York, R.: Molecules and microbes: monitoring peatland health below the surface, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19168, https://doi.org/10.5194/egusphere-egu24-19168, 2024.

EGU24-19501 | ECS | Posters on site | BG1.10

Inorganic biogenic carbon redistribution and transport in marine sediments 

Prabodha Lakrani Hewage, Luz María Mejía, Negar Haghipour, Mariem Saavedra-Pellitero, Ben Trundley, Timothy Eglinton, David Hodell, and Blanca Ausín

Coccolithophores are calcifying marine phytoplankton whose blooms can be seen from space and play an important, yet complex, role in the global carbon cycle. On one hand, coccolithophores sequester atmospheric CO2 to the deep ocean via photosynthesis contributing to the biological pump. On the other hand, coccolithophores increase aqueous CO2 via precipitation of tiny calcite scales named coccoliths (i.e., carbonate counter pump), which are a major component of marine sediments. Coccoliths are generally in the 2-20 µm size range, and thus they can be winnowed by strong currents and transported to distal locations. Here, we show the first coccoliths radiocarbon (14C) ages and explore the influence of size-dependent coccolith sorting and transport, redistribution, and fate in marine sediments. Because the coccolith depends on the species, we have separated and 14C dated four coccolith size fractions: 8-11 µm, 5-8 µm, 3-5 µm, and 2-3 µm, in  five depth intervals on a sediment core recovered from SHAK06-5K site, off the Iberian Margin. Coccolith separation was achieved by a combination of dry sieving, microfiltration, centrifugation, and settling experiments. Energy Dispersive Spectroscopy (EDS) images of selected size fractions were used to estimate the relative contribution of coccolith and non-coccolith carbonate. A relationship between coccolith 14C age and grain size is apparent in all samples, with the smallest size class recording the youngest ages and the largest coccoliths being the oldest. The latter suggests that hydrodynamic sorting largely influences coccolith redistribution in marine sediments, where larger coccoliths result in increased mobility, as they are prone to resuspension than coccoliths in 2-3 µm size fraction that tend to show cohesive behaviour. The 14C ages of coccoliths are older than those of co-deposited planktic foraminifera, bulk organic carbon (OC), long-chain fatty acids (LCFA), and alkenones. Coccoliths within the 2-3 µm size class show 14C ages comparable to those of OC in all samples. Such a pattern indicates similar transport mechanisms for both the smallest coccoliths and OC, and that the majority of carbonate in the 2-3 µm size fraction, including the non-coccolith particles, is predominantly derived from marine primary production and thus, of biogenic origin. Our study has implications for palaeoceanographic studies using coccoliths as paleo-productivity and geochemical proxies.

How to cite: Hewage, P. L., Mejía, L. M., Haghipour, N., Saavedra-Pellitero, M., Trundley, B., Eglinton, T., Hodell, D., and Ausín, B.: Inorganic biogenic carbon redistribution and transport in marine sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19501, https://doi.org/10.5194/egusphere-egu24-19501, 2024.

EGU24-19642 | Orals | BG1.10

Insight in high alpine soil carbon dynamics from compound-specific and soil fraction radiocarbon analysis on a glacier forefield chronosequence  

Rienk Smittenberg, Valerie Schwab, Hans Sanden, Iso Christl, Frank Hagedorn, Irka Hajdas, Lukas Wacker, Negar Haghipour, Susan Trumbore, Xiaomei Xu, and Stefano Bernasconi

The ecosystem carbon balance of high latitude and high altitude ecosystems is particularly sensitive to climate change, where increasing temperatures generally lead to a rise of the ecosystem carbon storage, but also increasing carbon turnover times. In this study, we investigated the carbon dynamics of the 150-year long Damma Glacier forefield chronosequence, Switzerland. Specifically, we performed radiocarbon analysis of a range of organic matter fractions, sampled in 2007, 2017 and 2022 from soils developing on areas having been exposed for 20-150 years due to the retreat of the glacier. To characterize the age spectrum of material making up the bulk soil carbon, we isolated a range of different fractions, from supposedly 'stable' carbon pools (fine mineral-bound, and peroxide-resistant carbon), microbially ‘labile’ respired CO2, dissolved soil organic carbon (DOC), hydrophobic leaf wax-derived alkanes, and microbial-derived fatty acids. Comparison of our results with the penetration of the radiocarbon bomb spike and the increase of soil and ecosystem carbon over the both the chronosequence (space-for-time) and over the sampling period (time-for-time) allowed us to make the following inferences: (i) A small but persistent contribution of ancient carbon is present in the forefield area exposed by the glacier, which is particularly visible in the hydrophobic leaf wax 14C data. From this we conclude that this old carbon pool is at least in part a remnant of ancient soil carbon from a previous warm and glacier-free period, potentially adding to contributions of fossil-fuel derived black carbon deposition. (ii) There is a significant portion of soil carbon with a decadal-scale carbon turnover rate, and (iii) mineral-bound carbon clearly has a slower turnover time. (iv) Microbial lipids, soil CO2 and DOC 14C content reflect different carbon sources: in younger soils, relatively low 14C contents indicate a higher relative contribution of ancient carbon decomposition, while in older soils this signal is swamped by decomposition of freshly photosynthesized organic matter.

How to cite: Smittenberg, R., Schwab, V., Sanden, H., Christl, I., Hagedorn, F., Hajdas, I., Wacker, L., Haghipour, N., Trumbore, S., Xu, X., and Bernasconi, S.: Insight in high alpine soil carbon dynamics from compound-specific and soil fraction radiocarbon analysis on a glacier forefield chronosequence , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19642, https://doi.org/10.5194/egusphere-egu24-19642, 2024.

EGU24-21439 | ECS | Orals | BG1.10

Modeling microbial functional trait-environment interactions at the continental scale 

Katherine Shek, James Stegen, Alan Roebuck, Amy Goldman, Mikayla Borton, Kelly Wrighton, and Adam Wymore

Inferring linkages between microbial metabolism and dissolved organic matter (DOM) across environmental gradients is a promising avenue to improve biogeochemical predictions at large spatial scales. Despite decades of metagenomic studies identifying microbial functional trait-environment patterns at small spatial scales, general patterns at continental or global scales that may improve large-scale models remain unresolved. Recent influx of multi-omics datasets that represent diverse environmental conditions has enabled scalable analyses linking microbial metabolic niche breadths with key environmental processes, such as carbon and nutrient transformations.

Here, we leveraged publicly available microbial metagenome assembled genomes (MAGs) derived from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) data paired with metabolomic (FTICR-MS) and sediment chemistry data to link microbial metabolic potential with organic chemistry. We annotated 1,384 MAGs representing 65 sites using the R tool microTrait, which categorizes functional traits under the YAS (growth yield-resource acquisition-stress tolerance) framework. Following Hutchinsonian niche theory, we modeled microbial trait combinations as n-dimensional hypervolumes and observed trait-DOM patterns at the continental scale, showing microbial functional tradeoffs along gradients of organic carbon. We expect that at the continental scale, microbial trait profiles will be distinct across climatic regions, and that niche breadth (i.e. the size of individual hypervolumes in trait space) will correlate with DOM/metabolite diversity. The results of this work will distill generalizable patterns of microbe-DOM availability and diversity at large spatial scales, thus identifying information to improve current biogeochemical models.

How to cite: Shek, K., Stegen, J., Roebuck, A., Goldman, A., Borton, M., Wrighton, K., and Wymore, A.: Modeling microbial functional trait-environment interactions at the continental scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21439, https://doi.org/10.5194/egusphere-egu24-21439, 2024.

Frequent occurrences of high-temperature records have become commonplace during the summer seasons in regions adjacent to the western Arabian Gulf, such as Bahrain, Saudi Arabia, and Qatar. On a daily basis, the fluctuation in daytime and nighttime temperatures, along with varying afternoon temperatures, poses a potential threat to organisms inhabiting intertidal and shallow water environments, whether residing above the substrate or submerged beneath. Surprisingly, there has been no prior scientific investigation into the resilience of these coastal communities, especially from a non-anthropocentric perspective, focusing on the marine calcifying organism that inhabits one of the world's most extreme marine environments. To address this gap, we aimed to determine the upper thermal limits of intertidal calcifying benthic organisms in the western Arabian Gulf region. For this purpose, we selected three representative species among the diverse inhabitants, comprising two gastropod species and one ostracod species. These specimens were subjected to controlled environmental conditions inside a thermal incubator over a short-term period (three hours), with temperature exposures ranging from 40°C to 60°C. We considered different scenarios that replicated their natural ecological conditions: full exposure, partial exposure, and full coverage/submerged underwater. Our comprehensive results revealed that different gastropod species exhibited varying levels of resilience to higher thermal exposure, depending on the scenario (heat comma temperature/HCT ranged between 39°C-48.5°C versus 42.1°C-44.1°C). In contrast, the ostracod displayed remarkable tolerance to higher temperatures than the gastropod specimens before succumbing to complete mortality or entering a comatose state (temperature range of 39.1°C-53.5°C). Furthermore, post-exposure recovery demonstrated that higher heat exposure substantially prolonged the recovery time. In the case of the gastropod specimens subjected to the highest thermal exposure, no successful recovery was observed. Our findings underscore the importance of conducting ecological experiments that involve prolonged exposure to high temperatures. However, it is imperative to recognize that even short-term periods of elevated temperatures can have fatal implications for the target organisms. This is particularly relevant in light of the ongoing warming trend and the recording of extreme temperatures in our regional area in the western Arabian Gulf, which may eventually be deemed a potential "kill zone" during the peak of summer seasons within a short timeframe.

How to cite: Prayudi, S. D., Korin, A., and Kaminski, M.: An Ecological Perspective on Short-Term Heat Exposure Experiments with Marine Calcifying Organisms from the Western Arabian Gulf Region: Insights into a Summer Heatwave Scenario, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-46, https://doi.org/10.5194/egusphere-egu24-46, 2024.

EGU24-1819 | ECS | Orals | BG1.13

The daily growth bands pattern of Tridacna - evidence from culture experiments. 

Haotian Yang, Hong Yan, and Chengcheng Liu

Biogeochemical archive such as tree rings, corals, and stalagmites have proven effective in reconstructing past paleoclimate patterns at year-month resolutions. However, they are not suitable for investigating weather changes on a day-hour scale. Tridacna, the largest bivalve in the world, which inhabits the Tropical-subtropical Pacific-Indian Ocean area, exhibits unique daily growth bands ranging from 5 to 60μm. This characteristic grants Tridacna the potential to reconstruct extreme weather events in the past, thus paving the way for paleoweather studies. Tridacna engages in symbiosis with zooxanthellae and relies on photosynthesis for energy. The growth rate and pattern of its daily growth bands correlate with diurnal alternations. Currently, the utilization of Tridacna daily growth bands and high-resolution geochemical element ratios holds potential for establishing a daily resolution biogeochemical proxy. However, the precise mechanism of the circadian rhythm during Tridacna's growth period in natural conditions remains unclear. Consequently, our comprehension of the pattern exhibited by Tridacna's daily growth bands is limited, impeding progress in the development of hourly scale paleo-weather analysis. In this study, a 30-day artificial experiment was conducted on Tridacna derasa to investigate the significance of shell daily growth bands and hourly element ratios in reflecting environmental conditions. The results of calcein labeling revealed that the wide dim areas in the daily growth bands corresponded to daytime and exhibited valley values in Sr/Ca ratio, while the narrow bright areas corresponded to nighttime and showed peak values in Sr/Ca ratio. At the daily-hourly scale, when the water temperature remained constant, the Sr/Ca daily variation showed potential for recording the light daily cycle. However, it is important to note that the influence of the light daily cycle on the Sr/Ca variation may be indirect. As a result, a hypothesis was proposed: the Sr/Ca variation is directly controlled by the internal regulation of Tridacna. During the daytime, the Sr/Ca ratio was primarily regulated by physiological activities. Due to light stimulation, the activity of certain enzymes in the inner mantle was enhanced, leading to an increase in Ca2+ concentration and a decrease in Sr/Ca ratio. During the nighttime, the Sr/Ca ratio was mainly regulated by organic matrices. In the extrapallial fluid (EPF), the presence of high Sr2+-selective organic matrices promoted the incorporation of Sr2+ into the shell, resulting in a higher Sr/Ca ratio.

How to cite: Yang, H., Yan, H., and Liu, C.: The daily growth bands pattern of Tridacna - evidence from culture experiments., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1819, https://doi.org/10.5194/egusphere-egu24-1819, 2024.

EGU24-2520 | Orals | BG1.13

Cropland Microplastics in Xinjiang: Unveiling Distribution and Impact of Mulching Film Residues 

Qingling Zhang, Shan Zhang, Wuzhou Dong, Zhipan Wang, and Zewen Mo

Microplastics, ubiquitous environmental pollutants, pose a significant threat to agricultural ecosystems and food safety. Xinjiang, a critical dryland agricultural region in China, faces a pressing issue with microplastic accumulation due to extensive use of mulching film. This study addresses this challenge by combining feild investigation, lab analysis, and remote sensing observations:

  • Developing an improved, batch-processed soil microplastics extraction method, optimizing cost and time.
  • Extracting and analyzing microplastics from typical Xinjiang cropland soil, revealing their distribution patterns and influencing factors.
  • Establishing a model linking microplastic abundance to cumulative mulching film years, providing a predictive tool.
  • Combining the model with remote sensing data to unveil the regional distribution of microplastics across Xinjiang croplands.

Our findings provide:

  • A deeper understanding of microplastic pollution dynamics in mulching film-based agriculture.
  • A robust method for assessing and predicting microplastic contamination in croplands.
  • Valuable data for informing mitigation strategies and policy decisions.

This study paves the way for effective microplastic management and for examining their environmental impacts in Xinjiang and beyond, safeguarding agricultural productivity and environmental health. Future study efforts are encouraged to examine local and remote impacts of soil microplastics in Xinjiang and beyond.

How to cite: Zhang, Q., Zhang, S., Dong, W., Wang, Z., and Mo, Z.: Cropland Microplastics in Xinjiang: Unveiling Distribution and Impact of Mulching Film Residues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2520, https://doi.org/10.5194/egusphere-egu24-2520, 2024.

EGU24-4077 | ECS | Orals | BG1.13

Effects of biofouled plastics on phytoplankton community assembling and water chemistry: pilot study and implications for freshwater environments 

Gilberto Binda, Stefano Carnati, Margarida Costa, Vladyslava Hostyeva, Eva Leu, Birger Skjelbred, Davide Spanu, Luka Šupraha, Sara Trotta, Christian Vogelsang, and Luca Nizzetto

The presence of plastic litter and microplastics in freshwaters has raised concern about their potential transport and accumulation in water and sediments over time. However, several direct and indirect environmental consequences are still not well understood. In this study, we investigated the role of plastic as a carrier of algal species favouring their dispersal in freshwaters, and we assessed the potential effects on water biodiversity and chemical features in a pilot, laboratory-based study. We simulated an algal community using 5 algal species commonly found in freshwaters and we exposed this community to both pristine and biofouled polypropylene fragments of 5 × 5 × 0.3 mm in size. The biofouled plastic was generated by incubating similar polypropylene fragments with 2 other freshwater algal species, which were different from those in the simulated community. In addition, we evaluated the effect of the dispersal of algae from plastic without the presence of a simulated pelagic community. The experiment lasted 15 days in total. At different time intervals, we assessed: total algal growth and photosynthetic efficiency, algal community composition and the concentration of macronutrients and minor elements in the water. We observed changes in the algal community composition and marked chemical alterations driven by the presence of the biofouled plastics. The presence of pristine plastic, instead, did not show significant changes in the community composition and in the concentration of dissolved elements. The dispersal of algal species from the biofilm on plastic and competitive interactions between the plastic biofilm and the pelagic community were, therefore, likely responsible for the changes in the algal diversity. These results confirmed the hypothesis that plastic can influence dispersal and biodiversity of the algal community. Biofouled plastic from environmental samples and environmental communities selected from natural freshwater bodies will be used in future experiments. This will help to unravel the potential consequences of plastic pollution for ecosystem functioning and microbial biodiversity.

How to cite: Binda, G., Carnati, S., Costa, M., Hostyeva, V., Leu, E., Skjelbred, B., Spanu, D., Šupraha, L., Trotta, S., Vogelsang, C., and Nizzetto, L.: Effects of biofouled plastics on phytoplankton community assembling and water chemistry: pilot study and implications for freshwater environments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4077, https://doi.org/10.5194/egusphere-egu24-4077, 2024.

EGU24-5364 | Posters on site | BG1.13

Potential metal(loid)s mobilization from acid mine drainage-affected sediments under sea level rise projections 

María Dolores Basallote, Rona Giese Miranda, Martin Frank, Manuel Olías, and Carlos Ruiz Cánovas

Metals and metalloids are among the most dispersed hazardous substances released to estuarine systems, which often accumulate within the sediments, contributing to a global problem of pollution in estuaries. In this context, the projected future sea level rise predict the inundation of metal-polluted sediments in littoral areas, which may have serious implications in the mobility of sediment-bound contaminants.

The Tinto River estuary (SW Spain), which is projected to be partially flooded by seawater in 2050 due to the rising sea level, have historically received significant amounts of potentially toxic elements originating from former metal mines, transported to the estuary by the Tinto River.

To estimate the potential release of metal(loid)s associated with seawater flooding, surface sediments were sampled to determine metal concentrations, total carbon content, pH, and particle size distribution. In addition, the contamination factor, geoaccumulation index, and pollution load index were calculated to evaluate metal(loid) pollution. To estimate metal(loid) mobilization upon sea level rise a delimited area of the Tinto River estuary was defined (according to sea level rise projections), and elements mobilization was calculated using values obtained from inundation experiments (Kerl et al., 2023) and sequential extraction methods.

Sediments from the study site turn out to be highly polluted with calculated pollution load indices over 1 and surpassing Spanish guidelines and international sediment quality guidelines , especially for As (300 – 1300 mg/kg), Cu (300 – 3500 mg/kg) and to a lesser extent Zn (100 – 1400 mg/kg) and Cd (0.2 – 5.8 mg/kg). Results show that significant amounts of Fe, Cu, Zn and As (36800, 11200, 1390, 3.22 kg, respectively) can be mobilized under short-term inundations (65 days) related to climate change scenarios predicted for 2050. Under 2100 projections, the mobilization of those metal(loid)s is expected to be further enhanced by the additonal release of large amounts of Fe, as a result of the reductive dissolution of Fe- or Mn-oxyhydroxides, which is mainly attributed to the promotion of reduced conditions in currently oxic sediment layers. These results provide a first estimation of the potential mobilization of potentially toxic elements upon climate change, which is of paramount importance for risk assessment in metal(loid) polluted estuaries worldwide.

How to cite: Basallote, M. D., Miranda, R. G., Frank, M., Olías, M., and Cánovas, C. R.: Potential metal(loid)s mobilization from acid mine drainage-affected sediments under sea level rise projections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5364, https://doi.org/10.5194/egusphere-egu24-5364, 2024.

EGU24-5631 | ECS | Orals | BG1.13

High enrichment of U, Cr, As and V in fish scales from the Namibian shelf of the Benguela Upwelling System. 

Frederik Gäng, Lena Göller, Volker Brüchert, Niko Lahajnar, Katharina Pahnke, and Philipp Böning

Enrichment patterns of redox- and biosensitive trace elements (TEs) are powerful tools to reconstruct depositional conditions during sedimentation in continental marine sediments. For several TEs (e.g., U, Cr, As and V), the mechanisms that lead to their accumulation in the sediment are not fully understood yet. To complement the discussion, we analyzed several major elements and TEs (P, Ca, Sr, U, V, As and Cr) in fish scales from two short cores (30 cm sediment depth) from the central and southern shelf of the Namibian anoxic-euxinic continental margin (from 67 and 100 m water depth). We found both fresh, young scales in the upper sediments and clearly altered scales, in deeper sections of the cores. The P, Ca and Sr values appear to be good indicators of the changing condition of the respective fish scales, as Ca, Sr and P decrease with the sediment depth from which the fish scales were taken. The lower the Ca, Sr and P values, the more altered the fish scales and the higher the TE enrichment. These more altered fish scales have high values of U (up to 88 ppm), Cr (up to 97 ppm) and V (up to 130 ppm), raising the importance of fish scales as a sink for these elements in shelf sediments, leading to extreme enrichments that are not primarily related to redox conditions. In contrast to the high TE values in altered scales, high values of As (up to 140 ppm) were found in fresh fish scales in core top sections and a decrease with sediment depth. Previous studies showed that high bulk U content in central Namibian shelf sediments is due to high anthropogenic U input by mining activities (in addition to U enrichment during authigenic apatite formation in the sediments). This U-mining activity in the central Namibian hinterland is further reflected in higher U values in the core from the central shelf compared to the core from the southern shelf. The increase of all TEs in scales with increasing sediment depth indicates authigenic enrichment over time within the sediment. Therefore, we suggest that fish scales are an important authigenic sink of several TEs which may be substantial for the element budget calculations in continental margins.

How to cite: Gäng, F., Göller, L., Brüchert, V., Lahajnar, N., Pahnke, K., and Böning, P.: High enrichment of U, Cr, As and V in fish scales from the Namibian shelf of the Benguela Upwelling System., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5631, https://doi.org/10.5194/egusphere-egu24-5631, 2024.

Extreme climate change can lead to a drastic deterioration in water quality. However, researchers often struggle to find long-term water quality monitoring data, especially at a daily scale, which hinders the understanding of the response relationship between extreme climate, hydrology, and water quality. This study proposes an integrated machine learning framework with physical constraints from various environmental domains such as meteorology and water quantity that can effectively impute a high percentage of missing data and downscale time series data of water quality, producing satisfactory results. Over 78% of the physical water quality variables exhibit NSE (Nash-Sutcliffe efficiency coefficient) values greater than 0.45, and more than 66% of the chemical water quality variables achieve NSE values greater than 0.35. The results of this work demonstrate the effectiveness of the proposed framework as a data augmentation and temporal interpolation tool to enhance the adequacy of water quality monitoring and explore the mechanisms underlying the impact of extreme climate on water quality.

How to cite: Li, L. and Yang, D.: Enhancing Water Quality Monitoring: An Integrated Machine Learning Framework with Physical Constraints for Imputation and Time Series Downscaling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5988, https://doi.org/10.5194/egusphere-egu24-5988, 2024.

EGU24-6168 | Posters on site | BG1.13

Sedimentary mercury cycling in recent upwelling systems 

Philipp Böning, Frederik Gäng, Katharina Pahnke, and Olaf Dellwig

The sedimentary database of mercury (Hg) in modern upwelling sediments from the Humboldt and Benguela current systems is sparse, yet this element is a prime indicator of anthropogenic perturbations of the marine realm. Mercury has various natural and anthropogenic sources, occurs in different species, and internal recycling processes before final burial renders the interpretation of the Hg accumulation process challenging. Here, we present data of total Hg (along with Al, P, Zr, organic carbon and Pb, another anthropogenic indicator) for 210Pb-dated continental margin sediments from Peru, Chile and Namibia from within and below their respective oxygen minimum zones (OMZs). All sediments exhibit upcore authigenic enrichments of Hg in the upper 20 - 30 cm, which suggests that Hg has an anthropogenic source, similar to Pb. Moreover, the Hg enrichments are highest off Peru with up to 800 ppb authigenic Hg in the early ‘80s, followed by those off Chile (~ 150 ppb Hg) and Namibia (~ 80 ppb Hg). This is likely due to a high number of industrial and pre-industrial mining sites in Peru, which is less important in Chile and essentially missing in Namibia. The data further suggest that Hg is trapped by organic particles, which settle quickly through O2-deficient waters. In contrast to Pb, which is rapidly removed from the water column at OMZ sites, Hg is also exported to the deep sea environment (> 1000 m water depth below OMZs). This is likely due to recycling processes before final Hg burial. Authigenic Hg enrichments in Peruvian sediments that have negligible authigenic Pb contents suggests the presence of Hg inputs since pre-industrial times (before ~ 1900 AD), which is in line with previous findings from Peruvian lakes and the Galapagos Islands. By contrast, anthropogenic Hg is only visible in near coastal Namibian sediments since the last ~ 70 years. Overall, our data indicate that upwelling sediments are valuable archives for the preservation of anthropogenic signals given the favorable boundary conditions (high productivity, high oxygen deficiency and high sedimentation rates).

How to cite: Böning, P., Gäng, F., Pahnke, K., and Dellwig, O.: Sedimentary mercury cycling in recent upwelling systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6168, https://doi.org/10.5194/egusphere-egu24-6168, 2024.

EGU24-7953 | ECS | Orals | BG1.13

Tracing the behavior of metallic oxyanions in an acid mine drainage polluted estuary (Tinto River estuary, SW Spain) 

Laura Sánchez-López, Jonatan Romero-Matos, Rafael León, Ricardo Millán-Becerro, Rémi Freydier, Francisco Macías, and Rafael Pérez-López

Estuaries are dynamic systems that play a crucial role in the transfer of trace elements from continent to ocean. The Ría de Huelva estuary is formed by the confluence of the Tinto and Odiel rivers, which are severely contaminated by acid mine drainage (AMD), transporting high pollutant loads of sulfates and metal(loid)s to the estuary and ultimately to the Atlantic Ocean. Despite extensive research on this estuary, the behavior of oxyanions has not yet been adequately addressed. This work assesses the variations of the concentration of oxyanion-forming elements such as As, Sb, V, and Mo within the fluvial domain of the Tinto River estuary. Two sampling campaigns were conducted under low river flow, one with a low tidal coefficient (26-30) and the other with a high tidal coefficient (99-102). Dissolved and particulate (>0.45 µm) As, Sb, V, and Mo concentrations were measured in samples of surface water collected by an autosampler Teledyne ISCO with high temporal resolution (hourly) for 24 hours. Additionally, physicochemical parameters were measured for each sample. During both sampling periods, several complete tidal cycles were recorded. The pH and EC values ranged from 4.0 to 6.3 and from 43.2 to 51.9 mS cm-1, respectively, with low tidal coefficient. With high tidal coefficient, the pH and EC values ranged from 4.4 to 7.6 and from 43.7 to 53.0 mS cm-1, respectively. Highest values were recorded during high tide conditions due to greater influence of seawater. Particulate oxyanions proportion displayed a general increase along with increasing pH, being retained by Fe-oxyhydroxisulfate precipitates like schwertmannite as demonstrated in previous research [1]. Data obtained suggest that during high tide with low tidal coefficient, oxyanions remain mainly in the particulate phase (55-100%). Nevertheless, at high tidal coefficient, a significant decrease in the particulate phase proportion is observed when pH is above 6.43 with total concentrations found in the dissolved phase (reaching 100%). This increase in the dissolved phase is probably associated with desorption processes related to the zero-point charge of schwertmannite in circumneutral water environments. During the seawater neutralization of the Tinto River’s acidic waters, when pH values are above 6, the schwertmannite surface becomes negatively charged, and since oxyanions are negatively charged, their desorption is expected [1]. Special attention should be paid to As, Sb, V, and Mo, as they return to solution when precipitates reach pH values above 6.43, contributing to the total amount discharged by the Tinto River, which later reaches the ocean.

Acknowledgments

This work is part of the I + D + i TRAMPA project (PID2020-119196RB-C21), funded by MCIN/AEI/10.13039/501100011033.

[1] Pérez-López, R., Millán-Becerro, R., Basallote, M. D., Carrero, S., Parviainen, A., Freydier, R., Macías, F., Cánovas, C. R. (2023). Effects of estuarine water mixing on the mobility of trace elements in acid mine drainage leachates. Marine Pollution Bulletin, 187, 114491.

How to cite: Sánchez-López, L., Romero-Matos, J., León, R., Millán-Becerro, R., Freydier, R., Macías, F., and Pérez-López, R.: Tracing the behavior of metallic oxyanions in an acid mine drainage polluted estuary (Tinto River estuary, SW Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7953, https://doi.org/10.5194/egusphere-egu24-7953, 2024.

EGU24-8029 | ECS | Orals | BG1.13

Hydrogeochemical modeling as a tool for the environmental management of mine water polluted river catchments: An application to the Odiel River network (Huelva, Spain) 

Jonatan Romero-Matos, Francisco Macías, José Miguel Nieto, Laura Sánchez-López, Rafael León, Ricardo Millán-Becerro, and Rafael Pérez-López

The impact of mine waters is currently one of the most severe environmental problems in the water environment. The Odiel River catchment is a clear worldwide example of a river network intensely affected by acid mine drainage, transporting large pollutant loads towards the Ría de Huelva estuary, and ultimately the Atlantic Ocean [1]. The release of acidity and metals, and the longevity of the process, represent a major source of pollution which treatment or possible solutions have been the subject of research in recent years. Prior to the adoption of restoration measures in the region, involving a large economic investment, it was proposed to build a hydrogeochemical model that represents the current situation of the pollution, and serves as a management tool for the Odiel River network. In this sense, its design allows to simulate remediation actions and evaluate their impact on the water quality. The model is based on a set of mixtures modeled with PHREEQC code [2] as analogs to the numerous river confluences. The "MIX" command was used, which enables the mixing two or more aqueous solutions at different mixing ratios. Each ratio theoretically assumes how much each member contributes to the final mixture. Each member is defined as a’ solution with the command "SOLUTION_SPREAD" including the physicochemical parameters and element concentrations, obtained experimentally and in the field. Coupling the "EQUILIBRIUM_PHASES" command includes the equilibrium reactions with Fe and Al mineral phases and the atmosphere. Consequently, each modeled and equilibrated mixture will be mixed again downstream in new confluences until a global modeling of the catchment is achieved. In this way, the model makes it possible to estimate changes in the physicochemical parameters, the evolution of metal concentrations, and variations in the saturation rates of the mineral phases (precipitation, dissolution or equilibrium). This kind of model is a useful tool for simulating reductions in the pollutant loads of sources predicting how real restoration actions will affect the water quality conditions along the Odiel River catchment. The proposed approach could be applied to other real case scenarios where mine waters originate from various sources, mainly different mines, within a complex river network, stablishing itself as an environmental tool for the management of mine water-polluted catchments.

Acknowledgements

This work is part of the I + D + i TRAMPA project (PID2020-119196RB-C21), funded by MCIN/AEI/10.13039/501100011033/. Jonatan Romero-Matos is financed by a FPU program of the Spanish Ministry of Education of Vocational Training (FPU20/04441).

[1] Nieto, J. M., Sarmiento, A. M., Canovas, C. R., Olias, M., & Ayora, C. (2013). Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environmental Science and Pollution Research, 20, 7509-7519.

[2] Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497.

How to cite: Romero-Matos, J., Macías, F., Nieto, J. M., Sánchez-López, L., León, R., Millán-Becerro, R., and Pérez-López, R.: Hydrogeochemical modeling as a tool for the environmental management of mine water polluted river catchments: An application to the Odiel River network (Huelva, Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8029, https://doi.org/10.5194/egusphere-egu24-8029, 2024.

EGU24-8769 | ECS | Orals | BG1.13 | Highlight

Microplastic occurrence in coastal waters and aquatic faunas of the Western Black Sea  

Iulian Pojar, Teodora Baboș, Oana Dobre, and Constantin Dobre

The Danube River, an important pathway connecting the western, central, and eastern Europe, serves as a route for various pollutants that ultimately accumulate in the Danube Delta and the broader Black Sea basin. These historically pristine regions now face escalating pressures from extensive tourism, intense fishing activities, regional conflicts, and inadequate waste disposal across the whole Danube basin. The imbalance in sediment flow, mainly caused by numerous upstream hydropower plants, aside the abovementioned anthropogenic factors, poses a severe threat to the deltaic and coastal ecosystems.

Among the emerging pollutants, litter stands out prominently, with anthropic macro-objects pervading natural environments. Microplastics (MPs) constitute a category of the litter, characterized by solid, petroleum-based items sized between 1 µm and 5 mm. These particles are either preformed within these dimensions or result from the fragmentation of larger plastic debris due to natural weathering. Known for their fast spreading across diverse environments, MPs possess a porous texture that might absorb substantial amounts of various pollutants, significantly impacting the entire food chain, particularly aquatic species.

Given the limited data on MPs pollution in Black Sea coastal areas, the precise impact on the natural environment remains largely uncertain. Furthermore, the correlation between MPs pollution in aquatic environments and the concentration of MPs within mussels and fish has yet to be established. To address these knowledge gaps, our study investigated the abundance of MPs in the water surface layer (average concentration of 0.63 MPs/m³) and in two distinct species: (i) the mackerel - Alosa immaculata – a pelagic fish captured at the Saint Geoge branch mouth of the Danube Delta during inland migration for reproduction, with an average concentration of 11.8 MPs/individual, and (ii) Mytilus galloprovincialis – a filter feeder mollusc collected near the Constanța harbour – with an average concentration of 6.05 MPs/individual.

Our findings indicate that fibers represent the predominant morphology of MPs found in both species, while fragments dominate the surface water layer. Notably, before the tourist season, the distribution of MPs types differs, suggesting potential influences from coastal natural factors such as wind, waves, and currents on the variety of MPs encountered. This research underscores the urgency of further investigations to comprehend the intricate dynamics of MPs pollution in these vital ecosystems and the cascading effects on marine life.

How to cite: Pojar, I., Baboș, T., Dobre, O., and Dobre, C.: Microplastic occurrence in coastal waters and aquatic faunas of the Western Black Sea , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8769, https://doi.org/10.5194/egusphere-egu24-8769, 2024.

EGU24-8827 | ECS | Posters on site | BG1.13

Alkalization of seawater enhances calcification of large benthic foraminifers. 

Shunichi Kinoshita, Yuri Hashimoto, Azumi Kuroyanagi, and Atsushi Suzuki

There is concern that the increasing pCO2 following the Industrial Revolution Period might lead to ocean acidification, which could affect calcifying organisms in the oceans. Recently, negative emission technology has been attracting attention as an effective countermeasure for greenhouse gas emissions. In the ocean, ocean alkalinization technology is proposed to neutralize acidified oceans and enhance the absorption capacity of CO2 in the oceans. The potential effectiveness of ocean alkalinization technology is also suggested by the history of the Earth. During the Cretaceous period, when pCO2 is interpreted >1,000 ppm, calcifying organisms thrived in the Cretaceous oceans. It is hypothesized that it was due to the total alkalinity (TA) of the seawater being maintained higher, thereby kept the calcium carbonate saturation state at necessary. In this study, we examined this hypothesis as well as attempted to predict the effects of the application of current alkalinization techniques in the ocean on calcifying organisms.

Clonal populations of large benthic foraminifers were cultured in highly alkalinized seawater under high pCO2 conditions, and amounts of calcification (weight and volume) were measured (Group 1: high TA and high pCO2). Specimens taken from same clonal population were kept in modern surface seawater (Group 2: low TA and low pCO2) as a control treatment. The same experiments were also conducted as Group 3 (low TA and high pCO2) to simulate future ocean acidification conditions, and as Group 4 (high TA and low pCO2) to simulate alkalinized ocean under a low pCO2 environment. It was showed significant differences in the amount of calcification in each of the Groups after three months cultivation. The amount of calcification in Group 1 was almost the same as that in the control treatment, confirming the possibility of maintaining the growth of calcifying organisms by alkalinization. Calcification amount in Group 3 was the smallest among all groups, indicating that future ocean acidification may inhibit calcification of large benthic foraminifers. In addition, the calcification rate was the greatest in Group 4, it is indicated that ocean alkalinization may enhance the calcification of the organisms. Finally, these results suggest that the calcium carbonate saturation state of seawater is an important parameter for calcification.

How to cite: Kinoshita, S., Hashimoto, Y., Kuroyanagi, A., and Suzuki, A.: Alkalization of seawater enhances calcification of large benthic foraminifers., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8827, https://doi.org/10.5194/egusphere-egu24-8827, 2024.

EGU24-8888 | Orals | BG1.13

The impact of land use on the adsorption of fluoroquinolone antibiotics: a study on bulk soils and organic matter pools 

Anna Vancsik, Lili Szabó, László Bauer, Csilla Király, Zsolt Pirger, Attila Csaba Kondor, Gergely Jakab, and Zoltán Szalai

Fluoroquinolone antibiotics are widely used in animal husbandry and human medicine and are therefore released into environmental systems in significant quantities. Because of its targeted antibacterial action, it directly disrupts the soil microbial ecosystem and alters soil carbon fixation. In order to maintain soil microbial communities and prevent groundwater pollution, it is essential to know what physicochemical properties a soil must have to be safe for sewage sludge application and irrigation with treated wastewater. To understand the effects of land use on the adsorption properties of Luvisols, three different land use areas (arable land, grassland, and forest) and two organic matter (OM) pools (fast and slow) were investigated. The soils were separated to a > 53 µm fraction related to the fast OM pool and a < 53 µm fraction containing the slow OM pool, to investigate the physicochemical properties that affect adsorption capacity. Ciprofloxacin, norfloxacin, and ofloxacin were chosen for adsorption experiments because they are widely detected in environmental systems. The effect of land use on adsorption was only observed in the slow pool in the ascending order of arable land, grassland, and forest. Principal component analysis showed that OM content and composition influenced adsorption in the slow pool. However, the adsorption of bulk soils and fast pools is primarily controlled by the physical soil properties rather than by soil OM. These findings indicate that the OM composition of the < 53 µm fraction with the slow pool can determine the adsorption of bulk soils. However, in the present study, this did not affect the adsorption of bulk soils because either 1) the ratio of the slow pool was small, but its adsorption capacity was high, as in the forest, or 2) the ratio of the slow pool was large but its adsorption capacity was low due to its OM composition, as in arable land and grassland. Therefore, irrigation with treated wastewater and sludge discharged on agricultural lands is more likely to leach pollutants into groundwater. Consideration should be given to the disposal of sludge in an area with a high aliphatic soil OM content, where the slow pool rate is high.

This research was supported by the National Research, Development, and Innovation Office (NKFIH), Hungary (project identification number: 2020–1.1.2-PIACI-KFI-2021-00309; 2021–1.2.4-TÉT-2021-00029, and K-142865). Project no. KDP-1015196 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2020 funding scheme. This study has also been supported by the Doctoral Excellence Program (DKOP-23) of the Ministry for Culture and Innovation, Hungary, from the source of the National Research, Development and Innovation Fund.

How to cite: Vancsik, A., Szabó, L., Bauer, L., Király, C., Pirger, Z., Kondor, A. C., Jakab, G., and Szalai, Z.: The impact of land use on the adsorption of fluoroquinolone antibiotics: a study on bulk soils and organic matter pools, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8888, https://doi.org/10.5194/egusphere-egu24-8888, 2024.

EGU24-8943 | ECS | Orals | BG1.13

Effects of root-derived organic acids on sorption of pharmaceuticals in cultivated sandy soil 

Lili Szabó, Anna Vancsik, László Bauer, Attila Csaba Kondor, Gergely Jakab, and Zoltán Szalai

Pharmaceutically active compounds (PhACs) in cultivated areas have become an important issue and have received significant public attention because of their availability to plants during nutrient uptake. This study highlights the effects of low-molecular-weight organic acids (LWMOAs) generated in the root environment on the sorption processes of PhACs in cultivated sandy soil. Sorption experiments are conducted using three PhACs characterised by different physicochemical properties: carbamazepine (CBZ), 17α-ethynylestradiol (EE2), and diclofenac-sodium (DFC). The results suggest that the adsorption of EE2 is more intense than the other two PhACs, whereas DFC and CBZ are primarily dominated by desorption. Additionally, LMWOAs mainly provide additional low-energy adsorption sites for the PhACs, and slight pH changes do no significantly affect the sorption mechanism. During competitive adsorption, the high-energy sites of the adsorbents are initially occupied by EE2 owing to its high adsorption energy. In addition, during multicomponent adsorption, new low-energy binding sites enhance the adsorption of DFC and CBZ. Our results show that LMWOAs promoted the adsorption of PhACs into the root environment, thus rendering PhACs available to plants.

This research was supported by the National Research, Development, and Innovation Office (NKFIH), Hungary (project identification number: 2020–1.1.2-PIACI-KFI-2021-00309; 2021–1.2.4-TÉT-2021-00029, and K-142865). Project no. KDP-1015196 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2020 funding scheme. This study has also been supported by the Doctoral Excellence Program (DKOP-23) of the Ministry for Culture and Innovation, Hungary, from the source of the National Research, Development and Innovation Fund.

How to cite: Szabó, L., Vancsik, A., Bauer, L., Kondor, A. C., Jakab, G., and Szalai, Z.: Effects of root-derived organic acids on sorption of pharmaceuticals in cultivated sandy soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8943, https://doi.org/10.5194/egusphere-egu24-8943, 2024.

EGU24-9035 | ECS | Posters on site | BG1.13

Remediation of rare earth elements (REE)-rich waters by precipitation of newly-formed phases. 

Ricardo Millan-Becerro, Encarnación Ruiz-Agudo, María P. Asta, Sarah Bonilla-Correa, Miguel Burgos Ruiz, and Francesco Santoro

The “Ría de Huelva” estuary (SW Spain) is highly affected by acid mine drainage and phosphate fertilizer industry effluents, which contain high concentrations of dissolved metal(loid)s, some of them of high economic interest such as Rare Earth Elements (REE). These elements are essential for the energy transition as they are used in various applications necessary for the production, transport, and accumulation of electrical energy from renewable sources. However, high dissolved concentrations of REE could have a significant environmental impact on aquatic organisms [1]. This research work focuses on the remediation of REE-laden solutions with different concentrations of these metals, using a sorption strategy with mineral phases such as gypsum (CaSO4·2(H2O)) and brushite (CaHPO4·2(H2O)), where these elements of high economic interest may be concentrated for its potential recovery. The main objectives of this research were to determine: (1) the removal processes of dissolved REEs, as well as (2) the preferential incorporation in the minerals studied. For this purpose, precipitation experiments of REE-rich sulfate and phosphate phases were carried out in the laboratory. The liquid and solid samples resulting from the precipitation experiments were analyzed by atomic emission spectroscopy with inductively coupled plasma (ICP-AES), mass spectrometry with inductively coupled plasma (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission Fourier transform infrared (FTIR), which allowed us to determine the capacity for REE incorporation by the tested minerals, as well as possible changes in the characteristics of the newly-formed phases. The concentrations of REE in the sulfate and phosphate phases increased progressively as solutions with higher concentrations of these metals were used in the laboratory experiments. However, the removal percentages of REE by gypsum precipitation were noticeably lower than those by brushite precipitation. This could be because brushite has a greater adsorption capacity than gypsum, as both mineral phases have similar crystalline structures and therefore the co-precipitation processes of REE with both minerals should be similar. These results show that the removal of REE from solutions during the precipitation of newly-formed phases could be a viable strategy for the concentration of these valuable elements and the remediation of contaminated waters.

Acknowledgements

This work is part of the I+D+i TRAMPA project (PID2020-119196RB-C21), funded by MCIN/AEI/10.13039/501100011033/.

 

[1] Oral, R., Bustamante, P., Warnau, M., D'Ambra, A., Guida, M., Pagano, G., 2010. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 81:194–198.

How to cite: Millan-Becerro, R., Ruiz-Agudo, E., Asta, M. P., Bonilla-Correa, S., Burgos Ruiz, M., and Santoro, F.: Remediation of rare earth elements (REE)-rich waters by precipitation of newly-formed phases., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9035, https://doi.org/10.5194/egusphere-egu24-9035, 2024.

EGU24-9323 | ECS | Orals | BG1.13

Fixed-bed thermodynamical analysis of the sorption mechanisms of Pharmaceutically Active Compounds (PhACs) in sandy soil 

László Bauer, Lili Szabó, Anna Vancsik, Attila Kondor, Gergely Jakab, and Zoltán Szalai

In the last couple of decades, the utilization of different Pharmaceutically Active Compounds (PhACs) significantly has increased. The applications of the treated wastewater (discharge into surface waterbodies, sewage sludge disposal), have resulted that those PhACs world-wildly can be detected in the environment. Due to the negative effects of these PhACs on ecosystems, it is indispensable to analyze their behavior in the soil environment. In the soil solution systems (SSS) the sorption mechanisms of the PhACs are significantly being influenced by various environmental factors like pH, and temperature. In our research, PhACs with different physicochemical properties have been studied such as 17α-ethynylestradiol (EE2), diclofenac-sodium (DFC), and lidocaine (LID). Owing to these facts, the main questions of our research were: (a) How to estimate the Van’t Hoff equation’ parameters in fixed-bed SSS? (b) How does the temperature change affect the intermolecular reactions of the PhACs on the solid/liquid interface in the single and multi-component systems? Single and multicomponent fixed-bed sorption experiments were carried out. All of the sorption experiments have been investigated at 5 different temperatures. The fixed-bed sorption experiments have been performed at the ploughed layer of calcareous, humic sandy soil. The adsorbate-adsorbate and adsorbent-adsorbate interactions have been evaluated by different empirical formulas. To conduct the results of our study, different statistical analyses (2-way ANOVA, Principal Component analysis, regression analysis, and Pearson correlation have been performed. In the scientific literature, the thermodynamical parameters had been carried out in batch experiments. Nevertheless, this way of sorption analysis in an environmental system often overestimates the equilibrium constant (Kc) in the Van’t Hoff equation. Due to this fact, we hypothesized that if the experiment is implemented in a fixed-bed SSS, the real Kc value can be calculated from the real empirical qe value, which could provide the optimal results of the thermodynamical parameters. Our results show that in single-component systems EE2, LID, and DFC have got spontaneous endotherm sorption reactions. While in a multicomponent SSS system, the LID and EE2 had an exothermic enthalpy-driven reaction. Furthermore, in all cases, the Gibbs free energy has been decreased when the temperature was increased.

This research was supported by the National Research, Development, and Innovation Office (NKFIH), Hungary (project identification number: 2020–1.1.2-PIACI-KFI-2021-00309; 2021–1.2.4-TÉT-2021-00029, and K-142865). Project no. KDP-1015196 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2020 funding scheme. This study has also been supported by the Doctoral Excellence Program (DKOP-23) of the Ministry for Culture and Innovation, Hungary, from the source of the National Research, Development and Innovation Fund. And The Hungarian National Research, Development and Innovation Fund OTKA-142865

How to cite: Bauer, L., Szabó, L., Vancsik, A., Kondor, A., Jakab, G., and Szalai, Z.: Fixed-bed thermodynamical analysis of the sorption mechanisms of Pharmaceutically Active Compounds (PhACs) in sandy soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9323, https://doi.org/10.5194/egusphere-egu24-9323, 2024.

EGU24-11594 | ECS | Posters on site | BG1.13 | Highlight

The influence of industrial metal pollution on Foraminifera in the Gulf of Naples (Bagnoli) 

Leon Plakolm, Sergio Balzano, Matthias Nagy, Petra Heinz, Daniela Gruber, Katy Schmidt, Martin Stockhausen, Thilo Hofmann, and Michael Lintner

Chemical pollutants, such as heavy metals, are a major threat to marine ecology and biodiversity in the Mediterranean Sea. The Gulf of Naples plays a crucial role in risk assessment and mitigation of waste contamination in the area, as severe anthropogenic pressure originates from local urban and industrial areas and intense maritime traffic. The now defunct ILVA steel plant in Bagnoli, constructed between 1905 and 1910, was a leading contributor of metal pollution in the Gulf of Naples until its shutdown in 1990. In order to evaluate the potentially long-lasting impact of this industrial activity on local foraminiferal communities, as well as the response of individual benthic foraminifera, multiple geochemical and sedimentological analytical techniques were employed and the results compared to a non-impacted reference area; inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) revealed exceptionally high levels of metals in the sediment samples taken in close proximity to the former steel plant. Faunal analysis via stereo microscopy and scanning electron microscopy (SEM) concluded slightly lower biodiversity indices and a lower abundance of living foraminifera in the polluted sample, and the near absence of the otherwise ubiquitous genus Ammonia in the reference area. Energy-dispersive X-ray spectroscopy (EDX) was utilized to determine concentrations of iron within foraminiferal tests and established that all analyzed specimens from the polluted sampling site had elevated quantities of iron in their tests, compared to individuals from the reference sampling site. Based on the findings of this investigation, the metal pollution emitted by the former steel mill is still impacting foraminiferal assemblages and individuals to this day. However, the complex interactions of anthropogenic toxins, benthic microorganisms and the environment are not fully unraveled yet and require further analysis.

How to cite: Plakolm, L., Balzano, S., Nagy, M., Heinz, P., Gruber, D., Schmidt, K., Stockhausen, M., Hofmann, T., and Lintner, M.: The influence of industrial metal pollution on Foraminifera in the Gulf of Naples (Bagnoli), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11594, https://doi.org/10.5194/egusphere-egu24-11594, 2024.

EGU24-14211 | ECS | Posters on site | BG1.13

Release and turn-over of carbon, nitrogen and metals under oxic and suboxic conditions in long-term incubations of Skagerrak sediments  

Anna Siems, Tina Sanders, Tristan Zimmermann, Michael E. Wieser, and Daniel Pröfrock

Suspended particulate matter and associated pollutants from the entire North Sea are deposited in the Skagerrak, located between Norway and Denmark. Consequently, the sediments of the Skagerrak play a key role for long-term carbon storage within the North Sea. Due to its location and bathymetry, the bottom sediment redox conditions within the Skagerrak are heterogeneous and cover a wide range from oxic to suboxic conditions. We investigated nitrogen sequestration processes and the mobility of pollutants in these sediments during incubation experiments that simulated oxic and suboxic conditions. Analysis of isotopic fractionation was used as a tool to better understand the nitrogen sequestration pathways (δ15NO3-) and redox conditions (δ98/95Mo).

Typically, incubation experiments last days to weeks but do not cover long-term effects. In contrast, we incubated different zones of three sediment cores with North Sea water for up to twelve months. The sediments originated from locations with (a) mainly iron reduction, (b) mainly manganese reduction and (c) both iron and manganese reduction. After one, three, six and twelve months, we sampled water and sediments from the incubations for various parameters (e.g., trace elements, carbon and nitrogen content, nutrients, δ15NO3-, δ98/95Mo). Under aerobic conditions, the sediments with high organic carbon content (2.78 ± 0.05 %) released up to 33 ± 6 µmol g‑1 NO3- during remineralization, while in anaerobic incubations, these sediments released only up to 4.8 ± 0.8 µmol g-1 NH4+. However, sediments with lower organic carbon contents (1.89 ± 0.05 %) released only 4.8 ± 1.2 µmol g‑1 NO3- and 1.18 ± 0.19 µmol g-1 NH4+, respectively. In combination with trace element concentrations, δ98/95Mo ratios allowed to distinct between different organic matter oxidation pathways. The aerobic incubations released mainly copper, lead and nickel while under  anaerobic conditions, also  cobalt but significantly less copper has been released. Hence, the prevailing oxygen conditions also have a strong impact on the remobilization of e.g., legacy pollutants stored in the sediments. The results of our long-term incubations reveal important biogeochemical processes and indicate that some processes are only traceable at larger timescales applied in this study, but not by incubation durations that are usually applied for biogeochemical studies.

How to cite: Siems, A., Sanders, T., Zimmermann, T., Wieser, M. E., and Pröfrock, D.: Release and turn-over of carbon, nitrogen and metals under oxic and suboxic conditions in long-term incubations of Skagerrak sediments , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14211, https://doi.org/10.5194/egusphere-egu24-14211, 2024.

EGU24-14425 | Orals | BG1.13 | Highlight

Hadal trenches are experimental fields for geological and biological systems 

Hiroshi Kitazato

Hadal trench shows integration of landscapes of plate tectonics, geological evolutions of trenches, surface and deep-water circulations, biogeochemical cycles and others.  On these environmental components, we can understand historical backgrounds of benthic organisms. I have long been worked on the deep sea benthic foraminiferal communities at the Western Pacific.  We analyzed localities of the western Pacific deep-sea, from bathyal to abyssal depths, in particular to hadal depths. Hadal foraminiferal community consists of monothalamous soft-shelled forms, agglutinated forms, porcelaneous forms, hyaline forms and large xenophyophores.  In contrast to the bathyal to abyssal depths, the hadal depths are much challenging.   Because, a lot of accidental events take place naturally, such as collisions, subductions, separations or fusion of trenches.  Trenches are fascinating natural laboratories for thinking about evolution of benthic organisms in connection to trenches.

Here, I try to discuss what kind of changes should take place when trench fuse respectively.  Case studies will be given from the late Cenozoic marine strata of the Central Kwanto regions at the central Japan (Kitazato, 1997).

How to cite: Kitazato, H.: Hadal trenches are experimental fields for geological and biological systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14425, https://doi.org/10.5194/egusphere-egu24-14425, 2024.

EGU24-14624 | Posters on site | BG1.13

Calcification Strategies in Sorites orbiculus: Insights from Ultrafine Structure Observations and pH Variations 

Takashi Toyofuku, Yukiko Nagai, Remi Tsubaki, and Kazuhiko Fujita

Biomineralization processes are remarkably varied across the biosphere, yet the foraminifera stands out for their intricate construction of calcium carbonate shells—a phenomenon critical for interpreting paleoceanographic applications. In our research, we delve into the latest observations on the calcification strategy employed by the porcelain-shelled foraminifera Sorites orbiculus (Forsskål in Niebuhr, 1775), offering a reevaluation of the prevailing models of chamber formation. Utilizing focused ion beam scanning electron microscopy (FIB-SEM), we meticulously documented the ultrastructural development of the shell in calcification. Our findings may challenge the traditional vesicle-mediated crystal formation hypothesis, revealing a unique and complex cotton candy-like structure at the calcification site instead.

Simultaneously, pH imaging conducted during chamber formation has disclosed a fascinating pattern of pH elevation that transcends the newly formed chambers, extending to the final stages of calcification. This suggests a more intricate and systemic approach to biomineralization than previously understood. The localized increases in pH not only coincide with the morphological intricacies of the shell but also suggest a remarkable environmental plasticity inherent to S. orbiculus. Our nuanced comprehension of calcification, grounded in precise pH measurements and detailed microstructural observations, illuminates new facets of this species' biomineralization strategy. The insights gleaned here hold profound implications for redefining elemental partitioning and isotopic fractionation in foraminiferal shells and may herald a paradigm shift in our understanding of biomineralization within porcelain foraminifera.

 

How to cite: Toyofuku, T., Nagai, Y., Tsubaki, R., and Fujita, K.: Calcification Strategies in Sorites orbiculus: Insights from Ultrafine Structure Observations and pH Variations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14624, https://doi.org/10.5194/egusphere-egu24-14624, 2024.

EGU24-15333 | Orals | BG1.13

Boron isotope signals of benthic foraminifera during the Santonian 

Erik Wolfgring, Giulia Amaglio, and Maria Rose Petrizzo

We investigated the δ11Bisotope profiles in Cretaceous benthic foraminifera, focusing on the epibenthic species Notoplanulina rakauroana and Nuttallinella coronula. This study aims at understanding the implications of changes in δ11B isotope signatures for pH, associated with paleoenvironmental factors during the beginning of the Late Cretaceous cooling in the Santonian in the southern high latitudes.

We examine 10 levels through the Santonian of International Ocean Discovery Program (IODP) Site U1513 in the Mentelle Basin, some kilometres offshore Western Australia. Following a biostratigraphic framework relying on planktonic foraminifera and calcareous nannofossils, foraminiferal samples of Notoplanulina and Nuttallinella, representing significant elements of bottom water fauna through this period of significant cooling in surface and bottom waters, have been processed.

The geochemical signals preserved in the tests of epibenthic foraminiferal species are supposedly less prone to representing vital effects as some stability in the paleohabitat in bottom waters is implicit (see Rae et al. 2011). The analysis of well-preserved foraminiferal tests by Inductively Coupled Plasma Mass Spectrometry (ICPMS) is imperative of a cleaning protocol that involves several steps of ultrasonic baths in clear water and alcohol (see Henehan et al. 2019).

The results of benthic foraminiferal δ11B add information to our understanding of the relationbetween climate shifts and changes in the geochemical composition visible in foraminiferal tests. Results help to reconstruct prevailing pH of bottom waters during the documented reorganization of oceanic pathways in the southern high latitudes and offer a further perspective on the extent of paleoenvironmental change in the bottom waters.

References:
Rae, JWB, Foster, GL, Schmidt, DN, Elliott, T, 2011. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth and Planetary Science Letters, 302, 3–4.
Henehan, MJ, Ridgwell, A, Thomas, E, et al., 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. PNAS, 116, 45, 22500-22504.



How to cite: Wolfgring, E., Amaglio, G., and Petrizzo, M. R.: Boron isotope signals of benthic foraminifera during the Santonian, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15333, https://doi.org/10.5194/egusphere-egu24-15333, 2024.

EGU24-16323 | Orals | BG1.13

Temperature Influence on Proton Pumping and Mg-Incorporation in Foraminifera 

Daniel Francois Do Nascimento Silva, Lennart de Nooijer, and Gert-Jan Reichart

The Mg/Ca ratio in foraminiferal shells is commonly used as a proxy for reconstructing sea surface and bottom water temperatures. However, its incorporation results from complex interactions between seawater conditions and biologically regulated factors. While the former effects are well-constrained, poorly understood biological factors contribute to interspecies variations in Mg/Ca-temperature calibrations and a notable difference in Mg sensitivity compared to inorganically precipitated calcium carbonates. Here we show that temperature significantly influences cellular ion modulation in low-Mg species, leading to elevated enzymatic reaction rates that enhance H+ removal (J = 0.67 to 5.00 nmol-s) during calcification, and boost the precipitation rate. On high-Mg species, on the other hand, a similar fivefold increase in H+ local flux was observed (J = 0.08 to 0.40 nmol-s), but its impact on the calcification rate was mild. In both cases, H+ pumping rates align with Mg uptake, indicating a potential (indirect) link between temperature-sensitive behavior of transporters and Mg partitioning.

How to cite: Do Nascimento Silva, D. F., de Nooijer, L., and Reichart, G.-J.: Temperature Influence on Proton Pumping and Mg-Incorporation in Foraminifera, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16323, https://doi.org/10.5194/egusphere-egu24-16323, 2024.

EGU24-17428 | ECS | Orals | BG1.13

Mercury(Hg) Speciation in different environmental compartments of the India: A Thermo-desorption-Driven Approach 

Prasad Padalkar, Parthasarathi Chakraborty, Arup Dey, and Malay Bhattacharya

India has a rich environmental ecosystem, stretching from high-rise mountains to coastal areas. The surge in industrialization and economic growth in the country has imposed a considerable burden on the environment, hindering progress toward sustainable development goals. One critical concern in this context is mercury (Hg) pollution, where special attention is needed. On June 18th 2018, India ratified the Minamata Convention to address Hg pollution. However, a significant data gap exists regarding comprehensive baseline information from different environmental compartments in India, which is crucial for assessing the convention's effects. To bridge this research gap, an effort was made to access Hg distribution and speciation in various environments. For this study, soil and sediments samples were collected from diverse regions: the metropolitan city (Kochi, Kerala, India), agricultural lands (Dhapa, Kolkata), hilly areas (Tea Garden, Darjeeling), and the coastal sediments (collected from continental shelf/slope of the west coast of India). The total soil Hg concentration in metropolitan soil, agricultural soil, and tea garden soil ranged from 16 ± 0.84 µg/kg to 2674 ± 133 µg/kg, 726 ± 36 µg/kg to 2318 ± 115 µg/kg, and 158 ± 7 µg/kg to 9441 ± 472 µg/kg, respectively. Meanwhile, the total Hg concentration in the studied continental shelf sediment samples varied from 8 ± 0.14 µg/kg to 50 ± 2 µg/kg. This result shows that a significantly higher total concentration of Hg in the tea garden soil, whereas lowest Hg concentration were observed in the coastal sediment. Chemical speciation of Hg was carried out using thermo-desorption technique. It was found that the major part of the total Hg was predominantly associated with organic matter in the soil as well as in the coastal sediments. This indicates that organic matter was key host for Hg in soil as well as in coastal sediments. Interestingly, the second-highest fraction in the all types of soil was Hg0, indicating more reduction of Hg in the soil. The elevated Hg0 levels in the soils raises concerns due to its high volatility at ambient temperatures. The evasion of Hg0 from the soil can serve as a significant non-point source of Hg, posing potential risks to individuals living in these areas. Prolonged exposure to this toxic metal could lead to adverse health effects for the local population. Further in the sediments, Hg associated with sulphide was the second dominant Hg fraction, playing crucial role in Hg stability. Overall, these findings not only help to stakeholders and policy makers in addressing Hg pollution, but also contributes to progress towards achieving Sustainable Development Goals.

How to cite: Padalkar, P., Chakraborty, P., Dey, A., and Bhattacharya, M.: Mercury(Hg) Speciation in different environmental compartments of the India: A Thermo-desorption-Driven Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17428, https://doi.org/10.5194/egusphere-egu24-17428, 2024.

EGU24-17814 | ECS | Orals | BG1.13

Hydrothermal Vents in Panarea, Italy: Investigating Mercury inputs and evaluating Biota Oxidative Stress Status with a focus on Phorcus turbinatus as a Bioindicator of Mediterranean Sea Health 

Andreia C. M. Rodrigues, Mariia V. Petrova, Natalia Torres-Rodriguez, Aurelie Dufour, Claudia Cosio, Deny Malengros, Christian Marschal, Gianluca Lazzaro, Manfredi Longo, and Lars-Eric Heimbürger-Boavida

Panarea, an island in the Tyrrhenian Sea, Mediterranean Sea, is distinguished for its hydrothermal vent ecosystems that substantially influence the local biodiversity. While hydrothermal vents are recognised for their mineral-rich composition, the potential release of mercury (Hg), a non-essential metal, into the surrounding environment raises environmental concerns. This study investigates the oxidative stress status and cellular energy allocation of the autochthonous marine gastropod Phorcus turbinatus (Born, 1778), collected from rocky shores at two distinct hydrothermal vents, Bottaro and La Calcara, characterized by different hydrothermal vent activities. Our results show a higher THg input at La Calcara vent (864 pM) when compared to Bottaro (45.9 pM), suggesting exposure by diet. Accordingly, significantly higher levels of oxidative damage, measured as lipid peroxidation (LPO), were observed in gastropods from La Calcara compared to their counterparts from Bottaro. This observation aligns with lower catalase (CAT) activity and total glutathione levels (tGSH) in these gastropods, indicating compromised antioxidant defenses against reactive oxygen species (ROS). No significant differences were observed in energy metabolism when comparing cellular energy allocation (CEA) between snails from the two locations. Nevertheless, gastropods from La Calcara exhibited significantly reduced levels of available sugars, suggesting potential energetic costs of dealing with higher levels of oxidative stress due to increased Hg exposure. Understanding the complex relationships among hydrothermal vent activity, Hg inputs, Hg transfer in food webs, and biota responses provides valuable insights for conservation and management efforts in these unique and fragile ecosystems. Future research should focus on elucidating the long-term effects of Hg exposure at several hydrothermal vent locations, their biodiversity, and ecosystem dynamics, contributing to the broader understanding of metal contamination in marine environments.

How to cite: Rodrigues, A. C. M., Petrova, M. V., Torres-Rodriguez, N., Dufour, A., Cosio, C., Malengros, D., Marschal, C., Lazzaro, G., Longo, M., and Heimbürger-Boavida, L.-E.: Hydrothermal Vents in Panarea, Italy: Investigating Mercury inputs and evaluating Biota Oxidative Stress Status with a focus on Phorcus turbinatus as a Bioindicator of Mediterranean Sea Health, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17814, https://doi.org/10.5194/egusphere-egu24-17814, 2024.

EGU24-18686 | ECS | Orals | BG1.13

Partitioning of multiple elements as a function of seawater [Ca2+]: results from foraminiferal culture experiments.  

Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart

Climate reconstructions are important for validating climate models and hence constrain climate change predictions. Such reconstructions are based on indirect tools (proxies) in which a fossil or chemical remnant corresponds to an environmental parameter. When employing foraminifera as proxies, elemental concentrations in their shells have been shown to correlate with environmental parameters including temperature (that determines the calcite’s Mg/Ca), seawater [HCO3-] (Sr/Ca and B/Ca) and [CO32-] (S/Ca). When reconstructing theses parameters on longer geological timescales (i.e. millions of years), the seawater’s major ion concentrations may affect these proxy relationships. Especially the concentration of calcium will affect all of these calcitic elemental ratios and therefore, we varied [Ca2+] in controlled growth experiments to test its effect on incorporation of Mg, Sr, B and S in the benthic foraminifer Amphistegina lessonii. For the divalent cations we find a decrease in the partition coefficient (D) for Mg (DMg) with a changing [Ca2+] (and hence seawater Mg/Ca) while DSr does not vary significantly with [Ca2+]. For SO42- and B(OH)4- against S/Casw and B/Casw respectively, we observe a significant decrease in the partition coefficients with decreasing [Ca2+]. These results gives new information for SO42- and B(OH)4- incorporation and represents a step forward towards comprehending the impact of [Ca2+]sw alterations on foraminiferal calcite chemistry and hence their application as paleoproxies in deep time. 

How to cite: Pacho, L., de Nooijer, L., and Reichart, G.-J.: Partitioning of multiple elements as a function of seawater [Ca2+]: results from foraminiferal culture experiments. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18686, https://doi.org/10.5194/egusphere-egu24-18686, 2024.

EGU24-18922 | Orals | BG1.13

Aquatic eddy covariance pH and O2 fluxes, a technique for observing calcification in benthic ecosystems 

Dirk Koopmans, Allison Schaap, Volker Meyer, Paul Färber, Lauren Queiss, Luis M. Montilla, Socratis Loucaides, Soeren Ahmerkamp, and Ulisse Cardini

Calcifying organisms, including scleractinian corals and coralline algae, play a pivotal role in supporting benthic habitats and their associated ecosystem functions. However, many of them are threatened by ocean warming and acidification caused by anthropogenic CO2 emissions. Our understanding of their capacity to adapt to changes in their natural environment remains limited. To address this knowledge gap, we introduce a non-invasive method to quantify calcification from the simultaneous measurement of H+ ion and O2 fluxes utilizing the aquatic eddy covariance technique. Because calcification is a net source of H+ ions, it can be quantified as a source of H+ ions in excess of those generated by organic carbon metabolism. To examine the effect of ocean acidification on calcification by coralline algae epiphytes, we measured H+ and O2 fluxes at a seagrass meadow at a CO2 vent and at a control meadow, 670 m away. At both meadows we found that opposing flows were enriched in vent CO2. Additionally, vent CO2 diffused upwards through sediments at both sites. Because of this, we were unable to completely separate the calcification signal (non-metabolic H+ ion production) from the persistent background signal of vent CO2. However, we use these data as a demonstration of how H+ and O2 eddy covariance can reveal a subtle time-varying signal consistent with calcification in a benthic ecosystem. Based on the results of this study, H+ and O2 eddy covariance can quantify changes in benthic calcification over time, and therefore it can support better-informed management of scleratinian corals, coralline algae, and other benthic calcifiers. 

How to cite: Koopmans, D., Schaap, A., Meyer, V., Färber, P., Queiss, L., Montilla, L. M., Loucaides, S., Ahmerkamp, S., and Cardini, U.: Aquatic eddy covariance pH and O2 fluxes, a technique for observing calcification in benthic ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18922, https://doi.org/10.5194/egusphere-egu24-18922, 2024.

EGU24-19630 | ECS | Orals | BG1.13

Developing trace element proxy calibrations for reconstructing polar surface ocean hydrography based on laboratory-grown planktonic foraminifera Neogloboquadrina pachyderma 

Adele Westgård, Julie Meilland, Freya E. Sykes, Thomas B. Chalk, Gavin L. Foster, Melissa Chierici, and Mohamed M. Ezat

Proxy based records of past changes in the polar surface ocean-cryosphere-climate interactions can provide invaluable constraints on ongoing and future climate change. However, studying polar ocean palaeoceanography remains challenging largely due to a lack of robust proxy calibrations. For example, the commonly used foraminiferal Mg/Ca paleothermometer does not have a reliable calibration at polar conditions and there are currently limited trace element proxies for other environmental variables such as salinity or carbonate chemistry. In addition, Neogloboquadrina pachyderma, the dominant foraminifera species in polar regions, sometimes grows a thick calcite crust outside its main growth phase calcite with different geochemical composition. This poses a challenge to the Mg/Ca paleothermometer as the crusts have lower Mg/Ca than the ontogenetic calcite.

To address this, we cultivated >1500 individual specimens of N. pachyderma over a wide range of temperatures (2 to 9°C), salinities (~30 to 36.5), pHs (~7.7 to 8.4 total scale), carbonate ion concentrations (~100-250 µmol/mol at stable and variable pH), and Ba concentrations (2-4 times natural). The experimental water was spiked with 135Ba to label laboratory-grown calcite. Elemental ratios in the specimens have been analysed using laser ablation mass spectrometry (LA-ICP-MS), providing high resolution elemental profiles of intra-shell variability.

Our microscopic observations and element ratios results suggest the growth and addition of crust in all treatments, allowing, for the first time, laboratory-based proxy calibrations for N. pachyderma’s crust. A preliminary data analysis show variability in trace element ratios in relation to variable temperature, salinity, barium concentration and carbonate chemistry. Our results also indicate significant distinction in trace element ratios between crust and ontogenetic calcite components of the N. pachyderma tests when both are grown in culture. We are in the process of developing separate laboratory-based proxy calibrations for the crust and ontogenetic calcite which will significantly improve the applicability of the proxy calibrations as well as our understanding of crust formation in this species. We aim to present Mg/Ca-temperature calibrations for the crust and ontogenetic parts separately as well as detailing the respective effects of salinity and carbonate chemistry on Mg/Ca ratios.  

How to cite: Westgård, A., Meilland, J., Sykes, F. E., Chalk, T. B., Foster, G. L., Chierici, M., and Ezat, M. M.: Developing trace element proxy calibrations for reconstructing polar surface ocean hydrography based on laboratory-grown planktonic foraminifera Neogloboquadrina pachyderma, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19630, https://doi.org/10.5194/egusphere-egu24-19630, 2024.

Carlos Ruiz Cánovas1, Manuel Olías1, Francisco Macías1, María Dolores Basallote2, Eduardo Navarrete3 and Juan Mantero4

1Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment. University of Huelva, Campus El Carmen, E-21071, Huelva, Spain manuel.olias@dgyp.uhu.es; carlos.ruiz@dgeo.uhu.es, manuel.olias@dgyp.uhu.es, carlos.ruiz@dgeo.uhu.es, francisco.macias@dgeo.uhu.es

2Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, CSIC, E-11510, Puerto Real, Cádiz, Spain mdolores.basallote@csic.es

3Andalusian Environmental and Water Agency, C/ Johan G. Gutenberg, 1 - Isla de la Cartuja, 41092 Seville, Spain  eduardo.navarrete@juntadeandalucia.es

4Department of Applied Physics II, ETSA, University of Seville, Av Reina Mercedes 2, 41012 Seville, Spain, manter@us.es

 

This work studies the behavior of Uranium (U) and Thorium (Th) in the Tinto River during the hydrological year 2017/2018. The dissolution of surrounding rocks due to extreme acidity conditions, generated during the oxidation of sulfides, induces the release of high concentrations of U and Th into the water. Maximum dissolved concentrations of 57 μg/L of U and 61 μg/L of Th were determined in this study, coinciding with the first precipitation events of the hydrological year due to the washout of evaporitic salts covering the riverbed and mining areas during the dry period, as well as the transport of sulfide oxidation products. Subsequently, a progressive decrease in concentrations was observed, reaching values close to 5 μg/L by February 2018, which are much higher than those found in freshwaters.

With the arrival of intense rains in March and April 2018, a significant decrease in concentrations (<1 μg/L) occurred, primarily due to dilution. Both elements exhibit quasi-conservative behavior due to the low pH values in the river (2.1-4.2), preventing the precipitation of Al mineral phases and the incorporation of U and Th into them. Although the precipitation of Fe mineral phases at these pH values is intense, the adsorption/coprecipitation processes of U and Th onto these phases seem to be limited by the formation of sulfate complexes (Th(SO4)2), ThSO42+, UO2SO4). The transport of U and Th by particulate matter is very limited, although there appears to be a correlation with Al. An increase in concentration of U and Th is observed during the mixing of these acidic waters with ocean waters due mainly to the formation of carbonate complexes which enhances the mobility of U and Th in the estuarine domain.

How to cite: Ruiz Cánovas, C.: Transport of U and Th from a river affected by acid mine drainage (AMD) to the Atlantic Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20607, https://doi.org/10.5194/egusphere-egu24-20607, 2024.

EGU24-20817 | ECS | Posters on site | BG1.13

Assessment of pollutant load in Tharsis mine (Huelva, Spain): A study of evaporitic salts using UAS-Based Hyperspectral 

Raul Moreno Gonzalez, Luis Barbero, Andrea Celeste Curcio, Rafael León, and Jonatan Romero

One of the major environmental problems caused by mining operations is water pollution. In sulfide mining, pyrite is exposed to atmospheric conditions causing oxidize and release acidity and metals. The water transports these contaminants, producing a leachate known as Acid Mine Drainage (AMD). The Iberian Pyritic Belt (IBP), which belongs the province of Huelva, is very rich in massive sulfide deposits that are mainly composed of pyrite. Mining activity has left numerous abandoned mines with enormous amounts of waste rich in sulfides, including Tharsis mines. Numerous acid leachates emerge from the waste from the Tharsis mines, which have not been active since 2001, and drain to rivers of the area. In the dry season, pollutants precipitate in the form of soluble evaporitic salts that are redissolved with the first important rains of autumn. This redissolution of salts generates a pH decrease and the release of high amounts of contaminants such as Fe, Al, Zn, Mn, As, SO4, Cu, Ni, etc. Remote sensors provide a cost-effective, consistent and accurate approach to monitoring mining pollution. Multispectral and hyperspectral sensors have been widely used due to the distinctive spectral absorption characteristics of minerals. The emerging use of unmanned aerial systems (UAS), such as multicopters coupled with hyperspectral sensors, has become a tool for collecting data at a higher spatial resolution than most aircraft and satellites, resulting in greater accuracy.

To obtain the aerial images, a DJI Matrice 600 Pro octacopter UAS was used with a Headwall Hyperspectral (HS) Coaligned VNIR-SWIR sensor with visible and near infrared range (VNIR; 400-1000 nm) and shortwave infrared range (SWIR; 900-2500 nm) and equipped with a LiDAR to quickly obtain an DSM for georeferencing of the hypercubes. The data obtained have been preprocessed to obtain an orthomosaic with the VNIR and SWIR spectra. The data are processed with ENVI v 5.3.6 and QGIS v 3.26.3 software. Wavelengths from 2001 nm to 2450 nm are selected to identify the minerals that are present in the study area, resulting in an orthomosaic with 76 exploitable bands. MNF and PPI techniques are applied to this orthomosaic to obtain the spectral signatures of the study area. These spectral signatures are compared to the USGS mineral library to identify the minerals present. In this way, 8 minerals are identified: hematite, goethite, jarosite, epsomite, copiapite, illite, clinochlore and chlorite + muscovite. Afterwards, the pixels in the study area are classified and the location of the minerals is obtained. Jarosite, epsomite and copiapite are the most abundant minerals and mainly present in the surroundings of waste leachates. The first rains after summer, evaporitic salts and Fe oxides, hydroxides and hydrosulfates are redissolve and cause a considerable polluting load increase. The surface area occupied by these minerals is 3,861 m2, which represents a high load of pollutants that reach the rivers in the area.

How to cite: Moreno Gonzalez, R., Barbero, L., Curcio, A. C., León, R., and Romero, J.: Assessment of pollutant load in Tharsis mine (Huelva, Spain): A study of evaporitic salts using UAS-Based Hyperspectral, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20817, https://doi.org/10.5194/egusphere-egu24-20817, 2024.

EGU24-21639 | ECS | Posters on site | BG1.13

Investigating the influence of temperature on respiration rates of the benthic foraminifer Nonionella sp. T1 

Tina Palme, Petra Heinz, Irina Polovodova Asteman, and Matthias Nagy

With the warmest year on record and heating of oceans all over the world, it is of increasing interest how marine organisms adapt to these changing conditions. Benthic foraminifera are important components of marine ecosystems, contributing to biogeochemical cycling and serving as indicators of environmental change. Gaining knowledge of their role in energy and nutrient flows leads to a better understanding of ecosystem functioning. In this study we investigated oxygen respiration rates of the potentially invasive benthic foraminifer Nonionella sp. T1 originating from sediments within the Gullmar Fjord and cultivated in artificial sea water (ASW) in the laboratory at the University of Vienna. Nonionella sp. T1 was incubated at two different temperatures: 12 °C closely resembling natural fjord conditions and 20 °C simulating thermal stress to the foraminifers. Additionally, the influence of light on this species’ oxygen consumption was tested because it is known to harbour kleptoplasts (= functioning chloroplasts from algal food source), but little information exists about kleptoplast potential photosynthetic activity. Prior to the experiment, foraminifers were fed with the living diatom Phaeodactylum tricornutum, which is also used as food source for the culture. A non-invasive method was used to analyze oxygen respiration rates. The method involved placing an Oxygen Sensor Spot in a small, 2.5 ml airtight glass vial filled with ASW alongside the foraminifera. Oxygen concentrations under dark and light conditions and at 12 °C and 20 °C, respectively, were documented using an Oxygen Microsensor. We used a large number (n = 100, triplicates) of cleaned, living specimens. Respiration rates are given in µmol O2/h calculated for biovolume (µm³) which was assessed for each individual using photo microscopy. The measured oxygen respiration rates under dark conditions at 12 °C fall within the upper range of previously observed foraminiferal respiration rates. Lower respiration rates during light exposure indicate oxygen production which is likely related to the activity of kleptoplasts. The pending results of the experiment at 20 °C will show if respiratory activity of Nonionella sp. T1 will increase with temperature and if the efficiency of oxygen production of their kleptoplasts is temperature-dependent.

How to cite: Palme, T., Heinz, P., Polovodova Asteman, I., and Nagy, M.: Investigating the influence of temperature on respiration rates of the benthic foraminifer Nonionella sp. T1, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21639, https://doi.org/10.5194/egusphere-egu24-21639, 2024.

EGU24-93 | ECS | PICO | AS3.9

Late Pleistocene East Asian monsoon intensity variations and driving mechanisms: Evidence from a multi-proxy analysis of loess deposits on an East China Sea island 

Zhigang Wang, Laurent Marquer, Yuanyu Cheng, Xiuxiu Ren, Hao Long, Shaofang Ren, Peng Qian, and Xiangmin Zheng

Shengshan Island (SSD), located in East China Sea, contains loess deposits that serve as an excellent carrier for recording environmental changes in the eastern subtropical region of China. Different from the continental Loess Plateau, SSD loess possesses distinctive characteristics due to its coastal location. Here we conducted the first pollen analysis to reconstruct vegetation dynamics in the SSD region during the middle to late Late Pleistocene period (75-40 ka). Biological indicators (i.e., total organic concentration and δ13Corg), along with geochemical proxies (i.e., quartz grain size, magnetic susceptibility, iron oxide ratios, clay minerals, and trace elements), were employed to reconstruct climatic dynamics in the SSD area. The study identified two stages in the evolution of the East Asian Monsoon. In Stage I (75-60 ka), various indicators (i.e., pollen concentration, Pinus concentration, magnetic susceptibility, C4 abundance, K/(I+Ch), Illite crystallinity, CII, Hm/Gt, quartz median grain size, Zr/Rb) increased, suggesting a strengthening of both winter and summer monsoons. In Stage II (60-40 ka), some indicators (i.e., pollen concentration, Pinus concentration, quartz median grain size, Zr/Rb) continued to increase while others (i.e., magnetic susceptibility, C4 abundance, K/(I+Ch), Illite crystallinity, CII, Hm/Gt) decreased, indicating a continued intensification of the winter monsoon but a weakening of the summer monsoon. Further, we explored the driving forces behind variations in monsoon intensity, analyzing changes in various δ18O proxies and sea-level fluctuations. The findings suggest that different mechanisms influence the winter and summer monsoons. Summer monsoon intensity is linked to changes in summer solar radiation at mid-latitudes in the Northern Hemisphere, while winter monsoon dynamic is affected by changes in ice volume and ice sheets. These insights contribute to our understanding of environmental changes related to the East Asian Monsoon, offering valuable perspectives on how these mechanisms could respond to future climate changes.

How to cite: Wang, Z., Marquer, L., Cheng, Y., Ren, X., Long, H., Ren, S., Qian, P., and Zheng, X.: Late Pleistocene East Asian monsoon intensity variations and driving mechanisms: Evidence from a multi-proxy analysis of loess deposits on an East China Sea island, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-93, https://doi.org/10.5194/egusphere-egu24-93, 2024.

EGU24-430 | ECS | PICO | AS3.9

West African dust load modeling and its impact on solar radiation forecast during the dry season 

Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Guillaume Siour, Gilles Bergametti, Béatrice Marticorena, Christel Bouet, Rémy Lapere, and Jennie Thomas

The expected growth of solar photovoltaic (PV) production in West Africa over the coming decades poses challenges to the electrical network requiring accurate solar forecasts for both energy producers and power grid managers. Furthermore, solar radiation is affected by dust aerosols which play a significant role in West African meteorology, due to the proximity of this region to the Sahara desert, which is the world's largest source of mineral dust aerosols emissions.

In this general context, our research aims at identifying the impact of mineral dust on solar energy production. Thus, this study focuses on evaluating the influence of dust aerosols on solar radiation forecasts for the Zagtouli solar plant in Burkina Faso. 

Employing a coupled approach between a meteorological model (WRF) and a chemical transport model (CHIMERE), two dust events that are representative of the dry season are simulated in line with West African climatology. While one event is linked to dust emissions from the Bodélé plateau (Chad), the other is related to dust sources located within the South Atlas area.

The model undergoes rigorous assessment in regards to dust life cycle parameters (Aerosol Optical Depth (AOD), PM10, size distribution) and variables essential for solar energy production (Global Horizontal Irradiance (GHI), temperature) using in-situ measurements from long-term observatories (AERONET, INDAAF, AMMA-CATCH) and from the solar farm (GHI), satellite observations (AQUA/TERRA-MODIS, CALIPSO-CALIOP), and reanalysis data (CAMS). This evaluation shows a robust performance of the model.

In addition, sensitivity studies are implemented to evaluate the respective impacts of direct and indirect effects of dust aerosols on the amount of solar radiation available at the surface.

Overall, this study provides strong support for a modeling approach that couples meteorological processes with the dust life cycle to refine solar forecasts in the West African region.

How to cite: Clauzel, L., Anquetin, S., Lavaysse, C., Siour, G., Bergametti, G., Marticorena, B., Bouet, C., Lapere, R., and Thomas, J.: West African dust load modeling and its impact on solar radiation forecast during the dry season, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-430, https://doi.org/10.5194/egusphere-egu24-430, 2024.

EGU24-989 | ECS | PICO | AS3.9 | Highlight

Atmospheric radioisotopes in cryoconite from the Flade Isblink ice cap, NE Greenland 

Dylan Beard, Giovanni Baccolo, Caroline Clason, Geoffrey Millward, Edyta Łokas, Sally Rangecroft, Dariusz Sala, Przemysław Wachniew, and William Blake

Under climatic warming and increased melting, glaciers and ice caps are becoming secondary sources of contaminants deposited decades ago. Cryoconite, an organic-rich material found on the surface of many glaciers, is particularly efficient at accumulating airborne contaminants due to biogeochemical exchanges with the organic matter within cryoconite. Atmospherically derived radioactive isotopes, commonly referred to as fallout radionuclides, have now been found to accumulate in cryoconite globally. However, data from the polar regions, especially ice sheets and ice caps, is scarce. This study helps to address this regional gap in understanding fallout radionuclide accumulation in glacial settings. We present the first radioactivity dataset from cryoconite on a Greenlandic ice cap and assess the role of cryoconite in the distribution of radioactive species in the High Arctic. Forty-six cryoconite samples were collected from the Flade Isblink ice cap (NE Greenland) in August 2022. These samples were analysed via alpha and gamma spectrometry for atmospheric radionuclides, including 137Cs, 241Am, 210Pbexc., 207Bi, 7Be, and several plutonium isotopes. The results of this study confirm cryoconite's exceptional ability to accumulate fallout radionuclides, even in remote and relatively pristine regions such as Northern Greenland. The activities of radionuclides in cryoconite from Flade Isblink are among the highest reported across the High Arctic and the highest ever reported from Greenland. Flade Isblink's radioactivity source is compatible with the stratospheric reservoir established during atmospheric nuclear tests and with weapon-grade fissile fuel, likely originating from Novaya Zemlya. Our findings emphasise the necessity for continued research efforts on the release of legacy contaminants from glaciers, particularly given accelerated global warming and consequent glacier retreat.

How to cite: Beard, D., Baccolo, G., Clason, C., Millward, G., Łokas, E., Rangecroft, S., Sala, D., Wachniew, P., and Blake, W.: Atmospheric radioisotopes in cryoconite from the Flade Isblink ice cap, NE Greenland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-989, https://doi.org/10.5194/egusphere-egu24-989, 2024.

EGU24-1776 | PICO | AS3.9 | Highlight

Assessment of the Impact of Coarse and Fine Dust on Solar Devices in the Middle East 

Suleiman Mostamandi, Georgiy Stenchikov, Ahmed Balawi, Illia Shevchenko, Dania Kabakebji, and Thomas Altmann

Dust in the Middle East (ME) significantly impacts regional climates and negatively affects the operation of solar farms in the ME region. Suspended dust particles attenuate downward short wave (SW) radiation, while dust deposited on the solar devices decreases effectiveness. This study theoretically assesses dust's attenuation and soiling effects on solar panels within the ME, employing a Weather Research Forecasting Model coupled with the aerosol-chemistry module, WRF-Chem, constrained by observed dust depositions. By analyzing the size distribution of dust deposition samples, we found that a major part of the deposited mass resulted from the deposition of dust particles with radii > 10 um. However, the models usually consider only particles with radii < 10 um.

We corrected this deficiency and conducted a year-long simulation using WRF-Chem. We found that the dust (primarily fine particles with radii < 3 m) reduces the downward SW radiation near the surface by 5-10%. Meanwhile, dust deposition (mostly coarse dust particles with radii > 6 m) imposes soiling losses of 12 to 36 % in different parts of the ME, assuming a weekly cleaning cycle.

Our findings unveil a complex interplay between dust size and its multifaceted impact on solar energy production. This novel insight could lead to optimized maintenance strategies and novel mitigation approaches tailored to the unique dust burden of the Middle East. Ultimately, this study aims to advance solar energy resource assessment and pave the way for enhanced photovoltaic efficiency in dust-prone regions.

How to cite: Mostamandi, S., Stenchikov, G., Balawi, A., Shevchenko, I., Kabakebji, D., and Altmann, T.: Assessment of the Impact of Coarse and Fine Dust on Solar Devices in the Middle East, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1776, https://doi.org/10.5194/egusphere-egu24-1776, 2024.

EGU24-1827 | PICO | AS3.9

Investigation of the mineralogical composition of desert dust particles during a transboundary pollution episode in the UK and implications for health effects  

Stavros Solomos, Christina Mitsakou, Samuel Thompson, Helen Macintyre, Karen Exley, Stuart Aldridge, Christos Zerefos, Nikolaos S. Bartsotas, Christina Kalogeri, and Christos Spyrou

Toxicological and epidemiological studies have supported links between desert dust particles and health impacts, such as worsened asthma, hospitalization for respiratory infections, and seasonal allergic rhinitis. Airborne desert dust particles could serve as a medium for interacting with chemicals on their surfaces, potentially enhancing the bioreactivity of fine particles during episodes of dust storms. The role of the different mineralogical composition (e.g. quarz, iron, feldspars) on the biological effects of mineral dust remains to be determined. In this work we analyze the severe dust event that affected the UK on 15 and 16 March 2022 in terms of the synoptic situation leading to this event, the spatiotemporal distribution of the dust plumes over UK and the chemical/mineralogical composition of the particles. We employ the METAL-WRF model to investigate the atmospheric properties and the quantification of particle concentrations in ambient air but also in dry and wet depositions of dust. The METAL-WRF model includes prognostic fields for ten (10) minerals: illite, kaolinite, smectite, calcite, quartz, feldspar, hematite, gypsum, phosphorus and iron. We also investigate the health impacts linked to the desert dust transport on the population in UK regions. Our results are discussed across similar findings at more frequently dust-affected regions such as the Mediterranean.  

Acknowledgment This study is partially supported by the Hellenic Foundation for Research and Innovation project Mineralogy of Dust Emissions and Impacts on Environment and Health (MegDeth - HFRI no. 703) and the project Bioclimatic urban design for the sustainability and resilience of the urban environment in the context of climate change (BIOASTY)

How to cite: Solomos, S., Mitsakou, C., Thompson, S., Macintyre, H., Exley, K., Aldridge, S., Zerefos, C., Bartsotas, N. S., Kalogeri, C., and Spyrou, C.: Investigation of the mineralogical composition of desert dust particles during a transboundary pollution episode in the UK and implications for health effects , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1827, https://doi.org/10.5194/egusphere-egu24-1827, 2024.

EGU24-2280 | ECS | PICO | AS3.9

Different orbital rhythms in loess grain-size records across the Chinese Loess Plateau 

Deai Zhao, Guoqiao Xiao, Qingzhen Hao, Shaohua Tian, Zhipeng Wu, Hao Lu, Gaowen Dai, Shuzhen Peng, Chunjv Huang, and Qiuzhen Yin

The thick loess-paleosol sequences on the Chinese Loess Plateau (CLP) are among the best terrestrial archives for the understanding of the global paleoenvironment and East Asian monsoon changes. In particular, orbital-scale variations characterized by major periodicities of ~100 kyr, ~40 kyr and ~20 kyr are recorded by various proxies in the loess, which is often suggested to reflect the orbital control on East Asian climate. However, whether these climate periods could be affected by the signals from the dust source areas remains unknown. Here we present the spectrum results of grain size records from the Baoji loess section spanning the past 400 ka in the southeastern part of the CLP, and compare with the previous results in the western CLP (to the west of the Liupanshan Mts.), including Gulang, Menyuan, Lanzhou, Linxia, Jingyuan loess sections, and loess sections in the eastern CLP (to the east of the Liupanshan Mts.), including Luochuan, Xifeng, Lantian, and Weinan sections. The results show that the dominant periods in different sections are spatially different, and the ~20-kyr precession cycle from the western CLP is significantly stronger than that in eastern CLP. Albeit dust accumulation rates in the Jingbian loess section from the eastern CLP are very high, the lack of precession signal suggests that high sedimentation rate is not the main factor for occurrence of precession cycle in grain size records. The results also suggest that the dust source areas for the eastern and western CLP are different, specifically, the loess deposits in western CLP were mainly sourced from the NE Tibetan Plateau, while the loess deposits in eastern CLP were significantly fed by the deserts to the north CLP (including deserts in Northern China and Southern Mongolia). As the dust production and transportation in NE Tibetan Plateau and the deserts to the north CLP were significantly driven by the ~20-kyr local summer insolation and the ~100-kyr ice age cycle, respectively, we argue that the climate cycle in loess grain size of the CLP indeed reflects the climate signals of their source areas, rather than the deposition areas. Our results suggest that caution should be taken when explaining the meaning of the loess grain size records.

How to cite: Zhao, D., Xiao, G., Hao, Q., Tian, S., Wu, Z., Lu, H., Dai, G., Peng, S., Huang, C., and Yin, Q.: Different orbital rhythms in loess grain-size records across the Chinese Loess Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2280, https://doi.org/10.5194/egusphere-egu24-2280, 2024.

EGU24-3106 | PICO | AS3.9 | Highlight

African dust transport and deposition modelling verified through a successful citizen science campaign in Finland   

Outi Meinander, Rostislav Kouznetsov, Andreas Uppstu, Mikhail Sofiev, Anu Kaakinen, Johanna Salminen, Laura Rontu, Andre Welti, Diana Francis, Ana A. Piedehierro, Pasi Heikkilä, Enna Heikkinen, and Ari Laaksonen

On 21–23 February 2021, dust from a sand and dust storm (SDS) in northern Africa was transported to Finland, north of 60°N. The episode was predicted 5 days in advance by the Finnish Meteorological Institute (FMI) global operational SILAM forecast (silam.fmi.fi), and its key features (e.g., spatial distribution of wet and dry deposition amounts and particle sizes) were confirmed and detailed by a retrospective analysis. SILAM is among the dust forecast models included in the Word Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System WMO SDS-WAS.  

Dust deposition was observed on 23 February over a large area in the Southern and Central Finland from 60°N to >63.8°N. The ground was covered with snow making dust more easily detectable. The coloured snow caused people to contact FMI asking what is happening. FMI launched a citizen science campaign on Saharan dust with the help of social media, and people were asked to report their observations and to collect dust-containing snow and to extract the dust according to the guidelines. The campaign gained wide national interest in television, radio, newspapers and social media, and resulted in success in receiving citizen samples from 525 locations, with one to over ten samples in each.

The amounts of deposition calculated from the citizen samples were found to be up to 1.1 g/m2 and such maximum amounts per unit area agree with the SILAM calculations. The SILAM model and particle magnetic properties confirmed that dust came from a wide Sahara and Sahel area, from 5000 km away. The median diameters of the dust particles were in the modes of <10 µm and >20 µm. The mineral composition was dominated by quartz, feldspars, and soft phyllosilicates such as micas and clay minerals.

To extract dust from snow, Meinander et al. (2023) protocol recommends: 1. Collect snow samples within one week of the deposition event to minimize post-deposition changes. 2. Evaporate snow under 75oC to preserve the magnectic properties (particles should not be subjected to temperatures higher than 90oC). 3. Keep the remaining particles in the container in which the evaporation took place (e.g., a sheet of aluminium folio on a large oven tray and evaporating the snow in the oven) to best preserve all the particle sizes. 

Reference: Meinander, O., Kouznetsov, R., Uppstu, A. et al. African dust transport and deposition modelling verified through a citizen science campaign in Finland. Sci Rep 13, 21379 (2023). https://doi.org/10.1038/s41598-023-46321-7. 

 

 

How to cite: Meinander, O., Kouznetsov, R., Uppstu, A., Sofiev, M., Kaakinen, A., Salminen, J., Rontu, L., Welti, A., Francis, D., A. Piedehierro, A., Heikkilä, P., Heikkinen, E., and Laaksonen, A.: African dust transport and deposition modelling verified through a successful citizen science campaign in Finland  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3106, https://doi.org/10.5194/egusphere-egu24-3106, 2024.

Dust storms are severe and disastrous weather events that typically occur in arid and semi-arid desertification areas. The frequent occurrences of spring dust storms in East Asia in recent years have drawn widespread attention in the context of the significant achievements in ecological management and sand prevention. Identifying the source and transport of dust storms in East Asia is key to comprehending the ecological environment and climate. In this study, the MODIS annual product MCD12C1 is used as labels to classify the land cover of Landsat 8/9 images using the Random Forest method in order to obtain the dynamic distribution of dust source areas. The land cover results are processed to the WRF model to provide the meteorological field, after which a Lagrangian transport model FLEXPART-WRF is used to simulate the horizontal and vertical transport of particles from five dust source regions in East Asia during the March 22, 2023 dust storm event. The source apportionments for regions on the transmission path of different dust sources are revealed by an online tracer-tagged of air quality model NAQPMS. The results show that the total area of the East Asian dust source regions in March 2023 is 1.5×106 km2. Cold high pressure from Siberia and the Mongolian cyclone are key synoptic situations for dust emission and transport from dust source areas. The Taklimakan Desert and the Tarim Basin mainly affect northwestern China. The Badain Jaran Desert and Horqin Sandy Land have a greater impact on northern China, with longer transmission distances, and can even affect southeast and Northeast China. The Gobi Desert affects northern China by influencing the dust source areas in Inner Mongolia. The vertical transport height is up to 500m from the ground. The PM2.5 source apportionments show that the Badain Jaran Desert contribution of Beijing-Tianjin-Hebei and its surrounding areas accounted for 45.5 %, while the Gobi Desert accounted for 1.4 %.

How to cite: Li, Y. and Wu, Q.: How dust sources affect downstream regions in East Asia during a dust storm event, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3981, https://doi.org/10.5194/egusphere-egu24-3981, 2024.

EGU24-4003 | ECS | PICO | AS3.9

New insights into the atmospheric dust dynamics in the Carpathian and Wallachian Basin during MIS 1-MIS 2 

Zoran Perić, Helena Alexanderson, Slobodan Marković, Milica Radaković, Petar Krsmanović, and Cathal Ryan

Fine-grained windblown deposits, known as loess, in which fossil soils (palaeosols) are preserved, serve as excellent records of past climate. However, paleoclimate reconstruction studies on loess-palaeosol sequences (LPS) in Southeastern Europe have primarily focused on climate changes during the last one or two glacial-interglacial cycles. Surprisingly, little attention has been given to the climate of the current interglacial, the Holocene. This oversight may be attributed to the prevailing notion that, based on ice core and marine isotope records, the Holocene is considered a climatically stable period. Additionally, the scarcity of LPS with well-preserved Holocene loess has contributed to this lack of attention until now. Three recently discovered loess-palaeosol sequences in the Eastern Carpathian and the Wallachian Basins present fully preserved loess covering MIS 1-MIS 2 offering the potential to unveil new and detailed information about Holocene climate. In this study, we present initial results from two of these LPS: Kisiljevo (44°44′0'' N and 21°25′0'' E) in the Carpathian Basin, and Velika Vrbica (44°35’1.70’’N, 22°43’15.97’’E) in the Wallachian Basin. For both sequences, detailed optically stimulated luminescence (OSL) chronologies using 63-90 µm quartz have been constructed. Age models based on the OSL ages were constructed using the r.bacon software (Blaauw & Christen, 2011), following which dust accumulation rates (MAR) for the last approximately 30,000 years were calculated. The initial results from Kisiljevo reveal a significant loess accumulation during the Holocene, amounting to approximately 120 cm. The highest MARs were observed between 10 and 12 ka (10,000-8,000 BC) with a mean value of 148 g m2 a-1. A similar trend is evident at the Velika Vrbica LPS, where the average calculated MARs during the early Holocene (8 – 11.7 ka) were 189 g m2 a-1, showing a decreasing trend toward the later part of this period (3.1 – 8 ka) with average values reaching 132.1 m2 a-1. Interestingly, at this site, the mean MARs during Marine Isotope Stage 1 (MIS) were higher than during the cold, stadial MIS 2, where the recorded values averaged 177 g m2 a-1. These initial results suggest that the Holocene dust dynamics in this region was more variable than what generally accepted models suggest.

References: Blaauw & Christen (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474.

How to cite: Perić, Z., Alexanderson, H., Marković, S., Radaković, M., Krsmanović, P., and Ryan, C.: New insights into the atmospheric dust dynamics in the Carpathian and Wallachian Basin during MIS 1-MIS 2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4003, https://doi.org/10.5194/egusphere-egu24-4003, 2024.

Colour is a fundamental morphological feature commonly documented during the description of loess layers and soils developed on loesses – both contemporary and fossil. These colours are typically identified directly in the field, matching specific hues from the Munsell Soil Colour Chart. However, this method is highly subjective, with accuracy hinging on the observer's expertise and weather conditions. Introducing digital spectrometers for colour analysis, conducted in the lab on powdered samples, enhances objectivity. This approach was applied to samples from the Middle-Upper Pleistocene loess-palaeosol sequences (L2-S1-L1-S0) in Ukraine's Dnieper basin.

The laboratory work aimed to pinpoint chromatic parameters that typify each loess layer, considering their distinct features and stratigraphic positions, as well as various soil horizons, each with unique degrees of pedogenic alteration. Key colour metrics included lightness (L*), redness (a*), yellowness (b*), chroma (c*), and the R-index. The resultant database of spectrophotometric data helps identify colour patterns characteristic of different sequence components.

Our analysis revealed considerable variation across all measured parameters, yet maintained the distinct coloration typical of loess and soils. We also created a digital colour record corresponding with the analogue Munsell scale, lending further objectivity to colour descriptions. Notably, digital colour identification often markedly differs from traditional, "analogue" methods. Applying RGB tuning, we devised models that realistically replicate colours observed in the field.

The documented chromatic parameters enable geological profile analysis in both vertical and spatial dimensions – following the Dnieper valley's sub-meridian and sub-latitudinal orientations across the river basin. These colour profiles mirror the diverse litho-, pedo-, and diagenetic processes across different genetic stages. Crucially, we identified diagnostic colour characteristics unique to primary loesses (L2 vs. L1), various soil types, their development stages (full-profile vs. reduced), and preservation forms (modern vs. ancient).

Thanks to the high resolution and sensitivity of our spectrophotometric analysis, we detected nuanced chromatic shifts, often abrupt. This revealed otherwise invisible erosional surfaces and concealed boundaries, shedding light on changes in loess lithology or the progression of pedogenic processes. The documented colour shifts illustrate the dynamic evolution of the natural environment, from loess accumulation (cold phases) to soil formation (warm periods).

It should be noted that primary loesses of varying ages, collected from different geological sites, which are primarily described as light yellow, show significant differences in the L*, a*, b*, c* parameters in light of spectrophotometric analyses. This variability aligns well with the findings of geochemical analyses.

Research carried out as part of the grant of National Science Centre, Poland as the project no. 2018/31/B/ST10/01507 entitled “Global, regional and local factors determining the palaeoclimatic and palaeoenvironmental record in the Ukrainian loess-soil sequences along the Dnieper River Valley - from the proximal areas to the distal periglacial zone”.

How to cite: Mroczek, P., Łanczont, M., and Komar, M.: Loess chromaticity as an environmental change recorder: spectrophotometric study of aeolian dust and its role in paleoclimate studies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4619, https://doi.org/10.5194/egusphere-egu24-4619, 2024.

EGU24-4749 | PICO | AS3.9 | Highlight

Recent developments in dust electrification research  

Keri Nicoll and R. Giles Harrison

Electrification of dust in the atmosphere is abundant, observed by helicopter blades glowing from corona discharge in dusty environments, and sparks from barbed wire fences during the US Dust Bowl.  Electrification of particles in blowing sand, dust devils and dust storms can result from contact charging/triboelectrification during dust generation or through its atmospheric transport, causing particles to accumulate large amounts of charge on their surface.  Strong electrostatic forces can affect the lofting of dust particles from the ground, as well as the transport of dust particles, however the details of such effects are still largely unexplored.  The charging of dust particles, and separation of the charge by mechanical processes yields large electric fields (E-fields, up to tens of kV m1).  Satellite remote sensing of dust is based on measurements of electromagnetic wave propagation, which can be attenuated by large electric fields, thereby the accuracy of dust measurements can be affected by electric fields arising from charge separation in dusty environments. Such E-fields are also expected to alter the orientation of dust particles, changing the effective optical depth of dust layers, existing calculations for which assume randomly oriented particles.

Although the existence of dust electrification has been known about for over a century, the details of the electrification mechanisms, and impact of dust electrification on particle behaviour are not yet fully understood.  This is partly due to a lack of observations of coincident space charge, E-field and particle measurements in dusty regions, particularly at altitudes above the surface.  This presentation will discuss recent research in understanding dust electrification processes, including surface observations of dust electrification in the United Arab Emirates (UAE), and measurements of charge in high altitude dust layers above the surface.

How to cite: Nicoll, K. and Harrison, R. G.: Recent developments in dust electrification research , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4749, https://doi.org/10.5194/egusphere-egu24-4749, 2024.

EGU24-4799 | ECS | PICO | AS3.9

Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean 

Shaojian Huang, Feiyue Wang, Tengfei Yuan, Zhengcheng Song, Peipei Wu, and Yanxu Zhang

Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean–sea ice–atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention’s effectiveness for Arctic populations.

How to cite: Huang, S., Wang, F., Yuan, T., Song, Z., Wu, P., and Zhang, Y.: Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4799, https://doi.org/10.5194/egusphere-egu24-4799, 2024.

EGU24-5430 | PICO | AS3.9

A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure-dust 

Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis

Dust aerosols play a key role in the Earth’s radiation budget, in climate system, environmental conditions, and human health. However, the complex role of dust depends not only on the physical and chemical properties, but in addition to the particle size distribution, spanning from less than 0.1 μm to more than 100 μm in diameter. Larger mineral dust particles are more efficiently removed through dry deposition close to the source regions and act more efficiently as CCN and/or IN than fine-mode dust particles, whereas fine dust particles are more prominent to long-range transport, resulting to degradation of air-quality and induced negative disorders on human health.
Here, a new four-dimensional, multiyear, and near-global climate data record of the submicrometer and supermicrometer (in terms of diameter) components of atmospheric pure-dust, is presented. The separation of the two modes of dust is based on a combination of (1) the total pure-dust product provided by the ESA-LIVAS database and (2) the supermicrometer-mode component of pure-dust provided by the first-step of the two-step POLIPHON technique, developed in the framework of EARLINET. The submicrometer-mode component of pure-dust is extracted as the residual between the LIVAS total pure-dust and the supermicrometer-mode component of pure-dust. The decoupling scheme is applied to CALIPSO observations at 532nm. The final products consist of the submicrometer-mode and supermicrometer-mode of atmospheric pure-dust, of quality-assured profiles of backscatter coefficient at 532nm, extinction coefficient at 532nm, and mass concentration. The datasets are established primarily with the original L2 horizontal (5 km) and vertical (60 m) resolution of CALIOP along the CALIPSO orbit-path, and secondly in averaged profiles of seasonal-temporal resolution, 1o×1o spatial resolution, and with the original vertical resolution of CALIPSO, between 70oS and 70oN and covering more than 15-years of Earth Observation (06/2006-12/2021).
The climate data record is unique with respect to a wide range of potential applications, including climatological, time-series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and reanalysis datasets, assimilation activities, and investigation of the role of airborne dust on radiation and air quality.

How to cite: Proestakis, E., Gkikas, A., Georgiou, T., Kampouri, A., Drakaki, E., Ryder, C. L., Marenco, F., Marinou, E., and Amiridis, V.: A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure-dust, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5430, https://doi.org/10.5194/egusphere-egu24-5430, 2024.

EGU24-5573 | ECS | PICO | AS3.9

Stronger early-spring dust outbreaks across the Northern Hemispheric mid-latitudes in a warmer climate 

Yiting Wang, Yan Yu, Ji Nie, and Paul Ginoux

This research focuses on changes in early-spring dust emissions from Northern Hemispheric mid-latitudes, in the context of global warming. Our study was motivated by the abnormally early and strong dust storms across East Asia in March 2021 and March 2023. These two recent dust extremes opposed the decadal decline of East Asian dust activities. Past studies have attributed this dustiness decline to expanded vegetation cover and resultant weaker near-surface winds in April and May; while in March, dust source regions in the Northern Hemispheric mid-latitudes have been mainly covered by snow or frozen soil instead of vegetation. Inspired by the abnormally warm and snow-free conditions associated with both the 2021 and 2023 early-spring dust extremes, our study examines an alternative hypothesis on dust regimes over the Northern Hemispheric mid-latitudes: in a warmer climate, earlier snow melt may cause stronger early-spring dust outbreaks. Here, using multiple observational datasets and model simulations, we show a 10-35% increase in March dust emission across the East Asian, Central Asian and North American drylands, from the 1980s towards the end of the 21st century, bringing ~20% extra PM10 to Beijing and Denver. This hemispherical enhancement in early-spring dust emission is primarily caused by reduced snow cover in response to warming, and further promoted by dynamical coupling between snow, wind, and soil moisture changes. The increased amount of dust, a light absorbing aerosol, may in turn accelerate larger-scale snow melt when it deposits, thereby triggering positive feedbacks between snow melting, dust emission, and warming. Our findings call for adaptation to the anticipated stronger early-spring dust storms across the North Hemispheric mid-latitudes in the upcoming decades.

How to cite: Wang, Y., Yu, Y., Nie, J., and Ginoux, P.: Stronger early-spring dust outbreaks across the Northern Hemispheric mid-latitudes in a warmer climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5573, https://doi.org/10.5194/egusphere-egu24-5573, 2024.

EGU24-6384 | PICO | AS3.9

Trade-offs of simplified versus comprehensive representation of mineralogy when studying dust impacts on Earth’s climate systems 

Paul Ginoux, Qianqian Song, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando

The intensity and direction of dust impacts on Earth’s climate systems depend on mineral composition. For example, the presence or absence of a few percent of iron oxides in dust will determine if dust is warming or cooling the atmosphere. Similarly, feldspar will enhance ice cloud formation, while acid gases in the atmosphere will react on the surface of dust calcite limiting acid rain. Still, most climate models use a simplified representation of dust mineralogy. They assume a fixed composition at emission which stays invariant during transport and removal. Such simplification assumes spatially and temporally constant physical and chemical properties of dust, and appears to provide satisfactory results when comparing some properties with observations. The trade-off is their lack of spatial gradients, which will fail to induce circulation, cloud and precipitation changes. The two reasons to omit mineral variations are the uncertainty of current atlases of soil mineral composition in arid regions, and, more practically, an improved runtime efficiency. The former reason is losing ground with the recent launch (July 2022) of a dedicated mission (NASA/JPL EMIT) to retrieve global soil mineralogy of dust sources at high spatial resolution.

While the EMIT science team is finalizing a satisfactory global map of mineral composition of dust sources, we analyzed the interaction of dust mineralogy on radiation and its impact on the fast temperature response using different representations of mineral composition from detailed and spatially varying to simplified and globally uniform, assuming different hematite contents and methods to calculate optical properties.  

Our results show that resolving dust mineralogy reduces dust absorption, and results in improved agreement with observation-based single scattering albedo (SSA), radiative fluxes from CERES (the Clouds and the Earth’s Radiant Energy System), and land surface temperature from CRU (Climatic Research Unit), compared to the baseline bulk dust model version. It also results in distinct radiative impacts on Earth’s climate over North Africa. From our 19-year simulation, we will show that it leads to a reduction of over 50% in net downward radiation at top of atmosphere (TOA) across the Sahara and an approximately 20% reduction over the Sahel. We will explain how the surface temperature response affects the monsoon flow from the Gulf of Guinea.

Interestingly, we find similar results by simply fixing the hematite content of dust to a globally uniform value of 0.9% by volume. We will discuss the underlying reasons for such results and show that they may be unrelated to the distribution of soil mineralogy. Still, an accurate representation of soil mineralogy is necessary to better understand dust impacts on the Earth’s climate systems.

How to cite: Ginoux, P., Song, Q., Gonçalves Ageitos, M., Miller, R. L., Obiso, V., and Pérez García-Pando, C.: Trade-offs of simplified versus comprehensive representation of mineralogy when studying dust impacts on Earth’s climate systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6384, https://doi.org/10.5194/egusphere-egu24-6384, 2024.

EGU24-7235 | ECS | PICO | AS3.9

Quantifying dust emission following wildfires on the global scale 

Xianglei Meng, Yan Yu, and Paul Ginoux

Wildfires can reduce vegetation cover and soil adhesivity, thus expanding bare grounds susceptible to wind erosion. Although in situ observations have confirmed dust emission following wildfires, a quantitative and mechanistic understanding of post-fire dust emissions is limited. Here, on the basis of satellite observations of active fires, aerosol abundance, vegetation cover and soil moisture from 2003 to 2020, we found that 91% and 54% of large wildfires are followed by reduced vegetation cover and enhanced dust emission, leaving intensive dust loadings for 1-25 days over normally dust-free regions. Furthermore, small wildfires, which naturally occur more widespread and frequently than large wildfires, lead to more considerable post-fire dust emissions, mostly global semi-arid regions. The occurrence and intensity of post-fire dust emission are regulated primarily by the extent of precedent wildfires and resultant vegetation anomalies, and modulated secondarily by pre-fire drought conditions. Despite the episodic nature of post-fire dust events, the amount of post-fire dust emission has shown an upward trend over the past two decades, especially over the Northern Hemispheric mid-latitudes, where droughts and wildfires are intensifying. These post-fire dust events impose greater socioeconomic and health impacts than dryland dust, due to the closer location of the former to populated areas. With an ongoing enhancement of extreme wildfires and concurrent droughts under global warming, our results emphasize the emerging importance of post-fire dust emissions on global and regional scales.

How to cite: Meng, X., Yu, Y., and Ginoux, P.: Quantifying dust emission following wildfires on the global scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7235, https://doi.org/10.5194/egusphere-egu24-7235, 2024.

EGU24-7871 | ECS | PICO | AS3.9

Wind erosion in Western Sahel : Quantifying the impact of land use and land management 

Paul-Alain Raynal, Caroline Pierre, Béatrice Marticorena, Jean-Louis Rajot, Abdourahmane Tall, Issa Faye, Diouma Cor Fall, Bineta Amar, Antoine Couedel, Gatien Falconnier, Jean-Alain Civil, Olivier Roupsard, and Sidy Sow

It is currently estimated that around 15% of the global mineral dust load comes from the Sahel. In this area, rainfed agriculture and livestock grazing play a crucial role in the livelihood of its rapidly growing population. Cropland is likely to be a main source of anthropogenic dust emissions in this region, as this land use type can favor wind erosion if land management deprives the soil of vegetation cover.

Yet, in situ measurements of wind erosion fluxes are scarce in the Sahel, and usually monitor only one type of land use and an associated land management (eg. whether or not to harvest crop residues, intercropping, etc.). Thus, there is room to improve the assessment of the Sahelian anthropogenic contribution to the global dust load, especially through a regional modelling approach relying on field measurements.

In this study, we combined in situ measurements from Sahelian Senegal with a modelling approach to estimate the effect of the main Sahelian land uses on wind erosion. Furthermore, we monitored contrasting land management per land use, representative of the last decades (1960-2020). Here we present the results for one groundnut field over two years (2020-2021), four different fallowed fields over one year (2022/2023), four millet fields over one year (2023/2024). All 1ha-plots were located near the town of Bambey in central Senegal (Groundnut Basin). The observations included sand-traps monitoring (for each 1ha-plot, 5 masts of 5 « Modified Wilson And Cooke » or MWAC sand traps each; collected every 2 weeks), meteorological data (e.g., wind and temperature profiles, and rainfall; at 5-minutes resolution) and vegetation monitoring (aboveground biomass, surface cover, height; weekly to monthly).

For each land use and land management, we estimated the aerodynamic surface roughness length and the wind friction velocity to simulate the horizontal flux of aeolian sediments using a dedicated model (the Dust Production Model – DPM). We then combined the wind erosion model (DPM) with vegetation models (STEP for fallows and STICS for crops) to simulate the vegetation growth and the associated horizontal flux of aeolian sediment. These simulations are compared to the in situ monitoring from the sand traps. Finally, we used ERA5 meteorological time series from the ECMWF to simulate the horizontal flux for the 1960–2020 period over a typical plot from the study area, for different realistic scenarios of land uses and land management.

Our study revealed the variability of wind erosion horizontal flux for the main Sahelian land use types (400 kg/m/yr for bare soil, 200 kg/m/yr for cropland, less than 10kg/m/yr for fallows), as well as slighter differences related to land management for a same land use. These results help to understand the link between wind erosion and agropastoral practices in Sahelian conditions over multi-decadal periods of time.

How to cite: Raynal, P.-A., Pierre, C., Marticorena, B., Rajot, J.-L., Tall, A., Faye, I., Fall, D. C., Amar, B., Couedel, A., Falconnier, G., Civil, J.-A., Roupsard, O., and Sow, S.: Wind erosion in Western Sahel : Quantifying the impact of land use and land management, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7871, https://doi.org/10.5194/egusphere-egu24-7871, 2024.

EGU24-8628 | PICO | AS3.9 | Highlight

Impact of Saharan mineral dust layers on cloud formation and cloud properties 

Silke Gross, Martin Wirth, and Florian Ewald

Mineral dust contributes strongly to the global aerosol load. The largest source region of mineral dust is the Sahara. But mineral dust cannot be treated as a regional phenomenon. Once lifted in the air, it can be transported thousands of kilometers over several days. The main transport pathway spans over the Atlantic Ocean from Africa towards the Caribbean; with its peak season during the summer months. But transatlantic dust transport can also happen during wintertime, however with less frequency. In addition, the dust particles can be transported northward over the Mediterranean and Europe. In rare events, it can even reach the Arctic region. All the way during transport the dust layer has an impact on the Earth’s radiation budget, by direct interaction with the incoming and outgoing radiation by scattering and absorption, and by indirect interaction as dust can impact cloud formation and cloud properties.

To study long-range transported Saharan dust as well as the dust’s impact on cloud formation and properties, airborne lidar measurements with the WALES lidar system onboard the German research aircraft HALO have been performed over the western sub-tropical North-Atlantic Ocean during NARVAL-II in August 2016 and EUREC4A in January/February 2020. We observed dust transport during the summertime in the clearly separated and well-defined Saharan Air Layer (SAL) as well as during wintertime, when dust transport happens at lower altitudes and the SAL is less separated. In addition, we were also able to capture an event of dust long-range transport into the Arctic during the HALO-(AC)3 campaign in spring 2022. From our measurements we could show, that small amount of water vapor embedded in the SAL has a strong impact on the atmospheric stability and thus also impacts the formation and properties of clouds during long-range transport. Additionally, dust particles are known to act as ice nuclei and with that lead to ice formation at different environmental conditions, changing the ice cloud’s microphysical properties.

In our presentation we will give an overview of the performed WALES measurements. We use these measurements to study dust long-range transport and its impact on the atmospheric stability, cloud formation and cloud properties.

How to cite: Gross, S., Wirth, M., and Ewald, F.: Impact of Saharan mineral dust layers on cloud formation and cloud properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8628, https://doi.org/10.5194/egusphere-egu24-8628, 2024.

EGU24-8749 | ECS | PICO | AS3.9

Influence of aerosol deposition on snowpack evolution in simulations with the ORCHIDEE land surface model  

Sujith Krishnakumar, Samuel Albani, Martin Ménégoz, Catherine Ottlé, and Yves Balkanski

Simulating seasonal snow with state-of-the-art global general circulation models (GCMs) is still challenging. Snow provides fresh water to billions of people and plays an important role in the energy budget of the earth through albedo, which affects not only local but also remote and global climate/hydrological patterns. Therefore, changes in snow amount and length of the season are crucial when investigating climate variability.  One key aspect often overlooked in GCMs is the inclusion of Light Absorbing Particles (LAPs) in snow simulations. LAPs dramatically reduce snow albedo, particularly for visible solar radiation, leading to considerable implications for climate modeling. The intention is to lay the foundations for addressing the issues across different climate conditions through simulations, by adding the snow darkening effect to a multilayered intermediate complexity scheme within ORCHIDEE, the land surface model embedded in the IPSL Earth System Model.

LAPs are commonly deposited on the surface of fresh snow and progressively become embedded into deeper layers of the snowpack.  The LAP species taken into account include four log-normal modes of dust, soot, and organic carbons. These tracers allow for the movement of LAPs through different layers of the snowpack, adjusting with snow accumulation or melting. In order to simulate the movement of LAPs, ORCHIDEE has been enhanced with a tracer flow mechanism that carry LAPs from the top snow layer following deposition and move through various layers as snow thickens or flushes with meltwater flow. Our approach to snow albedo deviates from the default method in ORCHIDEE as a function of snow aging through an exponential decay function with dependence on the degree of water saturation and the occurrence of fresh snow deposition. Instead, it integrates the Warren and Wiscombe snow radiative transfer scheme with Kokhanovsky's single scatter properties of snow crystals and the optical properties of LAPs to compute the albedo of impure snow. This study conducted site-level offline ORCHIDEE simulations using observed atmospheric conditions and MERRA2 aerosol deposition data. The integration of LAPs and related processes has led to improved simulations of seasonal snow, achieving more realistic representations of snow albedo compared to pure snow. Our results also show that LAPs play an important role in determining the local snow season length.

How to cite: Krishnakumar, S., Albani, S., Ménégoz, M., Ottlé, C., and Balkanski, Y.: Influence of aerosol deposition on snowpack evolution in simulations with the ORCHIDEE land surface model , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8749, https://doi.org/10.5194/egusphere-egu24-8749, 2024.

EGU24-8796 | PICO | AS3.9 | Highlight

Potential environmental impacts of natural and mining related dust in Greenland and Svalbard 

Jens Søndergaard, Christian Frigaard Rasmussen, Hanne Hvidtfeldt Christiansen, and Christian Juncher Jørgensen

Dispersion and deposition of mineral dust from natural or anthropogenic sources such as proglacial rivers, mines and haul roads can have both positive and negative effects on the environment, depending on the geochemical and mineralogical composition of the dust. Some elements in dust may act as nutrients for, for example, plants, lichens and soil communities, while other elements may act as pollutants with negative impacts on growth or reproduction or cause diseases in animals and plants.

To support the sustainable development of environmentally safe mining in sensitive Arctic land areas and reduce airborne environmental pollution, an improved understanding of processes leading to the dispersion of mineral dust in a changing Arctic is needed. This involves improved methods for monitoring dust emissions and dust deposition in a cold environment as well as analytical tools and methods to source trace and differentiate between natural and mining related dust. Accurate identification of individual dust sources subsequently makes it possible to mitigate emissions and target the regulation of mining activities towards these sources.

In this study, we present preliminary results from two new arctic dust monitoring stations in West Greenland and Svalbard. In Kangerlussuaq, West Greenland, mineral dust has been collected using a wide array of passive and active dust samplers, including a continuously operated high volume dust sampler at a weekly sampling frequency over 2022/2023. In Svalbard, mineral dust has been collected in Adventdalen using passive dust collectors in a transect along the haul road to the active coal mines. Samples have been collected on a weekly sampling frequency in the period September to November 2023 to investigate the temporal and spatial variations in dust deposition rates, as well as the impact of haul road traffic relative to the natural dust emissions and depositions.

How to cite: Søndergaard, J., Frigaard Rasmussen, C., Hvidtfeldt Christiansen, H., and Juncher Jørgensen, C.: Potential environmental impacts of natural and mining related dust in Greenland and Svalbard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8796, https://doi.org/10.5194/egusphere-egu24-8796, 2024.

EGU24-9570 | ECS | PICO | AS3.9

On the importance of Mongolian cyclones to East Asian dust storm activities 

Feifei Mu and Stephanie Fiedler

Desert-dust aerosols affect the climate, human health, and socio-ecomomic activities. In East Asia, the passage of Mongolian cyclones induce dust-emitting winds in the Gobi Desert. While cyclones are known as driver of dust outbreaks, the relative contribution of Mongolian cyclones to the total East Asian dust emission amount and the dust aerosol optical depth has not been quantified from a climatological perspective. To address this gap in knowledge, the present study systematically assesses the co-occurrence of Mongolian cyclones and dust aerosols in East Asia for 2001 to 2022. This study pairs output of the automated detection algorithm for extra-tropical cyclones in ERA5 re-analysis from the ETH Zürich with data for dust aerosols from multiple sources. Through the use of multiple dust data sets, we account for the substantial data uncertainty for dust aerosols in term of the spatial pattern and the absolute emission magnitudes, which can differ by an order of magnitude. The climatological analysis shows a high frequency and intensity for the occurrence of Mongolian cyclones in the lee of the Altai-Sayan Mountains (100Eo–125Eo and 37No–53No), favouring the seasonal dust activity in the Gobi Desert. The results highlight a tight constraint on the mean Mongolian cyclone contribution to the total dust emission amount of 39-47% in the spatial mean for spring based on data from MERRA-2 and Wu et. al. (2022), despite substantial differences in the absolute emission magnitudes. The dust-laden air from the Gobi Desert during such events typically moves southeastwards over China in the wake of the cyclones affecting the aerosol optical depth. For southern Mongolia and Northeastern China (105Eo–130Eo and 37No–52No), we estimate 34% (MERRA-2) to 43% (CAMS) of the dust aerosol optical depth (DOD) being associated with Mongolian cyclones. A decrease in dust emission fluxes and dust storm frequencies have been reported for Northern China in the past two decades and is thought to be connected to decreasing near-surface winds. Our results point to a negative trend in the dust emission flux and DOD associated with the occurrence of Mongolian cyclones. However, our results also point to the co-occurrence of particularly intense Mongolian cyclones, measured by the 99th percentile of the wind speed, with exceptionally strong dust storms in recent years, e.g., in March 2021, despite a mean negative trend in dust activity. Given the connection of Mongolian cyclone to high-impact dust storms in East Asia, the potential future development of such events should be addressed in future research.

How to cite: Mu, F. and Fiedler, S.: On the importance of Mongolian cyclones to East Asian dust storm activities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9570, https://doi.org/10.5194/egusphere-egu24-9570, 2024.

Water-soluble organic carbon (WSOC) and its brown carbon (BrC) components in the cryosphere have significant impact on the biogeochemistry cycling and snow/ice surface energy balance. In this study, snow samples were collected across regional area of northern Xinjiang, China to investigate the chemical composition, optical properties, and radiative forcing (RF) of WSOC. Based on the geographic differences and proximity of emission sources, the sampling sites were grouped as urban (U), remote (R), and soil-influenced (S) sites, for which WSOC concentrations were measured as 1968±953 ng g-1 (U), 885±328 ng g-1 (R), and 2082±1438 ng g-1 (S), respectively. The S sites showed the higher mass absorption coefficients at 365 nm (MAC365) of 0.94±0.31 m2 g-1 compared to those of U and R sites (0.39±0.11 m2 g-1 and 0.38±0.12 m2 g-1, respectively). Molecular-level characterization of WSOC using high-resolution mass spectrometry (HRMS) provided further insights into chemical differences among samples. Specifically, much more reduced S-containing species with high degree of unsaturation and aromaticity were identified in U samples, suggesting an anthropogenic source. Aliphatic/proteins-like species showed highest contribution in R samples, indicating their biogenic origin. The WSOC components from S samples showed high oxygenation and saturation levels. The WSOC-induced RF were estimated as 0.04 to 0.59 W m-2, which contribute up to 16% of that caused by BC, demonstrating the important influences of WSOC on the snow energy budget. Furthermore, the molecular composition and light-absorbing properties of BrC chromophores were unraveled by application of a high-performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and HRMS. The chromophores were classified into five major types, i.e., (1) phenolic/lignin-derived compounds, (2) flavonoids, (3) nitroaromatics, (4) oxygenated aromatics, and (5) other chromophores. Identified chromophores account for ~23% – 64% of the total light absorption measured by the PDA detector in the wavelengths of 300 – 370 nm. In the representative U and R samples, oxygenated aromatics and nitroaromatics dominate the total absorbance. Phenolic/lignin-derived compounds are the most light-absorbing species in the S sample. Chromophores in two remote samples exhibit ultraviolet-visible features distinct from other samples, which are attributed to flavonoids. Identification of individual chromophores and quantitative analysis of their optical properties are helpful for elucidating the roles of BrC in snow radiative balance and photochemistry.

How to cite: Zhou, Y., Wang, X., and Laskin, A.: Molecular composition, optical properties, and radiative forcing of water-soluble brown carbon in seasonal snow samples from northern Xinjiang, China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9995, https://doi.org/10.5194/egusphere-egu24-9995, 2024.

EGU24-10547 | ECS | PICO | AS3.9

Development of a dusty cirrus calendar based on satellite data 

Samaneh Moradikian, Sanaz Moghim, and Gholam Ali Hoshyaripour

Mineral dust particles have the potential to serve as natural nuclei for cirrus cloud formation in the upper troposphere. Several studies demonstrate that dust aerosol plays a pivotal role in initiating cirrus clouds and forming extended optically thick cirrocumulus decks known as “dusty cirrus”. Despite this, our ability to accurately identify and predict these climatically significant clouds is still limited. In this work, we propose an algorithm to identify dusty cirrus clouds based on satellite data over the Aral Sea region between 2006 and 2021. The algorithm uses the CALIOP Vertical Feature Mask (VFM) to verify the coexistence of dust particles and cirrus clouds and determine the occurrence of dusty-cirrus. To enhance the accuracy of the algorithm, temperature obtained from an external source (the GEOS-5 data product supplied to CALIPSO) is also incorporated as a constraint for cirrus cloud identification. A random selection of identified dusty cirrus events (5% of the data, 90 events) is cross-validated against other data sources including cloud top temperature (MODIS), cloud top height (MODIS), and AOD (MODIS and VIIRS). The cross-validation confirms approximately 97% of the events to be associated with dusty-cirrus. This confirms that the developed algorithm can be used for developing a dusty cirrus calendar using available CALIOP data. This calendar reveals different facts about the dusty-cirrus occurrence in the study area. Out of the 4407 available samples, 2709 cirrus cloud events are identified, with approximately 65% (1790 events) of them being associated with dusty cirrus. The average values obtained for summer, fall, winter, and spring are 54%, 63%, 66% and 75%, respectively. Annual and seasonal trend analysis reveals different increasing rates for this region. Despite the important uncertainties, our analysis and results suggest that the proposed algorithm can be used for first-order identification and statistical analysis of dusty cirrus.

How to cite: Moradikian, S., Moghim, S., and Hoshyaripour, G. A.: Development of a dusty cirrus calendar based on satellite data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10547, https://doi.org/10.5194/egusphere-egu24-10547, 2024.

EGU24-11462 | ECS | PICO | AS3.9

Seasonal effects of wind-blown dust emissions on size-resolved aerosol acidity over the U.S 

Stylianos Kakavas, Evangelia Siouti, Athanasios Nenes, and Spyros Pandis

Wind-blown dust emitted by the Earth’s surface is one of the major sources of dust emissions especially in non-vegetated areas like deserts and can affect both climate and human health. Acidity is an important property of atmospheric aerosols impacting a series of related processes and can be affected by these emissions of alkaline dust. In this work, we use a wind-blown dust emissions model to quantify the wind-blown dust emissions over the continental United States during February and July 2017. The modeling domain covers a region of 4752 × 2952 km2 including northern Mexico and southern Canada with a horizontal grid resolution of 36 × 36 km. Then, the hybrid version of aerosol dynamics in PMCAMx (Particulate Matter Comprehensive Air-quality Model with Extensions) chemical transport model is used to simulate size-resolved aerosol acidity. In this version of PMCAMx for fine (PM1) particles, bulk equilibrium is assumed, while for larger particles a dynamic model is used to simulate the mass transfer to each size section. Two cases of simulations are performed. The first is the base case simulation and includes the wind-blown dust emissions for both months. The second one neglects these emissions in order to study their effects on aerosol acidity during a wintertime and a summertime period as a function of particle size and altitude.

How to cite: Kakavas, S., Siouti, E., Nenes, A., and Pandis, S.: Seasonal effects of wind-blown dust emissions on size-resolved aerosol acidity over the U.S, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11462, https://doi.org/10.5194/egusphere-egu24-11462, 2024.

EGU24-11544 | ECS | PICO | AS3.9

Abundance of giant mineral dust particles: Insights from measured emitted dust size distributions during the J-WADI campaign 

Hannah Meyer, Andres Alastuey, Sylvain Dupont, Vicken Etyemezian, Jessica Girdwood, Cristina González-Flórez, Adolfo González-Romero, Tareq Hussein, Mark Irvine, Konrad Kandler, Peter Knippertz, Ottmar Möhler, George Nikolich, Xavier Querol, Chris Stopford, Franziska Vogel, Frederik Weis, Andreas Wieser, Carlos Pérez García-Pando, and Martina Klose

Gaining a precise understanding of the particle size distribution (PSD) of mineral dust at emission is critical to assess its climate impacts. Despite its importance, comprehensive measurements at dust sources remain scarce and usually neglect part of the super-coarse (particle diameter d between 10 and 62.5 μm) and the entire giant (d > 62.5 μm) particle size ranges. Measurements in those size ranges are particularly challenging due to expected relatively low number concentrations and low sampling efficiencies of instrument inlets.

This study aims to better constrain the abundance of super-coarse and giant dust at emission as part of the Jordan Wind erosion And Dust Investigation (J-WADI, https://www.imk-tro.kit.edu/11800.php) field campaign conducted north of Wadi Rum in Jordan in September 2022. The goal of J-WADI is to improve our fundamental understanding of the emission of desert dust, in particular its full-range size distribution and mineralogical composition.

To capture the dust PSD across the entire size spectrum, we deployed multiple aerosol spectrometers, including active, passive, and open-path devices, such that in combination, a size range from approximately 0.4 to 200 μm was covered. Here we investigate the variability of the PSD in the super-coarse and giant ranges from observed dust events, address instrumental uncertainties and the impact of different inlets on the resulting PSDs. Our preliminary results reveal a mass concentration peak at around 30 μm, potentially limited toward larger sizes by substantially reduced inlet efficiencies. Giant dust particles were generally detected during active dust emission starting from friction velocities larger than around 0.2 m s-1.

Based on our results, we will investigate the mechanisms facilitating super-coarse and giant dust particle emission and transport. Quantifying the conditions for and the amount of super-coarse and giant dust at emission will lay the foundation to incorporate its impacts in weather and climate models.

How to cite: Meyer, H., Alastuey, A., Dupont, S., Etyemezian, V., Girdwood, J., González-Flórez, C., González-Romero, A., Hussein, T., Irvine, M., Kandler, K., Knippertz, P., Möhler, O., Nikolich, G., Querol, X., Stopford, C., Vogel, F., Weis, F., Wieser, A., Pérez García-Pando, C., and Klose, M.: Abundance of giant mineral dust particles: Insights from measured emitted dust size distributions during the J-WADI campaign, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11544, https://doi.org/10.5194/egusphere-egu24-11544, 2024.

EGU24-12203 | ECS | PICO | AS3.9

Black Carbon and Dust in the snow of Chilean Central Andes: From albedo reductions to radiative forcing 

Maria Florencia Ruggeri, Ximena Fadic, Gonzalo Barcaza, and Francisco Cereceda-Balic

The cryosphere, a vital component of the Earth's climate system, holds substantial importance in both the hydrological cycle and the energy balance. Current apprehension turns around alterations in the cryosphere linked to the reduction in Surface Snow Albedo (SSA).

The decrease in SSA is primarily attributed to the presence of light-absorbing particles (LAPs) and the growth of snow grain size (SGS). The quantitative assessment of these SSA reductions' climatic impact is reflected through their Radiative Forcing (RF), indicating the change they induce in the net radiative flux at the tropopause or the top of the atmosphere. LAPs, mainly composed of Black Carbon (BC) and Mineral Dust (MD), contribute to albedo reduction at visible wavelengths. BC originates from the incomplete combustion of fossil fuels and biomass, while MD primarily emanates from arid and semi-arid regions with low vegetation cover. Precise RF calculations resulting from SSA reductions gain significance, particularly in regions where snow cover governs freshwater availability. Chile exemplifies such a concern, possessing the largest portion of the Andean cryosphere, highly responsive to climate change. This has significant implications for water resources, impacting freshwater availability for Chile's residents and key economic activities.

To quantify the Radiative Forcing RF generated by LAPs in the Chilean Central Andes, snow samples were collected at Portillo, from 2017 to 2022. NUNATAK-1 is a portable, flexible, collaborative scientific platform belonging to the Centre for Environmental Technologies (CETAM-UTFSM), specially designed for research campaigns under extreme conditions, equipped with different automatic and real-time monitoring instruments to measure meteorology, net albedo, solar radiation, gases and aerosols, among others. The samples underwent analysis to determine BC and MD concentrations, following the methodologies outlined in Cereceda-Balic et al. (2022). Snow albedo was modeled using the SNow, ICe, and Aerosol Radiation (SNICAR). Evaluating the singular and combined effects of LAPs, snow albedo was simulated for four scenarios: clean snow (without LAPs), BC only, dust only, and BC + dust. RF represents the variance in absorption between LAP-influenced scenarios and clean snow. For RF calculation, measured solar irradiance specific to each sampling date at the designated site was used. BC concentrations ranged from 2.6 to 717.2 ng g-1, while MD concentrations varied between 1.6 and 181.3 mg kg-1, leading to SSA reductions of up to 21% relative to clean snow. Notably, it was observed that the absorption produced by BC and MD could be comparable, underscoring the significant role of MD in this semiarid location. Moreover, even with relatively moderate or low LAP concentrations in the snow, substantial RF values are generated, emphasizing the heightened climatic influence of LAPs in the region.

Acknowledgments: ANID-Fondecyt Projects 11220525 and 1221526, ANID ANILLO ACT210021, FOVI 230167.

How to cite: Ruggeri, M. F., Fadic, X., Barcaza, G., and Cereceda-Balic, F.: Black Carbon and Dust in the snow of Chilean Central Andes: From albedo reductions to radiative forcing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12203, https://doi.org/10.5194/egusphere-egu24-12203, 2024.

EGU24-12289 | ECS | PICO | AS3.9

Image-based nowcasting of dust storms by predicting SEVIRI desert dust RGB composites 

Kilian Hermes, John Marsham, Martina Klose, Franco Marenco, Melissa Brooks, and Massimo Bollasina

Dust storms are frequent high-impact weather phenomena that directly impact human life, e.g., by disrupting land and air traffic, posing health threats, and affecting energy delivery from solar-energy systems. Timely and precise prediction of these phenomena is crucial to mitigate negative impacts.

Currently operational numerical weather prediction (NWP) models struggle to reliably reproduce or resolve dynamics which lead to the formation of convective dust storms, making short-term forecasts based on observations (“nowcasts”) particularly valuable. Nowcasting can provide greater skill than NWP on short time-scales, can be frequently updated, and has the potential to predict phenomena that currently operational NWP models do not reproduce.  However, despite routine high frequency and high resolution observations from satellites, as of January 2024, no nowcast of dust storms is available.

In this study, we present an image-based nowcasting approach for dust storms using the SEVIRI desert dust RGB composite. We create nowcasts of this RGB composite for a large domain over North Africa by adapting established optical-flow-based methods as well as a machine learning approach based on a U-net. We show that our nowcasts can predict phenomena such as convectively generated dust storms (“haboobs”) which currently operational NWP may not reliably reproduce. Furthermore, we show that a machine learning model offers crucial advantages over optical-flow-based nowcasting tools for the application of predicting complete RGB images.

Our approach therefore provides a valuable tool that could be used in operational forecasting to improve the prediction of dust storms, and indeed other weather events. Due to the technical similarity of RGB composite imagery from geostationary satellites, this approach could also be adapted to nowcast other RGB composites, such as those for ash, or convective storms.

How to cite: Hermes, K., Marsham, J., Klose, M., Marenco, F., Brooks, M., and Bollasina, M.: Image-based nowcasting of dust storms by predicting SEVIRI desert dust RGB composites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12289, https://doi.org/10.5194/egusphere-egu24-12289, 2024.

Two billion tons of dust are annually transported in our atmosphere all around the world. High latitudes include active desert regions with at least 5 % production of the global atmospheric dust. Active High Latitude Dust (HLD) sources cover > 1,600,000 km2 and are located in both the Northern (Iceland, Alaska, Canada, Greenland, Svalbard, North Eurasia, and Scandinavia) and Southern (Antarctica, Patagonia, New Zealand) Hemispheres. Recent studies have shown that HLD travels several thousands of km inside the Arctic and > 3,500 km towards Europe. In Polar Regions, HLD was recognized as an important climate driver in the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate in 2019. In situ HLD measurements are sparse, but there is increasing number of research groups investigating HLD and its impacts on climate in terms of effects on cryosphere, cloud properties and marine environment.

Long-term dust in situ measurements conducted in Arctic deserts of Iceland and Antarctic deserts of Eastern Antarctic Peninsula in 2018-2023 revealed some of the most severe dust storms in terms of particulate matter (PM) concentrations. While one-minute PM10 concentrations is Iceland exceeded 50,000 ugm-3, hourly PM10 means in James Ross Island, Antarctica exceeded 300 ugm-3 in 2021-22. The largest HLD field campaign was organized in Iceland in 2021 where 11 international institutions with > 70 instruments and 12 m tower conducted dust measurements (Barcelona Supercomputing Centre, Darmstadt, Berlin and Karlsruhe Universities, NASA, Czech University of Life sciences, Agricultural University of Iceland etc.). Additionally, examples of aerosol measurements from Svalbard and Greenland will be shown. There are newly two online models (DREAM, SILAM) providing daily operational dust forecasts of HLD. DREAM is first operational dust forecast for Icelandic dust available at the World Meteorological Organization Sand/Dust Storm Warning Advisory and Assessment System (WMO SDS-WAS). SILAM from the Finnish Meteorological Institute provides HLD forecast for both circumpolar regions. 

Icelandic dust has impacts on atmosphere, cryosphere, marine and terrestrial environments. It decreases albedo of both glacial ice/snow similarly as Black Carbon,  as well as albedo of mixed phase clouds via reduction in supercooled water content. There is also an evidence that volcanic dust particles scavenge efficiently SO2 and NO2 to form sulphites/sulfates and nitrous acid. High concentrations of volcanic dust and Eyjafjallajokull ash were associated with up to 20% decline in ozone concentrations in 2010. In marine environment, Icelandic dust with high total Fe content (10-13 wt%) and the initial Fe solubility of 0.08-0.6%, can impact primary productivity and nitrogen fixation in the N Atlantic Ocean, leading to additional carbon uptake.

Sand and dust storms, including HLD, were identified as a hazard that affects 11 of the 17 Sustainable Development Goals. HLD research community is growing and Icelandic Aerosol and Dust Association (IceDust) has > 110 members from 57 institutions in 22 countries (https://icedustblog.wordpress.com, including references to this abstract). IceDust became new member aerosol association of the European Aerosol Assembly in 2022. New UArctic Thematic Network on HLD was established in 2023.   

How to cite: Dagsson Waldhauserova, P., Meinander, O., and members, I.: High Latitude Dust (HLD) measurements in Iceland, Antarctica, Svalbard, and Greenland, including HLD impacts on climate and HLD networking, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13103, https://doi.org/10.5194/egusphere-egu24-13103, 2024.

EGU24-13462 | ECS | PICO | AS3.9

Local anthropogenic factors contributing to constrasting glacier response in two mountain glaciers, located in Central Andes, Chile 

Felipe McCracken, María Florencia Ruggeri, Gonzalo Barcaza, Ximena Fadic, and Francisco Cereceda-Balic

Contrasting behaviour of neighbouring mountain glaciers, sharing similar mass balance gradients, have been observed, suggesting the influence of local anthropogenic factors altering the surface energy balance and then explaining larger down-wasting trends in glacier response. It is in this context that for this work the comparison of two contrasting glaciers was used to analyze these differences: considering the Paloma Norte Glacier (PNG), exposed to anthropogenic emissions from local mining activities, and the Yeso Glacier (YG), isolated of these sources. The objective of this research is to combine the remote analysis of light-absorbing particles, such as Black Carbon (BC), Organic Carbon (OC), as well as the estimation of area and albedo, together with the analysis of local climatic trends of each glacier according gridded data, in order to evaluate their differences and the influence of each of these parameters on the surface variation of each glacier.

We determined glacier shrinkage, interannual albedo reduction and black carbon estimates using satellite images over the last 22 years for the Paloma Norte and Yeso glaciers. The results show that in the range 2000-2022, the GPN experienced a 27.11% greater surface loss than the GY, 83.49% higher albedo change rates, and almost 23 times higher BC+OC concentrations compared to the GY. Furthermore, the multivariate regression analysis identified that the most influential parameters was BC-OC, which is consistent with the disparities in glacial retreat observed in this period.

These results are part of an ongoing research, where, in addition, it is intended to contrast these values with measured data at ground stations, where we will use the data from NUNATAK-1 (-32,844, -70,129) and 2 (- 33,665, -70,086) refuge laboratories in the Central Andes. NUNATAK-1 is a portable, flexible, collaborative scientific platform belonging to CETAM, specially designed for research campaigns under extreme conditions equipped with different automatic and real-time monitoring instruments to measure meteorology, net albedo, solar radiation, gases and aerosols, among others. Which are parameters that will also be used to compare with glacial ablation and radiative transfer models, to evaluate the scenarios of albedo change under a pristine environment and another under the scenario of aerosol deposition on the surfaces of the glaciers of interest. All the above mentioned is being carried out to determine to whether these differences are purely due to the orientation of each glacier or the local anthropogenic influence to which they are exposed, and thus decouple the natural effect of climate change from the local anthropogenic effect.

In summary, the results of this work will aim to guide decision-makers, to guarantee greater protection and awareness of the effects that local emissions may (or may not) have on the conservation of these important reservoirs of drinking water, which will allow for a decoupling of the influence and/or impact of local anthropogenic activity from the natural effect of climate change.

Acknowledgments: This research has been carried out with the financial support of CETAM-UTFSM, and the ANID projects: Fondecyt Initiation 11220525, Fondecyt Regular N° 1221526, ANID Anillo ACONCAGUA Project N°ACT210021 and FOVI230167.

How to cite: McCracken, F., Ruggeri, M. F., Barcaza, G., Fadic, X., and Cereceda-Balic, F.: Local anthropogenic factors contributing to constrasting glacier response in two mountain glaciers, located in Central Andes, Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13462, https://doi.org/10.5194/egusphere-egu24-13462, 2024.

EGU24-14539 | ECS | PICO | AS3.9

Exploring the effects of mineral dust acidification on oxidative potential and limiting nutrient solubility 

Andrea Baccarini, Carolina Molina, Christos Kaltsonoudis, Katerina Seitanide, Maria Georgopoulou, Ali Waseem, Georgia Argyropoulou, Adolfo Gonzalez-Romero, Xavier Querol, Carlos Pérez García-Pando, Dimitrios Papoulis, Satoshi Takahama, Kalliopi Violaki, Spyros N. Pandis, and Athanasios Nenes

Mineral dust aerosol particles are ubiquitous in the atmosphere; they contribute to more than half of the total atmospheric aerosol burden and have far-reaching impacts on biogeochemical cycles, air quality and Earth’s radiative budget. Much of the impact of dust is linked to its mild alkalinity and metal content, which directly influence atmospheric reactivity. However, metals and other trace nutrients (TN), such as phosphorous, are largely insoluble in freshly emitted dust and exhibit limited bioavailability for ecosystems upon deposition. The same metals can induce considerable oxidative stress upon inhalation, but mostly if in soluble form. Previous studies have found that atmospheric processing and, in particular, acidification of dust (caused by reactions with sulfuric, nitric, hydrochloric and organic acids) can promote TN solubility and increase the adverse health effects of population exposure to dust. Atmospheric processing also influences dust hygroscopicity and cloud-forming ability, directly affecting Earth’s radiative budget and deposition patterns.

Previous experiments investigating the effect of atmospheric processing on mineral dust properties were mainly conducted in bulk materials and samples. The dissolution kinetics of metals and TN remains poorly constrained under real atmospheric conditions. To address this issue, we have developed an atmospheric simulation chamber facility where mineral dust particles from a wide range of soils can be generated and aged by any mechanisms relevant to the atmosphere (e.g., acidification through photooxidation and/or nocturnal chemistry).

This study provides a detailed characterization of the chamber facility and explores how acidification alters the properties of mineral dust. In particular, we examine the effect of nitrate and sulfate aging on the solubility of TN and the oxidative potential (measured with a DTT assay) of the dust, under atmospherically relevant conditions. We conclude by relating these findings to field observations and discussing the implications for biogeochemical cycles and air quality.

How to cite: Baccarini, A., Molina, C., Kaltsonoudis, C., Seitanide, K., Georgopoulou, M., Waseem, A., Argyropoulou, G., Gonzalez-Romero, A., Querol, X., Pérez García-Pando, C., Papoulis, D., Takahama, S., Violaki, K., N. Pandis, S., and Nenes, A.: Exploring the effects of mineral dust acidification on oxidative potential and limiting nutrient solubility, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14539, https://doi.org/10.5194/egusphere-egu24-14539, 2024.

EGU24-16299 | PICO | AS3.9 | Highlight

Diverse and high pollution of microplastics in seasonal snow across Northeastern China 

Xin Wang and Hanxuan Wen

Snow scavenging is recognized as one of the major sinks for atmospheric microplastics (MPs). However, little is known about the properties of MPs in large-scale surface snow. Using Nile Red staining and micro-Fourier transform infrared spectroscopy, we identified the shapes, sizes, and polymer components of MPs in seasonal snow across northeastern (NE) China, a major industrial area. The average concentration of MPs was (4.52 ± 3.05) × 104 MPs L−1 , and the highest contamination (6.65 ± 3.89) × 104 MPs L−1 was observed in Changbai Mountains, which was the highest concentration observed in surface snow to the extent of literature. The majority of snow MPs were smaller than 50 μm and composed primarily of fragments. Ethylene vinyl acetate and polyethylene were the dominant contributors to their chemical components. Investigation with positive matrix factorization revealed that the MPs were primarily generated by debris from packaging materials, followed by industrial and construction activities. In addition, the winter atmospheric circulation over the northwestern Siberian and Mongolian plateaus likely dominated the wide-range dispersion and deposition of the MPs across NE China. These results provide a first comprehensive perspective of MPs from sources to removal associated with snow in a large geographic region.

How to cite: Wang, X. and Wen, H.: Diverse and high pollution of microplastics in seasonal snow across Northeastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16299, https://doi.org/10.5194/egusphere-egu24-16299, 2024.

EGU24-16833 | ECS | PICO | AS3.9

Cumulative and relative impact of aerosol species on snowmelt runoff from the Hindu Kush Himalayan glaciers 

Sauvik Santra, Shubha Verma, and Shubham Patel

Himalayan glaciers are a significant contributor to the global supply of snowmelt water and serve as the primary source for major rivers in South Asia. In this study, we have evaluated the effect of aerosol species on glaciers in the Hindu Kush Himalayan (HKH) region and identified the glaciers most affected, as well as the relative and cumulative impact of different aerosol species, including black carbon (BC). We estimate the surface concentration of organic carbon (OC), sulfate (Sul), and dust aerosols in the HKH region. We also measured the concentration of these aerosol species in the snow of nine glaciers and investigated their influence on annual glacier runoff. Furthermore, we identified the source regions and sectors that are responsible for aerosol loading in the region. In this study, we combined free-running (freesimu) and constrained (constrsimu) aerosol simulations with an atmospheric general circulation model, an aerosol-snow radiative interaction model, and a novel hypsometric glacier energy mass balance model. The freesimu estimates of aerosol species concentrations were more accurate at high-altitude (HA) stations than at low-altitude (LA) stations. However, the constrsimu estimates performed significantly better at LA stations. A hotspot location of high concentration of aerosol species was identified near Manora Peak, located almost at a central location in the HKH region. Although the concentration of other aerosol species was 2 to 5 times higher than BC (< 70 μg kg-1), they caused significantly less reduction in snow albedo than BC over the HKH glaciers. The cumulative snow albedo reduction (SAR) due to all aerosol species, including BC, was estimated to be as much as 7 to 8% over the Gangotri and Chorabari glaciers, with Gangotri being one of the most important glaciers responsible for the formation of the Ganges River. The Pindari glacier was found to have the highest annual runoff increase (ARI) of all glaciers studied despite having a lower aerosol-induced SAR than the Gangotri and Chorabari glaciers. Five of the nine glaciers (Pindari, Sankalpa, Milam, Gangotri, and Chorabari) had ARI higher than 300 mm w.e. y-1 due to aerosol-induced SAR. Glaciers located in the HKH region were found to be two to three times more sensitive to SAR than cold Tibetan glaciers. This, combined with the recent increase in temperature due to global warming, paints a worrying picture for the future. Analysis of the fractional contribution of aerosol species revealed that BC aerosols, although having a less than 15% contribution to the total aerosol loading, contribute 55 to 70% of total aerosol-induced ARI, followed by dust (20 to 30\%), Sul and OC aerosols respectively. Analysis of region- and source-tagged simulation data revealed that the main sources of OC and Sul aerosols south of 30°N were biomass burning and open burning (for OC), and fossil fuel burning (for Sul) from the nearby Indo-Gangetic plain. For regions located north of 30°N and for dust aerosols, the main contributor was identified as long-range intercontinental transport from far-off regions of Africa and West Asia.

How to cite: Santra, S., Verma, S., and Patel, S.: Cumulative and relative impact of aerosol species on snowmelt runoff from the Hindu Kush Himalayan glaciers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16833, https://doi.org/10.5194/egusphere-egu24-16833, 2024.

EGU24-16834 | ECS | PICO | AS3.9

Characterisation of algal blooms on seasonal snowfields through a combination of field spectrometry, drone imagery and radiative transfer modeling at Hardangerjøkulen (Hardanger glacier), Southern Norway 

Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Alexandre M. Anesio, Liane G. Benning, and Martyn Tranter

Pigmented microalgae bloom on glaciers and snowfields worldwide, contributing to carbon storage and enhanced surface melt through surface darkening. The darkening impact of snow algal blooms is being increasingly studied on terrestrial glaciers and ice sheets but less attention has been given to seasonal snowfields, despite their ecological and climatic relevance. Algal blooms are typically widespread but heterogeneously distributed and therefore high resolution airborne observations provide important insights to better understand the spatial patterns and impact of the blooms. Here, we present 130 field spectra colocated with low-cost and light-weight drone imagery acquired over 6 different snowfields in July and August 2023 around Hardangerjøkulen (Hardanger glacier), Southern Norway. We combine these high-resolution measurements with radiative transfer modeling to provide estimates of abundance, carbon storage and albedo impact of snow algal blooms on seasonal snowfields.

How to cite: Chevrollier, L.-A., Wehrlé, A., M. Cook, J., M. Anesio, A., G. Benning, L., and Tranter, M.: Characterisation of algal blooms on seasonal snowfields through a combination of field spectrometry, drone imagery and radiative transfer modeling at Hardangerjøkulen (Hardanger glacier), Southern Norway, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16834, https://doi.org/10.5194/egusphere-egu24-16834, 2024.

EGU24-17044 | PICO | AS3.9

Inaugural dust and climate model simulations with the new EMIT global mineral abundance maps 

María Gonçalves Ageitos and the EMIT team

Minerals in dust shape the interaction of this ubiquitous aerosol with relevant components of the Earth system. Iron oxides absorb short-wave radiation, while quartz or k-feldspars act as efficient ice nuclei, contributing to the formation of mixed-phase clouds. In addition, iron and phosphorus containing minerals transport nutrients to terrestrial and marine ecosystems. Other minerals, like calcite, affect aerosols’ pH and intervene in atmospheric chemistry processes. Incorporating these complex effects into Earth System Models (ESM) has proven challenging due to our limited knowledge about the mineralogy of dust sources and its particle size distribution at emission.

The ongoing NASA Earth Surface Mineral Dust Source investigation (EMIT) project has produced a first version of a global mineral abundance map at an unprecedented resolution based on spaceborne imaging spectroscopy observations from the International Space Station. Using this new product, we have conducted multi-annual simulations with several ESMs that explicitly represent dust mineralogy. Our study characterizes the relevance of the new map in the ESM results by comparison with our previous baseline simulations. We conduct a thorough evaluation against a global mineral fraction compilation derived from concentration and deposition measurements. Our results are also compared against single scattering albedo (SSA) retrievals from dusty AERONET sites. Our focus is primarily iron oxides, hematite and goethite, which, together with particle size, control the dust SSA in the short-wave.

By providing a first set of simulations with the new EMIT mineral abundance maps and their evaluation, our work contributes to advancing the representation of this key aerosol within ESMs and to further assessing its significance within the global climate system.

How to cite: Gonçalves Ageitos, M. and the EMIT team: Inaugural dust and climate model simulations with the new EMIT global mineral abundance maps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17044, https://doi.org/10.5194/egusphere-egu24-17044, 2024.

EGU24-17082 | PICO | AS3.9

Underestimation of desert dust ingested by aircraft from the CAMS reanalysis compared to CALIOP retrievals 

Claire Ryder, Clement Bezier, Helen Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Remy, and Mark Vaughan

Atmospheric mineral dust aerosol constitutes a threat to aircraft engines from deterioration of internal components. Here we fulfil an outstanding need to quantify engine dust ingestion at worldwide airports.  The vertical distribution of dust is of key importance since ascent/descent rates and engine power both vary with altitude and affect dust ingestion. We use representative jet engine power profile information combined with vertically and seasonally varying dust concentrations to calculate the ‘dust dose’ ingested by an engine over a single ascent or descent. Using the Copernicus Atmosphere Monitoring Service (CAMS) model reanalysis, we calculate climatological and seasonal dust dose at 10 airports for 2003-2019. Dust doses are mostly largest in summer for descent, with the largest at Delhi (6.6 g). Beijing’s largest dose occurs in spring (2.9 g). Holding patterns at altitudes coincident with peak dust concentrations can lead to substantial quantities of dust ingestion, resulting in a larger dose than the take-off, climb and taxi phases. We compare dust dose calculated from CAMS to spaceborne lidar observations from two dust datasets derived from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). In general, seasonal and spatial patterns are similar between CAMS and CALIOP though large variations in dose magnitude are found, with CAMS producing lower doses by a mean factor of 2.4±0.5, particularly when peak dust concentration is very close to the surface. We show that mitigating action to reduce engine dust damage could be achieved, firstly by moving arrivals and departures to after sunset and secondly by altering the altitude of the holding pattern away from that of the local dust peak altitude, reducing dust dose by up to 44% or 41% respectively.

How to cite: Ryder, C., Bezier, C., Dacre, H., Clarkson, R., Amiridis, V., Marinou, E., Proestakis, E., Kipling, Z., Benedetti, A., Parrington, M., Remy, S., and Vaughan, M.: Underestimation of desert dust ingested by aircraft from the CAMS reanalysis compared to CALIOP retrievals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17082, https://doi.org/10.5194/egusphere-egu24-17082, 2024.

EGU24-17880 | PICO | AS3.9

Unveiling the provenance of dust in the EPICA Dronning Maud Land Ice Core (Antarctica) throughout the Last Deglaciation (7–27 kyr BP): A Quantitative Record Using a Novel Rare Earth Element Mixing Model 

Steeve Bonneville, Aubry Vanderstraeten, Laruelle Goulven, Sibylle Boxho, Bory Aloys, Gabrielli Paolo, Gili Stefania, and Nadine Mattielli

Antarctic ice cores have provided valuable insights into the intricate interplay between dust and climate dynamics in the Southern Hemisphere. However, until now, a continuous and quantitative record detailing the origin of dust during the last deglaciation is lacking. In this study, we utilized a novel database comprising 207 Rare Earth Element (REE) patterns obtained from dust and fine sediment/soil fractions collected from well-known potential source areas (PSA) in the Southern Hemisphere. By combining this comprehensive dataset of REE patterns, we developed a robust statistical model to best match the REE patterns measured in the Epica Dronning Maud Land (EDML) ice core in East Antarctica. Among the 398 samples analyzed in the EDML core, 386 have been un-mixed with statistical significance. When coupled with data on total atmospheric deposition, our findings enable the first quantification of the dust flux from the various PSA reaching the EDML region between 7,000 and 27,000 years before present (kyr BP). Our results unveil that, despite a substantial decrease in atmospheric deposition at the onset of deglaciation around 18,000 years ago, the dust composition remained relatively uniform throughout the Last Glacial Maximum (LGM, 18-27 kyr BP) and Heinrich Stadial 1 (HS1, between 14.7-18 kyr BP). During this period, approximately 68% of the total dust deposition was coming from Patagonian sources, with the remaining contributions originating from Australia (14-15%), Southern Africa (~9%), New Zealand (~3-4%), and Puna-Altiplano (~2-3%). A significant shift in dust provenance occurred around 14.5 kyr BP, marked by a drop in Patagonian contribution to below 50%, while low-latitude PSAs increased their contributions, accounting for 21-23% from Southern Africa, 13-21% from Australia, and ~4-10% from Puna-Altiplano. We propose that this shift is linked to enduring alterations in the hydrology of Patagonian rivers, including Atlantic-Pacific drainage reversals and the decline of braided planform, along with the sudden submersion of the Patagonian shelf. Indeed, between 15 and 14.0 kyr BP, the PAT shelf surface area was halved and by ∼13 kyr BP, it had shrunk by 70% from to its former maximum glacial expansion, with most of the PAT shelf south of 40°S submerged. The drastic reduction of the area subjected to aeolian deflation coupled with the reduction of fine sediment supply of eastern plains in PAT induced an overall decline in dust emission from Patagonian sources. Our finding emphasizes an important feedback between dust composition in Southern Hemisphere and eustatic sea level during the Last Glacial-Interglacial Transition. The early Holocene dust composition reveals heightened variability, with a prevalent contribution from Patagonia at ~50%. Post 11.5 kyr BP, as Puna-Altiplano experienced persistent aridity, our records demonstrate a noticeable increase in dust contribution. Leveraging a comprehensive coverage of both local and distal PSA, our statistical model, based on REE patterns, provides a straightforward and cost-effective method for tracing dust sources in ice cores.

How to cite: Bonneville, S., Vanderstraeten, A., Goulven, L., Boxho, S., Aloys, B., Paolo, G., Stefania, G., and Mattielli, N.: Unveiling the provenance of dust in the EPICA Dronning Maud Land Ice Core (Antarctica) throughout the Last Deglaciation (7–27 kyr BP): A Quantitative Record Using a Novel Rare Earth Element Mixing Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17880, https://doi.org/10.5194/egusphere-egu24-17880, 2024.

EGU24-17990 | ECS | PICO | AS3.9

Impactor-Based Size Fractionation of Aerosol Particles over the Tropical Atlantic Ocean: Source Identification using Nd, Sr, and Pb Isotopes  

Oriol Teruel-Cabello, Leo Pena, Ester Garcia-Solsona, Eduardo Paredes, Isabel Cacho, Antoni Rosell-Melé, and Joan Villanueva

Airborne mineral dust is a significant constituent of the Earth's climate system that warrants detailed investigation to comprehend its impact on climate processes. This work presents a comprehensive multiproxy approach, utilizing Sr-Nd-Pb isotopes, to discern mineral dust source areas from North Africa, a region contributing approximately 55% of the global annual dust load. Our research not only focuses on identifying provenance but also explores the relationship between climate processes in source areas and aerosol properties at remote locations. We collected samples during three oceanographic campaigns in the tropical Atlantic Ocean conducted in 2020, 2021, and 2022, spanning late winter and entire spring periods. The interannual aspect allows us to capture variations, enhancing our understanding of dust emission and transport dynamics. The implementation of a sampling device that separates aerosol particles of different sizes allows for the detailed isotopic characterization of particles in each size range. Our results indicate the existence of diverse origin and transport patterns depending on the particle size. Differentiation based on particle size uncovers compelling insights into the dynamics of dust dispersion, revealing size-dependent variations in dust behavior. Notably, we observe distinctive pathways for the mass of elements at each size, elucidating the complex interplay between Nd, Sr, and Pb. 

How to cite: Teruel-Cabello, O., Pena, L., Garcia-Solsona, E., Paredes, E., Cacho, I., Rosell-Melé, A., and Villanueva, J.: Impactor-Based Size Fractionation of Aerosol Particles over the Tropical Atlantic Ocean: Source Identification using Nd, Sr, and Pb Isotopes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17990, https://doi.org/10.5194/egusphere-egu24-17990, 2024.

Vegetation fires represent a major, mostly anthropogenically-driven, component of the Earth system that are affecting different landscapes in multiple regions of the globe and are supposed to increase further in number and severity with the ongoing climate change. Measurements and conceptional model studies have already shown that the fire-induced disturbance of the near-surface wind patterns allow for the mobilization of soil dust particles and their injection into the atmosphere through the pyro-convective updrafts related to the fires. However, the dust emission schemes of the current generation of aerosol-climate models do not consider this fire-related emission pathway and focus on wind-driven dust emissions of mostly unvegetated landscapes such as deserts only. This can result in an underrepresentation of dust particles in the fire-affected regions with consequences regarding a correct representation of aerosol-atmosphere interactions such as the radiation budget.

Therefore, the present study aims to provide more insights concerning the importance of fire-driven dust emissions in the climate system. In order to achieve this, the process was implemented as a new emission pathway into the aerosol module HAM (Hamburg Aerosol Module) of the newly coupled aerosol-climate model ICON-HAM. Information about the behavior of the fire-affected wind fields and their potential to overcome typical emission thresholds have been used to set the dust emission fluxes in relation to data of the global fire activity, expressed by the fire radiative power (FRP), and to land-surface characteristics such as soil type and surface roughness.

Multi-year global simulations of ICON-HAM were analyzed to quantify the impacts of the additional dust emissions caused by the fire activity and their injection parameterization on a seasonal and continental scale. It was found that the strength of the fire-related dust emissions strongly depends on the region where the fire occurs, which is determined by the local soil-surface conditions and not only by the fire strength. However, the vegetation fires can lead to an increase of the atmospheric dust load even in regions far away from those commonly known as dust source areas, highlighting that fire-driven dust emissions can substantially contribute to the total aerosol load and in particular its composition within fire-prone regions or also within a fire-prone climate.

How to cite: Wagner, R. and Schepanski, K.: Fire-driven dust emissions – applying a newly developed parameterization scheme in a global aerosol-model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18339, https://doi.org/10.5194/egusphere-egu24-18339, 2024.

EGU24-18556 | PICO | AS3.9

EMIT Global Dust Source and Emission Mineral Abundance Maps for Dust and Climate Modeling 

Carlos Pérez García-Pando and the EMIT Team

Soil dust aerosols, comprised of diverse minerals with varying relative abundances, particle size distribution (PSD), shape, surface topography, and mixing state, exert a significant influence on climate. Despite this complexity, conventional Earth System Models tend to assume a globally uniform dust aerosol composition, overlooking well-documented regional variations in the mineralogy of their sources. Existing models addressing dust mineralogical variations often rely on mineral abundance maps extrapolated from an insufficient and non-uniform set of soil sample analyses, especially scarce in arid and semiarid regions.

This study introduces the first version of a series of global dust source and emission mineral abundance maps for dust and climate modelling built upon data from the Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer that is currently operational on the International Space Station (ISS). EMIT measures the spectral range from 0.38 to 2.50 microns through 285 contiguous spectral channels at a high spatial resolution of approximately 60 meters per pixel and ~77 km swath width. The EMIT ground system, utilizing Tetracorder, enables material identification and mapping on mineral spectra. EMIT provides quantitative maps for 10 critical minerals over dust sources pivotal for understanding interactions with the Earth System, with a specific emphasis on mapping iron oxides (hematite and goethite) to constrain the dust direct radiative effect.

Our study offers a comprehensive overview of the diverse methods explored, challenges faced, and key assumptions made to provide quantitative dust source mineralogy. Notably, addressing the absence of information on quartz and feldspar, whose absorption features extend beyond the measured spectral range, poses a significant challenge. Methodologies range from a model that linearly relates mineral abundance to absorption-feature band depth, to more advanced models solving the non-linear multiple scattering radiative transfer problem, providing abundances across a broader range of conditions.

Furthermore, the study provides insights into key assumptions guiding the derivation of mineral abundance maps for both clay and silt fractions of the soil. It also details methods rooted in brittle fragmentation theory, essential for estimating emitted size-resolved mineralogy, which is the critical input for Earth System Models.

This research contributes to advancing our understanding of soil dust aerosols, laying the foundation for improved climate models that account for nuanced regional variations in mineralogical composition.

How to cite: Pérez García-Pando, C. and the EMIT Team: EMIT Global Dust Source and Emission Mineral Abundance Maps for Dust and Climate Modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18556, https://doi.org/10.5194/egusphere-egu24-18556, 2024.

EGU24-18893 | ECS | PICO | AS3.9

Size segregation process along the soil-saltation-dust continuum: observations in southern Tunisia  

Rizewana Marécar, Béatrice Marticorena, Gilles Bergametti, Jean Louis Rajot, Christel Bouet, Servanne Chevaillier, Anais Féron, Bouthaina Khalfallah, Stéphane Alfaro, Mohamed Taieb Labiadh, Thierry Henry des Tureaux, Saad Sekrafi, and Mohsen Lifti

The particle size segregation processes occurring between the soil, the saltation layer and the dust layer close to the surface are not well described while they are key steps for a precise assessment of dust emission. Improving our understanding and quantifying the role of the processes acting in these three compartments should significantly enhance the consistency of dust emission models.

Data obtained during the WIND-O-V (WIND erOsion in presence of sparse Vegetation) field campaign that took place in spring 2017 in southern Tunisia have been analyzed. Eight saltation events of durations from 1 to 4 hours were sampled and corresponded to a range of wind friction velocities between 0.28 and 0.46 m s-1. The dispersed and non-dispersed size distributions of the soil and of the saltation fluxes were characterized and the micrometeorological conditions were also analyzed. Simultaneous measurements of size resolved saltation fluxes and size-resolved vertical dust fluxes were carried out. The combined analysis of size distributions of the parent-soil and of the horizontal and vertical fluxes reveals an enrichment of fine particles that increases with height. A consistent behavior is observed when comparing the particle size distribution of the saltation and of the vertical dust fluxes. Moreover, we observe changes in the size distributions from one event to another that are similar for the saltation and the dust fluxes. This strongly suggests that the processes controlling the saltation significantly affect the dust size distribution. The roles of the vertical transfer and of the micrometeorological conditions on the size distributions are also discussed.

How to cite: Marécar, R., Marticorena, B., Bergametti, G., Rajot, J. L., Bouet, C., Chevaillier, S., Féron, A., Khalfallah, B., Alfaro, S., Labiadh, M. T., Henry des Tureaux, T., Sekrafi, S., and Lifti, M.: Size segregation process along the soil-saltation-dust continuum: observations in southern Tunisia , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18893, https://doi.org/10.5194/egusphere-egu24-18893, 2024.

EGU24-19326 | PICO | AS3.9

Why does it rain in the desert? The dust record in Tunisia. 

Anna Bird, Ian Millar, Doris Wagner, Kaja Fenn, Rachel Smedley, Barbara Mauz, Moez Mansoura, Michael Rogerson, Marc Luetscher, Mahjoor Lone, and Noureddine Elmejdoub

North Africa is one of the regions identified by UNESCO as experiencing severe water stress, and further drying could be devastating for region that is also insecure. Tropical semi-arid regions, such as North Africa are highly sensitive to climate change, and climate predictions for this area suggest that this region will experience drying in the next decades and centuries. This contrasts with findings from palaeo-studies which show that, during the Pleistocene, global warming often correlates to humid phases. This project uses speleotherm records with palaoedust (loess) archives to assess the climate record over humid and dry periods to improve our understanding of past climate change in the sensitive but under-represented central northern Africa region. This presentation will focus on findings from the most important loess deposit in northern Africa, at Matmata in Tunisia.

The loess sections within the Matmata Plateau have loess and soil horizons relating to a series of humid and arid phases during the Quaternary, a sequence that provides valuable insight into the origins and dynamics of desert deposits and the interplay between continental and maritime weather systems. Previous work, in the 1990s, on the Matmata loess has shown onset of loess deposition to be during a humid phase (~70 ka) with loess deposition continuing as the climate becomes more arid into the Upper Holocene. It is currently assumed that the source of this material is the Grand Erg Orient, based on a relatively old study (1987). However, new OSL data presented here shows that the onset of loess deposition was much older than previously thought (~300 ka), with the top of the sections dated at ~24 ka. It appears that deposition was not continuous with a large gap in the record from 143 – 45 ka. Gaps in sedimentation for the section older than ~140 ka are difficult to determine due to limited reliability of older OSL ages.

Provenance analysis has been undertaken on many of the dated samples to establish past transport directions. Detrital zircon U-Pb data suggest that there is dominant Algeria-type source with some input from the north. The amount of this input varies over time with samples older than 200 ka showing a larger input from the north. 87Sr/86Sr and 143Nd/144Nd isotopes from different grainsize fractions tell a similar story, with a dominant west African source.

How to cite: Bird, A., Millar, I., Wagner, D., Fenn, K., Smedley, R., Mauz, B., Mansoura, M., Rogerson, M., Luetscher, M., Lone, M., and Elmejdoub, N.: Why does it rain in the desert? The dust record in Tunisia., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19326, https://doi.org/10.5194/egusphere-egu24-19326, 2024.

EGU24-20434 | ECS | PICO | AS3.9

Forcing factors behind primary productivity variabilities in Western Arabian Sea  since the Last Glacial Maximum: an important role of mineral dust supplies 

Alice Karsenti, Charlotte Skonieczny, Stéphanie Duchamp-Alphonse, Xinquan Zhou, Kara Labidi, Nicolas Musial, Ana Alves, Maxime Leblanc, Julius Nouet, Amélie Plautre, Sébastien Bertrand, Eva Moreno, Annachiara Bartolini, Catherine Kissel, and Franck Bassinot

Located in the Northwestern part of the Indian Ocean, the Arabian Sea (AS) is surrounded by vast arid regions (e.g. Arabian Peninsula, Pakistan, Iran), regularly swept by regional winds, that supply important amounts of mineral dust to the sea. This oceanic area is also under the influence of Indian monsoon surface winds that create a coastal upwelling off Somalia and Oman during summer and a convective mixing north of 15°N during winter. Consequently, mineral dust, coastal upwelling and convective mixing bring important amounts of nutrients to the euphotic zone, making the AS one of the most productive oceanic regions in the world. Although older studies usually highlight the coastal upwelling as a major factor behind primary productivity (PP) patterns in the AS, more recent studies have demonstrated that mineral dust inputs and convective mixing could have a significant influence on PP as well, at least since the Last Glacial Maximum (LGM). This time interval encompasses a glacial-interglacial transition with rapid fluctuations of ice sheet volume and atmospheric CO2 concentration, and represents therefore, a perfect case study to explore the impact of key Earth’s climate forcing mechanisms on the PP for both, past and future climate conditions. Yet, mineral dust component is still poorly documented by proxy data in the AS and direct reconstruction of PP are rare, which limit our understanding of how fertilization of the euphotic zone either by dust, coastal upwelling and/or convective mixing, impacts PP in the past. In this study, we combine high resolution bulk geochemical composition, detrital fraction grain-size distribution and clay mineralogy composition, together with coccoliths counting and carbon organic analyses from sediment cores MD00-2354 and MD00-2355, both retrieved on the Owen ridge. The aim is to reconstruct high-resolution mineral dust and PP patterns over the western part of the AS since the LGM. Both sites are located under the direct influence of dust plumes and among the seasonal latitudinal shift of monsoonal winds. They are therefore willing to register nutrient inputs from mineral dusts, winter convective mixing and/or summer coastal upwelling. Combined with previous paleoclimate records from the area, they will provide for the first time, an unprecedented overview of the forcing factors behind PP distribution in the past. Preliminary results show decreasing PP at both sites through the last 20 ka, suggesting a regional pattern of nutrient distribution in the western AS. Particularly, a strong correlation between PP and mineral dust signals reinforces the hypothesis of a key role of mineral dust on PP in the area. 

How to cite: Karsenti, A., Skonieczny, C., Duchamp-Alphonse, S., Zhou, X., Labidi, K., Musial, N., Alves, A., Leblanc, M., Nouet, J., Plautre, A., Bertrand, S., Moreno, E., Bartolini, A., Kissel, C., and Bassinot, F.: Forcing factors behind primary productivity variabilities in Western Arabian Sea  since the Last Glacial Maximum: an important role of mineral dust supplies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20434, https://doi.org/10.5194/egusphere-egu24-20434, 2024.

EGU24-20949 | PICO | AS3.9

Radiative Forcing Assessment of Black Carbon in Snow from the Antarctic Peninsula  

Francisco Cereceda-Balic, María Florencia Ruggeri, Gonzalo Barcaza, Ximena Fadic, and Hans Moosmüller

The pristine Antarctic environment, despite its remoteness, is not immune to the influence of anthropogenic
pollutants. This study focuses on quantifying the Radiative Forcing (RF) resulting from Black Carbon (BC)
concentrations in snow samples collected from various points on the Antarctic Peninsula during the austral summer
of 2023, aiming to assess the impact of BC on the snowpack albedo and, consequently, on the regional climate. To the
best of our knowledge, in most of the locations studied, BC concentrations in snow have never been measured before.
Snow samples were meticulously collected from different locations on the Antarctic Peninsula, covering a diverse
range of environments, including base surroundings, remote locations, and icebergs. This effort was undertaken as
part of the ECA59 campaign, funded by the Chilean Antarctic Institute (INACH). The sampling constituted the initial
phase of a project involving three distinct sampling periods. Specifically, the collection sites were situated in the
eastern sector of the peninsula, known for its minimal human presence and limited prior research, making it a
relatively unexplored region. BC concentrations in our snow samples were measured following the method described
in Cereceda-Balic et al. (2022, https://doi.org/10.1016/j.envres.2022.113756). To understand the BC RF, the SNICAR
(SNow, ICe, and Aerosol Radiation) model was employed to simulate snow albedo for measured BC concentrations.
This methodology allowed for an assessment of the potential BC-induced changes in albedo and the resulting RF. The
analysis revealed a significant range of BC concentrations in Antarctic snow samples, spanning from 2.4 to 1157 ng g-1. Simulating snow albedo using the SNICAR model indicated BC-induced albedo reductions of up to 20% relative to clean snow. The calculated BC-induced RF reached up to 38 W m-2, indicating a substantial climatic impact of BC in the Antarctic Peninsula region.

Our findings underscore the influence of BC on the radiative properties of snow in the Antarctic Peninsula. The diverse
BC concentrations observed here suggest varying sources and highlight the need for continued monitoring. The results
reveal the vulnerability of the Antarctic Peninsula to the impacts of anthropogenic pollutants, even in its seemingly
pristine surroundings. Acknowledging and addressing these influences is essential for assessing the broader
implications of climate change in polar regions. Continued research at these little-explored sites is crucial for refining
climate models and informing mitigation strategies to preserve the integrity of the Antarctic environment.


Acknowledgments: INACH Project RT_34-21, and ANID Project: Fondecyt Projects N°1221526 andN°11220525, ANILLO ACONCAGUA N°ACT210021, and FOVI230167

How to cite: Cereceda-Balic, F., Ruggeri, M. F., Barcaza, G., Fadic, X., and Moosmüller, H.: Radiative Forcing Assessment of Black Carbon in Snow from the Antarctic Peninsula , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20949, https://doi.org/10.5194/egusphere-egu24-20949, 2024.

EGU24-22132 | ECS | PICO | AS3.9

Reading dust provenance record in Epica Dome C Ice Core (EDC) of Antarctica reveals a shift from Patagonian to African sources through the last deglaciation (2.9 – 33.7 kyr) 

Sibylle Boxho, Nadine Mattielli, Aubry Vanderstraeten, Goulven G. Laruelle, Aloys Bory, Paolo Gabrielli, Stefania Gili, and Steeve Bonneville

Epica Dome C (EDC) ice core is invaluable and highly-resolved record of Earth’s climate. Within the database of climate proxies in deep ice core, quantifying the contribution of the various sources of dust has been very challenging and, so far, no continuous record of dust provenance has been established. Here, we developed an algorithm that combines the REE patterns from a large database (from 207 sediments/soils in well-known Potential Source Areas - PSA - in the Southern Hemisphere) to fit the REE patterns measure in EDC data[1]. Complemented by Monte Carlo simulations to account for analytical uncertainties and by evaluation of goodness-of-fit, our model quantifies the respective contribution of the dust sources (regrouped by large PSA like Patagonia, Africa, S-E Australia, New Zealand and Puna-Altiplano) deposited in EDC ice core between 2.9 and 33.7 kyr at a centennial resolution.

Our provenance record reveals that a major shift in dust provenance occurred at ~14.5-kyr BP during which the contribution of Patagonia (PAT – the main supplier of dust of the Last Glacial Maximum -LGM) declined from   ̴55% to 35% (% of total dust deposition) while African dust (SAF) became more prevalent from   ̴20% during LGM to   ̴40% after 14.5 kyr BP. As a matter of fact, the main supplier of dust in EDC during the Holocene is Southern Africa. We ascribe this abrupt shift to (i) long-lasting changes in the hydrology and of Patagonian rivers and (ii) to a sudden acceleration of sea-level rise between 14 and 15 kyr BP that submerged vast swathes of Patagonian continental shelf, triggering a decline in PAT dust supply to Antarctica. In turn, this induced a steep increase – in relative term - of SAF dust contribution in EDC.

Importantly,our record for EDC is very much consistent with our previous results for Epica Dronning Maud Land (EDML)[2] ice core showing the exact same shift (PAT for SAF dust) between 14 and 15 kyr BP. Yet, compared to EDML, EDC record shows generally larger contribution for SAF and lower PAT dust which seems logical considering the respective localization of EDML and EDC. Our results for EDC thus confirms the relationship between dust composition and eustatic sea level and also highlight the importance of African dust deposition in the Southern Indian ocean and in the adjacent sector of the Southern Ocean since 14 kyr. Our tracing method using REE patterns offers a new, high-resolution tool for the reconstruction of atmospheric paleo-circulation and paleoclimate in the Southern Hemisphere.

[1]Gabrielli et al., (2010), Quaternary Science Review 29, 1-2.

[2]Vanderstraeten et al., (2023), Science of the Total Environment 881, 163450

How to cite: Boxho, S., Mattielli, N., Vanderstraeten, A., Laruelle, G. G., Bory, A., Gabrielli, P., Gili, S., and Bonneville, S.: Reading dust provenance record in Epica Dome C Ice Core (EDC) of Antarctica reveals a shift from Patagonian to African sources through the last deglaciation (2.9 – 33.7 kyr), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22132, https://doi.org/10.5194/egusphere-egu24-22132, 2024.

EGU24-1283 | Orals | ITS1.6/BG1.18

Present and future importance of protected areas as carbon sinks and storages in Finland 

Martin Forsius, Virpi Junttila, Heini Kujala, Mikko Savolahti, and Torsti Schulz

The EU aims at reaching carbon neutrality by 2050 and Finland by 2035. Net negative greenhouse gas emissions are needed to comply with the targets of the Paris climate agreement. We integrated results of three spatially distributed model systems (FRES, PREBAS, Zonation) to evaluate the potential to reach this goal at both national and regional scale in Finland, by simultaneously considering protection targets of the EU biodiversity strategy. Modelling of both anthropogenic emissions and forestry measures were carried out, and forested areas important for biodiversity protection were identified based on spatial prioritization. We used scenarios until 2050 based on mitigation measures of the national climate and energy strategy, forestry policies and predicted climate change, and evaluated how implementation of these scenarios would affect greenhouse gas fluxes, carbon storages, and the possibility to reach the carbon neutrality target. Potential new forested areas for biodiversity protection according to the EU 10% strict protection target provided a significant carbon storage (426-452 TgC) and sequestration potential (-12 to -17.5 TgCO2eq a-1) by 2050, indicating complementarity of emission mitigation and conservation measures. Assuming a price of ca. 80 € ton-1 CO2eq according to the current level of the EU emission trading system (EU ETS), the economic value of the carbon sequestration of the current protected areas in Finland would be about 500 million € per year. These areas thus provide ecosystem services of significant economic value. The results of our study can be utilized for integrating climate and biodiversity policies, accounting of ecosystem services for climate regulation, and delimitation of areas for conservation.

How to cite: Forsius, M., Junttila, V., Kujala, H., Savolahti, M., and Schulz, T.: Present and future importance of protected areas as carbon sinks and storages in Finland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1283, https://doi.org/10.5194/egusphere-egu24-1283, 2024.

EGU24-3894 | ECS | Orals | ITS1.6/BG1.18 | Highlight

Impact of clouds on the forest albedo measured at the Leipzig Canopy Crane - A pilot study 

Kevin Wolf, Michael Schäfer, Sudhanshu Shekhar Jha, Alexandra Weigelt, Ronny Richter, Tom Kühne, André Ehrlich, Evelyn Jäkel, and Manfred Wendisch

Albedo, defined as the ratio between reflected radiation and total incoming radiation, is a key variable in the Earth radiative budget. In a fast changing climate with more frequent extreme events, such as droughts and excessive heat, vegetation is under constant stress. Such stress factors might modify the tree physiology, the reflectivity of individual leaves, and, eventually, the forest albedo as an entity. This might alter the local radiative budget and contribute to changes in the local climate, e.g., intensifying drought - a potential feedback loop. The understating of those effects might be further complicated by the occurrence of clouds. Therefore, this study presents spectral solar measurements of upward and downward irradiance that are used to determine the spectral albedo over a forest canopy. Since June 2021, ongoing measurements are performed on top of the Leipzig Canopy Crane located in the Leipzig floodplain forest. The measurements are separated for illumination geometries, i.e., the solar zenith angle, as well as for different cloud conditions. The interpretation of the measurements is aided and validated by coupled radiative transfer simulations using the library for radiative transfer model (libRadtran) and the Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE2.0) model. Both models allow for simulations in the visible, near- and far-infrared wavelength range. By that, the impact of clouds on the spectral and broad band albedo, as well as the net radiative budget can be investigated. First simulations revealed that the presence of clouds enhance the spectral forest albedo. The magnitude of the effect is controlled by the cloud optical thickness, i.e., the ratio of direct and diffuse radiation. The enhancement is more pronounced for small solar zenith angles. However, the effect from clouds appears to be smaller than influences of variations in the surface properties. The presentation aims to outline the measurement set-up and strategy, and to discuss preliminary results. Furthermore, the new, iterative coupling of the atmosphere and soil-vegetation model is presented, which aims to improve the understating of cloud-vegetation radiation interactions.

How to cite: Wolf, K., Schäfer, M., Shekhar Jha, S., Weigelt, A., Richter, R., Kühne, T., Ehrlich, A., Jäkel, E., and Wendisch, M.: Impact of clouds on the forest albedo measured at the Leipzig Canopy Crane - A pilot study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3894, https://doi.org/10.5194/egusphere-egu24-3894, 2024.

EGU24-3958 | Posters on site | ITS1.6/BG1.18

Modelling the effects of forest use change on brownification of Finnish rivers under pressures of acidification and climate change 

Katri Rankinen, José Enrique Cano Bernal, Maria Holmberg, Magnus Nordling, Torsti Schulz, Annikki Mäkelä, Ninni Mikkonen, Heini Kujala, Leah Jackson-Blake, Heleen De Wit, and Martin Forsius

Browning of surface waters due to increased terrestrial loading of dissolved organic matter is observed across the Northern Hemisphere. Brownification directly influences freshwater productivity and ecosystem services like water purification. Brownification often is explained by changes in large-scale anthropogenic pressures and ecosystem functioning, including acidification and climate change. Land use or cover changes and forestry measures have recently been observed to be one reason for the increase in brownification. Climate change influences brownification by increasing temperatures and thus stimulating the decay of dissolved organic carbon in soils, and by changing the timing and intensity of precipitation and snowmelt. A decrease in sulphur deposition is assumed to increase soil organic matter solubility. In Finland, productive forests cover about 66% of the land area. This study aimed to examine the effect of forest use changes on water browning in Finland under pressure of acidification and climate change. EU land use policies (Biodiversity Strategy, LULUCF Policy) influence land use but also forestry practices. Finland is committed to the EU's goal of protecting 30% of land and sea areas, and 10% of them strictly. The LULUCF regulation agrees how carbon sinks and greenhouse gas emissions from the land use sector are considered in the EU's climate goals until 2030. Finland aims to keep forests as carbon sinks. When studying the environmental effects of land use/cover changes due to these policies, environmental influence on biodiversity, and ecosystem services (sustainability of forestry, and water quality) should be simultaneously considered. We modelled organic carbon loading from river basins under changes in global pressures (climate and deposition) by mathematical models. We combined the watershed scale model (Simply-C) with scenarios of climate change, atmospheric deposition, and forest use change (1985-2060). We used daily data from five global climate models (CMIP5) under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5. For atmospheric sulphur deposition, we used the chemical transport model results that are based on the EMEP MSC-W model (v4.4) and the MATCH model results. We explored two forest use scenarios that focus on potential changes taking place in the forested areas in Finland: 1) forest management, and 2) forest protection. The forest management scenario was based on simulations of clear-cut following Finnish national recommendations with the PREBAS forest growth and carbon balance model. Forest protection scenarios were based on spatial data of forests with high conservation value, optimized by Zonation programme. Modelling results indicated that global influence (atmospheric deposition, climate change) seemed to weaken in southern Finland after 2016. That gave more space for the effect of local forest use change due to different EU land use policies. Forest use change was more influential in river basins dominated by organic soils than in mineral soils. In northern Finland brownification seemed to continue, mainly driven by climate change.

How to cite: Rankinen, K., Cano Bernal, J. E., Holmberg, M., Nordling, M., Schulz, T., Mäkelä, A., Mikkonen, N., Kujala, H., Jackson-Blake, L., De Wit, H., and Forsius, M.: Modelling the effects of forest use change on brownification of Finnish rivers under pressures of acidification and climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3958, https://doi.org/10.5194/egusphere-egu24-3958, 2024.

The loss of biodiversity from human activities on land is a widely-recognized, worldwide problem. Since the advent of the industrial revolution the loss of plant and animal species has increased dramatically, with 25% of species now at risk of extinction. Conventions and targets to protect biodiversity have been implemented, but with limited success. The Aichi targets for 2020, for example, were almost all missed, with worsening trends for 12 out of the 20 targets. One reason for this failure is the ineffective application of broad-scale measures that are not tailored to the underlying causes of biodiversity loss. Knowledge on the spatial and temporal distribution of anthropogenic drivers of biodiversity loss would therefore enable targeted interventions that address location-specific stressors and thus would be better-adapted measures to protect biodiversity.

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has identified five main drivers of anthropogenic origin as the causes of biodiversity loss: land use, natural resource extraction, climate change, pollution, and invasive alien species. However, when seeking to quantify impacts on biodiversity, these drivers are still usually treated separately. We develop a Biodiversity Pressure Index (BPI) by quantifying and mapping data for nine indicators of the five drivers into a single, annually changing index with a spatial resolution of 0.1° at global scale covering the period 1990-2020.

We find that large areas (approximately 86%, including Antarctica, Greenland) are under major human pressure and that almost all areas have experienced an increase (about 96% of land) in pressure over the past thirty years. Industrialised regions had high pressure levels already in 1990 and continue to do so in 2020, whereas regions with rapid economic growth setting in after 2000 where low in pressure in 1990, but show high pressure levels today. Whilst areas impacted by human activities are increasing, areas of wilderness are decreasing to a point that in 2020, only 0.02% of the terrestrial land are entirely free from human influence. (Sub-) tropical wetlands and temperate grasslands are the biomes with the highest pressures today. And whilst land use is still one of the main factors, climate change - especially increasing temperature - is one of the major recent and future threats to biodiversity.

How to cite: Ramm, K., Brown, C., Arneth, A., and Rounsevell, M.: Human pressure on global land ecosystems and biodiversity increases notably from 1990-2020 - Development of a spatially explicit Biodiversity Pressure Index (BPI), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5708, https://doi.org/10.5194/egusphere-egu24-5708, 2024.

EGU24-7473 | ECS | Posters on site | ITS1.6/BG1.18

Developing Restoration Strategies for Dynamic Population Changes of Plant-Pollinator Networks in a Warming Climate 

Adrija Datta, Sarth Dubey, and Udit Bhatia

Ensuring robust pollination service is vital for sustainable food production, as three-quarters of crops require insect pollinators to reproduce, but many insect populations are rapidly declining.  Yet, it is widely reported that insect pollinators face increased extinction risk due to habitat loss and warming climate. The biological impact of global mean temperature projections on individual terrestrial ectotherms is often predicted to increase with the rate of warming. However, it also depends on the interdependence of the plant-pollinator network and the physiological sensitivity of ectotherms to temperature change over time. Here, we have used sampled plant-pollinator network data from different climatic zones and the Earth system model projected temperature data of different future projection scenarios. In this study, we present a mathematical framework for modeling species population dynamics using the Lotka-Volterra model, where parameters are integrated from empirical fitness curves of terrestrial insects at different latitudes. This approach also investigates how species abundance evolves in the twenty-first century with and without species management, focusing on maintaining a constant abundance of generalist species to avert sudden ecosystem collapses over declining environmental health. The results show that tropical networks are more sensitive in abundance and extinction to future temperature increase as they live very close to their optimal temperature. In contrast, species of temperate regions have broader thermal tolerance, so the warming may increase their abundance. This study offers insights into how different future temperature projections influence species management, thereby restoring the functional integrity of the entire ecosystem. Also, this study provides region-specific restoration guidelines, offers insights for agro-advisory services, informs sustainable cropping patterns, and optimizes resource allocation. 

How to cite: Datta, A., Dubey, S., and Bhatia, U.: Developing Restoration Strategies for Dynamic Population Changes of Plant-Pollinator Networks in a Warming Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7473, https://doi.org/10.5194/egusphere-egu24-7473, 2024.

EGU24-10432 | Orals | ITS1.6/BG1.18 | Highlight

Plant diversity-climate interactions from a modeling perspective 

Pin-hsin Hu, Christian H. Reick, Axel Kleidon, and Martin Claussen

Mounting evidence from field observations has shown that high functional diversity is associated with strong ecosystem resilience and stability. However, plant ecology studies have focused on the passive response of global ecosystems to climatic changes while the impacts of plant-functional diversity on climate including its feedback are seldom addressed. Moreover, state-of-the-art climate models are insufficient to address such topics. Their land component models cover only a restricted range of present-day plant features, so that adaptation at the sub-grid scale is ignored. Based on a process-based plant functional trade-off scheme developed by Kleidon and Mooney (2000), we have set up a new vegetation model JeDi-BACH into the land component of the ICON-Earth System Model (ICON-ESM). The advantage of this new model is that the representation of global vegetation is an emergent outcome of environmental filtering following several well-known fundamental functional trade-offs that link plant functions to abiotic and biotic attributes. In such a way, plants dynamically adjust to the changing environment and meanwhile modify climate. With this new model, we present a series of sensitivity studies investigating the effect of plant trait diversity on the coupled vegetation-climate system in a coupled land-atmosphere setup. We found that high plant diversity ecosystems tend to stabilize terrestrial climate in a high water-turnover state, leading to a wet and cool climate. The enhancement in evapotranspiration with increasing diversity found in our study is consistent with the BEF (Biodiversity-Ecosystem Functioning) relationship derived from the field studies. Our modeling results demonstrate the importance of the "biodiversity-climate feedback" and highlight the role of plant functional diversity in shaping a robust climate.

Kleidon, A. and Mooney, H. A.: A global distribution of biodiversity inferred from climatic constraints: Results from a process-based modelling study, Glob. Chang. Biol., 6(5), 507–523, doi:10.1046/j.1365-2486.2000.00332.x, 2000.

 

How to cite: Hu, P., Reick, C. H., Kleidon, A., and Claussen, M.: Plant diversity-climate interactions from a modeling perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10432, https://doi.org/10.5194/egusphere-egu24-10432, 2024.

EGU24-10869 | Orals | ITS1.6/BG1.18

A vertical RothC model for simulating the Soil Organic Carbon  dynamics in coastal wetland environments 

Carmela Marangi, Vsevolod Bohaienko, Fasma Diele, Angela Martiradonna, and Antonello Provenzale

The significance of considering vertical layers in studying soil organic carbon (SOC) dynamics within wetlands arises from the interplay of hydrological and ecological factors across various soil depths, where anaerobic conditions prevail in the deeper layers. This anaerobic environment significantly influences microbial processes, leading to methane production rather than carbon dioxide. Factors such as the accumulation of organic material, temperature gradients, and fluctuations in the water table contribute to diverse SOC dynamics across different vertical strata. Understanding these variations in vertical layers is crucial for accurate assessments of carbon stocks, greenhouse gas emissions, and the overall role of wetlands in the global carbon cycle. Such understanding is essential for devising effective conservation and management strategies, particularly in the face of climate change and land-use modifications impacting wetlands.  To model these dynamics, a vertical extension of the Rothamsted Carbon (RothC) model can be successfully employed in conjunction with the Richardson equation. This combined approach simulates the influence of soil moisture flux on the transport of carbon throughout the soil column. The specific scenario examined is focused on the growth of rice in the Ebro Delta lands and on the carbon flux emissions in the Ria de Aveiro Coastal lagoon, both sites being part of the Long-Term Ecological Research (LTER) network and the eLTER RI community.  This work contributes to the research activities carried out by the authors within the projects H2020 eLTER PLUS, HE RESTORE4Cs, and PNRR - “National Biodiversity Future Centre”, funded by the European Union – NextGenerationEU.

 

References

D.S. Jenkinson, P.B.S. Hart, J.H. Rayner and L.C. Parry, "Modelling the turnover of organic matter in long-term experiments at Rothamsted". INTECOL Bulletin 15 (1987): 1–8

F. Diele, C. Marangi, A. Martiradonna, "Non-Standard Discrete RothC Models for Soil Carbon Dynamics." Axioms 10.2 (2021): 56.  

F. Diele, I. Luiso, C. Marangi, A. Martiradonna, E. Wozniakk, "Evaluating the impact of increasing temperatures on changes in soil organic carbon stocks: sensitivity analysis and non-standard discrete approximation", Computational Geosciences 26 (2022) 1345–1366.

 J. Smith, P. Gottschalk, J. Bellarby, M. Richards, D. Nayak, K. Coleman, J. Hillier, H. Flynn, M. Wattenbach, M. Aitkenhead, et al., "Model to estimate carbon in organic soils–sequestration and emissions (ecosse)", Carbon 44 (2010) 1–73.

Y. Zhang, C. Li, C. C. Trettin, H. Li, G. Sun, "An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems", Global biogeochemical cycles 16 (2002) 9–1.

 

How to cite: Marangi, C., Bohaienko, V., Diele, F., Martiradonna, A., and Provenzale, A.: A vertical RothC model for simulating the Soil Organic Carbon  dynamics in coastal wetland environments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10869, https://doi.org/10.5194/egusphere-egu24-10869, 2024.

EGU24-12455 | ECS | Orals | ITS1.6/BG1.18

Identification of socio-economic variables to implement advanced artificial intelligence models to manage climate change risk 

David Jesús Felibert Álvarez, Manuel Enrique Guineme Baracaldo, Jhon Alexander Triana Forero, Johanna Karina Solano Meza, and Javier Rodrigo-Ilarri

To develop climate change mitigation strategies, it is necessary to identify variables that facilitate the modeling of prospective scenarios. There are a large number of variables that must be analyzed in an integrated manner in order for scenarios to be proposed that include the particularities of a given area, measuring the possible effects of this phenomenon in terms of productivity. Identifying and analyzing variables and their variations over time enables fundamental predictions to understand the potential environmental impacts on ecosystems and human activity. Understanding these variables is important to support decision-making, policy development and implementing actions that help reduce greenhouse gas emissions and guarantee food security. This research study not only seeks to determine the technical variables, which are fundamental in predictive models, but also sets out to emphasize the importance of integrating social and economic aspects that can become decisive factors.

Rural areas in Colombia, with the department of Cundinamarca used as a case study, have been affected in various ways by climate change [1]. This scenario represents a challenge that needs to be addressed in a prioritized manner to ensure food security and independence, economic development, sustainability, livestock and human health, among other aspects that precisely relate to the development of a region. To propose solutions, artificial intelligence (AI) is emerging as an innovative alternative that makes it possible to process large amounts of data and find patterns, correlations and trends that can provide an understanding of the variables’ behavior, as well as develop systems to adapt to climate change. Therefore, identifying variables to apply advanced AI models to forecast the effects of climate change in a given region is a fundamental step towards generating an efficient and accurate tool to establish mitigation actions in a region that, together with the implementation of policies and actions that promote sustainability, will strengthen communities’ current capacity for action.

The variables identified include economic structure, access to technological resources, governance models, education levels, access to public services, poverty rate, demographics and crop price references. Through AI models and an in-depth analysis of available information, these types of models will become more precise for the implementation of early warning systems (EWS) and sustainable practices, as well as strengthen infrastructure. Historically in Colombia, rural areas are the most vulnerable to climate change given that they have fewer economic and technological resources that enable them to adapt to its impacts, with the most frequent phenomena being torrential rainfall, extreme flooding and forest fires; events associated with climate change.

  • Peña Q, Andrés J, Arce B, Blanca A, Boshell V, J. Francisco, Paternina Q, María J, Ayarza M, Miguel A, & Rojas B, Edwin O. (2011). Trend analysis to determine hazards related to climate change in the Andean agricultural areas of Cundinamarca and Boyacá. Agronomía Colombiana, 29(2), 467-478. Retrieved January 09, 2024, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652011000200014&lng=en&tlng=en.

How to cite: Felibert Álvarez, D. J., Guineme Baracaldo, M. E., Triana Forero, J. A., Solano Meza, J. K., and Rodrigo-Ilarri, J.: Identification of socio-economic variables to implement advanced artificial intelligence models to manage climate change risk, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12455, https://doi.org/10.5194/egusphere-egu24-12455, 2024.

In the temperate region, inter-annual variation of air temperature affects leaf phenology, i.e., timings of leaf emergence and growth in spring and defoliation in autumn. These changes have significant impacts not only on the canopy of dominant trees of forest ecosystems, but also on the seasonal light environment within the forest understory which further influences the growth and survival of tree seedlings, shrubs, and herbaceous species. Consequently, global warming is expected to influence biodiversity by altering species-specific growth responses to the environmental shifts, affecting primary production and hence the progress of vegetation succession. Therefore, in order to comprehensively monitor and assess the state and changes in forest ecosystems across wide geographical and decadal scales, it is important to observe leaf phenology at both the species and ecosystem scales, which is considered one of Essential Biodiversity Variables (EBVs).

The objective of this study is to investigate the decadal-scale change of the leaf phenology in deciduous forest in Japan. We examined 20-year changes of the dates of leaf emergence, leaf area index (LAI) reached its maximum, and defoliation by using in-situ and satellite data. The in-situ remote sensing has been conducted by a spectroradiometer and automated digital cameras on a canopy tower since 2003 at a deciduous forest in Takayama site, located in the cool-temperate region in the central Japan. The system is part of the Phenological Eyes Network (PEN). We estimated the dates of leaf emergence, maximum LAI, and defoliation based on the seasonal pattern on the Green-Red Vegetation Index (GRVI). These dates exhibit notable inter-annual variations, and notably, the date of maximum LAI occurrence tended to shift earlier over the 20-years period from 2004 to 2023. Those inter-annual variations in the leaf phenology were strongly related to the air temperature. Based on the knowledge gained at the Takayama site, we then examined the spatial distribution and annual changes of phenology of the deciduous forests in Honshu Island with satellite-GRVI. We will discuss the spatial and temporal changes in phenology along the environmental gradient and rising air temperature due to global warming, and evaluate the sensitivity or tolerance of these forests by focusing on species composition and geographical characteristics.

The authors thank PEN for sharing the data of spectral reflectance and canopy images.

How to cite: Noda, H., Takeuchi, Y., and Muraoka, H.: Assessing the 20-Year Changes in Leaf Phenology of Temperate Deciduous Forests in Japan Using in-situ and Satellite-GRVI, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15339, https://doi.org/10.5194/egusphere-egu24-15339, 2024.

Forest carbon sequestration is a key part of the European transition to carbon neutrality. Quantification of forest carbon sequestration rates relies on relies on successful integration of high volumes of remote sensing and in-situ data arriving at ever increasing velocities with a bewildering variety of “long tail” and legacy data. Research Infrastructures (RIs) can add value to these data by supporting their harmonised, cross-site collection, curation and publication and by providing a platform for assessing data veracity. Integration of RI networks through site co-location and standardised observation methods has been proposed as one way of dealing with the Big Data needed to quantify societally relevant environmental processes including those related to the carbon cycle. However, the full potential of RI network integration as a tool to improve environmental understanding has yet to be realised.

Here, we review current successes, identify challenges to better integration, and suggest ways forward. We provide recommendations for scientists, site managers and policy makers that will support the transition to a Big Data approach to quantifying and communicating forest carbon sequestration using the Swedish situation as an example.

How to cite: Futter, M., Högbom, L., Moldan, F., Peacock, M., and Villwock, H.: Challenges and Opportunities for Research Infrastructure Co-location to Improve Understanding of Terrestrial Carbon Cycling in Northern European Forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15707, https://doi.org/10.5194/egusphere-egu24-15707, 2024.

EGU24-16679 | ECS | Posters on site | ITS1.6/BG1.18

Biodiversity changes atmospheric chemistry through plant volatiles and particles 

Anvar Sanaei, Hartmut Herrmann, Loreen Alshaabi, Jan Beck, Olga Ferlian, Khanneh Wadinga Fomba, Sylvia Haferkorn, Manuela van Pinxteren, Johannes Quaas, Julius Quosh, René Rabe, Christian Wirth, Nico Eisenhauer, and Alexandra Weigelt

Given the significant human-induced changes in biodiversity and climate, the link between atmospheric and biological measurements is crucial to improve our understanding of atmosphere-biosphere feedbacks. Changes in climate and biodiversity influence the emission of biogenic volatile organic compounds (BVOCs) from plants, leading to the formation of biogenic secondary organic aerosols (BSOA). These BSOA can have diverse effects, including influencing Earth's radiative balance and impacting cloud and precipitation formation. However, at present, it is unclear how changing biodiversity will lead to changes in BVOC emissions, BSOA and their corresponding effects. We present a conceptual framework of the relationships between biodiversity and BVOC emissions based on our current mechanistic understanding and combining knowledge from the fields of biology and atmospheric chemistry. In this framework, first, we hypothesized that mixed forests enable resource partitioning, often leading to higher stand productivity and leaf area index, thus emitting higher amounts of BVOC. Second, given the significant difference in biotic and abiotic stress in monoculture and mixture plots, we hypothesized that increasing tree diversity would decrease BVOC emissions. We tested the effect of tree diversity on BVOC emission and BSOA formation in this framework by varying tree species richness, including monocultures, two- and four-species mixtures at the MyDiv experimental site in Germany. We quantified nine different BVOCs from the investigated plots, i.e., α-pinene, camphene, β-pinene, 3-carene, p-cymene, limonene, α-terpinene, isophorone, and acetophenone. The relative differences in tree monocultures and mixtures show that the overall concentration of BVOC decreases with increasing biodiversity. For BSOA, a total of fifteen BSOA compounds have been quantified, including diaterpenylic acid acetate [DTAA], 3-methyl-1,2,3-butanetricarboxylic acid [MBTCA], norpinonic acid, pinonic acid, terebic acid, terpenylic acid, pinic acid, adipic acid, pimelic acid, azelaic acid, suberic acid, succinic acid, glutaric acid, salicylic acid, and sebacic acid. The relative differences in tree monocultures and mixtures for BSOA showed mixed and overall non-significant results. A deeper understanding of how changing biodiversity influences biogenic organic compound emissions and biogenic secondary organic aerosol formation requires in-depth investigations of microclimate conditions, accurate monitoring of above- and below-ground biotic and abiotic stress, and manipulating stress conditions across long-term biodiversity experiments. Our findings highlight the need for multidisciplinary work at the interface between the biosphere and the atmosphere to better understand the reciprocal effects of biodiversity and climate change.

How to cite: Sanaei, A., Herrmann, H., Alshaabi, L., Beck, J., Ferlian, O., Fomba, K. W., Haferkorn, S., van Pinxteren, M., Quaas, J., Quosh, J., Rabe, R., Wirth, C., Eisenhauer, N., and Weigelt, A.: Biodiversity changes atmospheric chemistry through plant volatiles and particles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16679, https://doi.org/10.5194/egusphere-egu24-16679, 2024.

EGU24-16765 | Orals | ITS1.6/BG1.18

A comprehensive tool for prioritising ecologically sensitive locations and driving nature-positive actions 

Thea Piovano, Rhosanna Jenkins, Lorna Burnell, Claire Burke, and Beccy Wilebore

There exists an urgent need to address the ongoing nature crisis, and businesses must play a pivotal role in fostering positive change. As a result, there has been a significant increase in corporate attention on biodiversity. In response to this attention, several frameworks for companies to report their impacts on nature have emerged, including the EU’s Corporate Sustainability Reporting Directive (CSRD) and the Taskforce on Nature-related Financial Disclosures (TNFD). These frameworks set out steps for companies wanting to make a positive impact and include nature in business, particularly through determining their proximity to ecologically sensitive locations.

Our advanced prioritisation tool enables screening of any site in the world (both terrestrial and marine assets) for its proximity to ecologically sensitive locations. This tool incorporates metrics including Ecological Integrity, Decline in Ecological Integrity, Areas of High Physical Water Stress, Areas of High Potential Ecosystem Services and Biodiversity Sensitive Areas. Our tool aligns with best practices and with reporting guidance and standards (TNFD and CSRD).

By leveraging our screening tool, businesses can turn data-driven insights into responsible nature-positive actions.

How to cite: Piovano, T., Jenkins, R., Burnell, L., Burke, C., and Wilebore, B.: A comprehensive tool for prioritising ecologically sensitive locations and driving nature-positive actions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16765, https://doi.org/10.5194/egusphere-egu24-16765, 2024.

EGU24-18370 | ECS | Orals | ITS1.6/BG1.18 | Highlight

Drone4Tree: A cloud-based geospatial platform for large-scale UAV data processing and tree canopy detection 

Sharad Kumar Gupta, Franz Schulze, Ralf Gründling, and Ulf Mallast

Forests cover approximately 31% of the global land area and are home to 80% of the Earth's terrestrial biodiversity. Humans depend on forests for countless ecosystem services, but these ecosystems are highly vulnerable to human-induced climate change. As our climate undergoes dynamic changes, it is imperative to implement automated monitoring systems to quantify canopy growth and assess changes occurring within forest structures, especially at the level of individual trees, to determine the response of forests to climate anomalies. In this context, tree canopy detection can be considered one of the most important applications using Unmanned Aerial Vehicles (UAVs) as it can be used to obtain information on numerous essential ecosystem variables (EEVs) such as gross primary productivity, leaf area index, etc. for individual trees or shed light on essential biodiversity variables (EBVs) such as ecosystem structure and function. However, due to the plethora of information available, users may find it challenging to apply UAVs and algorithms to their specific projects. Hence, an integrated, seamless platform that can process UAV-acquired images to generate ortho-mosaics, detect individual trees, and monitor specific traits (including ecosystem structure and function) is the need of the hour.

In this study, a platform, Drone4Tree, has been developed using Streamlit and Flask to provide an end-to-end solution for generating orthomosaics and delineating individual tree crowns from UAV images. Users simply upload raw UAV survey data and receive the final results. The complete processing chain is carried out on our high-end servers, which is an advantage for users with limited computing resources. The developed web application uses open-source algorithms, models, and frameworks for easy implementation of components such as orthomosaic (structure from motion in OpenDroneMap), tree canopy detection (DeepForest and U-Net segmentation), and downloading of results. The platform offers two processing modes: standard and advanced. The standard mode comes with default parameters for orthomosaic generation and tree canopy detection, benefiting users with no experience in UAV image processing. The advanced mode allows users to customize the processes, such as the scale of the generated canopy boundary or patch size for large images. It also extends its functionality towards analysis-ready drone image time series (incl. a co-registration of orthomosaics to a reference image using the AROSICS method and reprojection using the geospatial data abstraction library (GDAL)). Finally, the processing outcomes can be easily downloaded using the generated links. 

The web app was used to generate a time series of individual tree canopies, which provided a deeper understanding of changes in EEVs during a phenological cycle. The canopy boundaries can also be used to generate spectral libraries for tree species from high spatial resolution hyperspectral images, which has several applications in species detection and mapping. This platform can guide other users wishing to efficiently produce individual tree canopy boundaries for large areas without investing substantial time tailoring imagery acquisition and processing parameters. The resulting tree canopy boundaries can provide opportunities to characterize individual trees' species, size, condition, and location and are critical resources for advancing ecological theory and informing forest management.

How to cite: Gupta, S. K., Schulze, F., Gründling, R., and Mallast, U.: Drone4Tree: A cloud-based geospatial platform for large-scale UAV data processing and tree canopy detection, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18370, https://doi.org/10.5194/egusphere-egu24-18370, 2024.

EGU24-19043 | ECS | Orals | ITS1.6/BG1.18 | Highlight

Exploring climate-biodiversity interactions in observational data and models 

Petra Sieber, Jonas Schwaab, Dirk Karger, and Sonia Seneviratne and the FeedBaCks consortium

Climate change and biodiversity loss are increasingly considered jointly, particularly to find optimal solutions for both crises and to avoid negative side-effects and feedbacks. Much research has been devoted to predicting the effects of climatic changes on the distribution of species, but the consequences of biodiversity changes for the climate system are less understood. For instance, what are the main aspects (species richness, functional diversity, land cover patchiness) and mechanisms through which biodiversity interacts with the climate? Do landscapes with different levels of diversity contribute differently to climate regulation or feedbacks? How do human choices such as nature conservation or natural resources production affect the climate? To address these questions, we combine observational and modelling approaches in a collaborative effort of ecologists and climate scientists.

First, we present how ecosystem diversity affects forests’ climate response (indicated by interannual variability in summer NDVI) and climate effect (indicated by interannual variability in summer LST), using 20 years (2003-2022) of remote sensing data at 1 km resolution over Europe. We consider different diversity levels (taxonomic, functional, structural) together with various ecosystem, topography, soil, and climate predictors in a multiple linear regression with Ridge regularisation. This approach allows isolating the effects of specific biodiversity aspects (e.g. tree species richness, forest edge density), functional properties (e.g. leaf type, leaf traits), and structure (e.g. canopy height, tree cover density), and determining the sign and magnitude of their contribution. We show which aspects and scales of biodiversity are relevant for ecosystem stability and climate regulation, respectively, and classify forests into response and effect types that could be considered in coupled biosphere-atmosphere models.

Second, we discuss how biodiversity aspects can be integrated into the coupled biosphere-atmosphere regional climate model COSMO-CLM2 to quantify their effects on land-atmosphere interactions and feedbacks over Europe. We demonstrate one approach, utilising future land cover scenarios derived from the Nature Futures Framework that represent different value perspectives on nature (intrinsic, instrumental, and relational), habitat types from EUNIS (European Nature Information System), and species abundances from EVA (European Vegetation Archive). Our results show temperature differences of up to several degrees locally, with enhanced temperature sensitivities under hot and dry conditions. Such findings can help identify synergies between biodiversity conservation, climate change mitigation, and adaptation, and support the development of effective policy solutions.

Finally, this presentation will provide perspectives for research at the interface of biodiversity and climate change.

How to cite: Sieber, P., Schwaab, J., Karger, D., and Seneviratne, S. and the FeedBaCks consortium: Exploring climate-biodiversity interactions in observational data and models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19043, https://doi.org/10.5194/egusphere-egu24-19043, 2024.

EGU24-19803 | ECS | Posters on site | ITS1.6/BG1.18

Exploring the carbon dynamics and epiphytic lichen diversity of boreal old-growth forests  

Anu Akujärvi, Aleksi Nirhamo, Risto K. Heikkinen, Juha Pykälä, Otto Saikkonen, Timothy Green, Mikko Peltoniemi, and Annikki Mäkelä

The loss of pristine old-growth boreal forest landscapes due to the intensive management for timber production has caused both a severe decline of forest biodiversity in Northern Europe as well as significantly altered their carbon stocks and dynamics. Understanding of the dynamics of old-growth forests is needed to evaluate the consequences of different forest management and conservation strategies on climate change mitigation and biodiversity conservation. It is increasingly suggested that integrated forest management and conservation planning is required to secure both biodiversity and carbon storage values. However, it is insufficiently known how closely these values coincide at the local level, i.e., whether the same structural and quality features in old-growth forests support both high biodiversity and carbon stock.

The objectives of this study were, first, to explore the dynamics of stand growth and carbon sequestration in boreal old-growth forests and second, to investigate whether the occurrence of red-listed epiphytic forest lichens coincides with high carbon stock and structural features related to it. The study was based on an extensive repeated forest inventory dataset collected between 1990 and 2019 in southern Finland and a lichen inventory conducted during 2020 – 2021 at the same sites.

The estimated volume of standing trees and deadwood were higher in the studied forest stands than in managed forests on average. Estimates of net primary production showed varying trends of carbon sequestration among the study plots. Stand gross growth increased by 50% during the study period. The standing volume remained stable because a large proportion of the biomass increment was allocated to deadwood. The study sites showed a high occurrence of red-listed epiphytic lichens. No relationship was found between the species richness of red-listed lichens and the aboveground carbon stock. However, a significant negative relationship was found between the number of red-listed lichen occurrences and carbon stock.  The species richness of red-listed lichens showed a strong unimodal response to the aboveground carbon stock change: the highest species richness was associated with intermediate carbon sinks.

Our results highlight the major role of tree mortality driving the carbon dynamics of old-growth forests, with simultaneous benefits for deadwood-associated species. However, more research is needed on the stability of carbon stocks of forests in the face of shifting disturbance regimes due to climate change. While the species richness of red-listed epiphytic lichens had a neutral relationship with the aboveground carbon stock size, we observed fewer occurrences in carbon-rich forests, and lower species richness and occurrences in plots with large carbon sinks. Therefore, if climate benefits are sought with methods that increase stand density, negative impacts may be expected on lichen species that fare poorly in dense stands with low light. Additionally, high carbon sequestration in fast-growing stands may come at the expense of reduced biodiversity.

In summary, this study supports the idea that old-growth forests provide considerable benefits regarding both climate change mitigation and biodiversity. Therefore, increasing the area of old-growth forests would simultaneously support these key goals.

How to cite: Akujärvi, A., Nirhamo, A., Heikkinen, R. K., Pykälä, J., Saikkonen, O., Green, T., Peltoniemi, M., and Mäkelä, A.: Exploring the carbon dynamics and epiphytic lichen diversity of boreal old-growth forests , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19803, https://doi.org/10.5194/egusphere-egu24-19803, 2024.

EGU24-20282 | ECS | Posters on site | ITS1.6/BG1.18 | Highlight

The Leipzig Canopy Crane experiment: DNA metabarcoding of air samples to monitor seasonal variations in airborne fungal and plant communities composition 

Ettore Fedele, Birgit Gemeinholzer, Ronny Richter, Christian Wirth, and Beatriz Sánchez-Parra

Rapid and accurate assessments of ecological responses to environmental changes are key to the development of effective measures aimed at the mitigation of detrimental effects on the integrity of ecosystems and the provision of services that support the livelihoods of billions of people worldwide. Traditionally, however, the study of ecological communities has relied on laborious and complex taxonomic work, that undermines the feasibility and practicality of urgent monitoring programmes.

In the last two decades, the emerging field of environmental DNA analysis has opened to the possibility to study complex systems at a fraction of the original time and financial costs, hence producing vast amounts of vital information. Here, we utilised DNA metabarcoding analysis of bioaerosol samples collected during 2019 at the Leipzig Canopy Crane to study seasonal variations in airborne fungal and plant species composition, in relation to changes in humidity, wind, and temperature. Preliminary results show significant differences in both plant and fungal communities. Specifically, climatic differences between the coldest and warmest months significantly affect the taxa Ascomycota and Basidiomycota, whereas the period between March and April reportedly displayed an increase in the abundance of anemophilous plants and members of the genus Salix. Lastly, with this study we intend to showcase the importance of long-term monitoring programmes of environmental DNA for investigating the implications of climate change.

How to cite: Fedele, E., Gemeinholzer, B., Richter, R., Wirth, C., and Sánchez-Parra, B.: The Leipzig Canopy Crane experiment: DNA metabarcoding of air samples to monitor seasonal variations in airborne fungal and plant communities composition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20282, https://doi.org/10.5194/egusphere-egu24-20282, 2024.

EGU24-1118 | ECS | PICO | ITS3.5/BG1.19

From electrical cable bacteria acidification to eelgrass colonisation: seasonal monitoring of foraminiferal ecology and shell preservation on estuarine mudflats. 

Maxime Daviray, Emmanuelle Geslin, Eric Beneteau, Sophie Quichard, Matéo Tougne, and Edouard Metzger

This study presents the seasonal monitoring of sediment acidification in two intertidal mudflat stations in the Auray river estuary (Atlantic coast, France). Sediment geochemistry and living benthic foraminifera and the preservation of their shells were investigated from April 2022 to July 2023. The development of eelgrass meadows was observed in both mudflats during Summer, something that had not happened for over ten years. Before these sprouts, the mudflats were bare, with seasonal algal deposits, and colonised by cable bacteria. Cable bacteria activity is characterised by electrogenic sulphide oxidation (e-SOx) measured by O2, H2S and pH microprofilings. e-SOx redesigns diagenetic processes generating strong pH gradients within the first few centimetres of sediment. The upstream mudflat showed seasonal dynamics of e-SOx. Cable bacteria appeared to be inactive in Winter (∆pH = 0.4) and led to intense pore water acidification during Fall (∆pH = 1.9) under meadow senescence. In the downstream mudflat, e-SOx remained continuous through the year with ∆pH from 0.9 in Winter to 2.3 in Fall. At both stations, the Ωcalc decreased from supersaturated to values well below 1 in the first few millimetres of sediment, excepted in Winter when Ωcalc was undersaturated due to freshwater flow. All year long, calcareous specimens, mostly dominated by Ammonia morphocomplex tepida and Haynesina germanica, showed test dissolution below the sedimentary oxic layer. During Fall, at both stations, calcareous specimens dwindled and tests were extremely corroded. In the meantime, the agglutinated species Ammobaculites balkwilli dominated the assemblage. During Spring, the upstream station was the setting for a H. germanica bloom after the cable bacteria seemed no longer active in Winter. During Summer, the upstream station showed a well-developed eelgrass meadow together with e-SOx (ΔpH = 1.3). Agglutinated species dominated the foraminiferal assemblage with A. balkwilli in the upper 5-mm and Eggerelloides scaber deeper down. The eelgrass colonisation has seemed to be beneficial to the foraminiferal community and stimulates its dynamism by encouraging a new species equilibrium in the assemblage. The most impacted species seemed to be A. morphocomplex tepida as between Summer 2022 and 2023 their density and relative abundance felt sharply in favour of Elphidium spp., Quiqueloculina spp. and A. balkwilli. These summery observations were quite different from those at the downstream station where cable bacteria were active all year long. Surprisingly, agglutinated species remained in minor proportions and A. morphocomplex tepida more or less constant. Moreover, dead assemblages showed important losses of calcareous tests where cable bacteria were active conducting to an organic lining enrichment with depth. To summarize, our study shows that foraminiferal ecology responds quickly to environmental changes in coastal sediments making them suitable for biomonitoring while the loss of their tests in acidic environments weakens their applicability for reconstructing temporal environmental chronicles.

How to cite: Daviray, M., Geslin, E., Beneteau, E., Quichard, S., Tougne, M., and Metzger, E.: From electrical cable bacteria acidification to eelgrass colonisation: seasonal monitoring of foraminiferal ecology and shell preservation on estuarine mudflats., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1118, https://doi.org/10.5194/egusphere-egu24-1118, 2024.

EGU24-1401 | ECS | PICO | ITS3.5/BG1.19 | Highlight

The distribution pattern of vascular plant alpha diversity in the Qinghai-Tibet Plateau 

Yajie Zhang and Tao Zhou

Biodiversity plays a vital role in maintaining ecosystem functioning. Quantifying the impact of biotic and abiotic factors on plant diversity and creating a prediction map of biodiversity on the Qinghai-Tibet Plateau (QTP) can provide data and mechanism support for biodiversity conservation and restoration. Species richness (SR) serves as one of the indicators of biodiversity. In this study, we developed a SR estimation model based on the random forest algorithm, using 275 SR observation data, soil attribute data, meteorological data, topographical data, and human activity data. We assessed the pattern of SR on the QTP from 2000 to 2020, analyzed its spatiotemporal variation, and further evaluated significant environmental factors influencing vegetation alpha diversity. Our results showed that (1) Climate factor is the main influencing factor of SR spatial variation on the QTP, followed by terrain conditions. (2) Machine learning can account for 56% of SR and unveil distribution patterns showing a decrease in species richness from southeast to northwest on the QTP. (3) Over the past 20 years, there has been an increase in SR, particularly in the southeastern region.

How to cite: Zhang, Y. and Zhou, T.: The distribution pattern of vascular plant alpha diversity in the Qinghai-Tibet Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1401, https://doi.org/10.5194/egusphere-egu24-1401, 2024.

EGU24-1572 | ECS | PICO | ITS3.5/BG1.19

Simulating and analysing seabird flyways: An approach combining least-cost path modelling and machine learning 

Nomikos Skyllas, Mo Verhoeven, Maarten Loonen, and Richard Bintanja

Seabird migration is driven by general wind circulation and productive ocean regions. As a result, bird migration takes place along distinct corridors or "flyways” that have evolved by earth’s large-scale atmospheric circulation patterns. These flyways form a link between climate and bird migration, and by simulating their pattern we might better understand the present corridor and predict the potential future impacts of climate change. However, few studies have focused on modelling flyways (especially for multiple bird strategies, populations, seasons, species and oceans), with most of them simulating trajectories of individual birds.

We use climatic data in combination with a least-cost-path modelling approach to simulate and describe multiple seabird flyways. By combining bird tracking data and machine learning, we are able to infer whether the flyways used by the birds optimise time and/or energy. We focussed on five seabird flyways of arctic terns and sooty shearwaters, both spring and autumn migration either over the Atlantic or the Pacific Ocean. We will show that a bird's effort is influenced by tailwinds, crosswinds and food availability, and we use this to calculate how close to the theoretical optimal migration (time- or energy-minimising) these birds actually fly. Our findings show that it is possible to recreate observed flyways using environmental data and that these simulations can generate predictions about the effect of future climate change.

How to cite: Skyllas, N., Verhoeven, M., Loonen, M., and Bintanja, R.: Simulating and analysing seabird flyways: An approach combining least-cost path modelling and machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1572, https://doi.org/10.5194/egusphere-egu24-1572, 2024.

EGU24-2306 | PICO | ITS3.5/BG1.19

Global Potential Riparian Zones Estimation 

Ibrahim Mohammed, Kashif Shaad, John Bolten, and Maira Bezerra

The recently announced Freshwater Challenge (FWC) initiative (https://www.freshwaterchallenge.org/) at the United Nations Water conference, sets an ambitious goal of restoring 300,000 kilometers of degraded rivers and 350 million hectares of degraded wetlands across the globe by 2030. Central to moving towards this goal will be including tangible actions for freshwater and linked ecosystems into supporting country’s Nationally Determined Contributions (NDCs) and National Biodiversity Strategies and Action Plans (NBSAPs). This in turn relies on the availability and fidelity of geospatial information that can be the basis for planning. The currently available geospatial data that captures accurate delineation of riparian zones, i.e., the transitional semiterrestrial/semiaquatic areas regularly influenced by fresh water, usually extending from the edges of water bodies to the edges of upland communities, must be improved to address the needs highlighted in the Freshwater Challenge. This presentation gives a methodology for deriving a global potential riparian zones layer obtained by processing wetlands, riparian buffers, headwater catchments, layers, assets, and information. We process near real-time land cover dataset from dynamic World (https://dynamicworld.app/), global wetland maps (Tootchi et al., 2019), and High‐Resolution Global Hydrography Maps (Yamazaki et al., 2019; Amatulli et al., 2022) for our analysis. We further explore how this analysis will inform governments around the world on assessing the current state of Riparian Zones as well as estimating benefits from restoration effort, allowing movement towards the goals set by the Freshwater Challenge.

How to cite: Mohammed, I., Shaad, K., Bolten, J., and Bezerra, M.: Global Potential Riparian Zones Estimation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2306, https://doi.org/10.5194/egusphere-egu24-2306, 2024.

EGU24-2513 | PICO | ITS3.5/BG1.19 | Highlight

Overwintering and migration of sea turtles in Jeju Island of Korea: lessons from “SEAturtle” PICES special research project (2019-2023)  

Taewon Kim, Soojin Jang, Mi-Yeon Kim, Byung-Yeob Kim, Kyungsik Jo, Sookjin Jang, Jibin Im, George Balazs, Hideaki Nishizawa, Connie Ka Kan NG, George Shillinger, and Michelle María Early Capistrán

PICES special research project “SEAturtle” launched in 2019 to understand the ecology of sea turtles around Jeju Island in relation to environmental stressors. Though COVID 19 had interrupted the project, we had quite a successful outcome over the last 5 years. Until now (June 15, 2023), a total of 16 iridium transmitters were deployed on sea turtles (14 on green sea turtles and 2 on loggerhead sea turtles). Among them, we received the signals successfully from 15 sea turtles. We found that quite a proportion of green sea turtles released in Jeju Island (N = 4 out of 12, approx. 40%) overwintered nearby even in the cold sea where the temperature dropped to 15 °C. The diving duration increased to approx. 6 hrs with decreasing temperature. Most of migrating green sea turtles (N = 4) traveled toward southern Japan which suggests a strong link to the population in Japan. Our population genetics result on green sea turtles stranded suggests that a subunit of Jeju population also have an affinity to Japan population. On the other hand, one of our loggerhead sea turtles moved westward but the other moved southward from Jeju Island, suggesting that they may also have connectivity to both Japan and China. Our populations genetics and stable isotope analysis on the commensal barnacles support this. We also have actively worked on the threat of plastics on Jeju populations and found that derelict recreational fishing gears might cause more serious problems than commercial derelict fishing gears. Microplastics are other threats to them too. To conserve the population of sea turtles in Jeju Island, we need further extensive research and should keep up international cooperation.

How to cite: Kim, T., Jang, S., Kim, M.-Y., Kim, B.-Y., Jo, K., Jang, S., Im, J., Balazs, G., Nishizawa, H., Ka Kan NG, C., Shillinger, G., and María Early Capistrán, M.: Overwintering and migration of sea turtles in Jeju Island of Korea: lessons from “SEAturtle” PICES special research project (2019-2023) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2513, https://doi.org/10.5194/egusphere-egu24-2513, 2024.

EGU24-6353 | ECS | PICO | ITS3.5/BG1.19

Biodiversity Data Cubes for Cross-Cutting Science and Policy 

Lina M. Estupinan Suarez, Laura Abraham, Tim Adriaens, Lissa Breugelmans, David A. Clarke, Peter Desmet, Shawn Dove, Katelyn T. Faulkner, Miguel Fernandez, Louise A. Hendrickx, Cang Hui, Alexis Joly, Sabrina Kumschick, Ward Langeraert, Matilde Martini, Joe Miller, Damiano Oldoni, Henrique Pereira, Cristina Preda, and Quentin Groom and the Biodiversity Building Blocks for Policy Project

Biodiversity and the Earth climate system are coupled through multiple biotic and abiotic feedbacks. Although there are clear links between the two systems, there is a lack of integrative research to evaluate them. One reason is that both systems operate on different scales, impacting integration efforts. In addition, the state of the art for each has evolved at different rates over recent decades. The growing number of satellite missions has made it possible to measure Earth system variables on a global scale and with great frequency. This enormous amount of data, captured even on an hourly basis, in tandem with a network of gauging stations, and open-access policies have boosted Earth system modeling and projections, and thus increased our understanding of one of the Earth's components (i.e. climate). Biodiversity data has also increased, albeit at a slower rate. Citizen science, along with the application of different technologies such as camera traps, phenocams, bioacoustics and, more recently, eDNA, are enabling scientists to obtain data more efficiently. However, there are still large gaps in geographic and taxonomic coverage.This is partially related to abrupt biodiversity gradients and insufficient  explanatory variables that hinder modeling  biodiversity as smooth gradients in climate systems. Another reason is the difference between data formats and approaches among fields; for example, biodiversity data are often recorded as spatial points, in contrast to gridded satellite data. All these pose numerous challenges for a more coordinated and cross-cutting research. As a starting point, it is our task to reach other scientific communities and offer harmonized solutions for data integration and analysis. Specifically, in the Biodiversity Building Blocks for Policy project (B-Cubed) we are developing informatics workflows to facilitate the analysis of species occurrence information in a data cube format. We are using, though are not limited to, the world’s largest biodiversity database, the Global Biodiversity Information Facility (GBIF), to provide species occurrence information in a more interoperable format. Furthermore, we are also leveraging the concept of data cubes to standardise access to biodiversity data using the Essential Biodiversity Variables framework. Currently, the implementation of species occurrence cubes is aimed at analyzing invasive species, improving species distribution modeling techniques, and developing effective indicators for informing policy. We strongly believe that data cubes will facilitate both data sharing and processing, and the co-development of tools and approaches between biodiversity and Earth sciences, which will undoubtedly benefit cross-cutting research. Synergies between biodiversity and Earth system sciences are urgently needed for better informing decision makers about feedbacks in both systems that can respond to adopted and upcoming policies.

How to cite: Estupinan Suarez, L. M., Abraham, L., Adriaens, T., Breugelmans, L., Clarke, D. A., Desmet, P., Dove, S., Faulkner, K. T., Fernandez, M., Hendrickx, L. A., Hui, C., Joly, A., Kumschick, S., Langeraert, W., Martini, M., Miller, J., Oldoni, D., Pereira, H., Preda, C., and Groom, Q. and the Biodiversity Building Blocks for Policy Project: Biodiversity Data Cubes for Cross-Cutting Science and Policy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6353, https://doi.org/10.5194/egusphere-egu24-6353, 2024.

River corridors, i.e. channel and adjacent floodplains, are hotspots of biodiversity and provide manifold ecosystem services. Their functioning and thus their ability to maintain biodiversity and to provide ecosystem services is controlled by a complex interplay of hydrologic, geomorphic and ecologic processes. These processes both affect and depend on hydrologic, geomorphic and ecologic connectivity within the river system. Today, process regimes of most (large) rivers are affected by human activities such as the construction of dams and reservoirs, flood protection measures or the withdrawal of water for agricultural irrigation. Dams modify longitudinal connectivity and thus the natural flow and sediment regime, while flood protection dikes disconnect channel and floodplain. There is a growing body of research on how hydrology-geomorphology-ecology-interactions shape river corridors and how these interactions are disturbed by humans. However, these insights tend to arise from studies at either the small river system or the reach scale. Truly understanding the impact of human interventions on rivers requires a dynamic, system scale perspective on process regimes. In our contribution, we take the river network in the Aral Sea Basin in Central Asia as an example and demonstrate the use of satellite time series to make a functional assessment of the process regimes controlling riparian ecosystem development. This river network has a total length of 75.000 km draining a catchment of 1.2 million km². We start the assessment with the delineation of the river network and the riparian zone from digital elevation models. Then, we use a novel unsupervised approach to create a map of landcover and general habitat types within the river corridors. In a second step, we create a dam and reservoir database in order to assess river fragmentation. In a third step, we use time series of Landsat and MODIS satellite imagery to assess hydrologic and geomorphic dynamics as well as vegetation development. These time series are the basis to analyze the relationship of e.g. floodplain inundation dynamics and vegetation trends or the impact of flood pulses on morphological change triggering vegetation change. The results show that the Aral Sea Basin is highly fragmented and that this fragmentation influences downstream process regimes and initiates modifications in the riparian ecosystems. Our satellite time series approach is able to capture relevant process dynamics and their impact on ecosystem development (i) in data-scarce regions, (ii) at large spatial scales (large river basins) and (iii) at high temporal frequency as enabled by short revisit times of current satellite constellations and cloud computing. Thus, it is a promising way to generate system-scale knowledge on the interaction of hydrologic, geomorphic and ecologic processes being the basis for biodiversity maintenance and ecosystem service provision in river corridors.

How to cite: Betz, F., Lauermann, M., Schmitt, R., and Heckmann, T.: Towards system scale understanding of the complex interaction of hydrologic, geomorphic and ecologic processes controlling ecosystem functioning in river corridors: Using satellite time series to assess the river network in the Aral Sea Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11602, https://doi.org/10.5194/egusphere-egu24-11602, 2024.

EGU24-13341 | ECS | PICO | ITS3.5/BG1.19 | Highlight

Terrestrial land cover shapes fish diversity in major subtropical rivers 

Heng Zhang, Rosetta Blackman, Reinhard Furrer, Maslin Osathanunkul, Jeanine Brantschen, Cristina Di Muri, Lynsey Harper, Bernd Hänfling, Pascal Niklaus, Loïc Pellissier, Michael Schaepman, Shuo Zong, and Florian Altermatt

Freshwater biodiversity is critically affected by human modifications of terrestrial land use and land cover (LULC). Yet, knowledge of the spatial extent and magnitude of LULC-aquatic biodiversity linkages is still surprisingly limited, impeding the implementation of optimal management strategies. Here, we compiled fish diversity data across a 160,000-km2 subtropical river catchment in Thailand characterized by exceptional biodiversity yet intense anthropogenic alterations, and attributed fish species richness and community composition to contemporary terrestrial LULC across the catchment. We created a spatially explicit model and estimated a spatial range of LULC effects extending up to about 20 km upstream from sampling sites. The model explained nearly 60 % of the variance in the observed species richness, associated with major LULC categories including croplands, forest, and urban areas. We find that integrating both spatial range and magnitudes of LULC effects is needed to accurately predict fish species richness. Further, projected LULC changes showcase future gains and losses of fish species richness across the river network and offer a scalable basis for riverine biodiversity conservation and land management, allowing for potential mitigation of biodiversity loss in highly diverse yet data-deficient tropical to sub-tropical riverine habitats.

How to cite: Zhang, H., Blackman, R., Furrer, R., Osathanunkul, M., Brantschen, J., Di Muri, C., Harper, L., Hänfling, B., Niklaus, P., Pellissier, L., Schaepman, M., Zong, S., and Altermatt, F.: Terrestrial land cover shapes fish diversity in major subtropical rivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13341, https://doi.org/10.5194/egusphere-egu24-13341, 2024.

EGU24-15186 | PICO | ITS3.5/BG1.19

Development of a Web-Responsive Analysis Tool for Tracking Sea Turtle Behavior and Habitat 

Kim Taehoon, Kim Bo ram, Hong Sang Hee, and Lee Chol young

  The environmental issues caused by marine debris and the problem of habitat pollution for marine organisms are pervasive worldwide. Both floating debris and sunken debris contaminate various habitats, including coastlines, coral reefs, and seaweed beds. Various marine organisms exposed to such marine debris ultimately suffer from entanglement and ingestion, with sea turtles, in particular, accounting for 66% of reported cases of harm among all marine mammals. In Korea, various cases of mortality due to entanglement and ingestion in sea turtles have been widely reported. To comprehend the correlation between the behavior, habitats, and marine debris associated with sea turtles, ecological research is being conducted through location tracking. it is essential to conduct habitat degradation research for sea turtles by analyzing their spatial behavior using location-based methods and understanding feeding patterns using various environmental information. To address these issues, it is crucial to accurately understand the movement routes and activity patterns of marine organisms. In the field of wildlife research, various studies are being conducted using geographic information systems to utilize diverse analytical methods.

  In this study, we aimed to develop a web-responsive analysis tool for continuous tracking of sea turtle behavior and habitat foraging. The analysis module comprises three parts: the preprocessing module, spatial analysis module, and exploratory analysis module. The preprocessing module functions to extract necessary data from Argos satellite-received location information and refine it into clean data. It extracts latitude, longitude, sea surface temperature, and depth information from multiple files, organizes them into a single table, and saves them in a analyzable file format. The analysis module includes functions for deriving sea turtle activity ranges and overlapping analyses of habitat within activity zones. The activity range analysis utilizes Kernel Density Estimation (KDE) based on sea turtle location point data. Bandwidth, defined automatically based on the distribution of accumulation and points, allows for efficient analysis. The habitat overlapping analysis integrates various biological occurrence information such as coral, algae, and jellyfish within the sea turtle's activity zone. This enables exploration of the sea turtle's habitat environment within dense areas. The exploratory analysis module offers visualization features for location information, received depth, and sea surface temperature derived from data received by Argos satellites. Depth and sea surface temperature details are presented alongside location information, utilizing color coding for enhanced comprehension.

  The analysis module and the platform it is implemented on were developed in the form of a responsive web application using the open-source R-shiny. The responsive web application allows researchers to input and analyze sea turtle location data directly from a web page in any internet-enabled environment. It is fast and efficient as the results can be promptly visualized on a map. The sea turtle behavioral analysis tool developed in this study enables researchers to obtain standardized information related to behavior and habitat using location-based sea turtle data received from various satellites. It establishes a systematic approach for researchers to easily utilize this information through the web.

How to cite: Taehoon, K., Bo ram, K., Sang Hee, H., and Chol young, L.: Development of a Web-Responsive Analysis Tool for Tracking Sea Turtle Behavior and Habitat, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15186, https://doi.org/10.5194/egusphere-egu24-15186, 2024.

EGU24-15721 | PICO | ITS3.5/BG1.19 | Highlight

Alternative migration strategies of fin whales in the Mediterranean sea : evidence of a lunar influence 

Clément Fontana, Hervé Glotin, and Carlo Brandini

Understanding migrational behavior of fin whales (Balaenoptera physalus) in the Mediterranean basin is of greatest importance in terms of research on cetaceans, but also in terms of conservation for a specie considered as ‘endangered’ based on the IUCN Red List criteria. We investigate in this study the migrational behavior of several individuals from this population. Several datasets (telemetry-tracking, satellite-estimated chlorophyll concentration and oceanic currents) are used to assess their long- and short-term behavioral adaptations to diverse biomes. We highlight the fact that meeting points with the North Atlantic population exist at strategical environmental locations. We prove that migrating fin whales show distinct swimming behaviors depending on the lunar phases by comparing their daily distances swam to the tortuosity of their paths. These distinct behaviors might be due to prey availability as well as acting as a temporal trigger to maximize chances of reproduction success. Indeed, this migration strategies of the Mediterranean population is also explained by reproductive constraints of an isolated population susceptible to inbreeding. We then focus the study on two fin whale paths in the Strait of Sicily showing that they are able to communicate between each others, adapt their foraging area to instantaneous moon-driven changes of oceanic conditions but also to follow cyclic seasonal variations of resources availability. We finally bring a new insight on an alternative pattern for migration strategies of fin whales in the Mediterranean sea.

How to cite: Fontana, C., Glotin, H., and Brandini, C.: Alternative migration strategies of fin whales in the Mediterranean sea : evidence of a lunar influence, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15721, https://doi.org/10.5194/egusphere-egu24-15721, 2024.

EGU24-18071 | PICO | ITS3.5/BG1.19

Impact of Hermodice carunculata (Pallas, 1766) (Polychaeta: Amphinomidae) on artisanal fishery: A case study from the Mediterranean Sea 

Emanuele Mancini, Riccardo Martellucci, Sebastiano Marino, Bianca Maria Lombardo, Umberto Scacco, and Francesco Tiralongo

Invasive species can cause severe economic damages, ecosystem alterations, and can even threat human health. In the global warming scenario, which can act as a driving force for the expansion of thermophilic species, we investigated for the first time the economic damage caused by the invasive bearded fireworm, Hermodice carunculata, to artisanal longline fishery in the Mediterranean Sea. We focused on bottom longline fishery targeting the highly prized white seabream Diplodus sargus, investigating catch composition of the fishing gear and Catch Per Unit Effort (CPUE) of species caught, with particular emphasis on the economic damage caused by the bearded fireworm, H. carunculata, in relation to water temperature. Our results clearly indicated direct and indirect economic damage to fishing activities practiced in the southeastern coast of Sicily (Ionian Sea). Type and extent of the damage caused by the invasive worm (H. carunculata) were discussed in relation to temporal scale and overall yields obtained by this traditional artisanal fishery, and some solutions are proposed. However, the actual situation requires special attention because it is expected to worsen in the context of the global warming future scenarios, such that further studies are urgently needed.

 

How to cite: Mancini, E., Martellucci, R., Marino, S., Lombardo, B. M., Scacco, U., and Tiralongo, F.: Impact of Hermodice carunculata (Pallas, 1766) (Polychaeta: Amphinomidae) on artisanal fishery: A case study from the Mediterranean Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18071, https://doi.org/10.5194/egusphere-egu24-18071, 2024.

Opencast limestone mines, being oligotrophic environments characterized by harsh environmental conditions are considered as challenging habitat for colonization and growth of all life forms. These conditions include elevated temperatures, prolonged exposure to sunlight, and deficiencies in organic matter, moisture, and soil nutrients. In such environments, lithobionts may play an important role as the main sources of primary production and maintaining the ecosystem functioning. Unfortunately, our knowledge regarding the taxonomic diversity, potential functions, and ecology of limestone quarry/mines remains quite limited. Here, we explored the taxonomic composition and metabolic potential of lithobiontic microorganisms dwelling carbonate rocks of a limestone mine in Udaipur, Rajasthan, India by using high-throughput shotgun metagenomic sequencing. Community profile analysis revealed that the lithobiontic community was dominated by bacteria (98.94 %), with a minute fraction of the Eukaryota (0.77 %) and archaeal population (0.23 %). Microbes belonging to Phylum Cyanobacteria (39.74 %), Proteobacteria (35.21 %) and Actinobacteria (10.34 %) were predominant followed by a remarkable share of Chloroflexi (4.77 %) and Firmicutes (2.41 %). Metabolic potential analysis, based on six functional modules of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, revealed that functional genes involved in microbial metabolisms are highly represented in this community (59.68 %). Functional analysis of the carbonate microbiome indicated their capacity to influence carbon, nitrogen, and sulfur cycles. Results suggest that the oxygenic photosynthetic bacteria contribute significantly to primary productivity as well as carbonate precipitation in such arid and oligotrophic environments. Multi-omics level study on isolated cyanobacterial strains is underway to gain deeper insights into habitat adaptation and the functioning of lithobiontic niche of cyanobacteria in carbonate rocks.

How to cite: Singh, J. and Maharana, C.: Metagenomics of carbonate rocks from limestone mines, Udaipur, Rajasthan, India, reveal insight into lithobiontic microbial community and biogeochemical cycling., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18368, https://doi.org/10.5194/egusphere-egu24-18368, 2024.

Agricultural land area is increasing globally despite the loss of productive agricultural lands in some world regions. The knowledge about major agricultural land changes and the impacts on the quality of land in both cropland and grassland in Africa is still very limited. We conducted an African continent-wide assessment of the dynamics of agricultural landscapes (i.e., gains, losses, and net change). With pressure mounting to halt biodiversity loss and stem land degradation in agricultural areas across all world regions, promoting sustainable agriculture requires not only an understanding of agricultural land-use change but also the impacts of such changes on land quality.
We identify influencing factors and model the quality of land associated with agricultural land gains and losses between 2000 and 2018. Land quality in gained and displaced croplands and grasslands was established using spatially-explicit analysis of changes in Net Primary Productivity, soil organic carbon content, crop suitability and percent yield change for five major crops of global importance grown across Africa. These are maize, rice, soybean, wheat, and alfalfa.
Influencing factors in each agricultural land change area (i.e., areas of cropland and grassland gains and losses) were examined. In cropland loss and gain areas, settlement development,
proximity to perennial rivers/water bodies, and access to a major road were important. For example, most land areas transitioning to cropland in Africa were associated with large distances away from major roads. The preceding finding suggests the remoteness of newly gained croplands. However, distances to a major road, waterbody, settlement, and elevation were important for explaining grassland dynamics. Land quality was better in gained
croplands than in those lost, whereas gained grasslands were of lesser quality compared to areas of grassland loss.
Five typologies of African countries were developed based on net yield and amount of land cultivated per crop in cropland change areas. Type 1 typifies net yield increase and cultivated land decrease, while type 2 is characterized by yield increase consequent upon cropland expansion. Net yield and land remain unchanged in type 3, while in type 4, cultivated land increased, but yield decreased for maize in 40% of African countries, and in type 5, yield and land area decreased. This study thus provides evidence about the quality of land in gained and lost agricultural areas and generalizable insights on their dynamics across Africa.

How to cite: Akinyemi, F. O. and Speranza, C. I.: Changes to agricultural landscapes impact the quality of land: An African continent-wide assessment in gained and displaced agricultural lands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21129, https://doi.org/10.5194/egusphere-egu24-21129, 2024.

Reversing the declines in biodiversity trends is a widely adopted goal, reflected in both the Kunming-Montreal Global Biodiversity Framework, and the EU 2030 Biodiversity Strategy. In this presentation, we will show two examples of how models and scenarios can be mobilized to provide support to achieving these goals in the context of the broader sustainable agenda. In a first example, multiple economic and biodiversity models are used to assess long-term, global scale, pathways aiming to explore whether—and how—humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion reverse global biodiversity losses (Leclere et al, 2020). The results show that i) immediate efforts of unprecedented ambition and coordination could enable reversing the global terrestrial biodiversity trends caused by habitat conversion, and ii) that an integrated approach, combining increased protection and restoration efforts with sustainable production and consumption measures, is essential to not only enable a bending of global biodiversity trends before 2050, but also limit trade-offs and harness synergies with other sustainable goals. In a second example, we will demonstrate how models and scenarios are also mobilized to support policy design at the EU scale, with an application focusing on assessing the land use, LULUCF emissions and biodiversity implications of EU climate (e.g., Fitfor55 package and LULUCF regulation) and biodiversity (e.g., Nature Restoration Law) and their interactions.

How to cite: Havlík, P., Leclere, D., and Visconti, P.: Modeling of in support of long-term pathways and EU policies for bending the curve of biodiversity loss, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22576, https://doi.org/10.5194/egusphere-egu24-22576, 2024.

EGU24-410 | ECS | Orals | EOS3.1 | Highlight

Family-Friendly Conferences in the Geosciences 

Elena Päffgen, Leonie Esters, and Lisa Schielicke

Participation in (inter-) national conferences, seminars, and workshops such as the EGU General Assembly is important for professional exchange and personal networking, especially for early career scientists. Enabling scientists with family obligations to take part in conferences will increase gender equity and diversity, as women remain to be the main caregivers in most families.

The questions of family planning and kickstarting a professional career arise simultaneously in almost any field. What makes this particularly challenging for young families in academia is that this line of work frequently requires for parents to move, making traditional forms of supportive caregiving by extended family members often unavailable. The vital role conference attendance plays for an academic career only aggravates that challenge. Therefore, a lack of opportunities to attend conferences and workshops clearly puts young parents at a disadvantage, especially young women in academia.

The Project for Family-Friendly Conferences has been initiated by Leonie Esters and Lisa Schielicke from the Department of Geosciences at the University of Bonn in April 2023. Elena Päffgen joined as a research assistant (WHK) later the same year. With an initial duration of one and a half years the project is funded by the Gleichstellungsbüro (office for equal opportunities) of the university. Our principal goal is to find out, how conference and workshop participation can be made more family-friendly.

The present work analyses an online survey with 245 participants who were interviewed on the topic of family-friendly conferences. The survey was addressed to all scientists with a focus on geosciences, 58% of all participants claimed to have children, while 42% were childless. 61 comments expressing wishes and needs of parents and guardians we received from the participants underscore the urgency of the matter. Key concerns of the participants were clear communication (e.g., whether children could be brought along to the events in question), awareness among event-organizers, and easy access to financial assistance (e.g. for babysitting). For instance, more hybrid events, on-site childcare and designated family-friendly activities at conferences were named as possible improvements. However, considering that families and their challenges are diverse, a wide array of offers and flexibility are required to address their needs.

Our project aims to educate the wider academic community on family-specific challenges. Based on the results of this survey, we will provide conference organizers with guidelines to improve family-friendliness of conferences and facilitate their exchange among each other. Additionally, we want to keep parents informed about the offers for families that are already in place at conferences in our field of study. Overall, we are convinced that outcomes of our project will be beneficial for conference and workshop organizers likewise as for researchers who are parents and will contribute to gender equity and diversity in academia.

Children, parents and guardians are particularly welcome to the poster presentation and discussion.

If you would like to participate in our survey: https://www.empirio.de/s/VxLGGLxWv2

 

 

How to cite: Päffgen, E., Esters, L., and Schielicke, L.: Family-Friendly Conferences in the Geosciences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-410, https://doi.org/10.5194/egusphere-egu24-410, 2024.

The European Geosciences Union (EGU) is the leading organisation supporting Earth, planetary and space science research in Europe, upholding and promoting the highest standards of scientific integrity, open science and open access research. EGU’s vision is to realise a sustainable and just future for humanity and the planet through advances in Earth, planetary and space sciences.

The EGU awards and medals programme acknowledges distinguished scientists every year for their exceptional research contribution to the Earth, planetary and space sciences. Furthermore, it recognises the awardees as role models for the following generation of early-career scientists, encouraging geoscience research. 

Except for EGU council and award committee members everyone (including non-EGU members) is eligible for receiving an EGU award. Nominations need to be submitted by EGU members online by 15 June every year. Each EGU medal or award is selected through a rigorous assessment of the candidates and their merits through the respective committee. The procedures for nomination, selection of candidates and the time schedule are described in detail on the EGU website. 

EGU is committed to recognizing scientific excellence providing equal opportunities. The processes and procedures that lead to the recognition of excellence must be transparent and free of biases. However, establishment of clear and transparent evaluation criteria and performance metrics to provide equal opportunities to researchers across gender, continents and ethnic groups can be challenging since the definition of scientific excellence is often elusive. 

The purpose of this presentation is to share the experiences and efforts of the European Geosciences Union to ensure equal opportunities. The presentation will showcase data and statistics to provide constructive directions towards the objective of offering equal opportunities to researchers from diverse demographic backgrounds.

How to cite: Blunier, T.: Equality of opportunities in EGU recognitions: The EGU Awards Committee experience, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1620, https://doi.org/10.5194/egusphere-egu24-1620, 2024.

EGU24-9435 | ECS | Orals | EOS3.1 | Highlight

Navigating parenthood as an early career scientist: insights and challenges from hydrological sciences 

Diana Spieler, Lina Stein, and Rodolfo Nóbrega

Combining an academic career with caretaking responsibilities is an often-overlooked challenge. Juggling the workload, conference attendance, or the potential requirement to move to a new job all become more demanding when children or other caretaking responsibilities are a part of your life. We, members of the Young Hydrology Society (YHS), wanted to hear some views from academic parents in hydrology. What are the challenges they face, what is their advice to other parents and what systematic changes would they like to see? This non-scientific initiative gathered responses from academics within the hydrology community from different parts of the world at different career stages, including PhD candidates, postdoctoral researchers, assistant professors, and group leaders. The survey revealed diverse challenges and strategies employed by academic parents to balance their professional and personal lives. We identified a complex interplay of personal, institutional, and cultural factors that influence these experiences in academia. A common theme across responses was the strategic timing of parenthood, often aligned with phases of planning security, such as after having won a longer-term grant. Despite the varying international backgrounds, many responses highlighted the supportive role of national policies, particularly in countries like Sweden, which offer substantial parental support and flexible work arrangements. However, challenges such as reduced research productivity, lack of support to attend conferences, and the need to relocate were frequently mentioned as limiting factors for career development and progression. Among the strategies employed to minimise these challenges, we highlight adjusting work schedules, reducing workloads, and relying on support from partners and extended family. Childcare distribution varied, with many striving for an equitable split between partners, though this was often influenced by career demands and cultural standards or expectations. The responses also contained suggestions for systemic improvement, including extended childcare facilities at conferences, more flexible job contracts, and institutional support for parents, particularly during fieldwork and conferences. While there are notable advancements in some areas, there remains a significant need for systemic changes to better support academic parents and ensure a more inclusive and equitable academic environment. It is fundamental to highlight, however, that the results of this initiative do not capture the entire spectrum of experiences faced by those with caretaking responsibilities, and that our survey is likely to be biased towards ECS who still were engaged and successful in their work. We aim to release these results as a series of blog posts on the YHS webpage (https://younghs.com/blog/) to disseminate this topic with the main aim of offering valuable reassurance to current and future parents in academia facing similar challenges.

How to cite: Spieler, D., Stein, L., and Nóbrega, R.: Navigating parenthood as an early career scientist: insights and challenges from hydrological sciences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9435, https://doi.org/10.5194/egusphere-egu24-9435, 2024.

EGU24-9557 | Orals | EOS3.1

Diversity at a Small Geoscience Conference 

Alice Lefebvre and Renée Bernhard

Conferences are places where intellectual and communication standards are shown. Ultimately, they can contribute to create a sense of belonging or inadequateness. However, several analyses of specific diversity measures have demonstrated that large conferences often lack diversity in terms of gender, geographic location or race. The present contribution presents an analysis of the gender, country of affiliation and student status of the participants and presenters during four instances of a small European geoscience conference, as well as the length of presentation and number and tone of questions of the latest instance of this conference. We found that women make up about one-third of participants, session chairs, invited keynote speakers, and presenters (oral and poster) on average, but percentages vary greatly from one year to the next. Students represent around 30% of participants, but over 40% of poster presenters and 28% of long presentations. In total, only half of the participants asked a question, and most of the questions were asked by senior men. Around 25% of the questions were asked with a friendly tone; the remainder were neutrally asked. Friendly questions were asked more frequently after keynote lectures and long presentations than following short talks. We suggest concrete actions that can be taken to promote the development of an inclusive and supportive environment at small conferences.

How to cite: Lefebvre, A. and Bernhard, R.: Diversity at a Small Geoscience Conference, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9557, https://doi.org/10.5194/egusphere-egu24-9557, 2024.

EGU24-10508 | ECS | Posters on site | EOS3.1 | Highlight

An Evaluation of the ADVANCEGeo Partnership Bystander Intervention Model 

Blair Schneider, Christine Bell, Stefanie Whitmire, Horinek Hannah, Meredith Hastings, Rebecca Barnes, Allison Mattheis, Billy Williams, and Erika Marin-Spiotta

The ADVANCEGeo Partnership program, funded by a National Science Foundation ADVANCE award in 2017, was designed to empower geoscientists to transform workplace climate, and has been recently adapted to other STEMM disciplines as well. To date, the ADVANCEGeo Partnership has led over 230 workshops to institutions across the USA and Europe, in both virtual and in-person formats. A main strategy of ADVANCEGeo for organizational climate change is to enact interventions at the individual and collective level through behavior change education informed by intersectionality and ethics of care frameworks. The program uses a community-based model for bystander intervention and workplace climate education designed to give members of the academic community the knowledge and tools to identify, prevent, and mitigate harm from exclusionary behaviors that directly affect the retention of historically excluded groups in STEMM. 

Evaluation data from 81 workshops held between 2018-2022 were analyzed using a transtheoretical framework of behavioral change. All of these workshops used a consistent structure and length of presentation (averaging 2.5 hours overall). Thirty six workshops were conducted in-person (44%) and forty five workshops were conducted virtually (56%) using the Zoom platform. The workshops were conducted for a variety of audiences, including institutional leadership, academic departments, professional societies, research groups, and student groups. Each workshop included the same core components, though some materials in the presentation portion were tailored to the needs of the audience as requested. Evaluation results show positive increases in participant knowledge, satisfaction, and intent to change behavior directly after the workshop. An additional follow up survey that was disseminated approximately 6 months after the workshop provides evidence of longitudinal behavior change. These results demonstrate that the ADVANCEGeo Bystander Intervention model design successfully shifts behaviors in workshop participants, with an aim to create more positive workplace climates for all seeking to be a part of STEMM.

How to cite: Schneider, B., Bell, C., Whitmire, S., Hannah, H., Hastings, M., Barnes, R., Mattheis, A., Williams, B., and Marin-Spiotta, E.: An Evaluation of the ADVANCEGeo Partnership Bystander Intervention Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10508, https://doi.org/10.5194/egusphere-egu24-10508, 2024.

EGU24-11929 | ECS | Orals | EOS3.1 | Highlight

Promoting and Supporting Equity, Diversity, Inclusion, and Accessibility: A Collaborative Approach in the Hydrogeological Community and Beyond 

Luka Vucinic, Viviana Re, Barbara Zambelli, Theresa Frommen, Fatima Ajia, and Shrikant Limaye

The International Association of Hydrogeologists (IAH) is a scientific and educational charitable organisation for scientists, engineers, water managers and other professionals working in the fields of groundwater resources planning, management and protection. Comprising various commissions and networks, IAH engages in activities such as contributing to groundwater science, outreach, education, and training. While IAH takes meaningful steps towards equity, diversity, inclusion, and accessibility, recognising the importance of putting these principles into practice, it is essential to acknowledge that there are still numerous challenges and barriers that need to be addressed. It is worth noting that IAH shares similar challenges with many other organisations and associations in navigating the path towards greater equity, diversity, and inclusion. Therefore, the establishment of a dedicated working group became imperative to address and overcome these challenges effectively.

The Socio-Hydrogeology Network (IAH-SHG), an official IAH network, aims to integrate social sciences into hydrogeological research, and has two active working groups: the Working Group on Groundwater and Gender, and the newly established Equity, Diversity, Inclusion, and Accessibility (EDIA) Working Group. This group is designed to further enhance the EDIA landscape within the IAH and beyond. It is the result of collaborative endeavours, extensive discussions, and productive meetings within the IAH and IAH-SHG, and it builds on the work and experience of the Working Group on Groundwater and Gender and the IAH-SHG in general. We will showcase the key insights gained from our IAH-SHG experiences and demonstrate how we applied these lessons to facilitate the establishment of the EDIA Working Group.

By harnessing the power of collective effort, the EDIA Working Group aims to foster a positive impact that resonates throughout the IAH and wider hydrogeological community. We will present our experience regarding the pivotal role of networks, such as IAH-SHG, in advancing equity, diversity, inclusion, and addressing barriers within the geosciences. We will also share our plans for collaboration with other IAH commissions, networks, IAH members, and other individuals (i.e. membership in the IAH is not a prerequisite for individuals interested in joining the IAH-SHG or any of its working groups), as well as ideas and recommendations for new and innovative strategies to identify and overcome barriers. Furthermore, we will share the EDIA Working Group's experience so far, providing insights that may be valuable for other associations, organisations, and groups facing similar challenges.

How to cite: Vucinic, L., Re, V., Zambelli, B., Frommen, T., Ajia, F., and Limaye, S.: Promoting and Supporting Equity, Diversity, Inclusion, and Accessibility: A Collaborative Approach in the Hydrogeological Community and Beyond, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11929, https://doi.org/10.5194/egusphere-egu24-11929, 2024.

EGU24-12182 | ECS | Orals | EOS3.1 | Highlight

Is my teaching gender-fair? A self-assessment questionnaire. 

Sílvia Poblador, Maria Anton-Pardo, Mireia Bartrons, Xavier Benito, Susana Bernal, Eliana Bohorquez Bedoya, Miguel Cañedo-Argüelles, Núria Catalán, Isabel Fernandes, Anna Freixa, Ana Genua-Olmedo, Elisabeth León-Palmero, Anna Lupon, Clara Mendoza-Lera, Ada Pastor, Pablo Rodríguez-Lozano, Aitziber Zufiaurre, and María del Mar Sánchez-Montoya

The study of inland waters - Limnology - is full of fascinating women who have vastly contributed to our understanding of these valuable ecosystems. Although women’s visibility was low during the early years of Limnology, it has increased over time. Nowadays, women represent half of the early-career limnologists in Europe. However, as in many other fields, their scientific contributions have been traditionally neglected from schools to universities (i.e., the Matilda effect). The project “Gender LimnoEdu”, developed by the Gender&Science AIL group and funded by EGU (2020), aims to increase the visibility of women in Limnology and related subjects - such as Ecology, Hydrology or other Geosciences - in academic courses and lectures. We have created a set of online ready-to-use resources: (1) a self-evaluation form to detect gender biases and raise self-awareness for teachers of Limnology and Geosciences courses (the form is applicable to a wide range of courses and disciplines), (2) teaching nutshells highlighting key female limnologists (and their history) to help lecturers to acknowledge the role of women in Limnology in their courses, and (3) a complete teaching unit about the past and present situation of women in the field of Limnology. All these resources are freely available (https://www.genderlimno.org). Here, we will present this toolbox of resources and guide you on how to use them for your teaching needs. Moreover, we will share the preliminary results of the self-evaluation form to showcase how gender-fair Limnology lessons in high-education courses are. We welcome everybody to take it! https://www.genderlimno.org/gender-fair-lessons.html

How to cite: Poblador, S., Anton-Pardo, M., Bartrons, M., Benito, X., Bernal, S., Bohorquez Bedoya, E., Cañedo-Argüelles, M., Catalán, N., Fernandes, I., Freixa, A., Genua-Olmedo, A., León-Palmero, E., Lupon, A., Mendoza-Lera, C., Pastor, A., Rodríguez-Lozano, P., Zufiaurre, A., and Sánchez-Montoya, M. M.: Is my teaching gender-fair? A self-assessment questionnaire., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12182, https://doi.org/10.5194/egusphere-egu24-12182, 2024.

Many universities openly pledge commitments to improving diversity, with science, technology, engineering, and math (STEM) fields receiving significant attention. Despite these efforts, geoscience remains one of the least diverse fields in STEM. This recognition has prompted an increase in studies stressing the systemic lack of representation across the field and the barriers that exist for those within. However, much of this work has been limited by the use of demographic datasets that have been either passively collected or derived from government sources. Constraints include country-specific data collection policies, failures to collect field-specific data, and the absence of additional information necessary for intersectional analysis. Advancing diversity, equity, and inclusion (DEI) in our field requires meaningful datasets that clearly identify social inequalities. Limited, incomplete, or anecdotal data are too easily dismissed by those in power, stalling constructive efforts.

In Canada, demographic data is not regularly collected at academic institutions and is seldom field-specific. This absence of data undermines efforts to identify the current state of diversity in the field and prioritise initiatives for improvement. Collecting comprehensive demographic data is a crucial step in determining whether progress is evident. It can also help to highlight areas of concern, especially in fields lacking in diversity, such as geoscience. To address this absence of data, we disseminated a 22-question demographic survey to 35 academic geoscience departments across Canada in late 2022.

We received 482 eligible responses to the survey, accounting for approximately 20% of the research population. Overall, men make up a slight majority across all respondents (53%), and the percentage of individuals who identify as white (73%) is greater than the national average (67%). Additionally, results shows that research students (MSc and PhD) are a diverse group, while salaried positions (postdoc, research staff and faculty) lack diversity in a wide range of categories including, gender, race, LGBTQ+, Indigeneity, and disability. Moreover, tenured positions are overwhelmingly occupied by white men, with racial inequalities prominent in the data.

These data highlight several areas of concern in the academic career path. The transition from research student to salaried research remains a clear area of concern, while the tenure process appears to continually favour white able-bodied cisgender men. Moreover, the representation of Indigenous persons and those with self-identified disabilities remains very low. Solutions require institutional changes to recruitment, tenure applications, postdoctoral hiring, field work design, and mentoring practices. Importantly, they also require changes to how we collect and analyse demographic datasets in geoscience, as a continued reliance on data that is passively collected or obtained from government sources will continue to limit our abilities to identify areas of concern and create effective strategies.

How to cite: Jess, S., Heer, E., and Schoenbohm, L.: Active demographic data collection in geoscience: results, implications, and recommendations from a survey of Canadian academia  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12643, https://doi.org/10.5194/egusphere-egu24-12643, 2024.

EGU24-13028 | Orals | EOS3.1

Embedding EDI in Geoscience Publications – Examples from the AGU  

Matthew Giampoala, Mia Ricci, and Paige Wooden

The American Geophysical Union understands an expansive and inclusive geoscience community is key to furthering knowledge about the Earth and the universe and finding solutions to current societal challenges. Though the geosciences have historically been dominated by a few homogenous groups, the collaborative and global nature of our science impels us to change our systems to include historically marginalized voices. Supported by AGU’s 2018 Diversity and Inclusion Strategic Plan, in 2023, AGU Publications signed the Joint Commitment for Action on Inclusion and Diversity in PublishingSignatories agree to collect self-reported gender and race/ethnicity data, develop baselines, and set minimum standards for inclusion. We provide a demographic overview of our authors, reviewers, and editors over time, detail how we collect data while following privacy laws, and discuss how data informs our DEIA strategies. We provide reports to our journal editors who set baselines and develop journal goals. We launched various initiatives to increase diversity and equity and decrease bias in peer review processes, and used the data to assess outcomes of these initiatives. In addition, we present examples of policy and structural changes we have implemented to weave DEIA in the scientific publishing environment, including our equitable approach to Open Access, our Community Science Exchange, and the recently launched Inclusion in Global Research policy to improve equity and transparency in research collaborations.

How to cite: Giampoala, M., Ricci, M., and Wooden, P.: Embedding EDI in Geoscience Publications – Examples from the AGU , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13028, https://doi.org/10.5194/egusphere-egu24-13028, 2024.

EGU24-14684 | Posters on site | EOS3.1

Nakkihomma: attitudes towards and distributions of academic household work 

Katja Anniina Lauri, Xuefei Li, Paulina Dukat, Nahid Atashi, Laura Karppinen, Katrianne Lehtipalo, Anna Lintunen, Dmitri Moisseev, Janne Mukkala, Tuomo Nieminen, Rosa Rantanen, Timo Vesala, Ilona Ylivinkka, and Hanna Vehkamäki

The equality and work well-being group at the Institute for Atmospheric and Earth System Research (INAR) at the University of Helsinki conducted a survey about academic household work (AHW) tasks among the institute’s staff in autumn 2023. The main aim of the survey was to find out how different AHW tasks are divided among the staff members and how the staff members consider these tasks.

Before the actual survey, we asked the staff to list tasks they consider AHW (nakkihomma in Finnish; direct translation: Frankfurter task). A few examples of AHW tasks we got: sending calendar invitations for meetings, making coffee for others, helping to organize social events at the institute, emotional service work (being involved in discussion with colleagues or students about their personal affairs or problems). For the survey, we grouped the proposed tasks in three categories (number of tasks in parentheses): research-related tasks (3), society-related tasks (4) and community-related tasks (29). The last category was further divided into four subcategories: tasks related to meetings (7), social events (6) and facilities (9), and miscellaneous (7). We asked which tasks the staff members consider as AHW, and how frequently they are committed to each task.

We received a total of 91 answers to the survey. This corresponds to 33% of our staff, but according to the background information we collected, the different groups in terms of gender, career stage, language status (Finnish/non-Finnish speaker) and staff group (research/technical/administrative) were represented well.

The general attitude towards AHW was surprisingly positive: 57% of respondents had a positive attitude while 35% had a neutral attitude. Senior research staff members use a considerable amount of time participating in different committee meetings while early-career researchers do not so much; however, they do a great deal of practical duties related to meetings. Furthermore, we found out that a lot of emotional service work is being done. Interestingly, early career researchers do not consider this generally as AHW while senior researchers do. Male staff members contribute more to technical writing and guiding tasks while female staff use more of their time in emotional service work and general collective AHW tasks. Finnish speakers contribute more to writing and guiding tasks while non-Finnish speakers are more frequently committed in “catering” AHW like making coffee. Technical and administrative personnel generally contribute more to AHW than research staff.

We hope that the results of this survey will help us developing a more equitable and inclusive atmosphere in our institute by enabling us to pay more attention in distributing AHW tasks in a more equal and just manner.

How to cite: Lauri, K. A., Li, X., Dukat, P., Atashi, N., Karppinen, L., Lehtipalo, K., Lintunen, A., Moisseev, D., Mukkala, J., Nieminen, T., Rantanen, R., Vesala, T., Ylivinkka, I., and Vehkamäki, H.: Nakkihomma: attitudes towards and distributions of academic household work, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14684, https://doi.org/10.5194/egusphere-egu24-14684, 2024.

EGU24-16168 | Posters on site | EOS3.1

Inclusive excellence at the ERC: latest actions and results of sustained measures 

Claudia Jesus-Rydin, Luis Fariña-Busto, and Eystein Jansen

The European Research Council (ERC), Europe’s premiere funding agency for frontier research, views equality of opportunities as an essential priority and a vital mission to ensure fairness in the review process. The ERC monitors various demographic data yearly on every call and has taken actions to tackle imbalances and potential implicit and explicit biases.

The presentation focuses on ERC general historical data for the three individual funding schemes: Starting Grant, Consolidator Grant and Advanced Grant. Demographic geosciences data of proposals and grants, disaggregated by gender and country, is presented. After more than 14 years of existence and various specific actions to tackle societal imbalances, ERC data provides an insight of the impact of various actions.

In the first framework programme (FP7, 2007-2013), 25% of applicants were women. In the last years (Horizon 2020, 2014-2020), this percentage increased by 4%, with 29% of women applying for ERC grants. In the same periods of time, the share of women as grantees has also increased from 20% to 29%. In the last years, men and women enjoy equal success rates (data for non-binary applicants is also presented).

The most recent actions taken by the ERC to address gender and diversity (including disabilities and neo-colonialism) in its operations and processes are also presented.

The ERC knows that work to ensure inclusive excellence and equality of opportunities is never-ending. This presentation analyses the institutional efforts critically and discusses possible steps to consolidate the accomplished results.

How to cite: Jesus-Rydin, C., Fariña-Busto, L., and Jansen, E.: Inclusive excellence at the ERC: latest actions and results of sustained measures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16168, https://doi.org/10.5194/egusphere-egu24-16168, 2024.

EGU24-17197 | ECS | Orals | EOS3.1

Science Sisters: Interviews with diverse role models on career paths and academic life 

Marina Cano, Iris van Zelst, and Hinna Shivkumar

Science Sisters is a YouTube interview series and podcast hosted by Dr. Iris van Zelst. Lighthearted in tone, it explores different career paths, academic life, and science communication in the planetary and geosciences. The majority of the guests on the episodes are female and/or non-white to show a diverse range of role models in STEM and celebrate women in science. Together with the guest, Iris goes into the highs and lows of being a researcher and discusses issues in academia, such as the lack of permanent jobs in science and sexism. So far, two seasons of Science Sisters have been produced with topics including ethical fieldwork, switching careers, science communication, postdoc life, leadership, women in science, job applications, postdoc hopping, outreach, publishing, feeling incompetent, astronaut training, toxic academia, and how to build a research group.

Here, we present the project and some of the choicest nuggets of wisdom from the guests about academic life and careers. We also discuss the production phase of the series, highlighting for instance the considerations that go into selecting topics and guests, and the postproduction phase of editing and uploading the videos.

In addition, we present how we use Science Sisters as a way to start conversations in our own institutes. We organise a parallel seminar series where we watch the premieres of the episodes live on YouTube and afterwards have a discussion on the episode topic with the episode guest attending online. This has resulted in a greater understanding of each other and more cohesion within the institute. Early career scientists in particular say that Science Sisters is extremely useful to learn about life as a researcher and they enjoy the chatty, entertaining quality of the interviews.

How to cite: Cano, M., van Zelst, I., and Shivkumar, H.: Science Sisters: Interviews with diverse role models on career paths and academic life, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17197, https://doi.org/10.5194/egusphere-egu24-17197, 2024.

EGU24-18544 | ECS | Orals | EOS3.1

Time’s up, bottom-up! A successful bottom-up approach for diversity and inclusions at Utrecht University 

Manon Verberne, Jana R. Cox, Frances E. Dunn, Merel Postma, and Tina Venema

Young Women of Geoscience (YWOG) is a group of young professionals (PhDs, postdocs, assistant professors and supporting staff) at Utrecht University with the aim to inspire, connect and support women and historically underrepresented groups in the field of geosciences, by creating an equal and inclusive working environment. We do this by opening up conversations and creating a safe and positive space for discussion. Now in our seventh year, the committee has established itself as a constant and stable presence within the faculty with regular events and initiatives that can easily be organized from our reputable base.

Our regular events consist of meet-and-greet sessions with senior staff members, that are well-attended by a variety of colleagues, which result in inspiring conversations. Additionally, book give-aways combined with book discussions are a recurring event, where books on diversity, inclusions and climate change are used to open conversations. These events often engage individuals who may not have initially identified with the committee's target audience, but afterwards their interest was sparked. In recent years we also organized successful events due to requests from staff members. Parenting during COVID was a successful online event with a panel discussion consisting of colleagues sharing tips and struggles. Additionally, this year we organized an event on pronouns, reaching a wide audience, from PhDs to supporting staff, professors and the faculty dean. It was also this session, with informative presentations and lively discussion, that led to immediate action from higher level staff on practical matters concerning pronouns in the workplace.

Our experience highlights the importance of a bottom-up approach in instigating meaningful change. The pronouns event is a prime example of this, opening the eyes of many attendees and making people feel the urgency for action. The event stemmed from a need within the faculty. However, to be able to organize such an event there must be a platform to do so. We have the opportunity to organize many events helped by funding through an Equality, Diversity and Inclusion (EDI) scheme and an internal award won by the committee. We aim to continue with the regular events like the meet-and-greets and book shares, and hope to organize more events that are based on the needs in the faculty to open conversations. YWOG's experience demonstrates the efficacy of a bottom-up approach, emphasizing the importance of diverse perspectives in fostering substantial changes toward a more inclusive working environment. The committee looks forward to sharing its experiences, connecting with other faculties and universities, and inspiring collective efforts to promote diversity and inclusion within geosciences.

How to cite: Verberne, M., Cox, J. R., Dunn, F. E., Postma, M., and Venema, T.: Time’s up, bottom-up! A successful bottom-up approach for diversity and inclusions at Utrecht University, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18544, https://doi.org/10.5194/egusphere-egu24-18544, 2024.

EGU24-20027 | Orals | EOS3.1

Planning virtual and hybrid events: steps to improve inclusion and accessibility 

Aileen Doran, Victoria Dutch, Bridget Warren, Robert A. Watson, Kevin Murphy, Angus Aldis, Isabelle Cooper, Charlotte Cockram, Dyess Harp, Morgane Desmau, and Lydia Keppler

Over the last decade, the way we communicate and engage with one another has changed on a global scale. It is now easier than ever to network and collaborate with colleagues worldwide. But, the COVID-19 pandemic led to a rapid and unplanned move to virtual platforms, resulting in several accessibility challenges and the inadvertent exclusion of several people during online events. While virtual/hybrid events have strong potential to facilitate new opportunities and networks for everyone, they are also greatly positioned to increase the inclusion of groups traditionally excluded from purely in-person conferences. However, early and careful planning is needed to achieve this, with inclusion and accessibility considered from the start. Including a virtual element in a conference does not automatically equal inclusion or accessibility. Without effective planning, virtual and hybrid events will replicate many biases and exclusions inherent to in-person events.

This presentation will share lessons learned from previous events’ successes and failures, based on the combined experiences of several groups and individuals who have planned and run such events. This presentation is based on an EGU Sphere article, of the same title, that aims to provide guidance on planning online/hybrid events from an accessibility viewpoint based on the authors experiences. The goal of this presentation is to initiate discussion on event accessibility and inclusion and to help generate new ideas and knowledge from people outside of the authors network. Every event is unique and will require its own accessibility design, but early consideration is crucial to ensure everyone feels welcome and included. Our suggested accessibility considerations have been broken down into three stages of event planning: 1) Pre-event planning, 2) on the day/during the event, and 3) after the event.

Ensuring accessibility and inclusivity in designing and running virtual/hybrid events can help everyone engage more meaningfully, resulting in more impactful discussions including groups with limited access to in-person events. However, while this article is intended to act as a starting place for inclusion and accessibility in online and hybrid event planning, it is not a fully comprehensive guide. As more events are run, it is expected that new insights and experiences will be gained, helping to continually update standards.

How to cite: Doran, A., Dutch, V., Warren, B., Watson, R. A., Murphy, K., Aldis, A., Cooper, I., Cockram, C., Harp, D., Desmau, M., and Keppler, L.: Planning virtual and hybrid events: steps to improve inclusion and accessibility, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20027, https://doi.org/10.5194/egusphere-egu24-20027, 2024.

EGU24-20337 | Posters on site | EOS3.1

The stagnation of low percentage of female scientists in Japan and JpGU's initiatives 

Rie Hori and Chiaki Oguchi

The percentage of female scientists in Japan is 17.5% in the 2021 survey. This percentage is the lowest among OECD countries. The percentages of female doctoral students in science and engineering graduate programs nationwide are 21.0% and 19.2%, indicating a gap between the percentage of female prospective researchers and the percentage of women actually employed. It is pointed out that this is due to gender bias at the time of recruitment. On the other hand, the percentage of female members of JpGU remains around 20%, which is higher than the average in Japan, but still low compared to the percentage of female geoscientists in EGU and AGU. One of the reasons for the low number of female scientists in Japan is the low percentage of female students entering science and engineering fields in Japan (27% in science and 16% in engineering). The Science Council of Japan's Subcommittee on Gender and Diversity in Science and Engineering analyzed this problem and pointed out that its cause lies in the environment of education system during elementary and junior high schools (Opinion of SCJ, 2023). In Japan, the following factors are considered to have contributed to the decline in the number of female students going on to study science and engineering, even though surveys such as PISA (2018) and TIMSS (2019) show that both male and female 15-year-olds have equal academic achievement and interested in science and mathematics in the early education stage. (1) The percentage of female science teachers in junior high school and above is significantly lower than in the OECD countries → Few role models. (2) Often exposed to obvious “implicit bias” that has no evidence to support it (for example, girls are not good at mathematics. Science and engineering professions are not suitable for girls).

JpGU and Japanese universities actively conduct outreach programs for female junior igh and high school students every year to foster future female scientists. However, only a small percentage of them in whole Japan participate in such events, and these initiatives does not give us a full solution.

How to cite: Hori, R. and Oguchi, C.: The stagnation of low percentage of female scientists in Japan and JpGU's initiatives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20337, https://doi.org/10.5194/egusphere-egu24-20337, 2024.

EGU24-22185 | Posters on site | EOS3.1

Signatures of Equality, Diversity and Inclusivity at EGU General Assemblies 

Johanna Stadmark, Alberto Montanari, and Caroline Slomp

The EGU recognises the importance of equality, diversity, and inclusion as a crucial foundation for scientific research to address fundamental scientific questions and societally relevant environmental challenges. The increasing diversity of our membership in all its facets fosters collaborative research and discovery that benefits humanity and our planet.

Since its founding, the EGU has worked to ensure equitable treatment for everyone in the community with the goal of increasing diversity. In autumn 2018, the EGU Council established a working group whose aim is to promote and support equality, diversity, and inclusion (EDI) in the Earth, planetary, and space sciences, with a focus on EGU activities. Less than three years later, the EDI group was upgraded into a committee and has delivered numerous actions.

The most recent achievements of EDI@EGU are the Champion(s) for Equality, Diversity and Inclusion Award that is bestowed to recognize excellent contributions to put into exemplary practice the principles of EDI. Furthermore, the EDI Committee is currently working on a new travel support scheme to promote diversity at the EGU General assemblies.

The above actions resulted in a more diverse attendance at EGU General Assemblies along the years. The total number of presenters has increased over the time period 2015-2023, and this increase was observed throughout all career stages. The proportion of women presenters has increased from 2015 to 2023. A similar trend was observed for the convenors, an increase in total numbers over the years and a higher proportion of women in 2023 than in 2015.

In the hybrid meeting in 2023 both early career scientists and more senior scientists to a higher extent participated physically in the meeting than online. While there were no differences in how women and men participated (online or physically), there are differences connected to the country affiliations. More than half of participants from countries in most of western Europe attended in Vienna, while participants from North America and Asia attended online.

Since EGU General Assembly is the largest geosciences conference in Europe understanding the demographic evolution and their participation to EGU activities, including the GA, of various groups is an important tool for EGU governing body to draw targeted actions to ensure that the current procedures are fair and that all in the community are being and feeling included. We therefore aim to analyse the changes in demographics with regards to gender, career stage as well as to geographical distribution of the presenters and convenors also in coming years to better understand the potential impacts of meetings organized online or physically, or as a combination of both these modes.

How to cite: Stadmark, J., Montanari, A., and Slomp, C.: Signatures of Equality, Diversity and Inclusivity at EGU General Assemblies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22185, https://doi.org/10.5194/egusphere-egu24-22185, 2024.

EGU24-149 | ECS | Orals | CR4.2

Quantifying permafrost organic carbon remineralization after redeposition on the ocean floor, using  δ13C and F14C. 

Manuel Ruben, Jens Hefter, Torben Gentz, Florence Schubotz, Bingbing Wei, Bo Liu, Michael Fritz, Anna Maria Irrgang, Anabel von Jackowski, Walter Geibert, and Gesine Mollenhauer

Arctic permafrost is a critical global tipping element in a warming climate. Annually, the erosion of coastal permafrost discharges an estimated 5 to 14 Tg of organic carbon (OC) into the Arctic Ocean. Although this previously stored OC has the potential to be reintroduced into the atmosphere, thus accelerating human-induced climate change, little is known about the benthic remineralization processes of permafrost OC after erosion and redeposition on the ocean floor. Our research quantified fluxes of dissolved inorganic carbon (DIC) and analyzed its isotopic composition of nearshore sediments in the Canadian Beaufort Sea, specifically off Herschel Island. Our findings showed a DIC release of 0.217 mmo/m²/d, with an average signature of δ13C = -22.44 ± 72 ‰ and F14C = 0.548 ± 0.007. Utilizing a model that combines two carbon isotopes, we estimate that approximately 38 ± 10% of the released DIC is a result of subsurface degradation of redeposited permafrost OC, with an additional 15 ± 12% originating from redeposited active layer OC. Additionally, isotopic endmember analysis was utilized on bacterial membrane lipids from live sedimentary bacteria to determine the relative utilization of OC sources in bacterial communities within shallow subsurface sediment (<25 cm). Our results indicate that, on average, these communities obtain 73 ± 10% of their OC from recent marine primary production, 11 ± 6% from permafrost OC, and 16 ± 11% from active layer OC. This study is the first direct quantitative assessment of the release of permafrost OC into the active carbon cycle after it has been redeposited on the ocean floor, as far as we know. The data suggest that the redeposited permafrost OC is easily accessible and utilized by subsurface bacteria. Considering the immense size and vulnerability of the eroding coastal permafrost OC pool, 27 to 53% of it contributing to benthic DIC fluxes could have a prolonged effect on the world's climate, worsening the climate emergency.

How to cite: Ruben, M., Hefter, J., Gentz, T., Schubotz, F., Wei, B., Liu, B., Fritz, M., Irrgang, A. M., von Jackowski, A., Geibert, W., and Mollenhauer, G.: Quantifying permafrost organic carbon remineralization after redeposition on the ocean floor, using  δ13C and F14C., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-149, https://doi.org/10.5194/egusphere-egu24-149, 2024.

EGU24-559 | ECS | Orals | CR4.2

Detecting lowland thermokarst development by UAV remote sensing in the Stordalen mire, Abisko, Sweden  

Maxime Thomas, Thomas Moenaert, Éléonore du Bois d’Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Reiner Giesler, Carl-Magnus Mörth, and Sophie Opfergelt

In situ field studies in thawing permafrost regions have shown that C emissions resulting from organic carbon (OC) decomposition depend among others on the variability in soil water content, which can be directly related to microtopography. A more precise assessment of the evolution of permafrost C emissions as a function of thermokarst development requires high-resolution quantification of thermokarst-affected areas, as lowland thermokarst development induces fine-scale spatial variability (~ 50 – 100 cm). Here, we investigate a gradient of lowland thermokarst development at Stordalen mire, Abisko, Sweden, from well-drained undisturbed palsas to inundated fens, which have undergone ground subsidence. We produced orthomosaics and digital elevation models from very-high resolution (10 cm) UAV photogrammetry as well as a spatially continuous map of soil electrical conductivity (EC) based on Electromagnetic Induction (EMI) measurements performed in September 2021. In conjunction, we measured in situ the soil water content from the different stages of thermokarst development at the same period. The soil EC values are contrasted along the gradient in line with contrasts observed in the landscape classification derived from the orthomosaics and digital elevation models: palsas are flat areas with low soil EC (drier), whereas fens are subsided areas with higher EC (water-saturated). Areas in the course of degradation (transition zones) are well identified based on their higher slope, and broad range of EC. Importantly, these transition zones are only detected using a very fine spatial scale (i.e., 10 cm) coupled to information on the microtopography. Compared to a set of previously collected orthomosaics and digital elevation models, our results show an acceleration of thermokarst development in this area with a rate of palsa decline 4 to 10 times greater in 2019-2021 than in 2000-2014.

How to cite: Thomas, M., Moenaert, T., du Bois d’Aische, É., Villani, M., Hirst, C., Lundin, E., Jonard, F., Lambot, S., Van Oost, K., Vanacker, V., Giesler, R., Mörth, C.-M., and Opfergelt, S.: Detecting lowland thermokarst development by UAV remote sensing in the Stordalen mire, Abisko, Sweden , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-559, https://doi.org/10.5194/egusphere-egu24-559, 2024.

EGU24-630 | ECS | Posters on site | CR4.2

Multitemporal UAV LiDAR detects seasonal heave and subsidence on palsas 

Cas Renette, Sofia Thorson, Mats Olvmo, Björn Holmer, and Heather Reese

In the context of the accelerating impacts of climate change on permafrost landscapes, this study employs UAV (Unmanned Aerial Vehicle) LiDAR technology to investigate seasonal terrain changes in palsas – mounds of frozen peat – since traditional remote sensing methods have struggled to capture the full dynamics of these landforms. We investigated two tall (4–5 m tall) palsas in Sweden's largest palsa mire complex, where we performed five field campaigns between September 2022 and September 2023 to track intra-annual frost heave and thaw subsidence. Our approach allowed us to create digital terrain models (DTMs) from high density point clouds (>1,000 points/m²) and analyze elevation changes over time. We found that both palsas heaved 0.15 m from September to April and subsided back to their height from the previous year, or slightly below, over the course of the following summer. At one of the palsas, we observed notable lateral degradation over the study period in a 300 m2 area, with 0.5–2.0 m height loss, likely initiated during the preceding warm and wet summer months. Part of this degradation occurred between September 2022 and April 2023, suggesting that the degradation of these palsas is not limited to the summer months. Our study shows the value of using UAV LiDAR for understanding how permafrost areas are changing. It helps in tracking the ongoing effects of climate change and highlights palsa dynamics that would not be captured by annual measurements only.

How to cite: Renette, C., Thorson, S., Olvmo, M., Holmer, B., and Reese, H.: Multitemporal UAV LiDAR detects seasonal heave and subsidence on palsas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-630, https://doi.org/10.5194/egusphere-egu24-630, 2024.

EGU24-2165 | ECS | Orals | CR4.2

Modern spatial distribution of diverse retrogressive thaw slumps in West Siberia 

Nina Nesterova, Ilya Tarasevich, Marina Leibman, Aleksander Kizyakov, Ingmar Nitze, and Guido Grosse

Regressive thaw slumps (RTSs) are permafrost landforms formed by the thawing of ice-rich permafrost or the melting of massive ground ice. The West Siberian Arctic (Yamal and Gydan peninsulas) is an area with widespread distribution of RTSs due to continuous permafrost and massive tabular ground ice close to the surface. The initiation of RTS in the region strongly affects the environment by altering vegetation and topography and releasing carbon. Roads and railways are also affected by RTS occurrence.  

There is still no complete understanding of the true RTS distribution and its environmental controls in the West Siberian Arctic because of the remote location of the region. A remote sensing technique can be used to enhance our understanding of the characteristics of RTS over a large area. However, automated mapping of RTSs has certain limitations, including the lack of ground truth data, the large number of false-positive detections, and the ambiguity in interpretation. Moreover, the polycyclic nature of RTS development leads to a very complex spatial aggradation with numerous overlapping or nested RTSs. This poses additional challenges for mapping.

Based on theoretical and field studies, we developed a classification to capture the main morphological and environmental parameters of RTS nature visible on satellite imagery. To minimize false-positive detections we performed in-detail manual mapping of the RTSs in West Siberia using multiple sources including the ESRI satellite base map, Google Earth satellite base map, and Yandex Maps satellite base map. Each point was classified by several parameters: morphology, spatial aggradation, concurrent cryogenic processes, terrain position, and attachment to the base level. Field experience and data at the key sites, as well as a helicopter-based inventory, helped to perform verification and estimate accuracy.

We identified more than 4000 RTSs. The spatial distribution of identified RTSs demonstrates clusters over the western Yamal Peninsula and central-northern Gydan Peninsula. This research aims at a comprehensive analysis of the spatial distribution of classified RTS concerning regional geological, climate, and other available environmental data. Our results are valuable for understanding the nature of this widespread phenomenon in the Arctic.

How to cite: Nesterova, N., Tarasevich, I., Leibman, M., Kizyakov, A., Nitze, I., and Grosse, G.: Modern spatial distribution of diverse retrogressive thaw slumps in West Siberia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2165, https://doi.org/10.5194/egusphere-egu24-2165, 2024.

EGU24-2291 | ECS | Orals | CR4.2

Expansion of wildfires and their impact on carbon emissions over pan-Arctic permafrost 

Xingru Zhu, Gensuo Jia, and Xiyan Xu

Wildfires over permafrost put perennially frozen carbon at risk. However, burned area and wildfire carbon emissions from biomass burning over the diverse range of permafrost regions have not been revealed. Here, we show that continuous permafrost was a major contribution to wildfire expansion and carbon emission in the pan-Arctic over the last two decades. Burned area and wildfire carbon emissions dramatically increased over continuous permafrost during the last two decades, but decreased in other permafrost regions. Accelerating wildfire emission from continuous permafrost region is the single largest contribution to the increased emissions in northern permafrost regions. The share of permafrost in global wildfire CO2 emissions grew from 2.42% in 1997 to 20.86% in 2021. Wildfire expansion is closely linked to an increased soil moisture deficit, considering wildfires there combust more than 90% of belowground fuel. Continuous permafrost experiences more severe fire-induced degradation. Active layer thickening following wildfires over continuous permafrost lasts more than three decades to reach a maximum of more than triple the pre-fire thickness. These findings highlight expansion of wildfires and acceleration of fire-induced carbon emission from continuous permafrost region, which disturbs organic carbon stock, accelerates the positive feedback between permafrost degradation and climate warming.

 

How to cite: Zhu, X., Jia, G., and Xu, X.: Expansion of wildfires and their impact on carbon emissions over pan-Arctic permafrost, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2291, https://doi.org/10.5194/egusphere-egu24-2291, 2024.

Thawing of permafrost due to climate change is known to release gases such as the climate drivers carbon dioxide and methane, as well as the carcinogen radon. Radon is a natural radioactive gas responsible for about 10% of lung cancer deaths globally, and substantially greater rates in sub-Arctic communities. Gas transport is significantly reduced in permafrost, but now that permafrost is thawing due to climate change, the effect on the release of CO2 and CH4, and on domestic radon exposure is unknown.

Measurement: Few experimental measurements have shown the gas permeability of permafrost to be very small (order of 10-16 m2). Here we present the initial measurements of the changes in porosity and gas permeability during the thawing of synthetic permafrost using a pyknopermeameter that we are developing. The results show increases in gas permeability by many orders of magnitude, that remain during freeze-thaw cycles providing the thawed water does not drain from the sample. Draining the thawed water leads to compaction which decreases the effects of subsequent thawing on the matrix gas permeability, but can cause fracturing which provide high permeability pathways for gas flow.

Modelling: Results from radon transport modelling through soil, permafrost, and model buildings either with basements or built on piles show that permafrost acts as an effective radon barrier, reducing radiation exposure to a tenth of the background level in dwellings while producing a ten-fold increase in the radon activity below the permafrost. When we model thawing of the permafrost barrier, we find no increase in radon to the background level for buildings on piles.  However, for buildings with basements, the level of radioactivity due to the radon increases to over one hundred times its initial value and can remain above the 200 Bq/m3 threshold for up to 7 years depending on the depth of the permafrost and the speed of thawing. When thawing speed is taken into account, radiations remain higher than the threshold for all scenarios where 40% thawing occurs within 15 years. This new information suggests that the sub-Arctic population could be exposed to dangerous radon levels as a result of climate change.

How to cite: Glover, P.: Modelling and Measurement of Radon and CO2 Release from Thawing Permafrost Caused by Climate Change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2682, https://doi.org/10.5194/egusphere-egu24-2682, 2024.

EGU24-2979 | Orals | CR4.2

Intensified warming effects on soil respiration upon thermokarst formation 

Yuanhe Yang, Guanqing Wang, and Yunfeng Peng

As global temperatures continue to rise, a key uncertainty of terrestrial carbon (C) climate feedback is the rates of C loss upon abrupt permafrost thaw. This type of thawing - termed thermokarst - may in turn accelerate or dampen the response of microbial degradation of soil organic matter and carbon dioxide (CO2) release to climate warming. However, such impacts have not yet been explored in experimental studies. Here, by experimentally warming three thermo-erosion gullies in an upland thermokarst site combined with incubating soils from another five thermokarst-impacted sites on the Tibetan Plateau, we investigate whether and how abrupt permafrost thaw would influence the responses of soil CO2 release to climate warming. Our results show that warming-induced increase in soil CO2 release is higher in thermokarst features than the adjacent non-thermokarst landforms. This larger warming response is mainly attributed to the lower substrate quality and higher abundance of microbial functional genes for recalcitrant C degradation in thermokarst-affected soils. Taken together, our study provides experimental evidence that abrupt permafrost thaw aggravates the warming-associated soil CO2 loss, which will exacerbate the positive soil C-climate feedback in permafrost-affected regions under future warming scenarios.

How to cite: Yang, Y., Wang, G., and Peng, Y.: Intensified warming effects on soil respiration upon thermokarst formation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2979, https://doi.org/10.5194/egusphere-egu24-2979, 2024.

EGU24-3674 | Posters on site | CR4.2

Rapidly forming submarine craters and massive ice outcrops along the Arctic shelf edge: by-products of subsea permafrost degradation 

Charles K. Paull, Jong Kuk Hong, David W. Caress, Roberto Gwiazda, Ji-Hoon Kim, Mathieu J. Duchesne, Eve Lundsten, Jennifer B. Paduan, Tae Siek Rhee, Young Keun Jin, Virginia Brake, Jeffrey Obelcz, and Maureen Walton

Substantial morphological changes are rapidly occurring along the Canadian Arctic shelf edge (Paull et al., 2022, PNAS). During a 2022 IBRV Araon cruise, autonomous underwater vehicle mapping surveys identified several new craters that formed between 2019 and 2022. Five multibeam bathymetric mapping surveys, each partially covering a 15 km2 study area between 120 and 200 mwd have now been conducted over a 12-year time period. These repeat surveys reveal 65 new depressions developed averaging 6.5 m deep and reaching up to 30 m deep. Remotely operated vehicle investigations also discovered outcrops of massive ice exposed on the flanks of the newest craters. This ice is not believed to be relic permafrost formed during Pleistocene sea-level low-stands because the host sediments were deposited in a submarine setting. The low porewater salinity and light isotopic compositions in the meltwater of ice samples from sediment cores indicate brackish waters reflecting a meteoric source are discharging and freezing in this area. The ascending brackish groundwater is likely derived from melting relict permafrost under the shelf. The ~ -1.4°C bottom water temperatures provide conditions appropriate for freezing brackish porewaters within the near seafloor sediments. Conditions appropriate for the melting of ice also exist nearby where ice is in contact with seawater or warmed by ascending groundwater. Small variations in either temperature or salinity, over time, can shift equilibrium conditions of ice formation and degradation, which leads to repetitive freezing and thawing of ascending brackish groundwater and the development of wide-spread ice layers in the near seafloor sediments. These conditions have produced a dramatic submarine thermokarst morphology riddled with multi-aged depressions captured in the repeat mapping surveys. These findings suggest that the distribution of submarine permafrost ice should be reassessed as it may include extensive areas where ice formed during the Holocene where groundwaters discharge at sub-zero temperatures, in addition to relict Pleistocene permafrost.

How to cite: Paull, C. K., Hong, J. K., Caress, D. W., Gwiazda, R., Kim, J.-H., Duchesne, M. J., Lundsten, E., Paduan, J. B., Rhee, T. S., Jin, Y. K., Brake, V., Obelcz, J., and Walton, M.: Rapidly forming submarine craters and massive ice outcrops along the Arctic shelf edge: by-products of subsea permafrost degradation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3674, https://doi.org/10.5194/egusphere-egu24-3674, 2024.

EGU24-4091 | ECS | Orals | CR4.2

Artificial light at night reveals hotspots and rapid development of industrial activity in the Arctic 

Cengiz Akandil, Elena Plekhanova, Nils Rietze, Jacqueline Oehri, Miguel O. Roman, Zhuosen Wang, Volker Radeloff, and Gabriela Schaepman-Strub

Climate warming enables easier access and operation in the Arctic, fostering industrial and urban development. However, there is no comprehensive pan-Arctic overview of industrial and urban development, which is crucial for the planning of sustainable development of the region. In this study, we utilize satellite derived artificial light at night (ALAN) data to quantify the hotspots and the development of human activity across the Arctic from 1992 – 2013. We find that out of 16.4 million km2 analyzed a total area of 839,710 km2 (5.14%) is lit by human activity with an annual increase of 4.8%. The European Arctic and the oil and gas extraction regions in Russia and Alaska are hotspots of ALAN with up to a third of the land area lit, while the Canadian Arctic remains dark to a large extent. On average, only 15% of lit area in the Arctic contains human settlement, indicating that artificial light is largely attributable to industrial human activity. With this study, we provide a new, standardized approach to spatially assess human industrial activity across the Arctic, independent from economic data. Our results provide a crucial baseline for sustainable development and conservation planning across the highly vulnerable Arctic region.

 

How to cite: Akandil, C., Plekhanova, E., Rietze, N., Oehri, J., Roman, M. O., Wang, Z., Radeloff, V., and Schaepman-Strub, G.: Artificial light at night reveals hotspots and rapid development of industrial activity in the Arctic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4091, https://doi.org/10.5194/egusphere-egu24-4091, 2024.

EGU24-4769 | ECS | Posters on site | CR4.2

Permafrost thermal response to improved soil hydro-thermodynamics in historical and scenario simulations with a modified version of the MPI-ESM  

Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Norman Julius Steinert, Johann Jungclaus, Philip de Vrese, and Stephan Lorenz

Soil warming is particularly sensitive in Arctic regions, underlain by permafrost. Permafrost degradation with warming enhances the release of substantial amounts of carbon into the atmosphere, which acts as a positive radiative feedback. However, the increasing temperature is not the only factor affecting permafrost degradation. Water availability changes affecting the Arctic, induced by changes in the atmospheric general circulation considerably affect the soil moisture and ice presence and subsequently thermal structure in permafrost regions. The interaction between soil hydrology and thermodynamics is still poorly represented by most of the CMIP6 land surface models (LSMs), mainly in terms of the soil depth, vertical resolution, and coupling between hydrology and thermodynamics.

This work explores the response of the Max Planck Institute Earth System Model (MPI-ESM) in historical and scenario simulations to changes in the hydrological and thermodynamic features of its LSM, JSBACH, in permafrost-affected regions. An ensemble of experiments was performed with varying soil depth and vertical resolution under two configurations of the hydro-thermodynamical coupling, which generate comparatively drier or wetter conditions over permafrost areas. Results show that deepening JSBACH reduces the intensity of near-surface warming, reducing the deep permafrost degradation area by ca. 2 million km2 and constraining the active layer thickness deepening by the end of the 21st century in high radiative forcing scenarios. Nevertheless, the largest impacts on permafrost extent and active layer thickness are produced by the dry and wet settings, which yield diverging soil moisture and warming conditions during the 21st century. These two configurations show differences in near-surface and deep permafrost extent of up to 5 million km2 by the end of the 21st century.

How to cite: García-Pereira, F., González-Rouco, J. F., Meabe-Yanguas, N., Steinert, N. J., Jungclaus, J., de Vrese, P., and Lorenz, S.: Permafrost thermal response to improved soil hydro-thermodynamics in historical and scenario simulations with a modified version of the MPI-ESM , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4769, https://doi.org/10.5194/egusphere-egu24-4769, 2024.

EGU24-5063 | Posters on site | CR4.2

Geological features of methane vents in the East Siberian Sea, the Arctic Ocean 

Jong Kuk Hong, Seung-Goo Kang, Yeonjin Choi, Tae Siek Rhee, Sookwan Kim, Younggyun Kim, and Young Keun Jin

The Eastern Siberian Sea is known for the presence of subsurface permafrost and for emitting significant amounts of methane close to the coastline. The thawing of permafrost accelerates the release of methane and carbon dioxide, contributing to increased greenhouse gas concentrations in the atmosphere. In 2021 and 2023, a multidisciplinary survey aboard the Korean icebreaker Araon was conducted on the continental shelf of the East Siberian Sea. The survey area lies more than 500 km away from the nearest coastline and falls within international waters. During the survey, areas with high methane concentration were identified on the shallow continental shelf, at depths ranging from 50 to 70 meters, utilizing underway CH4 measurements. These zones extend in a northwest-southeast direction. Multiple surveys were conducted to pinpoint gas seepage zones and delineate subsurface structures. The EK80 scientific echosounder proved instrumental in locating the gas vents, as it displayed methane gas eruptions clearly, resembling pillars in the imaging. The shallow sedimentrary structure of the lower part of the gas vent, observed  by the SBP survey, revealed high-amplitude reflections at a shallow depth (~5 m) below the seafloor. At the gas expulsion sites, seismic profiles show numerous vertical faults within the shallow sedimentary layers and scatterings in the water column caused by the methane emission from the seafloor. Backscattered images from the side-scan sonar clearly depict gases emitting from the vents and moving upward in the water column. These gas vents were found to have about 10 meters in diameter.

How to cite: Hong, J. K., Kang, S.-G., Choi, Y., Rhee, T. S., Kim, S., Kim, Y., and Jin, Y. K.: Geological features of methane vents in the East Siberian Sea, the Arctic Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5063, https://doi.org/10.5194/egusphere-egu24-5063, 2024.

The stability and spatial distribution of subsea permafrost across the Arctic continental shelves play a pivotal role in our understanding of global warming. Serving as a significant carbon store, this permafrost has the potential to release greenhouse gases when it thaws, significantly influencing the global climate. This study is dedicated to a comprehensive investigation of the extent and state of submarine permafrost within the Arctic, with a particular focus on the comparative analysis of subsea permafrost development along the continental shelves of the Beaufort and East Siberian Seas. This research enhances our grasp of Arctic subsea permafrost's current variability and its role in global warming processes. To map the extent of subsea permafrost, we utilized multichannel seismic data from the Beaufort Sea (2014) and East Siberian Sea (2016, 2019), collected by the IBRV Araon. Employing a full waveform inversion approach, we precisely determined the seafloor permafrost's velocity structure, offering insights into its depth and state. The research reveals pronounced regional variations in the development of subsea permafrost on Arctic continental shelves. In particular, the continental shelf of the Beaufort Sea is characterized by a densely concentrated distribution of subsea permafrost extending to depths of up to 600 meters. In contrast, the continental shelf of the East Siberian Sea is dominated by permafrost that has thawed significantly, reaching depths of around 400 meters. These different regional patterns may be influenced by a number of factors, including the proximity of the shelf to the coast, the influence of ocean currents, the geological composition of the seabed and the prevailing thermal conditions. These findings suggest that the highly variable nature of submarine permafrost across the Arctic shelf is crucial to understanding warming induced changes in Arctic submarine permafrost and the potential for greenhouse gas release through permafrost dissociation.

How to cite: Jin, Y. K., Kang, S.-G., Choi, Y., Kim, S., and Hong, J. K.: Regional Variations of Subsea Permafrost Development on the Arctic Continental Shelves: A comparative analysis of the Beaufort and East Siberian Seas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5198, https://doi.org/10.5194/egusphere-egu24-5198, 2024.

EGU24-5562 | ECS | Posters on site | CR4.2

Dynamics of permafrost thaw in Western Siberia - a 200 years multi-proxy and high-resolution reconstruction from Khanymei peatlands 

Agnieszka Halaś, Mariusz Lamentowicz, Milena Obremska, Dominika Łuców, and Michał Słowiński

Western Siberian peatlands are one of the biggest peatland complexes in the world. Despite playing an essential role in regulating global climate, these ecosystems still remain understudied. A lack of long-term multi-proxy studies comprehensively examining the dynamics between permafrost thaw and peatland ecosystems in Siberia makes it difficult to determine how these areas will be affected by future climate change. Our research covers the history of the Khanymei peatlands (63°43’N, 75°57’E), located in the discontinuous permafrost zone in the last 200 years (from the end of the Little Ice Age to modern times). In this study, we applied multi-proxy analysis (testate amoebae, plant macrofossil, pollen, micro and macro charcoal, LOI and XRF) on two cores from a transect between a peat mound and a thermokarst lake. A newly developed by Halaś et al. (2023) testate amoebae calibration data set based on samples from the Khanymei peatlands complex was used to reconstruct past changes in peatland hydrology. In the last 200 years, we observed constant drying of studied peatlands with events of wetting caused by thawing permafrost. Reconstructed changes in peatland vegetation indicate that lichens (genus Cladonia) dominate during stable permafrost phases. We discovered that peatland drying in recent decades caused the expansion of shrubs onto Khanymei peatlands, which is also widely observed in other parts of Arctic tundra. The increase in peatland moisture after thawing is noted only in the initial period and in a limited area. Thawing led to high Sphagnum growth and change in the structure of testate amoebae communities, with an increase of mixotrophic species like Placocista spinosa. Species with organic and idiosomic tests started to dominate in the community replacing species with agglutinated shells. We discovered that permafrost thawing resulted in a short-term increase of peat accumulation and carbon sequestration, increased abundance of fungal communities, and promotion of oxic conditions. Initially, positive effects of thawing (like carbon accumulation) quickly weakened as favorable moisture conditions disappeared.
As permafrost continues to thaw, these processes will occur on an increasingly larger scale. According to climate change predictions, this region in Western Siberia may become unsuitable for the functioning of permafrost peatlands in their current form.

References:

Halaś, A., Lamentowicz, M., Łuców, D., & Słowiński, M. (2023). Developing a new testate amoeba hydrological transfer function for permafrost peatlands of NW Siberia. Quaternary Science Reviews, 308, 108067. https://doi.org/10.1016/j.quascirev.2023.108067

The study was supported by the National Science Center (Grant no. 2019/35/O/ST10/0290 and 2021/41/B/ST10/00060) and INTERACT No. 730938.

How to cite: Halaś, A., Lamentowicz, M., Obremska, M., Łuców, D., and Słowiński, M.: Dynamics of permafrost thaw in Western Siberia - a 200 years multi-proxy and high-resolution reconstruction from Khanymei peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5562, https://doi.org/10.5194/egusphere-egu24-5562, 2024.

EGU24-7215 | ECS | Posters on site | CR4.2

Abrupt increase in Arctic-Subarctic wildfires following permafrost thawing in a warmer climate 

In-Won Kim, Axel Timmermann, Ji-Eun Kim, Keith Rodgers, Sun-Seon Lee, Hanna Lee, and William Wieder

Greenhouse warming is accelerating permafrost thaw and the risk of wildfires in the northern high latitudes. However, the impact of permafrost thaw on Arctic-Subarctic wildfires and the associated release of greenhouse gases and aerosols is less well understood. Here we investigate the effect of future permafrost thaw on Arctic-Subarctic wildfires using the CESM2 large ensemble simulations forced by the SSP3-7.0 greenhouse gas emission scenario. We find that an increase in soil permeability induced by rapid permafrost thawing leads to an abrupt increase in sub-surface runoff and a decrease in soil moisture over the Arctic-Subarctic region. This sudden soil drying causes a significant increase in surface air temperature and a decrease in relative humidity during summer. The resulting soil drying and atmospheric dryness lead to a rapid intensification of wildfires in western Siberia and Canada in the mid-to-late 21st century.

How to cite: Kim, I.-W., Timmermann, A., Kim, J.-E., Rodgers, K., Lee, S.-S., Lee, H., and Wieder, W.: Abrupt increase in Arctic-Subarctic wildfires following permafrost thawing in a warmer climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7215, https://doi.org/10.5194/egusphere-egu24-7215, 2024.

EGU24-8248 | Posters on site | CR4.2

To tile or not to tile? 

Melanie A. Thurner, Xavier Rodriguez-Lloveras, and Christian Beer

Soils and landscapes vary within centimeters to decameters, which is not captured by state-of-the-art land-surface models that operate on kilometer scale. This leads to potential mismatches when simulating the exchange of energy, water and gasses between land and atmosphere, which are summarized under the term “aggregation error”, and is a major source of uncertainty. To overcome this issue and account for subgrid-scale heterogeneity so-called tiling approaches are used, which separate grid cells internally into different tiles that interact with each other. Although this is a valid approach, it remains unclear, if and to what extend tiling reduces the aggregation error and consequently, if tiling is sufficient to account for subgrid-scale heterogeneity.

Permafrost soils are especially heterogeneous and the aggregation error when simulating permafrost landscapes is especially problematic, because it can make the differences between frozen and unfrozen, as well as waterlogged and unsaturated areas. This affects the presence of permafrost itself, the build of soil ice and resulting frost heave, and determines pond locations as well as the duration and thickness of the seasonal snow cover, which all together influence vegetation and thus ecosystem dynamics.

To address the sufficiency of tiling at permafrost landscapes, we apply the two-dimensional pedon-scale soil model DynSoM at a non-sorted circle site. We run DynSoM with four different horizontal resolutions: (i) with an explicit resolution of 10cm, (ii) with three tiles, representing center, rim, and interface area, (iii) with two tiles, representing center and rim, and (iv) without tiling, representing a typical state-of-the-art land surface model. By comparing mean simulations, we assess the benefits, but also the shortcomings and limitations of the different tiling set-ups, and discuss implications for tiling within kilometer-scale land-surface models.

How to cite: Thurner, M. A., Rodriguez-Lloveras, X., and Beer, C.: To tile or not to tile?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8248, https://doi.org/10.5194/egusphere-egu24-8248, 2024.

EGU24-8527 | ECS | Orals | CR4.2

Geospatial modelling of soil organic carbon density in 3D across the northern circumpolar permafrost region 

Friedrich Röseler, Claire Treat, and Gerard Heuvelink

The northern circumpolar permafrost region contains up to half of the global soil carbon pool and twice as much carbon as currently is in the atmosphere. At the same time, the Arctic is rapidly warming due to climate change, causing the permafrost to thaw. There is a risk that substantial amounts of soil organic carbon (SOC) may be released into the atmosphere as greenhouse gases during this process. This makes permafrost carbon a potentially strong climate feedback that could further amplify global warming.

Currently, only a few studies attempted to quantify this permafrost carbon on a global scale. Despite the advances in estimating how much SOC is stored in the northern circumpolar permafrost region, there are still large uncertainties. Modelling permafrost carbon is particularly challenging due to the scarce availability of reference datasets on SOC content and great subsurface variability in the Arctic environment caused by cryoturbation. The high lateral (i.e. horizontal) and vertical (i.e. along the soil profile) variability results in several obstacles when mapping SOC in permafrost regions.

While previous studies on modelling permafrost carbon focused on quantifying its spatial heterogeneity, they lacked in capturing the complex (vertical) distribution of SOC as a function of depth. Furthermore, they often rely on discrete models to estimate the spatial variation. In this work, we focus on providing more accurate high-resolution, continuous global maps of permafrost SOC density using a 3D digital soil mapping approach. Digital soil mapping has shown to be a valuable tool in mapping SOC, as it can better capture the continuous variation of soil properties. Here, we used a random forest machine learning model to predict SOC based on a number of spatial variables representing soil forming factors (such as topographic attributes, climate, carbon age and land cover). The reference dataset that we used to train the model consists of soil profile observations from the permafrost region of the Northern Hemisphere, excluding alpine permafrost. We harmonised this dataset from existing databases and recent studies that provide information on carbon content from soil core measurements. Information on the bulk density was needed to calculate the SOC density and estimated for missing observations using pedotransfer functions. Results indicate that 3D modelling of permafrost carbon produces substantially different results than conventional 2D approaches. Furthermore, accounting for the vertical variation in SOC improves the prediction accuracy.

How to cite: Röseler, F., Treat, C., and Heuvelink, G.: Geospatial modelling of soil organic carbon density in 3D across the northern circumpolar permafrost region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8527, https://doi.org/10.5194/egusphere-egu24-8527, 2024.

The vulnerability of Arctic permafrost to climate change is evident, with anticipated widespread enhanced thawing under climate warming. This process may release substantial amounts of organic carbon. The positive feedback mechanism resulting from accelerated thaw and increased carbon emission is suspected to be a potential tipping element, possibly occurring within the 1.5 °C global warming range of the Paris Agreement. The consequences of Arctic permafrost thaw extend beyond carbon release, with the capability to drastically alter Earth's surface in Northern high latitudes.

This study employs high-resolution Large Eddy Simulations to investigate the impact of changing surfaces in the Arctic region on the neutrally stratified Atmospheric Boundary Layer. Utilizing a stochastic land cover model based on Gaussian Random Fields, representative permafrost landscapes are classified by distinct surface features. Experiments varying the areal fraction and surface correlation length of these surface features reveal significant insights into the sensitivity of the boundary layer to surface heterogeneity.

Key findings include a substantial impact of areal fraction of open water bodies on aggregated sensible heat flux at the blending height, suggesting a potential feedback mechanism: The smaller the areal fraction of open water bodies, the greater the sensible heat flux, the warmer the surface. Additionally, the blending height is significantly influenced by the correlation length of surface features. A longer surface correlation length leads to an increased blending height, highlighting the relevance of this metric for land surface models focused on Arctic permafrost.

How to cite: Schlutow, M. and Göckede, M.: Interaction of the Atmospheric Boundary Layer with degrading Arctic permafrost: A numerical study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9594, https://doi.org/10.5194/egusphere-egu24-9594, 2024.

EGU24-13717 | ECS | Posters on site | CR4.2

Evaluation of Standalone In-situ Simulations of Frozen Soil 

Zhicheng Luo, Bodo Ahrens, Danny Risto, and Mittal Parmar

The performance of a climate model to reproduce frozen soil depends on the modeled atmospheric forcing and the parameterizations in the land surface. Due to the complex land-air interactions caused by snow and soil freezing and thawing, biased simulations of climate models may be compensated or amplified by errors in land surface models. This may lead to a misjudgment of the simulation capabilities of the land surface model itself, especially when we are trying to improve the overall performance of the climate model without being able to balance the results in frozen soil. In order to separately investigate the simulation performance of the land surface model in the frozen soil region, we conduct simulations using the stand-alone land surface models CLM5, TERRA, and JSBACH at representative sites in Siberia, Alaska, and the Tibetan Plateau and explore the performance of the models from daily to interannual scales using the same atmospheric forcing and initial conditions.

The main evaluation objects will be the insulating effect of snow, soil energy balance, and soil moisture transportation to a depth of 3 meters below the ground surface. We look forward to the offline simulation experiments to evaluate the accuracy of different land surface model simulations, the optimal soil hydrothermal parameterization scheme, and important physical processes that may be neglected by the models’ prediction of frozen soil in daily and monthly time scales.

How to cite: Luo, Z., Ahrens, B., Risto, D., and Parmar, M.: Evaluation of Standalone In-situ Simulations of Frozen Soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13717, https://doi.org/10.5194/egusphere-egu24-13717, 2024.

EGU24-14659 | Orals | CR4.2

Q-Arctic: A synergetic approach to observe and model pan-Arctic interactions between hydrology and carbon 

Mathias Göckede, Victor Brovkin, Annett Bartsch, and Martin Heimann and the Q-Arctic Team

Arctic permafrost has been identified as a critical element in the global climate system, since it stores a vast amount of carbon that is at high risk of being released under climate change. The feedbacks between permafrost carbon and climate change are moderated by complex interactions between physical, hydrological, biogeochemical, and ecological processes. Many of these are not well understood to date, and therefore also only rudimentarily represented in current Earth System Models (ESMs). A particular problem in this context is a scaling gap between processes and model grid.

The Q-ARCTIC project funded by the European Research Council (ERC) follows a synergetic approach by combining remote sensing and local-scale observations with modeling on scales from a few meters to hundreds of kilometers. The primary objective of Q-ARCTIC is to close the gap between process scales and the much coarser grid resolution of Earth System Models (ESMs), with a particular focus on the net effect of disturbance processes and associated changes in hydrology on the pan-Arctic scale. To close this gap, we developed new ESM modules representing subgrid through stochastic parameterizations, trained and evaluated with high-resolution remote sensing data and site-level observations.

We will present novel results based on in-situ observations that characterize prominent Arctic disturbance features, and satellite remote sensing products investigating fine scale (few meters) patterns in Arctic landscapes that are undergoing modifications linked to climate change. Targets investigated include for example sinking surfaces, wetness gradients in heterogeneous landscapes, or drained lake basins. Assimilation of these new datasets supported the development of new ESM model components that successfully capture the statistics of small-scale features, e.g. depressions linked to sinking surfaces, or surface water bodies that form when soil ice melts. Our results demonstrate that the ability to project the response of the high-latitude water, energy and carbon cycles to rising global temperatures may strongly depend on the ability to adequately represent the soil hydrology in permafrost affected regions.

How to cite: Göckede, M., Brovkin, V., Bartsch, A., and Heimann, M. and the Q-Arctic Team: Q-Arctic: A synergetic approach to observe and model pan-Arctic interactions between hydrology and carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14659, https://doi.org/10.5194/egusphere-egu24-14659, 2024.

EGU24-15078 | ECS | Posters on site | CR4.2

Characterizing drained lake basins across the Arctic  

Helena Bergstedt, Annett Bartsch, Clemens von Baeckmann, Benjamin Jones, Amy Breen, Juliane Wolter, Louise Farquharson, Guido Grosse, and Mikhail Kanevskiy

Lakes and drained lake basins (DLB) are common landforms in permafrost lowland regions in the Arctic and widely cover 50% to 75% of the landscape in parts of Alaska, Siberia, and Canada. Lakes and DLBs create a heterogeneous and dynamic mosaic of terrain units, providing unique habitats for flora and fauna. Lakes and drained lake basins in permafrost regions play a crucial role in the regions landscape and ecosystem processes, influencing permafrost dynamics, biogeochemical processes, the hydrologic regime, as well as carbon cycling and greenhouse gas emissions. Depending on time passed since drainage of a given DLB, characteristics like surface roughness, vegetation, moisture, and abundance of ponds may vary between basins. Spatial heterogeneity within a single basin also varies between basins of different age. The mosaic of vegetative and geomorphic succession within DLBs and the distinct differences between DLBs and surrounding areas can be discriminated with remote sensing and used to derive a landscape-scale classification. In situ observations of these surface characteristics of DLBs are crucial for a better understanding of these features but can only describe a small percentage of existing DLBs.

In this study, we use a novel pan-Arctic assessment on DLB occurrence and the ESA Permafrost_cci circumpolar landcover unit data set based on Sentinel-1 and Sentinel-2 satellite imagery to assess the inter and intra-DLB spatial heterogeneity of surface characteristics. Building on existing research, we sort DLBs into distinct groups corresponding to previously published DLB age classification schemes (young, medium, old and ancient DLBs). DLB groupings show different landcover distribution within the basins, allowing for assumptions about the relative time passed since a drainage event occurred. To compliment and verify our remote sensing-based approach, a wide array of field data was collected at multiple sites across the Arctic, including on the Alaska North Slope. First results show distinct differences between DLBs within the study area, based on the landcover occurring within basins and other surface properties. Comprehensive mapping and characterizing of DLBs on a circumpolar scale will allow for improved parametrization of regional to pan-Arctic modeling efforts and improve our understanding of DLBs as a crucial landform in Arctic permafrost landscapes.  

How to cite: Bergstedt, H., Bartsch, A., von Baeckmann, C., Jones, B., Breen, A., Wolter, J., Farquharson, L., Grosse, G., and Kanevskiy, M.: Characterizing drained lake basins across the Arctic , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15078, https://doi.org/10.5194/egusphere-egu24-15078, 2024.

EGU24-15688 | Posters on site | CR4.2

Assessment of the Topographic Wetness Index in Permafrost landscapes  

Barbara Widhalm, Annett Bartsch, Helena Bergstedt, Clemens von Baeckmann, and Tazio Strozzi

Arctic permafrost regions are subject to rapid changes due to climate warming affecting hydrology, topography and ecology. Soil wetness is of great importance in these regions facilitating for example upscaling of carbon fluxes. In this study we therefore investigate the Topographic Wetness Index (TWI) as often used in land surface modelling, focusing on study regions in the Siberian and Canadian Arctic. We analyse the influence of the used Digital Elevation Model (DEM) by comparing results of the openly available ArcticDEM (2m resolution) and Copernicus DEM (30m resolution). Results are being validated against near-surface soil moisture in-situ measurements. Further comparisons are being made to other wetness indices such as the Tasselled Cap Wetness index or the Normalized Differential Moisture Index derived from Landsat 8. The relationship to InSAR derived surface displacements as an indicator of soil wetness is explored, as well as additional parameters such as the Topographic Position Index and correlations to other moisture indicators including land cover products.

How to cite: Widhalm, B., Bartsch, A., Bergstedt, H., von Baeckmann, C., and Strozzi, T.: Assessment of the Topographic Wetness Index in Permafrost landscapes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15688, https://doi.org/10.5194/egusphere-egu24-15688, 2024.

EGU24-15989 | ECS | Orals | CR4.2

Vulnerability assessment of Arctic coastal communities to the effects of coastal erosion and permafrost warming. 

Rodrigue Tanguy, Annett Bartsch, Ingmar Nitze, Anna Irrgang, Pia Petzold, Barbara Widhalm, Clemens von Baeckmann, Julia Boike, Julia Martin, Aleksandra Efimova, Gonçalo Vieira, Birgit Heim, Mareike Wieczorek, Guido Grosse, and Dorothee Ehrich

This study assesses the escalating vulnerability of Arctic coastal communities due to the combined impacts of coastal erosion and permafrost warming. With the Arctic experiencing heightened temperatures, coastal permafrost areas face increased instability, endangering vital infrastructures. The study focuses on a pan-Arctic evaluation of settlements and infrastructures at risk, enhancing the existing Arctic coastal infrastructure dataset (SACHI) to include road types, airstrips, and artificial water reservoirs.

By analyzing coastline change rates from 2000 to 2020, alongside permafrost ground temperature and active layer thickness trends from the ESA Permafrost Climate Change Initiative datasets, the research identifies settlements at risk for the years 2030, 2050, and 2100. The accuracy of the dataset is rigorously evaluated. Results indicate that by 2100, 23% of coastal settlements will face the impacts of coastal erosion. Projections based on linear trends suggest an 8°C increase in coastal permafrost ground temperature and a 0.9-meter growth in active layer thickness by the same year.

Crucially, the study reveals that 65% of all infrastructures and settlements will be affected by permafrost warming within the range of 5-15°C, with 35% experiencing active layer thickening between 1-5 meters. This research marks the first regional-scale identification of settlements at risk from coastal erosion along Arctic and permafrost-dominated coasts in the northern hemisphere. The findings emphasize the urgency of adapting to current and future environmental changes to mitigate the deterioration of living conditions in permafrost coastal settlements. Immediate action is imperative to counteract these challenges and ensure the resilience of these vulnerable communities.

How to cite: Tanguy, R., Bartsch, A., Nitze, I., Irrgang, A., Petzold, P., Widhalm, B., von Baeckmann, C., Boike, J., Martin, J., Efimova, A., Vieira, G., Heim, B., Wieczorek, M., Grosse, G., and Ehrich, D.: Vulnerability assessment of Arctic coastal communities to the effects of coastal erosion and permafrost warming., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15989, https://doi.org/10.5194/egusphere-egu24-15989, 2024.

EGU24-16738 | Posters on site | CR4.2

Modelling heterogeneity of land surface waters in the permafrost region 

Thomas Kleinen, Philipp de Vrese, Tobias Stacke, and Victor Brovkin

When considering high latitude regions, one of the striking characteristics is the abundance of surface water in comparison to lower latitudes. This difference is not just limited to the total area covered by surface water, but it also extends to the size distribution of water bodies: While surface water in lower latitudes most often occurs in the form of larger lakes or rivers, high latitude regions often display a wide variety of surface water features, ranging from small puddles to huge lakes. Considering the climatic and carbon cycle consequences of lower latitude large water bodies in land models is relatively straightforward – they can be considered static, be prescribed from observations, and described using dedicated submodels. However, considering surface water in the high latitudes comprehensively is substantially more challenging, as a much larger range of sizes needs to be considered, parts of which will not be available from observations. Furthermore, due to the dynamics of permafrost, these cannot be considered static any more and need to be treated dynamically.

To better represent high latitude regions in the ICON-Land land surface model, part of the ICON-ESM Earth System Modelling framework, we are developing a representation of multiple scales of water bodies, ranging from large lakes to small puddles, as well as areas of water-saturated soil. The smaller-scale features are of particular interest, as they do not just affect the exchange of water and energy between surface and atmosphere, but also have large impacts on the carbon cycle and methane emissions. To do this, we employ a statistical distribution function of water body sizes, allowing us to obtain energy, water, carbon and methane fluxes for water features of all sizes.

We will present our novel modelling framework and show first results covering selected Arctic locations.

How to cite: Kleinen, T., de Vrese, P., Stacke, T., and Brovkin, V.: Modelling heterogeneity of land surface waters in the permafrost region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16738, https://doi.org/10.5194/egusphere-egu24-16738, 2024.

EGU24-16785 | ECS | Posters on site | CR4.2

Status of the Circumpolar Landcover Unit database 

Rustam Khairullin, Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Barbara Widhalm, Aleksandra Efimova, Xaver Muri, Ksenia Ermokhina, and Birgit Heim

The Circumpolar Landcover unit database provides landcover information in high detail, spatially (10m) and thematically (23 units). Such detail is needed for a wide range of applications targeting climate change impacts and ecological research questions. The landcover unit retrieval scheme used provides unprecedented detail. The landcover units have been derived by fusion of satellite data using Sentinel-1 (synthetic aperture radar) and Sentinel-2 (multispectral). The units reflect gradients of moisture as well as vegetation physiognomy.

 

The original database covered the Arctic north of the tree line. It has been extended towards south, providing additional detail within the tundra-taiga transition zone in permafrost regions. The available spatial detail provides the means to assess the complexity of this zone in addition to information on recent disturbance related to for example wildfire and thermokarst lake change.

 

Bartsch, A., Efimova, A., Widhalm, B., Muri, X., von Baeckmann, C., Bergstedt, H., Ermokhina, K., Hugelius, G., Heim, B., & Leibmann, M. (2023). Circumpolar Landcover Units (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8399018

How to cite: Khairullin, R., von Baeckmann, C., Bartsch, A., Bergstedt, H., Widhalm, B., Efimova, A., Muri, X., Ermokhina, K., and Heim, B.: Status of the Circumpolar Landcover Unit database, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16785, https://doi.org/10.5194/egusphere-egu24-16785, 2024.

EGU24-17224 | ECS | Orals | CR4.2

Statistical Modelling of Permafrost Subsidence Based on High-resolution InSAR Data 

Zhijun Liu, Barbara Widhalm, Annett Bartsch, Thomas Kleinen, and Victor Brovkin

The northern high latitudes are warming much faster than the rest of the planet. While gradual thaw of permafrost is accounted for in the recent generation of the Earth System Models (ESMs), consequences of the abrupt thaw of permafrost and the subsequent greenhouse gas release are not yet taken into consideration. However, an abrupt thaw of very small fraction of the northern permafrost region can lead to significant carbon release and subsequent global warming (Turetsky et al. 2020).

An in-depth analysis of fine-scale permafrost subsidence processes is crucial for improved representation of abrupt thawing in simulations. Currently, permafrost subsidence is only taken into consideration in a few models, where subsidence is described in a deterministic process-based approach. This approach overlooks the high spatial heterogeneity in fine-scale permafrost processes.

Recent advancements in satellite technology allow the acquisition of Interferometric Synthetic Aperture Radar (InSAR) data on permafrost vertical displacement at meter-scale resolution. We conducted a case study on the Yamal Peninsula, Russia, where we compare permafrost subsidence data from Sentinel-1 with various potential driving factors, including climate forcing data from ERA5-Land and geomorphology data from MERIT Hydro. A statistical approach is taken to analyse the relationships between different factors and their contributions to permafrost subsidence. The results demonstrate the high heterogeneity of permafrost subsidence in the form of probability distribution functions at ESM-scale resolution. Eventually, our study aims to obtain a parameterization for pan-Arctic permafrost subsidence that can be implemented into the ICON-ESM in order to close the gap in permafrost modelling between process- and ESM-scale.

 

Reference: Turetsky, M.R., Abbott, B.W., Jones, M.C. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020). https://doi.org/10.1038/s41561-019-0526-0

How to cite: Liu, Z., Widhalm, B., Bartsch, A., Kleinen, T., and Brovkin, V.: Statistical Modelling of Permafrost Subsidence Based on High-resolution InSAR Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17224, https://doi.org/10.5194/egusphere-egu24-17224, 2024.

EGU24-17398 | ECS | Orals | CR4.2

Cryogrid modelling of permafrost temperature in the Maritime Antarctic (Barton Peninsula, King George Island) 

Joana Baptista, Gonçalo Vieira, Sebastian Westermann, and Hyoungseok Lee

The temperature dynamics of permafrost is crucial for ecosystem processes in the ice-free areas of the Antarctic Peninsula, where a strong long-term warming trend with an increase of 3.4 ºC in the mean annual air temperature since 1950 has been recorded (Turner et al., 2020). The consequences of this warming on past and future permafrost degradation are still not fully understood, mainly due to the sparse spatial coverage and short time span of borehole data, only available after the mid to late 2000’s (Vieira et al., 2010; Bockheim et al., 2013). The Cryogrid Community Model is an adaptable toolbox for simulating the ground thermal regime and the ice/water balance for permafrost (Westermann et al., 2017, 2022). The modular structure allows combinations of classes that represent the snow conditions and the subsurface materials. Here, permafrost temperatures from the 13 m depth King Sejong Station borehole (KSS), from Barton Peninsula, King George Island were used to assess the performance of Cryogrid and the quality of ERA5 forcing. For evaluating model performance, the setup was firstly used in its basic version with the GROUND_freeW_ubtf class, which considers a temperature boundary condition, for which air temperatures from KSS were used. Modifications to the stratigraphy and parameters were performed to achieve the strongest correlations and lower Mean Absolute Errors (MAE) between the simulated and observed ground temperature at nine depth levels. This approach allowed for the definition of the stratigraphy and parameters later used with the GROUND_freeW_seb_snow class, in which the surface energy balance scheme is included. The results show that ERA5 air temperature underestimates the records from KSS, especially during the summer, impacting the representation of surface warming. This deviation was corrected using linear regression corrected temperatures. The Cryogrid modelling results indicate an overestimation of the ground temperature during the thawing season and an underestimation during the freezing season, being the difference more pronounced at the surface. A strong correlation was shown between the simulated and measured ground temperatures in KSS down to 6 m depth (r>0.9) with MAE ranging from 0.4 to 0.9 ºC. Below 6 m the correlation weakens to 0.45 (13 m depth) due to differences in heat propagation and lack of temperature oscillation on the records when compared with the simulation. However, MAE values are residual, ranging from 0.1 to 0.2 ºC. The active layer thickness was overestimated in about 1 m. This research was funded by the project THAWIMPACT (FCT2022.06628.PTDC) and by CEG/IGOT (UIDP/00295/2020). Joana Baptista is funded by the FCT with a doctoral grant (2021.05119.BD).

How to cite: Baptista, J., Vieira, G., Westermann, S., and Lee, H.: Cryogrid modelling of permafrost temperature in the Maritime Antarctic (Barton Peninsula, King George Island), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17398, https://doi.org/10.5194/egusphere-egu24-17398, 2024.

EGU24-17812 | ECS | Orals | CR4.2

Improving the simulation of permafrost extent by representing the multi-tiling energy budgets in ORCHIDEE-MICT model 

Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais

The surface energy budget plays a critical role in terrestrial hydrologic and biogeochemical cycles. Nevertheless, its highly spatial heterogeneity across different vegetation types is still missing in the land surface model, ORCHIDEE-MICT (ORganizing Carbon and Hydrology in Dynamic EcosystEms–aMeliorated Interactions between Carbon and Temperature). In this study, we describe the representation of a multi-tiling energy budget in ORCHIDEE-MICT and assess its short and long-term impacts on energy, hydrology, and carbon processes. We found that: 1) With the specific values of surface properties for each vegetation type, the new version presents warmer surface and soil temperatures, wetter soil moisture, and increased soil organic carbon storage across the Northern Hemisphere. 2) Despite reproducing the absolute values and spatial gradients of surface and soil temperatures from satellite and in-situ observations, the considerable uncertainties in simulated soil organic carbon and hydrologic processes prevent an obvious improvement of temperature bias existing in the original ORCHIDEE-MICT. 3) The simulated continuous permafrost area (15.2 Mkm2) and non-continuous permafrost area (3.1 Mkm2) are comparative to observation-based datasets from Brown et al. (2002) (10.8 Mkm2 for continuous and 4.6 Mkm2 for non-continuous) and Obu et al. (2019) (11.5 Mkm2 for continuous and 5.3 Mkm2 for non-continuous). Consequently, the new version will facilitate various model-based permafrost studies in the future. 

How to cite: Xi, Y., Qiu, C., Zhang, Y., Zhu, D., Peng, S., Hugelius, G., Chang, J., Salmon, E., and Ciais, P.: Improving the simulation of permafrost extent by representing the multi-tiling energy budgets in ORCHIDEE-MICT model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17812, https://doi.org/10.5194/egusphere-egu24-17812, 2024.

EGU24-19404 | ECS | Orals | CR4.2

Degradation and composition of organic carbon in the flocculation layer on the Laptev, East Siberian, and Kara seas 

Kirsi Keskitalo, Paul Mann, Tommaso Tesi, Bart van Dongen, Jannik Martens, Igor Semiletov, Oleg Dudarev, Örjan Gustafsson, and Jorien Vonk

Rapidly rising temperatures in the Arctic cause thaw of permafrost and increase coastal erosion that mobilizes permafrost-derived organic carbon (OC) into coastal waters. In the water column, permafrost-OC may either degrade and thus, enhance climate warming by adding greenhouse gases to the atmosphere or settle on the seabed and be buried in the sediments. In this study, we focused on the composition and degradation of particulate OC (POC) within the flocculation (nepheloid) layer - a turbulent layer close to seabed that holds a high amount of suspended sediments/particles and transports them across the vast Siberian Arctic shelves. More importantly, previous studies have shown that permafrost-OC, exported to the Arctic Ocean via coastal erosion, is largely carried in the POC fraction of the flocculation layer.

To study flocculation layer dynamics, sediment cores were collected using a multicorer device from the East Siberian Sea, Laptev Sea, and Kara Sea onboard R/V Akademik Mstistlav Keldysh in 2020. The overlying water of the sediment cores was stirred under controlled conditions to mimic sediment resuspension. The entrained suspended sediments were collected and incubated for two weeks (in the dark) to assess their susceptibility to degradation. During the incubation, dissolved O2, POC, dissolved OC (DOC), dissolved inorganic carbon and δ13C of each carbon pool were measured at set time points. Additionally, to better understand sediment entrainment and degradation, sediment physical properties, including grain size and mineral-specific surface area, and macromolecular composition were determined.

Our preliminary results show that stirring largely entrains the smallest sediment particles, while it seems not to influence sediment macromolecular composition suggesting that none of the compound classes such as polysaccharides or aromatic compounds are preferentially entrained. Our incubation data show losses in dissolved O2 suggesting microbial degradation, however, instead of decreases in the OC pools, especially POC shows increases combined with increases or decreases in DOC. These carbon dynamics likely result from interactions between different carbon pools such as adsorption of DOC to particles and/or leaching of POC to the DOC pool. With accelerated coastal erosion and increase in storminess in the Arctic Ocean due to sea ice loss, understanding dynamics of the flocculation layer and degradation of permafrost-OC on the Arctic sea shelves is becoming even more important to better constrain their potential climate impact.  

How to cite: Keskitalo, K., Mann, P., Tesi, T., van Dongen, B., Martens, J., Semiletov, I., Dudarev, O., Gustafsson, Ö., and Vonk, J.: Degradation and composition of organic carbon in the flocculation layer on the Laptev, East Siberian, and Kara seas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19404, https://doi.org/10.5194/egusphere-egu24-19404, 2024.

EGU24-19799 | ECS | Posters on site | CR4.2

Simulating Saline Permafrost and Cryopeg Evolution Using a Coupled Heat and Salt Diffusion Model 

Michael Angelopoulos, Pier Paul Overduin, Frederieke Miesner, Julia Boike, Michael Krautblatter, and Sebastian Westermann

Saline permafrost is primarily found in marine deposits beneath shallow shelf seas and can often extend several kilometres inland from present Arctic coastlines. On land, saline permafrost forms when previously submerged marine sediments are exposed to the atmosphere, either through a sea level regression or post-glacial rebound. Cryopegs are perennially cryotic layers or pockets within permafrost that remain unfrozen due to their high salt content. While heat and salt flow models have been applied to study subsea permafrost degradation, adapting these models to terrestrial saline permafrost remains a significant gap in model development. We utilize a version of the CryoGrid modelling suite that couples heat and salt diffusion. This enables us to simulate the formation of saline permafrost and the development of cryopegs during transitions from sub-aquatic to sub-aerial conditions. As the freezing front descends, ice forms in the sediment matrix, expulsing salts into the remaining unfrozen liquid water at sub-zero temperatures. The increased unfrozen porewater salt concentration gradient increases the rate at which salt diffuses downwards into the sediment column. Over time the thermal gradient weakens, potentially allowing a more effective salt build-up ahead of the freezing front.

How to cite: Angelopoulos, M., Overduin, P. P., Miesner, F., Boike, J., Krautblatter, M., and Westermann, S.: Simulating Saline Permafrost and Cryopeg Evolution Using a Coupled Heat and Salt Diffusion Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19799, https://doi.org/10.5194/egusphere-egu24-19799, 2024.

EGU24-20159 | Orals | CR4.2

MethaneCAMP project – overview of results 

Johanna Tamminen and the MethaneCAMP project team

The ESA funded MethaneCAMP project has focused on assessing, improving, and analysing satellite observations of methane (CH4) in the Arctic in support of the collaborative ESA-NASA Arctic Methane and Permafrost Challenge (AMPAC) initiative. 

Traditionally, the high latitude conditions have received minor attention when the satellite retrievals for methane have been optimised for global purposes as there has been known challenges caused by high solar zenith angles, low reflectivity over snow and ice, frequent cloudiness, varying polar vortex conditions and limited number of validation data sets. Now when the two-year MethaneCAMP project is finishing, we will demonstrate the recent improvements in the observation capacity over the polar regions by assessing and optimising methane SWIR and TIR retrievals at high northern latitudes. Moreover, the importance of AirCore reference observations of methane profiles in the varying polar vortex conditions will be highlighted.

We will analyse the long-term methane trends in the northern high latitudes and permafrost regions by using satellite observations and inverse modelling. We aim to demonstrate the potential of using satellite observations of methane together with modelling and surface observations in analysing spatial and temporal changes of the Arctic methane. Detection of methane hot spots will also be mentioned.

In MethaneCAMP project our focus has been on Sentinel 5P/TROPMI, GOSAT, GOSAT-2 and IASI XCH4 observations and GHGSat emission estimates. In this presentation we summarise the results of the project and discuss how the outcomes can be utilised in the AMPAC working group activities.

How to cite: Tamminen, J. and the MethaneCAMP project team: MethaneCAMP project – overview of results, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20159, https://doi.org/10.5194/egusphere-egu24-20159, 2024.

EGU24-20267 | Posters on site | CR4.2

Projecting future permafrost thaw and subsidence driven infrastructure damage in the discontinuous permafrost zone 

Louise Farquharson, Dmitry Nicolsky, Monika Calif, Jennifer Schmidt, Vladimir Romanovsky, and Thomas Douglas

Permafrost thaw, ground-ice melt, and associated ground settlement pose significant hazards to northern communities and industry. Thaw of permafrost affected soils can decrease bearing capacity while settlement due to ground ice melt can cause ground collapse (thermokarst) and localized flooding. Here, explore ground ice distribution and potential for thaw induced settlement in the Fairbanks North Star Borough (FNSB), located in an area of discontinuous permafrost in Interior Alaska, USA. Pleistocene-Holocene sediment deposition, ice wedge development, and subsequent reworking due to thaw and hillslope processes have left a complex mosaic of cryolithological conditions that make thaw-related hazards a challenge to predict. The Borough is home to critical infrastructure including two military bases, a university, several gold mines, and the Trans Alaska Pipeline.

 

We created a permafrost hazard map by combining modelled ground ice distribution with projections of ground temperature through to 2090 using the GIPL 2.0 model for key ecotypes in the area. From this we were able to infer temperature dynamics, active layer deepening, talik development, and the potential for thermokarst degradation for IPCC Representative Concentration Pathway scenarios 4.5 and 8.5 through to 2090. We established ground ice distribution through a combination of existing geologic maps, numerical modeling, lidar derived thaw feature maps, and industry bore holes.  To extrapolate ground ice values from the representative sub-sample of ~ 2000km2 to the entire Borough we utilized a gradient-boosted decision tree aggregate model.

 

 Across the FNSB 23 % of the terrain is underlain by the high ground ice class, 10% medium, 4% low, 44% negligible, and 17% of the region is unaffected. High ground ice content underlines 23 % powerlines, 21% of roads and 4% of critical infrastructure (schools, hospitals, power plants etc.). Future projections of subsidence in areas of black spruce forest under RCP4.5 and 8.5 for areas respectively show that areas of high ice content could see subsidence of up to 5 and 10 meters respectively by 2090. Subsidence values for a range of topographic locations were calculated. Results from this study may help the FNSB, land managers, and homeowners best prepare and plan for the impacts of climate change in the Fairbanks region and potentially provide a hazard mitigation and climate change adaptation guides for other sub-Arctic communities.

How to cite: Farquharson, L., Nicolsky, D., Calif, M., Schmidt, J., Romanovsky, V., and Douglas, T.: Projecting future permafrost thaw and subsidence driven infrastructure damage in the discontinuous permafrost zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20267, https://doi.org/10.5194/egusphere-egu24-20267, 2024.

Estimates of the future methane (CH4) budget of northern permafrost landscapes remain highly uncertain with projections ranging from negligible to major CH4 releases to the atmosphere.

The German collaborative MOMENT project aims to address important gaps in process understanding of the high-latitude methane cycle using multi-scale methane flux observations in western Greenland linked to microbiological and biogeochemical laboratory studies. Through an innovative model-data integration framework, these novel datasets will be used to develop and evaluate land surface schemes of German Earth System Models (ESM) across terrestrial systems and multiple scales with the overarching goal to reduce uncertainties in future greenhouse gas projections.

We will introduce the overall project along with the innovations in experimental and observational techniques that facilitate observations at remote Arctic locations as well as in the lab. New remote sensing products allow for wall-to-wall mapping of structures on the finest scale across the Arctic, while novel computational infrastructure and modelling frameworks help with integration of all this information into next generation ESMs.

Selected preliminary results of the first field season and lab experiments will be highlighted.

How to cite: Sachs, T. and the the MOMENT project team: The MOMENT Project - Permafrost Research Towards Integrated Observation and Modelling of the Methane Budget of Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21829, https://doi.org/10.5194/egusphere-egu24-21829, 2024.

Global warming could surpass the 1.5 oC temperature target within a decade and even inevitably exceed 2 oC in this century, if fossil fuel emissions are not abated sufficiently and artificial interventions are not implemented. Even a temporary overshoot beyond 2 oC potentially disrupts the global carbon cycle, with the risk of irreversible and devastating changes to current terrestrial carbon sinks, such as the tropical forests and the northern high-latitude permafrost. Large-scale geoengineering is proposed as an adjunct to the conventional mitigation to partially counteract anthropogenic warming, and avoid dramatic alterations in the Earth system and the hazardous consequences. However, carbon dioxide removal and solar radiation modification differ in their role in interacting with the terrestrial carbon cycle, through directly interfering with the carbon cycle and indirect perturbation by changing the energy balance. The varied regional responses also affect the capacity of global carbon uptake, which further impacts on the efficacy of geoengineering. It's prudent to investigate the responses of the global terrestrial carbon balance in such context, i.e., the delayed consideration of solar radiation modification or carbon dioxide removal on top of various possible overshoot scenarios, to bring the global temperature back to and maintain the long-term targets.

How to cite: Chen, Y. and Ji, D.: Terrestrial carbon cycle response to solar radiation modification and carbon dioxide removal under potential temperature overshoots , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-613, https://doi.org/10.5194/egusphere-egu24-613, 2024.

EGU24-918 | ECS | Orals | CL3.1.6

Potential Impact of Stratospheric Aerosol Injection on Horticulture Suitability in Africa? 

Temitope Samuel Egbebiyi, Chris Lennard, Kwesi Quagraine, Romaric C. Odoulami, Izidine Pinto, Babatunde J. Abiodun, Piotr Wolski, and Simone Tilmes

Global warming will be devastating for agriculture in Africa, with consequent impacts on horticultural crop suitability. Horticultural crops are the main source of vitamins and antioxidants into our body and provide nutritional security. Stratospheric Aerosol Injection (SAI), which involves the injection of sulfur into the stratosphere to reduce incoming solar radiation to the earth surface, has been proposed as a strategy to reduce global warming rate, however, how this may affect horticultural crops, mango, orange and tomato, in Africa is still unknown. Our study examines the impact of climate change (GHG) and SAI on crop suitability and planting season in Africa. We used datasets from the Stratospheric Aerosol Geoengineering Large Ensembles (GLENS) project for the periods 2011-2030 and 2070-2089 as inputs into Ecocrop model to investigate GHG and SAI impacts on horticultural crops suitability in Africa. Our findings show GHG may lead to an increase of 3-4oC in both minimum and mean temperature and a 5-10mm increase in total monthly rainfall in West, Central and East Africa but a decrease (10mm) in southern Africa. SAI intervention results in cooling over Africa of up to 3oC in both minimum and mean temperature and may also lead to a decrease, 10-20mm in total monthly rainfall over the region by the end of century. The intervention may lead to an increase (~0.2) in Suitability Index Value (SIV) of mango and tomato over West and central Africa. However, a projected decrease (~0.3) in SIV is expected for mango and orange from Angola extending to northern Mozambique in southern Africa. In addition, no change in SIV is expected for the three crops in North Africa. SAI intervention may lead to 2-5% increase in suitable area for mango and tomato but a decrease (2%) for orange. The study provides information for decision-makers about choice of adaptation strategies to enhance regional economies and promote healthy nutrition in Africa.

Plain Abstract

Africa's agriculture will suffer greatly from global warming and affect horticulture crops. Our bodies get the majority of their vitamins and antioxidants from horticultural crops, which also offer nutritional security. Although, the injection of sulphur into the stratosphere has been put forward as an option to reduce effect of global warming but how this might impact horticultural crops, tomatoes, oranges, and mangoes, grown in Africa is still unknown. To examine the effects of climate change (GHG) and SAI horticultural crops suitability in Africa, we utilised information from the Stratospheric Aerosol Geoengineering Large Ensembles (GLENS) project for the periods 2011–2030 and 2070–2089 as inputs into the Ecocrop model. Over West and Central Africa, the Suitability Index Value (SIV) of tomatoes and mangoes may rise (~0.2) because of the intervention while for mango and orange a decline (~0.3) in SIV is anticipated from Angola to northern Mozambique in southern Africa. Mango and tomato suitable areas may rise by 2-5% because of SAI intervention but decrease by 2% for orange. Decision-makers can use the study's insights to choose adaption methods that will boost African regional economies and encourage a healthy diet. 

How to cite: Egbebiyi, T. S., Lennard, C., Quagraine, K., Odoulami, R. C., Pinto, I., Abiodun, B. J., Wolski, P., and Tilmes, S.: Potential Impact of Stratospheric Aerosol Injection on Horticulture Suitability in Africa?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-918, https://doi.org/10.5194/egusphere-egu24-918, 2024.

The urgency to limit continued global mean temperature rise has prompted the emergence of methods of solar climate intervention (SCI) to cool the planet. Stratospheric aerosol injection (SAI) is a method of SCI that would cool the planet by injecting aerosols into the stratosphere to reflect a small amount of incoming solar radiation away from Earth. There is not yet a complete understanding of how the impacts and risks of SAI on human and natural systems compare to those of climate change alone. While there has been some work that has examined the potential impact of SAI on extreme weather events, none has thoroughly examined the potential impact of SAI on warm spells, defined as prolonged periods of anomalously warm temperature that may occur at any time of the year. Warm spells have detrimental impacts that are projected to worsen with continued climate warming including risks to human health, agriculture and ecosystems. Here, the impact of SAI on the frequency, magnitude, intensity, and duration of warm spells is investigated globally using the ARISE-SAI simulations. Specifically, future projections of warm spells under ARISE-SAI are compared to those under climate change alone following the moderate SSP2-4.5 emissions scenario.  The ARISE-SAI simulations indicate that increases in the frequency, magnitude, intensity and duration of warm spells could be limited if SAI were to be deployed, although there is significant regional variability. 

How to cite: Glade, I. and Hurrell, J.: Assessing the impact of stratospheric aerosol injection on warm spell characteristics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1689, https://doi.org/10.5194/egusphere-egu24-1689, 2024.

Model of stratospheric aerosol injection deployment scenarios have often assumed that a global sunscreen could be applied to the earth on relatively short notice, perhaps in response to a climate emergency.  This emergency response framing confuse the time scales associated with the commencement of such a program.  Once deployed, stratospheric aerosols could cool the earth quite quickly, but such a deployment would require aircraft and other infrastructure that does not currently exist.  Given the span required to develop and certify a novel aircraft program and thereafter to build a fleet numbering in the hundreds, scenario builders should assume a roughly two-decade interval between a funded launch decision and the attainment of a target level of cooling.

How to cite: Smith, W.: An assessment of the infrastructural and temporal barriers constraining a near-term implementation of a global stratospheric aerosol injection program, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2221, https://doi.org/10.5194/egusphere-egu24-2221, 2024.

EGU24-2611 | ECS | Posters on site | CL3.1.6

Modelling the Impact of Surfactants on Anthropogenic CO2 Transfer between the Ocean and Atmosphere 

Jianing Hu and Miguel Maqueda

During the industrial revolution, anthropogenic carbon dioxide (CO2) emissions have rapidly increased, raising worries about their impact on global climate change. The oceans are an important sink of anthropogenic CO2, taking in about 30% of emissions. Despite the important role of surfactants in reducing gas exchanges between the atmosphere and the ocean, their effect on oceanic intake of CO2 has received limited attention in ocean models. In this exploratory work, we examine the impact of a parameterization of surfactants on CO2 fluxes between the ocean and the atmosphere using the NEMO (Nucleus for European Modelling of the Ocean) ocean engine in the ORCA2-LIM-PISCES configuration. Understanding and quantifying the potential effect of surfactants on the ocean's absorption of anthropogenic CO2 is the main goal of our modelling. Using documented atmospheric CO2 concentrations from 1750 till present, we carried out three simulations of the intake of anthropogenic CO2 by the ocean, one in which the presence of surfactants was ignored and two in which different formulations of the impact of surfactants on air-sea gas exchange were used. According to the simulations, the impact of the presence of surfactant on net, basin-scale anthropogenic CO2 fluxes into the ocean is rather small, on the order of just a few percent. However, in regions where, in the model, the intake of anthropogenic CO2 is largest, such as the Southern Ocean and the Kuroshio and Gulf Stream region, the reduction in these fluxes can attain between 10% and 40%. On seasonal timescales, the global effect of surfactants is to slightly enhance the amplitude of the annual cycle of fluxes by between 10% and 15%. The presence of surfactants leads to a reduction in the total mass of anthropogenic dissolved inorganic carbon (DIC) in the global ocean by about 6% at the end of the integration. Regionally, the concentrations of anthropogenic DIC in the water column (mass of DIC per unit area) are up to 10% lower in the Southern Ocean and in the northern branch of the Kuroshio when surfactants are present.

How to cite: Hu, J. and Maqueda, M.: Modelling the Impact of Surfactants on Anthropogenic CO2 Transfer between the Ocean and Atmosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2611, https://doi.org/10.5194/egusphere-egu24-2611, 2024.

EGU24-4102 | ECS | Orals | CL3.1.6

Comparison of marine cloud brightening in large eddy simulations 

William McFarlane Smith

Modelling of marine cloud brightening (MCB), a form of solar radiation modification, has thus far proven challenging due to the incongruous nature of the scales required. The microphysics of the cloud droplets and aerosols can only be resolved at really small scales, but just as important are the large-scale impacts on circulation and radiation. Large eddy simulations (LES) seem best placed to deal with this problem; they can resolve circulation an turbulence, but also have small enough grid boxes that useful parametrisation of microphysics can be made. When coupled to parcel models their representation of microphysical processes can be improved even further, although at a computational cost. There have been multiple studies of MCB in LES so far, but with wide-ranging background conditions and experimental designs. This leads to varying results that are challenging to compare. The aim of this study is to directly compare the results of at least two LES models, MONC and DALES, for an MCB experiment. They will first be compared with a historic data set, before being configured to ran the MCB experiment. It is hoped that MONC can also be coupled to a parcel model to improve its representation of cloud microphysics.

How to cite: Smith, W. M.: Comparison of marine cloud brightening in large eddy simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4102, https://doi.org/10.5194/egusphere-egu24-4102, 2024.

EGU24-4114 | ECS | Posters on site | CL3.1.6

Sensitivities of Marine Cloud Brightening Studied with a Lagrangian Cloud Model 

Zachary Christopher Rowland, Fabian Hoffmann, Franziska Glassmeier, Isabelle Steinke, and Herman Russchenberg

Marine cloud brightening (MCB) is a proposed climate engineering technique in which shallow liquid clouds are deliberately seeded with aerosol particles to increase their albedo and lifetime. Development of accurate models is essential to assess the feasibility of MCB; however, this is complicated by the large number of interacting microphysical processes that occur during cloud formation and the many environmental parameters that influence them. To simulate these microphysical processes in the required detail, a Lagrangian cloud model has been coupled to a simple adiabatic parcel model for this study.

Using this modelling framework, a sensitivity analysis is performed to determine the susceptibility of MCB to the aerosol particle size distribution, meteorological conditions, and several cloud microphysical choices. Attention is paid to the effect of varying the number of giant cloud condensation nuclei (GCCN) in the aerosol distribution, as these are known to enhance precipitation, with potentially deleterious effects to MCB. The results of this analysis provide insight for understanding the susceptibility of cloud formation to environmental conditions and practical considerations for any possible future MCB implementation.

How to cite: Rowland, Z. C., Hoffmann, F., Glassmeier, F., Steinke, I., and Russchenberg, H.: Sensitivities of Marine Cloud Brightening Studied with a Lagrangian Cloud Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4114, https://doi.org/10.5194/egusphere-egu24-4114, 2024.

EGU24-4373 | Orals | CL3.1.6 | Highlight

Developing an African Climate Intervention Research Coalition 

Chris Lennard, Babatunde Abiodun, and Andy Parker

With the 1.5oC global warming target set to be breached in the next decade, and as the impacts of this warming across the world become more deleterious, Climate Intervention (CI) and in particular Solar Radiation Modification (SRM) will become the subject of global political discussion. While low latitude, developing countries have the most to gain or lose from CI and SRM, they are underrepresented in current discussions, however, decisions regarding development and implementation/rejection of SRM require that these countries be at the center of such conversations.

Preparing the African voice for this discussion is essential and requires a well-resourced and well-connected African research community that understands the regional impacts of global warming and how CI may mitigate or exacerbate these impacts. While there are many SRM research projects around Africa facilitated by the DEGREES Initiative, a coordinated CI research community does not yet exist.

Here we present results from a project that aims to transition the current loose research network into a well-structured CI and SRM research coalition, nurturing an expert SRM community in Africa over the next 5-10 years.

The main component of the project is a workshop that will bring together African CI and SRM researchers alongside representatives of the World Climate Research Programme, the Coordinated Regional Downscaling Experiment (CORDEX-Africa) and International African research institutions. The workshop will discuss how to build, grow, and sustain a coalition of African SRM researchers, considering its research and capacity-building activities, its initial composition, and its structure. The workshop will also develop an initial roadmap of activities for the coalition and consider potential funding sources to support it. Furthermore, we will explore using a research hub model as a vehicle through which the coalition, its activities and growth is supported.

The insights and outcomes from these discussions will be synthesized into a white paper outlining the goals and principles of the coalition, with concrete recommendations for next steps. Key messages of the white paper will be presented in this session.

The work is pioneering and entrepreneurial and we know of no other efforts like this. In fact, we believe this would be the first continental scale SRM research coalition in the world, let alone in the Global South.

How to cite: Lennard, C., Abiodun, B., and Parker, A.: Developing an African Climate Intervention Research Coalition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4373, https://doi.org/10.5194/egusphere-egu24-4373, 2024.

EGU24-6144 | Orals | CL3.1.6

Idealized modeling of uncooperative two-actor SRM deployment 

Olivier Boucher, Anni Määttänen, Thibaut Lurton, and François Ravetta

Potential SRM deployment scenarios are increasingly discussed in the literature and an effort to construct plausible scenarios is underway in the scientific community. Such deployment scenarios underpin the design of possible governance mechanisms of SRM. A wide range of possible scenarios can be envisaged, including unilateral deployment by one actor, uncooperative multi-actor deployment, global centralized deployment or a global moratorium. In order to inform the current dialogue on governance, we explore in this work the behavior of a system where two uncooperative actors deploy SRM. We rely on a simple four-box climate model that responds to stratospheric aerosol injection (SAI) in the northern and southern hemispheres, including the oceanic response. The stratospheric aerosol optical depth has been parameterized with impulse response functions fitted on IPSL-CM6A-LR runs with injections at different latitudes. We couple this model to a control module in order to investigate different controlled SRM deployment strategies, reflecting potential governance scenarios. The two actors inject varying amounts of aerosols in the stratosphere to reach their own climate target which is unknown by the other actor. The climate target can be a temperature target (change of the temperature with respect to the initial state) or a monsoon target (variability of the monsoon index). Depending on the objectives and the characteristics of the deployment strategies by the two actors, we construct several experiments that result in i) involuntary cooperation between the two actors, ii) conflicting behaviors, or ii) one actor taking advantage of the other (free riding). We have also constructed experiments mimicking political decision-making timescales and potential perceived failure of SRM, causing more or less random interruptions of the injections. Although the scenarios are highly idealized and do not represent a realistic implementation of SRM, they help to understand the potential, synergies, risks and challenges of a decentralized, uncooperative deployment of SRM. We will discuss how the analysis of this type of experiments can inform the discussion on potential SRM governance strategies. Our future plans include adding a parametrization of the sea level rise and of ocean acidification into the model to investigate the behavior of these parameters as a result of the different SRM deployment and governance strategies. The simple model could also be used for educational purposes, for example to inform and to train decision-makers on SRM climate intervention and its effects and consequences.

How to cite: Boucher, O., Määttänen, A., Lurton, T., and Ravetta, F.: Idealized modeling of uncooperative two-actor SRM deployment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6144, https://doi.org/10.5194/egusphere-egu24-6144, 2024.

EGU24-6419 | ECS | Orals | CL3.1.6

Africa's Climate Response to Marine Cloud Brightening 

Romaric C. Odoulami, Haruki Hirasawa, Kouakou Kouadio, Trisha D. Patel, Kwesi A. Quagraine, Izidine Pinto, Temitope S. Egbebiyi, Babatunde J. Abiodun, Christopher Lennard, and Mark G. New

Climate intervention through solar radiation modification is one proposed method for reducing climate risks from anthropogenic warming. Marine Cloud Brightening (MCB), one such approach, proposes to inject sea salt aerosol into a regional marine boundary layer to increase marine clouds' reflectivity. This study assessed the potential influence of four MCB experiments on the climate in Africa using simulations from the Community Earth System Model (CESM2) with the Community Atmospheric Model (CAM6). Four idealised MCB experiments were performed with the CESM2(CAM6) model under a medium-range background forcing scenario (SSP2-4.5) by setting cloud droplet number concentrations to 600 cm-3 over three subtropical ocean regions: (a) Northeast Pacific (MCBNEP); (b) Southeast Pacific (MCBSEP); (c) Southeast Atlantic (MCBSEA); and (d) the combination of these three regions (MCBALL). The CESM2(CAM6) model reproduces the observed spatial distribution and seasonal cycle of precipitation and minimum and maximum temperatures over Africa and its climatic zones well. The results suggest that MCBSEP would induce the strongest global cooling effect and thus could be the most effective in decreasing (increasing) temperatures (precipitation) and associated extremes across most parts of the continent, especially over West Africa, in the future (2035-2054) while other regions could remain warmer or dryer compared to the historical climate (1995-2014). While the projected changes under MCBALL are similar to those of MCBSEP, MCBNEP and MCBSEA could result in more warming and, in some regions of Africa, create a warmer future than under SSP2-4.5. Also, all MCB experiments are more effective in cooling maximum temperature and related extremes than minimum temperature and related extremes. These findings further suggest that the climate impacts of MCB in Africa are highly sensitive to the deployment region.

How to cite: Odoulami, R. C., Hirasawa, H., Kouadio, K., Patel, T. D., Quagraine, K. A., Pinto, I., Egbebiyi, T. S., Abiodun, B. J., Lennard, C., and New, M. G.: Africa's Climate Response to Marine Cloud Brightening, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6419, https://doi.org/10.5194/egusphere-egu24-6419, 2024.

EGU24-7071 | Orals | CL3.1.6

Multi-model simulation of solar geoengineering indicates avoidable destabilization of the West Antarctic ice sheet 

John Moore, Yangxin Chen, Chao Yue, Svetlana Jevrejeva, Dan Visioni, Petteri Uotilla, and Liyun Zhao

Heat transported in Circumpolar Deep Water is driving the break-up of ice shelves in the Amundsen Sea sector of Antarctica, that has been simulated to be unavoidable under all plausible greenhouse gas scenarios. However, climate intervention scenarios have not been considered. Solar geoengineering changes global thermal radiative balance, and atmospheric and oceanic transportation pathways. We simulate stratospheric aerosol injection (SAI) designed to reduce global mean temperatures from those under the unmitigated SSP5-8.5 scenario to those under the SSP2-4.5 scenario with six CMIP6-class Earth System Models. These consistently show intensified Antarctic polar vortex and sub-polar westerlies, which mitigates changes to easterly winds along the Amundsen Sea continental shelf compared with greenhouse gas scenarios. The models show significantly cooler Amundsen Sea waters and lower heat content at 300-600 m under SAI than with either solar dimming or the SSP5-8.5 unmitigated greenhouse gas scenarios. However, the heat content increases under all scenarios compared with present day suggesting that although vulnerable ice shelves would continue to thin, the rate would be lower for SAI even with SSP5-8.5 specified greenhouse gases, than for the moderate (SSP2-4.5) scenario. The simulations here use climate interventions designed for global temperature targets; interventions targeted at preserving the frozen high latitudes have also been proposed that might be expected to produce bigger local effects, but potentially deleterious impacts elsewhere. Considering the huge disruptions to society of ice sheet collapse, more research on avoiding them by intervention technology is a moral imperative. 

How to cite: Moore, J., Chen, Y., Yue, C., Jevrejeva, S., Visioni, D., Uotilla, P., and Zhao, L.: Multi-model simulation of solar geoengineering indicates avoidable destabilization of the West Antarctic ice sheet, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7071, https://doi.org/10.5194/egusphere-egu24-7071, 2024.

EGU24-7258 | ECS | Orals | CL3.1.6

Exploring the impacts of changes in solar radiation on ecohydrological variables 

Yiran Wang, Naika Meili, and Simone Fatichi

Several geoengineering projects are designed to modify solar radiation to limit global warming. These changes in solar radiation can have impacts on ecohydrological systems which are poorly quantified. In this study, CMIP6 outputs were used to calculate sensitivities of global and local near-surface meteorological variables to solar radiation changes. These sensitivities were applied to the currently observed climate to perturb meteorological variables in response to changes in solar radiation. These new conditions were used as inputs to a mechanistic ecohydrological model (T&C) to analyze the partitioning and changes in energy and water fluxes and the response of vegetation productivity in different biomes and climates. Specifically, we run two simulation scenarios to understand the solar radiation impacts on ecohydrological systems. The first scenario focuses only on changes in solar radiation, while the second scenario considers the combined effects of solar radiation changes and its climate feedback. The results show that, in the absence of climate feedback, changes in solar radiation are mainly reflected in changes in sensible heat, with less impact on the hydrological cycle, and vegetation productivity is positively and linearly correlated with changes in solar radiation. When climate feedback is included, the effects on latent heat and hydrologic variables are more pronounced, and the response of vegetation productivity to negative and positive solar radiation changes tend to be asymmetric. These results provide a basis for how land-surface processes could respond to regional brightening and dimming and future solar geoengineering programs.

How to cite: Wang, Y., Meili, N., and Fatichi, S.: Exploring the impacts of changes in solar radiation on ecohydrological variables, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7258, https://doi.org/10.5194/egusphere-egu24-7258, 2024.

EGU24-8269 | ECS | Orals | CL3.1.6

 Evaluation of Some Atmospheric Transmittance Indices Over Nigeria 

Oluwatosin Obasi-oma, Israel Emmanuel, Olushola Ojo, and Babatunde Adeyemi

Atmospheric transmittance, encompassing parameters such as the clearness index, cloudiness index, and transmitting index, plays a pivotal role in the transfer of electromagnetic energy in the atmosphere. This research aimed to enhance our understanding of solar energy availability by investigating these transmittance indices across specific locations in Nigeria's diverse climatic zones. By analyzing satellite hourly data from MERRA-2 spanning ten years, the diurnal and spatial distribution patterns of solar radiation parameters and transmittance indices were examined. The research identified distinct patterns in the radiation parameters and transmittance indices. In the morning hours, radiation parameters exhibited an increasing trend from coastal to inland locations, while the afternoon period showed a reverse pattern for diffuse solar radiation. Clearness and transmitting coefficient demonstrated consistent increases from the coast inland during both morning and afternoon hours, whereas the cloudiness index displayed an opposite pattern. Moreover, the transmittance indices showed a gradual reduction from west to east during the evening. Coastal regions experienced average annual values of 100W/m2 for diffuse solar radiation, 1443W/m2 for direct solar radiation, and 500W/m2 for global solar radiation, while Sahelian regions recorded 104W/m2, 2081W/m2, and 678W/m2, respectively. The clearness index ranged from 0.35 to 0.54, the cloudiness index ranged from 0.15 to 0.46, and the transmitting coefficient ranged from 0.19 to 0.45 across the studied locations. The observed distribution patterns provide valuable insights into solar energy availability within Nigeria's climatic zones. The contrasting patterns between morning and afternoon periods suggest variations in atmospheric conditions. Importantly, the study emphasizes the significance of the transmitting coefficient in characterizing atmospheric transmittance and its role in defining radiation transfer variables. In conclusion, this research contributes to existing knowledge by evaluating atmospheric transmittance indices and their distribution patterns in specific locations across Nigeria. The findings underscore the importance of considering the transmitting coefficient alongside other parameters to accurately assess solar energy availability. Understanding these indices and their variations is essential for the effective utilization and management of solar energy resources.

How to cite: Obasi-oma, O., Emmanuel, I., Ojo, O., and Adeyemi, B.:  Evaluation of Some Atmospheric Transmittance Indices Over Nigeria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8269, https://doi.org/10.5194/egusphere-egu24-8269, 2024.

In this study, we present a series of systematic AIDA cloud chamber experiments investigating the cloud microphysics governing cirrus cloud thinning effectiveness (i.e., the competition between heterogeneous and homogeneous ice nucleation) at temperatures below 230 K. Parcel model simulations based on our experimental studies show that the total ice crystal concentrations are very sensitive to the complex interplay between background aerosol, seeding and updraft velocities. We find regimes of successful cirrus thinning, as well as regimes resulting in thicker cirrus (overseeding). In addition, we also find that updraft fluctuations potentially play a critical role in influencing cirrus cloud thinning effectiveness.

How to cite: Steinke, I., Schorr, T., and Leisner, T.: Using cloud chamber experiments and numerical simulations to investigate the complexities of cirrus cloud thinning effectiveness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9732, https://doi.org/10.5194/egusphere-egu24-9732, 2024.

EGU24-10285 | ECS | Orals | CL3.1.6

Assessing GFDL-ESM4.1 Climate Responses to CESM2-WACCM6 Geoengineering Forcing for 2.0°C Warming Target 

Shipeng Zhang, Vaishali Naik, David Paynter, Simone Tilmes, and Jasmin John

In this work we apply GFDL Earth System Model (GFDL-ESM4.1) to explore the climate responses to a geoengineering scenario that aims to restrict global warming to 2.0°C above pre-industrial levels (1850–1900) under the CMIP6 overshoot scenario (SSP534-OS) . Simulations of this geoengineering scenario with the CESM Whole Atmosphere Community Climate Model (CESM2-WACCM6) showed nearly unchanged interhemispheric and pole-to-Equator surface temperature gradients relative to present-day conditions around 2020, and reduced global impacts, such as heatwaves, sea ice melting, and large shifts in precipitation patterns (Tilmes et al 2020). Here we implement the identical stratospheric forcing in the GFDL-ESM4.1 model and find excessive global surface cooling and reduced precipitation responses, compared to those projected in CESM2-WACCM. Notably, the Southern Hemisphere experiences more substantial cooling compared to the Northern Hemisphere, accompanied by a north-ward shift in the Intertropical Convergence Zone (ITCZ). These distinct climate responses between GFDL-ESM4.1 and CESM2-WACCM6 can be traced back to their different climate feedback parameters. Furthermore, our analysis reveals that spatially heterogeneous forcing within the geoengineering scenario results in diverse climate feedback parameters even just in one model, through varying surface warming and cooling patterns. This research highlights the importance of considering model structure uncertainties and spatial forcing patterns for a comprehensive evaluation of future scenarios and geoengineering strategies.

How to cite: Zhang, S., Naik, V., Paynter, D., Tilmes, S., and John, J.: Assessing GFDL-ESM4.1 Climate Responses to CESM2-WACCM6 Geoengineering Forcing for 2.0°C Warming Target, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10285, https://doi.org/10.5194/egusphere-egu24-10285, 2024.

EGU24-12943 | Orals | CL3.1.6

Links between boreal forest and clouds inferred from long-term atmospheric observations 

Ekaterina Ezhova, Aino Aarne, Antti Arola, Antti Liponen, Anna Lintunen, Taina Yli-Juuti, Jaana Bäck, Harri Kokkola, Veli-Matti Kerminen, Tuukka Petäjä, Annele Virtanen, and Markku Kulmala

Clouds play a vital role in the Earth's radiation budget, with low-level clouds having a net cooling effect. Evidence shows that forests alter low-level clouds' formation and physical properties (e.g., [1-3]). In their turn, clouds modify radiation transfer, influencing near-surface variables and forest carbon uptake. Shallow cumulus clouds can enhance photosynthesis due to the diffuse fertilization effect, and the relative increase in photosynthesis is most significant in boreal forests compared to other ecosystems [4]. All this evidence suggests a strong atmosphere-biosphere link for boreal forests. 

We use long-term observations at SMEAR II station in Finland and satellite data sets to study how air mass transformation over boreal forests changes the optical properties of low-level clouds. Further, we assess the dynamics of photosynthesis and net ecosystem exchange in response to changing cloud properties and near-surface variables under different low-level clouds. We show that stratus clouds dampen photosynthesis, and the effect is amplified with the time spent by an air mass over a forest. Oppositely, cumulus clouds enhance photosynthesis compared to the clear sky conditions. If an air mass is exposed to the boreal forest for several days, and cumulus clouds form during the daytime, photosynthesis is efficient, and clouds' transmittance somewhat decreases. Our results suggest that shallow cumulus clouds formed in an air mass interacting with boreal forest can become more reflective. At the same time, these clouds provide ideal conditions for enhanced boreal forest carbon uptake.

References

[1] Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G., van Heerwaarden, C. C., Vautard, R., Stegehuis, A. I., Nabuurs, G.-J., and de Arellano, J. V.-G.: Observational evidence for cloud cover enhancement over western European forests, Nat. Commun., 8, 14065, 2017. 

[2] Yli-Juuti, T., Mielonen, T., Heikkinen, L., Arola, A., Ehn, M., Isokääntä, S., Keskinen, H.-M., Kulmala, M., Laakso, A., Lipponen, A., Luoma, K., Mikkonen, S., Nieminen, T., Paasonen, P., Petäjä, T., Romakkaniemi, S., Tonttila, J., Kokkola, H., and Virtanen, A.: Significance of the organic aerosol driven climate feedback in the boreal area, Nat. Commun., 12, 5637,  2021. 

[3] Petäjä, T., Tabakova, K., Manninen, A., Ezhova, E., O'Connor, E., Moisseev, D., Sinclair, V. A., Backman, J., Levula, J., Luoma, K., Virkkula, A., Paramonov, M., Räty, M., Äijälä, M., Heikkinen, L., Ehn, M., Sipilä, M., Yli-Juuti, T., Virtanen, A., Ritsche, M., Hickmon, N., Pulik, G., Rosenfeld, D., Worsnop, D. R., Bäck, J., Kulmala, M., and Kerminen, V.-M.: Influence of biogenic emissions from boreal forests on aerosol–cloud interactions, Nat. Geosci., 15, 42–47,  2022. 

[4] Zhou, H., Yue, X., Lei, Y., Zhang, T., Tian, C., Ma, Y., & Cao, Y.: Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 244, 117905, 2021.

How to cite: Ezhova, E., Aarne, A., Arola, A., Liponen, A., Lintunen, A., Yli-Juuti, T., Bäck, J., Kokkola, H., Kerminen, V.-M., Petäjä, T., Virtanen, A., and Kulmala, M.: Links between boreal forest and clouds inferred from long-term atmospheric observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12943, https://doi.org/10.5194/egusphere-egu24-12943, 2024.

EGU24-15670 | Posters on site | CL3.1.6

Hydro-meteorological and Agricultural drought assessment under Solar Radiation Modification over the Niger river basin in West Africa 

Amadou Coulibaly, Abdoulaye Ballo, Komlavi Akpoti, and Windmanagda Sawadogo and the Amadou Coulibaly1*

West African countries are vulnerable to the adverse impacts of climate extremes such as drought which are becoming more frequent and more intense over the past decades. However, drought characterization and its associated drivers are not well understood in the region. In this study, we will investigate the implication of Solar Radiation Modification (SRM) in Hydro-meteorological and Agricultural drought over the Niger River Basin, as well as their larger-scale atmospheric and ocean-atmosphere drivers. The impacts of SRM on these aspects of drought will be assessed using ARISE/GeoMIP Global Climate Model (GCM) data. The study will use three drought indices: Standardized Precipitation Evapotranspiration Index (SPEI) over each grid point for each dataset for 1 month, 3 months, 6 months and 12 months. Precipitation Concentration Index (PCI) employed as an indicator of rainfall concentration for annual and seasonal scales (wet and dry seasons). Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) to measure the rainfall distribution and the peak rainfall date, based on the daily or monthly total precipitation. Standardized runoff index (SRI) and standardized soil moisture index (SSWI). The Soil and Water Assessment Tool (SWAT) will be used to assess the current and future water balance in the basin and to estimate the features of meteorological, hydrological and agricultural droughts. The model with be driven by a statistically downscaled of the SRM climate model data. In the Preliminary results, models reproduce the near normal drought for each type of drought over the basin. The ssp585 shows less dry condition in the far future over the basin. The model intervention reduces the gap and has serious implications for future management of droughts over the basins. This is an ongoing study. The results of this research will provide valuable insights to stakeholders in the region on the regional impacts of a global climate mitigation solution such as SRM on key socio-economic climate hazards. Details results from the study will be presented in oral at the workshop. The results will enable much better-informed contributions from African policymakers in the UNFCCC and other fora where the pros and cons of geoengineering of climate in general, and SRM in particular, are being debated.

How to cite: Coulibaly, A., Ballo, A., Akpoti, K., and Sawadogo, W. and the Amadou Coulibaly1*: Hydro-meteorological and Agricultural drought assessment under Solar Radiation Modification over the Niger river basin in West Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15670, https://doi.org/10.5194/egusphere-egu24-15670, 2024.

EGU24-15763 | ECS | Orals | CL3.1.6 | Highlight

Could planetary scale solar radiation management prevent a West Antarctic Ice Sheet collapse?  

Johannes Sutter, Thomas Frölicher, Anthony Jones, Christian Wirths, and Thomas Stocker

Solar radiation modification (SRM) is increasingly discussed as a tool to reduce or avert global warming and concomitantly the risk of ice-sheet collapse, as is considered possible for the West Antarctic Ice Sheet (WAIS). While there is a growing body of literature on the climate impacts of various hypothetical SRM employment schemes, the concomitant effects on ice sheet dynamics are much less studied let alone understood. We present the first study explicitly modelling the Antarctic Ice Sheet response to global SRM-interventions with a continental scale ice sheet model. Intuitively, the question whether a WAIS collapse can be prevented depends on a manifold of factors such as ice sheet sensitivity, timing and design of the SRM-intervention and underlying climate scenarios. Our study suggests that safeguarding the WAIS from long-term collapse would either require rapid decarbonization efforts or quasi-immediate SRM-interventions. Both cases are either politically unrealistic or imprudent considering the precautionary principle. We discuss the response of the Antarctic Ice Sheet under various climate and SRM scenarios and the associated uncertainties which need to be resolved to get a more conclusive understanding on the impact of SRM-geoengineering strategies on earth’s two remaining large ice sheets. 

How to cite: Sutter, J., Frölicher, T., Jones, A., Wirths, C., and Stocker, T.: Could planetary scale solar radiation management prevent a West Antarctic Ice Sheet collapse? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15763, https://doi.org/10.5194/egusphere-egu24-15763, 2024.

EGU24-15841 | ECS | Orals | CL3.1.6

Analysing the impact of solar radiation management on the terrestrial biosphere in CMIP6 models 

Isobel Parry, Paul Ritchie, and Peter Cox

Solar radiation management (SRM) has the potential to artificially cool the Earth by increasing the reflection of incoming sunlight. One commonly researched SRM strategy is stratospheric aerosol injection (SAI), which involves the injection of sulphate aerosols into the stratosphere that scatter incoming solar radiation, thus cooling the planet. There are large uncertainties in the potential impact that solar radiation management could have on the biosphere, and further work is required to improve our understanding of the risks associated with this form of climate intervention. This presentation examines the impact of SRM on vegetation carbon, net primary productivity, and land carbon. We take results from five 6th generation climate models (CMIP6) which ran experiments as part of the geoengineering model intercomparison project (GeoMIP) and compare them with a high emissions scenario (ssp585). The GeoMIP experiments aim to investigate the global effects of using stratospheric aerosol injections and directly decreasing solar irradiance to reduce global temperatures to a ‘middle of the road’ scenario (ssp245), but without reducing the high greenhouse gas concentrations. Compared to ssp585, we find that ssp585 plus SRM tends to increases global NPP and land carbon storage. The global patterns of change in vegetation carbon storage vary between the ESMs, but there is a widespread agreement that SRM would have a positive impact on carbon storage and NPP  in the Amazon rainforest.

How to cite: Parry, I., Ritchie, P., and Cox, P.: Analysing the impact of solar radiation management on the terrestrial biosphere in CMIP6 models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15841, https://doi.org/10.5194/egusphere-egu24-15841, 2024.

EGU24-18905 | Orals | CL3.1.6

Solid particle SAI with a fully coupled atmosphere-ocean-aerosol-chemistry-climate model SOCOLv4.0 

Timofei Sukhodolov, Sandro Vattioni, Fabrice Stefanetti, Iris Schuring, Jan Sedlacek, and Gabriel Chiodo

Solid particles, such as alumina, calcite, and diamond, have been proposed as an alternative material for the stratospheric aerosol injection (SAI) studies. The traditional SAI set-up based on sulphate aerosols was shown to have several limitations such as stratospheric heating, due to absorption of long wave radiation, or ozone depletion, due to chlorine activation at the particle surfaces. Solid particles are thought to potentially overcome these limitations by having better optical properties and/or larger chemical inertness. In our work, we use for the first time a fully coupled atmosphere-ocean-aerosol-chemistry-climate model SOCOLv4.0, which incorporates a solid particle emission scheme, to assess the SAI effects of the alumina, calcite, and diamond. For each solid particle type, we followed the GeoMIP protocols and performed G4 and G6 experiments, which are cooling efficiency calibration runs and the transient ensemble runs to bring decadal surface temperatures of the SSP5 scenario to the ones from the SSP2 scenario, respectively. For all considered SAI substances, we find that the resulting burden is close to the yearly emission quantity, suggesting an average lifetime of approximately one year. Diamond has the highest burden-per-emission ratio, suggesting a higher lifetime, which is explained by its small particle radius. Sulfur, alumina, and calcite provide very similar cooling per emission, while diamond has a cooling efficiency of about a factor of three higher. Diamond also has the lowest absorption in the long wave, which allows it to show the weakest heating of the lower stratosphere, no increase in the stratospheric water vapour, and smallest dynamical effects on ozone. In terms of surface climate artifacts, those species that show the weakest heating in the stratosphere (calcite and diamond) also show the least anomalies in atmospheric and oceanic circulation patterns compared to the SSP2 scenario. Information on the interaction between alumina, calcite and ozone-relevant chemical cycles is available, but has not been sufficient so far for implementing their ozone chemistry with high confidence in the results. Additional laboratory studies, thus, are required for further modelling research on this subject.

How to cite: Sukhodolov, T., Vattioni, S., Stefanetti, F., Schuring, I., Sedlacek, J., and Chiodo, G.: Solid particle SAI with a fully coupled atmosphere-ocean-aerosol-chemistry-climate model SOCOLv4.0, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18905, https://doi.org/10.5194/egusphere-egu24-18905, 2024.

A proposed method to aid in mitigating global climate change is stratospheric aerosol injection (SAI). Recent work on SAI has shown its ability to reverse some of the changes induced by global warming, if employed properly. Still, many uncertainties on the effects of SAI exist. It is unclear if we can reverse the same amount of change with delayed SAI at high resolution, to be defined as 0.25 degree atmosphere or finer. A method is introduced that produces the needed atmospheric forcing for the atmospheric model component, which has a lower model top than more generally used in SAI studies. This method is based on existing data from the Geoengineering Large Ensemble Project (GLENS), and allows us to run high-resolution experiments. In this study, we further investigate atmospheric circulation changes using the Community Earth System Model (CESM), with a focus on Antarctica.

How to cite: de Jong, J.: Atmospheric circulation changes due to delayed stratospheric aerosol injection in high-res CESM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19933, https://doi.org/10.5194/egusphere-egu24-19933, 2024.

EGU24-20697 | Orals | CL3.1.6

Diffuse radiation characterized gross primary production over the globe 

Mingjie Shi and Tirthankar Chakraborty

Diffuse radiation, which is modulated by cloud and aerosol conditions, can have varied impacts on gross primary production (GPP), with the specific impacts depending on vegetation density, environmental conditions, and the specific physiological characteristics of plants. To quantify the sensitivity of GPP variation to changes in diffuse radiation at the global scale, we use several reanalysis datasets and a satellite-derived products with distinct characterizations of the division between direct beam and diffuse radiation, to force the Energy Exascale Earth System Model Land Model (herein ELM). We find large variations in the range of GPP due to the change in ratio of diffuse radiation to the total downward shortwave radiation (or diffuse fraction). The research implies substantial control of diffuse radiation on atmosphere–biosphere interaction, and demonstrates the importance of thoroughly and systematically validating the simulated diffuse radiation by atmosphere modules, along with assessing the ecosystem responses to the diffuse radiation variations within global land models.

How to cite: Shi, M. and Chakraborty, T.: Diffuse radiation characterized gross primary production over the globe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20697, https://doi.org/10.5194/egusphere-egu24-20697, 2024.

EGU24-20960 | Orals | CL3.1.6

Tropical Cyclone-related Extreme Rainfall and Its Impact under Solar Radiation Management (SRM) in Eastern Indonesia Region  

Sorja Koesuma, Akhmad Faqih, Hendri Hendri, Jassica Listyarini, Adinda Madi Astiani, Delfina Azzahra Kusuma, and Rahmat Gernowo

The provinces of East Nusa Tenggara (NTT) and Papua are located in the eastern part of Indonesia. The occurrence of tropical cyclones and extreme weather events has recently increased in both regions. It is necessary to be aware of the impact, both direct and indirect, of tropical cyclones, which affect the weather, especially extreme rainfall. The study aims to investigate the impact of extreme rainfall and find potential solutions.

We use some of the following tropical cyclone data that happened in Indonesia. The tropical cyclone of Seroja on April 4, 2021, reached mainland NTT and had a significant impact, especially on Timor Island and Sumba Island. The tropical cyclone of Surigae was formed in the northern region of Papua on April 12-19, 2021. The peak of this cyclone was on 16 April 2021. The tropical cyclone of Ray formed around the Northwest/Western Pacific Ocean on December 13-20, 2021.

We analysed the atmospheric dynamics (rainfall) of the tropical cyclone events using the ERA5 model. We also use Bias correction from GeoMIP to analyse the rainfall and compare both results. The result shows that both data are well correlated and tend to decrease.

How to cite: Koesuma, S., Faqih, A., Hendri, H., Listyarini, J., Madi Astiani, A., Azzahra Kusuma, D., and Gernowo, R.: Tropical Cyclone-related Extreme Rainfall and Its Impact under Solar Radiation Management (SRM) in Eastern Indonesia Region , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20960, https://doi.org/10.5194/egusphere-egu24-20960, 2024.

BG2 – Methods in Biogeosciences

EGU24-305 | ECS | Posters on site | BG2.1

Using triple oxygen measurements of lacustrine carbonates to constrain the Miocene topography of the Dinaric Alps 

Gabriela Sanchez Ortiz, Marlene Löberbauer, Payal Banerjee, Nevena Tomašević, Oleg Mandic, Davor Pavelić, Vedad Demir, Zachary Sharp, Maud Meijers, and Jeremy Rugenstein

The Dinaric Alps formed as a result of the collision between the Adria microplate with Eurasia during ongoing closure of the Tethys Ocean. However, there remain a number of questions regarding the mechanisms that created and sustained the high topography (maximum modern elevation of ~2500 m) of this region. We take advantage of a series of lacustrine basins—known as the Dinaride Lake System (DLS)—that formed in the Early and Middle Miocene to constrain paleo-elevations of the Dinaric Alps using stable isotope paleoaltimetry. We collected authigenic lacustrine carbonate samples from six basins in Croatia and Bosnia and Herzegovina that span the range from sea-level to high-elevation (~1200 m) and measured these samples for δ18O. In addition, we also collected stream samples that span the range to constrain the modern change in δ18O across the Dinaric Alps. Stable-isotope paleoaltimetry is based on the concept that, as moist air parcels are forced upwards by orography, 18O is preferentially removed by the resulting precipitation, resulting in lower δ18O at higher-elevations and in the lee of ranges. Today, meteoric water δ18O is high (~ -6‰) at the coast and is ~5‰ lower at the crest of the range (~ -11‰). However, Middle Miocene lacustrine carbonate δ18O is high (~ -3‰) at the crest of the range and lower (~ -6‰) at the coast. Because lacustrine carbonate δ18O is frequently impacted by evaporation, we analyzed a subset of our samples for Δ17O, which is sensitive to the degree of evaporation. These carbonates have Δ17O values ranging from -68 to -150 per meg. Using our Δ17O data and a model of lake evaporation, we reconstruct the unevaporated meteoric water δ18O. Our preliminary results show a similar trend as in the modern, with higher δ18O values at the coast and lower δ18O at the crest of the range. Reconstructed unevaporated meteoric water δ18O at the crest is lower by 2-5‰ than modern water δ18O at the crest of the Dinaric Alps. That unevaporated meteoric water δ18O might have been lower than today at the crest of the range suggest that the Dinaric Alps were higher in the Middle Miocene that today, assuming that coastal meteoric water δ18O was similar to today. Thus, ongoing extension within the Dinaric Alps due to slab rollback may be responsible for lowering of topography.

How to cite: Sanchez Ortiz, G., Löberbauer, M., Banerjee, P., Tomašević, N., Mandic, O., Pavelić, D., Demir, V., Sharp, Z., Meijers, M., and Rugenstein, J.: Using triple oxygen measurements of lacustrine carbonates to constrain the Miocene topography of the Dinaric Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-305, https://doi.org/10.5194/egusphere-egu24-305, 2024.

EGU24-537 | ECS | Posters on site | BG2.1

Investigating the impact of diet on the stable isotope composition of human scalp hair and fingernails 

Gunjan Agrawal and Prasanta Sanyal

Diet-related diseases such as nutritional stress, malnutrition and eating disorders resulting from an unhealthy diet contribute to various health issues, which in some cases may be life-threatening. An accurate diet reconstruction is thus crucial for individuals at risk due to dietary concerns. The principle of diet reconstruction is rooted in the proverb ‘you are what you eat’, and an individual’s diet is the sole source of nitrogen and carbon in their body. The stable isotope composition of nitrogen (δ15N) and carbon (δ13C) can serve as a tool to recognise dietary patterns and identify health conditions. However, the variations in the values of δ15N and δ13C isotopes can imply either dietary changes or disorders associated with diet, making it challenging to ascertain the precise cause of such variations. This study aimed to establish the relationship between the isotopic composition of human tissues, specifically scalp hair and fingernails, and diet. Samples of human tissues were collected from 100 healthy participants within a 15-day period, with 74 of them providing comprehensive diet records. The participants resided in a controlled environment, a remote residential campus with limited food options and restricted access to external food sources. This controlled setting ensured that the isotopic composition of the collected samples solely reflected the impact of diet, eliminating the influence of environmental factors and dietary disorders on the isotopic composition. All the dietary sources and sixty-six food items available to the participants were considered and analysed, respectively, to determine the percentage of animal protein in their diet. This was correlated with the δ15N and δ13C values of human tissues to quantify the proportion of animal protein in diet using linear equations. The variations in the δ15N and δ13C values of human tissues resulting from dietary changes were calculated and distinguished from those caused by dietary disorders. The study results demonstrated that the amount and type of food consumed impact the δ15N and δ13C values of human tissues. An increase in animal protein intake was associated with an increase in the dual isotopic composition. Notably, the nitrogen isotope values of human tissues differed by 0.9‰ between lacto-vegetarians and omnivores. The study further revealed that a 5% dietary change resulted in fluctuation of 0.4 - 0.5‰ in both δ15N and δ13C isotope ratios. This was compared to changes caused by dietary disorders in δ15N and δ13C values of human scalp hair. These findings help in determining whether the variations in δ15N and δ13C values of human tissues result from increased animal protein intake or serve as indicators of dietary disorders.

How to cite: Agrawal, G. and Sanyal, P.: Investigating the impact of diet on the stable isotope composition of human scalp hair and fingernails, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-537, https://doi.org/10.5194/egusphere-egu24-537, 2024.

EGU24-1377 | ECS | Posters on site | BG2.1 | Highlight

Zinc Isotope Study of Baseline Occurrence Patterns and Potential Contamination of Sediments from the Great Lakes Basin 

Tassiane Junqueira, Daniel Ferreira-Araújo, and Bas Vriens

The Laurentian Great Lakes are a globally unique freshwater resource, playing a pivotal role in public water supply and agriculture, transportation, hydroelectric power, and ecosystem functioning. However, the Great Lakes also have a long history of metal contamination, especially in so-called Areas-of-Concern near urban areas and industrial sites. One major anthropogenic contaminant in the Great Lakes is Zn, derived from point-sources such as metal mining, smelting, and chemical industries, as well as diffuse sources such as fertilizer application or urban runoff, in addition to natural inputs from atmospheric deposition and natural weathering. Disentangling the importance of these geogenic versus anthropogenic sources and processes is critical to improving our understanding of the cycling and environmental fate of Zn in the Great Lakes region.

We examined spatiotemporal variations in Zn concentrations and isotopic compositions, as well as bulk physicochemical and mineralogical properties, of a total of 72 surface sediments and sediment core samples across nearshore-to-offshore gradients and depositional environments with distinct limnological conditions spanning >50 years.

Our results reveal spatial variations in both Zn concentrations (18 to 580 mg/kg) and isotopic compositions across oligotrophic (Lake Huron) to mesotrophic (Lake Erie) environments. Interestingly, the intra-lake heterogeneity is comparable to or higher than the variability observed at the inter-lake (basin-scale) level, with no upstream-to-downstream accumulation being evident. The isotopic signatures of surface sediment, measured as δ66Zn and ranging from -0.09‰ to +0.41‰, suggest a predominantly geogenic source for Zn. Furthermore, an examination of temporal trends in sediment cores from Lake Huron and Lake Erie indicates consistent metal concentrations and Zn isotopic signatures, implying minimal biogeochemical fractionation within the lakes themselves. Across all sediments and both lakes, metal concentrations and isotopes are positively but not very strongly (R2<0.49 overall) correlated to TOC, TN, and TP, but not to chlorophyll a.

In summary, our findings indicate that sedimentation plays a crucial role as a repository for metals in the Great Lakes, exerting significant influence on the distribution patterns of metals throughout the basin. Furthermore, the higher levels of metals at locations with historical contamination remain spatially constrained and do not seem to disrupt the interconnected system of the Great Lakes.

How to cite: Junqueira, T., Ferreira-Araújo, D., and Vriens, B.: Zinc Isotope Study of Baseline Occurrence Patterns and Potential Contamination of Sediments from the Great Lakes Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1377, https://doi.org/10.5194/egusphere-egu24-1377, 2024.

Formate is energetically equivalent to hydrogen and thus, is an important intermediate during the breakdown of organic matter in anoxic rice field soils and lake sediments. Formate is a common substrate for methanogenesis, homoacetogenesis and sulfate reduction. However, how much these processes contribute to formate degradation and fractionate carbon stable isotopes is largely unknown. Therefore, we measured the conversion of formate to acetate, CH4 and CO2 and the δ13C of these compounds in samples of paddy soils from Vercelli (Italy) and the International Rice Research Institute (IRRI, the Philippines) and of sediments from the NE and SW basins of Lake Fuchskuhle (Germany). The samples were suspended in phosphate buffer (pH 7.0) both in the absence and presence of sulfate (gypsum) and of methyl fluoride (CH3F), an inhibitor of aceticlastic methanogenesis. In the paddy soils, formate was found to be an excellent substrate for acetate formation, while CH4 was mainly produced from acetate. Acetate was also produced in the presence of sulfate. The produced acetate was strongly depleted in 13C relative to formate (about -50‰ to-25‰), but the consumption of formate itself displayed only a small isotope enrichment factor on the order of -8‰ to -6‰. Therefore, it is likely that formate was disproportionated to 13C-depleted acetate and 13C-enriched CO2. The δ13C of CO2 was indeed slightly higher than that of formate. Acetate was most likely produced by homoacetogenesis via the Wood-Ljungdahl pathway. Methane was only a minor product and was mainly produced from the acetate as its production was inhibited by CH3F. The homoactogenic bacteria in the paddy soils apparently competed well with both methanogenic and sulfate-reducing microorganisms, when formate was the substrate. In the lake sediments, the product spectrum was similar, but only under methanogenic conditions. In the presence of sulfate, however, acetate and CH4 were only minor products and no enrichment factor was detectable when formate was degraded to mainly CO2. Hence, homoacetogenesis was the major anaerobic degradation pathway of formate. Formate-dependent methanogenesis was negligible, and sulfate-dependent oxidation was only operative in the lake sediments but not in the paddy soils.

How to cite: Conrad, R. and Claus, P.: Formate consumption and stable carbon isotope fractionation in anoxic rice field soils and lake sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2895, https://doi.org/10.5194/egusphere-egu24-2895, 2024.

EGU24-3580 | ECS | Posters on site | BG2.1 | Highlight

Temporal and spatial investigations of the isotope biogeochemistry of a coastal peatland area under sporadic flooding  

Rhodelyn Saban, Anna-Kathrina Jenner, Catia Milene Ehlert von Ahn, Iris Schmiedinger, and Michael Böttcher

The interface between the terrestrial and marine environments regulates the interactions between the adjoining domains. Natural and anthropogenic alterations influence the processes and exchanges of materials. This study aims to determine the biogeochemical processes before and after anthropogenic changes in the coastal protection at the southern Baltic Sea coast proximal to a peatland (Hütelmoor, Rostock, Germany). Spatial and temporal investigations, with the use of stationary porewater lances, characterize the dynamics of biogeochemical transformation processes. Porewaters were measured for in-situ physico-chemical parameters and analyzed for dissolved organic and inorganic carbon (DOC and DIC), major ions, redox-sensitive elements and nutrients concentrations. Stable isotopes (ẟ13C-DIC and -DOC, ẟ2H- and ẟ18O-H2O, and ẟ34S- and ẟ18O-SO4, and ẟ34S-H2S) and non-stable isotopes (223Ra, 224Ra) were also measured. Results indicate high concentrations of DOC which may have originated from peat degradation and high concentrations of DIC, which may have been derived from organic matter mineralization, terrestrial and marine carbonate dissolution, and Baltic Sea-derived DIC. Minor contributions from CH4 oxidation cannot be ruled out. Diagenetic transformations are also reflected in the vertical profiles of redox-sensitive ions (such as Fe, Mn, SO4 and H2S). Sulfate, dominantly from Baltic Sea water and microbial reduction-oxidation, influences diagenesis. Water is a mixture of different brackish and freshwater sources.  Moreover, submarine groundwater discharge (SGD) was observed from 150 cmbsf and also evident in 224Ra activities. With the changes in the coastal protection status, internal transport processes of porewaters in the sediment are evidently influenced by the hydrogeodynamics along the coastline on a local to regional scale.

How to cite: Saban, R., Jenner, A.-K., Ehlert von Ahn, C. M., Schmiedinger, I., and Böttcher, M.: Temporal and spatial investigations of the isotope biogeochemistry of a coastal peatland area under sporadic flooding , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3580, https://doi.org/10.5194/egusphere-egu24-3580, 2024.

EGU24-3596 | Orals | BG2.1 | Highlight

Measuring δ17O and Δ′17O in precipitation across various spatial and temporal scales: spanning from global to local and from multi-year to sub-hourly resolutions 

Stefan Terzer-Wassmuth, Luis Araguas-Araguas, Leonard I. Wassenaar, Lucilena R. Monteiro, and Christine Stumpp

During the past decade, the rare O isotope 17O and the 17O-excess became attractive for potential new applications in hydrology, climatology, and broader oxygen isotope research. Although laser-based analysers are technologically capable of the needed Δ′17O assays, progress was hindered by the metrological challenges and the absence of fundamental spatiotemporal data on precipitation inputs. Uncertainties surrounding the input function of the water cycle complicate advancements of 17O as a tracer. This “emerging tracer dilemma” is a potential obstacle for further triple-O isotope research.

In this work, >3500 archived water samples from the Global Network of Precipitation (GNIP) sample archives (2015-2021) were re-analysed for  for δ17O and Δ′17O. For >60 GNIP stations, four or more years’ of samples were analysed, assessing the seasonality of Δ′17O, and constructing δ17O/ δ18O Local Meteoric Water Lines (LMWL). This global dataset allowed for a first-ever comprehensive assessment of the spatial patterns of δ17O/ δ18O LMWLs, and to devise a first-ever precipitation-weighted Global Meteoric Water Line (GMWL): δ′17O = 0.5280 ± 0.0002 δ′18O + 0.0153 ± 0.0013. This GMWL definition is similar to previous efforts albeit with a lower ordinate intercept.

We further analysed the Δ′17O of a 6-year daily/fortnightly precipitation sampling in Vienna as an example of seasonal isotopic variations at synoptic weather patterns’ resolution. Air moisture sources were determined by backwards trajectory analysis and corroborated with synoptic weather data from Austria’s meteorological service. The Δ′17O values correlated with δ18O seasonality. A comparison with the deuterium excess patterns (stemming from the Atlantic and Mediterranean domains) demonstrated that the “two excesses” carried different signals. While elevated d-excesses
mainly came from the central/eastern Mediterranean Sea or easterly continental sources during all seasons, we found elevated Δ′17O precipitation originated only from northerly or north-easterly sources, and predominantly during the winter season.

Finally, we present pilot Vienna precipitation events sampled at sub-hourly (to 5-minute) resolution, which included both cyclonic and convective rainfall events, which demonstrate the interplay of moisture sources using triple oxygen isotopes and deuterium excess. This work will help to shape our understanding of δ17O and Δ′17O in Earth’s precipitation, despite the ongoing metrological challenges faced, and promote discussion regarding the scientific value of routine measurements for triple-oxygen isotopes in precipitation.

How to cite: Terzer-Wassmuth, S., Araguas-Araguas, L., Wassenaar, L. I., Monteiro, L. R., and Stumpp, C.: Measuring δ17O and Δ′17O in precipitation across various spatial and temporal scales: spanning from global to local and from multi-year to sub-hourly resolutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3596, https://doi.org/10.5194/egusphere-egu24-3596, 2024.

EGU24-4590 | Orals | BG2.1

Triple sulfur isotope constraints on the sulfur cycling in Lake Sevan, Armenia 

Alexey Kamyshny, Khoren Avetisyan, Natella Mirzoyan, and Rayford Payne

Lake Sevan is a meso-eutrophic water body, which was severely impacted by anthropogenic level decrease, pollution and eutrophication during the last century. Starting in the 1970s, a decrease in the water level and an increase in dissolved inorganic nitrogen concentrations resulted in oxygen depletion in the hypolimnion of the lake during summer–autumn thermal stratification of the water column. Our work shows that in October 2019, the redox conditions in the hypolimnion progressed not only to full depletion of oxygen and nitrate, but to the formation of a hydrogen sulfide-rich deep-water layer, which covers 66% of lake’s bottom and accounts for 19% of its water volume. Concentrations of hydrogen sulfide in the hypolimnion of Major and Minor Sevan in October were as high as 9 and 39 μM, respectively.

Triple sulfur isotope composition of sulfate and hydrogen sulfide in the water column of the lake provides further constraints on the biogeochemical processes which result in the formation of hydrogen-sulfide hypolimnion. Values of δ34S for hypolimnetic sulfide are lower by only 7–12 ‰ compared to epilimnetic sulfate, while δ33S values of sulfide are similar to the δ33S values of sulfate. These isotopic fingerprints are not consistent either with microbial sulfate reduction in the water column or with its combination with re-oxidative sulfur cycle as the sources of hydrogen sulfide in the hypolimnion. We attribute the formation of a sulfidic deep-water layer to a combination of microbial sulfate reduction in the water column and diffusion of hydrogen sulfide from the sediments.

How to cite: Kamyshny, A., Avetisyan, K., Mirzoyan, N., and Payne, R.: Triple sulfur isotope constraints on the sulfur cycling in Lake Sevan, Armenia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4590, https://doi.org/10.5194/egusphere-egu24-4590, 2024.

EGU24-5453 | Orals | BG2.1 | Highlight

Response of two coastal peatlands to the duration of rewetting and the release of nutrients 

Maren Voss, Anne Breznikar, Iris Liskow, Daniel Poenisch, and Gregor Rehder

Along the German coastline of the Baltic Sea are numerous former coastal fens. The originally approx. 40,000 hectares of peatland that were regularly flooded are now mostly diked, drained and are mainly used for agriculture. In order to be prepared for rising sea levels in the future, attempts are being made to determine the consequences of renewed flooding for the development of the fen and the adjacent Baltic Sea. A first test area was a former peatland in Drammendorf on the island of Ruegen, Germany. It had been rewetted in a major campaign lead by the Baltic Sea Foundation. The other area, Karrendorf, had been flooded already 30 years ago. The two coastal fens had different periods of waterlogging and were studied comparatively over the course of a year. In addition to the typical seasonality, which is reflected in the same temperature and oxygen content at both sites and the adjacent bays, there are striking differences in nutrient concentrations and isotope signatures of organic matter and nitrate, some of which can be traced back to the history of the areas as agricultural land. Shortly after its rewetting in winter, for example, nitrate concentrations in Drammendorf were several times higher than in Karrendorf and nitrous oxide saturations were up to 4000 %.

We found that the longer the area was flooded and nutrients released to the overlying waters, the less nutrients are discharged into the adjacent Baltic Sea. This finding was not only reflected by lower nutrient concentrations in the surface water of Karrendorf, but also in much lower porewater nutrient concentrations. Moreover, we saw a close coupling of the microbial processes in the overlying water with the soils. Nitrification, which converts ammonium from decomposition processes into nitrate, was clearly recognizable in the nitrogen and oxygen isotopes of nitrate despite low rates. However, high δ18O values of nitrate indicate precipitation as another possible source of nutrients. In addition, the isotope values of the organic matter show that there is an intensive exchange between the Baltic Sea and the coastal fens, whereby Drammendorf is more strongly characterized by marine organic matter inflow than Karrendorf. Thus, the flooding of coastal peatlands initiates lateral transport across the terrestrial-marine interface, while the microbial processes play more of a role in the interaction between soil and water.

For future management, the soil composition and history should always be considered and the intensity of exchange with coastal waters taken into account so that these areas do not become hot spots of eutrophication due to their large nutrient reservoirs.

How to cite: Voss, M., Breznikar, A., Liskow, I., Poenisch, D., and Rehder, G.: Response of two coastal peatlands to the duration of rewetting and the release of nutrients, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5453, https://doi.org/10.5194/egusphere-egu24-5453, 2024.

EGU24-5836 | ECS | Orals | BG2.1

Contribution of triple oxygen isotopes measurement by Cavity Ring Down spectroscopy and Clumped isotopes to the understanding of kinetics effect in cold water corals. 

Marie Pesnin, Justin Chaillot, Thibault Clauzel, Claire Rollion-Bard, Sebastien Nomade, Samir Kassi, Franck Lartaud, and Mathieu Daëron

Kinetic isotopes effect (KIEs) describes a very common phenomenon related to change in chemical reaction rate due isotopic substitution. If in biological sciences, KIEs has received a lot of interest with the aim at understanding reaction mechanisms, their control on the isotopic composition of biogenic carbonate has long been overlooked. However, the initial assumption that isotopic fractionation primarily reflects a thermodynamic equilibrium process in the H2O-DIC-CaCO3 system is challenged by a growing number of observations. Not accounting for these disequilibrium effects leads to inaccurate estimates of carbonate growing temperature. In this scientific context, Triple oxygen isotopes systematic can help constraining kinetics isotopes fractionation associated with metabolic reactions implicated in biocarbonates formation. We thus took advantage from recent development in spectroscopic technique (VCOF-CRDS) to measured O17isotopic anomalies in CO2produced by carbonate acid reaction [1]. These samples were also analyzed for their δ13C, δ18O and Δ47 composition using a more classical mass spectroscopy technic. In this contribution we investigated cold-water corals (CWC) known to display strong isotopic disequilibria. For this 1st application, we selected four modern CWC species for which calcification conditions (T, S, pH, δ18Owater, Δ17Owater and δ13CDIC) are independently constrained. The measured isotopic signatures were compared to their respective expected values based on environmental constrains, assuming “pseudo-equilibrium” carbonate precipitation. In particular, corals Δ17O signatures were compared to the newly established equilibrium for O17 fractionation between calcite-water based on slow growing carbonates from Laghetto Basso and Devils Hole, measured using the same VCOF-CRDS technic [2]. We finally compared our experimental data with theoretical predictions for KIEs on DIC isotopic composition [3]. Interestingly, the correlation slope among Δ47 - Δ17O disequilibrium differ from the previous one derived from dual clumped (Δ47 - Δ48) isotopic measurements of the same species [4]. This founding suggesting that other biological parameter(s) should be taken into account to resolve CWC isotopic disequilibria.

[1] Chaillot. J., Daëron. M., Casado, M., Landais. A., Pesnin. M., Clauzel. T., Kassi. S. (in prep) Triple oxygen analyses of carbon dioxide, water and carbonates using VCOF-CRDS.

[2] Clauzel, T., Chaillot, J., Pesnin, M., Jautzy, J., Kessy, S., Daëron, M. (in prep) Advancing triple oxygen isotope analysis of carbonate and water using V-shaped Cavity Optical Feedback Cavity Ring-Down Spectroscopy (VCOF-CRDS): Calibration and implications for paleoclimate reconstruction.

[3] Guo. W. (2020). Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: Patterns, controls, and implications. Geochimica et Cosmochimica Acta, 268, 230-257.

[4] Davies. A. J., Guo. W., Bernecker. M., Tagliavento. M., Raddatz. J., Gischler. E., Floter. S., Fiebig. J. (2022). Dual clumped isotope thermometry of coral carbonate. Geochimica et Cosmochimica Acta, 338, 66-78.

How to cite: Pesnin, M., Chaillot, J., Clauzel, T., Rollion-Bard, C., Nomade, S., Kassi, S., Lartaud, F., and Daëron, M.: Contribution of triple oxygen isotopes measurement by Cavity Ring Down spectroscopy and Clumped isotopes to the understanding of kinetics effect in cold water corals., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5836, https://doi.org/10.5194/egusphere-egu24-5836, 2024.

EGU24-6261 | ECS | Posters on site | BG2.1

How hydroclimate variability drives triple oxygen isotope dynamics in permanent and temporal lakes in Southern Spain 

Claudia Voigt, Fernando Gázquez, Ana Isabel Sánchez-Villanueva, Lucía Martegani, Elvira Ruíz-Caballero, Jorge Cañada, and Miguel Rodríguez-Rodríguez

Triple oxygen isotopes of lacustrine gypsum and carbonate deposits are used to quantitatively assess past hydroclimate conditions. An accurate interpretation of these paleo-archives requires a fundamental understanding of processes driving the variability of 17O-excess in hydrologically different lake systems and their dynamics. Here, we present results of an ongoing monitoring study of triple oxygen and hydrogen isotopes and lake hydrology of two adjacent lakes in southern Spain, which differ in morphology, hydrogeological functioning, and water chemistry. Laguna Grande is a permanent, ∼8 m deep water body that receives groundwater discharge from the aquifer. In contrast, Laguna Chica is a temporal lake with a maximum depth of 1.5 m, which is only fed by precipitation and basin discharge and desiccates during exceptionally long periods of drought. The region is characterized by semi-arid climate and strong seasonality of precipitation. The dataset comprises three hydroperiods between 2020 and 2023. This period has been extremely dry in the South of Spain. We compare non-steady-state isotope and hydrological mass balance model results to monthly observations of lake levels and lake water isotope data to assess the mechanisms that control lake hydrology from daily to annual scale.

Laguna Grande showed significantly less isotope variability (δ18O ranged from 5.7 to 9.6‰, 17O-excess from -34 to -86 per meg, d-excess from -28 to -43‰) than Laguna Chica (δ18O ranged from -1.5 to 20.8‰, 17O-excess from -7 to -153 per meg, d-excess from -2 to -89‰). In general, 17O‑excess and d‑excess decreased with increasing δ18O, indicating the impact of evaporation. The highest δ18O and lowest 17O-excess and d-excess values occurred at the end of summer before the start of the next rainy season. Annual average δ18O of Laguna Grande increased by ∼0.7‰ per year, while 17O-excess (∼10 per meg per year) and d-excess (∼2 ‰ per year) decreased slightly. This indicates that evaporation exceeded water inflows, which is consistent with the 2 m water level drop observed over the study period. Laguna Chica showed high interannual isotope variability. In particular, the timing of desiccation determines its maximum evaporative isotope enrichment. The highest δ18O and lowest 17O-excess and d-excess were observed in October 2022, just before complete desiccation. The lake was refilled in the subsequent rainy season but dried up in May 2023 preventing it from reaching the high level of evaporation observed in the preceding hydroperiods. Changes in the length of the hydroperiod and the timing of desiccation need to be considered when interpreting isotope data of paleo-lake water obtained from lake sediment archives. The non-steady-state isotope-hydrological mass balance model agrees reasonably well with observations, showing that lake’s isotope variability can be predicted even in highly dynamic systems. However, uncertainty in the lake volume-to-surface area ratio at low water level stages challenge accurate prediction of the lake isotope composition. 

 

How to cite: Voigt, C., Gázquez, F., Sánchez-Villanueva, A. I., Martegani, L., Ruíz-Caballero, E., Cañada, J., and Rodríguez-Rodríguez, M.: How hydroclimate variability drives triple oxygen isotope dynamics in permanent and temporal lakes in Southern Spain, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6261, https://doi.org/10.5194/egusphere-egu24-6261, 2024.

EGU24-6355 | ECS | Posters on site | BG2.1

Lead in particulate matter source apportioning by HR-MC-ICPMS stable isotope ratio measurements 

Giuseppe Caso, Maria Di Rosa, Salvatore Di Rosa, Mauro Rubino, and Fabio Marzaioli

During the last decades great attention was paid to Particulate Matter (PM) due to the correlation between fine PM exposure and adverse health effects.

  Among the airborne pollutants, Lead (Pb) is one of the most widespread and toxicologically important. Metallic Pb and inorganic Pb compounds are classified as possible carcinogenic for humans. Pb can bioaccumulate in the human body system, causing damage to human nervous system, cardiovascular diseases, reproductive impairments, and catalyzing cells oxidative stress.

  In Italy, Legislative Decree no. 155 of 13/08/2010 (implementation of European Directive 2008/50/EC) defines the atmospheric PM10, PM2.5 and airborne pollutants threshold concentration values. These threshold values are applied for anthropogenic particulates, so, the Pb source apportioning in PM can offer the key to manage the problem.

   Pb has four stable isotopes, i.e. 204Pb, 206Pb, 207Pb, and 208Pb. The isotopic ratios of Pb act as “fingerprint” that allows to identify the PM emission sources in the environment (crustal, vehicular traffic, municipal solid waste incinerator, etc …).

  The PM 2.5 and PM10 sampling will be carried out by ARPAC monitoring network, using high-volume samplers placed in Campania (Italy) environmental interest points (urban centers, busy roads…). The sampling flow is 2.36 m3/h, single sampling time is 24 hours and the use of quartz fiber filters Ø = 47mm is provided (according to the technical standard UNI EN 12341:2014).

  Precise and accurate measurement of Pb and relative isotope ratios requires a multi-step process for analysis of solid samples:

  • Microwave-assisted treatment of filters with strong acid to solubilize all the metallic species (EPA 3051 A 2007);
  • A First qualitative and quantitative measurement by Inducted Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to estimate the total Pb concentration (moreover, the quali-quantitative determination of other metals is an important information for environmental purposes);
  • Lead Extraction and purification from matrix and interfering elements by ionic resins in ISO 4 clean room;
  • Mass spectrometry measurement for lead isotope analysis by High Resolution Multi-Collector Inducted Coupled Plasma Mass Spectrometry (HR-MC-ICPMS).
  • Improvement of data interpretation accuracy comparing experimental data to isotopic lead ratio values in research databases (i.e. IBERLID: lead isotope database and tool for metal provenance and ore deposits research).

  However, the identification of anthropogenic Pb sources enables to establish the origin of a portion of collected PM. So, when an overcoming of PM threshold concentration is observed, thanks to the isotopic analysis information, competent authorities can act in an efficient and successful way.

How to cite: Caso, G., Di Rosa, M., Di Rosa, S., Rubino, M., and Marzaioli, F.: Lead in particulate matter source apportioning by HR-MC-ICPMS stable isotope ratio measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6355, https://doi.org/10.5194/egusphere-egu24-6355, 2024.

EGU24-7124 | ECS | Posters on site | BG2.1

Development of a comprehensive and ultrasensitive isotope calibration method for soil amino acid profiles using Orbitrap mass spectrometry 

Tao Li, Yuhua Li, Ye Tian, Erika Salas, Xiaofei Liu, and Wolfgang Wanek

Bound amino acids constitute a significant portion of soil organic nitrogen, which represents an essential source of nitrogen for plant and microbial nutrition. The analysis of the content and isotope enrichment of bound amino acids still represents a significant challenge due to the degradation of certain amino acids following the conventional acid hydrolysis method, due to the low isotope enrichment levels reached under near-native soil conditions and due to the lack of isotopically labelled standards for some key amino acids. In this study, we used both a 13C-labeled and unlabeled 16 algal amino acid mixture to establish standard calibration curves for various amino acids, using the 6-Aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) derivatization method and the ultra-high-performance liquid chromatography with high-resolution Orbitrap mass spectrometry (UPLC-Orbitrap MS) platform. Molecular ions of AQC-derivatives for all amino acids were identified at the expected m/z values of the respective isotopologues, and the isotope calibration curves exhibited excellent linearity for those amino acids where we had isotope standards at hand (polynomial R2 > 0.9896). However, the polynomial fitting terms differed between single amino acids. Subsequently, we developed equations to relate the calibrated regression terms to physicochemical properties of the respective amino acids. First, we conducted a linear regression using the Orbitrap-derived 13C atom % of unlabeled standards against the carbon atom number of the specific amino acid-AQC derivative molecules, demonstrating great linearity (R2 = 0.9728). This linear regression curve allowed us to predict the natural 13C abundance of amino acids unavailable as isotopically labelled standards (e.g. hydroxyproline, meso-diaminopimelic acid). Consequently, based on further regressions, we could ultimately develop isotope calibration curves for those amino acids unavailable as 13C labelled standards based on the integrated isotope calibration functions. This general predictive model can be applied to comprehensively and highly sensitively (13C enrichment ~0.01 at %) quantify isotope enrichments of the whole soil amino acids profile, providing valuable insights for a better understanding of the overall fate of different amino acids in soils.

How to cite: Li, T., Li, Y., Tian, Y., Salas, E., Liu, X., and Wanek, W.: Development of a comprehensive and ultrasensitive isotope calibration method for soil amino acid profiles using Orbitrap mass spectrometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7124, https://doi.org/10.5194/egusphere-egu24-7124, 2024.

EGU24-7981 | Orals | BG2.1 | Highlight

Clumped isotopes in carbonates: state of the art and open questions  

Stefano Bernasconi, Nathan Looser, Nico Kueter, Ricarda Rosskopf, and Jordon Hemingway

Since its establishment almost 20 years ago, carbonate clumped isotope thermometry (Δ47, Δ48) has grown to the most widely applied branch of the rapidly evolving field of clumped isotope geochemistry. An increasing number of laboratories worldwide is implementing this technique and applying it to solve a broad range of Earth science questions. The introduction of carbonate-based standardisation (Bernasconi et al. 2021), together with recent efforts to improve temperature calibrations (e.g. Anderson et al. 2021), has solved inter-laboratory differences and greatly improved the confidence in temperature reconstructions based on Δ47. Discrepancies in absolute temperatures using different calibrations are now on the order of 1-2°C only. The next frontier in carbonate clumped isotopes is Δ48 which is even more analytically challenging than Δ47 but has the potential to solve long standing questions of equilibrium/disequilibrium precipitation of carbonates and better understand processes of biomineralization. An important remaining field that requires further research is related to the preservation of the original clumped isotope temperatures in deep time samples and the kinetics of C-O bond reordering. In this contribution, we will review the state-of-the-art analytical methods and calibrations and discuss open challenges in interpreting clumped isotope signatures of biogenic and inorganic carbonates with bond reordering models.

Bernasconi et al. (2021) InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards. Geochemistry, Geophysics, Geosystems, 22(5),e2020GC009588..

Anderson et al. (2021) A unified clumped isotope thermometer calibration (0.5–1100°C) using carbonate‐based standardization. Geophysical Research Letters, 48, e2020GL092069.

How to cite: Bernasconi, S., Looser, N., Kueter, N., Rosskopf, R., and Hemingway, J.: Clumped isotopes in carbonates: state of the art and open questions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7981, https://doi.org/10.5194/egusphere-egu24-7981, 2024.

EGU24-10068 | Posters on site | BG2.1

Improving the long-term Δ47 reproducibility of the Thermo Scientific 253 Plus 10 kV IRMS using a prototype Peltier cooling device 

László Rinyu, Andrea Czébely, Diána Kiss, Sándor Kele, and Marianna Túri

Carbonate clumped isotope analysis, a relatively new methodology, is still developing rapidly, that is well described by the frequency of changes in the applied methodological conventions. The extent of development is also characterized by the growing, sometimes special, nature of the application areas. Innovations, while promising, can present unforeseen challenges and sometimes brings unexpected difficulties, such as the integration of 1013 Ohm resistance in the amplification circuits of Thermo Scientific 253 Plus 10 kV Isotope Ratio Mass Spectrometer (IRMS).

The goal of this improvement was that even very small ion beams can be analyzed with the factor of 3 better signal to noise ratio, which is an important aspect from the point of view of clumped isotope analysis. Unfortunately, 1013 Ohm resistance has a significant temperature dependency, which highly influences the magnitude of the detected intensities as well as on the overall long-term stability of the measurement. The daily temperature fluctuation in summer is very significant in Hungary. Under extreme conditions, when the lab's air conditioning could not maintain the desired temperature range, the long-term Δ47 reproducibility of the system achieved an SD = 60 ppm value.

In order to reduce this effect a prototype Peltier cooling device has been installed on the surface of the detector house of our IRMS. To demonstrate the achieved accuracy, precision, and long-term stability (SD <= 30 ppm) of the modified measurement system, we present results of clumped isotope analyses of international carbonate standard samples and naturally formed travertine samples (known formation temperatures are in the range of 5-95°C) and compare them with formerly published data of two reputable laboratories from the clumped community, which use different measurement equipment:

  • ETHZ: Thermo Scientific MAT253 IRMS and Kiel IV automatic carbonate device [1]
  • MIT: Nu Perspective IRMS and NuCarb automated sample preparation unit [2]

Additionally, we offer insight into the infrastructure and analytical methodology of the clumped isotope laboratory established at ICER (ATOMKI, Debrecen, Hungary). The modification implemented and the attained long-term stability may serve as a valuable reference for other laboratories encountering similar challenges.

Keywords: carbonate clumped isotope, Peltier cooling, long-term reproducibility

References

[1] Bernasconi, S. M., I. A. Müller, K. D. Bergmann, et al. (2018) Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochemistry, Geophysics, Geosystems, v. 19, 2895-2914.

[2] Anderson, N. T., J. R. Kelson, S. Kele et al. (2021) A Unified Clumped Isotope Thermometer Calibration (0.5–1,100°C) Using Carbonate-Based Standardization. Geophysical Research Letters, v. 48, e2020GL092069.

How to cite: Rinyu, L., Czébely, A., Kiss, D., Kele, S., and Túri, M.: Improving the long-term Δ47 reproducibility of the Thermo Scientific 253 Plus 10 kV IRMS using a prototype Peltier cooling device, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10068, https://doi.org/10.5194/egusphere-egu24-10068, 2024.

EGU24-10367 | Orals | BG2.1 | Highlight

Transfer of the nitrogen isotope signature from the nitrate pool to the diatom biomass and into the diatom frustule 

Anja S. Studer, Jochem Baan, and Moritz F. Lehmann

The nitrogen (N) isotopic composition of diatom frustule-bound organic matter (δ15NDB) from sedimentary archives has been used as a promising proxy indicator to reconstruct nitrate utilization in the high-latitude oceans on different timescales. The advantage of this proxy over conventional N isotopic approaches, such as measuring δ15N values of the bulk sediment, is that δ15NDB is thought to be protected from diagenetic alteration and bacterial degradation. Despite the fact that the δ15NDB proxy has been applied in palaeoceanographic research for two decades, little is known about the propagation of the δ15N signature of assimilated nitrate into biomass δ15N and subsequently into δ15NDB, and to what extent N-isotope fractionation during frustule-bound N synthesis varies among species and with environmental conditions. Only few δ15NDB data exist for living diatoms in natural environments or laboratory cultures, and implications for paleo-environmental reconstructions appear controversial between existing studies. Here, we present novel constraints on the relationship between δ15N values of nitrate, diatom bulk biomass, and diatom frustule-bound N across samples from different natural environments and from controlled mono-specific diatom cultures. While previous ground-truthing work has focussed on marine diatom species both in culture and in the ocean, we extend our study to freshwater species and lacustrine environments. We find that, in mono-specific diatom cultures, δ15NDB values are generally relatively close to biomass δ15N values, irrespective of the variable 15N-fractionation imparted by nitrate assimilation. Similarly, analysis of diatom samples from natural environments revealed little offset between δ15NDB and bulk biomass δ15N values in samples that are near mono-specific. By contrast, in more mixed-species samples, δ15NDB values can be shifted in both directions relative to biomass δ15N values, possibly as a result of i) species-specific N isotope fractionation during frustule-bound N synthesis, and/or ii) non-uniform contribution of N to the total biomass and diatom-bound N pools between different species.

How to cite: Studer, A. S., Baan, J., and Lehmann, M. F.: Transfer of the nitrogen isotope signature from the nitrate pool to the diatom biomass and into the diatom frustule, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10367, https://doi.org/10.5194/egusphere-egu24-10367, 2024.

EGU24-11056 | Posters on site | BG2.1

Investigating the effect of cation substitution and mineralogy on the dual clumped isotope composition of carbonates 

Miguel Bernecker, Magali Bonifacie, Philip Staudigel, Daniel Petrash, Eiken Haussühl, Martin Dietzel, Amelia Davies, Mattia Tagliavento, Julien Siebert, Nicolas Wehr, and Jens Fiebig

Dual-clumped isotope thermometry relies on the joint measurement of ∆47 and ∆48 in CO2 evolved from phosphoric acid digestion of carbonates (Fiebig et al., 2019). The benefit over ∆47-only measurements is its capability to identify if ∆47was affected by rate-limiting kinetics in addition to temperature, and to reconstruct accurate carbonate formation temperatures devoid of this kinetic bias (Bajnai et al., 2020).

Direct measurements of ∆63 and ∆64 in carbonates are technically not feasible. During acid digestion of carbonates, fractionations of clumped isotopes (∆63 → ∆47 and ∆64 → ∆48) occur, but the exact magnitudes of acid fractionation factors (AFFs) are not consistently established and vary across different published sources.

Theoretical models by Guo et al. (2009) indicate cation-dependent differences in AFFs for different carbonate mineralogies. Follow-up empirical studies yielded somewhat inconsistent results for ∆47 – some did not observe any differences in AFFs (e.g., Defliese et al., 2015 for calcite, aragonite, and dolomite; Bonifacie et al., 2017 for calcite and dolomite), whereas others did report differences (e.g., Murray et al., 2016 for calcite and dolomite; Müller et al., 2017 for calcite, aragonite, dolomite, and magnesite).

Advancements in gas source mass spectrometry have led to significant improvements in the long-term external repeatability of clumped isotope measurements, e.g., from > 20 ppm to 7-9 ppm for ∆47 (Bernecker et al., 2023). With this improved analytical set-up, we analyzed an assorted collection of scrambled aragonite, calcite, dolomite, siderite and witherite samples for their ∆47 and ∆48 values. We show that cation substitution and mineralogy have no effect on AFFsfor aragonite , calcite, dolomite and witherite. Moreover, the dual clumped isotope compositions of additionally investigated low-temperature aragonite and dolomite samples plot indistinguishable from the calcite equilibrium line. Altogether these findings strongly imply that the ∆47-∆48 -T framework established for calcite (Fiebig et al., 2021) is extendable to aragonite and dolomite.

 

 

Defliese, W.F. et al. Chem. Geol. 396, 51–60 (2015).

Murray, S.T. et al. Geochim. Cosmochim. Acta 174, 42–53 (2016).

Müller, I.A. et al. Chem. Geol. 449, 1–14 (2017).

Bonifacie M. et al. Geochim. Cosmochim. Acta 200, 255-279 (2017).

Fiebig, J. et al. Chem. Geol. 522, 186–191 (2019).

Bajnai, D. et al. Nat. Commun. 11, 4005 (2020).

Fiebig, J. et al. Geochim. Cosmochim. Acta 312, 235–256 (2021).

Bernecker, M. et al. Chem. Geol. 642, 121803 (2023).

How to cite: Bernecker, M., Bonifacie, M., Staudigel, P., Petrash, D., Haussühl, E., Dietzel, M., Davies, A., Tagliavento, M., Siebert, J., Wehr, N., and Fiebig, J.: Investigating the effect of cation substitution and mineralogy on the dual clumped isotope composition of carbonates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11056, https://doi.org/10.5194/egusphere-egu24-11056, 2024.

EGU24-12077 | ECS | Orals | BG2.1

Unlocking the nitrogen cycle in glacial forelands: an isotopic perspective 

Ilann Bourgeois, Jean-Christophe Clement, Lionel Bernard, Nicolas Caillon, Cedric Dentant, Leon Lepesant, Thomas Pommier, and Joel Savarino

Glacial forelands are expanding worldwide due to glacier shrinkage1, exposing new areas prone to the development of post-glacial ecosystems2,3. Nitrogen (N) is generally considered as a (co-)limiting nutrient in alpine regions, and deposition of atmospheric N, mainly emitted due to fossil fuel combustion, has for long been admitted as the main source of N4. However, other N sources such as glacial meltwaters5, long-range transport of fertilizers6 or bedrock erosion7 have recently been suspected of playing a more significant role than previously thought and could drive the establishment of pioneer microbial and plant communities in glacial forelands.

Here, we show the isotopic composition and concentration of nitrate (δ15N, δ18O, Δ17O) and ammonium (δ15N) in glacial meltwaters, soils and plants from three glacial forelands in the French Alps. Samples were collected along transects expanding from the glacier front to areas deglaciated around 60 years ago. We find that the contribution of atmospheric deposition to the nitrate pool in soils decreases as time since deglaciation increases, but never exceeds 40%, not even at the glacier front where soils are entirely mineral with no detectable nitrification enzymatic activity. This pattern suggests that bedrock nitrogen and glacial meltwaters are the main N sources in post-glacial ecosystems and calls for a better quantification of those inputs.  

 

(1)             Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; Kääb, A. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592 (7856), 726–731. https://doi.org/10.1038/s41586-021-03436-z.

(2)             Bosson, J. B.; Huss, M.; Cauvy-Fraunié, S.; Clément, J. C.; Costes, G.; Fischer, M.; Poulenard, J.; Arthaud, F. Future Emergence of New Ecosystems Caused by Glacial Retreat. Nature 2023, 620 (7974), 562–569. https://doi.org/10.1038/s41586-023-06302-2.

(3)             Ficetola, G. F.; Marta, S.; Guerrieri, A.; Gobbi, M.; Ambrosini, R.; Fontaneto, D.; Zerboni, A.; Poulenard, J.; Caccianiga, M.; Thuiller, W. Dynamics of Ecological Communities Following Current Retreat of Glaciers. Annu. Rev. Ecol. Evol. Syst. 2021, 52(1), 405–426. https://doi.org/10.1146/annurev-ecolsys-010521-040017.

(4)             Holtgrieve, G. W.; Schindler, D. E.; Hobbs, W. O.; Leavitt, P. R.; Ward, E. J.; Bunting, L.; Chen, G.; Finney, B. P.; Gregory-Eaves, I.; Holmgren, S.; Lisac, M. J.; Lisi, P. J.; Nydick, K.; Rogers, L. A.; Saros, J. E.; Selbie, D. T.; Shapley, M. D.; Walsh, P. B.; Wolfe, A. P. A Coherent Signature of Anthropogenic Nitrogen Deposition to Remote Watersheds of the Northern Hemisphere. Science 2011, 334 (6062), 1545–1548. https://doi.org/10.1126/science.1212267.

(5)             Saros, J. E.; Rose, K. C.; Clow, D. W.; Stephens, V. C.; Nurse, A. B.; Arnett, H. A.; Stone, J. R.; Williamson, C. E.; Wolfe, A. P. Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive Nitrogen. Environ. Sci. Technol. 2010, 44 (13), 4891–4896. https://doi.org/10.1021/es100147j.

(6)             Hundey, E. J.; Russell, S. D.; Longstaffe, F. J.; Moser, K. A. Agriculture Causes Nitrate Fertilization of Remote Alpine Lakes. Nat. Commun. 2016, 7 (1), 10571. https://doi.org/10.1038/ncomms10571.

(7)             Houlton, B. Z.; Morford, S. L.; Dahlgren, R. A. Convergent Evidence for Widespread Rock Nitrogen Sources in Earth’s Surface Environment. Science 2018, 360 (6384), 58–62. https://doi.org/10.1126/science.aan4399.

How to cite: Bourgeois, I., Clement, J.-C., Bernard, L., Caillon, N., Dentant, C., Lepesant, L., Pommier, T., and Savarino, J.: Unlocking the nitrogen cycle in glacial forelands: an isotopic perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12077, https://doi.org/10.5194/egusphere-egu24-12077, 2024.

EGU24-14826 | Posters on site | BG2.1

Is the sensitivity of leaf water and cellulose δ18O values sufficient for detecting effects of increasing atmospheric CO2 on stomatal conductance in plants?  

Ansgar Kahmen, Meisha Holloway-Phillips, Eva Morgener, David Basler, and Daniel B. Nelson

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 responses of gs in δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OCin a greenhouse experiment, where six herbaceous plant species were grown under pCO2 levels ranging from 200 to 500 ppm. An increase in pCO2 caused a decline in gs. The effects of gs on δ18OLW were caused by direct and indirect mechanisms but were generally small. The model parameter effective path length (Lm) was unaffected by changes in pCO2. pCO2 effects on δ18OLW were not directly transferred to plant δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group specific pCO2 effects on the model parameter pxpex. Our study removes critical uncertainties for using δ18OC as a proxy for gs. At the same time, our study shows that gs effects on δ18OLW and δ18OC are rather small, possibly too small to be detected in natural settings.

How to cite: Kahmen, A., Holloway-Phillips, M., Morgener, E., Basler, D., and Nelson, D. B.: Is the sensitivity of leaf water and cellulose δ18O values sufficient for detecting effects of increasing atmospheric CO2 on stomatal conductance in plants? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14826, https://doi.org/10.5194/egusphere-egu24-14826, 2024.

EGU24-16279 | ECS | Posters on site | BG2.1

Clumped isotope temperatures from secondary carbonates in loess: comparability of different preparation methods of snail shells and earthworm biospheroids 

Andrea Czébely, Marianna Túri, Diána Kiss, Gábor Újvári, Titanilla Kertész, and László Rinyu

Quantitative reconstruction of temperature remains the major focus and challenge of paleoclimate research, especially in the terrestrial realm. This study is aimed at testing the usefulness of Δ47 of earthworm’s biospheroids (EBS) as a temperature proxy by comparing the EBS-derived T47 values to those obtained from previously studied land snails. For this purpose, the Dunaszekcső loess record in southern Hungary has been selected, which is an extensively studied section with a high resolution 14C chronology [1,2,3], revealing stadial-interstadial variations in sedimentation rates.

Sixteen samples were collected in 10 cm resolution from the loess layers between 850-770 cm and 695-615 cm representing the GI-5.1 (30.6-30.8 ka) and GI-3.1 (27.5-27.8 ka) periods and surrounding stadials [4]. The associated temperature was calculated previously between 8-15 °C [4] based on the clumped isotope compositions of mollusc shells of these layers.

The impact of sample preparation methods on Δ47 values of secondary carbonates is unknown and is a potential concern. To test this, two different sample preparation methods were applied on Trochulus hispidus shells recovered from the mentioned loess layers: 1) treatment in 1 m/m% HCl solution and 2) treatment with 3 m/m% H2O2 solution under vacuum and in ultrasonic bath in ultrapure water. The reconstructed temperatures based on the Δ47 values of the snail shells typically fell between 7-15 °C (HCl pretreatment) and 9-14 °C (H2O2 pretreatment), in very good agreement with previous published land snail T47 data [4]. The average temperatures obtained from biospheroids reveal the same stadial-interstadial temperature pattern previously reconstructed by molluscs. The mean T47 values of the two pretreatment methods are within the expected temperature range derived from the snail shells.

Clumped isotope analysis was also performed on biospheroid samples from the same layers, and the calculated temperatures were compared with those obtained from snail shells by Újvári et al. [4]. To demonstrate that the biospheroid carbonates from the same layers are of the same age as the examined molluscs, we performed radiocarbon dating on the biospheroids. Our primary goal is to investigate whether the Δ47 compositions are affected by the so-called vital effect and to what extent the formation of biospheroid carbonates is influenced by these kinetic effects. To achieve this goal, a long-term experiment is going on. We perform climate chamber experiments [5,6,7] at temperatures of 8, 11 and 15 °C. Other variables, including relative humidity, CO2 concentrations and the stable isotope compositions of diet and spray liquid are also controlled. The first results will be presented.

 

References:

[1] Újvári, G. et al. 2014, Quaternary Science Review Vol. 106, 140-154

[2] Újvári, G. et al. 2016, Quaternary Geochronology Vol. 35, 43-53

[3] Újvári, G. et al. 2019, Palaeogeography, Palaeoclimatology, Palaeoecology Vol. 518, 72–81

[4] Újvári, G. et al. 2021, AGU, Advancing Earth and Space Science, Paleoceanography and Paleoclimatology, Volume 36, Issue 8

[5] Canti, M.G. 2009, Soil Biology & Biochemistry Vol. 41, 2588-2592

[6] Lambkin, D.C. et al. 2011, Applied Geochemistry Vol. 26, S64-S66

[7] Versteegh, E.A.A et al. 2014, Soil Biology and Biochemistry Vol. 70, 159-161

How to cite: Czébely, A., Túri, M., Kiss, D., Újvári, G., Kertész, T., and Rinyu, L.: Clumped isotope temperatures from secondary carbonates in loess: comparability of different preparation methods of snail shells and earthworm biospheroids, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16279, https://doi.org/10.5194/egusphere-egu24-16279, 2024.

EGU24-18111 | ECS | Posters on site | BG2.1

Isotope fingerprinting of organically complexed chromium – the natural story of a pollutant 

Wenhao Wang, Vladislav Chrastný, Johannes Hettler, Naresh Kumar, and Stephan Kraemer

Chromium (Cr) is a redox sensitive element and Cr isotope composition (δ53Cr) has been widely utilised to reflect the extent of Cr(VI) reduction during Cr pollution mitigation, as well as changes in past atmospheric/oceanic oxygenation. Whilst redox transformations are thought to primarily drive the Cr isotopic variability in modern aquatic environments, other processes, such as ligand promoted dissolution, can occur, potentially overprinting the intrinsic δ53Cr signal.

In this study, laboratory-controlled batch and flow-through column experiments on two distinct soil materials were conducted to understand the leaching behaviour of Cr and Cr isotopes, under both oxygenated and O2-free conditions. Significant dissolution of Cr(III), together with Fe and Mn, from the solid phase in the presence of low-molecular-weight organic acids was observed over the time course of all experiments. Initial isotope analyses on Cr(III)-citrate complexes show that δ53Cr values are ~ −0.60 to −0.09‰, reflecting the pristine Cr isotopic signature of the two soil materials. In addition, whilst formation of authigenic Fe particles means that a fraction of dissolved Cr is scavenged, such that solid phase Cr may be associated with Fe, Cr does not seem to be remobilised during reductive dissolution of Fe (and Mn) oxides in these experiments.

Results from this study have several implications. Firstly, as Cr is a known carcinogen, increased levels of organic ligands, e.g., in paddy field systems, can cause increased environmental and health risks. Secondly, organic ligands may play an overlooked role in modulating the input and removal processes of dissolved Cr to/from various environments. Finally, ligand-bound Cr(III) likely has a ‘stabilised’ isotopic signature that is distinct from Cr(VI), making it possible to trace this ‘additional’ Cr in aquatic systems; it is difficult to characterise or quantify these Cr-organic complexes using conventional analytical methods.

This work is part of the CHROMA project funded by H2020-MSCA-IF (101031974).

How to cite: Wang, W., Chrastný, V., Hettler, J., Kumar, N., and Kraemer, S.: Isotope fingerprinting of organically complexed chromium – the natural story of a pollutant, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18111, https://doi.org/10.5194/egusphere-egu24-18111, 2024.

EGU24-18347 | ECS | Posters on site | BG2.1

Fresh water sources for submarine groundwater discharge to the southern Baltic Sea  

Anna-Kathrina Jenner, Rhodelyn Saban, Catia Milene Ehlert von Ahn, Julia Westphal, Patricia Roeser, Iris Schmiedinger, Jürgen Sültenfuss, and Michael Ernst Böttcher

The impact of freshwater sources like surface river and submarine groundwater discharge (SGD) on the coastal water, the element balance therein, and the associated biogeochemical transformations within the subterranean estuary is currently a matter of intense debate and investigation. A quantification of freshwater mixing in coastal areas has been found to be challenging. In this sense the combination of stable water isotopes with further (isotope) hydro(bio)geochemical tracers provides a fundamental valuable tool to identify different freshwater sources found in the mixing zone with seawater.

Here, we report the geochemical and isotopic composition of porewaters of permeable sediments in front of a coastal peatland, the Huetelmoor (southern Baltic Sea). Gradients in pore water measurements from 5 m long stationary porewater lances are used to calculate the zero-salinity (ZS) component. The application of binary mixing approaches on water isotopes and conservative elements on the compositional gradients yields temporarily relatively stable ZS compositions but with substantial isotope differences for spatially distant lances. This indicates a subterranean estuary under steady-state conditions with different fresh waters entering the coastal area. At least two freshwater sources can be identified for sediments impacted by SGD without substantial impact of short-term hydrological or meteorologic processes. These results are compared to the composition of potential endmembers, such as the local surface and groundwaters, the local meteoric water line, and the open brackish Baltic Sea.

Besides stable isotopes, also dissolved major and minor elements were used to characterize the biogeochemical processes leading to the non-conservative behavior of nutrients, the carbon system, and trace elements. In addition, tritium-noble gas dating of the pore waters allows for an estimate of the fresh water residence time before mixing with the brackish Baltic Sea water.

Results will be discussed in the context of other SGD sites along the northern German coast.

 

Acknowledgement for support by DFG RTG Baltic TRANSCOAST, DFG-KiSNet, BMBF COOLSTYLE/CARBOSTORE, DAAD, and Leibniz IOW

How to cite: Jenner, A.-K., Saban, R., Ehlert von Ahn, C. M., Westphal, J., Roeser, P., Schmiedinger, I., Sültenfuss, J., and Böttcher, M. E.: Fresh water sources for submarine groundwater discharge to the southern Baltic Sea , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18347, https://doi.org/10.5194/egusphere-egu24-18347, 2024.

EGU24-22257 | ECS | Posters on site | BG2.1

Biogeochemical Niche building of Invasive Fallopia japonica: Insights from Stable Isotope Probing 

Sierra Grange, Johanna Girardi, Clara Mendoza-Lera, Jens Dyckmanns, Katherine Muñoz, Melanie Brunn, and Hermann Jungkunst

Exploring invasive plant species, in this case the infamous Fallopia japonica, has become pivotal in understanding their impact on biogeochemical processes within ecosystems. Building upon the work of Girardi et al., who investigated how F. japonica uses polyphenols to inhibit nitrification, our study employs stable isotope analysis to delve into the biogeochemical niche-building mechanisms of this invasive species. Following Girardi et al.’s findings, which highlighted the inhibitory effects of resveratrol on potential nitrification rates in F. japonica invaded riparian ecosystems, our research takes a step further to investigate the broader implications of the success of F. japonica. We employed stable isotopes, ¹³C-CO2 and ¹⁵N-NO3 and -NH4, to shed light upon the biogeochemical dynamics associated with the invasive prowess of F. japonica and find whether Fallopia japonica exhibits a higher affinity for ammonium than nitrate when compared to the native species Urtica dioica, and whether it allocates resources predominantly to root growth.

 

Contrary to previous hypotheses, our results challenge the belief that F. japonica exhibits a higher affinity for ammonium than nitrate compared to native species. Through our labelling experiments on young F. japonica and Urtica dioica (native) plants, we discovered that F. japonica displays a lower affinity for ammonium than U. dioica. Additionally, F. japonica demonstrated higher nitrogen-use efficiency and a pronounced preference for allocating resources to root biomass, underlining its ability to efficiently utilize nitrogen resources. These findings shed light on the intricate mechanisms behind the ability of F. japonica to disrupt ecosystems, emphasizing the importance of stable isotopes in unraveling such complexities. Through the integration of stable isotope probing techniques and a comprehensive understanding of rhizosphere processes, our work contributes to the ongoing efforts to foster sustainable and efficient agricultural systems in the face of global change. Moving forward, our research trajectory aims to explore the impact of phenols on nitrification in soils. Specifically, we plan to apply phenols to soil and investigate their effects on nitrification, with potential implications for denitrification processes. This endeavor aligns with the broader goal of understanding the multifaceted interactions between invasive plant species and biogeochemical processes, contributing to the development of effective strategies for invasive species management.

 

Keywords:                      Fallopia japonica, Urtica dioica, invasive species, native species, nitrogen cycle, nitrogen use efficiency, ammonium, 15N labelling, 13C labelling, biogeochemical niche, stable isotopes

How to cite: Grange, S., Girardi, J., Mendoza-Lera, C., Dyckmanns, J., Muñoz, K., Brunn, M., and Jungkunst, H.: Biogeochemical Niche building of Invasive Fallopia japonica: Insights from Stable Isotope Probing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22257, https://doi.org/10.5194/egusphere-egu24-22257, 2024.

EGU24-548 | ECS | Posters on site | BG2.2

Isotope analysis of snowpack nitrate in coastal Antarctica; evidence of nitrate photolysis and preservation. 

Amelia Bond, Markus M. Frey, Jan Kaiser, Alina Marca, and Freya Squires

Photolysis of snowpack nitrate results in emission of the reactive nitrogen species NOx and HONO. These are important pre-cursors of HOx radicals and ozone, and thereby affect the oxidising capacity of the lower atmosphere above remote snow-covered areas. This is of particular importance in the polar regions as the usual OH radical formation pathway (ozone photolysis and reaction of O(1D) with H2O) is limited by the low water vapour concentration. Isotope analysis of atmospheric reactive nitrogen species and snow nitrate is proving to be a crucial tool for elucidating mechanisms of reactive nitrogen cycling in and above snow.

The first snowpit profiles of nitrate stable isotopes (δ15N, δ18O) and concentration at Halley VI Research Station in coastal Antarctica will be presented. The observed isotope fractionation provides evidence of photochemical loss of nitrate and allows estimation of the photolytic isotope fractionation constant at the site. At this high accumulation site, the peak in nitrate concentration from the previous summer is preserved below the snow surface, unlike at low accumulation sites on the Antarctic Plateau. Combining measurements of nitrate concentration and its isotopic compositions preserved in snow helps disentangle the isotope signature of seasonal changes in atmospheric nitrate sources from post-depositional isotope fractionation occurring even at high snow accumulation sites.

How to cite: Bond, A., Frey, M. M., Kaiser, J., Marca, A., and Squires, F.: Isotope analysis of snowpack nitrate in coastal Antarctica; evidence of nitrate photolysis and preservation., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-548, https://doi.org/10.5194/egusphere-egu24-548, 2024.

EGU24-1257 | ECS | Orals | BG2.2

On the contribution of boreal wetlands to the Northern Hemisphere carbonyl sulfide sink 

Anna de Vries, Georg Wohlfahrt, Timo Vesala, and Kukka-Maaria Kohonen

Previous studies inferred a missing sink of carbonyl sulfide (COS) in high Northern latitudes. Boreal COS budgets, however, typically account solely for the contribution by forests and ignore any uptake that widespread wetland ecosystems may contribute. Here we present the first direct measurements of the ecosystem-atmosphere COS exchange of a boreal wetland and compare this with a needleleaf forest ecosystems. We then use these data to up-scale to the boreal region.

We found that the investigated wetland was a stable sink for COS during the vegetation period, taking up on average of 10 pmol m−2s−1COS. While this was just 64% of the forest COS uptake, upscaling to the boreal region using the ORCHIDEE land surface model revealed that the Northern wetland sink, c. 20 GgS/y, was on the same order of magnitude compared to the forest COS sink. Our results thus indicate that northern COS should not neglect contributions by wetland ecosystems.

How to cite: de Vries, A., Wohlfahrt, G., Vesala, T., and Kohonen, K.-M.: On the contribution of boreal wetlands to the Northern Hemisphere carbonyl sulfide sink, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1257, https://doi.org/10.5194/egusphere-egu24-1257, 2024.

EGU24-2219 | Orals | BG2.2

Leaf carbon monoxide emission under field conditions: a potential stress indicator? 

Dan Yakir, Jonathan Muller, Rafael Stern, Rafat Qubaja, and Yasmin Bohak

Carbon monoxide (CO) is produced in living plants and can act as a stress-signaling molecule in both animals and plants. While CO emissions from soil, litter decomposition, and incomplete combustion have been extensively studied, there is a scarcity of research on CO flux from living vegetation, particularly under field conditions. We present the results of continuous CO fluxes measurements (together with those of water, CO2, and COS) using twig chambers in summer-droughted and in non-droughted (irrigated) Pinus halepensis trees across the seasonal cycle. We found significant CO emissions from leaves, which were correlated with environmental parameters (radiation, leaf temperature, and VPD). It peaked under the stressful summer conditions at the study site, when CO2 exchange and leaf conductance were at a minimum.  The CO fluxes were strongly correlated to twig transpiration and were enhanced under irrigated treatment. It is speculated that leaf CO emission is related to biotic reactions, such as heme degradation, which is enhanced under stress conditions and is possibly associated with photorespiration. Our results provide a rare, high-resolution, annual scale study of the environmental factors controlling leaf CO emissions under field conditions and indicate that including it in plant gas exchange studies may provide additional means to interpret their response to stress.

How to cite: Yakir, D., Muller, J., Stern, R., Qubaja, R., and Bohak, Y.: Leaf carbon monoxide emission under field conditions: a potential stress indicator?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2219, https://doi.org/10.5194/egusphere-egu24-2219, 2024.

EGU24-3338 | ECS | Posters on site | BG2.2

Mass-Independent Fractionation Reveals the Sources and Transport of Atmospheric Particulate Bound Mercury 

Xuechao Qin, Xinyuan Dong, Congqiang Liu, Rongfei Wei, Zhenghua Tao, Hua Zhang, and Qingjun Guo

Mercury (Hg) is highly toxic and the only heavy metal that can exist in the atmosphere in gaseous form. When atmospheric Hg mixes with aerosols, it forms particulate-bound mercury (PBM). PBM can be transported and settle down quickly across regions, posing serious threats to ecosystems globally. Despite these concerns, tracking the sources and transport of atmospheric Hg remains challenging due to its global dispersal nature. However, the three-dimensional fractionation of Hg isotopes provides a feasible approach for addressing this issue. In this study, PBM2.5 and PBMTSPsamples were collected simultaneously in rural, suburban, urban, industrial, and coastal areas of the Beijing-Tianjin-Hebei (BTH) region, which is influenced by severe atmospheric pollution and the East Asian monsoon. Due to the significant influence of anthropogenic sources, the concentrations of PBM2.5 and PBMTSP were highest in the industrial and coastal areas, followed by the urban, suburban, and rural areas. The δ202Hg values of PBM2.5 and PBMTSP at the five sites were negative, overlapping with the values of most anthropogenic sources. However, most PBM2.5 and PBMTSP samples showed significantly positive Δ199Hg, significantly higher than the values of emission sources,especially for PBM2.5. The mass-independent fractionation (MIF) of Hg and sulfur isotopes showed that strong photochemical reduction happened during long-distance transport, making Δ199Hg have a positive shift. The positive changes in Δ200Hg may be due to ozone-mediated oxidation during the transport process, as shown by the interesting relationships between O3, Δ199Hg, and Δ200Hg in PBM2.5. Additionally, the analysis of backward trajectories unveiled the influence of air masses originating northwest of the BTH region through high-altitude transport. The cross-border transport of PBM, influenced by westerly and northwesterly air masses from Central Asia and Russia, markedly impacted  PBM pollution in the BTH region. Furthermore, these air masses, upon reaching the BTH area, would transport heightened PBM concentrations to the ocean through the winter monsoon. Conversely, during the summer, southeastward air masses transported from the ocean by the summer monsoon acted to mitigate the inland PBM pollution. The study results show that significant positive odd-MIF of PBM can occur in places with intensive anthropogenic emissions rather than being limited to remote areas. It implies that the odd-MIF resulting from atmospheric transport has likely been significantly undervalued. Our research offers valuable perspectives on the transport, transformation, and circulation of Hg in the environment.

How to cite: Qin, X., Dong, X., Liu, C., Wei, R., Tao, Z., Zhang, H., and Guo, Q.: Mass-Independent Fractionation Reveals the Sources and Transport of Atmospheric Particulate Bound Mercury, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3338, https://doi.org/10.5194/egusphere-egu24-3338, 2024.

EGU24-4515 | Posters on site | BG2.2

Sulfate formation in haze pollution using multiple sulfur isotopes 

Qingjun Guo, Xiaokun Han, Xinyuan Dong, Xuechao Qin, and Rongfei Wei

Air pollution has become a serious problem in some parts of the world. The mechanism of sulfate formation during haze events is still not clear. This research looks at the different sulfur isotope compositions of sulfate in PM2.5 (from 2015 to 2016) in Beijing and in seasonal samples of PM2.5, PM1.0, and TSP from rural, suburban, urban, industrial, and coastal areas of North China (in 2017). The goal is to figure out the mechanism by which SO2 oxidizes at different levels of air pollution. An obvious seasonal variation (with positive values in spring, summer, and autumn and negative values in winter) is shown by the Δ33S values of sulfate in aerosols, except for those samples collected in rural areas. The Δ33S value (S-MIF) of sulfate in PM2.5 shows a pronounced seasonality, with positive values in spring, summer, and autumn and negative values in winter. The negative Δ33S changes that happen during winter haze events are mostly caused by SO2 being oxidized by H2O2 and transition metal ion catalysis (TMI) in the troposphere, which is most likely caused by coal burning. The positive Δ33S results observed on clean days are mainly attributed to tropospheric SO2 oxidation and stratospheric SO2 photolysis. These results provide important information on sulfate formation during haze events and clean days.

How to cite: Guo, Q., Han, X., Dong, X., Qin, X., and Wei, R.: Sulfate formation in haze pollution using multiple sulfur isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4515, https://doi.org/10.5194/egusphere-egu24-4515, 2024.

EGU24-5556 | Posters on site | BG2.2

Spatial Isotopic Analysis of Airborne CO2: Insights from Etna Volcano and Madonie Mountains, Italy, Surveys 

Sergio Gurrieri and Roberto M.R. Di Martino

Climate change is intricately linked to the carbon cycle. Both phenomena are examined across various temporal and spatial scales to clarify the processes of carbon exchange between the atmosphere and the Earth's surface in response to increasing greenhouse gas emissions, primarily CO2. Anthropogenic CO2 emissions emerge as the main driver of global warming, while natural CO2 emissions into the atmosphere constitutes approximately 1% of annual CO2 emissions, mainly resulting from volcanic activity.

This study relies on datasets gathered during surveys at Etna volcano and the Madonie mountains, Italy, to identify spatial variations in stable isotope composition and the concentration of airborne CO2. The dataset was collected along a path specifically designed from the urban areas of Catania and Cefalù, both in Italy, to high altitudes (i.e., ~2200 m a.s.l.) at Mount Etna and the Madonie mountains, Italy, respectively. This dataset facilitates exploration of spatial variations in the sources of atmospheric CO2 and patterns in the isotopic composition and concentration of airborne CO2 with altitude.

The study's findings indicate that the primary sources of airborne CO2 exhibit a biogenic isotopic carbon signature at Etna and the Madonie mountains, although a more 13C-enriched CO2 source influences the isotopic signature of airborne CO2 at Mount Etna. The concentration of airborne CO2 and the carbon isotopic signature remain independent of altitude. However, a high correlation between altitude and oxygen isotopic signature suggests that variations in hydrology significantly impact the airborne CO2.

Furthermore, the study underscores the complex relationship between environmental variables and airborne CO2 concentration, indicating that the pattern in airborne CO2 cannot be comprehensively investigated solely through concentration analysis due to the high background CO2 concentration compared to relative spatial variations. Additionally, the carbon isotopic signature of CO2 enables the differentiation of multiple sources of CO2 at Mount Etna and the distinction of 13C-enriched volcanic CO2 from background air at low airborne CO2 concentrations.

How to cite: Gurrieri, S. and Di Martino, R. M. R.: Spatial Isotopic Analysis of Airborne CO2: Insights from Etna Volcano and Madonie Mountains, Italy, Surveys, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5556, https://doi.org/10.5194/egusphere-egu24-5556, 2024.

EGU24-6354 | ECS | Orals | BG2.2

Interannual variations in Δ(17O) of atmospheric CO2 suggest a strong link with stratospheric input 

Pharahilda Steur, Hubertus A. Scheeren, Gerbrand Koren, Getachew A. Adnew, Wouter Peters, and Harro A. J. Meijer

We present multiple year records of the triple oxygen isotope signature Δ(17O) of atmospheric CO2 conducted with laser absorption spectroscopy, from Lutjewad in the Netherlands (53° 24’N, 6° 21’E) and Mace Head in Ireland (53° 20’ N, 9° 54’ W). Measurements were done on flask samples covering the period 2017-2022. The average uncertainty of 0.07 is about 3 times smaller than the total observed variability. A positive Δ(17O) originates from intrusions of stratospheric CO2, whereas values close to zero result from equilibration of CO2 and water, predominantly happening inside plants due to enhanced dissolution in the presence of carbonic anhydrase. A biosphere driven seasonal signal is, however, not observed in the records. Both records show significant interannual variability, of up to 0.3 . The total range covered by smoothed monthly averages from the Lutjewad record is -0.065 to 0.046 , which is significantly higher than the range of -0.009 to 0.036 that was simulated with a 3-D transport model. One of the major model uncertainties is the representation of the stratospheric influx of Δ(17O). We modified the model using the 100 hPa 60-90° North monthly mean temperature anomaly as a proxy to scale stratospheric downwelling. This results in a strong improvement of the correlation coefficient of the simulated and the observed year-to-year Δ(17O) variations at Lutjewad over 2019 and 2022 from 0.37 to 0.81 (N=22). To infer terrestrial carbon fluxes, the contribution of the stratosphere to the observed signal should therefore be considered. In fact, as the Δ(17O) of atmospheric CO2  seems to be dominated by stratospheric influx, it might be used as a tracer for stratosphere-troposphere exchange. To further study the potential of Δ(17O) of atmospheric CO2 as a tracer for stratosphere-troposphere exchange at Lutjewad, we installed a laser absorption spectrometer at the measurement station for in-situ measurements. At Lutjewad numerous other atmospheric species are monitored, such as N2O, Rn and 14C. This will enable us to deepen our knowledge on the mechanisms that drive the interannual variability of Δ(17O) of atmospheric CO2  that we observe at Lutjewad.

 
 

How to cite: Steur, P., Scheeren, H. A., Koren, G., Adnew, G. A., Peters, W., and Meijer, H. A. J.: Interannual variations in Δ(17O) of atmospheric CO2 suggest a strong link with stratospheric input, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6354, https://doi.org/10.5194/egusphere-egu24-6354, 2024.

We present a project aiming to provide a new estimate of the parameter known as "climate sensitivity" (symbol γL in the models) which is essential to constrain models of future climate change. This parameter describes how the amount of carbon sequestered by terrestrial ecosystems depends on temperature. Predictions of future climate by models show significant uncertainties associated with the estimates of carbon sequestration by terrestrial ecosystems with future temperature increases. Quantifying γL with data measured in the industrial era is very complicated because the terrestrial part of the carbon cycle is dominated by the effect of the increase in atmospheric CO2 (the so-called anthropogenic “fertilization” or CO2 concentration feedback, symbol βL in the models), while the effect of temperature is smaller. We will derive γL from measurements of ultra-trace gases trapped in polar ice cores in pre-industrial times.

The Little Ice Age (i.e. the period that roughly covers the centuries 1400-1800 AD) was characterized by temperatures lower than the average of the last millennium, due to intense volcanic activity and reduced solar activity. The global decrease in temperature has coincided with a decrease in the atmospheric concentration of CO2, mainly caused by sequestration from terrestrial ecosystems. Low CO2 concentrations contributed negligibly to the decrease in temperature, making the Little Ice Age a suitable time to derive γL.

Why CO2 decreased during the Little Ice Age is debated. On the one hand, considerations deriving from models that simulate the amount of carbon present in terrestrial ecosystems suggest that primary productivity increased during the Little Ice Age because of an anthropogenic effect. This increase would have been caused by pandemics and colonial conquests in America which led to a depopulation of cultivated lands and a regrowth of tree species. On the other hand, measurements of carbonyl sulphate (COS) and numerical calculations capable of closing the COS budget suggest that primary productivity naturally decreased during the Little Ice Age. In this second case, the decrease in CO2 would be caused by the fact that the respiration of terrestrial ecosystems decreased to a greater extent than the decrease in primary productivity. Therefore, if this second hypothesis is correct, it would be possible to derive γL from COS data covering the Little Ice Age.

Unfortunately, COS measurements covering the Little Ice Age have great uncertainty. It is therefore necessary to carry out new measurements of COS concentration during the Little Ice Age. The COS measurements will be accompanied by CO2 and δ13C-CO2 measurements, necessary to confirm, on the one hand, the working hypothesis, and, on the other, the quality of the ice samples used. Finally, future developments could build on measurements of COS isotopes in ice samples.

Rubino M., et al. Terrestrial uptake due to cooling responsible for low atmospheric CO2 during the Little Ice Age, Nature Geoscience, 9, 691-694 (2016)

How to cite: Iazzetta, D. and Rubino, M.: Quantification of the climate sensitivity of terrestrial ecosystems through the analysis of ultra-trace gases in ice cores over the last millennium, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7270, https://doi.org/10.5194/egusphere-egu24-7270, 2024.

EGU24-10052 | ECS | Posters on site | BG2.2

Atmospheric O2 and CO2 measurements at a single height provide weak constraint on the surface carbon exchange. 

Kim Faassen, Ingrid Luijkx, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert Heusinkveld, Ivan Mammarella, and Wouter Peters

The ratios of atmospheric tracers are often used to interpret the local CO2 budget, where measurements at a single height are assumed to represent local flux signatures. Alternatively, these signatures can be derived from direct flux measurements or using fluxes derived from measurements at multiple heights. In this study, we contrast interpretation of surface CO2 exchange from tracer ratio measurements at a single height versus measurements at multiple heights. Specifically, we analyse the ratio between atmospheric O2 and CO2 (exchange ratio, ER) above a forest canopy. We consider two alternative approaches: the exchange ratio of the forest (ERforest) obtained from the ratio of the surface fluxes of O2 and CO2, derived from their vertical gradients measured at multiple heights, and the exchange ratio of the atmosphere (ERatmos) obtained from changes in the O2 and CO2 mole fractions over time measured at a single measurement height. We investigate the diurnal cycle of both ER signals, with the goal to relate the ERatmos signal to the ERforest signal and to understand the biophysical meaning of the ERatmos signal. We combined CO2 and O2 measurements from Hyytiälä, Finland during spring and summer of 2018 and 2019 with a conceptual land-atmosphere model and a theoretical relationship between ERatmos and ERforest to investigate the behaviour of ERatmos and ERforest during different environmental conditions. We show that the ERatmos signal rarely directly represents the forest exchange, mainly because it is influenced by entrainment of air from the free troposphere into the atmospheric boundary layer. The resulting ERatmos signal is not the average of the contributing processes, but rather an indication of the influence of large scale processes such as entrainment or advection. We conclude that the ERatmos only provides a weak constraint on local scale surface CO2 exchange, because large scale processes confound the signal. Single height measurements therefore always require careful selection of the time of day and should be combined with atmospheric modelling to yield a meaningful representation of forest carbon exchange. More generally, we recommend to always measure at multiple heights when using multi-tracer measurements to study surface CO2 exchange.

How to cite: Faassen, K., Luijkx, I., Vilà-Guerau de Arellano, J., González-Armas, R., Heusinkveld, B., Mammarella, I., and Peters, W.: Atmospheric O2 and CO2 measurements at a single height provide weak constraint on the surface carbon exchange., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10052, https://doi.org/10.5194/egusphere-egu24-10052, 2024.

EGU24-10688 | Posters on site | BG2.2

A comprehensive model for COS isotope discrimination during leaf COS uptake 

Nerea Ubierna, Sophie L. Baartman, María Elena Popa, Jérôme Ogée, Maarten C. Krol, and Lisa Wingate

Anthropogenically emitted CO2 is warming the earth’s climate to temperatures that already exceed pre-industrial levels by more than 1.2 oC. Terrestrial vegetation has slowed the rate of climate change by removing part of this anthropogenic emission. Accurate estimations of the present and future terrestrial carbon sink are still needed for forecasting climate and for informing policies for climate stabilization. This requires precise knowledge of the photosynthetic C uptake over land (gross primary production, GPP), independently of the C released through plant and soil respiration. The gas carbonyl sulfide (COS) has emerged as a promising tracer for GPP. This is because both CO2 and COS are a substrate for carbonic anhydrase (CA), the first enzyme involved in photosynthesis, so that the uptake by foliage of COS and CO2 often covaries. Estimating GPP from COS measurements and atmospheric budgets also requires quantifying ocean and industrial COS sources, which is challenging. Isotopic constrained COS tropospheric mass balances can help quantify the relative contribution of these sources if the isotope discrimination during COS uptake by terrestrial vegetation (the main COS sink) is known. However, little is known about plant-atmosphere COS isotope exchange; measurements are challenging and theory to interpret these measurements is limited. Herein, we present a new comprehensive model for discrimination during COS uptake by plants (∆34S) and use it to revisit existing COS isotope datasets and atmospheric budgets. Our ∆34S model expands Davidson et al. (2022) pioneer framework by accounting for leaf COS production. By analogy with the well-established model for photosynthetic discrimination against 13CO2, Davidson et al. ∆34S model stated that COS discrimination occurs as COS diffuses into the leaf and binds to CA. Leaf COS emission was not considered, although it has been reported in species ranging from bryophytes to wheat and trees. Because it is uncertain where these emissions occur, we tested different leaf-level COS emission scenarios - including zero emissions - in various leaf compartments (cuticle, intercellular space, cytosol), alone or in combination. We used this comprehensive model to generate predictions for ∆34S in C3 and C4 species and discussed implications for determining a global plant uptake fractionation factor. Our mechanistic model provides a framework to interpret vegetation-atmosphere COS isotope exchange that can prove useful to improve COS uptake-based GPP estimates and our understanding of plant function, especially when combined with other isotopes (C, O, H).

How to cite: Ubierna, N., Baartman, S. L., Popa, M. E., Ogée, J., Krol, M. C., and Wingate, L.: A comprehensive model for COS isotope discrimination during leaf COS uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10688, https://doi.org/10.5194/egusphere-egu24-10688, 2024.

EGU24-11359 | ECS | Orals | BG2.2

Investigating the dust-induced N2O production in ice cores using bulk and position-specific isotope analysis 

Lison Soussaintjean, Jochen Schmitt, Joël Savarino, Andy Menking, Edward Brook, Barbara Seth, Thomas Röckmann, and Hubertus Fischer

Ice cores represent the only direct paleo-atmospheric archive that allow the reconstruction of greenhouse gas concentrations such as N2O. However, processes in the ice can alter the atmospheric information stored in air bubbles, for example by adding extra N2O by in situ production. This in situ production of N2O is especially severe in mineral dust-rich ice core sections corresponding to glacial periods. Understanding the production process and its link to the mineral dust content is key to systematically detecting altered samples and correcting for the in situ contribution. Isotope analysis is particularly useful for characterizing these processes and thus isolating the paleoclimatic signal from archived data. 

We measured the bulk nitrogen and oxygen isotopic composition of N2O in Antarctic and Greenland ice cores from glacial periods. The isotopic signatures of N2O produced in situ, calculated using a mass balance approach, differ from that of the atmospheric N2O. In addition, enrichment or depletion in 15N and/or 18O relative to atmospheric values varies with drilling site, snow accumulation rate, and properties of the snow-ice transition. Interestingly, isotopic signatures of nitrate (NO3-) exhibit similar dependencies. It is well established that NO3- is drastically altered by post-depositional processes in low accumulation areas. Joint isotopic analysis of N2O and NO3- in samples from the EDC and EDML ice cores revealed a correlation between δ15N values of NO3- and in situ N2O, pointing to NO3- as a potential precursor for in situ production. While being linearly correlated, the nitrogen isotopic signature of NO3- is twice as enriched as in situ produced N2O. This suggests that the two N atoms of N2O originate from two distinct sources and only one is likely derived from nitrate.

We additionally measured the site preference of 15N in N2O in ice core samples (SP = δ15Nα - δ15Nβ, where α is the central and β the terminal N atom in the N2O molecule). Previous work on SP suggests that SP might be indicative of the N2O formation pathway provided both N atoms are derived from the same N precursor. The SP signature in Vostok samples ranges from +57 to +242 ‰, and the δ15Nα values from +92 to +234 ‰, which is comparable to the δ15N values of NO3- at Vostok. Although similar reaction pathways were expected in different ice cores, in situ N2O from Taylor Glacier samples exhibits very different SP values from -17 to -7 ‰, with δ15Nα values from -45 to -32 ‰. Given that the difference in δ15N of NO3- is also up to 200 ‰ between these two locations, our findings suggest that the center-position nitrogen (α) of in situ N2O comes from NO3- and the terminal-position nitrogen (β) from another N-bearing compound. Thus, the SP signature seems to reflect not the N2O formation pathway but the difference in δ15N of the two nitrogen pools involved in the reaction.

Gaining a thorough understanding of the N2O production in ice marks a significant advancement towards interpretation of the N2O record and possibly correction for in situ production.

How to cite: Soussaintjean, L., Schmitt, J., Savarino, J., Menking, A., Brook, E., Seth, B., Röckmann, T., and Fischer, H.: Investigating the dust-induced N2O production in ice cores using bulk and position-specific isotope analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11359, https://doi.org/10.5194/egusphere-egu24-11359, 2024.

EGU24-13219 | ECS | Orals | BG2.2

Deciphering the origin of methane in fracture fluids at Virginia gas field using clumped isotope tracers. 

Orestis Gazetas, Andrew Houston, Matthieu Clog, Issaku Kohl, and Fin Stuart

The Witwatersrand Basin is a well-known area due to the immense gold mineralisation and mining activities, which have been ongoing since the late 19th century. The Virginia Gas Field, located in the southernmost extent of the basin, has recently gained further attention due to the discovery of gases with remarkable helium content of up to 12% and methane content between 75-99%. While the helium generation is likely straightforward and linked to the U-rich Dominion (2.9-3.0 Ga) and Central Rand (2.7-2.8 Ga) groups (Lippmann-Pipke et al., 2003), the origin of methane seems more complex but ultimately significant, with economic potential and implications for the evolution of life .

Stable isotopic compositions of carbon and hydrogen (δ13C and δD) along with molecular compositions (C1/C2+) are traditionally considered useful for understanding the origin of methane in natural gas reservoirs but can often be ambiguous or misleading. The recent development of HR-IRMS allows us to delve deeper into the distribution of isotopes beyond bulk ratios by introducing two additional tracers, the clumped isotopic compositions Δ13CH3D and Δ12CH2D2. These novel tracers offer two additional dimensions which can potentially provide insights into the formation pathways and formation or re-equilibration temperature of methane.

For this study, we measured bulk and clumped isotopic compositions along with molecular compositions for samples collected from shallow boreholes (300-700m depth) within the Virginia gas field production area. Here, we present evidence that the bulk and clumped isotopic compositions are governed by the microbial cycling of CH4 due to the presence of ancient microbial communities of methanogens and methanotrophs at depths below 1km (Omar et al., 2003). We also consider the possibility of mixing microbial methane with abiotic gas resulting from water-rock interactions occurring in the deep subsurface.

References

1. Lippmann-Pipke, J., Stute, M., Torgersen, T., Moser, D.P., Hall, J., Lin, L., Borcsik, M., Bellamy, R.E.S. and Onstott, T.C., 2003. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand, South Africa. Geochimica Cosmoshimica Acta, 67, pp.4597-4619.

2. Omar, G.I., Onstott, T.C. and Hoek, J., 2003. The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids, 3(1), pp.69-80.

 

How to cite: Gazetas, O., Houston, A., Clog, M., Kohl, I., and Stuart, F.: Deciphering the origin of methane in fracture fluids at Virginia gas field using clumped isotope tracers., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13219, https://doi.org/10.5194/egusphere-egu24-13219, 2024.

EGU24-13866 | Posters on site | BG2.2

Laser absorption spectroscopy-based ultraportable analyzer for δ18O and δ2H in water. 

Akshay Nataraj, Susan Fortson, Frederic Despagne, Julio Lobo Neto, and Doug Baer

Stable isotope analysis of water 2H2O and H218O are powerful tracers to understand the different hydrological processes like ecohydrological processes, and hydroclimatic processes [1]. The measurement of δ2H and δ18O in water samples using laser-based absorption techniques is adopted increasingly in hydrologic and environmental studies. In contrast to the conventional Isotope ratio mass spectrometry (IRMS) technique, optical absorption spectroscopic techniques allow the realization of isotopologue-specific, non-destructive, and compact spectrometers with short analysis times with high-precision capabilities.

ABB’s ultraportable water analyzers are compact, portable field-deployable laser spectrometers capable of making continuous, high-frequency measurements of δ18O and δ2H from multiple water sources. The instrument is based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique [2]. These analyzers are capable of measuring liquid water (GLA132-LWIA) or vapor (GLA132-WVIA).  They are rugged and designed to handle both natural and isotopically enriched water samples.  Users can leverage the precision and speed of the GLA132-LWIA by coupling it with a portable auto-injector to perform automated, unattended injection patterns on multiple samples.

An important asset of this innovative approach based on OA-ICOS technology coupled with the portable auto-injector technology is its sample throughput, which allows one to measure approximately 90 samples a day corresponding to 720 injections each with a sample volume of 0.5 µL per injection per day. The precision (1σ) achieved corresponds to 0.6 ‰ for δ2H and 0.2 ‰ for δ18O. The analyzer’s ease of use, field portability, durability, and high throughput make it an excellent choice for reliable, high-performance measurement of freshly collected samples in the field, thereby opening a plethora of applications to understand the different processing governing the earth’s climate.

[1] Tian, C.,et al., Sci Rep 8, 6712 (2018). https://doi.org/10.1038/s41598-018-25102-7

[2] A. O’Keefe, et al., Chemical Physics Letters, vol. 307, no. 5, pp. 343–349, Jul. 1999, doi: 10.1016/S0009-2614(99)00547-3.

How to cite: Nataraj, A., Fortson, S., Despagne, F., Lobo Neto, J., and Baer, D.: Laser absorption spectroscopy-based ultraportable analyzer for δ18O and δ2H in water., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13866, https://doi.org/10.5194/egusphere-egu24-13866, 2024.

 Nitrous oxide (N2O), known for its ozone-depleting potential and characterized by a long residence time of 120 years in the atmosphere, is the third most significant anthropogenic greenhouse gas after CO2 and CH4. Primary sources of N2O include nitrification and denitrification processes in soils and aquatic systems, as well as from direct anthropogenic sources such as fossil fuel combustion and wastewater treatment plants. The increase in N2O emissions due to agricultural activities and urbanization is complex, given the high variability of these emissions. To characterize anthropogenic N2O sources, we collected air samples from tunnels and wastewater treatment plants. Additionally, to establish the background levels for Seoul, a megacity in South Korea, we collected ambient air from three sites (Mt Gwanak, Mt Nam, and Olympic Park) monthly throughout the year 2023. These air samples were measured for greenhouse gas concentrations (CO2, CH4, and N2O), and the stable isotopic compositions of N2O (δ15Nbulk, δ18O, and SP values) were analyzed using IRMS. The stable isotopic ratios of N2O emitted from the vehicles were determined as 6.0 ± 1.2 ‰ for δ15Nbulk, 34.4 ± 11.7 ‰ for δ18O, and 6.0 ± 4.2 ‰ for SP values. Furthermore, N2O from wastewater treatment plant water tank air exhibited variations dependent on dissolved oxygen levels. Notably, the stable isotopic compositions of N2O from anthropogenic sources were consistently depleted compared to the ambient air of Seoul (δ15Nbulk: 5.9± 0.2 ‰, δ18O: 43.8 ± 0.1 ‰, SP: 18.6 ± 0.3 ‰ (S.E.)). Intriguingly, while δ15Nbulk and δ18O values of ambient air were depleted relative to the global average, SP values exhibited a wide range and significant variability. This suggests the presence of pronounced spatial and temporal variabilities in N2O emissions, underscoring the need for further research to understand the extent of anthropogenic impacts.

How to cite: Kim, J., Ahn, J., and Toyoda, S.: Nitrous oxide emissions and stable isotopic composition in urban sources and ambient air in Seoul, South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13954, https://doi.org/10.5194/egusphere-egu24-13954, 2024.

EGU24-15555 | ECS | Orals | BG2.2

Tracing diurnal variations of carbon and water cycle tracers over a tropical and temperate forest 

Gerbrand Koren, Kim A. P. Faassen, Raquel González-Armas, Getachew Agmuas Adnew, Hella van Asperen, Hugo de Boer, Santiago Botía, Oscar Hartogensis, Lucas Hulsman, Ronald W. A. Hutjes, Sam P. Jones, Shujiro Komiya, Ingrid T. Luijkx, Wouter Mol, Michiel van der Molen, Robbert Moonen, Thomas Röckmann, and Jordi Vilà-Guerau de Arellano

Diurnal temperature and carbon dioxide ranges are key metrics to quantify the impact of regional climate changes in forests. These ranges depend on biophysical processes, surface heat, water and carbon exchange, and boundary-layer dynamics. A crucial and elusive process is the entrainment of air from the free troposphere and residual air layers into the atmospheric boundary layer. Here we provide observational constraints on entrainment for two contrasting measurement sites: the Amazon Tall Tower Observatory (ATTO) in central Amazonia and the Loobos flux tower (NL-Loo) in a temperate forest in the Netherlands. We used radio soundings, air samples from tall towers and aircraft data in combination with surface air measurements and ecophysiological data. Fluxes and concentrations were measured for biophysical-process tracers  CO2, O2/N2, δ13C, δ18O (in CO2) and δ18O (in water). These novel tracers are proposed to partition gross carbon and water fluxes and for estimating plant properties and we present a unique dataset with our interpretation. Our analysis enables us to unravel the role of entrainment on the diurnal ranges and how this is controlled by surface and entrainment fluxes. By means of a coupled forest-atmosphere model constrained by the comprehensive observations, we perform a sensitivity study on the surface flux partitioning (photosynthesis versus soil respiration; soil evaporation versus plant transpiration, sensible versus heat flux) under a wide range of leaf traits, surface and boundary-layer dynamic conditions. Our results are useful to assess the performance of carbon-climate models in tropical and temperate forests.

How to cite: Koren, G., Faassen, K. A. P., González-Armas, R., Adnew, G. A., van Asperen, H., de Boer, H., Botía, S., Hartogensis, O., Hulsman, L., Hutjes, R. W. A., Jones, S. P., Komiya, S., Luijkx, I. T., Mol, W., van der Molen, M., Moonen, R., Röckmann, T., and Vilà-Guerau de Arellano, J.: Tracing diurnal variations of carbon and water cycle tracers over a tropical and temperate forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15555, https://doi.org/10.5194/egusphere-egu24-15555, 2024.

EGU24-15916 | ECS | Orals | BG2.2

Source apportionment of sulfate aerosols over South Asia using δ34S 

Sean Clarke, Henry Holmstrand, Krishnakant Budhavant, Manoj Remani, and Örjan Gustafsson

Sulfate aerosols are short lived climate forcers that cool the climate, but at the cost of human health and the environment. Their short lifetime leads to an unequal global distribution, with massive emissions in South Asia, resulting in some of the highest atmospheric loadings. These emissions originate from natural and anthropogenic sources, with their relative contributions uncertain, due to emissions being short lived and diffuse. However, the stable isotopic composition (δ34S), holds some promise of improved apportionment of sulfate sources. The aim was to leverage this isotopic composition to distinguish sources of sulfate aerosols intercepted at the Maldives Climate Observatory Hanimaadhoo (MCOH). This site is strategically located to intercept a wide footprint of the outflow from South Asia.

The results demonstrated that non-sea salt sulfate was largely of anthropogenic origin, contributing 93±21%, 85±14%, 61±20% in winter, spring, and summer, respectively. This study also found a moderate to strong correlation (r2 = 0.68) between continental anthropogenic (winter and spring) sulfate (δ34S) and fossil fuel black carbon (δ13C, Δ14C). This study provides improved constraints on sulfate sources in South Asia using stable δ34S isotopic analysis, which builds a foundation for future investigations aimed at unravelling the nexus of sulfate emissions in South Asia.

How to cite: Clarke, S., Holmstrand, H., Budhavant, K., Remani, M., and Gustafsson, Ö.: Source apportionment of sulfate aerosols over South Asia using δ34S, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15916, https://doi.org/10.5194/egusphere-egu24-15916, 2024.

EGU24-16015 | ECS | Posters on site | BG2.2

From over to under, a story about the vertical within-canopy variation of the leaf relative uptake rate of COS 

Felix M. Spielmann, Albin Hammerle, Katharina Scholz, Gil Putz, Lorenz Hänchen, Anna De-Vries, and Georg Wohlfahrt

The gross primary productivity (GPP), which represents the gross uptake of carbon dioxide (CO2) by plants, cannot be directly measured at the ecosystem level. It must instead be inferred either by applying models or by measuring proxies. A notable proxy is the trace gas carbonyl sulfide (COS), which is particularly interesting because it follows a pathway into plant leaves similar to CO2 and, unlike CO2, is generally not reemitted.

To utilize COS as a tracer for GPP, the leaf relative uptake (LRU)—the ratio of the deposition velocities of COS to CO2 at the leaf level—must be known a priori. Initial studies suggested that LRU values were relatively constrained, around 1.7. However, it has been observed that LRU varies between plant species and is influenced by environmental factors such as drought, vapor pressure deficit (VPD), and photosynthetically active radiation (PAR).

The variation in LRU related to PAR is due to COS primarily being catalyzed by the enzyme carbonic anhydrase in a light-independent reaction, contrasting with CO2 uptake via photosynthesis, which is dependent on PAR. Consequently, LRU increases under lower light conditions, even when stomatal control on both gases is similar.

This light dependency prompts questions about LRU variation within canopies. While most LRU chamber measurements have been conducted under laboratory conditions or in canopy crowns, additional data on LRU variability within canopies, particularly in lower light conditions, are necessary. A comprehensive understanding of LRU, encompassing both crown and shadow-adapted leaves at various canopy positions and considering stand species composition, is essential for accurately calculating GPP at the ecosystem scale using eddy covariance (EC) measurements.

To investigate how LRU varies within the canopy, particularly in response to environmental factors like PAR and VPD, and to compare the LRUs from different chamber measurements to EC measurements, we conducted a measurement campaign in an Austrian Pine forest. This included ongoing eddy covariance measurements of COS, CO2, and H2O, supplemented by manual measurements of the same gases using branch chambers at three levels within the Pinus sylvestris canopy and three additional chambers of Juniperus communis.

Above 400 µmol photons m² s PAR, where we consider the LRU to be light independent, the LRU reached 1.61±0.3 at the top of the crown and decreased to 1.55±0.4 and 1.56±0.3 going consecutively deeper into the canopy of Pinus sylvestris. In contrast, the LRU of Juniperus communis in the understory was notably lower, at 1.41±0.4. Between 100 and 400 µmol photons m² s PAR, the LRUs increased to 1.81±0.3 and 1.69±0.5 for the upper and middle canopy layers, respectively, while decreasing to 1.43±0.2 and 1.19±0.2 in the lower parts of Pinus sylvestris and Juniperus communis, respectively. This decrease in LRU deeper within the canopy is attributed to a greater reduction in COS compared to CO2 deposition velocity of the leaves. The median LRU above 800 µmol photons m² s PAR, based on classical daytime flux partitioning for the summer month of 2022, was 2.5±0.7, indicating the need for further investigation into the observed discrepancy in LRU.

How to cite: Spielmann, F. M., Hammerle, A., Scholz, K., Putz, G., Hänchen, L., De-Vries, A., and Wohlfahrt, G.: From over to under, a story about the vertical within-canopy variation of the leaf relative uptake rate of COS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16015, https://doi.org/10.5194/egusphere-egu24-16015, 2024.

EGU24-16376 | ECS | Orals | BG2.2

Development and verification of preconcentrator to measure clumped isotopologues (Δ13CH3D and Δ12CH2D2) of methane from the atmosphere and sources 

Sara Defratyka, Chris Rennick, Freya Wilson, Matthieu Clog, Andrew Houston, and Tim Arnold

Bulk isotopic signatures (δ13C-CH4 and δD-CH4) are widely used for determination of methane source types and relative contributions. For example, these measurements are implemented as additional tracers in top-down studies. However, for some sources, for example certain fossil fuels sources in Europe and waste sector, the bulk isotopic signatures are overlapping, thus some methane sources remain indistinguishable1–4.

The multiply substituted (clumped) isotopes can be used as additional tracers to better distinguish methane sources, and potentially, better understand methane sinks. Measurement of methane clumped isotopes, Δ13CH3D and Δ12CH2D2 is more challenging than measurements of bulk isotopes and requires more advanced instruments 3,5–8. Currently, a NERC project called POLYGRAM aims to develop the sample preparation (automated preconcentration) and measurement infrastructure to measure atmospheric air samples using High Resolution - Isotope Ratio Mass Spectrometer (HR-IRMS), to determine clumped isotopes from air samples collected at the world-recognised global monitoring sites at Cape Point, South Africa and station Zeppelin, Svalbard. Moreover, the project also aims to determine the clumped isotopes ratios of methane sources, like wetlands, agriculture or coal mines, as currently clumped isotopes database is constrained.

Use of custom-built preconcentrator is a key step in the measurement chain, as HR-IRMS requires ultra-pure methane samples to measure clump isotopes. For ambient air studies, our aim is to obtain, at ambient pressure, a 150 ml sample containing at least 1% of methane from hundreds of litres of ambient air, where CH4 mole fraction is less than 2 ppm. To achieve it, we aim to concentrate methane in our sample by up to 62500 times. Additionally, we develop our preconcentrator to prepare samples containing at least 1% of methane from gas samples containing <1% CH4, like air in coal mines, landfill emissions, etc. During the conference, we will be focused on overcoming technical and scientifical challenges and made progress in developing CH4 preconcentrator. We will present the results of validation exercises to ensure repeatability and lack of fractionation effects, both for ambient air and methane source samples.

References:

  • Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. 116, 2805–2813 (2019).
  • Saunois, M. et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
  • Chung, E. & Arnold, T. Potential of Clumped Isotopes in Constraining the Global Atmospheric Methane Budget. Glob. Biogeochem. Cycles 35, (2021).
  • Menoud, M. et al. New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane. Earth Syst. Sci. Data 14, 4365–4386 (2022).
  • Douglas, P. M. J. et al. Methane clumped isotopes: Progress and potential for a new isotopic tracer. Org. Geochem. 113, 262–282 (2017).
  • Haghnegahdar, M. A., Schauble, E. A. & Young, E. D. A model for 12CH2D2 and 13CH3D as complementary tracers for the budget of atmospheric CH4. Glob. Biogeochem. Cycles 31, 1387–1407 (2017).
  • Sivan, M. & Röckmann, T. Extraction, purification, and clumped isotope analysis of methane (Δ13CDH3 and Δ12CD2H2) from sources and the atmosphere. (2023).
  • Haghnegahdar, M. A. et al. Tracing sources of atmospheric methane using clumped isotopes. 120, (2023).

How to cite: Defratyka, S., Rennick, C., Wilson, F., Clog, M., Houston, A., and Arnold, T.: Development and verification of preconcentrator to measure clumped isotopologues (Δ13CH3D and Δ12CH2D2) of methane from the atmosphere and sources, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16376, https://doi.org/10.5194/egusphere-egu24-16376, 2024.

EGU24-20240 | Posters on site | BG2.2

Pros and cons of methane clumped isotope analysis by high-resolution isotope-ratio mass spectrometry and laser absorption spectroscopy 

Naizhong Zhang, Ivan Prokhorov, Nico Kueter, Stefano Bernasconi, Mayuko Nakagawa, Alexis Gilbert, Yuichiro Ueno, Béla Tuzson, Lukas Emmenegger, and Joachim Mohn

Bulk isotope analytical methods of CH4 quantify carbon and hydrogen isotope ratios (δ13C and δD) to provide information on the sources and sinks of CH4 in natural environments. A more extensive tracing of CH4 pathways, especially when multiple processes and sources are involved, has been realized by novel measurements techniques capable of methane clumped isotope analysis (termed as Δ13CH3D and Δ12CH2D2) during the past decade. These paired datasets can either be used as proxy for exploring CH4 formation temperatures under thermodynamic equilibrium, or studying contributions of kinetically controlled processes during CH4 formation and consumption1.

Currently, methane clumped isotope analysis is performed by two different techniques: isotope-ratio mass spectrometry (e.g. 253 Ultra from Thermo Fisher Scientific2 or Panorama from Nu Instruments1) or laser absorption spectroscopy (e.g. QCLAS from Aerodyne Research3,4), both of which have demonstrated a precision better than 0.5‰ for Δ13CH3D and 1.5‰ for Δ12CH2D2, which is sufficient for most applications. This work will provide insights about the main instrumental features, measurement protocols and performance of the 253 Ultra HR-IRMS at Tokyo Institute of Technology (Japan)2,5, and the QCL absorption spectrometer at Empa (Switzerland)4. Furthermore, advantages and limitations of both techniques during current applications in natural methane samples are discussed. Finally, perspectives for future applications at low CH4 concentrations, such as atmospheric monitoring, are provided.

 

References:

  • Young et al., 2017, Geochimica et Cosmochimica Acta; 2. Dong et al., 2020, Thermo Scientific white paper; 3. Gonzalez et al., 2019, Analytical Chemistry; 4. Prokhorov and Mohn, 2022, Analytical Chemistry; 5. Zhang et al., 2021, Geochimica et Cosmochimica Acta

How to cite: Zhang, N., Prokhorov, I., Kueter, N., Bernasconi, S., Nakagawa, M., Gilbert, A., Ueno, Y., Tuzson, B., Emmenegger, L., and Mohn, J.: Pros and cons of methane clumped isotope analysis by high-resolution isotope-ratio mass spectrometry and laser absorption spectroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20240, https://doi.org/10.5194/egusphere-egu24-20240, 2024.

EGU24-20419 | ECS | Orals | BG2.2

Stratospheric observations of carbonyl sulfide using AirCore and LISA 

Alessandro Zanchetta, Steven van Heuven, Jin Ma, Maarten Krol, and Huilin Chen

Carbonyl sulfide (COS) is a long-lived sulfur compound present in the atmosphere with an average mole fraction of around 450-500 ppt, and is considered as a potential tracer to partition gross primary production (GPP) and net ecosystem exchange (NEE) in plants’ photosynthesis, possibly by satellite observations. However, its sources and sinks  are not fully understood, and remote sensing observations of COS still require validation and need to be linked with a reference measurement scale, e.g., NOAA’s. In this work, we present vertical profiles of COS mole fractions obtained in Trainou, France (47°58' N, 2°06' E) in June 2019, in Kiruna, Sweden (67°53' N, 21°04' E) in August 2021, and in Sodankylä, Finland (67°22'N, 26°37'E) in August 2023 using AirCore samplers and two versions of the lightweight stratospheric air (LISA) sampler. Additionally, simultaneous measurements of CO2, CO, CH4 and N2O have been made. Measurement methods (i.e., LISA vs AirCore) will be compared. Moreover, the retrieved COS profiles will be compared with COS FTIR remote sensing observations and COS simulations from the TM5-4DVAR modeling system, to get a better understanding of the behavior of these species in the stratosphere, i.e., the sources and the sinks of COS, as well as vertical structures due to atmospheric transport. Furthermore, these stratospheric observations could be used to estimate the stratospheric lifetime of COS. These findings will improve our understanding of the budget and the variabilities of COS in the stratosphere, and advance the use of remote sensing observations of COS from satellite and ground-based spectrometers to study the global cycle of COS.

How to cite: Zanchetta, A., van Heuven, S., Ma, J., Krol, M., and Chen, H.: Stratospheric observations of carbonyl sulfide using AirCore and LISA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20419, https://doi.org/10.5194/egusphere-egu24-20419, 2024.

EGU24-21410 | ECS | Posters on site | BG2.2

Characterization of the isotopic signature in methane from several biogenicsources in the central Amazon 

Santiago Botía, Shujiro Komiya, Sam P. Jones, Ingrid Chanca, Viviana Horna, Gisela Dajti, Getachew A. Adnew, Sipko Bulthuis, Jochen Schöngart, Maria Teresa Fernandez Piedade, Florian Wittmann, Daniel Magnabosco Marra, Michael Rothe, Heiko Mossen, Armin Jordan, Thomas Röckmann, Jost Lavric, Carlos Sierra, Susan Trumbore, and Hella van Asperen

The decreasing global trend in 𝛿13𝐶 − 𝐶𝐻4 suggests that rising biogenic sources of methane are a plausible explanation for the current methane atmospheric growth rate. Furthermore, tropical wetlands represent one of the largest sources of uncertainty in the global methane budget and the Amazon basin plays a crucial role in this context as approximately 20% of its area is annually flooded. However, the availability of methane isotopic composition data for tropical wetlands is scarce, undermining our understanding of these tropical sources.

In this study, we present results from two sampling campaigns during the dry season, one in September 2019 and the other in August 2022. During each campaign, we collected air samples at different locations within the area around the Amazon Tall Tower Observatory (ATTO), such as in a black-water seasonally flooded forest (i.e. igapó), in an upland swampy valley (i.e. baixio), at the Uatumã black-water river and on the 80-m tower located on the upland terra-firme forest at the ATTO site. Air samples were collected with pressurized glass flasks and pre-evacuated vials and were analyzed for the isotopic composition of methane (𝛿13𝐶 and 𝛿𝐷 ) with gas source isotope ratio mass spectrometer. We estimated isotopic source signatures of CH4 emissions from the four different sites using the intercept of an orthogonal fit in a Keeling plot.

Relative to the Amazon atmospheric background value of -59 ‰ per mill (Beck et al., 2012), our isotopic source signatures are more depleted in 𝛿13𝐶 ranging from -60 ‰ to -68 ‰, which confirms -as expected- a strong wetland-related biogenic source. Within this range, methane source signatures from areas near the Uatumã river (-68 ‰) and a periodically flooded valley (representing small streams of the region) have more depleted signatures (- 66 ‰). Using this range of source 𝛿13𝐶 signatures we explore the possibility of identifying different biogenic sources at the Tower based on continuous measurements (in-situ) of

𝛿13𝐶 − 𝐶𝐻4 and a Lagrangian atmospheric transport model to obtain the isotopic background (i.e. the isotopic signature of the air masses before entering the continent). Our results contribute valuable insights into the methane isotopic signature for different ecosystem types in central Amazonia, which could serve as a reference for measurement-based source attribution studies as well as a based on measurements and also for atmospheric transport modeling estimates.

How to cite: Botía, S., Komiya, S., Jones, S. P., Chanca, I., Horna, V., Dajti, G., Adnew, G. A., Bulthuis, S., Schöngart, J., Fernandez Piedade, M. T., Wittmann, F., Marra, D. M., Rothe, M., Mossen, H., Jordan, A., Röckmann, T., Lavric, J., Sierra, C., Trumbore, S., and van Asperen, H.: Characterization of the isotopic signature in methane from several biogenicsources in the central Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21410, https://doi.org/10.5194/egusphere-egu24-21410, 2024.

EGU24-5205 | ECS | Orals | BG2.4

Late Holocene hydroclimate dynamics in the northern Alps based on compound-specific δ2H from Schliersee, Germany 

Maximilian Prochnow, Katharina Dulias, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Sönke Szidat, Gary Salazar, Sudip Acharya, Rodrigo Martinez-Abarca, Anja Schwarz, Antje Schwalb, and Roland Zech

A comprehensive understanding of Holocene hydroclimate variability in the European Alps remains challenging because of the great spatial and temporal disparities between the northern and southern Alps, mainly caused by changes in atmospheric circulation patterns and different climate settings. Most of the hydroclimate studies are based on lake level and high-resolution flood reconstructions that can be potentially biased by catchment-specific effects and anthropogenic impacts. Moreover, floods are only single events and just one important aspect of paleohydrology. Phases of enhanced evaporation, transpiration and droughts are equally important ecologically and can occur between flooding events. Stable isotopes (δ18O) in speleothems and lake carbonates were applied to track past changes in atmospheric circulation and hydrology, but in the northern Alps, such studies mainly focus on the Late Glacial and Early Holocene.

We present the first compound-specific δ2H record based on terrestrial (n-C31) and aquatic (n-C25) n-alkanes from a sediment core collected from Schliersee, a pre-alpine lake located in Bavaria (Germany), and covering the Late Holocene (past ~4.3 ka). Based on previous calibration studies and new data, we use the δ2H record of n-C31 as a proxy for the isotopic composition of precipitation. We find that δ2Hn-C31 from Schliersee shows depleted values between ~1200 and ~500 cal. yr BP and enriched values before (2500 – 1200 cal. yr BP) and thereafter (500 cal. yr BP until today). This pattern is in good agreement with speleothem δ18O from Spannagel cave, Austria, and compound-specific δ2H from Lake Ghirla, southern Alps and was previously interpreted to reflect changes in moisture source. Therefore, our results support the concept that northern hemispheric cooling and changes in the North Atlantic Oscillation cause changes in moisture source related to shifts in the position of the Westerlies. Based on our results we conclude that this mechanism seem to have affected the isotopic composition of precipitation in both northern and southern Alps.

Moreover, aquatic δ2Hn-C25 is enriched by several tens of permille compared to terrestrial δ2Hn-C31, because of evaporative enrichment of lake water (Grafenstein & Labuhn, 2021 in: Ramstein et al., Springer Cham). Thus, we use their isotopic difference, expressed by Δaq–terr, as a proxy for evaporative enrichment. Our Δaq–terr shows a striking coincidence with tree-ring based drought reconstructions for Europe since the Medieval. This highlights that a “warm and dry” hydroclimate occurred during the Medieval (~1000 cal. yr BP), whereas “cool and wet” conditions prevailed during the Little Ice Age (~600 cal. yr BP). Furthermore, minima in Δaq–terr during the Little Ice Age seem to correspond to minima in solar forcing. High evaporative enrichment coincides with the observed anthropogenic warming during the last 250 years.

Our δ2H-record from Schliersee is consistent with other regional reconstructions and provides additional insights into the paleohydrology of the northern Alps. This highlights the potential of compound-specific δ2H analyses as a powerful tool for paleohydrological reconstructions and helps to better understand the hydroclimate dynamics across the Alps.

How to cite: Prochnow, M., Dulias, K., Strobel, P., Bliedtner, M., Daut, G., Szidat, S., Salazar, G., Acharya, S., Martinez-Abarca, R., Schwarz, A., Schwalb, A., and Zech, R.: Late Holocene hydroclimate dynamics in the northern Alps based on compound-specific δ2H from Schliersee, Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5205, https://doi.org/10.5194/egusphere-egu24-5205, 2024.

EGU24-7306 | ECS | Orals | BG2.4

Stable Middle Miocene seawater isotopes in the eastern North Atlantic Ocean 

Katrin Haettig, Stefan Schouten, and Marcel T.J. van der Meer

The Middle Miocene is a phase of gradual climate cooling, CO2 decline and major episodes of seaward Antarctic ice expansion across the Middle Miocene Climate Transition. The global benthic foraminifera oxygen isotopes (δ18Obenthic) show a long-term increase by approximately 1‰, reflecting bottom water cooling and increase in global ice volume, although the latter is subject of debate. Here, we used a relatively new proxy based on hydrogen isotopes of long-chain alkenones (δ2HC37), produced by Haptophyte algae, to reconstruct surface seawater isotopes (e.g., Schouten et al., 2006; Weiss et al., 2019; Gould et al., 2019). This proxy is, in contrast to δ18Obenthic, not temperature dependent. Enabling us to reconstruct the isotopic evolution of the surface seawater from marine sedimentary records up to 40 Million years ago.

Here, we compare foraminifera based oxygen isotope and alkenone based hydrogen isotope reconstructions of seawater from a shallow sediment record covering the Middle Miocene (IODP Site U1318, 409 m water depth, eastern North Atlantic Ocean, Sangiorgi et al., 2021). The local δ18Obenthic record shows a strong long-term increase across the Middle Miocene Climate Transition in agreement with global benthic stacks. However, our reconstructed surface seawater δ2H shows no long-term increasing trend and when correcting the local δ18Obenthic record for subsurface temperature with TEXH86, the bottom seawater δ18O record also shows no long-term trend. Our findings are in line with recently published records using clumped isotope temperatures which suggest a long-term decrease in temperature during the Middle Miocene large enough to explain the trend in oxygen isotopic composition of the benthic foraminifera without the need for a change in ice volume.

How to cite: Haettig, K., Schouten, S., and van der Meer, M. T. J.: Stable Middle Miocene seawater isotopes in the eastern North Atlantic Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7306, https://doi.org/10.5194/egusphere-egu24-7306, 2024.

EGU24-8785 | Orals | BG2.4

A novel method for analyzing δ18O by laser ablation IRMS 

Elina Sahlstedt, Neil Loader, and Katja Rinne-Garmston

Fine-scale variations in the oxygen isotope composition (δ18O) of organic matrices, such as tree rings, provide an important proxy for past environmental conditions. In practice, however, sampling at high resolution is resource intensive and time consuming, requiring the precise cutting, processing, and weighing of sequential samples prior to mass spectrometry. These factors have limited the production of high-resolution δ18O data for research purposes. We have developed a novel method for analyzing δ18O in organic matrices using laser ablation mass spectrometry. This “online” method directly couples a UV laser ablation unit with an isotope ratio mass spectrometer (IRMS). Measurements are conducted on carbon monoxide (CO) gas produced during the laser ablation process. Thus, we sidestep the requirement for separate sample cutting and weighing steps and can take advantage of the high resolution and accurate positioning capabilities of the laser with significantly increased sample throughput and effectively non-destructive sampling. Preliminary results, conducted by analyzing woody materials, indicate a typical measurement precision of ≤0.5 ‰ at spatial resolution of 100µm (spot size). Running a single analysis with the new method takes approximately 15 minutes, which is comparable to a δ18O analysis run by conventional, thermal conversion IRMS. In the future, the new method is expected to provide a valuable tool for investigating fine-scale variation in δ18O in organic matrices.

How to cite: Sahlstedt, E., Loader, N., and Rinne-Garmston, K.: A novel method for analyzing δ18O by laser ablation IRMS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8785, https://doi.org/10.5194/egusphere-egu24-8785, 2024.

EGU24-8937 | Posters on site | BG2.4

A promising approach in isotope geochemistry: 87Sr/86Sr in human teeth and hair to study dietary and environmental effects. 

Ilenia Arienzo, Valeria Di Renzo, Carlo Pelullo, and Massimo D'Antonio

In recent years Sr isotope geochemistry has provided a huge contribution to environmental and food traceability studies. This is possible because soils, plants and water are characterized by a specific Sr isotopic signature (expressed through the 87Sr/86Sr ratio), which derives from the local geological substratum which, in turn, depends on geological processes and on the age and initial rubidium (Rb) content of the rocks, given that 87Rb decays to 87Sr over time. Since the relative abundance of Sr isotopes does not change during the path through the food chain, the 87Sr/86Sr ratio in human tissues reflects that of the “environment” in which people live and feed. In particular, tooth enamel (which forms during the first years of life) does not exchange with external Sr after mineralization. For this reason, its isotopic composition mostly reflects the 87Sr/86Sr of the food intake that individuals used for energy, growth and maintaining the processes of life, during their childhood.

In this work, the Sr isotopic characterization of deciduous human teeth and hair, water, soil, plants and food was carried out. Donors are all born and currently residing in Campania (Southern Italy), of different age and sex. The 87Sr/86Sr of deciduous teeth provides a direct link to the mother’s milk, or to the artificial milk, which are the first foods for the newborn individuals, whereas the 87Sr/86Sr of hair is directly related to the diet in adulthood. Moreover, the mother’s milk is in part related to the local geological substratum and in part to the diet that has become no longer local, but global. Despite adult individuals have different diets, the isotopic fingerprint of enamel teeth is similar for all breastfeed children. Results from this study have scientific implications also for human mobility studies.

How to cite: Arienzo, I., Di Renzo, V., Pelullo, C., and D'Antonio, M.: A promising approach in isotope geochemistry: 87Sr/86Sr in human teeth and hair to study dietary and environmental effects., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8937, https://doi.org/10.5194/egusphere-egu24-8937, 2024.

EGU24-9025 | ECS | Orals | BG2.4

A new lipid-based proxy for the reconstruction of past phytoplankton ecological dynamics 

Antonia Klatt, Cindy De Jonge, Daniel B. Nelson, Marta Reyes, Ricardo N. Santos, Fatemeh Ajallooeian, Carsten J. Schubert, Nathalie Dubois, and S. Nemiah Ladd

The composition of lacustrine phytoplankton communities plays a key role for biogeochemical cycling of carbon, nitrogen, and phosphorus. Through the linkage between lakes and terrestrial ecosystems, especially via carbon cycling and freshwater supply, changes in algal ecology can affect even non-aquatic habitats. To investigate past phytoplankton dynamics, paleolimnologists often rely on microscopic algal remains preserved in the sediment, e.g., diatom frustules. However, only few taxa produce fossil remains, and might not be fully representative for the phytoplankton community. Other studies have reconstructed phytoplankton dynamics based on source-specific algal lipids, but many lipids are not as source-specific as initially thought. Rather than focusing on specific lipid biomarkers, a more holistic analysis of algal lipid distributions and their isotopic composition might highlight shifts in the past phytoplankton community with a greater robustness.

In this study, we introduce a new lipid-based proxy to reconstruct past phytoplankton community changes based on the abundance and hydrogen isotope ratios (δ2H) of short-chain fatty acids, phytosterols and phytol. Previous culturing and mesocosm experiments have shown that the relative offset between δ2H values of different algal lipids (εlipid1-lipid2) strongly differs among phytoplankton groups. For instance, εpalmitic acid-phytol values for green algae and cyanobacteria were ~150 ‰ higher than for other taxa. To validate these results in a natural system, we collected algal biomass samples from the water column of Lake Rot, a small eutrophic lake in central Switzerland, every second week from 2019 to 2020. Phytoplankton and microplankton cell counts were conducted for every sampling date. εlipid1-lipid2 values and algal lipid distributions were measured and related to biovolume changes of different algal groups. We used algal δ2Hlipid values from previous culturing studies weighted by phytoplankton biovolume in Lake Rot to model algal εlipid1-lipid2 values. To assess the potential heterotrophic impact on εlipid1-lipid2 values, we created a second model to simulate εlipid1-lipid2 values incorporating δ2Hlipid values from algae and microplankton. For this, we included hydrogen isotope fractionation between algal and plankton lipids as well as microplankton biovolume in Lake Rot. Modeled εlipid1-lipid2 values showed generally a good agreement with measured εlipid1-lipid2 values, validating εlipid1-lipid2 values as a potential proxy for phytoplankton dynamics. Moreover, measured εlipid1-lipid2 values were clearly represented by modeled algal εlipid1-lipid2 values suggesting that δ2Hlipid values in eutrophic lakes primarily reflect phytoplankton community composition with a negligible impact from microplankton. Our analysis of algal lipid distributions in the water column of Lake Rot revealed a significant positive correlation between the ratios of phytol and phytosterols (phytol:sterol ratio) as well as the sum of C18 fatty acids and C16:0 (C18:C16 ratio) and cyanobacterial biovolume.

We further apply our new lipid-based approach to a ~14 m long sediment core from Lake Rot, enabling a paleoecological reconstruction of phytoplankton community dynamics during the past ~13 kyr. Sedimentary phytol:sterol ratios, C18:C16 ratios, and εpalmitic acid-phytol indicate rising cyanobacterial biovolume during the last ~4000 years. Moreover, we compare the magnitude of change in the algal community in response to 20th century eutrophication with the natural variability throughout the Holocene.

How to cite: Klatt, A., De Jonge, C., Nelson, D. B., Reyes, M., Santos, R. N., Ajallooeian, F., Schubert, C. J., Dubois, N., and Ladd, S. N.: A new lipid-based proxy for the reconstruction of past phytoplankton ecological dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9025, https://doi.org/10.5194/egusphere-egu24-9025, 2024.

EGU24-9906 | ECS | Posters on site | BG2.4

Unveiling geological identities: use of 87Sr/86Sr in food and beverages traceability, focusing on wines from Solopaca (Campania, Italy) 

Piergiorgio Tranfa, Valeria Di Renzo, Francesco Izzo, Alessio Langella, Mariano Mercurio, Vincenzo Mercurio, Piergiulio Cappelletti, and Massimo D'Antonio

Research on food and beverages traceability, i.e., assessing their environmental origin, has advanced significantly in recent years thanks in large part to strontium isotope geochemistry. The unique Sr isotope signature (87Sr/86Sr) found in soils, plants, and waters makes the relation between food/beverages and environment achievable. This signature is derived from the local geological substratum and is influenced by age and initial concentration of rubidium in the rocks, and to geological processes. The release of strontium ions from the bedrock due to weathering processes, resulting from the interaction of circulating fluids with rocks, contributes to the accumulation of Sr in waters and soils. Part of this Sr is bioavailable and its 87Sr/86Sr ratio can be used as a valid tracer to identify the region of origin of wines. Considering an original 87Sr/86Sr ratio in rocks and soil of a given locality, it is demonstrated that strontium is first absorbed by plant roots, then by grapes, and finally by wine, without isotopic fractionation. As a result, the analysis of the wine' Sr isotope ratio establishes a precise connection between the product and its geological provenance, giving each wine a unique geofingerprint. This study aims to verify the strong relationship between the product (wine) and its region by building on these foundations. The final objective is to make the wine recognizable and distinguishable from comparable products so that it can be protected from fraud and adulteration. Using the 87Sr/86Sr systematics, coupled with traditional analyses such as thermal, XRD and FTIR analyses, 24 samples (8 soil samples, 8 grape samples and 8 microvinification samples) from Solopaca (Campania, Italy) were investigated. In order to provide a thorough Sr-isotopic characterization, soil samples were analyzed for both total and bioavailable Sr fractions. This method improves the investigation of environmental processes at every stage of the wine-making process.

How to cite: Tranfa, P., Di Renzo, V., Izzo, F., Langella, A., Mercurio, M., Mercurio, V., Cappelletti, P., and D'Antonio, M.: Unveiling geological identities: use of 87Sr/86Sr in food and beverages traceability, focusing on wines from Solopaca (Campania, Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9906, https://doi.org/10.5194/egusphere-egu24-9906, 2024.

EGU24-10248 | ECS | Posters on site | BG2.4

The hydrogen isotope footprint of source water in tree lignin methoxy groups 

Anna Wieland, Marco M. Lehmann, Claudia Guidi, Valentina Vitali, Paul Handrack, and Frank Keppler

The stable hydrogen isotope values of tree lignin methoxy groups (δ2Hmeth) show a robust relationship with source water hydrogen isotopes (δ2HSW), enabling the reconstruction of the source water origin using an average hydrogen isotopic fractionation (ε) of around -200 mUr between δ2Hmeth and δ2HSW values (Greule et al., 2021; Keppler et al., 2007). Reconstructed δ2HSW is currently mainly used for climatic reconstruction of temperature but could also be used to better understand ecohydrological processes such as root water uptake. As the use of lignin methoxy groups as a source water proxy is relatively new, there are still uncertainties regarding additional influences on δ2Hmeth interfering the reconstruction of δ2HSW. Factors such as temporal changes in the isotopic composition of source water, soil moisture, and changes in root system and biomass may influence lignin methoxy fractionation, and a better understanding of these factors is important to improve the application of this proxy.

Here, we analyzed wood samples collected from a dry pine forest in Switzerland, where an extensive irrigation experiment was conducted. The site was divided into eight plots and since 2003 four of these plots received irrigation during the growing season from a nearby channel fed by the Rhone River, doubling the annual precipitation amount in the irrigated (1200mm) compared to the control stands (600 mm). Irrigation water is about 46 ± 9 mUr more depleted in 2H than the soil water, resulting in average δ2H values of -76 vs -68 mUr in irrigated and control soil water (0-10 cm) (Guidi et al., 2023).

We present results of δ2Hmeth measurements from four irrigated and four control trees analyzed annually from 1990 to 2023. We observed a significant 2H depletion in the irrigated trees compared to the control trees, supporting the use of this proxy to reconstruct source water changes. By further comparing δ2Hmeth values of irrigated and control trees, including root and leaf samples, we gain additional insight into hydrogen isotope fractionation processes in trees, improving our understanding of the influences of biological processes on δ2Hmeth. With our study, we hope to contribute to the further development of a new ecohydrological proxy that potentially allows the reconstruction of past variations in root water uptake of plants.

References:

Greule, M., Wieland, A., Keppler, F., 2021. Measurements and applications of δ2H values of wood lignin methoxy groups for paleoclimatic studies. Quat. Sci. Rev. 268, 107107. https://doi.org/10.1016/j.quascirev.2021.107107

Guidi, C., Lehmann, M.M., Meusburger, K., Saurer, M., Vitali, V., Peter, M., Brunner, I., Hagedorn, F., 2023. Tracing sources and turnover of soil organic matter in a long-term irrigated dry forest using a novel hydrogen isotope approach. Soil Biol. Biochem. 184, 109113. https://doi.org/10.1016/j.soilbio.2023.109113

Keppler, F., Harper, D.B., Kalin, R.M., Meier-Augenstein, W., Farmer, N., Davis, S., Schmidt, H.L., Brown, D.M., Hamilton, J.T.G., 2007. Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. New Phytol. 176, 600–609. https://doi.org/10.1111/j.1469-8137.2007.02213.x

How to cite: Wieland, A., Lehmann, M. M., Guidi, C., Vitali, V., Handrack, P., and Keppler, F.: The hydrogen isotope footprint of source water in tree lignin methoxy groups, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10248, https://doi.org/10.5194/egusphere-egu24-10248, 2024.

EGU24-10626 | Posters on site | BG2.4

The hydrogen isotope composition of nocturnal sucrose does not reflect the 2H-depletion of remobilized leaf starch 

Meisha Holloway-Philips, Anina Wacker, Daniel B. Nelson, Guillaume Tcherkez, Marco Lehmann, and Ansgar Kahmen

The hydrogen isotope composition (δ2H) of cellulose is inherently linked to that of sucrose synthesised in leaves. During the daytime, sucrose is synthesised from photosynthetic products, and at night, from remobilised starch. From theory, the δ2H of starch should be 2H-depleted relative to triose-phosphates generated during photosynthesis. Consequently, sucrose δ2H values should diurnally vary so that on a flux-weighted basis, cellulose δ2H values could provide a sensitive proxy for the partitioning of photoassimilates between sucrose and starch. However, this hypothesis is yet to be tested.

We made diel measurements of sucrose and starch δ2H in three species – Vicia faba (bean), Raphanus sativus (radish), and Helianthus annuus (sunflower) differing in their sucrose/starch dynamics. Plants were grown under controlled environment conditions to minimise variation in leaf water δ2H and physiology, so that changes in sucrose δ2H could be attributed to day/night shifts in photoassmiliates vs transitory starch used for sucrose synthesis. We confirmed that transitory starch in leaves was 2H-depleted compared with sucrose, on average by around 100 ‰. However, whilst there were species-specific trends in daytime sucrose δ2H, surprisingly, there was no significant day-night difference in the three species. Several explanations are discussed for the lack of day/night variation in the δ2H of sucrose, including the signal being subsequently overwritten in the cytosolic processing of sugars or masked by 2H-enrichment at other positions to counteract the 2H-depleted starch signature. We qualify the latter possibility with a simplified steady-state isotopic model.

How to cite: Holloway-Philips, M., Wacker, A., Nelson, D. B., Tcherkez, G., Lehmann, M., and Kahmen, A.: The hydrogen isotope composition of nocturnal sucrose does not reflect the 2H-depletion of remobilized leaf starch, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10626, https://doi.org/10.5194/egusphere-egu24-10626, 2024.

EGU24-11920 | Posters on site | BG2.4

Hydrogen and oxygen isotopes in tree-ring cellulose as indicators of source water variations 

Marco Lehmann, Haoyu Diao, Meisha Holloway-Phillips, Fabian Bernhard, Katrin Meusburger, Georg von Arx, Arthur Gessler, and Matthias Saurer

Although the hydrogen (δ2H) and oxygen (δ18O) isotopic signature of tree rings is dependent on the environmental water, such as precipitation and soil water that trees have taken up (i.e. “source water”), estimating the spatio-temporal origin of water sources through analysis of water stable isotopes in tree rings is not a straightforward approach. This is because 1) our knowledge on the contribution and the variability of individual isotopic fractionation steps between source water and tree rings is limited, and 2) in situ measurements that consider the seasonality of the isotopic composition of source water and cellulose synthesis are rare.

Within the framework of the EU Cost Action WATSON (#CA19120 - WATer isotopeS in the critical zONe), we analyzed (1) δ2H and δ18O in tree-ring cellulose and stem sugar, (2) δ2H and δ18O in soil water at shallower (15 cm) and deeper (80 cm) depths in up to bi-weekly resolution and (3) modelled isotopic variations in precipitation, soil water, stem xylem water, and leaf water using mechanistic and process-based models for three long-term forest monitoring sites in Switzerland over 20 years. We used this data to explain intra-annual (2021-2022) and inter-annual (2003-2022) δ2H and δ18O variations in tree-ring cellulose of beech (Fagus sylvatica) and spruce (Picea abies).

At the intra-annual scale, preliminary findings indicate a pronounced isotopic enrichment in the second half of the growing season and marked seasonal variations in the isotopic composition of soil water at shallower depths compared to deeper layers. However, such fluctuations were strongly dampenend in the intra-annual δ2H and δ18O variations observed in the tree-ring cellulose and stem sugars of both tree species, which may indicate the use of deeper soil water sources or scrambling of the source water isotope signal because of isotope fractionation before cellulose synthesis. In further analyses at the inter-annual scale, we will investigate how well δ2H and δ18O in tree rings can function as indicators of source water through time-window correlation analysis between water and tree-ring stable isotopes and comparisons between measured and modelled data.

Our study aims to enhance models of hydrogen and oxygen isotope fractionation. This will improve the use of both elements in tree rings as innovative ecohydrological proxies for retrospectively reconstructing environmental water sources.

How to cite: Lehmann, M., Diao, H., Holloway-Phillips, M., Bernhard, F., Meusburger, K., von Arx, G., Gessler, A., and Saurer, M.: Hydrogen and oxygen isotopes in tree-ring cellulose as indicators of source water variations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11920, https://doi.org/10.5194/egusphere-egu24-11920, 2024.

EGU24-12594 | ECS | Orals | BG2.4

In situ estimation of hydrogen isotope fractionation associated with sucrose and cellulose synthesis from leaves to roots 

Jochem Baan, Meisha Holloway-Phillips, Daniel B. Nelson, and Ansgar Kahmen

Plant cellulose hydrogen (H) stable isotope compositions (δ2H) integrate hydrological and biochemical information, and therefore measurements from archives such as tree rings can be valuable for understanding past climate and plant metabolic responses to environmental change. Although the hydrological component that is integrated into cellulose δ2H values is relatively well understood, the biochemical reactions that can alter δ2H values of metabolites used for cellulose biosynthesis remain cryptic. Attempts at establishing models to simplify the interpretation of cellulose δ2H values have been made, like the widely used cellulose δ2H model by Roden et al. (2000) using the terms quantified by Yakir & DeNiro (1990). However, independent quantification of the parameters in this model, and assessment of their variability with respect to plant C metabolism, has been limited.

The cellulose δ2H model uses the δ2H compositions of leaf water and source water, autotrophic and heterotrophic 2H-fractionation (εA and εH, respectively), and the proportion of carbon (C) bound H that exchanges with xylem water during cellulose biosynthesis (ƒ) to explain variation in cellulose δ2H values. By growing plants along a gradient of source water δ2H values under autotrophic and heterotrophic conditions, the original, εA, εH, and ƒ were determined for the aquatic plant Lemna gibba L.. One drawback of this approach is that it assumes these terms are the same when plants are grown in the light vs the dark. We recently reassessed the model for terrestrial plants by measuring δ2H values of leaf sucrose and found species variation in εA (Holloway-Phillips et al., 2022), but were unable to resolve variation associated with ƒ and εH.

In the present experiment we assessed a new experimental approach to quantify all model parameters for autotrophically grown plants using regression analysis. This required growing plants with variation in the isotopic offset between xylem water and leaf water (∆LW) and measuring sucrose and cellulose δ2H values from leaves and roots. In a previous study we determined that mutation-induced inhibition of starch synthesis in leaves resulted in higher cellulose δ2H values compared with the wildtype, which was hypothesized to occur preceding sucrose synthesis in the leaves (Baan et al., 2023). Using this new approach, we tested whether this effect was indeed mostly established in source cells during de novo sucrose synthesis (εA), or was a result of 2H-fractionating processes in sink cells prior to cellulose synthesis (εH and ƒ). Preliminary analyses show an increase in leaf sucrose δ2H values in the mutant relative to the wild type, implying that εA is also dependent on plant C metabolism within a given species.

How to cite: Baan, J., Holloway-Phillips, M., Nelson, D. B., and Kahmen, A.: In situ estimation of hydrogen isotope fractionation associated with sucrose and cellulose synthesis from leaves to roots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12594, https://doi.org/10.5194/egusphere-egu24-12594, 2024.

EGU24-12750 | Posters on site | BG2.4

Varying amounts of isotopic exchange among dual water hydrogen isotope exchange methods indicate different pools of exchangeable hydrogen  

Daniel B. Nelson, Meisha Holloway-Phillips, and Ansgar Kahmen

The hydrogen isotopic composition of organic compounds carries information relating to the isotopic composition of biosynthetic source water, as well as source-organism biochemistry. This has led to diverse applications in areas such as paleoclimatology, ecology, and criminal forensics. Yet, measurement poses a unique isotopic challenge because hydrogen bound to oxygen or nitrogen can exchange with ambient water or vapor, unlike the hydrogen that is bound to carbon. This creates a need to account for this so-called exchangeable hydrogen. In some cases, this can be done by permanent replacement via chemical derivatization, but this is often not convenient or even possible. This has led to the development of dual water equilibration methods in which the exchangeable hydrogen in a sample is equilibrated with water with a known isotopic composition in a controlled manner as the last step in sample preparation prior to measurement. Dual water equilibration methods have facilitated applications in a range of subdisciplines, especially for applications focused on plant carbohydrate-rich materials such as cellulose and bulk wood, and on keratin in animal migration and ecology.

 

The term “exchangeable hydrogen” has generally been used inconsistently in environmental applications. In some cases, the term is used to describe only the hydrogen that can freely exchange with ambient vapor at room temperature conditions, while in other cases the term directly refers to all hydrogen that is not covalently bound to carbon and can therefore theoretically undergo isotopic exchange. These two definitions are inconsistent with one another because in many biomolecules, such as cellulose and keratin, a large portion of the hydrogen that is not carbon-bound is engaged in hydrogen bonding and is important for the macromolecular structure of the material. This bridging hydrogen, although not carbon-bound, is more difficult to isotopically exchange, and has the potential to be excluded by some types of dual water equilibration approaches. As a consequence, the fraction of hydrogen that is measured as exchangeable varies between sample types and methodologies, resulting in different hydrogen isotope values.

 

In this study we compared hydrogen isotope values after dual water equilibrations on plant carbohydrates and animal keratins using two different analytical approaches, one of which targeted only the freely exchangeable hydrogen pool, and the other of which targeted the theoretically exchangeable hydrogen pool. For all sample types, we observed large differences in the calculated fraction of exchangeable hydrogen, with the freely exchangeable approach yielding exchange rates 10-15 % smaller than those from the theoretically exchangeable approach. The data also showed a greater range of hydrogen isotope values for the approach that achieved higher degrees of hydrogen exchange, suggesting that the range in bridging hydrogen isotope values among samples was lower than that of carbon-bound hydrogen. We suggest modification of the term “exchangeable” in dual water equilibration studies to indicate whether the freely or the potentially exchangeable hydrogen is being targeted, and therefore the extent to which the bridging hydrogen has been isotopically exchanged.

How to cite: Nelson, D. B., Holloway-Phillips, M., and Kahmen, A.: Varying amounts of isotopic exchange among dual water hydrogen isotope exchange methods indicate different pools of exchangeable hydrogen , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12750, https://doi.org/10.5194/egusphere-egu24-12750, 2024.

EGU24-12823 | Posters on site | BG2.4

Nitrogen Isotopic Studies in an Urban Estuary: Not Just a story of Anthropogenic Influences 

Peter Swart, Amel Saied, Maribeth Gidley, Aliza Karim, Elzabeth Kelly, Rachel Silverstein, Chistopher Sinigalliano, Tiffany Troxler, and Sean Ahearn

Over a twelve-month period, between June 2021 and June 2022, a study was carried out that investigated possible causes of water quality decline in northern Biscayne Bay (South Florida, USA).  During this investigation a large number of different water quality parameters were monitored at 22 sites and waterways feeding into the Bay (Miami River, Little River, Biscayne Canal, and Snake Creek) in this area. Additional samples were also collected in the central region of Biscayne Bay around Virginia Key and Key Biscayne, Coconut Grove, and Matheson Hammock. At each site water and vegetation samples were collected.  Water samples were analyzed for standard nutrient parameters (TN, TP, NO3-, NH4, chlorophyll, turbidity, salinity, and dissolved oxygen content) and vegetation samples analyzed for their δ15N and δ13C values, and CN ratios. A smaller number of additional water samples were collected for the analysis of the δ18O and δ15N values of the NO3- and sediment samples were analyzed for their dδ15N values at each site. This presentation concentrates principally on the nitrogen isotopic portion of the study. The highest δ15N values were found in algae and plants collected from the Biscayne Canal, Little River, and Miami River sites, while lower values were measured at the central Biscayne Bay sites.  The Little River sites showed a strong seasonality with δ15N values ranging from +8 ‰ in the wet season to over +13‰ at the start of the dry season, while Miami River and Biscayne Canal sites remained at values of between +9 to +13‰ throughout the year.   While elevated δ15N  values are associated with the input of anthropogenic waste, leaking from septic tanks along the canals, elevation of the d15N values in excess of typical human δ15N values is driven by fractionation during nitrification and incorporation by assimilation. We propose that nitrogen derived from septic tanks ,with elevated δ15N  values, mixes with nitrogen derived from the natural environment as well as from artificial fertilizers (both with lower δ15N values) to produce a pool of nitrogen with intermediate δ15N values.  This reservoir is then further enriched in 15N during the process of assimilation and nitrification which fractionates the δ15N  value of the residual NO3-

How to cite: Swart, P., Saied, A., Gidley, M., Karim, A., Kelly, E., Silverstein, R., Sinigalliano, C., Troxler, T., and Ahearn, S.: Nitrogen Isotopic Studies in an Urban Estuary: Not Just a story of Anthropogenic Influences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12823, https://doi.org/10.5194/egusphere-egu24-12823, 2024.

EGU24-12841 | Orals | BG2.4

Photosynthesis results in 2H-depleted carbohydrates, but why? 

Roland A. Werner and Meisha Holloway-Phillips

When you grow plants in the light, the hydrogen isotopic composition (δ2H) of plant compounds such as cellulose show lower δ2H values (are 2H-depleted) relative to plants grown heterotrophically in the dark. Therefore, it is logical to assume that photosynthetic reactions introduce 2H-depleted hydrogen atoms into carbohydrates. But where in the C reductive pathway (Calvin-Benson-Bassham cycle, CBB) does this occur? Or more interestingly, can we interpret the degree of 2H-depletion of plant compounds with respect to this key reaction(s)? With the recent resurgence of studies offering hydrogen isotopes as a new proxy for plant central carbon and energy metabolism, such a fundamental question seems pertinent to answer.

We 1) examine the stereospecific mechanism of hydride transfer via NADP(H) catalyzed by oxidoreductases (ferredoxin-NADP+ reductase, glyceraldehyde 3-phosphate dehydrogenase) as a key reason why photoproduced NADPH is not directly the source of 2H-depletion of autotrophically produced carbohydrates, 2) reconcile the site-specific deuterium abundance pattern differences between C3 and C4 (NADP-ME) species of hydrogen bound to position C-4 in glucose, and 3) urge greater investment in position-specific and complimentary metabolomic analyses to progress the development of hydrogen isotopes as a metabolic proxy.

How to cite: Werner, R. A. and Holloway-Phillips, M.: Photosynthesis results in 2H-depleted carbohydrates, but why?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12841, https://doi.org/10.5194/egusphere-egu24-12841, 2024.

EGU24-12882 | ECS | Posters on site | BG2.4

Comparison of lipid biomarkers and their hydrogen isotopic values in submerged vascular macrophytes and charophytes 

Ricardo N. Santos, Bernhard Aichner, Daniel B. Nelson, Sabine Hilt, and Sarah N. Ladd

Submerged macrophytes incorporate lake water directly during lipid synthesis, making the δ2H values of their lipids a crucial tool for reconstructing past hydrology and lake states. Despite this significance, the lipid biomarkers of aquatic plants have received less attention compared to terrestrial plants. In particular, in the context of organic geochemical applications, submerged aquatic plants are typically considered as a single group, ignoring potential differences in lipid distributions and hydrogen isotope composition between vascular macrophytes and macroalgae such as charophytes. This gap limits the use of lipid biomarkers in lake sediments to understand past lake water isotopes and vegetation dynamics.

In this study, we analyzed the lipid contents and δ2H values of fatty acids, n-alkanes, and the chlorophyll side-chain phytol from paired vascular macrophytes and charophytes collected from 12 oligo-mesotrophic hardwater lakes in northeast Germany. We aim to assess differences between macrophyte groups and their relation to environmental factors and lake water properties, such as lake water δ2H values and pH levels.

Our preliminary results reveal a notable predominance of fatty acids over n-alkanes in both macrophyte groups. Vascular macrophytes tended to exhibit a higher, albeit variable, abundance of n-alkanes, fatty acids, and phytol concentrations compared to charophytes. The n-alkanes profiles were mainly comprised of mid to long-chain hydrocarbons (n-C23 to n-C27) and exhibited striking variability among macrophytes. Nonetheless, charophytes were notably characterized by a prominent dominance of n-C27. While the C16:0 fatty acid was the most abundant hydrocarbon in both macrophyte types, vascular macrophytes exhibit a greater abundance of long-chain (C24 toC30) fatty acids. However, our data revealed marked differences in the relative abundance of these long-chained compounds. The overall disparities in the lipid profiles point to distinct lipid biosynthesis pathways or environmental adaptations among the studied aquatic plants. Despite the differences in lipid distributions, no systematic differences were observed in the δ2H values for any studied compound class between the two macrophyte groups, Our results suggest that reconstructions of lake water isotopes based on δ2H values of aquatic plant lipids are unlikely to be influenced by changes in the relative contributions from vascular macrophytes and charophytes.

How to cite: N. Santos, R., Aichner, B., B. Nelson, D., Hilt, S., and N. Ladd, S.: Comparison of lipid biomarkers and their hydrogen isotopic values in submerged vascular macrophytes and charophytes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12882, https://doi.org/10.5194/egusphere-egu24-12882, 2024.

EGU24-15515 | Orals | BG2.4

Comparing the strontium isotope signatures of human urinary stones, drinking waters and environmental matrices: A first case study from Italy 

Izzo Francesco, Langella Alessio, Di Renzo Valeria, D'Antonio Massimo, Tranfa Piergiorgio, Widory David, Salzano Luigi, Germinario Chiara, Grifa Celestino, Varricchio Ettore, and Mercurio Mariano

Urolithiasis is a rather common pathology among the adult population and the biominerals it produces, i.e., urinary stones, may represent a potential proxy to characterize the environmental matrices that surrounded patients before being diagnosed. The objective of the present investigation (recently published in Izzo et al., 2024) was to use 87Sr/86Sr, a peculiar geochemical tracer routinely used for interpreting geological processes, to correlate the characteristics of patients’ urolith and their lifestyle habits, trying to identify correlations with direct or indirect contacts with their geological and environmental surroundings (water, soil, rock, etc.). Analyzed samples consisted of 21 kidney and bladder stones that were collected at the Department of Urology of the San Pio Hospital (Benevento, Italy) from patients living in Campania Region admitted between 2018 and 2020. Investigation was also extended to a vital food for humans such as water. Local tap waters and bottle waters (38 samples) from totally different Italian areas were here analyzed in order to highlight if and how different geological and hydrogeological settings could influence their Sr isotope ratio characterizing the connections existing between humans and their surrounding environment.

The 87Sr/86Sr ratios of uroliths ranged from 0.70761 for an uricite sample to 0.70997 for a weddellite one and seem to be partly discriminated based on the mineralogy. The comparison with the isotope characteristics of Italian drinking waters shows a general overlap in 87Sr/86Sr with the biominerals. However, on a smaller geographic area (Campania Region), we observe small 87Sr/86Sr differences between the biominerals and local waters. This may be explained by external Sr inputs for example from agriculture practices, inhaled aerosols (i.e., particulate matter), animal manure and sewage, non-regional foods. Nevertheless, biominerals of patients that stated to drink and eat local water/wines and foods every day exhibited a narrower 87Sr/86Sr range roughly matching the typical isotope ratios of local geological materials and waters, as well as those of archaeological biominerals from the same area. This preliminary study evidences how the strontium isotope ratio of urinary stones records that of the patient's surrounding environmental matrices, although further investigations will be necessary to confirm this hypothesis.

 

Izzo F., Di Renzo V., Langella A., D’Antonio M., Tranfa P., Widory D., Salzano L., Germinario C., Grifa C., Varricchio E., Mercurio M. (2024) Investigating strontium isotope linkage between biominerals (uroliths), drinking water and environmental matrices. Environmental Pollution, https://doi.org/10.1016/j.envpol.2024.123316  

How to cite: Francesco, I., Alessio, L., Valeria, D. R., Massimo, D., Piergiorgio, T., David, W., Luigi, S., Chiara, G., Celestino, G., Ettore, V., and Mariano, M.: Comparing the strontium isotope signatures of human urinary stones, drinking waters and environmental matrices: A first case study from Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15515, https://doi.org/10.5194/egusphere-egu24-15515, 2024.

EGU24-17441 | ECS | Posters on site | BG2.4

Toward using δ2H values for investigating marine mixotrophy 

Marc-Andre Cormier, Jean-Baptiste Berard, Daniel Nelson, Kevin Flynn, Richard Lampitt, and Gael Bougaran

Hydrogen isotope ratios (δ2H) measured on lipids extracted from aquatic and terrestrial organisms are widely applied for studying past hydro-climatic conditions. A growing body of evidence suggests that δ2H values of lipids integrate not only climatic, but also metabolic information. Metabolic effects hinder the reconstruction of climatic conditions based on δ2H values from archives and urges for a better understanding of the key drivers of δ2H values in organic compounds. Once disentangled, such non-climatic information in δ2H values may become key for investigating misunderstood eco-physiological behaviours. One such behaviour is marine mixotrophy.

While science requires tools to measure the contributions of phototrophic and heterotrophic growth in plankton, my colleagues and I have already shown that lipid δ2H values are uniquely sensitive to the expression of heterotrophy relative to photosynthesis in plants. This presentation will discuss groundwork experiments performed with chlorophytes and dinoflagellates exploring whether δ2H values of diverse compounds produced by protists are similarly sensitive to their central metabolic pathway. New δ2H analyses performed on fatty acids, phytols and sterols from these experiments, using an isotope ratio mass spectrometer (IRMS) coupled to a gas chromatograph (GC), will be discussed. Our data suggest that lipids δ2H values are indeed sensitive to the level of heterotrophic growth in diverse protists.

If this relation can be confirmed and calibrated, compound specific H isotope analyses could provide a powerful means to study the role of mixotrophy on the global carbon cycle and the occurrences of HABs.

How to cite: Cormier, M.-A., Berard, J.-B., Nelson, D., Flynn, K., Lampitt, R., and Bougaran, G.: Toward using δ2H values for investigating marine mixotrophy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17441, https://doi.org/10.5194/egusphere-egu24-17441, 2024.

EGU24-18348 | ECS | Posters on site | BG2.4

Robustness of the relationship between needle n-alkane δ²H and leaf water evaporative enrichment, amidst seasonally variable relationships between non-structural carbohydrate δ²H and respiration rate, in a boreal forest 

Charlotte Angove, Guido Wiesenberg, Marco Lehmann, Matthias Saurer, Yu Tang, Elina Sahlstedt, Tatjana Speckert, Pauliina Schiestl-Aalto, and Katja Rinne-Garmston

Stable isotopes of n-alkanes are important and rapidly developing tools for understanding paleoecology and past climatic conditions. However, there are knowledge gaps surrounding the physiological and environmental δ2H signals of n-alkanes. In this study, we investigated whether biosynthetic processes interfere with the consistency of the environmental signal in needle n-alkane δ²H. Therefore, we sampled two needle generations (one year-old needles, current-year needles) from five Pinus sylvestris trees at the boreal forest in Hyytiälä, Finland, during the 2019 growing season and analyzed δ2H of leaf non-structural carbohydrates (NSCs), starch, n-alkanes, and combined data with published leaf water isotope and shoot gas exchange measurements. We explored (1) time-integrated relationships between environmental variables and measured organic compound δ2H, and (2) evaluated whether the δ²H data of this study align with model predictions for NSC and leaf n-alkane δ²H values based on a process-based model for NSC δ2H hybridized with different leaf water heavy isotope enrichment and n-alkane models. Our findings suggest that NSC δ²H has temporally variable relationships to environmental variables which are related to needle generation and season, because current-year needle NSC δ²H was more closely correlated to respiration rate than a needle water isotope signal while one year-old needle NSC δ²H was more closely related to a leaf water evaporative enrichment signal. Interestingly, n-alkane δ²H did not exhibit the same seasonally variable relationship to respiration rate and were instead more closely related to a leaf water evaporative enrichment signal. Overall, results suggest that water compartmentalization in leaves can have a prominent enough role during n-alkane synthesis, that its effects can be observed at seasonal scale, which shows promise to the role of leaf n-alkane δ²H as a leaf evaporative enrichment signal without substantial interference by source water δ²H. However, we also highlight the role of signal dampening, by time integration and new needle growth.

 

How to cite: Angove, C., Wiesenberg, G., Lehmann, M., Saurer, M., Tang, Y., Sahlstedt, E., Speckert, T., Schiestl-Aalto, P., and Rinne-Garmston, K.: Robustness of the relationship between needle n-alkane δ²H and leaf water evaporative enrichment, amidst seasonally variable relationships between non-structural carbohydrate δ²H and respiration rate, in a boreal forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18348, https://doi.org/10.5194/egusphere-egu24-18348, 2024.

EGU24-18459 | Orals | BG2.4

Long-term ecophysiological signals from isotopomers: Principles and applications.  

Jürgen Schleucher, Lenny Haddad, Pieter Zuidema, Benjamin Smith, Mats Öquist, and John Marschall

Understanding plant responses to increasing CO2 is essential for predictions of plant productivity and of future climate (Walker et al. 2020). Isotope ratios (13C/12C and 2H/1H) have long been used in plant ecophysiology and for reconstruction of environmental variables. But it has also been known since decades that heavy isotopes are distributed unevenly WITHIN biological metabolites, i.e. that the abundances of 2H and 13C isotopomers vary. Because isotopomer variation is caused by enzyme isotope fractionation, it carries signals on the regulation of biochemical pathways. If such signals can be recovered from archives of plant material, they can report on plant-climate interactions on time scales from decades to millennia.

We use NMR (nuclear magnetic resonance) to analyze isotopomers of the glucose units of plant archives, and I will describe the principles and practicalities of isotopomer measurements. First, in manipulation experiments we calibrate isotopomer responses to environmental drivers, in particular CO2 and T. Second, we analyse isotopomers in plant archives such as tree-ring series over previous decades of rising CO2, and use the calibrations from the manipulation experiments to deduce shifts in photosynthetic metabolism over decades. We will present results on 2H and 13C isotopomer variation and associated ecophysiological signals.

We present data on 13C isotopomers in tree-ring cellulose and annual plants (Wieloch et al 2018). The results have implications for interpretation of the d13C of respired CO2. Furthermore, we show how 13C isotopomers give new insight into the pathways of C metabolism (Wieloch et al 2023).

Photorespiration is a side reaction of photosynthesis that reduces C assimilation in most vegetation. Photorespiration is reduced by increasing CO2 yet exacerbated by rising T, so its evolution under climate change and implications for global C fluxes are highly uncertain. We present data showing how 2H isotopomers can be used to track photorespiration in response to CO2 and T. The opposing effects of CO2 and T on photorespiration will determine if forests will in the future be a sink or source of CO2 (Van der Sleen et al. 2015; Sperry et al. 2019). For select tree species, we compare results from FACE experiments and from decades-long tree ring series, to detect possible acclimation of gas exchange of broad-leaved trees over

In summary, the presentation will describe how isotopomers can improve mechanistic understanding of plant function on long time scales, to be incorporated into Dynamic global vegetation models to improve predictions of C fluxes under climate change scenarios.

References

Walker et al., 2020 https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16866.

Van der Sleen et al., 2015. https://doi.org/10.1038/ngeo2313.

Sperry et al., 2019. https://doi.org/10.1073/pnas.1913072116.

Wieloch et al., 2018 https://www.nature.com/articles/s41598-018-23422-2

Wieloch et al., 2023 https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18965

 

How to cite: Schleucher, J., Haddad, L., Zuidema, P., Smith, B., Öquist, M., and Marschall, J.: Long-term ecophysiological signals from isotopomers: Principles and applications. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18459, https://doi.org/10.5194/egusphere-egu24-18459, 2024.

EGU24-19894 | ECS | Orals | BG2.4

Hydrogen isotope fractionation is controlled by CO2 in coccolithophore lipids 

Hongrui Zhang, Ismael Torres-Romero, Reto Wijker, Alexander Clakr, Madalina Jaggi, and Heather Stoll

Hydrogen isotope ratios (d2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light and, for the first time, CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (aalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the aalkenone with increasingCO2(aq), and confirm aalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a new cellular model of the d2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor greater exchange of NADPH with 2H-richer intracellular water, increasing aalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of aalkenone toCO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of aalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, aalkenone may be a powerful tool to elucidate carbon limitation of photosynthesis.

How to cite: Zhang, H., Torres-Romero, I., Wijker, R., Clakr, A., Jaggi, M., and Stoll, H.: Hydrogen isotope fractionation is controlled by CO2 in coccolithophore lipids, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19894, https://doi.org/10.5194/egusphere-egu24-19894, 2024.

EGU24-20065 | ECS | Posters on site | BG2.4

Non-Exchangeable Hydrogen Stable Isotope Analysis In Mango (Mangifera indica L.) Pectin Methoxy Groups 

Aiman Abrahim, Markus Greule, Peter Rinke, Christina Vlachou, and Simon Kelly

Hydrogen stable isotope analysis of fruits can provide valuable information about their geographical origin, growing conditions, and the underlying environmental factors. The isotopic ratios of Hydrogen in fruits are related to the water they absorb and incorporate during photosynthesis. Nevertheless, measuring non-exchangeable hydrogen isotope ratios in plant-related organic compounds such as carbohydrates and polysaccharides face well-known analytical challenges (1). One strategy to overcome this challenge is by an established method which determines the hydrogen isotope ratios in non-exchangeable methoxy groups of organic compounds (e.g., lignin, pectin) (2). Pectin is a type of polysaccharide that is naturally occurring in the cell walls of fruits and vegetables and has the potential to be useful for food traceability. We have adapted the site-specific hydrogen stable isotope method, originally developed for wood lignin, to the extraction and δ2H measurement of pectin in mango fruits cultivated in different countries to assess the feasibility of applying the data to geographical origin assignment.

Reference.

(1) Sauer, P. E., Schimmelmann, A., Sessions, A. L., & Topalov, K. (2009). Simplified batch equilibration for D/H determination of non‐exchangeable hydrogen in solid organic material. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 23(7), 949-956.

(2) Keppler, F., Harper, D. B., Kalin, R. M., Meier‐Augenstein, W., Farmer, N., Davis, S., ... & Hamilton, J. T. (2007). Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. New Phytologist176(3), 600-609.

How to cite: Abrahim, A., Greule, M., Rinke, P., Vlachou, C., and Kelly, S.: Non-Exchangeable Hydrogen Stable Isotope Analysis In Mango (Mangifera indica L.) Pectin Methoxy Groups, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20065, https://doi.org/10.5194/egusphere-egu24-20065, 2024.

EGU24-1261 | Orals | GM3.1

Machine-learning based 3D point cloud classification and multitemporal change analysis with simulated laser scanning data using open source scientific software 

Bernhard Höfle, Ronald Tabernig, Vivien Zahs, Alberto M. Esmorís Pena, Lukas Winiwarter, and Hannah Weiser

AIM: We will present how virtual laser scanning (VLS), i.e., simulation of realistic LiDAR campaigns, can be key for applying machine/deep learning (ML/DL) approaches to geographic point clouds. Recent results will be shown for semantic classification and change analysis in multitemporal point clouds using exclusively open source scientific software.

MOTIVATION: Laser scanning is able to deliver precise 3D point clouds which have made huge progress in research in geosciences over the last decade. Capturing multitemporal (4D: 3D + time) point clouds enables to observe and quantify Earth surface process activities, their complex interactions and triggers. Due to the large size of 3D/4D datasets that can be captured by modern systems, automatic methods are required for point cloud analysis. Machine learning approaches applied to geographic point clouds, in particular DL, have shown very promising results for many different geoscientific applications [1,2].

METHODS & RESULTS: While new approaches for deep neural networks are rapidly developing [1], the bottleneck of sufficient and appropriate training data (typically annotated point clouds) remains the major obstacle for many applications in geosciences. Those data hungry learning methods depend on proper domain representation by training data, which is challenging for natural surfaces and dynamics, where there is high intra-class variability. Synthetic LiDAR point clouds generated by means of VLS, e.g., with the open-source simulator HELIOS++ [3], can be a possible solution to overcome the lack of training data for a given task. In a virtual 3D/4D scene representing the target surface classes, different LiDAR campaigns can be simulated, with all generated point clouds being automatically annotated. VLS software like HELIOS++ allows to simulate any LiDAR platform and settings for a given scene, which offers high potential for data augmentation and the creation of training samples tailored to specific applications. In recent experiments [1], purely synthetic training data could achieve similar performances to costly labeled training data from real-world acquisitions for semantic scene classification.

Furthermore, surface changes can be introduced to create dynamic VLS scenes (e.g., erosion, accumulation, movement/transport). Combining LiDAR simulation with automatic change analysis, such as offered by the open-source scientific software py4dgeo [5], enables to perform ML for change analysis in multitemporal point clouds [6]. Recent results show that rockfall activity mapping and classification for permanent laser scanning data can be successfully implemented by combining HELIOS++, py4dgeo and the open-source framework VL3D, which can be used for investigating various ML/DL approaches in parallel.

CONCLUSION: Expert domain knowledge (i.e., definition of proper 3D/4D scenes) and the power of AI can be closely coupled in VLS-driven ML/DL approaches to analyze 3D/4D point clouds in the geosciences. Open-source scientific software already offers all required components (HELIOS++, VL3D, py4dgeo). 

REFERENCES:

[1] Esmorís Pena, A. M., et al. (2024): Deep learning with simulated laser scanning data for 3D point cloud classification. ISPRS Journal of Photogrammetry and Remote Sensing. under revision.

[2] Winiwarter, L., et al. (2022): DOI: https://doi.org/10.1016/j.rse.2021.112772 

[3] HELIOS++: https://github.com/3dgeo-heidelberg/helios

[4] VL3D framework: https://github.com/3dgeo-heidelberg/virtualearn3d

[5] py4dgeo: https://github.com/3dgeo-heidelberg/py4dgeo

[6] Zahs, V. et al. (2023): DOI: https://doi.org/10.1016/j.jag.2023.103406

How to cite: Höfle, B., Tabernig, R., Zahs, V., Esmorís Pena, A. M., Winiwarter, L., and Weiser, H.: Machine-learning based 3D point cloud classification and multitemporal change analysis with simulated laser scanning data using open source scientific software, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1261, https://doi.org/10.5194/egusphere-egu24-1261, 2024.

EGU24-1640 | ECS | Posters on site | GM3.1

Automatic Classification of Surface Activity Types from Geographic 4D Monitoring Combining Virtual Laser Scanning, Change Analysis and Machine Learning 

Vivien Zahs, Bernhard Höfle, Maria Federer, Hannah Weiser, Ronald Tabernig, and Katharina Anders

We advance the characterization of landscape dynamics through analysis of point cloud time series by integrating virtual laser scanning, machine learning and innovative open source methods for 4D change analysis. We present a novel approach for automatic identification of different surface activity types in real-world 4D geospatial data using a machine learning model trained exclusively on simulated data.

Our method focuses on classifying surface activity types based on spatiotemporal features. We generate training data using virtual laser scanning of a dynamic coastal scene with artificially induced surface changes. Scenes with surface change are generated using geographic knowledge and the concept of 4D objects-by-change (4D-OBCs) [1, 2], which represent spatiotemporal subsets of the scene that exhibit change with similar properties. A realistic 3D scene modelling is essential for accurately replicating the dynamic nature of coastal landscapes, where morphological changes are driven by both natural processes and anthropogenic activities.

The Earth's landscapes exhibit complex dynamics, spanning large spatiotemporal scales, from high-mountain glaciers to sandy coastlines. The challenge lies in effectively detecting and classifying diverse surface activities with varying magnitudes, spatial extents, velocities, and return frequencies. Effective characterization of these dynamics is crucial for understanding the underlying environmental processes and their interplay with human activities. Supervised machine learning classification of surface activities from point cloud time series is challenging due to the limited availability of comprehensive and diverse real-world datasets for training and validation. Our approach combines virtual laser scanning with machine learning-based classification, enabling the generation of comprehensive training datasets covering the full spectrum of expected change patterns [3].

In our approach, the simulation of LiDAR point clouds is performed in the open-source framework HELIOS++ [4, 5]. HELIOS++ allows the flexible simulation of custom LiDAR campaigns with diverse acquisition modes and settings together with automatic annotations of artificially induced surface changes. We train a supervised machine learning model to classify synthetic 4D-OBCs into typical surface activity types of a sandy beach (e.g. dune erosion/accretion, sediment transport, etc.). Moreover, we investigate descriptors for 4D-OBCs, assessing their suitability for representing general types of surface activity (transferable between use cases) and types specific to particular surface processes.

We evaluate our model for 4D-OBC classification in terms of its capacity to discriminate surface activity types in a real-world dataset of a sandy beach in the Netherlands [6]. 4D-OBCs are extracted, classified into our target classes and validated with manually labelled reference data based on expert evaluation.

Our study showcases the efficacy of coupling virtual laser scanning, innovative open-source 4D change analysis methods, and machine learning for classifying natural surface changes [7]. Our findings not only contribute to advancing the understanding of landscape dynamics but also provide a promising approach to mitigating environmental challenges.

REFERENCES

[1] Anders et al. (2022): DOI: https://doi.org/10.5194/egusphere-egu22-4225

[2] py4dgeo: https://github.com/3dgeo-heidelberg/py4dgeo 

[3] Zahs et al. (2022): DOI: https://doi.org/10.1016/j.jag.2023.103406

[4] HELIOS++: https://github.com/3dgeo-heidelberg/helios

[5] Winiwarter et al. (2022): DOI: https://doi.org/10.1016/j.rse.2021.112772 

[6] Vos et al. (2022): DOI: https://doi.org/10.1038/s41597-022-01291-9

[7] CharAct4D: www.uni-heidelberg.de/charact4d

How to cite: Zahs, V., Höfle, B., Federer, M., Weiser, H., Tabernig, R., and Anders, K.: Automatic Classification of Surface Activity Types from Geographic 4D Monitoring Combining Virtual Laser Scanning, Change Analysis and Machine Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1640, https://doi.org/10.5194/egusphere-egu24-1640, 2024.

The acquisition of aerial photographs for cartographic applications started in the 1930s, and more intensively after World War II. Such old, often panchromatic, imagery offers metre to sub-metre scale spatial resolution over landscapes that have significantly evolved over the decades. Before the appearance of the first digital aerial camera systems at the end of the 20th Century, surveys were performed with analogue metric cameras, with images acquired on films or glass plates and, next, developed on photo papers. In Europe and North America, several institutions hold unique collections of historical aerial photographs having local, national and, in some cases, colonial coverages. They represent invaluable opportunities for environmental studies, allowing the comparison with today’s land use land cover, and the analysis of long-term surface displacements.

Initially, the photogrammetric processing of analogue aerial photographs would require expensive equipment, specialised operators, and significant processing time. Thanks to the digital revolution of the past two decades and the development of modern digital photogrammetric approaches, the processing of this type of image datasets has become less cumbersome, time consuming and expensive, at least in theory. In practice, this is more complex, with digitising and processing issues related to the ageing and quality of conservation of the aerial photographs, the potential distortions created during the digitising process, and the lack of ancillary data, such as, flight plans, and camera calibration reports. The limited overlap between photographs, typically 60 % and 10-20 %, along-track and across-track, respectively, make their processing with Structure-from-Motion Multi-View Stereo (SfM-MVS) photogrammetry poorly reliable to accurately reconstruct the topography and orthorectify the images. Given the fact that some collections reach up to millions of historical aerial photographs, the digitising, pre-processing, and photogrammetric processing of these images remain a challenge that must be properly tackle if we would like to ensure their preservation and large-scale valorisation.

In the present work, we describe the mass-digitising, digital image pre-processing and photogrammetric processing approaches implemented at the Royal Museum for Central Africa (RMCA, Belgium) to preserve and valorise the collection of >320,000 historical aerial photographs conserved in this federal institution. This imagery was acquired between the 1940’s and the 1980’s, over Central Africa, and mostly D.R. Congo, Rwanda and Burundi. For the digitising, a system of parallelized flatbed scanners controlled by a Linux computer and a self-developed software allows speeding-up the scanning of the entire collection in only few years. A series of Python scripts were developed and combined to allow a swift pre-processing that prepare and optimise the digitised images for photogrammetric processing. Finally, a SfM-MVS photogrammetric approach adapted to historical aerial photos is used. Examples of application for geo-hydrological hazards studies in the western branch of the East African Rift are shown.

How to cite: Smets, B., Dille, A., Dewitte, O., and Kervyn, F.: Digitising, pre-processing and photogrammetric processing of historical aerial photographs for the production of high resolution orthomosaics and the study of geohazards, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2356, https://doi.org/10.5194/egusphere-egu24-2356, 2024.

EGU24-4399 | ECS | Posters on site | GM3.1

Evaluating the efficacy of multitemporal TLS and UAS surveys for quantifying wind erosion magnitudes of sand dune topography 

László Bertalan, Gábor Négyesi, Gergely Szabó, Zoltán Túri, and Szilárd Szabó

Wind erosion constitutes a prominent land degradation process in regions of Hungary characterized by low annual precipitation. In these areas, it poses significant challenges to agricultural productivity and adversely impacts soil and environmental quality. Presently, human activities exert a more pronounced influence on the endangered areas of Hungary in comparison to climate-related factors. It is noteworthy that the wind erodibility of Hungarian soils not only poses a soil conservation challenge but also gives rise to economic ramifications, such as nutrient loss, as well as environmental and human health concerns. Within agricultural landscapes, wind erosion contributes to the removal and transportation of the finest and biologically active soil fractions, rich in organic matter and nutrients.

High-resolution topographic surveys have become integral for assessing volumetric changes in sand dune mobility and mapping wind erosion. While Unmanned Aerial Systems (UAS) surveys have been extensively employed for erosion rates exceeding the decimeter scale, Terrestrial Laser Scanning (TLS) surveys have demonstrated efficiency in capturing more extensive negative erosional forms, even in a vertical orientation. To enhance the field of view, a mounting framework can be implemented to elevate the TLS. However, determining centimeter-scale material displacement in flat terrain conditions remains challenging and requires an increased number of scanning positions.

To identify optimal settings for surveying centimeter-scale wind erosion magnitudes, we conducted combined multi-temporal TLS and UAS surveys at the Westsik experimental site near Nyíregyháza during the spring of 2023. This site features dune topography with a height of 6 meters. Our investigations encompassed various UAS image acquisition modes, involving different flight altitudes and camera settings, utilizing a DJI Matrice M210 RTK v2 drone and a Zenmuse X7 24 mm lens. Additionally, we generated diverse point clouds through various scanning scenarios using a Trimble X7 TLS device. In the data processing phase, we explored multiple co-registration algorithms to address the challenge of larger Root Mean Square Error (RMSE) in Digital Terrain Models (DTMs) from UAS Structure from Motion (SfM) compared to the actual wind erosion rates.

---

The research is supported by the NKFI K138079 project.

How to cite: Bertalan, L., Négyesi, G., Szabó, G., Túri, Z., and Szabó, S.: Evaluating the efficacy of multitemporal TLS and UAS surveys for quantifying wind erosion magnitudes of sand dune topography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4399, https://doi.org/10.5194/egusphere-egu24-4399, 2024.

EGU24-5142 | Posters on site | GM3.1 | Highlight

Four nationwide Digital Surface Models from airborne historical stereo-images 

Christian Ginzler, Livia Piermattei, Mauro Marty, and Lars T. Waser

Historical aerial images, captured by film cameras in the previous century, have emerged as valuable resources for quantifying Earth's surface and landscape changes over time. In the post-war period, historical aerial images were often acquired to create topographic maps, resulting in the acquisition of large-scale aerial photographs with stereo coverage. Using photogrammetric techniques on stereo-images enables extracting 3D information to reconstruct Digital Surface Models (DSMs), and orthoimages.

This study presents a highly automated photogrammetric approach for generating nationwide DSMs for Switzerland at 1 m resolution using aerial stereo-images acquired between 1979 and 2006. The 8-bit scanned images, with known exterior and interior orientation, were processed using BAE Systems' SocetSet (v5.6.0) with the "Next-Generation Automatic Terrain Extraction" (NGATE) package for DSM generation. The primary objective of the study is to derive four nationwide DSMs for the epochs 1979-1985, 1985-1991, 1991-1998, and 1998-2006. The study assesses DSM quality in terms of vertical accuracy and completeness of image matching across different land cover types, with a focus on forest dynamics and management research.

The elevation accuracy of the generated DSMs was assessed using two reference datasets. Firstly, the elevation differences between a nationwide reference Digital Terrain Model (DTM - swissAlti3d 2017 by Swisstopo) and the generated DSMs were calculated on points classified as "sealed surface". Secondly, elevation values of the DSMs were compared to approximately 500 independent geodetic points distributed across the country. Six study areas were chosen to assess completeness, and it was calculated as the percentage of successfully matched points to the potential total number of matched points within a predefined area. This assessment was conducted for six land cover classes based on the land cover/land-use statistics dataset from the Federal Office of Statistics.

Across the entire country, the median elevation accuracy of the DSMs on sealed points ranges between 0.28 to 0.53 m, with a Normalized Median Absolute Deviation (NMAD) of around 1 m (maximum 1.41 m) and an RMSE of a maximum of 3.90 m. The elevation differences between geodetic points and DSMs show higher accuracy, with a median value of a maximum of 0.05 m and an NMAD smaller than 1 m. Completeness results reveal mean completeness between 64 % to 98 % for the classes "glacial and perpetual snow" and "sealed surfaces," respectively and 93 % specifically for the “closed forest” class.

This work demonstrates the feasibility of generating accurate DSM time series (spanning four epochs) from historical scanned images for the entire Switzerland in a highly automated manner. The resulting DSMs will be available upon publication, providing an excellent opportunity to detect major surface changes, such as forest dynamics.

How to cite: Ginzler, C., Piermattei, L., Marty, M., and Waser, L. T.: Four nationwide Digital Surface Models from airborne historical stereo-images, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5142, https://doi.org/10.5194/egusphere-egu24-5142, 2024.

EGU24-5670 | ECS | Posters on site | GM3.1

Enhancing 3D Feature-based Landslide Monitoring Efficiency by Integrating Contour Lines in Laser Scanner Point Clouds 

Kourosh Hosseini, Jakob Hummelsberger, Daniel Czerwonka-Schröder, and Christoph Holst

Landslides are a pervasive natural hazard with significant societal and environmental impacts. In addressing the critical need for accurate landslide detection and monitoring, our previous research introduced a feature-based monitoring method enhanced by histogram analyses, straddling a middle ground between point-based and point cloud-based methods. This paper expands upon that foundation, introducing an innovative contour line extraction technique from various epochs to precisely identify areas prone to deformation. This refined focus diverges from conventional methodologies that analyze entire point clouds. By applying on regions where contour lines do not match, indicating potential ground movement, we significantly elevate the efficiency and precision of our feature-based monitoring system.

 

One of the principal challenges of feature-based monitoring is managing a substantial number of outliers. Our prior research tackled this issue effectively by integrating feature tracking with histogram analysis, thereby filtering these outliers from the final results. However, the process of extracting features from each patch and matching them with corresponding patches from different epochs was time-intensive.

 

The incorporation of contour line extraction into our workflow, using high-resolution laser scanner data, allows for a more focused and efficient analysis. We can now identify and analyze areas of landscape alteration with greater accuracy. This approach limits the application of feature tracking and histogram analysis to these critical areas, thus streamlining the process and significantly reducing computational demands. This focused methodology not only accelerates data processing but also enhances the accuracy of landslide predictions.

 

Our findings indicate a substantial improvement in the efficiency of landslide monitoring methods. This methodology represents a promising advancement in geospatial analysis, particularly for environmental monitoring and risk management in regions susceptible to landslides. This research contributes to the ongoing efforts to develop more effective, efficient, and accurate approaches to landslide monitoring, ultimately aiding in better informed and timely decision-making processes for hazard mitigation and risk management.

How to cite: Hosseini, K., Hummelsberger, J., Czerwonka-Schröder, D., and Holst, C.: Enhancing 3D Feature-based Landslide Monitoring Efficiency by Integrating Contour Lines in Laser Scanner Point Clouds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5670, https://doi.org/10.5194/egusphere-egu24-5670, 2024.

EGU24-5674 | ECS | Orals | GM3.1

Piecewise-ICP: Efficient Registration of 4D Point Clouds for Geodetic Monitoring 

Yihui Yang, Daniel Czerwonka-Schröder, and Christoph Holst

The permanent terrestrial laser scanning (PLS) system has opened the possibilities for efficient data acquisition with high-temporal and spatial resolution, thus allowing for improved capture and analyses of complex geomorphological changes on the Earth's surface. Accurate georeferencing of generated four-dimensional point clouds (4DPC) from PLS is the prerequisite of the following change analysis. Due to the massive data volume and potential changes between scans, however, efficient, robust, and automatic georeferencing of 4DPC remains challenging, especially in scenarios lacking signalized and reliable targets. This georeferencing procedure can be typically realized by designating a reference epoch and registering all other scans to this epoch. Addressing the challenges in targetless registration of topographic 4DPC, we propose a simple and efficient registration method called Piecewise-ICP, which first segments point clouds into piecewise patches and aligns them in a piecewise manner.

Assuming the stable areas on monitored surfaces are locally planar, supervoxel-based segmentation is employed to generate small planes from adjacent point clouds. These planes are then refined and classified by comparing defined correspondence distances to a monotonically decreasing distance threshold, thus progressively eliminating unstable planes in an efficient iterative process as well as preventing local minimization in the ICP process. Finally, point-to-plane ICP is performed on the centroids of the remaining stable planes. We introduce the level of detection in change analysis to determine the minimum distance threshold, which mitigates the influence of outliers and deformed areas on registration accuracy. Besides, the spatial distribution of empirical registration uncertainties on registered point clouds is derived based on the variance-covariance propagation law.

Our registration method is demonstrated on two datasets: (1) Synthetic point cloud time series with defined changes and transformation parameters, and (2) a 4DPC dataset from a PLS system installed in the Vals Valley (Tyrol, Austria) for monitoring a rockfall. The experimental results show that the proposed algorithm exhibits higher registration accuracy compared to the existing robust ICP variants. The real-time capability of Piecewise-ICP is significantly improved owing to the centroid-based point-to-plane ICP and the efficient iteration process.

How to cite: Yang, Y., Czerwonka-Schröder, D., and Holst, C.: Piecewise-ICP: Efficient Registration of 4D Point Clouds for Geodetic Monitoring, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5674, https://doi.org/10.5194/egusphere-egu24-5674, 2024.

EGU24-5757 | Posters on site | GM3.1

Arctic puzzle: pioneering a shrimp habitat model in topographically complex Disko Bay (West Greenland) 

Diana Krawczyk, Tobias Vonnahme, Ann-Dorte Burmeister, Sandra Maier, Martin Blicher, Lorenz Meire, and Rasmus Nygaard

Our study focuses on the geologically, topographically, and oceanographically complex region of Disko Bay in West Greenland. Disko Bay is also considered a marine biodiversity hotspot in Greenland. Given the impact of commercial fishing on seafloor integrity in the area, seafloor habitats studies are crucial for sustainable use of marine resources. One of the key fishery resources in Greenland, as well as in the North Atlantic Ocean, is northern shrimp.

In this study we analyzed multiple (1) monitoring datasets from 2010 to 2019, including data from shrimp and fish surveys, commercial shrimp fishery catches, satellite chlorophyll data, and (2) seafloor models, encompassing high-resolution (25 x 25 m) multibeam data with a low-resolution (200 x 200 m) IBCAO grid. Using multivariate regression analysis and spatial linear mixed-effect model we assessed the impact of physical (water depth, bottom water temperature, sediment type), biological (chlorophyll a, Greenland halibut predation), and anthropogenic factors (shrimp fishery catch and effort) on shrimp density in the area. The resulting high-resolution predictive model of northern shrimp distribution in Disko Bay is the first model of this kind developed for an Arctic area.

Our findings reveal that shrimp density is significantly associated with static habitat factors, namely sediment type and water depth, explaining 34% of the variation. The optimal shrimp habitat is characterized by medium-deep water (approximately 150-350 m) and mixed sediments, primarily in the north-eastern, south-eastern, and north-western Disko Bay. This pioneering study highlights the importance of seafloor habitat mapping and modeling, providing fundamental geophysical knowledge necessary for long-term sustainable use of marine resources in Greenland.

The developed high-resolution model contributes to a better understanding of detailed patterns in northern shrimp distribution in the Arctic, offering valuable insights for stock assessments and sustainable fishery management. This novel approach to seafloor habitat mapping supports the broader goal of ensuring the responsible utilization of marine resources, aligning with principles of environmental conservation and fisheries management. Our work serves as a foundation for ongoing efforts to balance economic interests with the preservation of marine ecosystems, fostering a harmonious coexistence between human activities and the fragile Arctic environment.

How to cite: Krawczyk, D., Vonnahme, T., Burmeister, A.-D., Maier, S., Blicher, M., Meire, L., and Nygaard, R.: Arctic puzzle: pioneering a shrimp habitat model in topographically complex Disko Bay (West Greenland), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5757, https://doi.org/10.5194/egusphere-egu24-5757, 2024.

EGU24-10361 | ECS | Orals | GM3.1

A Time-Series Analysis of Rockfall Evolution in a Coastal Region Using Remote Sensing Data 

Aliki Konsolaki, Emmanuel Vassilakis, Evelina Kotsi, Michalis Diakakis, Spyridon Mavroulis, Stelios Petrakis, Christos Filis, and Efthymios Lekkas

The evolution of technology, particularly the integration of Unmanned Aerial Systems (UAS), earth observation datasets, and historical data such as aerial photographs, stand as fundamental tools for comprehending and reconstructing surface evolution and potential environmental changes. In addition, the active geodynamic phenomena in conjunction with climate crisis and the increasing frequency of extreme weather phenomena can cause abrupt events such as rockfalls and landslides, altering completely the morphology on both small and large scales.

This study deals generally with the temporal evolution of landscapes and specifically focuses on the detection and quantification of a significant rockfall event that occurred at Kalamaki Beach on Zakynthos Island, Greece – a very popular summer destination. Utilizing UAS surveys conducted in July 2020 and July 2023, this research revealed a rockfall that has significantly altered the coastal morphology. During this period, two severe natural phenomena occurred, one of which could potentially be the cause of this rockfall event. Initially, the Mediterranean hurricane (‘medicane’) ‘Ianos’ made landfall in September 2020, affecting a large part of the country including the Ionian Islands. The result was severe damage to property and infrastructures, along with human casualties, induced by intense precipitation, flash flooding, strong winds, and wave action. Second, in September of 2022, an ML=5.4 earthquake struck between Cephalonia and Zakynthos Islands in the Ionian Sea, triggering considerable impact in both islands. The study employs satellite images postdating these natural disasters, to detect the source of the rockfall in Kalamaki Beach. Additionally, historical analog aerial images from 1996 and 2010 were used as assets for understanding the surface’s evolution. For the quantitative analysis, we applied 3D semi-automated change detection techniques such as the M3C2 algorithm, to estimate the volume of the rockfall.

The results provide insights into the complex interplay between natural disasters and geological processes, shedding light on the dynamic nature of landscapes and the potential implications for visitor-preferred areas.

This research not only contributes to our understanding of landscape evolution but also underscores the importance of integrating modern and historical datasets to decipher the dynamic processes shaping the Earth's surface. The methodology proposed, serves as a valuable approach for assessing and managing geological hazards in coastal regions affected by both climatic events and geodynamic activities.

How to cite: Konsolaki, A., Vassilakis, E., Kotsi, E., Diakakis, M., Mavroulis, S., Petrakis, S., Filis, C., and Lekkas, E.: A Time-Series Analysis of Rockfall Evolution in a Coastal Region Using Remote Sensing Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10361, https://doi.org/10.5194/egusphere-egu24-10361, 2024.

EGU24-10373 | Orals | GM3.1

A database for ancillary information of three-dimensional soil surface microtopography measurements. 

Kossi Nouwakpo, Anette Eltner, Bernardo Candido, Yingkui Li, Kenneth Wacha, Mary Nichols, and Robert Washington-Allen

Understanding the complex processes occurring at the soil surface is challenging due to the intricate spatial variability and dynamic nature of these processes. An effective tool for elucidating these phenomena is three-dimensional (3D) reconstruction, which employs advanced imaging technologies to create a comprehensive representation of the soil surface at high spatial resolution, often at the mm-scale. Three-dimensional reconstruction techniques are increasingly available to scientists in the fields of soil science, geomorphology, hydrology, and ecology and many studies have employed these novel tools to advance understanding of surface processes. Much of the data being collected in these studies are however not interoperable, i.e., 3D data from one study may not be directly combined with 3D data from other studies thus limiting the ability of researchers to advance process understanding at a broader scope. The limited interoperability of existing data is due in part to the fact that 3D surface reconstruction data are influenced by many factors including experimental conditions, intrinsic soil properties and accuracy and precision limits of the 3D reconstruction technique used. These ancillary data are crucial to any broad-scope efforts that leverage the increasing number of 3D datasets collected by scientists across disciplines, geographic regions, and experimental conditions. We have developed a relational database that archives and serves ancillary data associated with published high-resolution 3D data representing soil surface processes. This presentation introduces the structure of the database with its required and optional variables. We also provide analytics on the currently available records in the database and discuss potential applications of the database and future developments.

How to cite: Nouwakpo, K., Eltner, A., Candido, B., Li, Y., Wacha, K., Nichols, M., and Washington-Allen, R.: A database for ancillary information of three-dimensional soil surface microtopography measurements., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10373, https://doi.org/10.5194/egusphere-egu24-10373, 2024.

EGU24-11949 | ECS | Posters on site | GM3.1

Employng satellite immagery interpretation tools to detect land-use land-change dynamics in Italian historical rural landscapes 

Virginia Chiara Cuccaro, Claudio Di Giovannantonio, Giovanni Pica, Luca Malatesta, and Fabio Attorre

Rural landscapes inherited from the past are marked by a strong interaction between man and nature, a relationship rooted in a long history that testifies to the importance of the landscape as one of the most historically representative expressions of a country's cultural identity.

In this broad context, olive groves markedly characterize the agricultural landscape of many European rural areas, particularly in the Mediterranean region. Along with other rural landscapes, they form a semi-natural environment that can contribute to biodiversity conservation, soil protection and ecosystem resilience.

In addition to the global increase in temperatures, the main threats affecting these agrarian landscapes include the abandonment of traditional practices and the intensification of cultivation through the installation of irregular, intensive and overly dense planting beds.

The Land Cover classification and change-detection can provide useful indications for the restoration, conservation, and enhancement of olive groves

The objective of this work was to identify , rural landscapes in the Lazio region with characteristics of historical interest and determine their level of conservation. In particular, it was investigated the olive landscape of Cures (historic province of Sabina) trough a multi-temporal analysis of literature and cartographic information (e.g. orthophotos from the Italian Aeronautical Group flight of 1954)

The technique concerns the VASA (Historical Environmental Assessment) methodology, which allows the temporal evaluation of a given landscape and can inform on how agricultural practices and land use have changed over time.

Softwares  Collect Earth and Google Earth were employed to manipulate the historical series of high-resolution satellite images and implement photointerpretation. The coverage of identitied land units  was then estimated to address the configuration of the target landscape.

Landscape evolution over time was achieved by overlaying the 1954 and 2022 land use polygons, resulting in a merging database, in which an evolutionary dynamic was associated with each land use change.

The approach generated in-depth insights on the significant elements of the CURES olive landscape and informed on the dynamics of the area in relation to the risk of their disappearance, making it possible to identify what are the "landscape emergencies," i.e., the land uses that have seen the most̀ reduction in their area.

The methodologies employed have proven reliability in improving the knowledge ng target landscapes.  It might be useful to promote  sustainable agricultural practices for better preservation and management of rural environments so that cultural traditions can be preserved as well, and the environmental balance of the agrarian land can be maintained.

How to cite: Cuccaro, V. C., Di Giovannantonio, C., Pica, G., Malatesta, L., and Attorre, F.: Employng satellite immagery interpretation tools to detect land-use land-change dynamics in Italian historical rural landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11949, https://doi.org/10.5194/egusphere-egu24-11949, 2024.

EGU24-12105 | ECS | Orals | GM3.1 | Highlight

Unleashing the archive of aerial photographs of Iceland, 1945-2000. Applications in geosciences  

Joaquín M. C. Belart, Sydney Gunnarson, Etienne Berthier, Amaury Dehecq, Tómas Jóhannesson, Hrafnhildur Hannesdóttir, and Kieran Baxter

The archive of historical aerial photographs of Iceland consists of ~140,000 vertical aerial photographs acquired between the years 1945 and 2000. It contains an invaluable amount of information about human and natural changes in the landscape of Iceland. We have developed a series of automated processing workflows for producing accurate orthomosaics and Digital Elevation Models (DEMs) from these aerial photographs, which we’re making openly available in a data repository and a web map visualization service. The workflow requires two primary inputs: a modern orthomosaic to automatically extract Ground Control Points (GCPs) and an accurate DEM for a fine-scale (sub-meter) alignment of the historical datasets. We evaluated the accuracy of the DEMs by comparing them in unchanged terrain against accurate recent lidar and Pléiades-based DEMs, and we evaluated the accuracy of the orthomosaics by comparing them against Pléiades-based orthomosaics. The data are becoming available at https://loftmyndasja.lmi.is/. To show the potential applications of this repository, we present the following showcases where these data reveal significant changes the landscape in Iceland in the past 80 years: (1) volcanic eruptions (Askja 1961, Heimaey 1973 and the Krafla eruptions, 1975-1984), (2) decadal changes of Múlajökull glacier from 1960-2023, (3) Landslides (Steinsholtsjökull 1967, Tungnakvíslarjökull 1945-present) and (4) coastal erosion (Surtsey island).

How to cite: Belart, J. M. C., Gunnarson, S., Berthier, E., Dehecq, A., Jóhannesson, T., Hannesdóttir, H., and Baxter, K.: Unleashing the archive of aerial photographs of Iceland, 1945-2000. Applications in geosciences , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12105, https://doi.org/10.5194/egusphere-egu24-12105, 2024.

EGU24-14087 | ECS | Posters on site | GM3.1

A point-cloud deep learning model based on RGB-D images: Application of riverbed grain size survey 

Bo Rui Chen and Wei An Chao

The water level and discharge of river are crucial parameters to understand the variance in riverbed scour. The detail behavior of scouring can be studied by the hydraulic simulation. The grain-size distribution of riverbed is also one of crucial parameter for modeling. Thus, how to investigate the grain-size of riverbed efficiently and swiftly is the urgent issue. However, the conventional measurement methods including Wolman counts (particles sampled at a fixed interval) which are a long and laborious task cannot survey the grain-size efficiently in the large area. In recent years, with an advantage of image segmentation and recognition has been applied to the investigation of grain-size, for example, capturing images through UAV and generating orthoimage is one of commonly used image technique. Although above the method can investigate the grain-size in the large area, it does not provide the information in the field immediately. Hence, a recent study developed the low-cost portable scanner to obtain the information of grain-size distribution in the field. However, the calibrating parameters of camera (e.g., height camera capture) are necessary before survey, and the uncertainties in calculation of image resolution will significantly affect the accuracy of grain-size analysis. Therefore, this study provides the additional algorithm to analyze the grain-size by using RGB-D image as inputs. The application of RGB-D can be categorized into two-dimensional (2D) and three-dimensional (3D) spaces. In a case of 2D, it integrates depth information with traditional RGB image processing to separate the grain-size of riverbed from the background (e.g., bottomland). Furthermore, depth information is also applied for grain-size edge detection. In a case of 3D, the collected RGB-D image information is transformed into point cloud data, then extract 3D features of grain particle by Deep learning, specifically PointNet. Our study demonstrates that clustering of 3D features can achieve the automatic identification of particle. The grain-size of particle can also be estimated by fitting 3D ellipsoid geometry. In the end, results show the grain-size distribution curves with the RGB、RGB-D、PointNet recognition, and compare with the true observations. 3D image information provides the cloud points of grain object, leading the possibility of estimating the 3D geometric morphology of the object. Our study successfully overcomes the limitations of conventional RGB-based process, which could only capture size and shape information in 2D planar. RGB-D-based image recognition, is an innovative technique for the hydraulic problem, not only advances survey efficiency but also addresses the intricate steps required for field investigations.

 

Key words: Riverbed grain size, RGB-D image, Point cloud, Deep Learning

How to cite: Chen, B. R. and Chao, W. A.: A point-cloud deep learning model based on RGB-D images: Application of riverbed grain size survey, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14087, https://doi.org/10.5194/egusphere-egu24-14087, 2024.

EGU24-14680 | Orals | GM3.1

Using current 3D point clouds as a tool to infer on past geomorphological processes 

Reuma Arav, Sagi Filin, and Yoav Avni

Examining deposition and erosion dynamics during the late Pleistocene and Holocene is crucial for gaining insights into soil development, erosion, and climate fluctuations. This urgency intensifies as arable lands face escalating degradation rates, particularly in arid and semi-arid environments. Nevertheless, as the destructive nature of erosional processes allows only for short-term studies, long-term processes in these regions are insufficiently investigated. In that respect, the ancient agricultural installations in the arid Southern Levant offer distinctive and undisturbed evidence of long-term land dynamics. Constructed on a late Pleistocene fluvial-loess section during the 3rd-4th CE and abandoned after 600-700 years, these installations record sediment deposition, soil formation, and erosion processes. The challenge is to trace and quantify these processes based on their current state. In this presentation, we demonstrate how the use of 3D point cloud data enables us to follow past geomorphological processes and reconstruct trends and rates. Utilizing data gathered in the immediate vicinity of the UNESCO World Heritage Site of Avdat (Israel), we illustrate how these point clouds comprehensively document the history of soil dynamics in the region. This encompasses the initial erosion phase, subsequent soil aggradation processes resulting from anthropogenic interruption, and the ongoing reinstated erosion. The unique setting, which uncovers the different fluvial sections, together with the detailed 3D documentation of the site, allows us to develop means for the reconstruction of the natural environment in each of the erosion/siltation stages. Therefore, by utilizing the obtained data, we can recreate the site during its developmental stages till the present day. Furthermore, we utilize terrestrial laser scan data sequence acquired in the past decade (2012-2022) to compute current erosion rates. These are then used to determine past rates, enabling inferences about the climatic conditions prevalent in the region over the last millennium. The in-depth examination of these installations provides valuable insights into approaches for soil conservation, sustainable desert living, and strategies to safeguard world-heritage sites subjected to soil erosion. As the global imperative to address soil erosion intensifies, this case study gains heightened relevance.

How to cite: Arav, R., Filin, S., and Avni, Y.: Using current 3D point clouds as a tool to infer on past geomorphological processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14680, https://doi.org/10.5194/egusphere-egu24-14680, 2024.

EGU24-15439 | ECS | Orals | GM3.1 | Highlight

Utilizing historical aerial imagery for change detection in Antarctica 

Felix Dahle, Roderik Lindenbergh, and Bert Wouters

Our research explores the potential of historical images of Antarctica for change detection in 2D and 3D. We
make use of the TMA Archive, a vast collection of over 330,000 black and white photographs of Antarctica taken
between 1940 to 1990. These photographs, available in both nadir and oblique, are systematically captured
from airplanes along flight paths and offer an unprecedented historical snapshot of the Antarctic landscape.
Detecting changes between past and present observations provides a unique insight into the long-term impact
of changing climate conditions on Antarctica’s glaciers, and their dynamical response to ice shelf weakening and
disintegration. Furthermore, it provides essential validation data for ice modelling efforts, thereby contributing
to reducing the uncertainties in future sea level rise scenarios.

In previous work, we applied semantic segmentation to these images [1]. By employing classes derived from this
segmentation, we can focus on features of interest and exclude images with extensive cloud coverage, enhancing
the accuracy of change analyses. In the next step, we geo-referenced the images: We assigned the images to
their actual position, scaled them to their true size, and aligned them with their genuine orientation. This
presents novel opportunities for detecting environmental changes in Antarctica, particularly in the retreat of
glaciers and sea ice.

Furthermore, the combination of these two steps allows for the first time a large scale reconstruction of these
images in 3D through Structure from Motion (SfM) techniques, which enables further multidimensional change
detection by comparing historical 3D models with contemporary ones. Due to the high number of images,
manual processing is impractical. Therefore, we are investigating the possibility of automatizing this process.
We utilize MicMac, an open-source software developed by the French National Geographic Institute for the
creation of the 3D models. Its high modularity allows for necessary customizations to automate the SfM
process effectively. Further adaptions are required due to the poor image quality and monotonous scenery. By
comparing historical 3D models with contemporary ones, we can assess alterations in elevation due to factors
such as glacial isostatic adjustments and glacier retreat.

We have already employed geo-referenced images for detecting changes on the Antarctic peninsula and are in the
process of creating initial 3D models. Our presentation will outline the workflow we developed for this process
and showcase the initial results of the change detection, both in 2D and 3D formats. This approach marks a
significant step in understanding and visualizing the impacts of climate change on the Antarctic landscape.

Acknowledgements
This work was funded by NWO-grant ALWGO.2019.044.

References
[1] F. Dahle, R. Lindenbergh, and B. Wouters. Revisiting the past: A comparative study for semantic segmen-
tation of historical images of Adelaide Island using U-nets. ISPRS Open Journal of Photogrammetry and
Remote Sensing, 11:100056, 2024.

How to cite: Dahle, F., Lindenbergh, R., and Wouters, B.: Utilizing historical aerial imagery for change detection in Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15439, https://doi.org/10.5194/egusphere-egu24-15439, 2024.

EGU24-15896 | Orals | GM3.1

Classification and segmentation of 3D point clouds to survey river dynamics and evolution  

Laure Guerit, Philippe Steer, Paul Leroy, Dimitri Lague, Dobromir Filipov, Jiri Jakubinsky, Ana Petrovic, and Valentina Nikolova

3D data for natural environments are now widely available via open data at large scales (e.g., OpenTopography) and can be easily acquired on the field by terrestrial LiDAR scan (TLS) or by structure-from-motion (SFM) from camera or drone imagery. The 3D description of landscapes gives access to an unprecedented level of details that can significantly change the way we look at, understand, and study natural systems. Point clouds with millimetric resolution even allow to go further and to investigate the properties of riverbed sediments: dedicated algorithms are now able to extract the sediment size distribution or their spatial orientation directly from the point cloud. 

Such data can be real game changers to study for example torrential streams prone to flash floods or debris flows. Such events are usually associated with heavy rainfall events, while conditioned by the geomorphological state of a stream (e.g., channel geometry, vegetation cover). The size and the shape of the grains available in the river also strongly influence river erosion and sediment transport during a flood. 3D data can thus help to design prevention and mitigation measures in streams prone to torrential events. 

However, it is not straightforward to go from data acquisition to river erosion or to grain-size distributions. Indeed, isolating and classifying the areas of interest can be complex and time-consuming. This can be done manually, at the cost of time and absence of reproducibility. We rather take advantage of state-of-the-art classification method (3DMASC) to develop a general classifier for point clouds in fluvial environments designed to identify five classes usually found in such settings: coarse sediments, sand, bedrock, vegetation and human-made structures. We also improved the G3Point sediment segmentation algorithm, developed by our team, to make it more efficient and straightforward to use in the CloudCompare software, which is dedicated to point cloud visualization and analysis. We apply it to the coarse sediments class identified by 3DMASC to provide a more accurate description of grain size and orientation. We also make a profit of the sand class to estimate its relative areal distribution that can then be compared to the coarse sediment class. This provides valuable information about the type of flows which are also important for planning torrential events mitigation measures.

We illustrate this combined approach with two field examples. The first one is based on SFM data acquired along streams prone to torrential events in Bulgaria and in Serbia where we documented sediment size and orientation. The second one is based on TLS data acquired along a bedrock river in France that experienced a major flood which induced dramatic changes in the river morphology. 

This work has been partially funded by PHC Danube n° 49921ZG/ n° KP-06-Danube/5, 14.08.2023 (National Science Fund, Bulgaria) and the H2020 European Research Council (grant no. 803721). 

How to cite: Guerit, L., Steer, P., Leroy, P., Lague, D., Filipov, D., Jakubinsky, J., Petrovic, A., and Nikolova, V.: Classification and segmentation of 3D point clouds to survey river dynamics and evolution , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15896, https://doi.org/10.5194/egusphere-egu24-15896, 2024.

EGU24-16939 | ECS | Posters on site | GM3.1 | Highlight

Integrating structure-from-motion photogrammetry with 3D webGIS for risk assessment, mapping and monitoring of coastal area changes in the Maltese archipelago 

Emanuele Colica, Daniel Fenech, Christopher Gauci, and George Buhagiar

The Maltese coasts extend for approximately 273km, representing a notable resource for the country and of one of its pillar economies, the tourism sector. Natural processes and anthropic interventions continue to threaten Malta's coastal morphology, shaping its landscape and triggering soil erosion phenomena. Therefore, many research projects (Colica et al., 2021, 2022 and 2023) have concentrated their work on the investigation and monitoring of the instability of cliffs and the erosion of pocket beaches. The results of such activities can be widely disseminated and shared with expert and non-expert users through web mapping, which has only been used in a very limited way in collaborative coastal management and monitoring by different entities in Malta. This study describes the performance of a WebGIS designed to disseminate the results of innovative geomatic investigations for monitoring and analyzing erosion risk, performed by the Research and Planning Unit within the Public Works Department of Malta. While aiming to include the entire national coastline, three study areas along the NE and NW regional coasts of the island of Malta have already been implemented as pilot cases. This WebGIS was generated using ArcGIS pro software by ESRI and a user-friendly interactive interface has been programmed to help users view in 2D and 3D, satisfying both multi-temporal and multi-scale perspectives. It is envisaged that through further development and wider dissemination there will be a stronger uptake across different agencies involved in coastal risk assessment, monitoring and management.

References

Colica, E., D’Amico, S., Iannucci, R., Martino, S., Gauci, A., Galone, L., ... & Paciello, A. (2021). Using unmanned aerial vehicle photogrammetry for digital geological surveys: Case study of Selmun promontory, northern of Malta. Environmental Earth Sciences, 80, 1-14.

Colica, E. (2022). Geophysics and geomatics methods for coastal monitoring and hazard evaluation.

Colica, E., Galone, L., D’Amico, S., Gauci, A., Iannucci, R., Martino, S., ... & Valentino, G. (2023). Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images. Remote Sensing, 15(5), 1465.

How to cite: Colica, E., Fenech, D., Gauci, C., and Buhagiar, G.: Integrating structure-from-motion photogrammetry with 3D webGIS for risk assessment, mapping and monitoring of coastal area changes in the Maltese archipelago, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16939, https://doi.org/10.5194/egusphere-egu24-16939, 2024.

EGU24-17822 | ECS | Posters on site | GM3.1

Evaluating Ordnance Survey sheets (1890s – 1957) for shoreline change analysis in the Maltese Islands  

Daniel Fenech, Jeremie Tranchant, Christopher Gauci, Daniela Ghirxi, Ines Felix-Martins, Emanuele Colica, and George Buhagiar

 

Jeremie' Tranchant1, Daniel Fenech1, Christopher Gauci1, Daniela Ghirxi1, Ines Felix Martins1, Emanuele Colica1, George Buhagiar1

1  Research and Planning Unit, Ministry for Transport, Infrastructure and Public Works, Project House, Triq Francesco    Buonamici, Floriana, FRN1700, Malta

The assessment of coastal erosion through shoreline change analysis, is an exercise of national utility undertaken in many countries. The Maltese Islands are particularly vulnerable to coastal erosion given the economic value of coastal activities and their high ratio of coast-to-land surface. The integration of historical cartographic material is often used to hindcast shoreline change across long periods of time, as well as to model future erosion rates. The Public Works Department have produced detailed 1:2500 maps of Malta in collaboration with the British Ordnance Survey from the end of the 19th century to 1957, however these maps have never been scientifically assessed. The initial research carried out evaluated the usefulness of the two oldest 25-inches Maltese maps series (early 20th century and 1957) for shoreline change analysis.  The two series were digitised, georeferenced, and compared in a GIS environment to assess their differences. The inaccuracies of the original drawings, absent shoreline indicators, and the absence of a geographic coordinate system (datum and projection) were identified as limitations for their use in evaluating small gradual changes, but were ideal for the identification of stochastic, large-scale historic erosion events using difference maps. This assessment showed that the two series are highly congruous and any changes between the two series are largely attributed to changes in infrastructure. There were, however, minor exceptions and these need to be explored on a case-by-case basis. These methods and the insights garnered from their production will function as scientific steppingstones towards developing a holistic coastal erosion national monitoring program.  

How to cite: Fenech, D., Tranchant, J., Gauci, C., Ghirxi, D., Felix-Martins, I., Colica, E., and Buhagiar, G.: Evaluating Ordnance Survey sheets (1890s – 1957) for shoreline change analysis in the Maltese Islands , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17822, https://doi.org/10.5194/egusphere-egu24-17822, 2024.

EGU24-21396 | ECS | Orals | GM3.1

Automatic detection of river bankfull parameters from high density lidar data 

Alexandre Rétat, Nathalie Thommeret, Frédéric Gob, Thomas Depret, Jean-Stéphane Bailly, Laurent Lespez, and Karl Kreutzenberger

The European Water Framework Directive (WFD), adopted in 2000, set out requirements for a
better understanding of aquatic environments and ecosystems. In 2006, following the transposition of
the WFD into French law (LEMA), France began work on a field protocol for the geomorphological
characterization of watercourses, as part of a partnership between the Centre National de la Recherche
Scientifique (CNRS) and the Office Français de la Biodiversité (OFB). This protocol, known as "Carhyce"
(For « River Hydromorphological Caracterisation »), has been tested, strengthened and approved over
the last 15 years at more than 2500 reaches. It consists of collecting standardised qualitative and
quantitative data in the field, essential for the caracterisation of a watercourse: channel geometry,
substrate, riparian vegetation... However, certain rivers that are difficult to survey (too deep or too
wide) pose problems for data collection.
To address these issues, and to extend the analysis to a wider scale (full river section), using
remote sensing, and in particular LiDAR data, was considered. The major advantages of LiDAR over
passive optical sensors are better geometric accuracy and especially under vegetation. For a long time,
LiDAR data rarely exists at national scale with data density similar to passive imagery. Today, the French
LiDAR HD dataset (10 pulses per meter square) program run by the French mapping agency offers an
unprecedented amount of data at this scale. Thanks to them, a national 3D coverage of the ground can
be used, and numerous geomorphological measurements can be carried out on a more or less large
scale. This is the case for hydromorphological parameters such as water level and width.
The aim of this study is therefore to use this high-density lidar to automatically determine the
hydromorphological parameters sought in the Carhyce protocol. In particular, we have developed a
lidar-based algorithm to reconstruct the topography from point cloud and automatically identify the
bankfull level at reach scale. Designed to be applicable to every French river, the method must be
robust to all river features such as longitudinal slope, width, sinuosity, multi-channel etc... For
validation purposes, the bankfull geometry calculated by the algorithm has been compared with field
measurements at some twenty Carhyce stations across France. To determine the test stations, we
looked for the diversity of situations in terms of river characteristics describe above to observed the
influence of this features on the results.

How to cite: Rétat, A., Thommeret, N., Gob, F., Depret, T., Bailly, J.-S., Lespez, L., and Kreutzenberger, K.: Automatic detection of river bankfull parameters from high density lidar data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21396, https://doi.org/10.5194/egusphere-egu24-21396, 2024.

EGU24-22358 | ECS | Orals | GM3.1 | Highlight

UAV’s to monitor the mass balance of glaciers 

Lander Van Tricht, Harry Zekollari, Matthias Huss, Philippe Huybrechts, and Daniel Farinotti

Uncrewed Aerial Vehicles (UAVs) are increasingly employed for glacier monitoring, particularly for small to medium-sized glaciers. The UAVs are mainly used to generate high-resolution Digital Elevation Models (DEMs), delineate glacier areas, determine surface velocities, and map supraglacial features. In this study, we utilise UAVs across various sites in the Alps and the Tien Shan (Central Asia) to monitor the mass balance of glaciers. We present a workflow for calculating the annual geodetic mass balance and obtaining the surface mass balance using the continuity-equation method. Our results demonstrate generally a close alignment between the determined mass balances and those obtained through traditional glaciological methods involving intensive fieldwork. We show that utilising UAV data reveals significantly more spatial details, such as the influence of debris and collapsing ice caves, which are challenging to capture using conventional methods that strongly rely on interpolation and extrapolation. This underscores the UAV's significance as a valuable add-on tool for quantifying annual glacier mass balance and validating glaciological assessments. Drawing on our experience in on-site UAV glacier surveys, we discuss the methodology's advantages, disadvantages, and potential pitfalls. 

How to cite: Van Tricht, L., Zekollari, H., Huss, M., Huybrechts, P., and Farinotti, D.: UAV’s to monitor the mass balance of glaciers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22358, https://doi.org/10.5194/egusphere-egu24-22358, 2024.

EGU24-837 | ECS | Orals | EMRP3.4

Identifying probable signatures of hydrothermal activity from the Carlsberg ridge sediments using rock magnetic properties 

Sambhabana Lenka, Pratima Kessarkar, Lina Fernandes, and Concy Gomes

The Carlsberg Ridge (CR) is a slow-spreading ridge occurs along divergent plate boundary, with the reports of three active and one extinct hydrothermal vent sites. For the present study eight spade cores (SCs) were collected from the CR, of which three are in the vicinity of Tianxiu hydrothermal field and one on the ridge flank. The hydrothermal sites are known to be associated with metalliferous sediments with Fe being the one of the dominant element. We measured rock magnetic properties of sediments that depend on iron bearing minerals, along with X-ray diffractometry (XRD), and microscopic observations to distinguish metalliferous sediments, that may be associated with the active/extinct hydrothermal activity at the CR. Magnetic susceptibility (χlf) of sediments ranges between 1.3 and 37.1 x10-8 m3kg-1. Low χlf signatures suggesting low metalliferous sediments are observed on flank and two cores from the ridge valley indicating, the absence of hydrothermal activity. Whereas sediments closer to the Tianxiu hydrothermal vent field are associated with high χlf, signifying higher metalliferous sediments and are also having high satuaration isothermal remanent magnetization (SIRM), hard isothermal remanent magnetization (HIRM), and low anhysteretic remanent magnetic susceptibility (χARM)/SIRM, coarse stable single domain (SSD)  and fine SSD & mixture grains characteristics. Two more spade cores ~ 250 km south of the Tianxiu vent field also showed similar signatures indicating new active/relict site/sites in the vicinity. Identifying/locating metalliferous hydrothermal sediment/sites along extensive Mid Ocean Ridge (MOR) is expensive and time-consuming; rock magnetic could be a non-destructive method to shortlist the areas for detailed studies.

How to cite: Lenka, S., Kessarkar, P., Fernandes, L., and Gomes, C.: Identifying probable signatures of hydrothermal activity from the Carlsberg ridge sediments using rock magnetic properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-837, https://doi.org/10.5194/egusphere-egu24-837, 2024.

A correlation between Earth’s magnetic field and climate change has been debated for over forty years, despite significant ~100- and ~41-kyr periods in both the stacked relative paleointensity and inclination records. In this paper, we construct a master relative intensity curve (SPIS-150) over the past ~150 kyr by stacking the data from one new core (PC27) with published intensity curves for the northern South China Sea. Additionally, we calculate the Dole effect from the sea surface temperature (SST) and d18O of planktonic foraminifera based on two cores, PC83 and PC27, and use it as a precipitation proxy. The results of this study show that geomagnetic field intensity lows are related to rich rainfall. During the ~23 kyr period, the relative intensity shows in-phase variations with simulating 0-30°N terrestrial precipitation, which shows that the superimposed effect of insolation and geomagnetic fields influences low-latitude precipitation. The strong summer monsoon predominated by insolation carries rich water vapor, which forms low cloud cover under one cloud-formation physical process where the geomagnetic field modulates galactic cosmic rays (GCRs) and leads to aerosol-related cloud condensation nuclei (CCN) formation. Deeper cloud cover produces strong rainfall in low-latitude regions.

How to cite: Yang, X.: Are there any links between geomagnetic field variations and hydrological cycles in the South China Sea since the Late Pleistocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2855, https://doi.org/10.5194/egusphere-egu24-2855, 2024.

EGU24-3158 | ECS | Posters on site | EMRP3.4

Paleomagnetism and calcite U-Pb geochronology from the Penglaitan GSSP section, South China 

Min Zhang, Huafeng Qin, Chenglong Deng, Shu-zhong Shen, and Yongxin Pan

The Guadalupian-Lopingian boundary (GLB) interval is characterized by the Pangea breakup, dramatic sea-level change, Emeishan Basalt volcanism, and biotic turnover. We conducted magnetostratigraphic, mineralogical, and calcite U-Pb geochronological studies at the Penglaitan Global Stratotype Section and Point section in South China. Rock-magnetic results indicate that magnetite and rare hematite are the dominant remanence carriers. After removing the viscous remanent magnetization, three components were isolated from the limestone at the Penglaitan section. The high-temperature remanence components were isolated from the tuffaceous limestone and yielded a mean direction of Ds/Is = 195.3°/+5.6° (α95s = 5.3°, ks = 22.8, n = 34) after tilt correction. It defined a reversed magnetozone from the top of conodont Jinogondolella granti Zone to the lower part of the Clarkina. dukouensis Zone, straddling the GLB. Additionally, intermediate-temperature components represent the Jurassic and Triassic remagnetization, also supported by the in-situ calcite U-Pb dating (~133-166 Ma and ~213-224 Ma), pyrite-to-magnetite alteration, or magnetite oxidization to maghemite and hematite. The new paleomagnetic results and calcite U-Pb dating provide new insights into Mesozoic multi-remagnetization in the South China Block and refine the GLB positioned in a reversed magnetozone.

How to cite: Zhang, M., Qin, H., Deng, C., Shen, S., and Pan, Y.: Paleomagnetism and calcite U-Pb geochronology from the Penglaitan GSSP section, South China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3158, https://doi.org/10.5194/egusphere-egu24-3158, 2024.

Situated along the Adriatic coast of southern Apulia (Italy), Grotta Romanelli (40.02o N, 18.43o E) is a natural coastal cave considered as a key site for understanding the Middle Pleistocene-Holocene geomorphological, palaeoenvironmental and stratigraphic evolution of the Mediterranean area. Its sedimentary fillings, extremely rich in archaeological and palaeontological findings have been long investigated for their stratigraphical and palaeontological aspects while efforts, mainly based on radiocarbon and pollen analyses, have been focused on better understanding their chronological framework. In this study, we propose a new age model based on the palaeomagnetic record of the uppermost Stratigraphical Unit IUS5 of Grotta Romanelli, also known as Terre Brune. Stepwise alternating field demagnetization provided well-defined directions, which were compared with the reference geomagnetic field curves calculated from the SHA.DIF.14k global geomagnetic field model directly at the cave’s geographic coordinates. A continuous age model was determined taking into consideration the principle of stratigraphic superposition. A selection of reliable, previously published, radiocarbon ages from animal teeth, bones and charcoal was also used for comparison. The proposed age-depth model covers the 14ka-8ka BP period, offering new insights on the chronology of the sedimentation and frequentation of the cave before its complete infilling. This chronological frame enables new considerations on the palaeoenvironmental evolution and climate changes that took place during the transition from the Late Pleistocene to the Holocene, and offers new insights on the dating of the Grotta Romanelli fossil remains, human rests and archaeological artifacts, including lithic tools and rock art.

How to cite: Tema, E., Lanci, L., Pieruccini, P., Mazzini, I., and Sardella, R.: Palaeomagnetic dating of the Grotta Romanelli (Apuglia, Italy) upper sedimentary filling: Insights on the Late Pleistocene-Holocene palaeoenvironment and human settings in the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4536, https://doi.org/10.5194/egusphere-egu24-4536, 2024.

EGU24-5396 | Orals | EMRP3.4

Rock magnetic record of environmental changes over the last 40.000 years in the Westermost Mediterranean: the Alboran Sea sedimentary record 

Victor Villasante Marcos, Silvia Beltrán de Heredia García-Nieto, Francisca Martínez Ruiz, Santiago Casanova Arenillas, and Francisco Javier Rodríguez Tovar

We present here a high-resolution rock magnetic study of deep-sea marine sediments from the Alboran Sea (Westernmost Mediterranean). The analyzed sediment  record, core GP03, 889 cm in length, covers the last 40.000 years from upper Pleistocene glacial times through the Last Glacial Maximum, subsequent deglaciation, Younger Dryas cooling reversal and the whole Holocene up to the current Industrial Period. The sediment core was sampled at high resolution, and 379 samples were measured for their bulk magnetic susceptibility, frequency-dependent susceptibility, hysteresis cycles and Isothermal Remanent Magnetization (IRM) direct and reverse acquisition curves. A subset of 125 samples were subjected to thermomagnetic experiments up to 700º C in order to reveal Curie and thermal transformation temperatures and to support the identification of the precise magnetic mineralogy. The variations in the magnetic mineralogy along the analyzed record, together with previously published geochemical data, have allowed to track the main paleoenvironmental and paleoclimatic changes in the studied region over the last 38 ka, as well as documenting a very strong reductive dissolution horizon affecting magnetic phases in the Younger Dryas sediments, which points to a significant deoxygenation event. A strong correlation of magnetic parameters and stadial-interstadial fluctuations during the last glaciation, especially between 25 and 38 ka, is observed, pointing to variations in riverine vs. aeolian terrigenous input. In modern sediments (approximately the last 200 years), a sharp increase in magnetite abundance in the sediments has been recognized, coinciding with the timespan of the Industrial Period. We conducted magnetic extraction to concentrate the ferromagnetic fraction of these sediments, followed by Scanning Electron Microscopy and EDS analysis, and identified strongly ferromagnetic microspherules with textures typical of rapid crystallization from high temperature melts. These microspherules, rich in magnetite, are indistinguishable from typical fly ash magnetic microspherules of industrial origin, which support they are the magnetic fingerprint of anthropogenic industrial ferromagnetic phases in this marine setting that superimposed on the natural paleoenvironmental changes during the uppermost Pleistocene and Holocene.

How to cite: Villasante Marcos, V., Beltrán de Heredia García-Nieto, S., Martínez Ruiz, F., Casanova Arenillas, S., and Rodríguez Tovar, F. J.: Rock magnetic record of environmental changes over the last 40.000 years in the Westermost Mediterranean: the Alboran Sea sedimentary record, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5396, https://doi.org/10.5194/egusphere-egu24-5396, 2024.

EGU24-5451 | ECS | Posters on site | EMRP3.4

Time-series analysis of rock magnetic data from sediments spanning the last 40.000 years in the Western Mediterranean: strong paleoenvironmental cyclicities during the last glaciation 

Silvia Beltrán de Heredia García-Nieto, Víctor Villasante Marcos, Francisca Martínez Ruiz, Santiago Casanova Arenillas, and Francisco Javier Rodríguez Tovar

Time-series analysis of high-resolution rock magnetic data from deep-sea marine sediments (piston core GP03, Alboran Sea, Westernmost Mediterranean), spanning the last 40.000 years, has been performed to reveal paleoenvironmental cyclicities and climate variability in this region during the uppermost Pleistocene and Holocene. We have applied both the classical Fast Fourier Transform (FFT), after regularizing our data by linear interpolation, and the Lomb-Scargle periodogram, which is well suited to analyze non-regular time series, as is the case. In addition to the usual Lomb-Scargle periodogram, we have also tested a modification of the periodogram that takes into account the experimental errors of the analyzed parameters. Also, in addition to the power spectrum and its peak spectral frequencies/periods, we have computed the Achieved Confidence Level (or false positive rate) of the different spectral peaks by a Monte Carlo evaluation of the permutation test, restricting our further analysis to those spectral peaks with Achieved Confidence Levels greater than 95%. The obtained results through these different approaches show a high degree of coherency, proving the reliability not only of the methods, but also of the modifications introduced and of the obtained results. Our results highlight the presence of characteristic cyclicities with periods in the range of 1600-4500 years during the last glaciation, especially between 25 and 38 ka. The most intense spectral peak has a period around 2 ka, which is consistent with the characteristic periods of Dansgaard-Oeschger (D-O) climate fluctuations. This strong 2 ka signal is clearly arising from the observed match between high magnetic susceptibility and saturation remanent magnetization values with D-O warm phases (interstadials). These relative maxima in magnetic mineral abundance are correlated with high S-ratio values, pointing to an increase in magnetite vs. hematite abundance in the sediments. Conversely, cold D-O phases (stadials) seem to be related to low susceptibility, low saturation remanence and lower S-ratio, indicating a decrease in the contribution of low coercivity phases (like magnetite) and an increase in the relative importance of high coercivity phases like hematite. We suggest this is connected with variations in the relative importance of riverine vs. aeolian terrigenous input. In contrast, Holocene rock magnetic data do not show this 2 ka peak, but instead cyclicities with periods around 2800, 3800 and 5500 years are recognized. To our knowledge, this is the first report of such a remarkable relationship between marine sedimentary rock magnetic data and paleoclimatic cyclicities in the frequency range of the Dansgaard-Oeschger or stadial-interstadial events in the Western Mediterranean over the last glaciation, pointing to the interest of further rock magnetic studies.

How to cite: Beltrán de Heredia García-Nieto, S., Villasante Marcos, V., Martínez Ruiz, F., Casanova Arenillas, S., and Rodríguez Tovar, F. J.: Time-series analysis of rock magnetic data from sediments spanning the last 40.000 years in the Western Mediterranean: strong paleoenvironmental cyclicities during the last glaciation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5451, https://doi.org/10.5194/egusphere-egu24-5451, 2024.

The hidden link between the geomagnetic field and climate is gradually being noted for its unexpected consistency. However, the unclear linking mechanisms and questions regarding whether geomagnetic reconstructions entirely exclude climatic influences have sparked controversy surrounding this relationship. Here, we analyze a high-resolution geomagnetic paleosecular variation record since 30 ka in the northern South China Sea and find a good correlation between its climate-independent inclination record with the regional temperature and precipitation.

The studied core, SCS-5, was obtained from the northern South China Sea (21.21°N, 118.04°E) at a water depth of 1600 m, twenty AMS 14C ages were used to establish the age framework since ~30 ka, with an overall sedimentation rate exceeding 30cm/kyr. Detailed rock magnetic and environmental magnetic analysis determined that the sedimentary environment of the core is stable and homogeneous. Reliable characteristic remanent magnetization directions are established, with all the maximum angular deviations less than 3. The inclination has fluctuated considerably over the last 30 ka period, but is more moderate during 20-10 ka. Reconstructed paleointensity shows an overall upward trend except for a slight decrease during 15-12 ka, with several significant shallowing of the inclination corresponding to the low values of the field intensity, which may be related to the role of geomagnetic reverse flux patches.

Comparing the local precipitation δ18Osw local record of the core and the paleotemperature record from South China, we observe that as the geomagnetic field strength decreases with shallower inclination, regional precipitation increases significantly, while the land temperature decreases. We hypothesize that the decline in geomagnetic strength may have regulated the regional hydroclimate through the mediation of cosmic rays, aerosols, and cloud cover. The weakening field could have induced increased cloudiness, leading to a parasol effect and greater precipitation. Additionally, the correlation between rainfall and the geomagnetic field is evident throughout the Late Pleistocene-Holocene, whereas the relationship between temperature and the geomagnetic field is more pronounced in the Holocene. It suggests that the forcing mechanism of the geomagnetic field on climate change is complex and nonlinear, which may differ in glacial and interglacial periods due to low-latitude processes or other forcing mechanisms.

How to cite: Wu, S. and Yang, X.: Unveiling the Covert Linkage Between Geomagnetic Dynamics and Climate in the Northern South China Sea Over the Last 30 ka, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5734, https://doi.org/10.5194/egusphere-egu24-5734, 2024.

EGU24-5780 | Posters on site | EMRP3.4

Rock magnetic anomaly caused by the pyritization linking to the gas hydrate dissociation off SW Taiwan 

Yin-Sheng Huang, Chorng-Shern Horng, Chih-Chieh Su, Shu-Kun Hsu, Wen-Bin Doo, and Jing-Yi Lin

      In the study, we present the rock magnetic property from three sediment cores collected by the R/V Marion Dufresne (MD) during the cruise MD214 off SW Taiwan, and two of these cores, MD18-3542 and MS18-3543, have collected shallow hydrate samples. Core site MD18-3542 is on the South Yuan-An East Ridge, where an unconformity covered by fine-silt sediments lies at ~5.5 m below the seafloor, and the core site MD18-3543 is close to the Good-Weather Ridge with a gas-related pockmark and authigenic carbonates near shallow strata. The other core MD18-3548 was obtained at a basin with relatively stable deposition settings to get the background information. Rock magnetic measurements, including magnetic susceptibility (MS) and hysteresis parameters, are used to describe the downcore variations of the magnetic features, while the Day Plot and XRD analysis are applied to classify and identify the dominance of core magnetic components. Both cores MD18-3542 and MD18-3543 show the attractive anomaly with dramatic value-drop in the records of MS and hysteresis parameters, and the feature looks absent in the core MD18-3548. Such signature may link to the pyritization caused by the gas hydrate dissociation. The dissociated methane with hydrogen sulfide trapped under the structures (an unconformity at site MD18-3542 and authigenic carbonates at site MD18-3543) would form an anoxic setting and activate the pyritization at shallow layers. Detrital magnetite would be gradually turned into authigenic iron sulfides, and thus could cause the attractive anomaly in the MS and hysteresis records.

How to cite: Huang, Y.-S., Horng, C.-S., Su, C.-C., Hsu, S.-K., Doo, W.-B., and Lin, J.-Y.: Rock magnetic anomaly caused by the pyritization linking to the gas hydrate dissociation off SW Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5780, https://doi.org/10.5194/egusphere-egu24-5780, 2024.

EGU24-7855 | ECS | Orals | EMRP3.4

A new protocol for fingerprinting cultural ochre sources using mineral magnetism 

Maddison Crombie, Agathe Lise-Pronovost, Marcus Giansiracusa, Colette Boskovic, Amy Roberts, n/a River Murray and Mallee Aboriginal Corporation, and Rachel Popelka-Filcoff

Provenance studies in ochre research are used to characterise the “fingerprint” of different ochre sources, providing the opportunity to trace the cultural movement of ochre in the archaeological past. Ochre pigment composition, and therefore the “fingerprint”, often varies between sites leading to source discrimination, but in many cases the composition can also vary within a site, and therefore presents an analytical challenge to develop methods that can differentiate this “fingerprint”. This work presents a novel protocol for the analysis of iron-based archaeological ochres from known sources within Australia and Kenya using geological mineral magnetism methods to disentangle complex mineral assemblages1. Magnetic properties have been largely unexplored as a tool for ochre provenance. However, the use of measurements such as room temperature – saturation isothermal remnant magnetisation (RT-SIRM), Hysteresis loops and zero field cooled, field cooled (ZFC-FC) allow for the identification of different magnetic minerals in the ochre samples, which can, in turn, be used to fingerprint ochre sources. This approach works towards understanding (1) the variation within and between sites and how this may differ based on source geologies and (2) the larger goal of tracing the movement of ochre from their sources to archaeological contexts and related ochre cultural exchange.

(1) Lagroix, F.; Guyodo, Y. A new tool for separating the magnetic mineralogy of complex mineral assemblages from low temperature magnetic behavior. Frontiers in Earth Science 2017, 5, 61.

How to cite: Crombie, M., Lise-Pronovost, A., Giansiracusa, M., Boskovic, C., Roberts, A., River Murray and Mallee Aboriginal Corporation, N., and Popelka-Filcoff, R.: A new protocol for fingerprinting cultural ochre sources using mineral magnetism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7855, https://doi.org/10.5194/egusphere-egu24-7855, 2024.

EGU24-10469 | ECS | Orals | EMRP3.4

Magnetobiochronology of the Izaga section (South Pyrenean foreland basin) and its chronological implications: searching for a potential candidate for the Bartonian GSSP 

Pablo Sierra-Campos, Pablo Calvín, Gilen Bernaola, Manuel Montes, Aránzazu Luzón, José Ignacio Pérez-Landazábal, Cristina Gómez-Polo, Aitor Payros, Maria Pilar Mata, Eva Bellido, Emilio L. Pueyo, and Juan C. Larrasoaña

Here we introduce a new magnetobiostratigraphic section in the Jaca-Pamplona Basin, the Izaga section, which was studied in order to shed light on the chronology of the Lutetian/Bartonian boundary and the possibility of proposing it to host the Bartonian Global Stratotype Section and Point (GSSP). The Izaga section is located in the northern limb of the eastern termination of the Izaga syncline (South Pyrenean foreland basin) and is composed by a total of 1116 m of marine sediments that include the uppermost 450 m of the Jaca Turbidites and ~660 m of the prodeltaic marls of the Larrés (500 m), Urroz (110 m) and Pamplona (56 m) Formations. The uppermost Jaca Turbidites include the youngest South Pyrenean Eocene Carbonate Megabreccia (SPECM) identified in the basin to date, and the uppermost part of the Larrés Formation hosts ferroan dolomitic nodules whose formation can be linked to early diagenetic methanogenesis. Previously published biostratigraphic data based on planktic foraminifers broadly place the Lutetian/Bartonian boundary within the middle part of the Larrés Formation. A total of 173 magnetostratigraphic sites were sampled throughout the succession with an average 6.5 m spacing. Thermal demagnetization reveals the presence of two stable components: 1) a low temperature component that is identified <250ºC and is interpreted as present-day field overprint; and 2) a high-temperature component, that unblocks from 250-300ºC up to 425ºC and is identified as the ChRM. Paleo- and rock-magnetic data point to the dominant contribution of magnetite to the ChRM, although an additional drop in NRM intensity between 300-350ºC suggests the additional contribution by magnetic iron sulphides. To avoid problems with a likely diagenetic origin of magnetic iron sulphides, we established the polarity sequence of the Izaga section by using only ChRM directions associated to magnetite. The local polarity sequence comprises a normal (N1) magnetozone in the uppermost 286 m of the section and a reverse (R1) one spanning its remaining middle and lower parts. The analysis of calcareous nannofossil aseemblages allow the identification of zones CNE14 and CNE15 in the lower/middle and upper part of the succession, respectively. Overall, these new results enable the correlation of R1 and N1 with chrons C18r and C18n.2n, respectively. We have found no evidence for the presence of chron C19n, the proposed marker for the Lutetian/Bartonian boundary, within R1, which indicates that the whole studied section was deposited during the Bartonian and, therefore, has no bearings on the definition of the Bartonian GSSP. Our results also indicate: 1) that sedimentation rates (of >80 cm/kyr) in the South Pyrenean foreland basin increased towards the west; 2) that the SPECM found within the Jaca Turbidites extend the processes of SPECM formation well into the Bartonian; and 3) that the ferroan dolomitic nodules found in the uppermost part of the Larrés Formation can be considered as the sedimentological expression of the Middle Eocene Climate Optimum (MECO) in the basin.

How to cite: Sierra-Campos, P., Calvín, P., Bernaola, G., Montes, M., Luzón, A., Pérez-Landazábal, J. I., Gómez-Polo, C., Payros, A., Mata, M. P., Bellido, E., Pueyo, E. L., and Larrasoaña, J. C.: Magnetobiochronology of the Izaga section (South Pyrenean foreland basin) and its chronological implications: searching for a potential candidate for the Bartonian GSSP, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10469, https://doi.org/10.5194/egusphere-egu24-10469, 2024.

EGU24-13888 | ECS | Posters on site | EMRP3.4

Rock Magnetic and Mineralogical Analysis of IODP Expeditions 390 and 393 Basement Cores and their Implications for Fluid-Rock Interaction along the Mid-Atlantic Ridge Flank   

Gilbert Hong and Sang-Mook Lee and the The South Atlantic Transect IODP Expedition 390 & 393 Scientists

During the International Ocean Drilling Program (IODP) expeditions 390 and 393 - also referred to as the South Atlantic Transect (SAT), basement cores have been drilled from a total of 6 holes which penetrates around 150 – 300 meters of the uppermost South Atlantic seafloor. The cores mainly consist of basalts of varying age (~7 to 61 Ma) and alteration states. Some intervals of sedimentary breccia were found in older cores as well. Analyzing how these rocks have been altered and characterizing it based on age and depth are crucial to understanding how the oceanic crust along the South Atlantic has evolved throughout spreading and how fluid-rock interaction has influenced the process. Magnetic minerals can be a useful proxy of such alteration as its effects can be observed in both rock magnetism and mineralogy.   

In this study, we observed the composition and microstructure of magnetic minerals within basaltic samples of varying alteration degrees using a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS). These observations were then compared with shipboard rock magnetic data to determine which property shows correlation with the mineralogical characteristics. Magnetic minerals within the SAT basalt samples are mostly titanomaghemites with Fe content of 20 – 36 at% and Ti content of 5 – 13 at%. Ti content is generally lower in more altered samples, with some highly oxidized samples showing very low percentage (< 3 at%). In addition, heavily altered samples show smaller (< 3 μm) and elongated magnetic mineral grains. Such mineralogical properties show correlation with key rock magnetic properties such as magnetic susceptibility and coercivity of remanence (Bcr). It is also notable that samples with high alteration degree also show reversals in remanence directions caused by strong secondary magnetization that persists after 20 mT demagnetization. This finding implies that production of secondary magnetic minerals may have occurred along with the oxidation of existing grains during the alteration of basalts.

How to cite: Hong, G. and Lee, S.-M. and the The South Atlantic Transect IODP Expedition 390 & 393 Scientists: Rock Magnetic and Mineralogical Analysis of IODP Expeditions 390 and 393 Basement Cores and their Implications for Fluid-Rock Interaction along the Mid-Atlantic Ridge Flank  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13888, https://doi.org/10.5194/egusphere-egu24-13888, 2024.

Loess paleosol sequences carry valuable information on global climate change during the Quaternary. The main geochemical paleoenvironmental proxies rely on the well established sequence of mineral weathering and its products under earth surface conditions. On the other hand, mineral magnetic signal of the loess – paleosol sequences represent easily measurable and sensitive tool for identification and semi-quantification of the degree of secondary alterations of the initial loess substrate. We have analyzed geochemical and magnetic properties of a collection of loess – paleosol sediments from North Bulgaria from 8 profiles, spanning the time interval of the last 800 kyrs. Weathering indices calculated from the bulk geochemical data on major oxides indicate that loess samples are characterized by wide range of Chemical Index of Alteration (CIA) values – from 57.8 to 83.5 with the highest values typically obtained in the oldest deposits, formed during marine oxygen isotope stages (MIS) 16 and 18.  On the other hand, CIA values for paleosols are restricted in the range 73.4 – 82, indicating an intermediate weathering degree. Classic ternary A-CN-K diagram implies dominant role of plagioclase weathering. Magnetic signature of the studied collection shows typical widely observed magnetic enhancement in paleosols as compared to weakly magnetic non weathered loess material. The content of ultra fine grained superparamagnetic magnetite/maghemite give rise to the percent frequency dependent magnetic susceptibility, which shows linear relationship with CIA values, proving the genetic linkage between weathering and pedogenic magnetic fraction. On the other hand, calculated background magnetic susceptibilities χbg for the loess-paleosol couplets included in the study show reverse linear relationship with CIA values for the loess samples. Searching for possible effect of changing dust source areas, we observe decreasing χbg for sites located progressively eastward (longitudes varying from 23oE to 29oE) along with linear increase of χbg with increasing Cr/V ratio, indicative for increasing contribution of mafic component. At the same time, samples from loess horizons with the lowest χbg are characterized by the highest Al2O3/SiO2 values, e.g clay content. Thus, decreasing χbg along W – E transect probably reflects combined effects of dust source change and grain size fining during aeolian dust transportation. The relationships between CIA, χbg and pedogenic magnetic signatures suggest that aeolian dust material was already weathered before its deposition. As a result, the following periods of paleosol formation during interglacial epochs occurred under supply – limited weathering regimes.

This contribution is supported by project No KP-06-H34/2 of the Bulgarian National Science Fund

How to cite: Jordanova, D. and Jordanova, N.: Effects of dust source change, weathering and pedogenesis on loess sediments revealed by combined magnetic and geochemical studies – opportunities and challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14612, https://doi.org/10.5194/egusphere-egu24-14612, 2024.

EGU24-15097 | ECS | Posters on site | EMRP3.4

Rock Magnetic Studies of The Early Jurassic Middle Eocene Volcanic and Sedimentary Rocks of the Eastern Pontides 

Bahadırhan Sefa Algur, Sercan Kayın, Abdurrahman Dokuz, Z. Mümtaz Hisarlı, and Turgay İşseven

In this research, we revealed the findings from rock magnetic analyses, including Isothermal Remanent Magnetization (IRM) and High-Temperature Susceptibility (HTS), conducted on various volcanic and sedimentary rocks from the Early Jurassic – Middle Eocene located in the Eastern Pontides. These magnetic studies offer valuable insights into the minerals causing magnetization, as well as the composition and changes in magnetic minerals within these rocks. The experiments were carried out at the Doç.Dr. Yılmaz İspir Paleomagnetism Laboratory, Istanbul University-Cerrahpaşa.

For the Isothermal Remanent Magnetization (IRM) studies, samples were collected from 57 sites in the Eastern Pontides, ensuring representation of each rock type. The analysis revealed that “Hematite”, “Magnetite”, and a combination of “Hematite + Magnetite” are the minerals responsible for magnetization in the selected samples. Moreover, it was discovered that in 41 out of the 57 sites, the samples reached saturation magnetization, indicating that "Magnetite" is the predominant mineral responsible for magnetization. The magnetic susceptibility of the rocks was examined during the heating and cooling stages in these high-temperature susceptibility measurements. High-temperature susceptibility measurements were used to assess whether the minerals responsible for magnetization in the rocks underwent any changes due to temperature, to determine the Curie temperatures, and to understand the domain structure. For this aspect of the study, 23 sites representing various ages and types of rocks were chosen for high-temperature susceptibility studies. It can be said that some rocks are rich in "Ti-Magnetite". It is observed that mineral phase transformation occurs in some rocks as a result of heating phases.

This study was supported by the project of the Scientific Research Projects Commission of Gümüşhane University with Project Number: 21.B0126.01.01.

How to cite: Algur, B. S., Kayın, S., Dokuz, A., Hisarlı, Z. M., and İşseven, T.: Rock Magnetic Studies of The Early Jurassic Middle Eocene Volcanic and Sedimentary Rocks of the Eastern Pontides, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15097, https://doi.org/10.5194/egusphere-egu24-15097, 2024.

The East Asian Winter Monsoon (EAWM) is driven by the dry and cold north-westerly winds blowing from central Asia towards the Western Pacific Ocean as atmospheric high-pressure cell develops over Siberia and Mongolia due to low continental temperatures during boreal winter. Today, the EAWM surface winds together with the prevailing mid-latitude upper troposphere westerly jet (WJ) winds transport hundreds of millions of tons of dust every year across East Asia and/or to the North Pacific and further. Various records of past EAWM and/or WJ variability are available but well-resolved records with (sub)orbital resolution to investigate the dynamics of and relationships between EAWM and WJ are rare. The Japan Sea, as the largest marginal sea located in mid-latitude East Asia, is significantly under the influence of the EAWM and WJ. Previous studies suggest that the composition, concentration, and size of magnetic particles in sediments are sensitive to changes in aeolian dust input. Here, we study the magnetic mineralogy and reconstruct high-resolution continuous environmental magnetic records spanning the last 500 kyrs using sediments cored during Integrated Ocean Drilling Program (IODP) Expedition 346 (Asian Monsoon) at Site U1424 in the Japan Sea. Our results suggest that magnetite is the dominant magnetic phase at Site U1424 and there is a significantly increased contribution of high-coercivity magnetic phase, presumably hematite transported through aeolian dust, in samples from glacial periods. Magnetic grain size proxy (kARM/k) of Site U1424 sediments appears to covary with the population of coarse particles (> ~14 μm) that are dominated by aeolian dust, and shows a striking similarity to published EAWM records, especially during the interglacials and glacial inceptions. During the glacial maxima, largely enhanced EAWM indicated by published records are, however, not shown in the Site U1424 kARM/k record. We suggest that Site U1424 kARM/k is a proxy for dust transportation to the Japan Sea modulated by EAWM intensity as well as interactions between EAWM and the WJ. During the interglacials and glacial inceptions when the main axis of WJ frequently reaches Northern China close to the dust source region of the EAWM, interactions between the EAWM and WJ during winter/spring at mid-level troposphere enable long-distance transportation of coarse dust particles (mainly modulated by EAWM) to the Japan Sea. During the glacial maxima, when the WJ main axis no longer frequently reaches the EAWM source regions, reduced interaction between WJ and EAWM prevented long-distance transportation of coarse dust particles. A conceptual model is also presented to summarise the consequences of changes in EAWM and WJ and their interactions over glacial and interglacial cycles at different locations along the Asian dust transportation pathway.

How to cite: Wang, J., Xuan, C., and Wilson, P.: East Asian winter monsoon variability during the last 500 thousand years recorded by environmental magnetism of sediments in the Japan Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19484, https://doi.org/10.5194/egusphere-egu24-19484, 2024.

EGU24-19599 | ECS | Posters on site | EMRP3.4

Preliminary results of paleomagnetism, rock magnetism and AMS in a soot-layered speleothem from Cueva Mayor (Atapuerca, Spain) 

Elisa María Sánchez-Moreno, Eneko Iriarte, Manuel Calvo-Rathert, Eric Font, Maria-Felicidad Bógalo, and Ángel Carrancho

Speleothem are excellent recorders of the Earth’s magnetic field and climate variation. The nature and origin of the magnetic minerals trapped into the calcite laminae are controlled by climate and environmental processes acting on the surface soils and inside the cave.

In this work, we analysed samples from a stalagmite from Cueva Mayor in the archaeological site of Atapuerca (Burgos, Spain). Cueva Mayor site hosts a very important record of Pleistocene human occupation. Finding speleothems that record signs of human activity is unusual. However, in the karst system of the Sierra de Atapuerca, different works on speleothems revealed a significant human fossil record. The stalagmite studied has a small size, the sampled section measures 10 cm from base to top and is not oriented. It shows a calcite laminae alternation with darker micritic and/or ash-rich laminae, composed of aggregates of soot/smoke in the last 2.7 cm to the top. These black soot laminae are interpreted as derived from anthropogenic fires. The remaining part the stalagmite is a sequence of whitish and brownish laminae. A high detrital fraction is inferred from the brown layers. Available U-Th age data on a nearby stalagmite indicate that they grew during the last 14 kyr approximately.

In order to characterize the magnetic properties in a stalagmite of special interest considering its record of human activity, we have carried out experiments on paleomagnetism, rock magnetism, and anisotropy of magnetic susceptibility. We obtained paleomagnetic directions for most samples of calcite laminae with high detrital content and laminae with soot by alternating field demagnetization. Isothermal remanent magnetization acquisition curves of and hysteresis cycles show the presence of low coercivity ferromagnetic minerals in the soot-bearing samples, while the magnetization intensity in the rest of the samples is too weak to show clear results. The thermomagnetic curves reveal magnetite in both brownish-white and soot-containing samples. Other very low Curie temperature magnetic phases also appear in the soot samples. Finally, AMS shows a triaxial magnetic fabric with magnetic foliation pseudo-parallel to the calcite lamellae and horizontal lineation.

Acknowledgments: This work was funded by the Agencia Estatal de Investigación (España) (PID2019-105796GB-100), the postdoctoral program María Zambrano 2021 (España), the Junta de Castilla y León (España) (project BU037P23) and the Fundação para a Ciência e a Tecnologia (Portugal) (PTDC/CTA-GEO/0125/2021).

How to cite: Sánchez-Moreno, E. M., Iriarte, E., Calvo-Rathert, M., Font, E., Bógalo, M.-F., and Carrancho, Á.: Preliminary results of paleomagnetism, rock magnetism and AMS in a soot-layered speleothem from Cueva Mayor (Atapuerca, Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19599, https://doi.org/10.5194/egusphere-egu24-19599, 2024.

EGU24-20050 | ECS | Posters on site | EMRP3.4

Magnetic response of marine sediments to climate variations over the last 40 ka in the western equatorial Pacific. 

Louise Dauchy-Tric, Julie Carlut, Franck Bassinot, Laure Meynadier, and Jean-Pierre Valet

Magnetic properties from marine sediment cores, combined with other proxies, make it possible to study climatic variations. The type, concentration and grain size of magnetic minerals can be used as proxies of precipitation and deep oceanic circulation changes.  

In this study, we focus on core MD01-2385 retrieved on the northwest margin of Papua-New Guinea, in the western equatorial Pacific Ocean. This area is located in the Indo-Pacific Warm Pool (IPWP), which is a major source of heat and moisture to the atmosphere and plays an important role on global climate. The western Indo-Pacific climate is complex, being affected by the El Nino-Southern Oscillation (ENSO) and the Australian-Indonesian monsoon.

 

Core MD01-2385 was dated using 14C. The studied interval covers the last 40 ka with an average sedimentation rate of 30 cm/ka. We took samples every 2 cm (time resolution ~ 70 years). Magnetic granulometry proxies (ARM/SIRM and Karm/K) show a gradual decrease in grain size from the last glacial-interglacial transition (~17 ka) before a stabilization with fine grains from 8 ka. The records show variations associated with Heinrich events and the Younger Dryas. In the ~40 to 13 ka interval, the ARM/SIRM ratio is correlated with the d18O curve from EPICA-EDML ice cores (Antartica), whereas over the last 13 ka the ARM/SIRM ratio appears correlated to d18O curve of the NGRIP ice cores (Greenland).This observation suggests a stronger climatic influence of the Southern Hemisphere than the Northern Hemisphere in this region from 40 to 13 ka, followed since 13 ka by a period in which remote climatic influences originate from northern high latitudes.

Our magnetic results were combined with geochemical analyses carried out by Yu et al. (2023) on the same core (Rb/Sr ratio, chemical index of alteration (CIA), and the smectite/(illite + chlorite) ratio). These data indicate that heinrichs events (HS) are associated, in this region, with lower precipitation (Yu et al., 2023) and also correspond to lower magnetic concentrations, suggesting a dominant physical weathering in northwest Papua-New Guinea.

An interval with coarse magnetic grains and glass shards was dated at ~ 25 ka, suggesting the recording of a volcanic eruption during HS2. It could be the Oruanui supereruption from Taupo volcano, in New Zealand, dated at ~25.5 ka.

How to cite: Dauchy-Tric, L., Carlut, J., Bassinot, F., Meynadier, L., and Valet, J.-P.: Magnetic response of marine sediments to climate variations over the last 40 ka in the western equatorial Pacific., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20050, https://doi.org/10.5194/egusphere-egu24-20050, 2024.

EGU24-20274 | Posters on site | EMRP3.4

Selective transport and deposition of magnetic particles during speleothem growth 

Eric Font, Ana Raquel Brás, Joshua Feinberg, Ramon Egli, Ana Sofia Reboleira, Rui Melo, and Paulo Fonseca

During the last decades, advances in the field of speleothem’s magnetism opened a new door to investigate high-resolution and short-lived features of the Earth’s magnetic field. Due to the rapid precipitation of calcite/aragonite, the lock-in time of the detrital remanent magnetization resulting from the physical alignment of the magnetic minerals parallel to the Earth’s magnetic field is acquired almost instantaneously. The magnetic particles trapped into the speleothem usually originate from the soils capping the cave and are transported into the cave by dripwaters. Authigenic magnetic particles may also precipitate under conditions likely to prevail during speleothem growth. Here we investigate the magnetic mineralogy of a stalagmite from the Gruta da Ceramica of Central Portugal. We also analyzed the host carbonate, the cave sediments and the soils capping the cave. We measured concentration- and grainsize-dependent magnetic proxies, including natural remanent magnetization, anhysteretic remanent magnetization, isothermal remanent magnetization, mass specific magnetic susceptibility, FORC and hysteresis curves.  Results show that magnetic and hematite are the main magnetic carriers in all samples. A gradual enrichment of hematite relative to magnetite is observed following the transportation path from the soils to the cave sediments up to the stalagmite. The higher contribution of hematite relative to magnetite in the speleothem may reflect precipitation of authentic hematite during speleothem growth or the selective transport of finer particles from the soil to the cave.  

 

Acknowledgments: This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (refs. PTDC/CTA-GEO/0125/2021), (PIDDAC) – UIDB/50019/2020, UIDP/50019/2020 and LA/P/0068/2020

How to cite: Font, E., Brás, A. R., Feinberg, J., Egli, R., Reboleira, A. S., Melo, R., and Fonseca, P.: Selective transport and deposition of magnetic particles during speleothem growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20274, https://doi.org/10.5194/egusphere-egu24-20274, 2024.

EGU24-344 | ECS | Posters on site | CL1.1.5

Paleoenvironmental and paleoecological changes during the early GABI in the Argentine Pampas: a stable isotope approach 

Dánae Sanz Pérez, Claudia I. Montalvo, Adriana E. Mehl, Rodrigo L. Tomassini, Manuel Hernández Fernández, and Laura Domingo

The analysis of stable isotopes in fossil mammals is a powerful tool to reconstruct paleoenvironmental and paleoecological conditions. Nevertheless, there are few works of this type focused on the Neogene of South America, specifically, on the Argentine Pampas. In this context, we perform an integrative approach for the Late Miocene-Early Pliocene of this region combining new U-Pb zircon dating and carbon and oxygen stable isotope analysis, to contextualize the paleoenvironmental and paleoecological evolution of the region. The δ13C values are used to reconstruct the diets and preferred habitats of the taxa, while changes in the δ18O values of animals forced to drink reflect variations in δ18O of meteoric water, controlled by temperature and evaporation rate. We selected a total of 270 bioapatite samples of δ13CCO3 and δ18OCO3 from eight localities of La Pampa and Buenos Aires provinces. Radioisotopic ages for six of them allowed us to pin down maximum deposition ages and a time interval of ca. 5 million years for our study (from 9.7±0.3 Ma at Arroyo Chasicó to 4.5±0.2 Ma at Farola Monte Hermoso), including the Chasicoan, Huayquerian, and Montehermosan stages/ages. We studied genera of Litopterna, Notoungulata, Rodentia, Pilosa, and Cingulata orders. During the Chasicoan Stage/Age, herbivore δ13C values point to mixed C3–C4 diets, evidencing the existence of favorable habitats for C4 plants before their great expansion. By contrast, during the Huayquerian Stage/Age, taxa show values indicative of feeding preferentially on C3 plants, except for some rodents that continued including C4 plants in their diets (possibly related to an early specialization of this group). In the latest Huayquerian-Montehermosan stages/ages, herbivorous taxa incorporated a higher percentage of C4 plants in their diets, coinciding with the global expansion of this type of vegetation. This change in δ13C values also reflects an increase in aridity and/or temperature since the Late Miocene-Early Pliocene in the area, coincident with results of other proxies. The δ18O values of the notoungulates support these interpretations, evidenced by higher δ18O values during the Chasicoan and latest Huayquerian–Montehermosan stages/ages; on the contrary, there is no trend recorded in litopterns, while only a slight decrease in δ18O values was obtained in rodents. These differences are possibly linked to the fact that each order records conditions at different scales; litopterns might register global hydrological conditions, notoungulates regional conditions, and rodents more local conditions. In addition, the difference with rodents is probably due to the fact that they obtained part of the water to cover their physiological needs by eating, in contrast to the notoungulates which needed to drink to meet these requirements.

This study was financed by the projects: PGC2018–094955–A–I00 and PID2022-138275NB-I00 (Ministerio de Ciencia e Innovación, Spain), 13G and 21G (FCEyN, UNLPam, Argentina), PGI 24 H/154 (Secretaría de Ciencia y Tecnología, UNS, Argentina). DSP acknowledges a predoctoral grant PRE2019–089848 and AEM and RLT funding from LA. TE. Andes – CONICET (2020-2021). This is a contribution of the research group UCM 910607 on Evolution of Cenozoic Mammals and Continental Palaeoenvironments.

How to cite: Sanz Pérez, D., Montalvo, C. I., Mehl, A. E., Tomassini, R. L., Hernández Fernández, M., and Domingo, L.: Paleoenvironmental and paleoecological changes during the early GABI in the Argentine Pampas: a stable isotope approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-344, https://doi.org/10.5194/egusphere-egu24-344, 2024.

This study examines marine sediment samples from Ocean Drilling Program Site 1195, Hole B (Lat 20°24.28'S; Long 152°40.24'E; water depth 420 m), located beneath the present-day pathway of the East Australian Current (EAC) on the shelf of Northeast Australia. The EAC represents the western boundary current of the South Pacific subtropical gyre. It originates from the bifurcation of the southern arm of the South Equatorial Current between 15°S and 20°S. The East Australian Current's evolution is linked to the tectonic reorganization of the Indonesian Gateway and the expansion of the West Pacific Warm Pool over geological time. Our analysis of foraminiferal relative abundance data revealed the existence of high surface productivity and reduced subsurface productivity during the 7.5–6.4 Ma Our findings suggest that the northward movement of Papua New Guinea may have commenced after 6.4 Ma, inferred from the consistent thinning of the mixed layer and shallowing of the thermocline. This aligns with the hypothesis proposing the formation of the New Guinea Coastal Undercurrent, potentially caused by the entrapment of a significant portion of the South Equatorial Current against the Papua boundaries, directing it northward. Additionally, we observe a significant decline in the relative abundance of Globigerinoides ruber and a shoaling of the thermocline during the Mid-Pleistocene Transition, coinciding with high surface productivity.

How to cite: Palei, R. R. and Gupta, A.: Paleoceanographic reconstruction of the NE shelf of Australia: Insights from surface and subsurface dynamics of the East Australian Current, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-462, https://doi.org/10.5194/egusphere-egu24-462, 2024.

Given its stance as the harbinger of modern-day climatic conditions 1, the Miocene epoch (23.03 – 5.33 Ma) is perhaps, climatologically, the most important epoch in the Cenozoic era. Within this epoch, the Middle to Late Miocene transition offers a time window to study the effects of plummeting atmospheric CO2 levels and consequent global cooling on ecosystems. Currently, we are witnessing a reversal of this scenario, namely global warming, which makes studying this transition crucial for verifying the model predictions regarding the future of our ecosystems. Herein, such a study documenting the paleoclimatic record preserved in the fossiliferous section of the Kutch region (India), a hitherto unexplored area, is presented. It spans two localities: Palasava (~14 Ma) & Tappar (~10 Ma), one each from the Middle and Late Miocene sub-epoch and utilises the carbonate phase from enamel remains of megafaunal herbivore mammals (Proboscideans & Rhinocerotids) as the investigatory tool. Enamel δ13C signature is indicative of ambient vegetation type due to the differential assimilation of C isotopes in diet plant tissue as a function of different carbon fixing mechanisms in C3 and C4 plants 2. δ18O signal, on the other hand, is reflective of the environmental rainfall intensity and seasonality because the rainfall isotopic composition is a function of temperature and amount effect during precipitation. Large-bodied obligate drinker mammals are most efficient for these reconstructions 3, which justifies the choice of mammals in this study.

The Palasava and Tappar samples have ranges of +0.20‰ to +4.24‰ and -3.97‰ to +5.47‰, respectively, for δ18O values. The larger scatter within the latter indicates higher seasonality in the Late Miocene relative to the Middle Miocene, which aligns well with the idea of intensification of the Indian summer monsoon regime during the younger sub-epoch4. Parallelly, the δ13C signature for Palasava samples ranges from -11.23‰ to -9.42‰ while the Tappar ones are between -12.95‰ and -10.64‰. The former represents woodland browsing, whereas the latter indicates forest-woodland browsing. Both localities imply C3-dominated environments. Since Tappar straddles the beginning of the Late Miocene, it is acceptable to think that C3-dominated habitats must have persisted up till this time, and it was only much later and perhaps fuelled by enhanced rainfall seasonality that C4 grasses became abundant and eventually, grassland expansion took place.

Conclusively, the observed trends agree with the ones seen for contemporaneous Siwalik samples and comply with the hypothesis of increasing rainfall seasonality towards the Late Miocene sub-epoch followed by eventual, and perhaps consequential, expansion of C4 grasses during the later part of Late Miocene.

References:

  • Steinthorsdottir, M. et al. The Miocene: The Future of the Past. Paleoceanography. Paleoclimatology 36, (2021).
  • Patnaik, R., Singh, N. P., Paul, D. & Sukumar, R. Dietary and habitat shifts in relation to climate of Neogene-Quaternary proboscideans and associated mammals of the Indian subcontinent. Quat. Sci. Rev. 224, 105968 (2019).
  • Daniel Bryant, J. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).
  • Raymo M.E. & Ruddiman W.F. Tectonic Forcing of Late Cenozoic Climate. Nature 359, 117–122 (1992).

How to cite: Priya, B., Patnaik, R., and Ghosh, P.: A stable isotope record documenting the Middle to Late Miocene climate transition from the Kutch Tertiary group, Gujarat (India), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1393, https://doi.org/10.5194/egusphere-egu24-1393, 2024.

EGU24-2807 | ECS | Posters virtual | CL1.1.5

Stable isotopes and palaeo-hydrological implications of Tunisian laminar calcretes during the late Pliocene - early Pleistocene 

Farah Jarraya, Barbara Mauz, Mike Rogerson, Nejib Kallel, Nouredidne Elmejdoub, and Abdeljalil Sghari

During the late Pliocene-early Pleistocene Tunisian calcretes were formed in a soil environment. Fabrics at the macro and micro scale show that these deposits are similar to rhizogenic modern analogue systems forming in Spain. We infer that a similar climate prevailed in Tunisia in the past, specifically winter-season rainfall and a dry summer with annual rainfall close to 430 mm/year in the center of Tunisia. Here, we provide further constraints on the climate under which the Tunisian calcrete formed by looking at vegetation structure, water advection and amount of seasonal rainfall.

To investigate (1) the palaeo-vegetation type(s) if they are C3 or C4 plants and (2) the source(s) of meteoric water of Tunisian calcretes during that era, stable isotopes of C and O were analysed in 25 samples taken from 5 horizontal laminar calcretes cores, from 3 sites: North (N36º.43.713; E10º.06.681’), Center (N35º.07.077’; E10º.14.545’), South (N33º.28.898’; E10º.23.602’). Results are expressed relative to the VPDB reference.
In the North, the δ18O samples show values varying from – 4.78 ‰ to -6.91 ‰. Likewise, central site cores are characterised by δ18O values ranging from -5.32 ‰ to -6.97 ‰. In contrast, the δ18O values from the South are more depleted (-8.82 ‰ to -7.20 ‰). Concerning the carbon isotope results, both central and southern sites show similarly enriched δ13C values with an average of -6 ‰, while the North site shows more depleted values (-11.3 ‰ to -9.6 ‰). The δ18O values are similar to those determined in the last deglaciation/early Holocene speleothem carbonates from caves in the Tunisian Atlas Mountains, indicating a North Atlantic source. The north-to-south difference in both isotope systems reveals a decoupling between precipitation δ18O and vegetation effects. The southern site shows more depleted water isotopes (a consequence of internal water recycling effects) and more enriched δ13C, consistent with C4 vegetation and/or lower soil respiration. The central site shows low water recycling, but southern-like dryland vegetation. The northern site shows low water recycling and C3 vegetation and/ or higher soil respiration. Consequently, although there is enhanced humidity in all three sites, the sites do not record the same amount of rainfall and the same response of the landscape to form calcretes.

How to cite: Jarraya, F., Mauz, B., Rogerson, M., Kallel, N., Elmejdoub, N., and Sghari, A.: Stable isotopes and palaeo-hydrological implications of Tunisian laminar calcretes during the late Pliocene - early Pleistocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2807, https://doi.org/10.5194/egusphere-egu24-2807, 2024.

The Middle Miocene Climatic Optima (MMCO; 17–14.5 Ma) is warmest over the last 23 Myrs, with higher pCO2 (400–500 ppmv; Foster et al., 2012, Super et al., 2018), ~6 °C warming in a mid-latitude compared to the present (Flower and Kennett, 1994), and a large reduction (30–36 m) in Antarctic ice volume (Gasson et al., 2016). The eruption of CO2 from the Columbia River flood basalt has been suggested as a primary cause of the MMCO. However, the mechanisms of the progressive global cooling after the MMCO remain highly controversial. Here, we provide novel paleoceanographic information on the Antarctic Intermediate Water (AAIW) in the Pacific sector of the Southern Ocean to improve our understanding of climate–ocean conditions during the MMCO. In this study, we analyzed the middle Miocene biopelagic sediments (> 90% CaCO3 contents) from ODP Site 1120 (50°3.8′S, 173°22.3′E), located on the central Campbell Plateau off the South Island of New Zealand (Ando et al., 2011). Because the middle Miocene paleo-water depth at Site 1120 is estimated to be similar to the present water depth (~600 m), analyses of oxygen and carbon isotopic compositions of benthic foraminifer and neodymium (Nd) isotopes of fossil fish teeth/debris allow us to characterize the AAIW during the deposition. We present newly measured 17.5–8.5 Myr records of Nd isotopes of fossil fish teeth/debris, planktonic foraminiferal δ18O, δ13C, Mg/Ca, and Ba/Ca from Site 1120. The εNd values ranged from -7.5 to -3.2 at 17.5–8.5 Ma. In contrast, during the Middle Miocene Climate Transition (MMCT, 14.5–13.5 Ma), εNd values shifted rapidly toward more radiogenic values (~-3.2) and then gradually returned to less radiogenic values (-7 to -6). Such a large long-term variation of εNd values has not been reported in previous datasets, which is the first records to represent the characteristics of the AAIW in the Pacific sector of the Southern Ocean during the MMCT. We argue for the two possible causes of these εNd changes in the AAIW: 1) there might have been an anomalous supply of radiogenic Nd due to the intense physical weathering in West Antarctica caused by the onset of glaciation and 2) the equatorial surface water, characterized by high εNd values, might have expanded toward the high latitudes and a part of the water mass was incorporated into the intermediate layer in the Southern Hemisphere.

How to cite: Khim, B.-K., Horikawa, K., and Asahara, Y.: Anomalous eNd change of the Antarctic Intermediate Water in the Pacific sector of the Southern Ocean during the Middle Miocene Climate Transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3364, https://doi.org/10.5194/egusphere-egu24-3364, 2024.

EGU24-6785 | ECS | Orals | CL1.1.5 | Highlight

High-resolution multi proxy records across the Plio-Pleistocene boundary: a central Mediterranean perspective 

Elena Zanola, Sergio Bonomo, Patrizia Ferretti, Eliana Fornaciari, Alessandro Incarbona, Teresa Rodrigues, and Luca Capraro

The central Mediterranean region is traditionally acknowledged as a key reference area for investigating the Northern Hemisphere climate variability over the last few million years.

Specifically, the expanded and highly fossiliferous open-marine succession currently exposed along the shoreline of Southern Italy and Sicily offers a pristine sedimentary record of the Neogene to Quaternary interval, which can be tightly constrained in time and deeply investigated by means of a manifold array of paleoenvironmental and paleoclimatic proxies (e.g., Cita et al., 2008; Capraro et al., 2017, 2022).

In this context, the Monte San Nicola (MSN) section, located in Southern Sicily, provides an exceptional stratigraphic record for studying the climate evolution throughout the Piacenzian to Gelasian interval. The MSN succession hosts the GSSP for the Gelasian Stage (ca. 2.58 Ma; Rio et al., 1998), which presently marks the base of both the Pleistocene Serie and the Quaternary System (Head et al., 2008). The section is currently under revision, especially in the interval straddling the Gelasian GSSP, which includes the definitive establishment of the Northern Hemisphere Glaciation (NHG), at around 2.6 Ma. This cooling event is marked by a triplet of glacial stages (i.e., MIS 100, 98 and 96) that are found just above the Piacenzian-Gelasian boundary.

In the wake of the emerging interest towards the MSN section, we are currently committed to reconstructing a high-resolution multi-proxy record (foraminiferal δ18O and δ13C, Alkenones-derived SSTs, C37total and Alcoholic index) in the lower part of the “Mandorlo” section at MSN (Capraro et al., 2022; Zanola et al., 2024). Results achieved so far provide new insights on the paleoceanographic and paleoclimatic evolution of the central Mediterranean at the sub-orbital scale at the beginning of the NHG.

How to cite: Zanola, E., Bonomo, S., Ferretti, P., Fornaciari, E., Incarbona, A., Rodrigues, T., and Capraro, L.: High-resolution multi proxy records across the Plio-Pleistocene boundary: a central Mediterranean perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6785, https://doi.org/10.5194/egusphere-egu24-6785, 2024.

EGU24-7348 | ECS | Orals | CL1.1.5

Multicellular eukaryotes followed:MOE or life stagnation 

Ruihan Duan, Pengchen Ju, Ruliang He, Jinlong Yao, and Guochun Zhao

The discovery of the fossils of decimetre-scale multicellular eukaryotes in the Mesoproterozoic from the 1.56-Gyr-old Gaoyuzhuang Formation in the North China Craton indicates that eukaryotes have evolved to a high level, but the evolution of life after it is still unclear due to the lack of definitive fossil evidence. Multi-proxies suggests that a pulsed oxygenation event was recorded during1.56-1.57 Ga, but the subsequent ocean oxygen levels are unequivocal. Here we report I/(Ca+Mg) ratios, carbonate C-O isotopes, and Ce anomaly across the ca. 1.56-1.50 Ga in the North China Platform. The results showed that the evolution of ocean oxygen content could be divided into four stages: (1)The δ13Ccarb values remained stable at 0‰ , and the I/(Ca+Mg) ratios was near detection limit, with no Ce anomaly from 1.56 to 1.53Ga, indicating that the ocean was anoxic; (2)The I/(Ca+Mg) ratios increased to 1.2μmol/mol with an excursion from 0‰ to -2.6‰ negative δ13Ccarb anomaly, and a negative Ce anomaly to 0.56 in 1.52Ga, which may be the result of the oxidation of the dissolved organic carbon(DOC) in the ocean, and the ocean changed from anoxic to oxic;(3) The C isotope composition 0‰ , with I/(Ca+Mg) ratios maintained at 0μmol/mol-0.5μmol/mol, and there was no Ce anomaly in 1.51Ga. Oxygen consumption through oxidation of DOC may have quickly lowered marine O2 levels to suboxic.(4) A positive shift in  δ13Ccarb from 0 ‰ to +2.1‰, and the I/(Ca+Mg) increased to 1μmol/mol, without obvious Ce anomaly, which may be a certain degree of biological flourishing leading to the increase of oxygen content in the ocean. Although the ocean in 1.52Ga was oxic, the oxygen levels were low, which may be a key factor restricting the evolution of eukaryotes.

How to cite: Duan, R., Ju, P., He, R., Yao, J., and Zhao, G.: Multicellular eukaryotes followed:MOE or life stagnation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7348, https://doi.org/10.5194/egusphere-egu24-7348, 2024.

EGU24-7606 | Posters on site | CL1.1.5 | Highlight

Spring distribution in Quaternary deposits, South Carpathians, Romania: isotope composition, chemistry and radiocarbon dating 

Ana-Voica Bojar, Stanislaw Chmiel, Hans-Peter Bojar, Carmen Varlam, Victor Barbu, and Andrzej Pelc

The investigated area is part of a plateau situated at around 350m elevation in the south-western part of the South Carpathians. The area is crossed from north-west to south-east by dry valleys, which cut Pleistocene and Quaternary clastic deposits. Water is flowing across these valleys temporarily, after strong storms or during rainy periods. A groundwater geochemistry study was carried out on water samples collected from different springs and wells. The study was motivated by the fact that springs have represented the only source of potable water in the region, only recently completed by a few wells.

Spring distributions and geological data reveal the presence of a multi-layered system situated in the Lower Quaternary deposits. Precipitations and meteorological parameters were monitored in the region for a period over 10 years. The mean δ18O and δD values of groundwater reflect the yearly weighted mean of the isotopic composition of precipitation, demonstrating locally derived recharge. The aquifers are situated at different depths in clastic deposits; the shallower aquifers are affected by evaporations during the drought periods of the summer.

The water samples have concentrations of 157 to 852 mg/l for anion and 55 to 308 mg/l for cations, with TDS between 212 and 1157 mg/l. The total dissolved salts limit proposed in the guideline of WHO is 1200 mg/l, above the limit water having a bad taste, all the measured samples are below this limit.

The Piper ternary diagrams for spring water indicate that the dominant hydrochemical types is HCO3--Ca+2-Mg+2 with transition toward higher SO4-2 and Mg+2  contents to the deeper aquifer. The anions vary from HCO3- with transition to no dominant- and with Cl- contents higher for the shallower aquifer. The sequence of abundance of cations is generally Ca2+>Mg+2>K+>Na+ and for anions: HCO3->SO4-2>Cl->NO3->F-. The Gibbs diagrams indicate rock weathering as a major driving force for driving the groundwater ionic chemistry in the study area. Radiocarbon dating of DIC (dissolved inorganic carbon) indicates a sub recent recharge of the aquifers.

The vertical and lateral variations in groundwater chemistry may vary, and are influenced by lateral lithologic variation of the Quaternary clastic deposits. This is an unpredictable quality factor when taking the decision for the drinking water drill locations.

How to cite: Bojar, A.-V., Chmiel, S., Bojar, H.-P., Varlam, C., Barbu, V., and Pelc, A.: Spring distribution in Quaternary deposits, South Carpathians, Romania: isotope composition, chemistry and radiocarbon dating, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7606, https://doi.org/10.5194/egusphere-egu24-7606, 2024.

EGU24-7711 | Orals | CL1.1.5 | Highlight

A Versatile Water Vapor Generation Module for Vapor Isotope Calibration and Liquid Isotope Measurements 

Hans Christian Steen-Larsen and Daniele Zannoni

A versatile vapor generation module has been developed for the purpose of both field water vapor isotope calibrations and laboratory liquid water isotope measurements. The vapor generation module is fully scalable allowing in principle an unlimited number of standards or samples to be connected, opening up the possibility for calibrating with multiple standards during field deployment. Compared to a standard autosampler system, the vapor generation module has a more than 2 times lower memory effect. The vapor generation module can in principle generate a constant stream of vapor with constant isotopic composition indefinitely. We document an Allan Deviation for 17O-excess (Δ17O) of less than 2 per meg for an approximate 3 hour averaging time. For similar averaging time the Allan Deviation for 𝛿17O, 𝛿18O, 𝛿D, d-excess is 0.004, 0.006, 0.01, 0.03 ‰. Measuring unknown samples for Δ17O show that it is possible to obtain an average standard deviation of 3 per meg leading to an average standard error (95 % confidence limit) using 4-5 replicates of 5 per meg.

Using the vapor generation module we document that an enhancement in the Allan Deviation above the white noise level for integration times between 10 minutes and 1 hour is caused by cyclic variations in the cavity temperature. We further argue that increases in Allan Deviation for longer averaging times could be a result of memory effects and not only driven by instrumental drifts as it is often interpreted as.

The vapor generation module as a calibration system have been document to generate a constant water vapor stream for a period of more than 90 hours showing the feasibility of being used as an autonomous field vapor isotope calibration unit for more than 3 months.

How to cite: Steen-Larsen, H. C. and Zannoni, D.: A Versatile Water Vapor Generation Module for Vapor Isotope Calibration and Liquid Isotope Measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7711, https://doi.org/10.5194/egusphere-egu24-7711, 2024.

EGU24-8232 | Posters on site | CL1.1.5 | Highlight

On the radiocesium distribution on the Romanian territory 30 years after the Chernobyl disasters 

Octavian G. Duliu, Ana-Maria Blebea-Apostu, Romul Mircea Margineanau, Diana Persa, and Maria-Claudia Gomoiu

The Chernobyl 1986 accident, considered one of the worst of its kind, occupies the highest 7th position on the seven levels IAEA International Nuclear and Radiological Event Scale. Following the thermal explosions which took parts, an impressive amount of new and spent nuclear fuel, rich in fission and neutron activation products was dispersed into the atmosphere at an altitude up to a few km, but without reaching the stratosphere. In this way, about 20 to 40 % of the total radiocesium inventory estimated to be 280 PBq of 137Cs was transported by the atmospheric circulation contaminating significant areas of Ukraine, Belarus, Russia, Scandinavian countries, Central and Eastern Europe. Its presence was signaled also in Japan, Canada, and the United States.

Due to the geographical position of Romania in the vicinity of Ukraine, the total 137Cs contamination of Romanian territory was estimated immediately after the Chernobyl accident at 51 ± 2 TBq, an estimation based on more detailed measurements performed during the 1993 y on 62 locations.

Under these circumstances, and for a more accurate estimation of the 137Cs contamination, 747 soil samples covering the entire Romanian territory were collected, and the radiocesium inventory was measured by gamma-ray high-resolution spectroscopy performed in the low backgrounder laboratory located in the Slanic-Prahova former salt mine. Soil sampling and radiometric measurements were performed between 2016 and 2018 years, all data being recalculated for May 2016, i.e. 30 years after the Chernobyl accident.

The results showed for the 2016 radiocesium distribution an irregular pattern containing four maxima of which positions were quite different from the 1993 ones. Concerning the 137Cs inventory, its total value decreased from 43 ± 2 TBq in May 1993 to 14.1± 0.7 TBq in May 2016, i.e. by a factor of 3 ± 0.3, twice of natural disintegration. This finding could be explained by taking into account that a significant amount of radiocesium was washed out by precipitation and, in a lower measure, was incorporated into plants.

The same data permitted evaluation of the total contribution of 137Cs to the population exposure. Accordingly, in 1993 and even more so in 2016, the average supplementary annual effective dose did not exceed 1 mSv, i.e. the maximum annual effective dose considered not harmful for the unexposed population.

How to cite: Duliu, O. G., Blebea-Apostu, A.-M., Margineanau, R. M., Persa, D., and Gomoiu, M.-C.: On the radiocesium distribution on the Romanian territory 30 years after the Chernobyl disasters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8232, https://doi.org/10.5194/egusphere-egu24-8232, 2024.

EGU24-8530 | ECS | Orals | CL1.1.5

Isotopic signatures from the weathering of ophiolitic massifs and volcanic deposits in the Zambales region, Philippines. 

Chris Tsz Long Cheung, Ryan McKenzie, Juan Miguel Guotana, Brian Beaty, Yonghui Qin, Giancarlo DeFrancesco, Bianca Maria Laureanna Pedrezuela, Dan Asael, Noah Planavsky, and Decibel V. Faustino-Eslava

Lithium isotopes (d7Li) are a useful proxy to track silicate weathering, the fundamental process in which carbon is removed from Earth’s surface. Here we present d7Li and elemental data from 14 riverine localities in the Zambales region, Philippines. The warm, humid climate coupled with monolithic rivers draining ophiolitic massifs and volcanic deposits (from the major 1991 Pinatubo eruption) allows for the comparison of silicate weathering and riverine geochemistry across different lithologies. The most striking part of our dataset is that all rivers draining ophiolitic terranes have heavier d7Lidiss values (range from 22.8 to 37.1‰) than those draining Pinatubo volcanic deposits (range from 8.9 to 18.4‰). As all rivers feature similar topographic relief and hydrological conditions, this suggests a strong lithological influence on d7Lidiss values despite both bedrock lithologies being highly weatherable. We postulate that the mafic and ultramafic composition of the ophiolite terrain significantly enhances incongruent weathering and clay mineral formation, increasing Li fractionation, and leading to the heavier d7Lidiss values. Conversely, the lighter d7Lidiss values for the Pinatubo rivers could be explained by the more felsic composition and unconsolidated nature of the volcanic deposits leading to increased congruent weathering and low clay formation, and thus low Li fractionation. Notable differences in major element concentrations are also observed. The Mg2+ is the dominant cation in ophiolitic-draining rivers reflecting the weathering of Mg-rich mafic and ultramafic minerals. Meanwhile, Na+ and Ca2+ dominate in rivers flowing off the Pinatubo volcanic deposits. The ophiolitic-draining rivers also have total major cation concentrations ([Na+] + [Mg2+] + [K+] + [Ca2+]) almost 3.5 times lower than those draining the volcanic deposits (~1600 vs ~5600 µM). Despite the composition of the ophiolites consisting of highly weatherable mafic and ultramafic minerals, the volcanic deposits are seemingly even more favorably weathered. This is interpreted to be caused by the freshness of the material deposited from the recent eruption. Overall, our study shows that despite all rivers in this study draining highly weatherable lithologies, their intrinsic lithological differences can lead to significantly contrasting d7Lidiss and major cation signatures. New clay mineralogical data from riverine sediments will further inform us on silicate weathering processes in the region.

How to cite: Cheung, C. T. L., McKenzie, R., Guotana, J. M., Beaty, B., Qin, Y., DeFrancesco, G., Pedrezuela, B. M. L., Asael, D., Planavsky, N., and Faustino-Eslava, D. V.: Isotopic signatures from the weathering of ophiolitic massifs and volcanic deposits in the Zambales region, Philippines., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8530, https://doi.org/10.5194/egusphere-egu24-8530, 2024.

EGU24-9747 | ECS | Orals | CL1.1.5

Westerly jet shifts over the last glacial cycle revealed by provenance of Japan Sea dust   

Lingle Chen, Chuang Xuan, Anya J. Crocker, and Paul A. Wilson

Asian deserts are major sources of dust loading to the atmosphere, second only to those of North Africa. Today, dust activation in central and eastern Asia and convective rainfall over eastern China are preconditioned by the seasonal weakening of the Siberian High-Pressure system and migration of the Westerly Jet (WJ) northwards of the Tibetan Plateau during spring. Once activated, East Asian dust is transported over long distances to the North Pacific Ocean and to Greenland. Downcore records from locations on the dust transportation pathway provide valuable information about changes in past aridity and wind systems. Recent studies suggest that the westerlies were weaker and shifted towards more poleward latitudes than today during the warm Pliocene. However, the available data are too sparse to evaluate variability on glacial-interglacial timescales and often of questionable attribution (uncertain provenance). Here we report new downcore radiogenic isotope (Nd, Sr) records of dust provenance change over the last glacial cycle (150 kyrs to present) from the Japan Sea. Our records benefit from a thorough treatment protocol to remove the imprint of contaminating marine phases (including barite) and non-dust material and show remarkably clean glacial-interglacial structure. We report a marked shift in East Asian dust sources from glacial to interglacial conditions that has important implications for our understanding of the behaviour of the Siberian High-Pressure system and the westerly jet in response to changes in atmospheric carbon dioxide concentrations and ice sheet extent on geological timescales.

How to cite: Chen, L., Xuan, C., J. Crocker, A., and A. Wilson, P.: Westerly jet shifts over the last glacial cycle revealed by provenance of Japan Sea dust  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9747, https://doi.org/10.5194/egusphere-egu24-9747, 2024.

EGU24-9896 | ECS | Posters on site | CL1.1.5

Testing the efficacy of grain size-sorted sediment for biomarker analysis to reconstruct palaeoclimate 

Joe Hingley, P. Sargent Bray, Gavin Foster, Jessica Whiteside, Bridget Wade, and Gordon Inglis

Following the announcement of the retirement of the JOIDES Resolution drilling platform, it has become even more important to efficiently utilise the finite resource of marine sediment stored in IODP repositories. Marine sediments processed for inorganic geochemical analysis are often separated into fine (<0.63 µm) and coarse (>0.63 µm) fractions to help isolate benthic and planktonic foraminifera. However, organic matter can be associated with different particle size fractions and may have experienced different transport and diagenetic processes. Previous studies have suggested that sieving sediments into different size fractions does not affect the distribution of isoprenoidal [1,2] and branched glycerol dialkyl glycerol tetraethers (GDGTs) [3]. However, this has never been systematically investigated across a wide range of sample types (e.g., age, depositional environment, thermal maturity). It is also unclear whether size processing affects other lipid biomarker proxies (e.g., leaf waxes, alkenones).

Here we test whether processing marine sediments into different size fractions influences lipid distributions by separating sediments into fine (<0.63 µm) and coarse (> 0.63 µm) fractions and comparing these to corresponding bulk un-sieved sediments. Temperature reconstruction using the marine sea surface temperature proxy TEX86 shows relatively minimal deviation (average ±0.12 TEX86 units, or ~2-3 °C) between the bulk un-sieved sediment (i.e,. control) and fine (<63 µm) fraction, suggesting isoGDGTs are well preserved in the fine fraction. In contrast, relatively more variation is seen in the coarse fraction (±0.25 TEX86 units, or >10 °C). We also analysed leaf wax derived n-alkanes extracted from the marine sediment to evaluate the impact on terrestrial biomarkers. The average chain length shows similar deviation in both the fine (±0.21 units) and coarse (±0.21 units) fractions relative to the bulk sediment, suggesting that either fraction is suitable for interpreting first-order changes in vegetation type.  Moving forward, our results suggest that the fine fraction of grain size-sorted sediment yield similar lipid distributions compared to the bulk un-washed sediment. However, coarse fractions often show large deviations from the bulk sediment across different proxies, perhaps making these unsuitable for biomarker-based climate reconstruction.

References
[1] Zachos et al., Geology, 34, 9, pp 737-740 (2006)
[2] Xiao et al., Global Biogeochemical Cycles, 37, e2022GB007648 (2023)
[3] Peterse and Eglinton, Frontiers in Earth Science, 5, 49 (2017)

How to cite: Hingley, J., Bray, P. S., Foster, G., Whiteside, J., Wade, B., and Inglis, G.: Testing the efficacy of grain size-sorted sediment for biomarker analysis to reconstruct palaeoclimate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9896, https://doi.org/10.5194/egusphere-egu24-9896, 2024.

EGU24-12864 | ECS | Posters on site | CL1.1.5

A radiogenic isotope framework to study palaeoaridity in the Middle East 

Kai Zhang, Tereza Kunkelova, Anya J. Crocker, Amelia Gale, Chuang Xuan, and Paul A. Wilson

Dust plays a vital role in global climate and environmental change by influencing the Earth’s radiation budget and providing nutrients to marine and terrestrial ecosystems. Modern dust emissions are dominated by North Africa, the Middle East and West Asia, which together provide ~80% of total global atmospheric dust. Geological deposits of dust can also act as valuable archives to study hydroclimate variability across a range of global states, with marine sediments in particular able to preserve high resolution and continuous records of past dust emissions. For example, dust preserved in Arabian Sea sediments has been used to provide climatic context for hominin evolution in East Africa, however, there is little understanding of where the deposited sediments originate and hence whether they truly record an African signal. Tracing the provenance of the lithogenic fraction in marine sediments is made particularly challenging by the lack of geochemical data in key potential source areas such as Mesopotamia, one of the most active dust emission regions in the Middle East. Here we present new radiogenic isotope data (Sr and Nd) from surface sediment samples, integrated with the satellite-derived dust source activation frequency (DSAF) maps and other published radiogenic data to characterise the geochemical fingerprint of dust-producing regions in the circum Arabian Sea. Our results provide a framework to trace sources of dust in geological archives including marine sediments, speleothems and ice cores and to identify the provenance of archaeological artefacts. We exemplify the utility of our approach by comparing our data to strategically positioned marine cores in the Arabian Sea to shed new light on key regional palaeoclimate reconstructions.

How to cite: Zhang, K., Kunkelova, T., Crocker, A. J., Gale, A., Xuan, C., and Wilson, P. A.: A radiogenic isotope framework to study palaeoaridity in the Middle East, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12864, https://doi.org/10.5194/egusphere-egu24-12864, 2024.

EGU24-13265 | ECS | Orals | CL1.1.5 | Highlight

Climate, fire, and vegetation history from loess-palaeosol sequences in Southern Tajikistan, Central Asia during early Palaeolithic: Reconstruction using organic biomarkers and stable isotopes 

Aljasil Chirakkal, David K Wright, Calin Constantin Stiendal, Jago Jonathan Birk, Redzhep Kurbanov, and Jan-Pieter Buylaert

We reconstruct palaeoenvironmental conditions with multi-proxy records from loess-palaeosol settings in Tajikistan, Central Asia. Landscape conditions in this area are poorly characterised, ambiguous, and difficult to determine, which confounds models of human dispersal out of Africa. This region has been the focus of Russian-Tajik archaeological projects since the 1970s, as it contains evidence of some of the earliest (~600-400 ka) hominin occupations in Central Asia and has yielded numerous Lower Palaeolithic artifacts. In the present study, fire and vegetation biomarkers and stable isotopes have been used to reconstruct fire and vegetation histories in loess-palaeosol samples of early Palaeolithic sites in the vicinities of the Obi-Mazar River in the Khovaling district of southern Tajikistan. Samples from four loess-palaeosol documented profiles were analysed for linear chain alkanes (n-alkanes) and polycyclic aromatic hydrocarbons (PAHs) together with soil stable isotopes (δ13C, δ15N). The fluctuations in the values of n-alkane derived indices showed vegetation changes in concert with glacial-interglacial variability. The δ13C values fell between -20‰ and -25‰ (vs. PDB) and revealed mixed input of C3 and C4 plant organic matter into loess-palaeosol sediments, while δ15N values varied between 3.5‰ and 6.5‰ (vs. AIR) indicating high litter content and tree abundance. The fluctuations in total PAH abundance and increased low to high molecular weight ratio values revealed fire activity and lower temperature burning events during interglacial periods relative to glacial periods.  Moreover, the strong positive correlation between PAHs and deposits that hosted the densest artifact assemblages signals early hominin use of fire in the catchment during MIS 11, 13, and 15. Therefore, our study demonstrates substantial hominin influences on the environment dating to over 500 ka indicating human-ecological processes far predate the modern era.

How to cite: Chirakkal, A., K Wright, D., Constantin Stiendal, C., Jonathan Birk, J., Kurbanov, R., and Buylaert, J.-P.: Climate, fire, and vegetation history from loess-palaeosol sequences in Southern Tajikistan, Central Asia during early Palaeolithic: Reconstruction using organic biomarkers and stable isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13265, https://doi.org/10.5194/egusphere-egu24-13265, 2024.

EGU24-15805 | ECS | Orals | CL1.1.5

Investigating ophiolite weathering via lithium isotopes in the Indo-Burma range of northeast India 

Giancarlo DeFrancesco, Ryan McKenzie, Chris Tsz Long Cheung, Nongmaithem Lakhan Singh, Yengkhom Raghumani Singh, Brian Beaty, Dan Asael, Jed Oliver Kaplan, and Noah Planavsky

The weathering of silicate minerals regulates climate on million-year timescales. Some silicate bedrock, particularly ophiolites, are more susceptible to enhanced weathering than other lithologies. Lithium isotopes (δ7Li) are a proxy that can be used to help track weathering processes due to the fractionation of Li during secondary clay mineral formation. Here we present data collected from tributaries that source the Nagaland-Manipur Ophiolite Complexes in northeastern India, which ultimately flow into the Irrawaddy River in Myanmar, to test the hypothesis that the weathering of ultramafic terrains generated by arc-continent collisions can drive rapid atmospheric carbon drawdown. Major cations, anions, trace elements, δ7Li, and clay mineralogical compositions were measured from river water, bedload, and suspended sediment to gain insight into silicate weathering processes in the region. Our results show streams and rivers in this region contain δ7Li values that range from 20.6 to 31.2‰, with the ophiolitic-sourced tributaries being heavier than the global riverine average of ~23‰. This indicates that rivers draining ultramafic lithologies in warm humid climates are experiencing higher degrees of weathering intensity than other drainages comprised of more felsic lithologies. Additionally, XRD results show that most river bedload contains smectite clays, which may help promote organic carbon burial. These data combined highlight new pathways toward understanding silicate weathering as it relates to atmospheric CO2 drawdown.

How to cite: DeFrancesco, G., McKenzie, R., Cheung, C. T. L., Singh, N. L., Singh, Y. R., Beaty, B., Asael, D., Kaplan, J. O., and Planavsky, N.: Investigating ophiolite weathering via lithium isotopes in the Indo-Burma range of northeast India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15805, https://doi.org/10.5194/egusphere-egu24-15805, 2024.

EGU24-18475 | ECS | Posters on site | CL1.1.5 | Highlight

Chromium isotope compositions of sediments from the global oceans 

Sylvie Bruggmann, Patrick Blaser, and Samuel Jaccard

The chromium (Cr) isotope system (δ53Cr) is a promising tool to reconstruct changes in marine redox conditions and biological productivity through geological time, but uncertainties remain regarding the pathway of Cr from the water column to the sediment record (Janssen, 2021; Huang et al., 2021; Bruggmann et al., 2023). While sediment Cr concentration and isotope data are available from continental margin sites and oxygen minimum zones (e.g., Gueguen et al., 2016; Bruggmann et al., 2019), modern sediments from open marine settings are understudied. Such sediments can provide key information to understand how Cr from the water column or across the sediment-water interface accumulates in the sediment.

We will investigate the response of Cr concentrations and isotope compositions (i) in the authigenic fraction of different types of pelagic sediments (carbonate-rich versus clay-rich) (ii) from the North Atlantic to the North Pacific to complement published seawater δ53Cr values, and (iii) their changes during well-characterised climate changes in the Quaternary, specifically the Last Glacial Maximum (LGM). The database of Cr isotope compositions in the modern global oceans resulting from this study will significantly enhance the interpretation of Cr isotope changes in sediments from the geological record.

 

References

Bruggmann S., Severmann S. and McManus J. (2023) Geochemical conditions regulating chromium preservation in marine sediments. Geochimica et Cosmochimica Acta 348, 239–257.

Gueguen B., Reinhard C. T., Algeo T. J., Peterson L. C., Nielsen S. G., Wang X., Rowe H. and Planavsky N. J. (2016) The chromium isotope composition of reducing and oxic marine sediments. Geochimica et Cosmochimica Acta 184, 1–19.

Huang T., Moos S. B. and Boyle E. A. (2021) Trivalent chromium isotopes in the eastern tropical North Pacific oxygen-deficient zone. Proc. Natl. Acad. Sci. U.S.A. 118.

Janssen D. J. (2021) Release from biogenic particles, benthic fluxes, and deep water circulation control Cr and δ53Cr distributions in the ocean interior. Earth and Planetary Science Letters 574,117163.

How to cite: Bruggmann, S., Blaser, P., and Jaccard, S.: Chromium isotope compositions of sediments from the global oceans, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18475, https://doi.org/10.5194/egusphere-egu24-18475, 2024.

EGU24-18743 | ECS | Posters on site | CL1.1.5

Interpolating proxy observations to high-resolution XRF data 

Patrick Blaser, Jörg Lippold, Sylvie Bruggmann, Michael Bollen, Xavier Crosta, and Samuel Jaccard

Proxy observations are the fundament for many insights in geosciences, such as the reconstruction of past environmental conditions from sediment cores. However, the labor-intensive nature of producing proxy data often renders high-resolution records prohibitively expensive. In contrast, state-of-the-art XRF analyses offer an efficient means of generating high-quality and very high-resolution elemental concentration data. Although these data initially provide only qualitative information about the bulk sample composition, their high-resolution renders them invaluable as a foundation for subsequent studies.

Here we explore the potential utility of high-resolution XRF data as a foundation for interpolating more scarce sedimentological, geochemical, and environmental analyses to the same high-resolution. We base the investigation on a long sediment core obtained from the Crozet Plateau in the Indian sector of the Southern Ocean, where changes in surface productivity, dust influx, and delivery of detritus from the nearby island dominate the sedimentological and geochemical signals.

We test different statistical methods for sediment classification and the interpolation of proxy data and discuss their reliability and limitations. For instance, application of a random forest model for the interpolation of carbonate and opal concentration conspicuously reveals the presence of distinct detrital layers. These layers are not readily discernible in the original XRF data or the sparse original opal and carbonate measurements.

We propose these straight-forward statistical methods have potential to be used on many other sediment records for which high-quality and high-resolution XRF data and certain proxy observations are available. Such an approach can streamline the interpretation of XRF data and enhance the investigation of specific environmental proxy observations at a high-resolution.

How to cite: Blaser, P., Lippold, J., Bruggmann, S., Bollen, M., Crosta, X., and Jaccard, S.: Interpolating proxy observations to high-resolution XRF data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18743, https://doi.org/10.5194/egusphere-egu24-18743, 2024.

Sun-climate connection is a well-documented expression of earth´s climate system. Higher sensitivity to solar forcing is evident in many paleoclimate records, ranging from decadal to millennial time scales. Considering the Indian monsoon domain, Summer Monsoon show asynchronous variations with energy output of the Sun throughout Holocene, however the response of its winter counterpart is not well understood. This study aims to explore the variability of the Indian Winter Monsoon in association with solar activity during Holocene. Monsoon reconstruction was based on trace elements and lanthanide geochemistry of lagoon sediments from south-eastern Sri Lanka.  A 5.1 m sediment core acquired from Pottuvil Lagoon was logged for concentrations of K, Rb, Mg, Al, Ti and rare earth elements at a 5cm interval using ICP-MS. The chronology of the core was established by Bacon 2.2 age-depth modelling based on calibrated AMS 14C dates. Reconstructed monsoon signal was compared with Holocene records of 14C and 10Be nuclide production rates which are considered as proxies for solar activity. Results revealed a distinct millennial scale variability of Indian Winter Monsoon during mid-late Holocene with three strong monsoon activity phases at 2553-2984 yrs BP, 3899-5021 yrs BP, and at 5244-5507 yrs BP. Further, the millennial-bands detected in Pottuvil monsoon record are closely matched with shifts in cosmogenic nuclide production rates, showing coherence with solar output. The existence of millennial scale variability is further reinforced by occurrence of dominant 1600 and 1000-year periodicities in Lomb-Scargle power spectra of element proxies. In particular, 1000-year periodic band is consistent with Eddy solar cycle. Thus, this study suggests a possible link to solar influence on millennial scale variability of Indian winter monsoon from mid to late Holocene.

How to cite: Premaratne, K. M. and Chandrajith, R.: Solar influence on Millennial-scale variability of Indian Winter Monsoon during mid-late Holocene: Evidence from coastal sediments from Southeastern Sri Lanka , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18843, https://doi.org/10.5194/egusphere-egu24-18843, 2024.

EGU24-19482 | ECS | Posters on site | CL1.1.5

Deciphering the Central African Copperbelt sedimentary succession: Chemostratigraphy of the Neoproterozoic metasedimentary sequences at Lubambe, Zambia 

Aileen Doran, Jon Stacey, Koen Torremans, Murray Hitzman, Victor Vincent, Laura Hepburn, and Adrian J. Boyce

A +1.6 km borehole, southeast of the Lubambe Copper Mine, Zambia has intersected a seemingly continuous sedimentary sequence spanning the Neoproterozoic Kantanga Supergroup sedimentary succession within the Central African Copperbelt. This extensive sequence encompasses the Mindola Clastics Formation of the Lower Roan Subgroup, through the Upper Roan Subgroup, and the lower Nguba Group (including the Grand Conglomérat of the Mwale Formation and overlying Kakontwe Limestone). Lithofacies and mineralogical studies of this drillcore have revealed numerous sedimentary cycles, with clear evidence for evaporite formation during sedimentation and diagenetic processes throughout (e.g., bedded/vein anhydrite, chicken-wire textures, relic cements & pseudomorphs). Siliciclastic red-bed lithologies at the base transition into repeated cycles of shales/siltstones-dolostone-evaporite, succeeded by deeper water carbonate and siltstone intervals. Diamictites of the Mwale Formation (Grand Conglomérat unit) cap these cycles at the base of Nguba Group, interbedded with several thick carbonate beds (peloidal grainstones, dolostones +/- bioherm textures).

To explore the Upper Roan to Nguba Group carbonate successions, detailed mineral chemistry mapping (Tescan TIGER MIRA3 FEG-SEM, µXRF, pXRF) and C-O isotopic analysis were undertaken, with a focus on understanding global trends associated with the onset of diamictite formation. Mineral chemistry analysis revealed the influence of post-depositional processes on the sequence, including dolomite and silica alteration. Silicification selectively preserved peloids above the first diamictite occurrence while the original carbonate matrix dissolved, with later cement formation (hydrothermal?) associated with elevated Mn-Fe relative to earlier carbonates. However, most of the carbonate units from the upper successions are composed of dolomite grains/cement, with original textures often preserved (e.g., stromatolites, disrupted reefs).

Isotope sampling targeted the ‘least-altered’ carbonates from the upper Roan to lower Nguba Group, to minimize post-depositional alternation effects. The initial analysis revealed variable δ13C isotopic values, with ~negative trending excursions below the main diamictite body. The lack of notable covariance with corresponding O isotope values suggests representation of the original seawater composition, not impacted by local diagenetic/hydrothermal alterations. Further, the largest negative excursion is associated with a lithofacies change from non-stromatolite- to stromatolite-bearing dolomitic siltstones, suggesting local lithofacies changes may influence the isotope profile. Specifically, δ13C isotopic values drop from ~+4.2 ‰ to +0.37 ‰, before returning to ~+4.7 ‰ below the diamictite contact. While these units do not record the more extreme negative excursion (<-5 ‰) typically associated with the Sturtian glaciation recorded elsewhere, the overall curve may represent the Islay anomaly recorded globally in Cryogenic sections beneath the Sturtian diamictite. This negative excursion, in line with global C isotope trends (<-5 ‰) has also been identified within Copperbelt on both the Zambian and Democratic Republic of Congo sides (ongoing work), but with a more significant decrease in C isotope values, in line with global trends. The lack of exact duplication may be the result of local sedimentological factors, as shown by the association in lithofacies variation, an incomplete sample record, or perhaps the influence of the Sturtian is not fully recorded in the stratigraphy underlying these diamictites.

How to cite: Doran, A., Stacey, J., Torremans, K., Hitzman, M., Vincent, V., Hepburn, L., and Boyce, A. J.: Deciphering the Central African Copperbelt sedimentary succession: Chemostratigraphy of the Neoproterozoic metasedimentary sequences at Lubambe, Zambia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19482, https://doi.org/10.5194/egusphere-egu24-19482, 2024.

EGU24-20288 | Posters virtual | CL1.1.5 | Highlight

From an Ocean-like to Methanogenesis-dominated carbon cycle in the Dziani Dzaha Lake 

Pierre Cadeau, Magali Ader, Pierre Cartigny, Ivan Jovovic, Pierre Adam, and Vincent Grossi

Over geological times, the evolution of carbon isotope composition of carbonates (δ13Ccarb) in the sedimentary record is punctuated by numerous positive isotopic excursions (CIEs), which reflect significant perturbations of the carbon cycle on Earth surface environments. Such isotopic events are mainly interpreted as a consequence of an increase of organic carbon burial in sediments. However, the significant spatial and temporal variability observed in many Proterozoic sedimentary successions recording positive CIEs still challenge this postulate. Among others, the potential influence of methanogenesis has been raised to explain at least a part of the variability observed during CIEs.

The Dziani Dzaha is a shallow tropical volcanic crater lake located on the Petite Terre Island of Mayotte (Comoros Archipelago, Indian Ocean). Its water most likely originate from the nearby ocean through bedrock seepage thanks to the fracturation associated with the phreatomagmatic eruption at that formed the crater 7 to 4 Kyr ago. Based on numerous analogies, this atypical modern lacustrine system was considered as an analogue of Proterozoic environments, and more specifically of those having recorded strongly positive δ13C values, such as for example the Lomagundi-Jatuli event. A previous study demonstrated the significant role of methane in the Dziani Dzaha carbon cycle through an intense organic matter degradation by methanogenesis associated with methane degassing into the atmosphere. Here, in order to investigate the processes responsible for the onset of this methanogenic activity, we present coupled C and S isotope records in a sediment core of the lake.

Based on geochemical and sedimentological evidences, four different units have been identified in the sediment core. From the bottom to the top, carbon and sulfur isotopic signatures in the first unit are similar to modern oceanic values (δ13Corg ~ -25‰, δ13Ccarb ~ 0‰ and δ34Spy ~ -20‰), which is consistent with a marine origin of the lake water. In the second unit, the δ34Spy increases progressively from -20‰ to -10‰ while the δ13C of organic and inorganic carbon remain constant, which is consistent with a progressive consumption of the sulfate pool through the degradation of organic matter by sulfatoreduction in a restricted environment. The δ34Spy shifts sharply to 35‰ at the transition with the third unit where it remains constant up to the top, while both organic and inorganic carbon isotopic signatures increase progressively from -25‰ to -14‰ and from 0‰ to almost 20‰, respectively. This turning point most likely results from a depletion of the initial sulfate pool to a point allowing part of the organic matter to be remineralized through methanogenesis with a degassing of methane into the atmosphere. These results highlight the potential of C-S-isotope coupling to identify a potential impact of methanogenesis on the carbon-isotope signatures observed in the sedimentary record through geological times.

How to cite: Cadeau, P., Ader, M., Cartigny, P., Jovovic, I., Adam, P., and Grossi, V.: From an Ocean-like to Methanogenesis-dominated carbon cycle in the Dziani Dzaha Lake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20288, https://doi.org/10.5194/egusphere-egu24-20288, 2024.

Reconstruction of the history of bottom-water redox conditions in the climatically sensitive Southern Ocean can provide comprehensive information regarding oceanic circulation, global carbon cycling, and global climate changes. Here we present high-resolution sedimentary redox records over the last ~35 ka in the deep Protector Basin (~4,100 m water depth) of the southern Scotia Sea. Sedimentary δ34S and redox-sensitive trace metals were comprehensively analyzed and compared with 230Th-normalized Ba- and opal-based export fluxes to constrain bottom-water or sedimentary redox and bottom-water oxygenation conditions. The results demonstrate tight coupling of redox state proxies (sulfur isotopes and trace metals) over the glacial–interglacial cycle; the presence of oxidizing conditions during glacial periods rapidly transitions to reducing conditions during interglacial periods. Our findings indicate that absolute control of sedimentary redox variability in the study area involves climate-forced primary production, rather than the deep circulation and ventilation dynamics previously highlighted in the Antarctic Zone. Signs of climate-driven redox changes are also evident in two episodic cold events superimposed on the warm Holocene climate. The glacial–interglacial pattern of redox changes observed in this study contrasts with previous observations in the Southern Ocean, including the Antarctic Zone, suggesting spatial heterogeneity of bottom-water and sediment conditions during orbital-scale climate cycles. This study may help to elucidate paleoenvironmental changes in the Southern Ocean, such as changes in the dynamics of Antarctic Bottom Water production and Holocene climate instability.

How to cite: Kim, J., Lim, D., and Yoo, K.: Climate-driven redox changes in the Antarctic region: New insights from sedimentary sulfur isotopes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21485, https://doi.org/10.5194/egusphere-egu24-21485, 2024.

EGU24-2305 | Posters on site | HS1.2.5

Pedotransfer functions and their impact on water dynamics simulation and yield prediction 

Pablo Rosso, Kurt-Christian Kersebaum, Janis Groh, Horst Gerke, Kurt Heil, and Robin Gebbers

The dynamics of water availability for plant growth is particularly important for crop productivity simulation. Critical for the prediction of crop growth and development is the accurate simulation of soil moisture variation time. Soil capacity-based models assume that the vertical movement of water in the soil is mostly controlled by the intrinsic soil water retention capacities (WRCs), mainly field capacity (FC) and wilting point (WP). However, FC and WP are difficult to measure directly. Pedotransfer functions (PTFs) have been developed to determine these parameters from basic, more readily available soil attributes such as texture and soil organic carbon content. Functional evaluation, a procedure to assess the appropriateness of a PTF, entails testing the sensitivity of the different PTFs to model’s target simulation outcomes. This study constitutes an attempt to quantify and understand the impact of different PTFs on crop yield in a soil capacity-based model.

Six PTFs were used in the crop model HERMES to test their ability to simulate soil water dynamics and to determine their effect on yield simulation. This study, carried out in Germany, included three sandy soil sites in Brandenburg and a silty soil site in Bavaria. Five lysimeters at a site in Brandenburg provided a complete record for assessing the performance of PTFs. Measured soil texture and organic carbon were used as inputs in HERMES, which by applying the PTFs under study, produced the corresponding estimates of WRPs used for soil water dynamic simulations and yield predictions. Soil water records were statistically compared with model outputs to assess the accuracy of each PTF-based simulation. Differences in yield predictions were measured to estimate the sensitivity of the crop model to the PTFs tested.

Not a single PTF performed best in all sites. PTFs by Batjes and Rosetta were the best performers at the three Brandenburg sites. At Duernast, Bavaria, all PTFs resulted in higher errors than at the other sites. At this site, the measured soil water content maxima during the rainy months appeared very variable from year to year, which was unexpected if assumed that the maxima should stay around FC and be fairly constant. In general, HERMES simulations followed the trends in measured soil water dynamics regardless of the PTF applied, whereas differences between PTFs appear on the magnitude of the water maxima during the winter months. This shows that the accuracy of PTFs largely depended on their ability to correctly estimate FC. The highest variability in yield prediction for the different PTFs was observed in the three Brandenburg sites, which also corresponded with higher differences in FC estimation. A closer look at the sandy sites, and simulations with a synthetic soil database showed that differences in yield simulation between PTFs increased proportionally with soil sand percent. This points out at the empirical nature of PTFs and the care that needs to be taken when applied in new situations.

How to cite: Rosso, P., Kersebaum, K.-C., Groh, J., Gerke, H., Heil, K., and Gebbers, R.: Pedotransfer functions and their impact on water dynamics simulation and yield prediction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2305, https://doi.org/10.5194/egusphere-egu24-2305, 2024.

Nitrate pollution of groundwater is still an issue of concern at many drinking water wells located in the Swiss lowlands, where agricultural areas are the main pollution source. Extensification measures (e.g. conversion of arable land to extensive grassland, reduction of vegetable/potato areas in favor of cereals) are generally considered to be effective to reduce nitrate leaching to groundwater. However, these measures are also associated with large losses in agricultural productivity and can thus only be implemented on small focused areas within contribution zones of drinking water wells. It is hypothesized here that the trade-offs between agricultural production and groundwater protection can better be managed if more nuanced mitigation strategies are implemented at a broader scale. Such strategies would target at an improved synchrony between plant nitrogen demands and soil nutrient availabilities (e.g. by inclusion of cover crops and optimizing crop rotations, through reduced soil management and demand-driven fertilization practices). Since evaluating the effects of such strategies is anything but trivial given the high complexity of the process interactions and the strong influence of climatic variability, it is the aim of this work to train a mechanistic field scale model that simulates soil water and nutrient dynamics at a field scale in response to soil, climate and management drivers (DAISY model). The calibration builds on an extensive dataset from the lysimeter station Zurich Reckenholz including detailed data since 2009 on nitrate leaching, seepage water generation, soil moisture, water tension, soil temperature, and crop yields for a series of different experiments including non-inversion tillage, cover cropping as well as different fertilization types and amounts. The calibration strategy and selected calibration/validation results will be presented and discussed in context with implications for model applications.

How to cite: Holzkämper, A.: Managing the trade-off between agricultural productivity and groundwater protection in Switzerland – a model-approach based on long-term lysimeter data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2703, https://doi.org/10.5194/egusphere-egu24-2703, 2024.

EGU24-2783 | ECS | Posters on site | HS1.2.5

Critical Soil Moisture Content Estimated from Lysimeter Time Series for Different Soil, Vegetation and Weather conditions 

Xiao Lu, Jannis Groh, Thomas Pütz, Alexander Graf, Mathieu Javaux, Harry Vereecken, and Harrie-Jan Hendricks Franssen

Evapotranspiration (ET) is a crucial terrestrial ecosystem process that links water, energy, and carbon cycles. ET can be limited by either energy or water availability. The transition between water- and energy-limited regimes is associated with the soil moisture content, and can be postulated as the soil moisture content reaching a threshold, denoted as critical soil moisture (θcrit). Knowledge of θcrit is important for improving land surface, hydrological and crop models and predicting hydroclimate extremes such as droughts and heatwaves. However, the quantification of θcrit and the factors that impact θcrit are still not well understood. Here we used precise lysimeter observations to quantify θcrit by analyzing the relationship between soil moisture content and evaporative fraction (EF), as well as the relationship between soil moisture content and the actual ET/ potential ET ratio during drydowns. We estimated θcrit not only at the surface layer using in situ soil moisture measurements at 10 cm depth, but also for the root zone using vertically integrated in situ soil moisture (0–50 cm) observations. We estimated θcrit across various soil textures (e.g., sandy loam, silty loam, clay loam), vegetation types (grass, crop), as well as weather conditions from western and eastern Germany (spatial distances: 10 ~ 600 km). Especially, with some lysimeters that were taken from their original environment and translocated to other regions, we can identify the shift of θcrit with the same soil and vegetation but under different weather conditions, which can provide implication on changes of θcrit under global warming. We would expect a dependence of θcrit on soil texture and weather condition. We found for example that at the same site with the same crop rotation on the lysimeters but different soils, the sandy loamy soil experienced a lower θcrit (approximate 0.15 m3/m3) than the silty loamy soil (approximate 0.17 m3/m3), indicating that the higher content of sand would lead to the lower θcrit. In addition, an increase in θcrit was observed when the lysimeter was translocated from a site with a lower potential ET to a site with a higher potential ET.

How to cite: Lu, X., Groh, J., Pütz, T., Graf, A., Javaux, M., Vereecken, H., and Hendricks Franssen, H.-J.: Critical Soil Moisture Content Estimated from Lysimeter Time Series for Different Soil, Vegetation and Weather conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2783, https://doi.org/10.5194/egusphere-egu24-2783, 2024.

EGU24-3404 | ECS | Orals | HS1.2.5

Effects of changes in climatic conditions on soil water storage patterns 

Annelie Ehrhardt, Jannis Groh, and Horst H. Gerke

The soil water storage (SWS) defines crop productivity of a soil and varies under differing climatic conditions. Pattern identification and quantification of these variations remains difficult due to the non-linear behaviour of SWS changes over time.

We hypothesize that these patterns can be revealed by applying wavelet analysis to an eight-year time series of SWS, precipitation (P) and actual evapotranspiration (ETa) in similar soils of lysimeters in a colder and drier location and a warmer and wetter location within Germany. Correlations between SWS, P and ETa at these sites might reveal the influence of altered climatic conditions but also from subsequent wet and dry years on SWS changes.

We found that wet and dry years exerted influence on SWS changes by leading to faster or slower response times of SWS changes to precipitation in respect to normal years. This might be explained by a higher soil water content and the related higher soil hydraulic conductivity. Time shifts in correlations between ETa and SWS became smaller at the wetter and warmer site over time in comparison to the cooler and drier site where they stayed constant. This could be attributed to an earlier onset of the vegetation period over the years and thus to an earlier ETa peak every year and reflects the direct impact of changing climate on soil water budget parameters. 

How to cite: Ehrhardt, A., Groh, J., and Gerke, H. H.: Effects of changes in climatic conditions on soil water storage patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3404, https://doi.org/10.5194/egusphere-egu24-3404, 2024.

EGU24-9112 | Posters on site | HS1.2.5

Investigating herbicide transport and fate in vegetated lysimeters with numerical modeling and stable carbon isotopes 

Arno Rein, Anne Imig, Lea Augustin, Jannis Groh, Thomas Pütz, Martin Elsner, and Florian Einsiedl

The application of pesticides can induce severe impacts to the vadose zone, groundwater, and their ecosystems. A study was carried out on two lysimeters located in Wielenbach, Germany. Different soil textures were considered within the soil cores, consisting of sandy gravel and clayey sandy silt. The lysimeters were vegetated with maize, and four different herbicides were applied according to common agricultural practice. Over a period of 4.5 years, concentrations of the herbicides and selected metabolites were monitored in the lysimeter drainage. In addition, stable carbon isotopes (δ13C) were analyzed for investigating biodegradation influences of two of the applied herbicides.

In a first step, we characterized unsaturated flow in the lysimeters based on stable water isotope measurements (δ2H and δ18O) combined with modeling. Different setups within the numerical model HYDRUS-1D were compared, including single and dual porosity approaches. Then, the unsaturated flow models were extended for describing reactive transport of the herbicides, and simulations were interpreted in combination with measured δ13C values. 

At the end of the observations, 0.9 to 15.9% of the applied herbicides (up to 20.9% for herbicides plus metabolites) were recovered in lysimeter drainage. Some metabolites were observed to accumulate in drainage, and biodegradation was indicated by small isotopic shifts in δ13C to less negative values in the leached herbicides. In the later sampling campaign (7.5 months after herbicide application), a higher increase in δ13C (less negative values) compared to earlier sampling (19 days after application) points towards stronger biodegradation. This can be explained by a higher biodegradation potential when the infiltrated water and the herbicides were affected by longer mean transit times in the unsaturated zone.

Observations were reproduced by modeling, where the overall dynamics of herbicide concentration in the lysimeter drainage could be covered well by the model setups. The concentration peaks were partly associated with heavy precipitation, which in turn indicates that the transport was influenced by preferential flow. Limitations were found for describing preferential flow events by using single and dual porosity models, as some concentration peaks were over- or underestimated. The use of δ13C for compound-specific isotope analysis allowed obtaining some evidence on biodegradation of the two herbicides in the unsaturated zone, which was also validated with the model results. 

How to cite: Rein, A., Imig, A., Augustin, L., Groh, J., Pütz, T., Elsner, M., and Einsiedl, F.: Investigating herbicide transport and fate in vegetated lysimeters with numerical modeling and stable carbon isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9112, https://doi.org/10.5194/egusphere-egu24-9112, 2024.

The ongoing global concern regarding climate change necessitates innovative approaches to understand its complex dynamics. This presentation outlines the evolution of lysimeters and ecotrons, culminating in the development of a cutting-edge platform designed for comprehensive research on climate change parameters in both laboratory and field environments.

Lysimeters, traditionally employed to measure water movement and nutrient transport in soil, have undergone significant advancements. Enhanced instrumentation and sensor integration now allow for precise monitoring of multiple environmental factors, including soil moisture, temperature, and gas exchange. These improvements enable researchers to simulate and analyze various climate change scenarios in a controlled laboratory setting.

Simultaneously, ecotrons, specialized chambers designed to replicate natural ecosystems, have evolved to provide a more realistic representation of climate interactions. By incorporating advanced technologies such as remote sensing, automated data acquisition, and controlled environmental conditions, ecotrons now offer a holistic approach to studying the impact of climate change on ecosystems.

The integration of lysimeters under natural conditions and ecotrons into a unified platform represents a paradigm shift in climate change research. This new platform facilitates a seamless transition between controlled laboratory experiments and real-world field studies, allowing for a more comprehensive understanding of the intricate relationships between climate change parameters.

Researchers can now explore the effects of elevated temperatures, altered precipitation patterns, and increased greenhouse gas concentrations on soil health, plant growth, and ecosystem dynamics with unprecedented precision. The platform's adaptability and versatility make it a valuable tool for addressing urgent questions related to climate change impact mitigation and adaptation strategies.

In conclusion, the fusion of outdoor lysimeters and indoor ecotrons into a unified platform signifies a milestone in climate change research. This innovative approach provides researchers with a powerful tool to investigate and address the complex challenges posed by climate change, fostering a more sustainable and resilient future.

How to cite: Reth, S.: Advancements in Lysimeters and Ecotrons: A Novel Platform for Investigating Climate Change Parameters in Laboratory and Field Settings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9489, https://doi.org/10.5194/egusphere-egu24-9489, 2024.

EGU24-9685 | ECS | Orals | HS1.2.5 | Highlight

The need for realistic experimental setups in controlled environments: insights from a two-year ecotron experiment on earthworms’ impact on ecosystem H2O, CO2 and N2O dynamics 

Joana Sauze, Oswaldo Forey, Clément Piel, Emmanuel S. Gritti, Sébastien Devidal, Abdelaziz Faez, Olivier Ravel, Yvan Capowiez, Damien Landais, Jacques Roy, and Alexandru Milcu

Recent studies have highlighted the potential role of earthworms in modulating soil greenhouse gas (GHG) emissions, yet the complexity of natural ecosystems and the lack of high-resolution temporal data have limited our understanding. To bridge this gap, a two-year experiment was undertaken in a controlled ecotron setting, utilizing large-scale lysimeters (5 square meters in area and 1.5 meters in soil depth) in the Macrocosms experimental platform of the Montpellier European Ecotron (CNRS). This study aimed to provide an understanding of the impact of earthworms (specifically endogeic and anecic ecotypes) on water and greenhouse gas emissions in a realistically simulated agricultural ecosystem undergoing a three-crop rotation.

We employed continuous, high-frequency monitoring to measure ecosystem-level exchanges of CO2, N2O, and H2O. While temporary increases in CO2 fluxes were noted in earthworm-inhabited replicates, the cumulative data over the entire study period did not demonstrate a significant increase in CO2 emissions. Interestingly, the presence of endogeic earthworms was correlated with a notable reduction in N2O emissions during wheat cultivation (by 44.6%), although this effect did not persist throughout the entire experimental timeline. Additionally, while earthworms had an impact on water infiltration along the soil profile, no consistent patterns were observed in terms of ecosystem evapotranspiration or water use efficiency (WUE) changes attributable to earthworm activity.

Our findings provide critical insights into the role of earthworms in terrestrial GHG dynamics, particularly in agricultural settings. Contrary to prevailing assumptions, this study suggests that earthworm activity does not lead to a significant increase in greenhouse gas emissions over a period of two years under conditions that closely emulate agricultural environments. These results underscore the importance of conducting long-term, high-resolution studies in realistically simulated ecosystems to better comprehend the intricate relationships between soil biota and greenhouse gas emissions.

How to cite: Sauze, J., Forey, O., Piel, C., Gritti, E. S., Devidal, S., Faez, A., Ravel, O., Capowiez, Y., Landais, D., Roy, J., and Milcu, A.: The need for realistic experimental setups in controlled environments: insights from a two-year ecotron experiment on earthworms’ impact on ecosystem H2O, CO2 and N2O dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9685, https://doi.org/10.5194/egusphere-egu24-9685, 2024.

EGU24-11233 | Orals | HS1.2.5 | Highlight

Influence of climate and land management on water, carbon and nitrogen cycling in grasslands of the pre-alpine region of southern Germany 

Ralf Kiese, Marcus Schlingmann, Katrin Schneider, Sophie Reinermann, Anne Schucknecht, Jincheng Han, Thomas Koellner, Carolin Boos, and Michael Dannenmann

Pre-alpine grasslands provide important economic value through forage for milk and meat production. Grassland soils also support ecosystem services such as carbon and nitrogen storage, water retention, erosion control and biodiversity. These functions are currently threatened by climate change, which is likely to accelerate in the coming decades. In addition to climate change, management decisions such as mowing and fertilisation frequency have a major impact on grassland yields, biodiversity and soil C and N dynamics. In this presentation we will summarise results from long-term monitoring of control and translocated grassland soil monoliths (1m2; 1.4m height) as operated in TERENO and studied in detail in the SUSALPS project.

From 2012, moderate climate change (plus 2°C) has increased grassland productivity, unless water stress has reversed the temperature stimulating effect. However, this increase in plant growth is only possible because increased N mineralisation rates under climate change allow increased N demand to be met. As plant N uptake is already in the range of total N fertilisation rates under current climate conditions, N losses to the environment, such as microbial N2O emissions and nitrate leaching from montane grassland soils, are comparatively low. If other ecosystem N losses such as NH3 and N2 emissions are considered, it becomes clear that even under the present climatic conditions substantial N has to be provided by mineralisation of soil organic N, indicating soil N (and C) mining. As the latter is associated with negative effects on soil fertility/productivity, C sequestration and GHG exchange, as well as filtering functions to protect water bodies, this trend poses risks to key soil functions in the long term. The detailed investigations from long-term monitoring sites were essential for testing a process-based model (LandscapeDNDC), which was used together with remote sensing information for spatial and temporal upscaling of the results.

How to cite: Kiese, R., Schlingmann, M., Schneider, K., Reinermann, S., Schucknecht, A., Han, J., Koellner, T., Boos, C., and Dannenmann, M.: Influence of climate and land management on water, carbon and nitrogen cycling in grasslands of the pre-alpine region of southern Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11233, https://doi.org/10.5194/egusphere-egu24-11233, 2024.

EGU24-11711 | Orals | HS1.2.5

The Deep Soil Ecotron – A Facility to Explore, Model, and Sense Deep Soil 

Zachary Kayler, Michael Strickland, David Williams, Rodrigo Vargas, Zeli Tan, Caley Gasch, Susan Crow, and Noah Fierer

The Deep Soil Ecotron will give researchers the unparalleled ability to investigate and experiment with deep soils while complementing established ecotrons across the globe. This facility, composed of twenty-four, highly instrumented ecounits, will allow for soil profiles up to three meters in depth to be repeatedly sampled and continuously monitored. This facility will be the first modern ecotron facility in the United States and as such will provide research infrastructure that this country currently lacks. The Deep Soil Ecotron will enable researchers to address the following four broad research needs using approaches and instrumentation that have been unattainable under more common field and laboratory experiments. First, the Deep Soil Ecotron will reveal how deep soil communities and processes affect and interact with surface soils to influence whole ecosystems. Second, the Deep Soil Ecotron will allow researchers to determine how deep soils and associated vegetation respond to global and land-use change, such as increasing soil temperature and agricultural management practices. Third, information gained from the Deep Soil Ecotron will be integrated into earth system models to improve model representation of soil carbon cycling. Fourth, the Deep Soil Ecotron will provide a testbed for the development of sensors for the in-situ monitoring of deep soils. This presentation will provide an overview of the Deep Soil Ecotron's design, capacity, and preliminary research agenda.

How to cite: Kayler, Z., Strickland, M., Williams, D., Vargas, R., Tan, Z., Gasch, C., Crow, S., and Fierer, N.: The Deep Soil Ecotron – A Facility to Explore, Model, and Sense Deep Soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11711, https://doi.org/10.5194/egusphere-egu24-11711, 2024.

EGU24-12759 | Orals | HS1.2.5

Enhanced understanding of water cycling processes of dwarf shrubs using high-precision lysimeters and climate manipulations 

Georg Leitinger, Elena Tello-García, Lucía Laorden-Camacho, Lisa Ambrosi, Karl Grigulis, Bello Mouhamadou, Christiane Gallet, Ursula Peintner, Ulrike Tappeiner, and Sandra Lavorel

Throughout European mountains, changes in livestock production systems since the 1950s have resulted in the gradual segregation between more accessible, flatter, and productive grasslands with intensified fodder production, and more remote, steeper, and less productive meadows used for extensive grazing, and some abandoned. After cessation of grazing in subalpine grasslands, secondary succession promotes the gradual colonization of species and functionally diverse herbaceous communities by shrubs. Although shrub encroachment is considered a ‘Plant Functional Type transformation’, our knowledge about the impact of climate change on shrub encroached ecosystems is still limited. Mechanistic analyses of alpine grassland responses to drought have focused on carbon fluxes, and a few studies have targeted components of the ecosystem water budget or nutrient cycling. However, these studies are focused on herbaceous functional groups, and shrubs are usually neglected. Moreover, despite the prevalence of this original climate change driver in mountains, snow manipulations are still rare.

To improve understanding of nitrogen and water cycling processes of shrubs with expected increased drought and advanced snowmelt, small high-precision lysimeters (SFL®, Meter Group AG, Munich, Germany) were used to analyze the effects and mechanisms of climate change on shrub species. In a garden experiment in the LTSER-site Stubai Valley (970 m a.s.l.), Tyrol Austria, two congeneric shrubs contrasting a deciduous (Vaccinium myrtillus) and evergreen (Vaccinium vitis-idaea) were planted into 16 lysimeters. In a split-plot design of 3.5m x 3.5m each, two plots were subject to either (1) control, (2) earlier snowmelt, or (3) summer drought treatments.

The manipulative experiments indicate that a shortening of the period with snow cover at the end of winter affects soil freezing and hence, soil nitrogen (N) and carbon (C) availability. Results further highlight the interacting effects of climate manipulations on key plant traits, and their consequences for N- and water availability. Furthermore, summer drought seems to additionally affect biogeochemical cycling and evapotranspiration for both investigated shrub types. This study's results reveal the importance of addressing the impact of shrub encroachment not only from a land management perspective but also to increasingly raise awareness about climate change effects on shrubs. Moreover, it provides valuable insights into challenges and chances of growing shrubs in lysimeters, being a promising approach for future climate impact studies. The study was conducted as part of the LUCSES project, ANR-FWF (ANR-20-CE91-0009 and FWF-I 4969-B).

How to cite: Leitinger, G., Tello-García, E., Laorden-Camacho, L., Ambrosi, L., Grigulis, K., Mouhamadou, B., Gallet, C., Peintner, U., Tappeiner, U., and Lavorel, S.: Enhanced understanding of water cycling processes of dwarf shrubs using high-precision lysimeters and climate manipulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12759, https://doi.org/10.5194/egusphere-egu24-12759, 2024.

EGU24-14816 | ECS | Posters on site | HS1.2.5

Can we bring alpine climate into ecotrons? 

Harald Crepaz, Johannes Klotz, Marco Cavalli, Ulrike Tappeiner, and Georg Niedrist

Climate change is advancing at an unprecedented pace, impacting terrestrial ecosystems, particularly those in alpine regions. Consequently, there is a growing need to comprehend the associated impacts, underlying mechanisms, and implications. Long-term monitoring may face challenges in capturing the effects of accelerated climate change, and in-situ experiments in remote alpine areas often grapple with logistical constraints. Furthermore, attributing vegetative responses to specific manipulated variables proves challenging, especially under extreme alpine conditions such as low atmospheric pressure, low temperatures, or high radiation levels.

Using a specially designed ecotron called 'TerraXcube' (Bozen, Italy), we investigated the feasibility of realistically reproducing harsh alpine conditions and explored the interactions among various parameters. For our measurements, we equipped the chamber with temperature and relative humidity probes, a spectrometer, barometer, and anemometer positioned at different heights within the chamber. We tested the spatial and temporal homogeneity of the variables— atmospheric pressure, temperature, relative humidity (RH), and radiation—independently, as well as their interactions over time and in space, by simulating various realistic alpine climatic scenarios.

The measurements, conducted between -20°C and +25°C with relative humidity ranging from 10% to 95%, yielded satisfactory results. Over several hours, the largest difference at a specific position was 0.6°C and 4.3% RH, while the maximum difference between two sensors simultaneously was 1°C and 7% RH. At a height of 170 cm, the LED system emitted radiation at an intensity of 1,002 W/m² within the wavelength range of 280 to 900 nm; however, with a sharp decrease in intensity from the light source. The photosynthetically active radiation (PAR) at the chamber's center reached 1,883 μmol·m−2·s−1, achieving 77% of the potential annual maximum measured at 2,400 m a.s.l. This enables us to replicate the PAR level for 97% of the days throughout the year. Despite the high light intensity, the heating effect of the LED system was limited to a maximum of 2°C in the upper 40cm of the chamber. Pressure manipulation, with the highest technical demand, nonetheless resulted in high temporal homogeneity up to 4,000m a.s.l., corresponding to 618.9 mbar.

In conclusion, the results emphasize the potential and utility of ecotrons in simulating a suitable climate for alpine ecological experiments. However, as in many ecotrons, it is crucial to acknowledge that minor island effects and irregularities are inevitable. Even more sophisticated parameters such as wind effects or pollinator function are currently not sufficiently addressed. A combined in- and outdoor usage of mobile field lysimeters might be a further step to bridge this gap between experimental results obtained in ecotrons and in the field.

How to cite: Crepaz, H., Klotz, J., Cavalli, M., Tappeiner, U., and Niedrist, G.: Can we bring alpine climate into ecotrons?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14816, https://doi.org/10.5194/egusphere-egu24-14816, 2024.

EGU24-15212 | ECS | Posters on site | HS1.2.5

Effects of land use change on dry heathland soil moisture in a changing climate 

René Shaeffer, Francois Rineau, and Nadia Soudzilovskaia

Conversion of natural and semi-natural systems to agricultural use is one of the largest conservation
challenges of our time. As the world’s population continue to grow at unprecedented rates,
multinational organizations like the United Nations and its subsidiary the Food and Agriculture
Organization call for higher crop production and the expansion of existing agriculture to ensure future
food security, especially in the face of changing climate. However, these efforts will most likely endanger
numerous landscapes of historical and cultural value, including those found in northwest Europe. How
these possible changes in land use may alter the functions of these ecosystems and the associated
services they provide are questions that need to be answered before any policy decisions can be made.


Using a state-of-the-art ecotron facility, we compared soil moisture profiles between an intact dry
heathland system and heathland soils that had been cleared for cereal agriculture, both of which were
subjected to climate conditions projected for the year 2070, in line with the IPCC RCP8.5. After
continuously monitoring moisture changes in the top 1.5 meters of soil for three years, we found that
there are significant differences between the two modes of land use. Soils used for cereal crops were
significantly drier (up to >60%) in the upper 10-20cm than intact heathland soils, and significantly wetter
(up to >500%) at the lowest soil levels (140cm). This redistribution of moisture within the soil column
under different land use schemes can have serious implications for overall ecosystem functioning,
particularly with regard to potentially mitigating heathland soils’ ability to store and capture carbon and
exacerbating detrimental soil-climate feedbacks under agricultural use.

How to cite: Shaeffer, R., Rineau, F., and Soudzilovskaia, N.: Effects of land use change on dry heathland soil moisture in a changing climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15212, https://doi.org/10.5194/egusphere-egu24-15212, 2024.

EGU24-15321 | ECS | Posters on site | HS1.2.5

A practical approach to link lysimeter and large-scale measurement systems. 

Gunther Liebhard, Peter Strauss, Peter Cepuder, and Reinhard Nolz

An accurate and reliable measurement system is essential for analysing transport processes within the soil-plant-atmosphere continuum and for calibrating and validating ecosystem or hydrological models. Weighing lysimeters are very suitable tools for these purposes, as they are the most direct tools to reliably and precisely measure water mass balance components such as rainfall and non-rainfall water inputs, evapotranspiration, and percolation at the system boundaries. Investigating the ecosystem by use of lysimeters is more or less limited to point measurements, though. Approaches are therefore required to link lysimeter mesurements to the landscape scale. We present our experimental approach to link point and large-scale parameter assessment at an experimental station in Groß-Enzersdorf, Austria. In particular, we use soil water content data across the soil profiles from capacitance sensors and t-test statistics to check the representativeness of the conditions in the lysimeter body with the surrounding field and to assess soil hydraulic properties for numerical modeling of water fluxes. Based on this, we transfer measurement data with high measurement accuracy and temporal resolution from the lysimeter scale to the large-scale measurement systems such as eddy covariance, scintillometry, or isotope hydrology. On the other hand, we are able to incorporate parameters from areal measurements and from measurements using disturbed and undisturbed soil samples into the lysimeter measurement system.

How to cite: Liebhard, G., Strauss, P., Cepuder, P., and Nolz, R.: A practical approach to link lysimeter and large-scale measurement systems., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15321, https://doi.org/10.5194/egusphere-egu24-15321, 2024.

EGU24-15370 | Posters on site | HS1.2.5

What you do not know, and what you should know about lysimeter experiments 

Thomas Puetz, Horst H. Gerke, Nicolas Brueggemann, Harry Vereecken, and Jannis Groh

For many studies in the fields of soil, hydrology, agriculture, ecology, meteorology, and environmental sciences and across disciplines, conventional field experiments are inadequate because the variables cannot be measured properly or controlled experimentally. In the soil-plant-atmosphere continuum, lysimeters can be used as an integrative experimental approach that enables precise measurements of water and matter fluxes in combination with field crops. The term lysimeter basically refers to two different types of experimental equipment. Porous suction cups, as well as containers/vessels filled with soil substrates or other materials, are termed lysimeters. Lysimeters are vessels of various sizes filled with ecosystem compartments, taking a holistic approach as each compartment interacts dynamically within the biosphere.

Lysimeter experiments are carried out in a wide variety of designs. To optimize the scientific exploitation of lysimeter data, various prerequisites should be met. The complexity of lysimeter experiments will be explained in more detail, the advantages of lysimeters, but also the restrictions and limitations will be examined in more detail. We would like to suggest some hints, norms, and rules for conducting lysimeter experiments that can optimize and increase the benefit and profit of lysimeter experiments. Special attention is paid to the important technical details that can significantly influence the quality of lysimeter measurements. The latest technical developments are also briefly presented.

How to cite: Puetz, T., Gerke, H. H., Brueggemann, N., Vereecken, H., and Groh, J.: What you do not know, and what you should know about lysimeter experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15370, https://doi.org/10.5194/egusphere-egu24-15370, 2024.

EGU24-16315 | Posters on site | HS1.2.5

Aluminum fate in forest soils developed from magmatic and metamorphic rock of mid-mountain areas in Germany 

Roukaya Eid, Katharina Lehmann, Karin Eusterhues, and Kai Totsche

Climate and land use change affect weathering and pedogenesis with potential consequences for the fate of Al-bearing minerals and the potential export of Aluminum to groundwater resources. These changes might result in strong acidification, originally known for “acid rain” affecting these areas until the second but last decade of the past century. To explore the fate of Al in areas now affected by climate and land use change, we investigated two sites of different geology in North-Bavaria. Site 1 is located on granitic rocks under a reforested 6-year-old Norway spruce forest. Site 2 is a hilltop site located on metamorphic rocks under a 60-80-year-old spruce forest. Soil samples (< 2mm) and clay fractions were analyzed by hydrochemical and spectroscopic techniques. Zero tension controlled lysimeter and automated tension controlled lysimeters were installed for monitoring the soil solution volume and composition at the topsoil-subsoil and the subsoil-regolith boundary. Monitoring started in June 2018. Since then, 85 sampling campaigns have been completed that amounted to 1500 individual lysimeter samples. Analysis comprised among others EC, pH, elemental composition major anions and cations, and carbon sum parameters (DOC, TOC, DIC, TIC).

Recent climate at the sites differs markedly from the 1961-1990 period, indicating a transient climate at the sites. Mean soil pH ranged from 3.2 to 4.7 at both sites and was comparable to values published in 1995 by Franken et al. (3.4 to 4.2). Thus, recent soil pH is as low as used to be under the conditions of strong acid precipitation of the last century. Soils developed from magmatic rock showed higher contents of variable Al phases than those developed from metamorphic rocks.

At both sites pyrophosphate extractable Al is the dominant Al pool accounting 19.4% of total Al in site 1(14.1 g/kg in Bs horizon), and 6.9% of total Al in site 2 (4.9 g/kg in Bs horizon).

Noteworthy, hydrological summer was more important for seepage generation than the hydrologic winter: Roughly 68% of the total annual seepage volume was found in the hydrological summer. As a result, the TOC flux from the subsoil in summer is 35.66 ± 20 mg/year, and only 13.88 ± 13.8 mg/year in winter. Similarly, the Al flux in summer is 1.02 ± 0.7 mg/year and only 0.43 ± 0.4 mg/year in winter.

Variation partitioning analysis showed that the seasonal variation and the difference between topsoil and subsoil combined explained less than 5 % of the particle-related soil solution properties ((pH, ∑LMWO, TOC, Al and Si(mg/L)) and less than 1% of the hydrochemical properties (TIC, Cl, SO42−, Ca, Mg, Na (mg/L)). Difference between the two sites explained 13.84% and 6.48% of the two sets, respectively and the sampling year explained 4.52% and 4.74%. We conclude that the Al system at our sites is controlled by climatic conditions and site properties (lithology, slope, vegetation..). There are no indications that the released Al is immobilized in any secondary immobile Al-phase in the subsoil or downstream, pointing to the potential transport of Al and other unwanted substances to the aquifers.

How to cite: Eid, R., Lehmann, K., Eusterhues, K., and Totsche, K.: Aluminum fate in forest soils developed from magmatic and metamorphic rock of mid-mountain areas in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16315, https://doi.org/10.5194/egusphere-egu24-16315, 2024.

EGU24-20671 | Posters on site | HS1.2.5 | Highlight

Effect of climate change on functioning of natural and agricultural ecosystems: an ecotron study 

Francois Rineau and Nadejda Soudzilovskaia and the Ecotron consortium team

Ecotrons represent enclosed systems in which macrocosms are subjected to controlled environmental conditions, and their responses are closely monitored at a high frequency. This makes them particularly well-suited for investigating the impact of climate change on ecosystem functioning. In this presentation, we demonstrate the utilization of the UHasselt ecotron to examine the effects of climate change on two distinct ecosystems: a natural heathland and an agricultural pear orchard.

We delve into the results obtained thus far, covering aspects such as carbon balance, water balance, greenhouse gas emissions, soil water nutrients, plant biomass, phenology, soil microbial communities, and soil fauna. Additionally, we explore the strengths and limitations associated with ecotron-based approaches. The presentation concludes by identifying future challenges in this field.

How to cite: Rineau, F. and Soudzilovskaia, N. and the Ecotron consortium team: Effect of climate change on functioning of natural and agricultural ecosystems: an ecotron study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20671, https://doi.org/10.5194/egusphere-egu24-20671, 2024.

EGU24-20967 | Orals | HS1.2.5

Determining the soil water balance at a large-scale lysimetric facility with 60 years of uninterrupted data comprising a grassland basin, oak/beech and a pine basin 

Marcel Gaj, Stephan Costabel, Michèle Erlach, Julia Frank, Viktoriya Tarasyuk, Stephan Peth, and Vera Schimetzek

The research facility St. Arnold presented here consists of three individual lysimeters with an area of 400m² and 3.5m depth each. They are similar in soil types but differ in vegetation cover. This unique setup allows the direct comparison of the water balance of grassland, oak/beech forest and pine forest under the same climatic and topographic boundary conditions. The later site were cut after a significant storm occurred in 2007. Since a pioneer forest developed. 

The data collection of precipitation, groundwater recharge, temperature, humidity and sunshine duration started in 1964. In addition, stem diameter at certain trees has been determined once a year.  All data until 1997 were collected manually. After that automated collection of hydro climatic data were established and transmitted directly into the database of LANUV. From the data, evaporation rates were calculated with Penman-Montheith. More recently in October 2023 undisturbed soil cores where collected and analyses for their saturated and unsaturated hydraulic conductivity. In addition, the investigation of the water balance has been done with HYDRUS 3D.

The data shows significant trends. Further, it can be observed how storm damage and/ or clear-cut of forested areas impact the soil water balance.  The long-term average of the period 1965 to 2007 showed, the grassland basin turns more than half of its annual incoming precipitation into leachate and only 36% into evaporation while the deciduous forest exhibits a ratio of 36% leachate and 56% for evapotranspiration. The evergreen coniferous forest shows the highest evaporation rate 65% and the lowest leachate rate with 26%. (Harsch et al., 2009)

An upgrade of the entire facility with state of the art measurements devices is in progress. This will initiated with a geophysical survey in the beginning of 2024 along with the installation of soil moisture and tensiometer sensors. Depending on funding permanent and long term geophysical measurements and stable isotope analysis will be conducted all data will be available open source. We welcome collaborators for joint research at the facility.

 Harsch, N., Brandenburg, M., & Klemm, O. (2009). Large-scale lysimeter site St. Arnold, Germany: analysis of 40 years of precipitation, leachate and evapotranspiration. Hydrology and earth system sciences13(3), 305-317.

How to cite: Gaj, M., Costabel, S., Erlach, M., Frank, J., Tarasyuk, V., Peth, S., and Schimetzek, V.: Determining the soil water balance at a large-scale lysimetric facility with 60 years of uninterrupted data comprising a grassland basin, oak/beech and a pine basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20967, https://doi.org/10.5194/egusphere-egu24-20967, 2024.

EGU24-21932 | Orals | HS1.2.5

Heat transport model simulations of Lysimeter/Ecotron systems 

Gernot Klammler, Janja Vrzel, and Hans Kupfersberger

Soil temperature plays a central role in the complex processes in the vadose zone, particularly in connection with water and solute transport. As a major thermal factor, soil temperature influences not only the physical properties of the soil, but also the biochemical reactions responsible for the transport of water and solutes. The variation of soil temperature can have significant effects on the mobility of nutrients and pollutants and thus plays a key role in understanding and controlling important soil processes.

Ecotrons in combination with weighable lysimeters are generally able to investigate complex ecological processes (e.g. evapotranspiration, nutrient dynamics) under controlled conditions. However, the requirement for this is that the temperature control of the soil column can be simulated with sufficient accuracy over the entire height and cross-section. Furthermore, it must also be ensured that the required rates of temperature change in the soil column, which can vary depending on the scientific question, can be simulated.

In the course of the abstract submitted here, we would like to present the results of 3D heat transport model simulation for selected examples, which contribute to the optimization of the technical design of Lysimeter/Ecotron systems (e.g. with regard to insulation thickness, heat exchanger area, required inlet temperature in the heat exchanger, etc.).

How to cite: Klammler, G., Vrzel, J., and Kupfersberger, H.: Heat transport model simulations of Lysimeter/Ecotron systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21932, https://doi.org/10.5194/egusphere-egu24-21932, 2024.

EGU24-6080 | Posters on site | CL5.3

U-Th dating of gypsum: methodology and reference materials 

Xuefeng Wang, Lisheng Wang, Zhibang Ma, Wuhui Duan, and Jule Xiao

Gypsum is a common evaporate mineral in a wide variety of geological settings, especially in arid and semi-arid areas. It often precipitated from the natural brine systems with trace amounts of U and almost no Th, rendering it a potentially valuable U-Th geochronometer. However, U-Th dating of gypsum is often challenging, such as how to quickly and completely digest gypsum into solution, and avoid the re-crystallization of gypsum particles during the digestion and chromatography process. Here we present a rapid and practical method for high-precision U-Th dating of gypsum using the (NH4)2CO3 exchange reaction and double-spike method by MC-ICPMS. Our developed protocol addresses these conventional challenges by using the chemical reaction between calcium sulfate and carbonate, resulting in the (NH4)2SO4 solution and CaCO3 precipitate. Then the CaCO3 could be easily digested by diluted acid. With the solid-liquid separation, Ca2+ and SO42- ions are also effectively separated, minimizing the recrystallization of gypsum. The (NH4)2CO3 median, the gypsum/carbonate molar ratio of 1: 4, and the exchange reaction duration of 1.5 ~ 2 hours are suggested in this protocol. Since there is no gypsum U-Th dating reference materials to validate the accuracy of different approaches and ensure methods are repeatable across laboratories. We also prepared and characterized two natural gypsum U-Th dating reference materials (PXCG-1, PXCG-2) from PiXiao Cave, southwest China. Data from three different laboratories exhibit good agreement with both 238U content, δ234U, 230Th/238U activity ratio, and the 230Th ages. The 230Th ages of PXCG-1, PXCG-2 RMs proposed are 66.97 ± 0.31 ka, 260.82 ± 3.39 ka, respectively.

How to cite: Wang, X., Wang, L., Ma, Z., Duan, W., and Xiao, J.: U-Th dating of gypsum: methodology and reference materials, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6080, https://doi.org/10.5194/egusphere-egu24-6080, 2024.

EGU24-10443 | Posters on site | CL5.3

14C bomb peak and the onset of the Anthropocene 

Irka Hajdas, Carley Crann, Kristine DeLong, Barbara Fiałkiewicz-Kozieł, Juliana Ivar Do Sul, Jerome Kaiser, Francine M.G. McCarthy, Simon Turner, Allison Stenger, Colin Waters, and Jens Zinke

The unprecedented environmental changes resulting from anthropogenic activities initiated during the Great Acceleration of the mid-20th century can be traced using radiocarbon analysis. The cosmogenic isotope 14C, which is produced in the atmosphere, is well-known as the geochronological tool applied to archives of the last 55 thousand years. However, during the last 200 years, the natural signal of 14C in the atmosphere and connected reservoirs (biosphere, ocean, soils, etc.,) has been perturbed by human activities. Two anthropogenic effects are observed: a decreasing trend observed in 14C concentration of the atmosphere (Suess effect) which has been temporarily reversed by aboveground thermonuclear tests of the 1950/60s.

The excess of the artificially produced 14C (bomb pulse) is a useful time marker for the mid-20th century and the detection of the bomb peak in natural archives has thus been proposed as a tool to locate and date the onset of a proposed new epoch, the Anthropocene [1].

Here we present the results of radiocarbon analysis conducted as a part of the research dedicated to establishing the Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene series. The studied sites include corals (Flinders Reef, AU and Flower Garden Banks, USA)[2, 3], peat (Śnieżka peatland, PL)[4], lake sediment (Crawford Lake, CA and Searsville Lake, USA)[5, 6] and marine sediment (East Gotland Basin, Baltic Sea)[7]. The variety of records (different carbon reservoirs) required site and sample-specific treatment prior to analysis and site-specific interpretation of the measured 14C. Nevertheless, the mid-20th century bomb peak was detected at all but one of these sites (Searsville Lake)[6]. In all records, the observed onset of the 14C bomb peak always postdates 1954, the year of the first atmospheric 14C bomb increase. The specific reservoir effects and corrections will be discussed.

References

The Anthropocene Review, 2023. 10(1):

1.    Waters, C.N., et al. (Eds.), Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series.  p. 3-24.

2.    Zinke, J., et al., North Flinders Reef (Coral Sea, Australia) Porites sp. corals as a candidate Global boundary Stratotype Section and Point  for the Anthropocene series.  p. 201-224.

3.    DeLong, K.L., et al., The Flower Garden Banks Siderastrea siderea coral as a candidate Global boundary Stratotype Section and Point  for the Anthropocene series. p. 225-250.

4.    Fiałkiewicz-Kozieł, B., et al., The Śnieżka peatland as a candidate for the Global boundary Stratotype Section and Point  for the Anthropocene series.  p. 288-315.

5.    McCarthy, F.M.G., et al., The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series.  p. 146-176.

6.    Stegner, M.A., et al., The Searsville Lake Site (California, USA) as a candidate Global boundary Stratotype Section and Point for the Anthropocene Series. p. 116-145.

7.    Kaiser, J., et al., The East Gotland Basin (Baltic Sea) as a candidate Global boundary Stratotype Section and Point for the Anthropocene series. p. 25-48.

How to cite: Hajdas, I., Crann, C., DeLong, K., Fiałkiewicz-Kozieł, B., Ivar Do Sul, J., Kaiser, J., McCarthy, F. M. G., Turner, S., Stenger, A., Waters, C., and Zinke, J.: 14C bomb peak and the onset of the Anthropocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10443, https://doi.org/10.5194/egusphere-egu24-10443, 2024.

EGU24-13250 | Posters on site | CL5.3

Assessing Gol-e-Zard Cave (GZS) and Bergen Speleothem Standards (BSS) for U/Th Geochronometry Using MC-ICP-MS 

Altug Hasözbek, Fernando Jiménez-Barredo, Arash Sharifi, Ali Pourmand, Regina Mertz-Kraus, Michael Weber, Denis Scholz, Stein-Erik Lauritzen, Josep M. Parés, and Silviu Constantin

Recent advancements in MC-ICPMS technology have significantly enhanced the application of U/Th geochronometry in both biogenic and chemically precipitated carbonate rocks of almost middle Pleistocene to upper Holocene. This burgeoning use, particularly in the study of late Pleistocene earth surface processes, underscores the need for standardized reference materials with a broad age spectrum with different uranium and thorium concentrations. Addressing this need, our study evaluates speleothem specimens, Gol-e-Zard Cave Standard (GZS) and Bergen Speleothem Standard (BSS), as potential reference materials.

BSS-2 was processed as a homogenized powder and dissolved aliquot for U-Th dating using MC-ICP-MS analysis. We employed various digestion and ion-resin chromatography separation methods, followed by U-Th dating using MC-ICP-MS at CENIEH, University of Miami, and University of Mainz. The ion chromatography protocols yielded recovery rates ranging from 85% to over 95%. U-series analyses of powdered BSS-2 indicated uncertainties between 0.2-1.5%, attributed to variations in the Beta-factor and the specific U and Th standard bracketing procedures used across laboratories. The dissolved BSS-2 aliquots yield between 1.5-2% of uncertainty. Obtained U-Th ages were 122.8 ± 3.3 ka (University of Miami), 124.5 ± 0.3 ka (University of Mainz), and 123.9 ± 3.2 ka (CENIEH) in the powdered samples. Furthermore, in dissolved samples, the Th-ages vary between 126.9 ± 2.9 to 127.9 ± 3.1 (CENIEH & University of Miami). GZS was prepared as a dissolved standard and the Th-date results obtained from this stalagmite are 3967 ± 0.1 to 3988 ± 0.1 (University of Miami), and 3967 ± 0.1 to 4060 ± 0.4 (CENIEH).

All Th-dates required no correction as activity ratios [230Th/232Th] exceeded 500 and 150 for BSS-2 and GZS, respectively. The consistency of these preliminary results across different laboratories suggest that GZS and BSS-2 are promising reference materials for U-Series analysis of calcium carbonate.

How to cite: Hasözbek, A., Jiménez-Barredo, F., Sharifi, A., Pourmand, A., Mertz-Kraus, R., Weber, M., Scholz, D., Lauritzen, S.-E., M. Parés, J., and Constantin, S.: Assessing Gol-e-Zard Cave (GZS) and Bergen Speleothem Standards (BSS) for U/Th Geochronometry Using MC-ICP-MS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13250, https://doi.org/10.5194/egusphere-egu24-13250, 2024.

EGU24-17301 | ECS | Posters on site | CL5.3

Refining the age-depth model of a marine sediment record in the Laptev Sea using Beryllium-10 

Arnaud Nicolas, Gesine Mollenhauer, Maylin Malter, Jutta Wollenburg, and Florian Adolphi

In order to correctly determine leads and lags in the climate system and compare different proxy records over long time periods, it is important to build robust chronologies that can provide the temporal foundation for paleoclimate correlations between marine, terrestrial and ice-core records. One of the main challenges for building reliable radiocarbon-based chronologies in the marine realm is to estimate the regional marine radiocarbon reservoir age correction. Estimates of the local marine reservoir effect, ΔR, during the deglaciation can be obtained by 14C-independent dating methods such as synchronization to other well-dated archives. The cosmogenic radionuclide 10Be provides such a synchronization tool. Its atmospheric production rate is globally modulated by changes in the cosmic ray flux caused by changes in solar activity and geomagnetic field strength. The resulting variations in the meteoric fallout of10Be are recorded in sediments and ice cores and can thus be used for their synchronization.

In this study we use for the first time the authigenic 10Be/9Be record of a Laptev Sea sediment core and synchronize it to the 10Be records from absolutely dated ice cores. Based on the resulting absolute chronology, the ΔR  was then estimated for the Laptev Sea during the deglaciation. The deglacial estimate for the benthic ΔR value for the Laptev Sea is 345±60 14C years, corresponding to a marine reservoir age of 864±90 14C years. We discuss the obtained ΔR in comparison to modern ΔR estimates from the literature and its consequences for the age-depth model. Our refined age-depth model can be used as a reference for the Laptev Sea and the wider Siberian regions of the Arctic Ocean.    

How to cite: Nicolas, A., Mollenhauer, G., Malter, M., Wollenburg, J., and Adolphi, F.: Refining the age-depth model of a marine sediment record in the Laptev Sea using Beryllium-10, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17301, https://doi.org/10.5194/egusphere-egu24-17301, 2024.

EGU24-18258 | Posters on site | CL5.3

Advancing Quaternary Geochronology: Impact of Sample Preparation and Analytical Techniques on Natural Radioactive Dose Assessment in Stream Sediments 

Fernando Jimenez, Altug Hasozbek, Mathieu Duval, Josep M. Pares, M. Isabel Sarró-Moreno, Ana I. Barrado-Olmedo, Estefania Conde-Vila, Marta Fernández-Díaz, Jose Manuel Cobo, Martin Perez-Estebanez, and Javier Alonso-Garcia

Keywords: Geochronology, Sediment, Uranium, Thorium, Microwave Digestion, HR-ICP-MS

In Quaternary geochronology, accurately estimating natural radiation exposure is crucial for dating materials using Electron Spin Resonance (ESR) and Optically Stimulated Luminescence (OSL). Traditional methods like gamma and alpha spectrometry, despite their utility, are limited by sample size requirements and time inefficiency, especially in low-radiation contexts. This study explores the efficacy of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Plasma Mass Spectrometry (ICP-MS), including both Quadrupole (ICP-QMS) and High-Resolution (HR-ICP-MS), for analyzing uranium, thorium, and potassium concentrations in sediments.

We compared various acid digestion methods using standard hot-blocks, microwave digestion, and single cell microwave technology on Sediment Reference Materials (NIST BRS 8704, OREAS 24d). Potassium detection was more accurate with ICP-OES (96% precision) than ICP-QMS (80%). In contrast, HR-ICP-MS significantly outperformed ICP-QMS in measuring uranium and thorium (U and Th recoveries of 99% and 94% vs. 83% and 81%, respectively). Moreover, microwave-assisted digestion methods showed slight advantages in uranium and thorium recovery.

Our findings suggest that a four-acid microwave-assisted digestion, combined with potassium measurement via ICP-OES in radial mode and uranium and thorium quantification using HR-ICP-MS, offers the most accurate and time-efficient approach for natural dose determination in sediment dating. This methodology is particularly relevant for cave, river, and stream sediments even with expected low uranium levels.

How to cite: Jimenez, F., Hasozbek, A., Duval, M., Pares, J. M., Sarró-Moreno, M. I., Barrado-Olmedo, A. I., Conde-Vila, E., Fernández-Díaz, M., Cobo, J. M., Perez-Estebanez, M., and Alonso-Garcia, J.: Advancing Quaternary Geochronology: Impact of Sample Preparation and Analytical Techniques on Natural Radioactive Dose Assessment in Stream Sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18258, https://doi.org/10.5194/egusphere-egu24-18258, 2024.

EGU24-18925 | Posters on site | CL5.3

μGraphiline: a high-throughput, low-maintenance, fully automated 14C graphitization system 

Konrad Tudyka, Kacper Kłosok, Maksymilian Jedrzejowski, Andrzej Rakowski, Sławomira Pawełczyk, Alicja Ustrzycka, Sebastian Miłosz, and Aleksander Kolarczyk

μGraphiline is an innovative, fully automated graphitization system designed for radiocarbon dating using accelerator mass spectrometry. This system streamlines the conversion of samples into CO2 and subsequently into graphite. The standard configuration of μGraphiline is capable of preparing 24 targets daily, demonstrating its high throughput. It achieves a graphitization efficiency of over 95% for 1 mg graphite targets. μGraphiline also offers additional modules for stepped combustion, ramped pyrolysis, and oxidation, all of which can be operated at user-defined temperatures. Furthermore, its design ensures a low background and reproducibility, significantly enhancing the accuracy and reliability of radiocarbon measurements.

 

One of the notable advantages of the system is its low maintenance requirements. It operates efficiently without the need for working gasses such as helium (He), argon (Ar), oxygen (O2), explosive hydrogen (H2) or liquid nitrogen, which simplifies its operation and enhances safety. This feature, coupled with its modular design and high efficiency, virtually no cross-contamination between modules and samples makes μGraphiline an advanced solution for radiocarbon dating. Lastly, the system's repeatability and reliability are backed by reference materials measurements from the International Atomic Energy Agency, demonstrating good repeatability. 

 

This demonstrates μGraphiline's capability to deliver fast, consistent and accurate results, making it a valuable tool for various scientific and research applications.

How to cite: Tudyka, K., Kłosok, K., Jedrzejowski, M., Rakowski, A., Pawełczyk, S., Ustrzycka, A., Miłosz, S., and Kolarczyk, A.: μGraphiline: a high-throughput, low-maintenance, fully automated 14C graphitization system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18925, https://doi.org/10.5194/egusphere-egu24-18925, 2024.

EGU24-19089 | Posters on site | CL5.3

230Th/U and 234U/238U dating of cold-water corals: Approaching the disequilibrium theory 

Norbert Frank and the DCWC

U-series disequilibrium dating or more specifically 230Th/U - dating of cold-water corals is a major absolute chronological toolbox to study the evolution of coral reefs through time and to determine absolute time scales for climate proxies. Advances in multi-collector inductively coupled ion source mass spectrometry (MC-ICPMS) have continuously improved precision of Th and U isotopic measurements over the past decades thanks the development of new high ohmic resistors for Faraday cups. Consequently, isotopic measurements and absolute precision levels are in epsilon ranges for 234U/238U ratios and in the case of materials older than a few tens of thousands of years also for 230Th/238U ratios. To obtain accurate ages the corals isotope ratios need to evolve as a U series closed system and must be free of initial 230Th and non-carbonate materials. The latter being often traced using the natural most abundant 232Th isotope. Coral diagenesis, bio-erosion, residual ferromanganese coatings, recrystallization, and recoil displacement of U isotopes are known sources of age disturbances and U series open system behavior. Here, I want to advocate, however, that such cold-water corals can be ideal dating objects opening far reaching perspectives of marine climate science and for past ecosystem studies. Based on approx. 1200 coral ages and isotope ratios of reef-forming cold-water corals, which correspond to strict quality criteria, a perfect agreement with theoretical predictions of a closed U series system can be found. The resulting oceanic initial (234U/238U) activity ratio for the past 510 ka varies by at most 6.7 ‰ (2s) surrounding the mean of modern seawater and of all reconstructed values of 146.5 ‰ (HU1 reference material is assumed here to be in secular radioactive equilibrium). Consequently, the 234U/238U ratios may be used for dating of old cold-water corals to expand the dating range to more than 1.2 million years. Moreover, any significant deviation between closed system 234U/238U ages and 230Th/238U ages may be used to detect U series open - system behavior. Based on the combined age determination, more consistent chronologies can be derived for cold-water coral reefs beyond 350 ka and theoretically the quality of this archive has opened a path for absolutely dated marine climate proxy records since the Mid Pleistocene Transition.

How to cite: Frank, N. and the DCWC: 230Th/U and 234U/238U dating of cold-water corals: Approaching the disequilibrium theory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19089, https://doi.org/10.5194/egusphere-egu24-19089, 2024.

EGU24-21472 | ECS | Posters on site | CL5.3

Lyoluminescence: a potential tool for dating evaporites up to the Middle-Pleistocene? 

Magdalena Biernacka and Sebastian Kreutzer

Lyoluminescence (LL) is light emission during the solvation of previously irradiated crystals in the liquid-solid interface (Atari, 1980). Our aim is the breakthrough development of lyoluminescence as a dating tool on halite (here: sodium chloride and potassium chloride) for application in Earth Sciences. The positive correlation between radiation dose and LL light emission makes crystal lattice defects viable natural ionizing radiation dosimeters. With a saturation dose of ~10 kGy (e.g. Atari et al., 1973) for sodium chloride dissolved in pure water and for realistic dose rates of ~4 Gy/ka (e.g., Han et al., 2014), the LL signal from salt minerals potentially may determine an age up to 2.5 Ma.
We hypothesize that LL, naturally observable in salt minerals, will allow dating the last recrystallization event significantly beyond the age limits of conventional luminescence-dating methods. In the past, the potential of halite as a material for optical luminescence dating had been suggested, e.g. Bailey et al., (2000); Zhang et al., (2005). However, LL may offer an additional luminescence-dating tool for routine use in geochronology but targeting the crystallization instead of heat or light exposure event. Moreover, it may enable tapping into different archives and subsurface processes where only the event of the last hydration is of interest.
In our contribution, we present the first basic design of a measurement prototype using 3D printing and preliminary experimental results of salts easily soluble in water.

References
Atari, N.A., 1980. Lyoluminescence mechanism of gamma and additively coloured alkali halides in pure water. Journal of Luminescence 21, 305–316. https://doi.org/10.1016/0022-2313(80)90009-5
Atari, N.A., Ettinger, K.V., Fremlin, J.H., 1973. Lyoluminescence as a possible basis of radiation dosimetry. Radiation Effects 17, 45–48. https://doi.org/10.1080/00337577308232596
Bailey, R.M., Adamiec, G., Rhodes, E.J., 2000. OSL properties of NaCl relative to dating and dosimetry. Radiation Measurements 32, 717–723. https://doi.org/10.1016/S1350-4487(00)00087-1
Han, W., Ma, Z., Lai, Z., Appel, E., Fang, X., Yu, L., 2014. Wind erosion on the north‐eastern Tibetan Plateau: constraints from OSL and U‐Th dating of playa salt crust in the Qaidam Basin. Earth Surf Processes Landf 39, 779–789. https://doi.org/10.1002/esp.3483
Zhang, J.F., Yan, C., Zhou, L.P., 2005. Feasibility of optical dating using halite. Journal of Luminescence 114, 234–240. https://doi.org/10.1016/j.jlumin.2005.01.009
 

How to cite: Biernacka, M. and Kreutzer, S.: Lyoluminescence: a potential tool for dating evaporites up to the Middle-Pleistocene?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21472, https://doi.org/10.5194/egusphere-egu24-21472, 2024.

EGU24-24 | Orals | NP4.1

The fractional Sinusoidal wavefront Model (fSwp) for time series displaying persistent stationary cycles 

Gael Kermarrec, Federico Maddanu, Anna Klos, and Tommaso Proietti

In the analysis of sub-annual climatological or geodetic time series such as tide gauges, precipitable water vapor, or GNSS vertical displacements time series but also temperatures or gases concentrations, seasonal cycles are often found to have a time-varying amplitude and phase.

These time series are usually modelled with a deterministic approach that includes trend, annual, and semi-annual periodic components having constant amplitude and phase-lag. This approach can potentially lead to inadequate interpretations, such as an overestimation of Global Navigation Satellite System (GNSS) station velocity, up to masking important geophysical phenomena that are related to the amplitude variability and are important for deriving trustworthy interpretation for climate change assessment.

We address that challenge by proposing a novel linear additive model called the fractional Sinusoidal Waveform process (fSWp), accounting for possible nonstationary cyclical long memory, a stochastic trend that can evolve over time and an additional serially correlated noise capturing the short-term variability. The model has a state space representation and makes use of the Kalman filter (KF). Suitable enhancements of the basic methodology enable handling data gaps, outliers, and offsets. We demonstrate our method using various climatological and geodetic time series to illustrate its potential to capture the time-varying stochastic seasonal signals.

How to cite: Kermarrec, G., Maddanu, F., Klos, A., and Proietti, T.: The fractional Sinusoidal wavefront Model (fSwp) for time series displaying persistent stationary cycles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-24, https://doi.org/10.5194/egusphere-egu24-24, 2024.

On some maps of the first military survey of the Habsburg Empire, the upper direction of the sections does not face the cartographic north, but makes an angle of about 15° with it. This may be due to the fact that the sections were subsequently rotated to the magnetic north of the time. Basically, neither their projection nor their projection origin is known yet.

In my research, I am dealing with maps of Inner Austria, the Principality of Transylvania and Galicia (nowadays Poland and Ukraine), and I am trying to determine their projection origin. For this purpose, it is assumed, based on the archival documentation of the survey, that these are Cassini projection maps. My hypothesis is that they are Graz, Cluj Napoca or Alba Julia and Lviv. I also consider the position of Vienna in each case, since it was the main centre of the survey.

The angle of rotation was taken in part from the gufm1 historical magnetic model back to 1590 for the assumed starting points and year of mapping. In addition, as a theoretical case, I calculated the rotation angle of the map sections using coordinate geometry. I then calculated the longitude of the projection starting point for each case using univariate minimization. Since the method is invariant to latitude, it can only be determined from archival data.

Based on these, the starting point for Inner Austria from the rotation of the map was Vienna, which is not excluded by the archival sources, and since the baseline through Graz also started from there, it is partly logical. The map rotation for Galicia and Transylvania also confirmed the starting point of the hypothesis.  Since both Alba Julia and Cluj Napoca lie at about the same longitude, the method cannot make a difference there; and the archival data did not provide enough evidence. In comparison, the magnetic declination rotations yielded differences of about 1°, which may be due to an error in the magnetic model.

On this basis, I have given the assumed projections of the three maps with projection starting points, and developed a method for determining the projection starting points of the other rotated grid maps. The results suggest that there is a very high probability that the section network was rotated in the magnetic north direction, and thus provide a way to refine the magnetic declination data at that time.

With this method I managed to give new indirekt magnetic declinations data from Central-East Europe, which can help to improve the historical magnetic field models. The main reason for this is that we don’t have any measurement from that region.

Furthermore the difference beetwen the angle of the section north and the declination data from gufm1 always 0.8-1°. Maybe there are systematical data error at that region.

Supported by the ÚNKP-23-6 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

How to cite: Koszta, B. and Timár, G.: A possible cartographical data source for historical magnetic field improvement: The direction of the section north of the Habsburg first military survey, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-582, https://doi.org/10.5194/egusphere-egu24-582, 2024.

EGU24-1988 | ECS | Posters on site | NP4.1

Predictive ability assessment of Bayesian Causal Reasoning (BCR) on runoff temporal series 

Santiago Zazo, José Luis Molina, Carmen Patino-Alonso, and Fernando Espejo

The alteration of traditional hydrological patterns due to global warming is leading to a modification of the hydrological cycle. This situation draws a complex scenario for the sustainable management of water resources. However, this issue offers a challenge for the development of innovative approaches that allow an in-depth capturing the logical temporal-dependence structure of these modifications to advance sustainable management of water resources, mainly through the reliable predictive models. In this context, Bayesian Causality (BC), addressed through Causal Reasoning (CR) and supported by a Bayesian Networks (BNs), called Bayesian Causal Reasoning (BCR) is a novel hydrological research area that can help identify those temporal interactions efficiently.

This contribution aims to assesses the BCR ability to discover the logical and non-trivial temporal-dependence structure of the hydrological series, as well as its predictability. For this, a BN that conceptually synthesizes the time series is defined, and where the conditional probability is propagated over the time throughout the BN through an innovative Dependence Mitigation Graph. This is done by coupling among an autoregressive parametric approach and causal model. The analytical ability of the BCR highlighted the logical temporal structure, latent in the time series, which defines the general behavior of the runoff. This logical structure allowed to quantify, through a dependence matrix which summarizes the strength of the temporal dependencies, the two temporal fractions that compose the runoff: one due to time (Temporally Conditioned Runoff) and one not (Temporally Non-conditioned Runoff). Based on this temporal conditionality, a predictive model is implemented for each temporal fraction, and its reliability is assessed from a double probabilistic and metrological perspective.

This methodological framework is applied to two Spanish unregulated sub-basins; Voltoya river belongs to Duero River Basin, and Mijares river, in the Jucar River Basin. Both cases with a clearly opposite temporal behavior, Voltoya independent and Mijares dependent, and with increasingly more problems associated with droughts.

The findings of this study may have important implications over the knowledge of temporal behavior of water resources of river basin and their adaptation. In addition, TCR and TNCR predictive models would allow advances in the optimal dimensioning of storage infrastructures (reservoirs), with relevant substantial economic/environmental savings. Also, a more sustainable management of river basins through more reliable control reservoirs’ operation is expected to be achieved. Finally, these results open new possibilities for developing predictive hydrological models within a BCR framework.

How to cite: Zazo, S., Molina, J. L., Patino-Alonso, C., and Espejo, F.: Predictive ability assessment of Bayesian Causal Reasoning (BCR) on runoff temporal series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1988, https://doi.org/10.5194/egusphere-egu24-1988, 2024.

EGU24-3857 | ECS | Posters on site | NP4.1 | Highlight

Spatial-Temporal Analysis of Forest Mortality 

Sara Alibakhshi

Climate-induced forest mortality poses an increasing threat worldwide, which calls for developing robust approaches to generate early warning signals of upcoming forest state change. This research explores the potential of satellite imagery, utilizing advanced spatio-temporal indicators and methodologies, to assess the state of forests preceding mortality events. Traditional approaches, such as techniques based on temporal analyses, are impacted by limitations related to window size selection and detrending methods, potentially leading to false alarms. To tackle these challenges, our study introduces two new approaches, namely the Spatial-Temporal Moran (STM) and Spatial-Temporal Geary (STG) approaches, both focusing on local spatial autocorrelation measures. These approaches can effectively address the shortcomings inherent in traditional methods. The research findings were assessed across three study sites within California national parks, and Kendall's tau was employed to quantify the significance of false and positive alarms. To facilitate the measurement of ecosystem state change, trend estimation, and identification of early warning signals, this study also provides "stew" R package. The implications of this research extend to various groups, such as ecologists, conservation practitioners, and policymakers, providing them with the means to address emerging environmental challenges in global forest ecosystems.

How to cite: Alibakhshi, S.: Spatial-Temporal Analysis of Forest Mortality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3857, https://doi.org/10.5194/egusphere-egu24-3857, 2024.

Iram Parvez1, Massimiliano Cannata2, Giorgio Boni1, Rossella Bovolenta1 ,Eva Riccomagno3 , Bianca Federici1

1 Department of Civil, Chemical and Environmental Engineering (DICCA), Università degli Studi di Genova, Via Montallegro 1, 16145 Genoa, Italy (iram.parvez@edu.unige.it,bianca.federici@unige.it, giorgio.boni@unige.it, rossella.bovolenta@unige.it).

2 Institute of Earth Sciences (IST), Department for Environment Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), CH-6952 Canobbio, Switzerland(massimiliano.cannata@supsi.ch).

3 Department of Mathematics, Università degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy(riccomag@dima.unige.it).

The deployment of hydrometeorological sensors significantly contributes to generating real-time big data. The quality and reliability of large datasets pose considerable challenges, as flawed analyses and decision-making processes can result. This research aims to address the issue of anomaly detection in real-time data by exploring machine learning models. Time-series data is collected from IstSOS - Sensor Observation Service, an open-source software that stores, collects and disseminates sensor data. The methodology consists of Gated Recurrent Units based on recurrent neural networks, along with corresponding prediction intervals, applied both to individual sensors and collectively across all temperature sensors within the Ticino region of Switzerland. Additionally, non-parametric methods like Bootstrap and Mean absolute deviation are employed instead of standard prediction intervals to tackle the non-normality of the data. The results indicate that Gated Recurrent Units based on recurrent neural networks, coupled with non-parametric forecast intervals, perform well in identifying erroneous data points. The application of the model on multivariate time series-sensor data establishes a pattern or baseline of normal behavior for the area (Ticino). When a new sensor is installed in the same region, the recognized pattern is used as a reference to identify outliers in the data gathered from the new sensor.

How to cite: Parvez, I.: Exploring Machine Learning Models to Detect Outliers in HydroMet Sensors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4280, https://doi.org/10.5194/egusphere-egu24-4280, 2024.

EGU24-5268 | ECS | Orals | NP4.1

Unveiling Geological Patterns: Bayesian Exploration of Zircon-Derived Time Series Data 

Hang Qian, Meng Tian, and Nan Zhang

For its immunity to post-formation geological modifications, zircon is widely utilized as chronological time capsule and provides critical time series data potential to unravel key events in Earth’s geological history, such as supercontinent cycles. Fourier analysis, which assumes stationary periodicity, has been applied to zircon-derived time series data to find the cyclicity of supercontinents, and wavelet analysis, which assumes non-stationary periodicity, corroborates the results of Fourier Analysis in addition to detecting finer-scale signals. Nonetheless, both methods still prognostically assume periodicity in the zircon-derived time-domain data. To stay away from the periodicity assumption and extract more objective information from zircon data, we opt for a Bayesian approach and treat zircon preservation as a composite stochastic process where the number of preserved zircon grains per magmatic event obeys logarithmic series distribution and the number of magmatic events during a geological time interval obeys Poisson distribution. An analytical solution was found to allow us to efficiently invert for the number and distribution(s) of changepoints hidden in the globally compiled zircon data, as well as for the zircon preservation potential (encoded as a model parameter) between two neighboring changepoints. If the distributions of changepoints temporally overlap with those of known supercontinents, then our results serve as an independent, mathematically robust test of the cyclicity of supercontinents. Moreover, our statistical approach inherently provides a sensitivity parameter the tuning of which allows to probe changepoints at various temporal resolution. The constructed Bayesian framework is thus of significant potential to detect other types of trend swings in Earth’s history, such as shift of geodynamic regimes, moving beyond cyclicity detection which limits the application of conventional Fourier/Wavelet analysis.

How to cite: Qian, H., Tian, M., and Zhang, N.: Unveiling Geological Patterns: Bayesian Exploration of Zircon-Derived Time Series Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5268, https://doi.org/10.5194/egusphere-egu24-5268, 2024.

Semi-enclosed freshwater and brackish ecosystems, characterised by restricted water outflow and prolonged residence times, often accumulate nutrients, influencing their productivity and ecological dynamics. These ecosystems exhibit significant variations in bio-physical-chemical attributes, ecological importance, and susceptibility to human impacts. Untangling the complexities of their interactions remains challenging, necessitating a deeper understanding of effective management strategies adapted to their vulnerabilities. This research focuses on the bio-physical aspects, investigating the differential effects of spring and summer light on phytoplankton communities in semi-enclosed freshwater and brackish aquatic ecosystems.

Through extensive field sampling and comprehensive environmental parameter analysis, we explore how phytoplankton respond to varying light conditions in these distinct environments. Sampling campaigns were conducted at Müggelsee, a freshwater lake on Berlin's eastern edge, and Barther Bodden, a coastal lagoon northeast of Rostock on the German Baltic Sea coast, during the springs and summers of 2022 and 2023, respectively. Our analysis integrates environmental factors such as surface light intensity, diffuse attenuation coefficients, nutrient availability, water column dynamics, meteorological data, Chlorophyll-a concentration, and phytoplankton communities. Sampling encompassed multiple depths at continuous intervals lasting three days.

Preliminary findings underscore significant differences in seasonal light availability, with summer exhibiting extended periods of substantial light penetration. These variations seem to impact phytoplankton abundance and diversity uniquely in each ecosystem. While ongoing analyses are underway, early indications suggest distinct phytoplankton responses in terms of species composition and community structure, influenced by the changing light levels. In 2022 the clear water phase during spring indicated that bloom events have occurred under ice cover much earlier than spring, while in the summer there were weak and short-lived blooms of cyanobacteria. The relationship between nutrient availability and phytoplankton dynamics, however, remains uncertain according to our data.

This ongoing study contributes to understanding the role of light as a primary driver shaping phytoplankton community structures and dynamics in these environments.  Our research findings offer insights for refining predictive models, aiding in ecosystem-specific eutrophication management strategies, and supporting monitoring efforts of Harmful Algal Blooms.

How to cite: Kaharuddin, A. and Kaligatla, R.: Comparative Study of Spring and Summer Light Effects on Phytoplankton Communities in Semi-Enclosed Fresh- and Brackish Aquatic Ecosystems., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5733, https://doi.org/10.5194/egusphere-egu24-5733, 2024.

EGU24-6065 | ECS | Orals | NP4.1

Magnetospheric time history:  How much do we need for forecasting? 

Kendra R. Gilmore, Sarah N. Bentley, and Andy W. Smith

Forecasting the aurora and its location accurately is important to mitigate any potential harm to vital infrastructure like communications and electricity grid networks. Current auroral prediction models rely on our understanding of the interaction between the magnetosphere and the solar wind or geomagnetic indices. Both approaches do well in predicting but have limitations concerning forecasting (geomagnetic indices-based model) or because of the underlying assumptions driving the model (due to a simplification of the complex interaction). By applying machine learning algorithms to this problem, gaps in our understanding can be identified, investigated, and closed. Finding the important time scales for driving empirical models provides the necessary basis for our long-term goal of predicting the aurora using machine learning.

Periodicities of the Earth’s magnetic field have been extensively studied on a global scale or in regional case studies. Using a suite of different time series analysis techniques including frequency analysis and investigation of long-scale changes of the median/ mean, we examine the dominant periodicities of ground magnetic field measurements at selected locations. A selected number of stations from the SuperMAG network (Gjerloev, 2012), which is a global network of magnetometer stations across the world, are the focus of this investigation.

The periodicities retrieved from the different magnetic field components are compared to each other as well as to other locations. In the context of auroral predictions, an analysis of the dominating periodicities in the auroral boundary data derived from the IMAGE satellite (Chisham et al., 2022) provides a counterpart to the magnetic field periodicities.

Ultimately, we can constrain the length of time history sensible for forecasting.

How to cite: Gilmore, K. R., Bentley, S. N., and Smith, A. W.: Magnetospheric time history:  How much do we need for forecasting?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6065, https://doi.org/10.5194/egusphere-egu24-6065, 2024.

EGU24-6151 | Posters on site | NP4.1

Using information-theory metrics to detect regime changes in dynamical systems 

Javier Amezcua and Nachiketa Chakraborty

Dynamical systems can display a range of dynamical regimes (e.g. attraction to, fixed points, limit cycles, intermittency, chaotic behaviour) depending on the values of parameters in the system. In this work we demonstrate how non-parametric entropy estimation codes (in particular NPEET) based on the Kraskov method can be applied to find regime transitions in a 3D chaotic model (the Lorenz 1963 system) when varying the values of the parameters. These infromation-theory-based methods are simpler and cheaper to apply than more traditional metrics from dynamical systems (e.g. computation of Lyapunov exponents). The non-parametric nature of the method allows for handling long time series without a prohibitive computational burden. 

How to cite: Amezcua, J. and Chakraborty, N.: Using information-theory metrics to detect regime changes in dynamical systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6151, https://doi.org/10.5194/egusphere-egu24-6151, 2024.

EGU24-9367 | ECS | Orals | NP4.1

Fractal complexity evaluation of meteorological droughts over three Indian subdivisions using visibility Graphs 

Susan Mariam Rajesh, Muraleekrishnan Bahuleyan, Arathy Nair GR, and Adarsh Sankaran

Evaluation of scaling properties and fractal formalisms is one of the potential approaches for modelling complex series. Understanding the complexity and fractal characterization of drought index time series is essential for better preparedness against drought disasters. This study presents a novel visibility graph-based evaluation of fractal characterization of droughts of three meteorological subdivisions of India. In this method, the horizontal visibility graph (HVG) and Upside-down visibility graph (UDVG) are used for evaluating the network properties for different standardized precipitation index (SPI) series of 3, 6 and 12 month time scales representing short, medium and long term droughts. The relative magnitude of fractal estimates is controlled by the drought characteristics of wet-dry transitions. The estimates of degree distribution clearly deciphered the self-similar properties of droughts of all the subdivisions. For an insightful depiction of drought dynamics, the fractal exponents and spectrum are evaluated by the concurrent application of Sand Box Method (SBM) and Chhabra and Jenson Method (CJM). The analysis was performed for overall series along with the pre- and post-1976-77 Global climate shift scenarios. The complexity is more evident in short term drought series and UDVG formulations implied higher fractal exponents for different moment orders irrespective of drought type and locations considered in this study. Useful insights on the relationship between complex network and fractality are evolved from the study, which may help in improved drought forecasting. The visibility graph based fractality estimation evaluation is efficient in capturing drought and it has vast potential in the drought predictions in a changing environment.

Keywords:  Drought, Fractal, SPI, Visibility Graph

How to cite: Rajesh, S. M., Bahuleyan, M., Nair GR, A., and Sankaran, A.: Fractal complexity evaluation of meteorological droughts over three Indian subdivisions using visibility Graphs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9367, https://doi.org/10.5194/egusphere-egu24-9367, 2024.

EGU24-9537 | Posters on site | NP4.1

Wavelet-Induced Mode Extraction procedure: Application to climatic data 

Elise Faulx, Xavier Fettweis, Georges Mabille, and Samuel Nicolay

The Wavelet-Induced Mode Extraction procedure (WIME) [2] was developed drawing inspiration from Empirical Mode Decomposition. The concept involves decomposing the signal into modes, each presenting a characteristic frequency, using continuous wavelet transform. This method has yielded intriguing results in climatology [3,4]. However, the initial algorithm did not account for the potential existence of slight frequency fluctuations within a mode, which could impact the reconstruction of the original signal [4]. The new version (https://atoms.scilab.org/toolboxes/toolbox_WIME/0.1.0) now allows for the evolution of a mode in the space-frequency half-plane, thus considering the frequency evolution of a mode [2]. A natural application of this tool is in the analysis of Milankovitch cycles, where subtle changes have been observed throughout history. The method also refines the study of solar activity, highlighting the role of the "Solar Flip-Flop." Additionally, the examination of temperature time series confirms the existence of cycles around 2.5 years. It is now possible to attempt to correlate solar activity with this observed temperature cycle, as seen in speleothem records [1].

[1] Allan, M., Deliège, A., Verheyden, S., Nicolay S. and Fagel, N. Evidence for solar influence in a Holocene speleothem record, Quaternary Science Reviews, 2018.
[2] Deliège, A. and Nicolay, S., Extracting oscillating components from nonstationary time series: A wavelet-induced method, Physical Review. E, 2017.
[3] Nicolay, S., Mabille, G., Fettweis, X. and Erpicum, M., A statistical validation for the cycles found in air temperature data using a Morlet wavelet-based method, Nonlinear Processes in Geophysics, 2010.
[4] Nicolay, S., Mabille, G., Fettweis, X. and Erpicum, M., 30 and 43 months period cycles found in air temperature time series using the Morlet wavelet, Climate Dynamics, 2009.

How to cite: Faulx, E., Fettweis, X., Mabille, G., and Nicolay, S.: Wavelet-Induced Mode Extraction procedure: Application to climatic data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9537, https://doi.org/10.5194/egusphere-egu24-9537, 2024.

EGU24-10258 | Orals | NP4.1

New concepts on quantifying event data 

Norbert Marwan and Tobias Braun

A wide range of geoprocesses manifest as observable events in a variety of contexts, including shifts in palaeoclimate regimes, evolutionary milestones, tectonic activities, and more. Many prominent research questions, such as synchronisation analysis or power spectrum estimation of discrete data, pose considerable challenges to linear tools. We present recent advances using a specific similarity measure for discrete data and the method of recurrence plots for different applications in the field of highly discrete event data. We illustrate their potential for palaeoclimate studies, particularly in detecting synchronisation between signals of discrete extreme events and continuous signals, estimating power spectra of spiky signals, and analysing data with irregular sampling.

How to cite: Marwan, N. and Braun, T.: New concepts on quantifying event data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10258, https://doi.org/10.5194/egusphere-egu24-10258, 2024.

EGU24-10415 | ECS | Orals | NP4.1

Application of Transfer Learning techniques in one day ahead PV production prediction 

Marek Lóderer, Michal Sandanus, Peter Pavlík, and Viera Rozinajová

Nowadays photovoltaic panels are becoming more affordable, efficient, and popular due to their low carbon footprint. PV panels can be installed in many places providing green energy to the local grid reducing energy cost and transmission losses. Since the PV production is highly dependent on the weather conditions, it is extremely important to estimate expected output in advance in order to maintain energy balance in the grid and provide enough time to schedule load distribution. The PV production output can be calculated by various statistical and machine learning prediction methods. In general, the more data available, the more precise predictions can be produced. This poses a problem for recently installed PV panels for which not enough data has been collected or the collected data are incomplete. 

A possible solution to the problem can be the application of an approach called Transfer Learning which has the inherent ability to effectively deal with missing or insufficient amounts of data. Basically, Transfer Learning is a machine learning approach which offers the capability of transferring knowledge acquired from the source domain (in our case a PV panel with a large amount of historical data) to different target domains (PV panels with very little collected historical data) to resolve related problems (provide reliable PV production predictions). 

In our study, we investigate the application, benefits and drawbacks of Transfer Learning for one day ahead PV production prediction. The model used in the study is based on complex neural network architecture, feature engineering and data selection. Moreover, we focus on the exploration of multiple approaches of adjusting weights in the target model retraining process which affect the minimum amount of training data required, final prediction accuracy and model’s overall robustness. Our models use historical meteorological forecasts from Deutscher Wetterdienst (DWD) and photovoltaic measurements from the project PVOutput which collects data from installed solar systems across the globe. Evaluation is performed on more than 100 installed PV panels in Central Europe.

How to cite: Lóderer, M., Sandanus, M., Pavlík, P., and Rozinajová, V.: Application of Transfer Learning techniques in one day ahead PV production prediction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10415, https://doi.org/10.5194/egusphere-egu24-10415, 2024.

EGU24-11897 | Posters on site | NP4.1

Results of joint processing of magnetic observatory data of international Intermagnet network in a unified coordinate system 

Beibit Zhumabayev, Ivan Vassilyev, Zhasulan Mendakulov, Inna Fedulina, and Vitaliy Kapytin

In each magnetic observatory, the magnetic field is registered in local Cartesian coordinate systems associated with the geographic coordinates of the locations of these observatories. To observe extraterrestrial magnetic field sources, such as the interplanetary magnetic field or magnetic clouds, a method of joint processing of data from magnetic observatories of the international Intermagnet network was implemented. In this method, the constant component is removed from the observation results of individual observatories, their measurement data is converted into the ecliptic coordinate system, and the results obtained from all observatories are averaged after the coordinate transformation.

The first data on joint processing of measurement results from the international network of Intermagnet magnetic observatories in the period before the onset of magnetic storms of various types, during these storms and after their end are presented. There is a significant improvement in the signal-to-noise ratio after combining the measurement results from all observatories, which makes it possible to isolate weaker external magnetic fields. A change in the shape of magnetic field variations is shown, which can provide new knowledge about the mechanism of development of magnetic storms.

How to cite: Zhumabayev, B., Vassilyev, I., Mendakulov, Z., Fedulina, I., and Kapytin, V.: Results of joint processing of magnetic observatory data of international Intermagnet network in a unified coordinate system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11897, https://doi.org/10.5194/egusphere-egu24-11897, 2024.

We introduce the CLEAN algorithm to identify narrowband Ultra Low Frequency (ULF) Pc5 plasma waves in Earth’s magnetosphere. The CLEAN method was first used for constructing 2D images in astronomical radio interferometry but has since been applied to a huge range of areas including adaptation for time series analysis. The algorithm performs a nonlinear deconvolution in the frequency domain (equivalent to a least-squares in the time domain) allowing for identification of multiple individual wave spectral peaks within the same power spectral density. The CLEAN method also produces real amplitudes instead of model fits to the peaks and retains phase information. We applied the method to GOES magnetometer data spanning 30 years to study the distribution of narrowband Pc5 ULF waves at geosynchronous orbit. We found close to 30,0000 wave events in each of the vector magnetic field components in field-aligned coordinates. We discuss wave occurrence and amplitudes distributed in local time and frequency. The distribution of the waves under different solar wind conditions are also presented. With some precautions, which are applicable to other event identification methods, the CLEAN technique can be utilized to detect wave events and its harmonics in the magnetosphere and beyond. We also discuss limitations of the method mainly the detection of unrealistic peaks due to aliasing and Gibbs phenomena.

How to cite: Inceoglu, F. and Loto'aniu, P.: Using the CLEAN Algorithm to Determine the Distribution of Ultra Low Frequency Waves at Geostationary Orbit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12928, https://doi.org/10.5194/egusphere-egu24-12928, 2024.

EGU24-12938 | Posters on site | NP4.1

Applying Multifractal Theory and Statistical Techniques for High Energy Volcanic Explosion Detection and Seismic Activity Monitoring in Volcanic Time Series 

Marisol Monterrubio-Velasco, Xavier Lana, Raúl Arámbula-Mendoza, and Ramón Zúñiga

Understanding volcanic activity through time series data analysis is crucial for uncovering the fundamental physical mechanisms governing this natural phenomenon.

In this study, we show the application of multifractal and fractal methodologies, along with statistical analysis, to investigate time series associated with volcanic activity. We aim to make use of these approaches to identify significant variations within the physical processes related to changes in volcanic activity. These methodologies offer the potential to identify pertinent changes preceding a high-energy explosion or a significant volcanic eruption.

In particular, we apply it to analyze two study cases. First, the evolution of the multifractal structure of volcanic emissions of low, moderate, and high energy explosions applied to Volcán de Colima (México years 2013-2015). The results contribute to obtaining quite evident signs of the immediacy of possible dangerous emissions of high energy, close to 8.0x10^8 J. Additionally, the evolution of the adapted Gutenberg-Richter seismic law to volcanic energy emissions contributes to confirm the results obtained using multifractal analysis. Secondly, we also studied the time series of the Gutenberg-Richter b-parameter of seismic activities associated with volcanic emissions in Iceland, Hawaii, and the Canary Islands, through the concept of Disparity (degree of irregularity), the fractal Hurst exponent, H, and several multifractal parameters. The results obtained should facilitate a better knowledge of the relationships between the activity of volcanic emissions and the corresponding related seismic activities.  

How to cite: Monterrubio-Velasco, M., Lana, X., Arámbula-Mendoza, R., and Zúñiga, R.: Applying Multifractal Theory and Statistical Techniques for High Energy Volcanic Explosion Detection and Seismic Activity Monitoring in Volcanic Time Series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12938, https://doi.org/10.5194/egusphere-egu24-12938, 2024.

EGU24-13593 | ECS | Posters on site | NP4.1

Characterizing Uncertainty in Spatially Interpolated Time Series of Near-Surface Air Temperature 

Conor Doherty and Weile Wang

Spatially interpolated meteorological data products are widely used in the geosciences as well as disciplines like epidemiology, economics, and others. Recent work has examined methods for quantifying uncertainty in gridded estimates of near-surface air temperature that produce distributions rather than simply point estimates at each location. However, meteorological variables are correlated not only in space but in time, and sampling without accounting for temporal autocorrelation produces unrealistic time series and potentially underestimates cumulative errors. This work first examines how uncertainty in air temperature estimates varies in time, both seasonally and at shorter timescales. It then uses data-driven, spectral, and statistical methods to better characterize uncertainty in time series of estimated air temperature values. Methods for sampling that reproduce spatial and temporal autocorrelation are presented and evaluated. The results of this work are particularly relevant to domains like agricultural and ecology. Physical processes including evapotranspiration and primary production are sensitive to variables like near-surface air temperature, and errors in these important meteorological inputs accumulate in model outputs over time.

How to cite: Doherty, C. and Wang, W.: Characterizing Uncertainty in Spatially Interpolated Time Series of Near-Surface Air Temperature, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13593, https://doi.org/10.5194/egusphere-egu24-13593, 2024.

EGU24-13879 | ECS | Posters on site | NP4.1

Understanding the role of vegetation responses to drought in regulating autumn senescence 

Eunhye Choi and Josh Gray

Vegetation phenology is the recurring of plant growth, including the cessation and resumption of growth, and plays a significant role in shaping terrestrial water, nutrient, and carbon cycles. Changes in temperature and precipitation have already induced phenological changes around the globe, and these trends are likely to continue or even accelerate. While warming has advanced spring arrival in many places, the effects on autumn phenology are less clear-cut, with evidence for earlier, delayed, or even unchanged end of the growing season (EOS). Meteorological droughts are intensifying in duration and frequency because of climate change. Droughts intricately impact changes in vegetation, contingent upon whether the ecosystem is limited by water or energy. These droughts have the potential to influence EOS changes. Despite this, the influence of drought on EOS remains largely unexplored. This study examined moisture’s role in controlling EOS by understanding the relationship between precipitation anomalies, vegetation’s sensitivity to precipitation (SPPT), and EOS. We also assess regional variations in responses to the impact of SPPT on EOS.

The study utilized multiple vegetation and water satellite products to examine the patterns of SPPT in drought and its impact on EOS across aridity gradients and vegetation types. By collectively evaluating diverse SPPTs from various satellite datasets, this work offers a comprehensive understanding and critical basis for assessing the impact of drought on EOS. We focused on the Northern Hemisphere from 2000 to 2020, employing robust statistical methods. This work found that, in many places, there was a stronger relationship between EOS and drought in areas with higher SPPT. Additionally, a non-linear negative relationship was identified between EOS and SPPT in drier regions, contracting with a non-linear positive relationship observed in wetter regions. These findings were consistent across a range of satellite-derived vegetation products. Our findings provide valuable insights into the effects of SPPT on EOS during drought, enhancing our understanding of vegetation responses to drought and its consequences on EOS and aiding in identifying drought-vulnerable areas.

How to cite: Choi, E. and Gray, J.: Understanding the role of vegetation responses to drought in regulating autumn senescence, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13879, https://doi.org/10.5194/egusphere-egu24-13879, 2024.

EGU24-16981 | ECS | Orals | NP4.1

A machine-learning-based approach for predicting the geomagnetic secular variation 

Sho Sato and Hiroaki Toh

We present a machine-learning-based approach for predicting the geomagnetic main field changes, known as secular variation (SV), in a 5-year range for use for the 14th generation of International Geomagnetic Reference Field (IGRF-14). The training and test datasets of the machine learning (ML) models are geomagnetic field snapshots derived from magnetic observatory hourly means, and CHAMP and Swarm-A satellite data (MCM Model; Ropp et al., 2020). The geomagnetic field data are not used as-is in the original time series but were differenced twice before training. Because SV is strongly influenced by the geodynamo process occurring in the Earth's outer core, challenges still persist despite efforts to model and forecast the realistic nonlinear behaviors (such as the geomagnetic jerks) of the geodynamo through data assimilation. We compare three physics-uninformed ML models, namely, the Autoregressive (AR) model, Vector Autoregressive (VAR) model, and Recurrent Neural Network (RNN) model, to represent the short-term temporal evolution of the geomagnetic main field on the Earth’s surface. The quality of 5-year predictions is tested by the hindcast results for the learning window from 2004.50 to 2014.25. These tests show that the forecast performance of our ML model is comparable with that of candidate models of IGRF-13 in terms of data misfits after the release epoch (Year 2014.75). It is found that all three ML models give 5-year prediction errors of less than 100nT, among which the RNN model shows a slightly better accuracy. They also suggest that Overfitting to the training data used is an undesirable machine learning behavior that occurs when the RNN model gives accurate reproduction of training data but not for forecasting targets.

How to cite: Sato, S. and Toh, H.: A machine-learning-based approach for predicting the geomagnetic secular variation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16981, https://doi.org/10.5194/egusphere-egu24-16981, 2024.

EGU24-17344 | Posters on site | NP4.1

Introducing a new statistical theory to quantify the Gaussianity of the continuous seismic signal 

Éric Beucler, Mickaël Bonnin, and Arthur Cuvier

The quality of the seismic signal recorded at permanent and temporary stations is sometimes degraded, either abruptly or over time. The most likely cause is a high level of humidity, leading to corrosion of the connectors but environmental changes can also alter recording conditions in various frequency ranges and not necessarily for all three components in the same way. Assuming that the continuous seismic signal can be described by a normal distribution, we present a new approach to quantify the seismogram quality and to point out any time sample that deviates from this Gaussian assumption. To this end the notion of background Gaussian signal (BGS) to statistically describe a set of samples that follows a normal distribution. The discrete function obtained by sorting the samples in ascending order of amplitudes is compared to a modified probit function to retrieve the elements composing the BGS, and its statistical properties, mostly the Gaussian standard deviation, which can then differ from the classical standard deviation. Hence the ratio of both standard deviations directly quantifies the dominant gaussianity of the continuous signal and any variation reflects a statistical modification of the signal quality. We present examples showing daily variations in this ratio for stations known to have been affected by humidity, resulting in signal degradation. The theory developed can be used to detect subtle variations in the Gaussianity of the signal, but also to point out any samples that don't match the Gaussianity assumption, which can then be used for other seismological purposes, such as coda determination.

How to cite: Beucler, É., Bonnin, M., and Cuvier, A.: Introducing a new statistical theory to quantify the Gaussianity of the continuous seismic signal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17344, https://doi.org/10.5194/egusphere-egu24-17344, 2024.

EGU24-17566 | ECS | Posters on site | NP4.1

Unveiling Climate-Induced Ocean Wave Activities Using Seismic Array Data in the North Sea Region 

Yichen Zhong, Chen Gu, Michael Fehler, German Prieto, Peng Wu, Zhi Yuan, Zhuoyu Chen, and Borui Kang

Climate events may induce abnormal ocean wave activities, that can be detected by seismic array on nearby coastlines. We collected long-term continuous array seismic data in the Groningen area and the coastal areas of the North Sea, conducted a comprehensive analysis to extract valuable climate information hidden within the ambient noise. Through long-term spectral analysis, we identified the frequency band ranging from approximately 0.2Hz, which appears to be associated with swell waves within the region, exhibiting a strong correlation with the significant wave height (SWH). Additionally, the wind waves with a frequency of approximately 0.4 Hz and gravity waves with periods exceeding 100 seconds were detected from the seismic ambient noise. We performed a correlation analysis between the ambient noise and various climatic indexes across different frequency bands. The results revealed a significant correlation between the North Atlantic Oscillation (NAO) Index and the ambient noise around 0.17Hz.

Subsequently, we extracted the annual variation curves of SWH frequency from ambient noise at each station around the North Sea and assembled them into a sparse spatial grid time series (SGTS). An empirical orthogonal function (EOF) analysis was conducted, and the Principal Component (PC) time series derived from the EOF analysis were subjected to a correlation analysis with the WAVEWATCH III (WW3) model simulation data, thereby confirming the wave patterns. Moreover, we conducted the spatial distribution study of SGTS. The spatial features revealed that the southern regions of the North Sea exhibit higher wind-wave energy components influenced by the Icelandic Low pressure system and topography, which explains the correlation between ambient noise in the region and the NAO index. Furthermore, spatial features disclosed a correlation between the first EOF mode of the North Sea ocean waves and the third mode of sea surface temperature anomalies. This research shows the potential of utilizing existing off-shore seismic monitoring systems to study global climate variation and physical oceanography.

How to cite: Zhong, Y., Gu, C., Fehler, M., Prieto, G., Wu, P., Yuan, Z., Chen, Z., and Kang, B.: Unveiling Climate-Induced Ocean Wave Activities Using Seismic Array Data in the North Sea Region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17566, https://doi.org/10.5194/egusphere-egu24-17566, 2024.

EGU24-18061 | ECS | Orals | NP4.1

A new methodology for time-series reconstruction of global scale historical Earth observation data 

Davide Consoli, Leandro Parente, and Martijn Witjes

Several machine learning algorithms and analytical techniques do not allow gaps or non-values in input data. Unfortunately, earth observation (EO) datasets, such as satellite images, are gravely affected by cloud contamination and sensor artifacts that create gaps in the time series of collected images. This limits the usage of several powerful techniques for modeling and analysis. To overcome these limitations, several works in literature propose different imputation methods to reconstruct the gappy time series of images, providing complete time-space datasets and enabling their usage as input for many techniques.

However, among the time-series reconstruction methods available in literature, only a few of them are publicly available (open source code), applicable without any external source of data, and suitable for application to petabyte (PB) sized dataset like the full Landsat archive. The few methods that match all these characteristics are usually quite trivial (e.g. linear interpolation) and, as a consequence, they often show poor performance in reconstructing the images. 

For this reason, we propose a new methodology for time series reconstruction designed to match all these requirements. Like some other methods in literature, the new method, named seasonally weighted average generalization (SWAG), works purely on the time dimension, reconstructing the images working on each time series of each pixel separately. In particular, the method uses a weighted average of the samples available in the original time series to reconstruct the missing values. Enforcing the annual seasonality of each band as a prior, for the reconstruction of each missing sample in the time series a higher weight is given to images that are collected exactly on integer multiples of a year. To avoid propagation of land cover changes in future or past images, higher weights are given to more recent images. Finally, to have a method that respects causality, only images from the past of each sample in the time series are used.

To have computational performance suitable for PB sized datasets the method has been implemented in C++ using a sequence of fast convolution methods and Hadamard products and divisions. The method has been applied to a bimonthly aggregated version of the global GLAD Landsat ARD-2 collection from 1997 to 2022, producing a 400 terabyte output dataset. The produced dataset will be used to generate maps for several biophysical parameters, such as Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), normalized difference water index (NDWI) and bare soil fraction (BSF). The code is available as open source, and the result is fully reproducible.

References:

Potapov, Hansen, Kommareddy, Kommareddy, Turubanova, Pickens, ... & Ying  (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, 12(3), 426.

Julien, & Sobrino (2019). Optimizing and comparing gap-filling techniques using simulated NDVI time series from remotely sensed global data. International Journal of Applied Earth Observation and Geoinformation, 76, 93-111.

Radeloff, Roy, Wulder, Anderson, Cook, Crawford, ... & Zhu (2024). Need and vision for global medium-resolution Landsat and Sentinel-2 data products. Remote Sensing of Environment, 300, 113918.

How to cite: Consoli, D., Parente, L., and Witjes, M.: A new methodology for time-series reconstruction of global scale historical Earth observation data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18061, https://doi.org/10.5194/egusphere-egu24-18061, 2024.

EGU24-18197 | ECS | Orals | NP4.1 | Highlight

The regularity of climate-related extreme events under global warming 

Karim Zantout, Katja Frieler, and Jacob Schewe and the ISIMIP team

Climate variability gives rise to many different kinds of extreme impact events, including heat waves, crop failures, or wildfires. The frequency and magnitude of such events are changing under global warming. However, it is less known to what extent such events occur with some regularity, and whether this regularity is also changing as a result of climate change. Here, we present a novel method to systematically study the time-autocorrelation of these extreme impact events, that is, whether they occur with a certain regularity. In studies of climate change impacts, different types of events are often studied in isolation, but in reality they interact. We use ensembles of global biophysical impact simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) driven with climate models to assess current conditions and projections. The time series analysis is based on a discrete Fourier transformation that accounts for the stochastic fluctuations from the climate model. Our results show that some climate impacts, such as crop failure, indeed exhibit a dominant frequency of recurrence; and also, that these regularity patterns change over time due to anthropogenic climate forcing.

How to cite: Zantout, K., Frieler, K., and Schewe, J. and the ISIMIP team: The regularity of climate-related extreme events under global warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18197, https://doi.org/10.5194/egusphere-egu24-18197, 2024.

EGU24-18210 | ECS | Posters on site | NP4.1

Long-term vegetation development in context of morphodynamic processes since mid-19th century 

Katharina Ramskogler, Moritz Altmann, Sebastian Mikolka-Flöry, and Erich Tasser

The availability of comprehensive aerial photography is limited to the mid-20th century, posing a challenge for quantitatively analyzing long-term surface changes in proglacial areas. This creates a gap of approximately 100 years, spanning the end of the Little Ice Age (LIA). Employing digital monoplotting and historical terrestrial images, our study reveals quantitative surface changes in a LIA lateral moraine section dating back to the second half of the 19th century, encompassing a total study period of 130 years (1890 to 2020). With the long-term analysis at the steep lateral moraines of Gepatschferner (Kauner Valley, Tyrol, Austria) we aimed to identify changes in vegetation development in context with morphodynamic processes and the changing climate.

In 1953, there was an expansion in the area covered by vegetation, notably encompassing scree communities, alpine grassland, and dwarf shrubs. However, the destabilization of the system after 1980, triggered by rising temperatures and the resulting thawing of permafrost, led to a decline in vegetation cover by 2020. Notably, our observations indicated that, in addition to morphodynamic processes, the overarching trends in temperature and precipitation exerted a substantial influence on vegetation development. Furthermore, areas with robust vegetation cover, once stabilised, were reactivated and subjected to erosion, possibly attributed to rising temperatures post-1980.

This study demonstrates the capability of historical terrestrial images to enhance the reconstruction of vegetation development in context with morphodynamics in high alpine environments within the context of climate change. However, it is important to note that long-term mapping of vegetation development through digital monoplotting has limitations, contingent on the accessibility and quality of historical terrestrial images, as well as the challenges posed by shadows in high alpine regions. Despite these limitations, this long-term approach offers fundamental data on vegetation development for future modelling efforts.

How to cite: Ramskogler, K., Altmann, M., Mikolka-Flöry, S., and Tasser, E.: Long-term vegetation development in context of morphodynamic processes since mid-19th century, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18210, https://doi.org/10.5194/egusphere-egu24-18210, 2024.

EGU24-19601 | ECS | Posters on site | NP4.1

Discrimination of  geomagnetic quasi-periodic signals by using SSA Transform 

Palangio Paolo Giovanni and Santarelli Lucia

Discrimination of  geomagnetic quasi-periodic signals by using SSA Transform

  • Palangio1, L. Santarelli 1

1Istituto Nazionale di Geofisica e Vulcanologia L’Aquila

3Istituto Nazionale di Geofisica e Vulcanologia Roma

 

Correspondence to:  lucia.santarelli@ingv.it

 

Abstract

In this paper we present an application of  the SSA Transform to the detection and reconstruction of  very weak geomagnetic signals hidden in noise. In the SSA Transform  multiple subspaces are used for representing and reconstructing   signals and noise.  This analysis allows us to reconstruct, in the time domain, the different harmonic components contained in the original signal by using  ortogonal functions. The objective is to identificate the dominant  subspaces that can be attributed to the  signals and the subspaces that can be attributed to the noise,  assuming that all these  subspaces are orthogonal to each other, which implies that the  signals and noise  are independent of one another. The subspace of the signals is mapped simultaneously on several spaces with a lower dimension, favoring the dimensions that best discriminate the patterns. Each subspace of the signal space is used to encode different subsets of functions having common characteristics, such as  the same periodicities. The subspaces  identification was performed by using singular value decomposition (SVD) techniques,  known as  SVD-based identification methods  classified in a subspace-oriented scheme.The  quasi-periodic variations of geomagnetic field  has been investigated in the range of scale which span from 22 years to 8.9 days such as the  Sun’s polarity reversal cycle (22 years), sun-spot cycle (11 years), equinoctial effect (6 months), synodic rotation of the Sun (27 days) and its harmonics. The strength of these signals vary from fractions of a nT to tens of nT. Phase and frequency variability of these cycles has been evaluated from the range of variations in the geomagnetic field recorded at middle latitude place (covering roughly 4.5 sunspot cycles). Magnetic data recorded at L'Aquila Geomagnetic observatory (geographic coordinates: 42° 23’ N, 13° 19’E, geomagnetic coordinates: 36.3° N,87°.2 E, L-shell=1.6) are used from 1960 to 2009.

 

 

How to cite: Paolo Giovanni, P. and Lucia, S.: Discrimination of  geomagnetic quasi-periodic signals by using SSA Transform, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19601, https://doi.org/10.5194/egusphere-egu24-19601, 2024.

EGU24-22262 | ECS | Posters on site | NP4.1

Temporal Interpolation of Sentinel-2 Multispectral Time Series in Context of Land Cover Classification with Machine Learning Algorithms 

Mate Simon, Mátyás Richter-Cserey, Vivien Pacskó, and Dániel Kristóf

Over the past decades, especially since 2014, large quantities of Earth Observation (EO) data became available in high spatial and temporal resolution, thanks to ever-developing constellations (e.g.: Sentinel, Landsat) and open data policy. However, in the case of optical images, affected by cloud coverage and the spatially changing overlap of relative satellite orbits, creating temporally generalized and dense time series by using only measured data is challenging, especially when studying larger areas.

Several papers investigate the question of spatio-temporal gap filling and show different interpolation methods to calculate missing values corresponding to the measurements. In the past years more products and technologies have been constructed and published in this field, for example Copernicus HR-VPP Seasonal Trajectories (ST) product.  These generalized data structures are essential to the comparative analysis of different time periods or areas and improve the reliability of data analyzing methods such as Fourier transform or correlation. Temporally harmonized input data is also necessary in order to improve the results of Machine Learning classification algorithms such as Random Forest or Convolutional Neural Networks (CNN). These are among the most efficient methods to separate land cover categories like arable lands, forests, grasslands and built-up areas, or crop types within the arable category.

This study analyzes the efficiency of different interpolation methods on Sentinel-2 multispectral time series in the context of land cover classification with Machine Learning. We compare several types of interpolation e.g. linear, cubic and cubic-spline and also examine and optimize more advanced methods like Inverse Distance Weighted (IDW) and Radial Basis Function (RBF). We quantify the accuracy of each method by calculating mean square error between measured and interpolated data points. The role of interpolation of the input dataset in Deep Learning (CNN) is investigated by comparing Overall, Kappa and categorical accuracies of land cover maps created from only measured and interpolated time series. First results show that interpolation has a relevant positive effect on accuracy statistics. This method is also essential in taking a step towards constructing robust pretrained Deep Learning models, transferable between different time intervals and agro-ecological regions.

The research has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2021 funding scheme.

 

Keywords: time series analysis, Machine Learning, interpolation, Sentinel

How to cite: Simon, M., Richter-Cserey, M., Pacskó, V., and Kristóf, D.: Temporal Interpolation of Sentinel-2 Multispectral Time Series in Context of Land Cover Classification with Machine Learning Algorithms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22262, https://doi.org/10.5194/egusphere-egu24-22262, 2024.

BG3 – Terrestrial Biogeosciences

EGU24-441 | ECS | PICO | BG3.1

Comparison of Polish and Hungarian floodplain soils’ reaction to the climate change  

Dániel Szász, András Bidló, Pál Balázs, Piotr Hulisz, Péter Végh, and Adrienn Horváth

We made our investigation in the Gemenc forest, which is situated beside the Danube river near to the southern border of Hungary. Mainly in the last decades, watercourse management played a significant role in landscape evolution. Most of the area is on the saved side today, so it doesn’t get flooded. The Danube usually brings CaCO3 to this area with its sediment. The flooded areas are built from fine sediment materials. Meadow soils rich in CaCO3 are characteristic, and the forests of this land grow healthy here (assuming that are high-quality forest types). Farther away from the river, higher plains have sand with humus soils and Chernozem soils. On our Polish investigation we took samples from the northern floodplains of Vistula, in 2 different areas, which located on the saved side. Overall the samples were very similar to the Hungarian ones.

Forest ecosystems of this area are probably one of the most important members of the continental vegetation that store carbon. Because of their size, they take a huge part of the global carbon cycle. During our examinations, we visited six Quercus petraea and Robinia pseudoacacia forests and took samples from the soil profiles of those forest soil besides the determination of water holding capacity. The humus content of the examined soil samples varied between 0.7 and 6.9 %. Since the study areas are no longer or rarely affected by flooding, the highest organic matter content was found in the topsoil layer for each sample. SOM content gradually decreased with depth. The effect of flooding is clearly shown by the fact that we found organic matter in the samples even in the layer below 100 cm, and in several cases, we found buried humus levels. Accordingly, the organic carbon stock of these soils may be higher than average. However, the decreasing number of floods endangers the vitality of forest stands. With less flooding, decreasing groundwater level and an increase in the temperature at night, dew formation becomes more limited, and evaporation increases. These changes also affect the decomposition processes taking place in the soil, the circulation of nutrients, and soil respiration. Increasing temperature, the speed of decomposition, and the intensity of soil respiration increase, which can further increase the decrease in the soil's C pool.

In the Polish samples, the SOM varied between 0,4 and 20,9 %, with an extremety of a soil with peaty features. The ph varied between 2,0 and 8,0, with the former also being the „extremety”, otherwise the avarage value being 7,7. If we compare the two study areas, we can conclude that the soils themselves are less vulnerable to the effects of the climate change, due to the differences in the microclimate, the precipitation and the evaporation

This article was made in frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

 

How to cite: Szász, D., Bidló, A., Balázs, P., Hulisz, P., Végh, P., and Horváth, A.: Comparison of Polish and Hungarian floodplain soils’ reaction to the climate change , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-441, https://doi.org/10.5194/egusphere-egu24-441, 2024.

EGU24-1047 | ECS | PICO | BG3.1 | Highlight

Water retention of soils with coarse texture under forest stands using classical method and PTFs 

Máté Katona, Péter Végh, Pál Balázs, András Bidló, and Adrienn Horváth

A changing climate brings more extreme weather and uneven distribution of rainfall events. These effects are already being observed, and although the average of the many annual rainfall totals is not changing significantly, the length and frequency of periods without rainfall and droughts have increased significantly. These changes are also felt by forest stands and their sensitivity to drought is a crucial factor in their growth and health. Our research team has been collecting data on the organic matter content and water-holding capacity of Hungarian soils for many years and has now also produced pF measurements. The sub-region of the Transdanubian Mountains region has provided a comprehensive picture of coarse-textured soil on which forest soil-forming processes take place. Soil samples were taken up to the limit of the occurrence of soil-forming processes, but at least up to 100 cm. Acidic Arenosols developed on the sand parent material. On these, mixed stands of beech and turkey oak-sessile oak associations developed. The pH, CaCO3 content, organic matter content, texture, and bulk density of the soils were determined under laboratory conditions in 10 cm layers. The majority of the soil samples had an acidic pH between 4.4-6.4, with fine sand and sandy loam physical texture and free of calcium carbonate, with low humus content (0.9% in the upper 40 cm) compared to forest soils. From the pF measurements and using pedotransfer functions, we determined the potential water availability for plants, and using local climate data and measured soil data, we constructed a Thornthwaite-type water balance model for the area and used it to estimate the drought sensitivity of the area. These models improve and speed up the methods and therefore its accuracy and applicability to forest soils is a primary concern of this research.

The present publication was supported by the National Research Development and Innovation Fund of the Ministry of Innovation and Technology (successor: Ministry of Culture and Innovation) under the project TKP2021-NKTA-43, funded by the TKP2021-NKTA grant programme, and by the New National Excellence Programme of the Ministry of Culture and Innovation, code number ÚNKP-23-3-I-SOE-172, funded by the National Research, Development, and Innovation Fund. The field and laboratory tests were also carried out using equipment purchased with the support of the project "GINOP-2.3.3-15-2016-00039 - Investigation of the conditions for growing woody biomass".

How to cite: Katona, M., Végh, P., Balázs, P., Bidló, A., and Horváth, A.: Water retention of soils with coarse texture under forest stands using classical method and PTFs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1047, https://doi.org/10.5194/egusphere-egu24-1047, 2024.

EGU24-1784 | ECS | PICO | BG3.1 | Highlight

Benchmarking simulations of forest regrowth across Europe 

Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, Nuno Carvalhais, and Ronny Lauerwald

Dynamic global vegetation models (DGVMs) are essential for quantification of the response of land carbon storage to changes in atmospheric chemistry, climate, and land cover. While DGVMs are often evaluated concerning carbon responses to changes in CO2 and climate, local responses to changes in land cover have received less attention. This is of concern as DGVMs are needed to project the long-term consequence of afforestation or deforestation on the land carbon balance under climate. Here, we present an assessment of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) model, one of the state-of-the-art DGVMs, aiming to evaluate the simulated growth in forest biomass carbon stocks across the European Union against comprehensive observational data.

We conduct a model-data comparison of biomass growth using databases that contain paired observations of above-ground biomass (AGB) and plant age, categorized across various age groups spanning from very young (0-19 years) to old (>99 years) forests for boreal and temperate forests. The biomass dataset encompasses a harmonized collection from multiple open forest inventory databases, comprising 603 sites across Europe for six plant functional types (PFTs). On average, the stands are approximately 58 years old, with a mean AGB of 6.4 kgC.m-2. The findings indicate that simulations replicate the observed trend: AGB increases rapidly in young stands (<60 years old) and moderately saturates in later ages (>60 years old). However, the observed AGBs exhibit broader ranges and have more extremes than the simulated values. This is expected as observations refer to individual species, while our simulations are on the level of PFTs, which are an assemblage of species. Moreover, the comparisons reveal that the model underestimates AGB for temperate needleleaf evergreen forests, with a median deviation of approximately 60% from observed values. We propose a recalibration of the maximal rate of carboxylation and gross primary production fraction lost as growth respiration to reduce this deviation to less than 10%.

Our study highlights the potential of using observational biomass data to assess and calibrate DGVMs. This approach significantly enhances the ability of DGVMs to accurately reproduce the short-term land carbon sink response to reforestation. We provide a protocol that can easily be adapted to evaluate and recalibrate other DGVMs for the same purpose.

How to cite: Dinh, T. L. A., Goll, D., Ciais, P., Carvalhais, N., and Lauerwald, R.: Benchmarking simulations of forest regrowth across Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1784, https://doi.org/10.5194/egusphere-egu24-1784, 2024.

EGU24-2330 | ECS | PICO | BG3.1

Unusal equilibrium behavior of forest ecosystems in the Loess Plateau 

Ning Chen, Li Ma, and Liping Yang

Ecosystems may exhibit various equilibrium behaviors (e.g., linear and threshold), which will dramatically affect how we understand and regulate ecosystem dynamics under different environmental conditions, thus reshaping ecosystems’ sustainable development. Studying equilibrium behaviors is particularly crucial for the Loess Plateau because hundreds of billions of Chinese Yuan have been paid to alter ecosystem structure and thereby to reduce soil erosion. Resultant increasing vegetation, however, exhausts soil water, which heavily threatens the sustainability of ecosystem function and services therein. It has been a widespread and long-lasting controversy over whether and where to afforest. However, one of the most fascinating equilibrium behaviors of alternative stable states, which permits more than one states under the similar conditions, has largely ignored in the framework. By integrating remote sensing products, a minimal model, and environmental data, this study explored alternative tree-cover states and its effects on functions and services of forest ecosystems in the Loess Plateau. The equilibrium behavior along annual precipitation gradient appeared to a threshold-type (uni-stability) combined with a fold bifurcation. That is, tree cover showed a threshold-type uni-stability when annual precipitation was lower than 400 mm, beyond which alternative stable states of high tree cover (forest, >35% tree cover), and medium tree cover (open woodland, 7%~35% tree cover) co-existed. Increasing spatial heterogeneity, and especially vegetation-precipitation positive feedback would advance the thresholds of transitions between alternative states towards to higher annual precipitation. Furthermore, regime shift from forest to open woodland states increased carbon stock, while reduced water yield, i.e., carbon and water formed a trade-off. This unusual balancing behavior not only enriches our understanding theoretically but also substantially benefit afforestation planning in the Loess Plateau practically, thereby promote forest ecosystem functions and services of forest ecosystems.

How to cite: Chen, N., Ma, L., and Yang, L.: Unusal equilibrium behavior of forest ecosystems in the Loess Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2330, https://doi.org/10.5194/egusphere-egu24-2330, 2024.

Attaining a “land degradation neutral world” by 2030, as envisaged by the United Nations (UN) 2030 agenda for sustainable development, sustainable development goal (SDG) number 15, requires accurate information for the implementation of targeted interventions. The Trends.Earth historical data set to support monitoring and reporting, and to track the impact of sustainable land management is only available up to the year 2021. However, combining the predictive ability of Cellular-Automata-Markov (CA-Markov) model(s) in Idris Selva and the Trends.Earth model could provide an insight into potential future land cover degradation. Therefore, this study assesses the status of the land cover degradation in the Upper Zambezi River Basin (UZB) in southern Africa using the CA-Markov model and the Trends.Earth model. The UZB includes the headwaters of the Zambezi River and is susceptible to land cover degradation with potential negative effects on water resources. High resolution multispectral Landsat data are used in the Land Change Modeler (LCM) and the CA-Markov chain model in Idris Selva 17.0 to assess historical changes and predict future changes in land use and land cover (LULC) for the period 1993-2033. The LULC change maps produced with the LCM and CA-Markov models in Idris Selva are used to assess the land cover degradation status for the period 1993-2033 in the UZB using the Trends.Earth model in QGIS 3.34. Results show that land cover degradation maps produced, at local level, from high spatial resolution multispectral data provides more detail of land cover degradation compared to the Trends.Earth global data set. In terms of land cover degradation, the UZB is largely stable. However, of concern are areas, including wetlands and the headwaters of the Zambezi River, which shows land cover degradation as a result of loss of forest cover to expansions in human settlements and cropland. On the contrary, some areas show improvements in forest cover due to conversion of grassland and cropland into forest cover. For the period 2023 – 2033 the forest cover in the UZB is predicted to have a net reduction of 236258 hectares at a net annual rate of -0.14%. The spatial extent of land cover degradation is projected to build-up on the historical spatial extent. Predicting land cover degradation, as demonstrated in this study, makes available information for instituting targeted interventions which may help in the monitoring and management of water resources, as well as contribute towards a land degradation neutral world. 

How to cite: Zimba, H., Kawawa, B., Mbewe, S., and Imasiku, N.: Predicting future land cover degradation through the integrated use of the Cellular-Automata-Markov chain model and the Trends.Earth model: An application in the Upper Zambezi River Basin in southern Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3115, https://doi.org/10.5194/egusphere-egu24-3115, 2024.

EGU24-4841 | ECS | PICO | BG3.1

How accurately does L band vegetation optical depth predict aboveground biomass? 

Yuan Zhang, Philippe Ciais, Jean-Pierre Wigneron, Jérôme Chave, Nan Cong, Xiaojun Li, Yan Yang, and Sassan Saatchi

L band vegetation optical depth (L-VOD) is a widely used remote sensing variable for investigating the spatiotemporal variation in aboveground biomass (AGB). A key step of this method is to fit L-VOD against AGB, then use a space-for-time assumption to infer AGB change from fitted L-LOD change. In this study, we evaluated the performance of different fitting equations and explored their implications in predicting AGB. We used the SMOS-ICV2 L-VOD dataset and four AGB reference datasets. Specifically, we examined the implications of the space-for-time assumption in predicting the AGB interannual variations. We find that all the statistical fitting methods can capture the AGB spatial variation, yet introducing tree cover as a predictor significantly improves the AGB prediction, especially in regions with small and medium L-VOD values. However, these methods all fail to capture AGB spatial variation in dense forests. The AGB reference data also show large discrepancies in these regions. Our results also show that the spatial AGB sensitivities to L-VOD are much larger than the temporal AGB sensitivities to L-VOD, implying considerable uncertainties in temporal AGB changes predicted with spatially built models. By providing a comprehensive evaluation of fitting methods, our results offer a cautionary tale to the use of L-VOD data to infer AGB dynamics and the necessity of developing long-term field-based biomass change datasets for further constraining and evaluating AGB predictions from remote sensing observations.

How to cite: Zhang, Y., Ciais, P., Wigneron, J.-P., Chave, J., Cong, N., Li, X., Yang, Y., and Saatchi, S.: How accurately does L band vegetation optical depth predict aboveground biomass?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4841, https://doi.org/10.5194/egusphere-egu24-4841, 2024.

EGU24-5353 | PICO | BG3.1 | Highlight

Changing groundwater ecosystems and recharge – neither temperature nor nutrients or carbon are the main drivers 

Susanne I. Schmidt, Miroslava Svátková, Vít Kodeš, and Tanja Shabarova

Waterbodies across the world undergo changes. This influences the communities in the ecosystems. Groundwater is no exception. However, few studies focused so far on how the combined effects from environment, groundwater recharge, and a changing climate, impact the organisms living in the groundwater. In 2019-2021 in southwestern Czech Republic, we sampled fauna and microorganisms in 37 wells that had been monitored by CHMI for up to 40 years and that varied in the trends in chemical and physical characteristics. The wells tapped the shallow quaternary and deeper aquifers of seven major hydrogeological zones. Some of the wells represented recharge zones, others tapped artesian aquifers. Trends in temperature over the past decades were ambiguous. Carbon and nutrients did not show clear patterns, neither over time, nor predicting fauna and microorganisms. Fauna was, however, significantly more abundant in wells representing recharge zones. Most unexpected were the observations that silica increased significantly in all but one well, and that faunal numbers were lowest in the wells with the highest silica values, although there is no reason for fauna being harmed by silica, - on the contrary. The correlation is thus believed to show indirect effects, with the increase in silica probably being the (by)product from either climate change or land use change, or the combination of the two, and groundwater fauna being impacted by the underlying developments. This may have implications for ecosystem functions, and ultimately, the use of groundwater for drinking water production.

How to cite: Schmidt, S. I., Svátková, M., Kodeš, V., and Shabarova, T.: Changing groundwater ecosystems and recharge – neither temperature nor nutrients or carbon are the main drivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5353, https://doi.org/10.5194/egusphere-egu24-5353, 2024.

EGU24-5802 | ECS | PICO | BG3.1

Optimizing Irrigation Strategies for Mitigating Drought Stress in Reforestation Areas: Lessons from a Drought Stress Experiment 

Leonie Hahn, Markus Schmidt, Carsten Lorz, Andreas Rothe, Anja Rammig, and Christian Zang

The increasing frequency of drought events in recent years has become a major hurdle for reforesting forests after natural disturbances in many areas globally, including parts of Central Europe. As an example, reforestation projects after bark beetle disturbances have faced notable failures and losses due to prolonged drought conditions in Northern Bavaria (Germany). Irrigation is a potential measure increasing reforestation success and is currently funded by the regional government. However, historically irrigation was not a common technique in this area and there is a lack of both practical and scientific knowledge concerning irrigation strategies. The optimal timing for the irrigation of the saplings as well as the water amount applied are crucial aspects in this context.

This study addresses this knowledge gap by conducting a drought stress experiment within a greenhouse environment, focusing on four commonly planted tree species prevalent in our study region in northern Bavaria. Various approaches were explored to reliably detect drought stress and identify the irrigation demand both concerning timing and amount of water applied: the experimental design integrates environmental data with ecophysiological measurements and employs drought stress indices derived from close-range remote sensing. The most promising methodology for detecting the irrigation demand, identified through rigorous experimentation, will be further explored on forest sites post-planting. Implementing such optimized irrigation strategies holds promise for safeguarding reforestation endeavors, particularly in regions prone to drought, and contributes to the sustainable management of forest ecosystems and water usage.

How to cite: Hahn, L., Schmidt, M., Lorz, C., Rothe, A., Rammig, A., and Zang, C.: Optimizing Irrigation Strategies for Mitigating Drought Stress in Reforestation Areas: Lessons from a Drought Stress Experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5802, https://doi.org/10.5194/egusphere-egu24-5802, 2024.

The drought is becoming more frequent and severe with changing precipitation pattern in the future. How the water use efficiency responds to drought in different periods during the growing season has become a key scientific issue to explore the response mechanism of carbon and water cycle coupling process to drought in alpine meadow ecosystem. This project focused on the response mechanism of alpine meadow ecosystem productivity to drought and the relationship between productivity, evapotranspiration (or rainfall) and water use efficiency under simulated drought events in the early and middle growth seasons, and discuss the response mechanism of water use efficiency of alpine meadow ecosystem to drought. The result showed that (1) the delayed green-up under early growing season drought and advanced withered date under middle growing season drought occurred in graminoids, weeds and plant community, which indicated ‘escape strategy’ to drought. (2) the effect of advanced withered date was divergent among graminoid and weeds on the aboveground net primary production, which may lead to a stronger resistance of community productivity to middle growing season drought. (3) besides soil water deficit, the limited accumulation of aboveground biomass inhibited the physiological process of carbon exchange in alpine meadow community either. However, the carbon exchange process presented an over compensation mechanism, and the material distribution strategy may vary after rainfall restoration. (4) early growing season drought had no significant effect on water use efficiency of alpine meadow community (p > 0.05), while water use efficiency increased significantly under middle growing season drought (p < 0.05). The main reason is that the plant community is more sensitive to early growing season drought, which depressed the aboveground biomass, while aboveground productivity of alpine meadow plant community has stronger resistance to middle growing season drought. This project studied the response mechanism of alpine meadow ecosystem to extreme drought events in different periods, which has great scientific significance to the study of ecosystem response to extreme climate events, and provides a scientific basis for predicting and simulating the response of alpine meadow ecosystem in Northern Tibet to climate change in the future, especially the change of precipitation pattern.

How to cite: Hu, G.: Water use efficiency response of plant communities to drought in different growing periods in alpine meadow, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7326, https://doi.org/10.5194/egusphere-egu24-7326, 2024.

EGU24-8047 | PICO | BG3.1

Different strategies of the catchment division in the process of multi-objective calibrating the conceptual rainfall-runoff model 

Milica Aleksić, Martin Kubáň, Ján Szolgay, and Juraj Párajka

While the familiar path of experimenting with multi-objective calibrating a conceptual rainfall-runoff model involves the whole catchment area, this study examines and compares various spatial divisions of the catchment during the calibration process. The input data that is used includes runoff values (Q), precipitation (P), air temperature (T), and potential evapotranspiration (PET). Additionally, values of soil moisture obtained by the sensors of the remote sensing source (advanced scatterometer (ASCAT) remote sensing product-ASCAT SWI) were also incorporated into the analysis within a selected catchment in Slovakia. This study provides insights into the best practices for integrating satellite soil moisture data into multi-objective calibration. Moreover, including satellite soil moisture data is particularly significant, offering a novel perspective on moisture dynamics within the catchment. One of the objectives of this research is to identify the optimal spatial division of the catchment, explicitly evaluating the effectiveness of elevation-based division versus land cover-based division. These different catchment subdivisions should point to the impact on the accuracy and reliability of the rainfall-runoff model. The calibration strategy chosen for this study is divided into the period from 2007 to 2014 for the calibration run and for the validation run chosen period from 2015 to 2019. First results show improvement of soil moisture correlation results in land cover-based division contrary to elevation zone subdivision, in the whole period of calibration (2007-2014), as well as in only summer months period (June, July, August and September). Different established calibration strategies should offer a robust framework for calibrating the rainfall-runoff model in future.

Acknowledgement

This study was supportedby the VEGA Grant Agency No. VEGA 1/0577/23.

How to cite: Aleksić, M., Kubáň, M., Szolgay, J., and Párajka, J.: Different strategies of the catchment division in the process of multi-objective calibrating the conceptual rainfall-runoff model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8047, https://doi.org/10.5194/egusphere-egu24-8047, 2024.

EGU24-8056 | ECS | PICO | BG3.1 | Highlight

Spatial-temporal changes of the long-term average monthly runoff in Slovakia 

Zuzana Sabová, Silvia Kohnová, and Anna Liová

This study aims to analyse the changes in the long-term average monthly runoff regime on the territory of Slovakia. For the analysis, the average monthly discharges from 57 gauging stations of the whole territory of Slovakia, which the Slovak Hydrometeorological Institute provided for the period 1961-2020, were used. The selected basin areas range from approximately 10 km2 to 1000 km2. The monthly discharge data available were divided into two periods: the old one, 1961-2000, and the new reference period, according to the World Meteorological Organization (WMO), from 1991 to 2020.  The appropriate number of clusters was determined according to the statistical analysis using the average Silhouette Width and the Elbow method. Subsequently, the PCA method and K-means clustering were performed to pool the catchments into groups. The results present the outputs of the particular runoff regime in the selected gauging stations divided into five clusters. South-central Slovakia and central Slovakia characterise Cluster No. 1; Cluster No. 2 by the northwest and northeast of the country; Cluster No. 3 for the centre of northern Slovakia; Cluster No. 4 for central Slovakia, and Cluster No. 5 for the east, south and west part of Slovakia. When comparing the changes in the regime of both periods, we can state that the best, 89% agreement was in Custer No.2, representing the High Tatras region, and 86 % agreement was in Cluster No.5 for the western part of Slovakia, with is 44% in Custer No.4, where the highest long-term average monthly flows remain in April, but the lowest normalized long-term average monthly flows shift from January to February. In Custer No.3, with 40 % agreement of catchment forming the clusters, we find a similar shift of peak long-term average monthly flows from April (1961-2000) to March (1991-2020). The most significant changes in the long-term average monthly runoff regime were found for the catchment in Cluster No.1.

Finally, the most important characteristic features of the individual clusters of gauging stations created were also analysed, which could help incorporate other catchments into appropriate regional types in the future. The methodological procedure developed could also be used in further studies to predict future flow regime changes on the territory of Slovakia.

Acknowledgements

This study was supported by the Slovak Research and Development Agency under Contract No. APVV-20-0374 and VEGA Grant Agency No 1/0782/21. The authors thank the agencies for their research support.

How to cite: Sabová, Z., Kohnová, S., and Liová, A.: Spatial-temporal changes of the long-term average monthly runoff in Slovakia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8056, https://doi.org/10.5194/egusphere-egu24-8056, 2024.

EGU24-8142 | PICO | BG3.1

The experiment of the effects of rainfall intensity and substrate depth of an extensive vegetated roof 

Jana Grečnárová, Michaela Danáčová, and Matúš Tomaščík

Nowadays, extreme precipitation events are becoming more and more prevalent, which, in some
situations, can cause serious problems and damage. To avoid the impacts of extreme rainfall events,
blue-green infrastructure elements are used to retain and slow down stormwater runoff. Examples are
vegetated (green) roofs, widely considered a promising nature-based solution for urban stormwater
management.
This experiment is focused on studying the influence of the retention capacity and the depth of the
selected commercial substrate of extensive vegetated roofs. The rainfall intensity testing aims to
demonstrate and explore new insights into vegetated roofs during severe extreme precipitation. The
actual experimental process was performed under laboratory conditions, where extreme rainfall
intensities (2 - 4 mm/min) with a duration of 15 minutes were subsequently simulated using a rainfall
simulator. The main identifier of the quality and capability of the substrate used on the vegetated roof
is the amount of runoff captured from the simulated rainfall intensity. The measured outputs will be
used as inputs to predictions reducing stormwater runoff. The knowledge gained and the different
variations of the simulations can significantly help in constructing and designing vegetated roofs and
effective urban stormwater management.

Keywords: precipitation, retention capacity, vegetated roof, runoff,

How to cite: Grečnárová, J., Danáčová, M., and Tomaščík, M.: The experiment of the effects of rainfall intensity and substrate depth of an extensive vegetated roof, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8142, https://doi.org/10.5194/egusphere-egu24-8142, 2024.

EGU24-8187 | ECS | PICO | BG3.1

Estimation of the Peak Runoff Coefficient on Small Catchments in Slovakia 

Lynda Paulíková, Silvia Kohnová, and Roman Výleta

Runoff is one of the essential indicators for designing measures that retain or safely divert water in the country. However, in the 21st century, rural basins face changes caused by climate or land use. These alters force society to think about the transformation that time brings and to change the view on some parameters of the country's functioning within the outflow processes. The presented contribution deals with runoff changes over the last decades, in which the difference in the values ​​of peak runoff coefficients in small watersheds is analysed using direct and indirect estimation methods.

The first part of the study deals with the indirect approximate calculation of the peak runoff coefficient in 128 small catchments up to an area of 150 km2 (approx. 58 mi2 ) located on the territory of the Slovak Republic. Input data consisted of estimated concentration times according to Nash and Kirpich formulae, estimated design values for maximum floods and IDF curves for all available rain gauge stations in each analysed basin. The results were compared to previous studies.

In the second part, for two selected basins (Parná – Horné Orešany and Belá – Liptovský Hrádok), we estimated the peak runoff coefficient using the direct method. The chosen watersheds represent different landscape structures, where the first is a lowland type, and the second a high-mountain type of landscape. The analysis was based on direct measurements of hourly peak flows from 1989 to 2021. The flood wave parameters for calculating the peak runoff coefficients were obtained by substituting the causative precipitation. These data were subsequently statistically analysed using the Johnson probability distribution. The peak runoff coefficient for a 100-year return period was separately modelled for the summer and winter periods in both basins and compared to the indirect estimation results.

The study's results are intended to highlight the differences in the methods used to estimate peak runoff coefficients in small watersheds.

 

Acknowledgements

This study was supported by the Slovak Research and Development Agency under Contract VEGA Grant Agency No 1/0782/21. The authors thank the agencies for their research support.

How to cite: Paulíková, L., Kohnová, S., and Výleta, R.: Estimation of the Peak Runoff Coefficient on Small Catchments in Slovakia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8187, https://doi.org/10.5194/egusphere-egu24-8187, 2024.

EGU24-8216 | PICO | BG3.1

Investigating the applicability of long short-term memory model for streamflow prediction  

Mitra Tanhapour, Kamila Hlavcova, Silvia Kohnova, Hadi Shakibian, Jaber Soltani, and Bahram Malekmohammadi

Streamflow prediction, especially extreme events, poses a significant challenge due to the intricate and unpredictable nature of the rainfall-runoff process. Recently, promising results have been observed in time series problems by applying deep learning methods, including Long Short Memory (LSTM) and sequential modelling. This study investigates the application of the LSTM network to predict daily streamflow in the Dez River basin, Iran, during 2012–2019. Accordingly, observed precipitation, temperature, empirical evapotranspiration, and runoff were utilized as predictor variables. The performance of the LSTM model was compared with an established process-based approach, the Hron rainfall-runoff model, which served as a benchmark to evaluate the effectiveness of this innovative model. The models were evaluated using Kling-Gupta efficiency (KGE), Nash-Sutcliff efficiency coefficient (NSE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE). Through evaluation and analysis, the NSE and MAPE indices were, respectively, 0.95 and 15.6% for the LSTM model in the validation stage. The results demonstrated that the LSTM model performed better than the Hron model in predicting daily streamflow. The superior performance of the LSTM network represents its efficiency in capturing and utilizing inherent temporal dependencies in hydrological data. This finding highlights the potential of the proposed model for improving the accuracy and reliability of real-time hydrological forecasts.

How to cite: Tanhapour, M., Hlavcova, K., Kohnova, S., Shakibian, H., Soltani, J., and Malekmohammadi, B.: Investigating the applicability of long short-term memory model for streamflow prediction , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8216, https://doi.org/10.5194/egusphere-egu24-8216, 2024.

EGU24-8738 | PICO | BG3.1 | Highlight

Historical drought occurrence on Slovak rivers during the period 1931–2020 

Pavol Miklanek, Pavla Pekárová, Veronika Bačová Mitková, Zbyněk Bajtek, Dana Halmova, and Ján Pekár

In the last decade (2011-2020), Slovakia has experienced a significant decrease in flows in most river basins. The aim of this study is to statistically analyse the changes in the hydrological regime of selected Slovak streams based on observations over a 90-year period (1931-2020), using measured average daily discharges. Several regions in Europe, particularly in the Mediterranean area, including Spain, Italy, and Greece, have been affected by significantly dry years. The occurrence of dry years is not unusual, as extreme droughts have also occurred in the Danube River basin in the past, such as in 1863, 1921, 1947, 1992-93, and 2003. Our goal is to analyse changes in the low flow regime of rivers in Slovakia, which have long observation records. Understanding the low flow regime is one of the inputs for determining hydro-ecological limits, which is essential for maintaining and achieving good ecological status of surface waters. Several flow and non-flow characteristics were evaluated when assessing hydrological drought. Flow characteristics include: minimum average daily flows (in monthly or annual steps, over the entire period), M-day flows (the exceedance curve of average daily flows), minimum monthly and annual flows, and T-year minimum flows. Non-flow characteristics evaluated include changes in the timing of dry periods (date of occurrence), the number of low flow days, the longest drought episode, and the deficit volumes. Individual flow characteristics were calculated from the series of average daily flows. The trend analysis showed that in the given sub-catchments there is a decrease in the T-year minimum flows, as well as a decrease in the basic runoff. The comparison of the 100-year minimum specific runoff with the values of the specific base runoff shows that the 100-year minimum runoff can be up to ca. 4 times lower than the estimated specific base runoff in an extremely dry year.

 

Acknowledgement

This work was supported by the project VEGA No. 2/0015/23 “Comprehensive analysis of the quantity and quality of water regime development in streams and their mutual dependence in selected Slovak basins”, and by the project APVV No. 20-0374 “Regional detection, attribution and projection of impacts of climate variability and climate change on runoff regimes in Slovakia”

How to cite: Miklanek, P., Pekárová, P., Bačová Mitková, V., Bajtek, Z., Halmova, D., and Pekár, J.: Historical drought occurrence on Slovak rivers during the period 1931–2020, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8738, https://doi.org/10.5194/egusphere-egu24-8738, 2024.

EGU24-9482 | ECS | PICO | BG3.1

Comparison of soil carbon stock of afforested and treeless sites 

Mátyás Csorba, András Bidló, Pál Balázs, Péter Végh, and Adrienn Horváth

Numerous research based on long-term weather data sets proves a drier and warmer climate in Hungary. Research related to climate change and carbon sequestration is developing dynamically, so it is notable to show how climate change affects the quality and quantity of organic matter content in soils. The importance of changes in soil organic carbon stocks follows from its effects on ecosystems on a global level. In the last decades, afforestation programs were also started in Hungary to promote carbon sequestration. However, there have been several criticisms of afforestation efforts by experts and researchers dealing with agriculture, according to which agricultural areas, particularly grasslands, can sequestrate more organic carbon than forest stands. It is also not suggested to plant forest stands in dry, sandy areas, as it has a drying effect on the soil due to its high water demand compared to the fields, thereby reducing the net carbon sequestration. This research aim was to examine the above proposition at 5 locations where wooded and treeless, different land-used areas were managed next to each other. Based on our scientific investigation, it cannot be clearly stated that the soil of the forests we examined has a richer carbon stock than the neighboring arable land or pasture, but together with the amount of carbon stored in the O horizon, the forests surplus prevailed upon every examined point. Due to the slow process of carbon sequestration and organic matter entering the soil, we also plan to conduct long-term tests.

This article was made in the frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

 

How to cite: Csorba, M., Bidló, A., Balázs, P., Végh, P., and Horváth, A.: Comparison of soil carbon stock of afforested and treeless sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9482, https://doi.org/10.5194/egusphere-egu24-9482, 2024.

EGU24-10271 | ECS | PICO | BG3.1

Tree Mortality in a Relict Scots pine forest due to climate change 

Adrienn Horváth, Ferenc Lakatos, Péter Szűcs, Zoltán Patocskai, Péter Végh, Dániel Winkler, András Bidló, and Borbála Gálos

An investigated old-growth Scots pine (Pinus sylvestris L.) forest is located in a protected area. Climate, soil, and local hydrological conditions highly influence the health conditions of this relict forest stand. Drought symptoms are already visible thus complex analyses assessing of these site factors were investigated. Site conditions always influence vegetation. Conversely, vegetation always affects site conditions. Therefore, the relationship between forest stand vitality and stand growth becomes more complicated in the case of damage chain appearance in an elderly, resistant forest stand. Our research aimed to answer the following questions:

  • How have site conditions changed in the research area in recent decades?
  • Which are the most significant site-limiting factors in this case?
  • Can a relict and protected ecosystem adapt to the changed conditions?

To identify the complex causes of tree mortality, climatic and soil conditions were analyzed and completed with bryological and biotic (pests) surveys. Altogether unfavorable soil conditions (coarse sand) and increasing aridity have led to a decline in tree vitality. Bark beetles have a high population density in the stand, so the beetles contributed to tree mortality. New spreading invasive moss species have appeared in the recently formed gaps, where crone projection is low. The disappearance of this relict forest stresses the urgent need for Hungarian forest management to prepare strategies for adaptive tree species selection.

This article was made in the frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

How to cite: Horváth, A., Lakatos, F., Szűcs, P., Patocskai, Z., Végh, P., Winkler, D., Bidló, A., and Gálos, B.: Tree Mortality in a Relict Scots pine forest due to climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10271, https://doi.org/10.5194/egusphere-egu24-10271, 2024.

EGU24-11660 | ECS | PICO | BG3.1

Data integration and simple water balance analysis of the Sopron Botanical Garden’s hydrometeorological station data 

Lili Muraközy, Péter Kalicz, Márton Kiss, and Zoltán Gribovszki

Analyzing the water balance of long-lived plant communities, like forests, requires centuries long monitoring of hydrometeorological processes. Long-term measurements, however, are essential for assessing the effects of climate change as well. In Sopron, meteorological records—one of the first systematic analyses in Hungary—started in 1711. From 1925.06.01 to 1974.04.24, the Botanical Garden's meteorological station at the University of Sopron was the city's official station. In 1974, the official station was relocated to Kuruc Hill Observatory. The remaining instruments in the Botanical Garden were still functional. The presentation goes over the basic data processing for hydrometeorological purposes, error analysis, the integration of the station's data, simple water balance estimation and FAI (forest aridity index) analysis.

The following joint projects (143972SNN project and the TKP2021-NKTA-43 project) supported the preparation of this paper. TKP2021-NKTA-43 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

Supported by the ÚNKP-23-2-III-SOE-176 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

How to cite: Muraközy, L., Kalicz, P., Kiss, M., and Gribovszki, Z.: Data integration and simple water balance analysis of the Sopron Botanical Garden’s hydrometeorological station data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11660, https://doi.org/10.5194/egusphere-egu24-11660, 2024.

EGU24-11762 | ECS | PICO | BG3.1

Black pine-grass paired plot water balance experiment in the botanic garden of Sopron UNI 

Kamilla Orosz, András Herceg, Péter Kalicz, Katalin Anita Zagyvai-Kiss, Klaudija Lebar, Katarina Zabret, Nejc Bezak, Gábor Keve, Dániel Koch, and Zoltán Gribovszki

Hydrological measurements, particularly those conducted on paired plots, provide valuable tools for comparing the water balance of different surface covers. Hydro-meteorological measurements have been carried out in the University of Sopron Botanical Garden since 1925. Conducting long-term measurements provides a good opportunity for studying the water balance in forested areas. The proximity of educational facilities allows for frequent measurements, regular equipment checks, and student participation. A hydrological paired-plot experiment site was established in the botanical garden as part of an international Slovenian-Hungarian project. We set up the research plot under black pine trees. For comparative purposes, we designated an open-air plot as a control site, positioned approximately 100 meters away from the pine trees. The focus of the experiment was to better understand the complex water dynamics within the research site under the black pine tree canopy. The first set of experiments is suitable for analysing rainfall distribution in a forest (canopy and litter interception), and comparing the soil moisture and groundwater dynamics of grass and forest plots. In the experimental area, automated equipment installation is presently underway. The experiment serves educational and demonstration purposes in addition to its primary research function.

The following joint projects (143972SNN, N2-0313 projects and the TKP2021-NKTA-43 project) supported the preparation of this paper. TKP2021-NKTA-43 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme. This contribution is also part of ongoing research entitled “Microscale influence on runoff” supported by the Slovenian Research and Innovation Agency (N2-0313).

How to cite: Orosz, K., Herceg, A., Kalicz, P., Zagyvai-Kiss, K. A., Lebar, K., Zabret, K., Bezak, N., Keve, G., Koch, D., and Gribovszki, Z.: Black pine-grass paired plot water balance experiment in the botanic garden of Sopron UNI, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11762, https://doi.org/10.5194/egusphere-egu24-11762, 2024.

EGU24-12022 | PICO | BG3.1

Examination of the organic carbon stock of the soil of Hungarian beech stands and the determining factors 

András Bidló, Pál Balázs, Máté Katona, Péter Végh, and Adrienn Horváth

The beech stands ratio of Hungarian forests barely reaches 6%. However, beech is a native tree species with high production capacity; therefore, its importance in nature conservation and economy is significant. Due to global climate change, the focus is on the ability of carbon fixing and storage capacity in beech forest ecosystems. While we can estimate the amount of biomass above ground with relative precision, we have little data about organic carbon in soils.

The primary goal of our work was to collect as much data as possible on the amount of organic carbon stored in the soil of these native forest stands. Furthermore, the most significant factors were determined that influenced the sequestration.

During the research, undisturbed and disturbed soil samples were collected from every 10 cm layer in 40 beech stands. The depth depended on the bedrock. On loessy or sandy bedrock, the depth was 110 cm. In the case of rocky structure, samples were taken from 0-40 cm depth. Moreover, litter samples were taken and analyzed. The properties of the stands were also recorded on the sampling sites (tree species, diameter, etc.).

The soil pH was 5.17 on average, while the minimum value was 3.87 and the maximum was 8.4. The humus content varied between 0.16 and 15.65% because it decreased with depth. The average organic carbon stock was 6.39 C t/ha (Cminimum  1.46 C t/ha, Cmaximum 34.03 C t/ha). Moisture determines the organic carbon stock of the soil most of all.

This article was made in the frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme. Some of the tools used during the research were acquired within the framework of the "Investigation of the conditions for the cultivation of wood biomass - GINOP-2.3.3-15-2016-00039" project.

How to cite: Bidló, A., Balázs, P., Katona, M., Végh, P., and Horváth, A.: Examination of the organic carbon stock of the soil of Hungarian beech stands and the determining factors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12022, https://doi.org/10.5194/egusphere-egu24-12022, 2024.

EGU24-12680 | ECS | PICO | BG3.1

Evaluation of the Sentinel-3A Gross Dry Matter Productivity (GDMP) product for evergreen forests 

Wafa Chebbi, Eva Rubio, Francisco Antonio García-Morote, Manuela Andrés-Abellán, Marta Isabel Picazo-Córdoba, Rocío Arquero-Escañuela, and Francisco Ramón López-Serrano

The recent consolidation of global carbon monitoring systems has been coupled with notable advances in methods for estimating the carbon cycle components in terrestrial ecosystems. These developments include a comprehensive assessment of the uncertainty and biases associated with these estimations. Gross primary productivity (GPP) is the most significant component of the terrestrial carbon cycle. Accurate estimation of GPP and its fluctuations over space and time is crucial not only for assessing ecosystem functioning and carbon balance but also for evaluating the resilience of ecosystems to adapt, survive and thrive in response to climate changes. Unfortunately, direct measurement of GPP through remote sensing (RS) signals is not feasible. Several RS signals associated with vegetation pigments and canopy structures can indeed function as proxies for GPP. These signals can be effectively integrated with various modelling approaches, considering different types and levels of complexity, to generate an estimation of global GPP at high spatio-temporal resolution.

This study aims to explore how Sentinel satellites can improve the remote global GPP estimation. Specifically, we evaluated the quality of the 10-daily GDMP product of Sentinel-3, ensuring its reliability and credibility, with a specific focus on evergreen forests, particularly Aleppo pine stands. The outcomes of this study are expected to contribute to refining and calibrating GDMP algorithms for improved accuracy.

The first aspect of our methodology involves the selection of several Aleppo pine forests across South-East Spain, where eddy covariance towers were installed, to study inter-site variability including soil characteristics, vegetation dynamics and forest management. Then, direct cross-comparisons between eddy covariance measurements and satellite observations were conducted for 4 independent study sites covering different periods (i.e., 2015-2018 and 2019-2023) to quantify uncertainties and biases in the GDMP product.

The results revealed that the GDMP product exhibits improved performance during wet periods, ranging across sites from the highest R2 of 0.83 to the lowest R2 of 0.71, but it encounters challenges in accurately simulating Gross GPP under drought conditions. This funding was expected because some potentially important factors such as drought stress among others were omitted in the current computation model of Copernicus Global Land Service. Therefore, it is suggested that the product could be more accurately labelled as a potential GDMP. Similarly, our analysis showed that Aleppo pine demonstrates high plasticity in response to local conditions that is not adequately captured by this GDMP model.

To address the challenges encountered in accurately simulating the GDMP product, we are working on developing a potential solution. This involves incorporating drought stress factors to enhance the model by integrating relevant physiological and environmental variables that influence specific responses of Aleppo pine to water shortage.

How to cite: Chebbi, W., Rubio, E., García-Morote, F. A., Andrés-Abellán, M., Picazo-Córdoba, M. I., Arquero-Escañuela, R., and López-Serrano, F. R.: Evaluation of the Sentinel-3A Gross Dry Matter Productivity (GDMP) product for evergreen forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12680, https://doi.org/10.5194/egusphere-egu24-12680, 2024.

EGU24-13016 | ECS | PICO | BG3.1 | Highlight

Examining the groundwater turnover in a lowland salt steppic oak forest 

Zsombor Kele, Péter Kalicz, and Zoltán Gribovszki

Over the past centuries, many changes have occurred in addition to climate change, from human encroachment to deforestation and drainage, and much more. Research has shown that lowland forests use a significant amount of groundwater, without which it is much harder to imagine their existence, even as a dominant source of water. It is therefore crucial to understand how much and how forests can be maintained under the expected conditions, because groundwater levels are sinking year by year in large parts of the Hungarian lowlands.

From a conservation perspective, it is also crucial to investigate the activities taking place in the Ohat oak forest, which is a remnant area along the Tisza. Two groundwater wells were drilled in the region in 2021, and automated measuring equipment was put in each of them to track the daily variations in groundwater levels. In order to estimate the groundwater abstraction from the forest, we will utilize the White method to compute the groundwater recharge during times when there is no precipitation.

Additionally, we will look at how the local conditions have changed in relation to the region's long-term meteorological data series. We will be able to compare the soil water recharge in various years thanks to the multi-year data series, and search for connections between the recharging and the monthly and yearly weather conditions. We will also compare the summer and winter periods of the recharging.

This three years are very good for the examination, because there was also drought and wet years, the groundwater level was deeply subslided, and after that, in 2023, it was recharged a lot, because of the rainy weather. These conditions caused a big difference between every year’s recharging, which is instructive for the ecosystem functioning.

The following joint projects (143972SNN project and the TKP2021-NKTA-43 project) supported the preparation of this paper. TKP2021-NKTA-43 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

How to cite: Kele, Z., Kalicz, P., and Gribovszki, Z.: Examining the groundwater turnover in a lowland salt steppic oak forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13016, https://doi.org/10.5194/egusphere-egu24-13016, 2024.

EGU24-15021 | PICO | BG3.1 | Highlight

How rainfall interception influences soil erosion in agricultural, urban and forest catchments 

Juraj Parajka, Borbála Széles, Dušan Marjanovic, Katarina Zabret, Klaudija Lebar, Urša Vilhar, Nejc Bezak, and Mojca Šraj

Rainfall intercepted by vegetation is, in many regions, an important part of the hydrological water cycle. Part of the intercepted rainfall evaporates into the atmosphere, and throughfall and stemflow contribute to runoff generation, control soil moisture and runoff connectivity patterns and affect soil erosion. The question of how changing climate and land cover conditions impact rainfall interception, raindrop microstructure, and their erosive power still needs to be better understood.

This presentation introduces the main aims of a bilateral research project between TU Wien, University of Ljubljana and the Slovenian Forestry Institute that focuses on the understanding of the effect of meteorological and vegetation characteristics on changes in raindrop microstructure and, therefore, on the erosive power of rainfall. The main idea of the research cooperation is to analyse and understand the main mechanisms of the rainfall interception process in different climate conditions and vegetation settings. The high-resolution disdrometer measurements from the experimental urban and forest plots in Slovenia and a small agricultural basin in Austria are used to determine and compare raindrop distributions and their changes. The high-resolution observations of discharge, sediment concentrations and isotope analyses contribute to the understanding of the erosion processes and sediment transport in the streams.

 

Acknowledgment: This contribution is part of the ongoing research project entitled “Evaluation of the impact of rainfall interception on soil erosion” supported by the Slovenian Research and Innovation Agency (J2-4489) and it was funded in part by the Austrian Science Fund (FWF) I 6254-N.

How to cite: Parajka, J., Széles, B., Marjanovic, D., Zabret, K., Lebar, K., Vilhar, U., Bezak, N., and Šraj, M.: How rainfall interception influences soil erosion in agricultural, urban and forest catchments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15021, https://doi.org/10.5194/egusphere-egu24-15021, 2024.

EGU24-15203 | ECS | PICO | BG3.1

Legacy of former land use and its effect on carbon content of soil in present forests 

Pál Balázs, András Bidló, Adrienn Horváth, Máté Katona, and Péter Végh

Increasing carbon presence in the atmosphere prompts scientists to understand carbon sequestration processes better. Forest is one of the most promising ecosystems where this sequestration can take place with higher efficiency. In this research, we analysed long-term land use change processes and carbon content of soils in present Hungarian forests, searching for the answer: is there any relationship between the former land use and the carbon content of soils?
We selected 183 forest stands scattered across the country, where the age of the trees were approximately 60-70 years old. Soil samplings were carried out in the depth of 40-110 cm (in 10 cm layers). In order to derive long-term land use change information, we used historical map series dating back to the 18th century.
Results will contribute to the understanding of the carbon sequestration processes of terrestrial ecosystems.
This article was made in frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

How to cite: Balázs, P., Bidló, A., Horváth, A., Katona, M., and Végh, P.: Legacy of former land use and its effect on carbon content of soil in present forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15203, https://doi.org/10.5194/egusphere-egu24-15203, 2024.

EGU24-16602 | PICO | BG3.1

The role of soil organic matter content in the composition and abundance of Collembola communities in a forest-open landscape mosaic 

Dániel Winkler, Mátyás Csorba, András Bidló, Pál Balázs, Péter Végh, and Adrienn Horváth

The presence of soil fauna is essential for healthy soil life. As part of the soil mesofauna, Collembola are significant contributors to humus formation and the spread of mycorrhizal fungi, which are of major importance for plants, and they also help to decompose organic matter and mineralise the soil. Among the soil parameters, organic matter content is one of the most significant determinants of the abundance and diversity of Collembola. Our study aimed to explore these relationships in a forest-open landscape mosaic in a dry, sandy area in the Danube-Tisza Mid-Region of Hungary. Soil samplings were carried out in different forest types and nearby open areas (grassland and abandoned cultivated habitats). Five non-destructive soil samples of 100 cm3 were taken at each site using a soil corer with a 3.6 cm diameter and a 10 cm depth for the soil fauna survey. In total, 2,018 specimens from 13 families, and 49 species were sampled and identified. We used a multivariate ordination method (CCA) to investigate the relationship of individual species and life forms to specific soil parameters. It was found that mainly hemiedaphic species (such as Appendisotoma franzi, A. juliannae, Lepidocyrtus nigrescens) showed the strongest connection to soil organic matter. In contrast, euedaphic species (e.g., Doutnacia xerophila, Mesaphorura krausbaueri, Protaphorura cancellata) showed a weaker binding. The epedaphic, soil surface-dwelling species (e.g., Entomobrya multifasciata, Orchesella cincta) did not show a strong preference for soil organic matter content or other soil parameters. Based on similarity analyses (cluster analysis, Bray-Curtis distance), open habitats showed a distinct separation according to the Collembola species composition and abundance.

This article was made in frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.

How to cite: Winkler, D., Csorba, M., Bidló, A., Balázs, P., Végh, P., and Horváth, A.: The role of soil organic matter content in the composition and abundance of Collembola communities in a forest-open landscape mosaic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16602, https://doi.org/10.5194/egusphere-egu24-16602, 2024.

EGU24-18551 | ECS | PICO | BG3.1

Exploring Regional-Scale Covariation: Atmospheric CO2 Anomalies Distribution Patterns, Vegetation Spread, and Climate Variables 

Buddola Jagadish, Prabir Kumar Patra, and Mukunda Dev Behera

The role of the terrestrial biosphere in regulating the global carbon cycle is critical, and it is crucial to comprehend the regional-scale source-sink dynamics and the underlying mechanisms for developing effective mitigation strategies. The present study investigated the dynamic relationship between atmospheric CO2 levels and environmental factors in South Asia (SA), Southeast Asia (SEA) and West Asia (WA); these regions are home to diverse ecosystems, including tropical rainforests, mangroves, and coral reefs. Understanding carbon dynamics in these ecosystems is crucial as they play a significant role in sequestering and storing carbon. Utilizing data from 2015 to 2021 from the OCO-2 satellite, we analyzed the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) along with variables such as precipitation, temperature, and Leaf Area Index (LAI), which distinguishes between high and low vegetation types. These environmental factors were synchronized with the spatial and temporal attributes of bias-corrected Lite (V11) level-2 daily files obtained from OCO-2. The majority of the zones in the area showed a positive relationship between their temperature anomalies and XCO2 anomalies, albeit with varying lag periods (ranging from 0 to 4 months). This suggests that these zones could potentially act as sources of CO2 during warmer periods. This trend was not observed in some regions, including the western plateau and hills, eastern coastal planes and hills, Pakistan, and Nepal, where the relationship between temperature and CO2 exhibited varying lag effects. The correlations were examined between the inter-annual variability (IAV) of detrended and depersonalized monthly-resampled anomalies of XCO2 datasets and various environmental factors (anomalies) across diverse agroclimatic zones. In tropical savannah and humid subtropical climates, observed a positive correlation, between XCO2 anomalies and precipitation whereas arid and semi-arid areas displayed negative correlations. These patterns indicate that increased rainfall in certain regions might enhance vegetation productivity, thereby reducing atmospheric CO2 levels. Furthermore, in areas dominated by tropical aseasonal forests, a dense LAI correlated negatively with XCO2, suggesting that more dense vegetation leads to increased CO2 absorption through photosynthesis. In contrast, tropical seasonal forests showed a positive correlation between LAI and XCO2, each with a unique lag period. Our analysis demonstrates the complex patterns of CO2 anomalies distribution in SA, WA and SEA influenced by climatic factors (precipitation and temperature) and vegetation density (LAI). These insights are crucial for understanding regional CO2 source-sink dynamics and formulating effective climate change mitigation strategies.

How to cite: Jagadish, B., Patra, P. K., and Behera, M. D.: Exploring Regional-Scale Covariation: Atmospheric CO2 Anomalies Distribution Patterns, Vegetation Spread, and Climate Variables, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18551, https://doi.org/10.5194/egusphere-egu24-18551, 2024.

Understanding the intricate relationships between climate and vegetation remains a fundamental challenge in contemporary ecology. The ability to anticipate the specific climatic factors affecting different tree species and understand how they respond is crucial for mitigating the impacts of climate change on forested ecosystems. Additionally, quantitatively assessing habitat loss resulting from anthropogenic activities is essential for informed conservation efforts.
Our objective is to evaluate the potential distribution of pitch pine (Pinus rigida) in North America and assess the associated habitat loss. To achieve this, we employ a stepwise multidimensional climate envelope modeling approach, comparing two data-intensive models—the Variable Interaction Model (VIM) and the Variable Non-Interaction Model (VNM). These models discern the influence of diverse combinations of climatic characteristics on the distribution of the species. Both VNM and VIM employ Shapley values for factor ranking during construction. VNM assumes independent effects, resulting in a hyperrectangle-shaped climate envelope, while VIM considers interactions, yielding a complex, data-driven multidimensional envelope. Data integration involves mining the US Forest Inventories and climatic data  encompassing 19 parameters.  The results unequivocally highlight the VIM superior predictive accuracy compared to the Variable Non-Interaction Model VNM. Our findings reveal a habitat loss of approximately 91 %, primarily attributed to anthropogenic activities. This underscores the critical importance of comprehending the interplay between climatic factors in the development of climate envelope models for species ranges. The modeling approach developed in this study has the potential to enhance species distribution models for various tree species in the context of evolving climatic conditions.

How to cite: Strigul, N. and Rumyantseva, O.: Multidimensional climate envelop modeling of pitch pine (Pinus rigida) distribution in North America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20540, https://doi.org/10.5194/egusphere-egu24-20540, 2024.

EGU24-22121 | PICO | BG3.1 | Highlight

Effect of irrigation on tree vitality in a temperate forest in Germany 

Michael Köhler, Nataliya Bilyera, Heiko Gerdes, and Henning Meesenburg

Over the past decades, extensive groundwater extraction has disturbed the water balance in the Hessian Ried region of Germany, resulting in a deepening of the groundwater table. Consequently, the forests in this area, which were initially reliant on groundwater, are now solely dependent on precipitation. The increasing frequency of summer droughts further jeopardizes the vitality of these forestsTo address these issues, above-ground irrigation as an alternative to restoring the groundwater table could be pivotal. Implementing irrigation strategies may allow to revitalize trees and/or reduce mortality rates.

To assess the impact of irrigation on tree vitality, an experiment is conducted since 2021 in the municipal forest of Gernsheim, located in the Hessian Ried region, Germany, a region, where large forest areas are suffering from groundwater abstraction. The experiment involved designated control and irrigation plots, each in threefold replication covering 2500 m2 per plot. Perforated pipes were installed at the irrigation plots on the ground, delivering water based on real-time field measurements of soil water content, matric potential, and precipitation regime. The irrigation plots received 186 mm, 505 mm, and 332 mm of additional water in 2021, 2022, and 2023, respectively.

Phenological observations indicated that irrigation prevented premature senescence of the foliage compared to control plots following a drought in 2022. Even in the following year, non-irrigated plots showed 10% less canopy cover. Additionally, leaf area index was significantly higher in 2022 and 2023 at the irrigated compared to the control plots, despite starting lower there in 2021. The negative impact of drought on tree growth was also significantly reduced by irrigation: the diameter increment of trees at irrigated plots during the drought year 2022 was similar to previous moist years for oak trees, while the increment was even higher for hornbeam trees. Tree mortality rates remained consistent at 3-5% in 2022 regardless of irrigation. However, tree mortality decreased to 0% in 2023 under the irrigation scheme, while it remained high at 10% in the control plots.

To concludeforest irrigation effectively reduced premature senescence of tree foliage during the severe drought of 2022, and thus prolonged the growing period. Irrigation significantly contributed to preserving tree vitality and reducing tree mortality in the subsequent year. Given that trees might endure the adverse effects of drought for several years, long-term studies are necessary to determine to what extent forest condition can be revitalized over time with irrigation.

How to cite: Köhler, M., Bilyera, N., Gerdes, H., and Meesenburg, H.: Effect of irrigation on tree vitality in a temperate forest in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22121, https://doi.org/10.5194/egusphere-egu24-22121, 2024.

Oaks (Quercus sp.) are common tree species growing under subtropical to (hemi-)boreal climates and are expected to become more widespread due to climate change and related adaptation management decisions. Due to their high wood density, valuable timber, resistance towards drought and long-life expectations, oaks can be promising candidates for future tree species for maintaining in-situ carbon storage in European forests as well as provisioning long-lived wood products. Forest structure is important for forest growth and forest value and is the legacy of historic forest management (or its absence), site conditions and tree species presence. Mechanistic modelling tools, such as the hybrid patch model PICUS, allow exploring possible trajectories of forest development and quantifying the effects of climate, stand density and management.Here we report on a case study in the project “OptFor-EU” in Oak-Hornbeam forests in Austria, that are already subject to water-limitations. We tested state-of-the-art stand establishment methods against naturally regenerated stands and found that large-dimension timber can be produced within less than 100 years, with appropriate intensive management routines. We demonstrate, by comparing simulations with observations, that intensified management will likely lead to reduced carbon storage and increased carbon uptake, indicating trade-offs between timber production and carbon storage. We expect that adaptive forest management alternatives can help balance forest ecosystem services and support knowledge-based decision support.

References

F. Irauschek, W. Rammer, M.J. Lexer, Evaluating multifunctionality and adaptive capacity of mountain forest management alternatives under climate change in the Eastern Alps, Eur. J. For. Res. 136 (2017) 1051–1069. https://doi.org/10.1007/s10342-017-1051-6.

M. Neumann, H. Hasenauer, Thinning Response and Potential Basal Area — A Case Study in a Mixed Sub‐Humid Low‐Elevation Oak‐Hornbeam Forest, Forests. 12 (2021). https://doi.org/10.3390/f12101354.

How to cite: Neumann, M., Pichler, J., and Lexer, M. J.: Contrasting carbon storage with timber production in managed and unmanaged Oak forests in Austria based on simulations and observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1560, https://doi.org/10.5194/egusphere-egu24-1560, 2024.

When the EU Commission launched the plan of planting additional “three billion trees” within the Green Deals` strategy, it did not foresee the outcry amongst environmentalist groups and forestry sector groups alike. For both types of stakeholders, the measure is not effective, albeit for opposite reasons: Whilst environmentalists criticise that it halters the increase of biodiversity, the forestry sector interest groups denote the strategy as not understanding the practices of tree planting in forest management. Indeed, the policy so far is reported as one of European failure, at least according to the forest reporting and monitoring systems (Forest Information System for Europe, 2022). The paper sets out to investigate the current policy responses which mirror the manyfold demands around forests for both climate mitigation and adaptation measures (Ludvig et al. 2021). Forests are often depicted as best solutions to carbon storage and the building of carbon stocks (Law et al. 2011). However, foresight studies on grounds of forest inventories have shown that forests cannot respond to many of these demands (Ledermann et al 2022)

By way of policy document analysis and expert interviews with different decision takers and interest groups at EU level (forestry, environment and climate), my research firstly asks “How is restoration for reaching climate goals perceived?” and secondly “how do the current policies relate climate-goals with restoration in the forest and land use sector?”.

The paper will contribute to disentangle the principal debates about principal trade-offs and accompanying policy mixes in the field of contested natural resources and eco-system services. Across the different documents, the understanding of “restoration” differs; likewise so along the range of stakeholder opinions. Not surprisingly, all interviewed stakeholders see the tackling of climate change as a priority. But the grounds of (scientific) understanding and argumentation are diverse. The paper disentangles those differences with outlining a classification of the principal grounds of understanding/perceptions in order to conclude with a proposal for synergetic effects of the key policy strategies involved.

How to cite: Ludvig, A.: How to tackle climate-related restoration in the forest-based sector? A focus on policy trade-offs , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1568, https://doi.org/10.5194/egusphere-egu24-1568, 2024.

EGU24-1727 | ECS | PICO | BG3.5

Multi-Functional Forestry in Europe: Balancing Climate Change Mitigation, Timber Production, and Ecosystem Services 

Konstantin Gregor, Andreas Krause, Christopher Reyer, Thomas Knoke, Susanne Suvanto, Thomas Nagel, and Anja Rammig

Forests play a crucial role in climate change mitigation strategies. They store carbon in biomass, soils, and wood products, and substituting carbon-intensive products with wood products further avoids greenhouse gas emissions. However, substantial uncertainties surround the quantification of their actual mitigation potentials.

Using dynamic vegetation modeling, we quantify the impact of various factors on the mitigation potential of forests, namely climate change and nitrogen deposition, disturbances, forest age, forest type, harvesting and wood usage practices, and the decarbonization pace of non-wood products. Our results indicate that reducing sustainable harvest levels is not reasonable within the next decades as wood products will continue to provide substantial substitution effects, even in scenarios with rapid decarbonization. However, increased material usage should be prioritized over using wood as fuel.

Climate change, disturbances, and decarbonization introduce critical uncertainties that require novel methods and data to address these uncertainties. Moreover, forests offer many more ecosystem services than climate change mitigation. Their provision needs to be considered in forward-looking, climate-smart management strategies, alongside their adaptation potential to a rapidly changing climate. To this end, we propose a robust multi-criteria optimization approach for developing strategies for multi-functional forestry that are viable across a broad range of climate scenarios and adhere to demands on timber production and EU strategies. Our methodology indicates that all these demands and aims exert strong pressure on European forests. Alleviating this pressure will be necessary to ensure healthy forests that can provide climate change mitigation and other ecosystem services.

How to cite: Gregor, K., Krause, A., Reyer, C., Knoke, T., Suvanto, S., Nagel, T., and Rammig, A.: Multi-Functional Forestry in Europe: Balancing Climate Change Mitigation, Timber Production, and Ecosystem Services, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1727, https://doi.org/10.5194/egusphere-egu24-1727, 2024.

EGU24-3090 | PICO | BG3.5

Enhanced precipitation events and forests stability: a case study in Emilia-Romagna and Tuscany (Italy). 

Teodoro Georgiadis, Letizia Cremonini, Giorgio Matteucci, Federica Rossi, Francesca Giannetti, Ilaria Zorzi, Alessio Collalti, Ettore D'andrea, and Simone Cardoni

Climate change is endangering natural and anthropogenic ecosystems, as pointed out by the recent IPCC Reports and the COPs' statements. The impacts of climate change on natural ecosystems can affect their production capacity, particularly in those systems characterized by a high quality of yields, especially in densely populated and industrialized countries. We analyze two recent intense rainfall events that hit the Emilia-Romagna and Tuscany (Italy) regions and the damage caused to the agricultural ecosystems downstream of forests and woodlands. Although the scientific debate on these events' climatic or purely meteorological origin is still open, these occurrences provide a potential direct example of the harm climate change may bring. The topic of forest management for risk reduction is also analyzed on the forest itself and anthropized systems and related economies. The study was conducted within the European OptFor-EU Project.

 

How to cite: Georgiadis, T., Cremonini, L., Matteucci, G., Rossi, F., Giannetti, F., Zorzi, I., Collalti, A., D'andrea, E., and Cardoni, S.: Enhanced precipitation events and forests stability: a case study in Emilia-Romagna and Tuscany (Italy)., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3090, https://doi.org/10.5194/egusphere-egu24-3090, 2024.

Forests are expected to provide several ecosystem services, such as wood production, clean water and carbon sequestration and storage, simultaneously. The basic aerial unit of forest management is gradually changing from stand to catchment scale. Catchment scale management of forest nutrient balance is an important part of modern forestry. A leap towards holistic management of ecosystem services through customised forest management strategies has become possible when high resolution forest, terrain, and soil data can be combined with detailed process-based ecosystem models. We have developed catchment level, spatially distributed nutrient balance and hydrology models, which calculate location-specific forest growth, carbon and nutrient dynamics, and the nutrient export to water courses. Model applications have shown that the nutrient export is very unevenly distributed throughout catchments: 5 % of the catchment area can produce 25% of the nitrogen export. This identification of nutrient export hotspots facilitates knowledge-based planning of forest operations and cost-efficient locating of water protection. We have found that catchments may also contain locations where the stand growth is nutrient limited. This opens the possibility for precision fertilization in which the quality, dose and timing of the fertilization can be adjusted so that the site-specific nutrient supply meets the nutrient demand. Our simulations indicate that especially in peatland forests, fertilization together with water and forest management can effectively improve wood production, decrease carbon emissions and control nutrient export to watercourses.  Furthermore, these models can be used to compare different harvesting methods and forest management strategies with respect to multiple ecosystem services. Process-based ecosystem models including nutrient balance and geospatial high-resolution data are particularly useful in forecasting the effects of climate change allowing development of pro-active adaptation schemes in a specific catchment.

How to cite: Palviainen, M. and Laurén, A.: Nutrient balance as a tool in multi-objective forest management aiming at climate change mitigation and other ecosystem services, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3102, https://doi.org/10.5194/egusphere-egu24-3102, 2024.

EGU24-3418 | ECS | PICO | BG3.5 | Highlight

European Forest Type Map 

Francesca Giannetti, Ilaria Zorzi, Stefanie Linser, Mathias Neumann, Sorin Cheval, Alessio Collalti, Elia Vangi, Elisa Grieco, Davide Travaglini, Gherardo Chirici, and Anna Barbati

Forest types are key factors to consider when monitoring forests, particularly in consideration of  the increasing need to assess how climate change is affecting different forests in Europe and beyond. A comprehensive classification system is indeed essential for understanding the diverse forest ecosystems, tracking their changes over time and across various spatial and geographical scales. Moreover, it provides valuable insights on the baseline conditions and current states of forest ecosystems, aiding in decision-making for conservation and resource management. 

A "forest type classification scheme" aims to break down extensive forested areas, like stocked forest land, into smaller, more similar units. This breakdown helps streamline the analysis, interpretation, and communication of forest-related data. In Europe, the European Forest Types (EFT) classification system has demonstrated its effectiveness and user-friendliness in facilitating the comprehension, interpretation, and dissemination of data regarding indicators that depict the conditions and changes within European forests, as well as forest management practices. The EFT, could support a standardised reporting of several forest area related indicators. This includes assessments of biodiversity, organised into ecologically similar groups across the entire European region. However, until now, there was no EFTs map available for Europe.  To produce the map, a comprehensive analysis of relevant spatial datasets available at the European scale, essential for mapping, was first carried out.  Based on the variety of the datasets available, the JRC dataset featuring a comprehensive 39 forest tree species "relative probability of presence (RPP) maps”, was used along with eight different forest masks developed to identify environmental diversity, to accurately identify the different EFT categories. The RPP maps and the forest masks were used as inputs in a rule-based expert system algorithm to identify the 14 EFT categories and provide a thorough explanation for the classification of the EFT categories. The raster map created at a scale of 100 metres enabled the production of the first consistent EFTs maps across Europe and marked a significant advancement, providing a systematic means of classifying forest areas into EFTs, filling a critical gap in the spatial monitoring and reporting of forest indicators in the context of international frameworks. Moreover, existing EFTs maps can effectively be used as a basis for forest monitoring and support for decision-making, including forest-based adaptation and mitigation needs.

This study was funded by the Horizon Europe Project OptFor-EU (Grant agreement n°101060554).

How to cite: Giannetti, F., Zorzi, I., Linser, S., Neumann, M., Cheval, S., Collalti, A., Vangi, E., Grieco, E., Travaglini, D., Chirici, G., and Barbati, A.: European Forest Type Map, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3418, https://doi.org/10.5194/egusphere-egu24-3418, 2024.

EGU24-10675 | ECS | PICO | BG3.5

Assessing the effects of heat and droughts on forest-climate interactions in Europe using a regional climate model with an interactively coupled vegetation module  

Christina Asmus, Lars Buntemeyer, Florian Knutzen, Joni-Pekka Pietikäinen, and Diana Rechid

Forests play a pivotal role in the climate system by exchanging energy, water, and gases with the atmosphere.  Through biogeochemical processes such as photosynthesis, respiration, and transpiration, forests heavily influence the carbon and water cycles. In particular, their capacity to sequester carbon through photosynthesis demonstrates their role as carbon sinks. Further, through biogeophysical processes forests influence the local and regional climate by determining local temperature and humidity distributions. 

However, forests not only influence the climate - they are also affected by it. Their vulnerability to climate extremes, particularly to heat and droughts, raises substantial challenges. Droughts induce water stress, affecting both biogeochemical and biogeophysical processes, at the soil-forest-atmosphere interface. Within the EU Horizon project OptFor-EU and in collaboration with the Euro-CORDEX Flagship Pilot Study LUCAS, we employ numerical models to assess the climate-forest interactions and to evaluate forest resilience in a changing climate. 

In this study, we examine the effects of heat and droughts on European forests and their climatic feedbacks in simulations using the regional climate model REMO2020 coupled with its interactive, mosaic-based vegetation module iMOVE. The coupling enables the exchange of crucial parameters on model timestep level, and therefore, captures the complex interactions between climate, soil, and vegetation. We focus on biophysiological forest parameters such as the leaf area index (LAI), as well as on biophysical processes such as evapotranspiration, and on their feedbacks with the regional climate. Our simulations cover the European continent and have a horizontal resolution of 0.11°, forced with reanalysis data from ERA5.1 at the lateral boundaries. Starting from 1981 until 2020, they cover the hot and dry years of the last decades, such as 2003 and 2018-2020.  Our findings reveal insights into the vulnerability and resilience of European forests to heat and drought events, as well as into their role in climate extremes mitigation.   

Acknowledgments

This research received funds from the project “OPTimising FORest management decisions for a low-carbon, climate resilient future in Europe (OptFor-EU)” funded by the European Union Horizon Europe programme, under Grant agreement n°101060554. 

How to cite: Asmus, C., Buntemeyer, L., Knutzen, F., Pietikäinen, J.-P., and Rechid, D.: Assessing the effects of heat and droughts on forest-climate interactions in Europe using a regional climate model with an interactively coupled vegetation module , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10675, https://doi.org/10.5194/egusphere-egu24-10675, 2024.

Removal of CO2 from the atmosphere (CDR) will most likely be required to reach the goal of the Paris Agreement to limit global warming to well-below 2°C above pre-industrial temperature, in addition to rapid reduction of greenhouse gas emissions. Re-/afforestation (A/R) is among the most prominently discussed CDR methods, as it can be realized at low cost and is already implemented in many places today. However, forests are vulnerable to various disturbances caused by climate change, such as wildfires, droughts, and heat stress, which can lead to a decreased CO2 uptake or even a release of previously stored carbon back to the atmosphere. There is still a high uncertainty on the effects of climate change on the CDR potential of A/R. Here, we show spatially explicit how climate change affects the potential of A/R to sequester and store carbon under severe climate change (SSP3-7.0) and moderate climate change (SSP1-2.6), as simulated by the dynamic global vegetation model LPJmL5. Utilizing a highly stylized global afforestation scenario, we explore changes in net primary productivity, soil respiration and CO2 emissions from fires and identify the region-specific underlying causes (such as soil moisture changes or heat stress). We also demonstrate to what extent CO2 fertilization could counteract detrimental effects of climate change and highlight the possibility to underestimate climate impacts by overestimating the CO2 fertilization effect. By revealing and explaining spatial patterns of simulated future climate impacts on the CDR potential of A/R, our study contributes to a more profound understanding of the role A/R might be able to play in removing CO2 from the atmosphere.

How to cite: Mathesius, S. and Gerten, D.: Spatially differentiated impacts of climate change on the carbon sequestration potential of afforestation and reforestation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10702, https://doi.org/10.5194/egusphere-egu24-10702, 2024.

The global forest cover is undergoing significant changes which affect climate through biophysical and biogeochemical processes. Using potential biophysical effects and carbon flux datasets, we quantify the biophysical and biogeochemical impacts of forest cover changes over the past two decades. The net loss of global forest cover from 2001 to 2020 resulted in global average warming of 0.0042°C, with biophysical and biogeochemical contributions of 0.0020°C and 0.0022°C, respectively. The biophysical impacts dominated most regions of the world (68%), and the biogeochemical impacts were mainly concentrated in Europe and the tropics. The tradeoff between biophysical and biogeochemical impacts was found for 58% of forest cover change areas, mainly in boreal regions, while synergy was distributed in the southeastern United States and tropical regions. The study highlights the urgent need to protect and manage forest cover to reverse the warming.

How to cite: Li, Y. and Chen, H.: The biophysical and biogeochemical impacts of global forest cover changes on land surface temperature from 2001 to 2020, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13869, https://doi.org/10.5194/egusphere-egu24-13869, 2024.

EGU24-14662 | ECS | PICO | BG3.5

The critical role of optimal forest management in China for meeting its wood demand and climate target 

Haotian Zhang, Hao Zhao, Pekka Lauri, Nicklas Forsell, Petr Havlik, and Jinfeng Chang

China’s demand for wood and forest products continues to grow with the booming papermaking industry and residence use, leading to a dramatic increase in imports of wood products. Meanwhile, woody biomass for bioenergy with carbon capture and storage (BECCS) has been projected as a pivotal negative emission strategy in meeting climate goals in the future. However, the imposition of natural forest ban and the pursuit of future climate targets may create additional gaps in the availability of forestry products. Here, we use the GLOBIOM-China model to assess the impacts of diverse woody biomass demands, national programs for afforestation and forest plantation, and management measures in China under climate targets. The results indicate an increase in domestic roundwood consumption by 20.3~50.3 million m3 in 2050 under 1.5℃ scenario compared to that under the baseline scenario (BAU) without BECCS demand, with increased proportion for wood fuel uses and less for pulp and sawn wood consumption. Domestic production fails to meet the energy and material demands for woody products by 2060, necessitating an additional import of 63~144 million m3 of roundwood compared with the BAU, approximately accounting for 29~46% of domestic production. Enhancing logging potential can help prevent the continued transformation of natural forests into managed forests and forest plantations on cropland, as well as reduce roundwood imports by 55-89 million m3, when compared to the management of forests under normal increments. Moreover, such productivity enhancement could contribute to an additional sequestration in forestry of 0.1-1.26 Gt CO2 by 2060. This study underscores the imperative for enhanced forestry system management in China to effectively meet its ambitious climate commitments.

How to cite: Zhang, H., Zhao, H., Lauri, P., Forsell, N., Havlik, P., and Chang, J.: The critical role of optimal forest management in China for meeting its wood demand and climate target, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14662, https://doi.org/10.5194/egusphere-egu24-14662, 2024.

EGU24-14753 | PICO | BG3.5

Changes in climate extremes over the European Forest Types (1991-2050) 

Sorin Cheval, Francesca Gianetti, Alessio Collalti, Alexandru Dumitrescu, Mathias Neumann, and Nicu Constantin Tudose

A forest type (FT) generally describes a category of forest defined by its composition, and/or site-specific factors, and used in a system suitable to the situation at country level. The FTs are recognised to be a flexible approach to support the collection of data and organise forest indicators in a given area at different spatial scales, from country up to continental level.

The ongoing climate change is associated with increased intensity, duration and spatial extent of climate extremes, which may exacerbate the impacts on many ecological systems and socio-economic sectors, including  forest ecosystems and forest management.

This study explores the observed variability (1991-2020) and estimated changes (2021-2050) in the climate extremes that may occur over the European Forest Types (EFT), to provide a continental-scale perspective of the potential impact on forest ecosystems and provide decision support for forest management. Both temperature and precipitation CLIMPACT extremes indices relevant for forestry described and proposed by the Expert Team on Sector-Specific Climate Indices were computed using CERRA sub-daily regional reanalysis data for Europe. We use model outputs of climate change projections based on two Representative Concentration Pathways (i.e., RCP4.5, and RCP8.5). The climate information was analysed in combination with the 100 m resolution gridded EFT dataset produced within the Horizon Europe project OptFor-EU, ensuring consistency with similar studies at the European level. The results are detailed for case study areas situated in eight European countries (Norway, Lithuania, United Kingdom, Germany, Austria, Romania, Spain, and Italy).

While all EFTs are subject to increasing temperatures extremes and precipitation intensities, we found clear regional differences. The continental coverage and the level of details provided by these results support both the development of EU adaptation and mitigation strategies and plans, as well as the local forest management practices within the climate change context.

Acknowledgements

This research received funds from the project “OPTimising FORest management decisions for a low-carbon, climate resilient future in Europe (OptFor-EU)” funded by the European Union Horizon Europe programme, under Grant agreement n°101060554.

How to cite: Cheval, S., Gianetti, F., Collalti, A., Dumitrescu, A., Neumann, M., and Tudose, N. C.: Changes in climate extremes over the European Forest Types (1991-2050), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14753, https://doi.org/10.5194/egusphere-egu24-14753, 2024.

EGU24-16389 | PICO | BG3.5

Co-developing a Decision Support System for climate adaptation and mitigation of European forests: lessons learnt from the stakeholder engagement 

Nicu Constantin Tudose, Christina Asmus, Sorin Cheval, Teodoro Georgiadis, Hermine Mitter, Miguel Inácio, Marius Rohde Johannessen, Jasdeep Anand, Florian Knutzen, Stefanie Linser, Mirabela Marin, Giorgio Matteucci, Mathias Neumann, Paulo Pereira, Raul Gheorghe Radu, Mar Riera Spiegelhalder, and Cezar Ungurean

Climate change stands as a primary stressor, exerting various adverse effects on forests that are particularly susceptible to swift alterations in climatic parameters. At the same time, forests provide a range of ecosystem services beneficial for society. Therefore, a proper management and planning of forests is essential to mitigate the effects of climate change and provide valuable services. Forest management and planning is a complex process due to numerous socio-economic, administrative or environmental aspects that should be considered at different spatial scales. To this end, Decision Support Systems (DSSs) proved to be valuable tools that guide forest managers in enhancing forest resilience and its capacities to mitigate climate change. Engaging stakeholders from the very beginning of the DSSs development process is seen as a prerequisite for the project’s success, adding value and delivering more serviceable outputs. 

Here, we summarize the most important outputs stemming from a stakeholder engagement process that occurred between July−December 2023, in order to raise awareness about the role of forests in achieving climate ambitions, identify relevant stakeholders and build relationships. These aspects serve as a basis for achieving the following research objectives: provide an improved characterisation of the forest services to mitigate climate change related risks, utilise end-user focused process modelling, empower forest end-users to make informed decisions to enhance forest resilience and forest mitigation, provide a novel decision support tool, bridging different European Union strategic priorities, robust science, and stakeholders in the forest and forest-based sectors. In addition, a novel set of Essential Forest Mitigation Indicators (EFMI) will be proposed to assess the climate change impact and its relation to forest management. Their relevance will be validated through stakeholder consultation.

The stakeholder engagement was performed through on-site workshops, and online, phone and email consultations, in eight European countries (Norway, Lithuania, United Kingdom, Germany, Austria, Romania, Spain, and Italy). Common issues that arose through the engagement of stakeholders are related to the challenges of handling different variables (e.g. scale of the study area, public/private forest ownership) between countries and differences in forest management across case studies. The most important lessons learned after the stakeholders workshops are: the importance of trusted relationships with local partners for an effective stakeholder engagement, the significance of including the stakeholders needs and expectations for a successful, long-term partnership, avoiding language barriers by using a non-technical language, as well as long-term policies and funding sources for planning security. A unique feature of the conducted workshops is the interest of stakeholders to be involved and contribute to the development of the Forest DSS, as a user-friendly and tailored tool to their needs.

Acknowledgements

This research received funds from the project “OPTimising FORest management decisions for a low-carbon, climate resilient future in Europe (OptFor-EU)” funded by the European Union Horizon Europe programme, under Grant agreement n°101060554

How to cite: Tudose, N. C., Asmus, C., Cheval, S., Georgiadis, T., Mitter, H., Inácio, M., Johannessen, M. R., Anand, J., Knutzen, F., Linser, S., Marin, M., Matteucci, G., Neumann, M., Pereira, P., Radu, R. G., Spiegelhalder, M. R., and Ungurean, C.: Co-developing a Decision Support System for climate adaptation and mitigation of European forests: lessons learnt from the stakeholder engagement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16389, https://doi.org/10.5194/egusphere-egu24-16389, 2024.

EGU24-16649 | PICO | BG3.5

Assessing the Forest Management Impact on Forest Carbon Dynamics in Romanian Forests 

Raul Gheorghe Radu, Mathias Neumann, Nicu Constantin Tudose, Mirabela Marin, Cezar Ungurean, and Sorin Cheval

Forests play a crucial role in the EU's strategy for decarbonisation and in achieving neutrality targets, primarily through their capacity for carbon sequestration (carbon stock change) and storage (carbon stock) in above-ground biomass, dead organic matter, and soil organic matter. Alongside reforestation, sustainable forest management practices can further enhance the role of forests in decarbonisation. Our focus is on the Argeș-Vedea basin in Romania, a region stretching from the Carpathian Mountains to the Danube River. We analyse systematic sample plots across an area covering 300,000 hectares of forest.

We studied the relationship between stand attributes (basal area, diameter at breast height, age, species) and carbon stock changes in various carbon pools, evaluated also under different forest management practices context. Correlation analysis reveals a negative correlation between basal area and carbon stock changes in living trees and litter, which suggests that an increased basal area leads to reduced carbon stock changes (r= -0.15). Older stands tend to have lower net living tree carbon changes due to reduced growth and increased disturbance. Similarly, we found that soil carbon stock generally increases with the age of stands and decreases following disturbance, such as the harvesting of older stands (i.e., on average, by 10%).

The effects of various forest management practices (no intervention, clear-cuts, shelterwood, thinning, and stands affected by natural disturbance) on different carbon pools are distinct. While all interventions generally decrease carbon stock in above-ground biomass, thinning operations result in a minor increase, especially in the lower-density stands, but still five times less than non-intervention stands (+13 tC/ha) with a decrease in deadwood carbon, indicating the role of selective removal in forest health maintenance. In contrast, in no intervention management increases living tree carbon, underscoring the benefits of natural forest dynamics. Stands in the initial development stage exhibit the highest carbon sequestration capacity (+11 tC/ha), while stands in the understory initialization stage show a decrease in tree biomass (-11 tC/ha) due to the harvesting operations. Natural disturbances significantly impact the deadwood pool, tripling the carbon stock change compared to shelterwood-managed stands. Stands, where thinning is performed, are the only ones showing decreased deadwood carbon stock change. Similarly, the litter pool decreases in stands undergoing thinning and clear-cutting. Regarding the regeneration pool, stands affected by clear-cuts and natural disturbance (in a five-year period) showed the highest decrease in carbon stock change (-0.03 tC/ha).

This research reveals key insights into the variations in carbon stock caused by different management practices and the age progression of forest stands. This information is crucial for accurately modelling the carbon dynamics within forest ecosystems.

How to cite: Radu, R. G., Neumann, M., Tudose, N. C., Marin, M., Ungurean, C., and Cheval, S.: Assessing the Forest Management Impact on Forest Carbon Dynamics in Romanian Forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16649, https://doi.org/10.5194/egusphere-egu24-16649, 2024.

EGU24-16822 | ECS | PICO | BG3.5

Navigating Climate Change: Exploring Plenter Forest Potential in Styria, Austria 

Mathias Leiter, Christoph Pucher, Ferdinand Hönigsberger, Michael Kessler, Manfred J. Lexer, Harald Vacik, and Hubert Hasenauer

Forests stand at the forefront of climate change adaptation strategies, with their ability to sequester and store carbon, sustain bioeconomies, foster biodiversity, and provide a whole range of other ecosystem services. There is an increasing trend of promoting this multipurpose functionality of forests, resulting in a shift towards silvicultural practices that differ heavily from the now dominant even-aged, clear-cut forestry. One of these alternative management practices to promote multipurpose functionality is plenter forest management, a type of uneven-aged selection cutting system. Only little is known about the applicability of this management system on a regional or national scale. Therefore, this study assesses the potential expansion of plenter forest management, crucial for climate change mitigation. Focusing on tree species suitability, harvesting constraints, and road accessibility, we analysed factors impacting plenter management for the Austrian province of Styria for current and future climate conditions. Our findings reveal that while current forestry predominantly features even-aged Norway spruce, approximately 14% of the forest area could be managed as mixed-species plenter forests under current conditions. This research contributes to understanding potential in transforming forest practices for enhanced biodiversity, ecosystem services, and climate resilience on a regional scale.

How to cite: Leiter, M., Pucher, C., Hönigsberger, F., Kessler, M., Lexer, M. J., Vacik, H., and Hasenauer, H.: Navigating Climate Change: Exploring Plenter Forest Potential in Styria, Austria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16822, https://doi.org/10.5194/egusphere-egu24-16822, 2024.

EGU24-21572 | PICO | BG3.5

Carbon stock projection for four major forest plantation species in Japan 

Tomohiro Egusa, Ryo Nakahata, Mathias Neumann, and Tomo'omi Kumagai

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. We presented the forest age–carbon density functions of four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi. We then investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. For all four forest types, the estimates of growth rates and past forest carbon stocks were higher than those considered thus far. The predicted carbon sequestration from 2011 to 2061, assuming that 100% of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100% afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit high carbon sequestration potential under the premise of active forest management with technology development.

How to cite: Egusa, T., Nakahata, R., Neumann, M., and Kumagai, T.: Carbon stock projection for four major forest plantation species in Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21572, https://doi.org/10.5194/egusphere-egu24-21572, 2024.

EGU24-341 | ECS | Posters on site | BG3.6

Integrated Assessment of Climate Change and Forest Management Impacts on Carbon Fluxes and Biomass in a Southern Boreal Forest  

Md Rafikul Islam, Anna Maria Jönsson, John Bergkvist, Fredrik Lagergren, Mats Lindeskog, Meelis Mölder, Marko Scholze, and Natascha Kljun

Boreal forests play a crucial role in global carbon sequestration and storage, yet their vulnerability to climate change remains a significant concern. We present results from simulations with the process-based dynamic global vegetation model LPJ-GUESS of the combined effects of climate change and forest management on the carbon sink capacity of a boreal forest in southern Sweden. We compared two future climate change scenarios (RCP 4.5 and RCP 8.5) along with four forest management options against a baseline scenario without management interventions. Our findings indicate that projected temperature increases (+2 to +4°C) in the late 21st century will diminish the net carbon sink strength, particularly in old-growth forests. Clear-cut and subsequent reforestation resulted in a substantial decline (57-67%) in vegetation carbon during 2022-2100. The carbon compensation point (CCP) was reached 12-16 years after the clear-cut, indicating a period of carbon debt before the ecosystems resumed acting as a net carbon sink. Specific reforestation strategies, such as pine plantations, enhanced the overall net carbon sink by 7-20% relative to the baseline during 2022-2100. The carbon parity point, without considering harvested carbon, was reached 56-73 years after the clear-cut, highlighting the extended period required for the reforestation to achieve a carbon stock equivalent to the uncut baseline. These findings highlight the substantial influence of forest management on the net carbon budget, surpassing that of climate change alone. The adoption of relevant reforestation strategies could enhance carbon uptake, simultaneously improving forest productivity and ensuring the forest's vital role in carbon sequestration and storage amid a changing climate.

How to cite: Islam, M. R., Jönsson, A. M., Bergkvist, J., Lagergren, F., Lindeskog, M., Mölder, M., Scholze, M., and Kljun, N.: Integrated Assessment of Climate Change and Forest Management Impacts on Carbon Fluxes and Biomass in a Southern Boreal Forest , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-341, https://doi.org/10.5194/egusphere-egu24-341, 2024.

EGU24-1159 | ECS | Posters on site | BG3.6

Impact of climate and agricultural management practices on carbon fluxes using a CLM5 land surface model 

K Narender Reddy and Somnath Baidya Roy

Carbon exchange from agroecosystems contributes to the fluctuations of the carbon cycle. The present research employs the Community Land Model version 5 (CLM5) to examine the effects of climate and agricultural management methods, such as fertilization and irrigation, on carbon fluxes in the primary agroecosystems of India. In this study, CLM5 is calibrated and validated against the crop phenology dataset of spring wheat and rice. The crop phenology data is an unprecedented dataset that we have compiled by gathering information from many agricultural institutes around India. The crop dataset covers the period from 1970 to 2020. We have comprehensively tested and validated the CLM5 crop module in the Indian region. Subsequently, regional-scale simulations were conducted. The findings indicated that there are large variations in fluxes among different climatic regions of India, primarily due to disparities in growing circumstances. Throughout the study period, all fluxes exhibited statistically significant upward trends (p<0.1). Further numerical experiments are performed to examine the potential impact of natural factors, such as variations in temperature and levels of carbon dioxide (CO2), as well as agricultural techniques like nitrogen fertilizer and water availability, on the previously observed upward trends. The tests demonstrated that elevated levels of carbon dioxide (CO2), nitrogen fertilization, and irrigation water resulted in heightened carbon fluxes, with nitrogen fertilization exerting the most pronounced impact.

How to cite: Reddy, K. N. and Baidya Roy, S.: Impact of climate and agricultural management practices on carbon fluxes using a CLM5 land surface model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1159, https://doi.org/10.5194/egusphere-egu24-1159, 2024.

EGU24-2469 | ECS | Posters on site | BG3.6

Greening fails to translate into an increase in Net Primary Productivity due to warming constraints in India 

Ripan Das, Rajiv Kumar Chaturvedi, Adrija Roy, Subhankar Karmakar, and Subimal Ghosh

India has made the second-largest contribution to global greening in the last two decades. However, it is not clear whether this greening has led to an overall increase in net primary productivity and hence carbon uptake potential, given the impact of climate change on vegetation. In this study, using MODIS satellite data for the period 2001–2019, we attempt to find out the extent to which increased greening in India has led to an overall increase in primary productivity in recent decades. Despite a statistically significant increase in the Leaf Area Index (LAI), we found a slightly decreasing trend (not statistically significant) in Net Primary Productivity (NPP) and stable Gross Primary Productivity (GPP) during the 21st century. Our analysis also shows that the NPP of temporally consistent Indian forests shows a significant decreasing trend despite the increase in LAI. Notably, there are spatial differences in the NPP trend, with the regions contributing the most to NPP in India showing a stronger decreasing trend. The regions with a significantly decreasing NPP trend also experienced the strongest warming during the study period. We also used the nonlinear kernel regression method to investigate the temperature response of vegetation productivity in these regions. We observed that photosynthesis in these regions decreased above a certain temperature and respiration became stable, leading to a decrease in NPP. Our analysis shows that climate change, especially the rise in temperature, has already begun to affect vegetation productivity and carbon uptake in Indian forests. The study also conveys the clear scientific message that increased greening does not necessarily lead to increased carbon uptake, especially in a country like India where agriculture is intensifying. This analysis also has significant implications for the scientific analysis of planning to achieve India's net zero emissions pledge by 2070.

How to cite: Das, R., Chaturvedi, R. K., Roy, A., Karmakar, S., and Ghosh, S.: Greening fails to translate into an increase in Net Primary Productivity due to warming constraints in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2469, https://doi.org/10.5194/egusphere-egu24-2469, 2024.

EGU24-2558 | Orals | BG3.6 | Highlight

The Database of European Forest Insect and Disease Disturbances: DEFID2 

Giovanni Forzieri and the DEFID2 team

Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral-temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.

How to cite: Forzieri, G. and the DEFID2 team: The Database of European Forest Insect and Disease Disturbances: DEFID2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2558, https://doi.org/10.5194/egusphere-egu24-2558, 2024.

EGU24-3354 | ECS | Posters on site | BG3.6

Assessing the climatological stability of the Congo basin rainforest 

Steven De Hertog, Félicien Meunier, and Hans Verbeeck

The Congo basin forests play a crucial role in the global carbon cycle, hosting a carbon sink of more than 10% of the global sink. This carbon potential also appears more stable than those of comparable other tropical forests. However, despite its importance for global climate, the Congo basin forest is receiving much less scientific attention. Yet, in recent years the body of data and knowledge is reaching a critical level which allows a study on the stability of the Congo basin forest under present and future climates. Here we applied an advanced vegetation model (ED2) over the Congo basin forests and explored their potential (in)stability under different climate forcings. The main objective was to explore the climate sensitivity of the Congo basin forests in terms of functional composition and carbon balance. This allows to asses the risk of the rain forest to shift into a savanna type vegetation. We addressed this question by integrating for the first time observational meteorological data available over the Congo basin in order to evaluate global reanalysis and climate modelling datasets. This led to unique simulations of the vegetation changes observed during past decades as well as for potential climate futures.

How to cite: De Hertog, S., Meunier, F., and Verbeeck, H.: Assessing the climatological stability of the Congo basin rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3354, https://doi.org/10.5194/egusphere-egu24-3354, 2024.

EGU24-3780 | ECS | Posters on site | BG3.6

Significant Impacts of El Niño-Southern Oscillation and Indian Ocean Dipole on China’s Gross Primary Production 

Ran Yan, Jun Wang, Weimin Ju, Xunmei Wang, and Jingye Tan

Gross primary production (GPP) stands as a crucial component in the terrestrial carbon cycle, greatly affected by large-scale circulation adjustments. This study investigates the influence of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China’s GPP, utilizing long-term GPP data simulated by the Boreal Ecosystem Productivity Simulator (BEPS). Partial correlation coefficients between GPP and ENSO reveal substantial negative associations in most parts of western and northern China during September-October-November (SON). These correlations shift to strongly positive over southern China in December-January-February (DJF), then weaken in March-April-May (MAM), eventually turning generally negative over southwestern and northeastern China in June-July-August (JJA). In contrast, the relationship between GPP and IOD basically exhibits opposite patterns. Composite analysis further confirms these seasonal GPP anomalous patterns. Mechanistically, we ascertain that, in general, these variations are predominantly controlled by soil moisture in SON and JJA, but temperature in DJF and MAM. Quantitatively, China's annual GPP demonstrates modest positive anomalies in La Niña and nIOD years, in contrast to minor negative anomalies in El Niño and pIOD years. This results from counterbalancing effects with significantly greater GPP anomalous magnitudes in DJF and JJA. Additionally, the relative changes in total GPP anomalies at the provincial scale display an east-west pattern in annual variation, while the influence of IOD events on GPP presents an opposing north-south pattern. We believe that this study can significantly contribute to our comprehension of how intricate atmospheric dynamics influence China’s GPP on an interannual scale.

How to cite: Yan, R., Wang, J., Ju, W., Wang, X., and Tan, J.: Significant Impacts of El Niño-Southern Oscillation and Indian Ocean Dipole on China’s Gross Primary Production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3780, https://doi.org/10.5194/egusphere-egu24-3780, 2024.

EGU24-3888 | ECS | Orals | BG3.6

The covariation of forest age shifts and net carbon balance over the period 2010 to 2020 

Simon Besnard, Viola H.A Heinrich, Nuno Carvalhais, Martin Herold, Wouter Peters, Ingrid Luijkx, Maurizio Santoro, and Hui Yang

Understanding the relationship between forest age, an indicator of successional stages, and net carbon fluxes is crucial for effective forest management and climate mitigation. Using the satellite-based Global Age Mapping Integration (GAMI) v1.0 dataset, we analyzed forest age shifts from 2010 to 2020 and their correlation with net carbon dioxide (CO2) flux changes from independent atmospheric inversions. Globally, we do not report substantial forest age shifts during this period. The total area of young (1-20 years old), intermediate (21-60 years old), mature (61-150 years old), and old-growth (>150 years old) forests in 2020 compared to 2010 changed by approximately -0.07 (-7.7% compared to 2010), +0.03 (+6.0%), +0.03 (+2.1%), +0.01 (+1.1%) billion hectares, respectively. Despite these relatively stable global trends in forest age classes, we observe substantial changes at the regional scales. The Amazon, Congo basin, and Southeast Asia regionally experienced significant forest age decreases with local changes of up to 30% compared to 2010, attributed to deforestation and degradation. Siberian forests maintained their older age structure; however, large areas are transitioning to younger ages (0.09 billion hectares, 7.2% of Eurasia Boreal region), likely driven by increased fire frequency, logging activities, or climate-induced changes. Most European and North American forests trended toward older ages. However, those changes were heterogeneous at the sub-pixel level, revealing a complex mix of stand-replacement and aging dynamics across the different forest age spectrums. Stand-replaced forests, followed by regrowth, constitute a relatively minor fraction (6%) of the overall forested ecosystems, primarily dominated by aging forests (64%) and "stable" old-growth tropical forests (30%). Stand-replaced forests were prominent in young forests (0.1 billion hectares, 54.3% of total stand-replaced forests), while intermediate, mature, and old-growth forests accounted for 13.2%, 17.9%, and 14.6% of the total area of stand-replaced forests. Conversely, aging forests (excluding old-growth "stable" tropical forests) were primarily observed in the mature age classes, encompassing 1.2 billion hectares and constituting around 53% of the total aging forests. When coupling GAMI data with CO2 flux estimates, we observe a significant correlation between the spatial patterns of the stand-replaced forest fraction and net CO2 flux changes (R2 = 0.37, slope = 118.7 gC m-2 year-1 [a positive slope indicates increased carbon released], p-val = 0.05) across the eleven TRANSCOM-land regions. This correlation surpasses the correlation with aging forests (R2 = 0.02, slope = -3.7 gC m-2 year-1, p-val = 0.69). We attribute this significant correlation to the net above-ground biomass (AGB) losses in stand-replaced forests per unit area, substantially exceeding the magnitude of the net AGB gains observed in aging and old-growth "stable" tropical forests throughout 2010-2020. Our study highlights the importance of rapid forest turnover through stand-replacement, despite its limited spatial extent, on regional net carbon balance, especially when contrasted with the more gradual process of forest maturation.

How to cite: Besnard, S., Heinrich, V. H. A., Carvalhais, N., Herold, M., Peters, W., Luijkx, I., Santoro, M., and Yang, H.: The covariation of forest age shifts and net carbon balance over the period 2010 to 2020, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3888, https://doi.org/10.5194/egusphere-egu24-3888, 2024.

EGU24-4183 | Orals | BG3.6 | Highlight

Closing the data gap to develop Land Surface Models for Congo Basin forests 

Wannes Hubau and the DAMOCO, PILOTMAB & CANOPI consortium

Congo Basin forests are among the most diverse, carbon-rich and CO2-absorbing areas in the World (1,2) and play an increasingly important role in international climate policy (3). On the pivotal CoP26 in Glasgow, more than 100 World leaders promised to stop deforestation by 2030, including specific pledges to focus on protecting Congo Basin forests. However, there is a striking discrepancy between the Congo Basin’s paramount importance versus its poor scientific coverage (4). As a result of this data gap, Earth System Models are not capturing present-day tropical forest carbon dynamics (5). Therefore, our consortium is contributing to closing the Congo Basin forest data gap and improve Land Surface Models to capture its biodiversity and carbon dynamics. To reach this ambition, we are collecting field data on permanent forest inventory plots scattered across the Congo basin.

The data covers multiple time scales by combining different methodological approaches: (i) weakly monitoring of cambial and foliar phenology of selected trees in the plots provides seasonal- and annual-scale changes in carbon uptake, (ii) repeated tree diameter and height measurements of all trees in the plots reveal decadal-scale changes in the carbon balance and tree community composition, (iii) measuring whole-tree, wood and leaf traits on selected trees in the plots allow in-depth analysis of decadal-scale changes in taxonomic and functional composition, (iv) identification of radiocarbon dated soil charcoal sampled in the plots reveal century-scale and millennial-scale changes in biodiversity, (v) continuous monitoring of climate variables provides yearly and decadal-scale changes in temperature and water availability.

By themselves, those data shed light on the short- and long-term resilience of critical Congo Basin forest ecosystem functions. Here we present an overview of recently published and preliminary results showing how our consortium contributes to advance our understanding of the effects of environmental change on vegetation dynamics, tree mortality and carbon dynamics of Congo Basin forests. Combining all these collected field data will ultimately allow to parameterize and validate Land Surface Models specifically for the Congo Basin.

1.Hubau, W. et al. Nature 579, 80–87 (2020). 2. Jung, M. et al. Nat. Ecol. Evol. 5, 1499–1509 (2021). 3. Rockström, J. et al. PNAS 118, 1–5 (2021). 4. White, L. J. T. et al. Nature 598, 411–414 (2021). 5. Koch, A., Hubau, W. & Lewis, S. L. Earth’s Future. 9, 1–19 (2021).

How to cite: Hubau, W. and the DAMOCO, PILOTMAB & CANOPI consortium: Closing the data gap to develop Land Surface Models for Congo Basin forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4183, https://doi.org/10.5194/egusphere-egu24-4183, 2024.

EGU24-4893 | ECS | Posters on site | BG3.6

Projected decline of CO2 fertilization effects on vegetation carbon sequestration in India 

Vijaykumar Bejagam, Ashutosh Sharma, and Xiaohua Wei

The increase in vegetation productivity in India (net primary productivity; NPP) has been observed in recent decades; however, substantial uncertainty exists about the continued strength of these land carbon sinks under climate change. The enhanced NPP is driven by the strong positive carbon-concentration feedback (CO2 fertilization effect; CFE), but the temporal dynamics of this feedback are unclear. Using the carbon fluxes from the multiple Earth System Models (ESMs) of Coupled Model Inter-comparison Project (CMIP6), we showed an increasing trend in NPP would continue under climate change with projections of NPP to 2.00 ± 0.12 PgCyr-1 (25% increase) during 2021-2049, 2.36 ± 0.12 PgCyr-1 (18% increase) during 2050-2079, and 2.67 ± 0.07 PgCyr-1 (13% increase) during 2080-2099 in Indian tropic forests under SSP585 scenario. This suggests a significant decline in the growth rate of NPP in future periods. To understand the feedbacks that drive the NPP increase, we analyzed the relative effects of CFE and warming. We compared the simulations from the biogeochemical coupled model (BGC) from ESMs, which exclude the warming effects, with the fully coupled model, which includes both CFE and warming effects. The BGC model projected a 74.7% increase in NPP by the end of the century, significantly higher than the 55.9% increase projected by the fully coupled model. This shows that the consistent increase in the NPP was associated with the rise in atmospheric CO2. More importantly, results reveal that the decrease in the growth rate of NPP was due to the decline in the contribution of CFE across the different vegetations at a rate of -0.62% 100 ppm-1. Such a decline could be attributed to nutrient limitation, negative responses to high temperatures, droughts, heat waves, etc. Additionally, statistically significant shifts in the strength of carbon sinks (at a rate of -1.15% per decade) were identified in abating anthropogenic CO2 emissions. These shifts in land carbon sinks can potentially exacerbate global warming and impose additional challenges on our collective efforts to meet climate policy targets.

How to cite: Bejagam, V., Sharma, A., and Wei, X.: Projected decline of CO2 fertilization effects on vegetation carbon sequestration in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4893, https://doi.org/10.5194/egusphere-egu24-4893, 2024.

EGU24-5483 | ECS | Orals | BG3.6

Comparing the efficiency of forest mitigation policies: Is sequestering more efficient than using wood? 

Cosmin Cosofret, Olivier Bouriaud, and Laura Bouriaud

Reducing the net CO2 emissions is a key target worldwide, as shown, for instance, by the commitment of the Paris Agreement, and in this context, forests are being scrutinized for their capacity to act as carbon sinks and store large amounts of carbon over long periods. Quantifying the substitution effect of wood remains very difficult as it depends on many factors difficult to measure, such as the distribution of wood products into types of products having different lifetimes and which can substitute for different materials.

In Romania, forests have a large overall biomass stock, even in managed forests, since the management is operating at an intensity much lower than in many other European countries. Increased regionality in the global change effects requires a more local investigation. Therefore, we used a dynamic forest landscape model (LandClim model) to compare the three opposed mitigation strategies of forests and quantify their potential for sequestration of carbon and substitution of carbon in the context of global changes.

Under the mild climate RCP26 the carbon stocks were kept at levels roughly similar to the current stocks. The Set Aside 100% (SA100) managed stands stored the highest quantity of carbon, showing a capping of growth at the end of the 200 simulated years. Under the extreme climate RCP85, stocks increased for three decades but then plummeted. The highest stocks were obtained by the Set Aside 0% (SA0) management.

The cumulative harvest showed two surges under the climate scenario RCP26, first at the beginning of the simulation (2020-2060) and then during the 2170-2210 period. Under mild climate change RCP26, the effect of substitution from wood procurement clearly exceeds the increase in storage that can be expected. Under the RCP85 climate, harvest occurred exclusively during 2020-2070, then practically stopped when all stocks and fluxes became a lot more similar among management scenarios, given the catastrophic drop of stocks past 2080.

Wind-related disturbances had relatively constant consequences under RCP26, albeit with more fluctuations and a much higher intensity in SA100. SA0 and SA30 had similar magnitudes until 2120, and then wind-induced losses increased more strongly for Set Aside 30% (SA30). By 2210 the amounts of wind-induced carbon losses were 50% larger for SA100 than for SA30. Under scenario RCP85, the management strategy did not influence these losses which were near zero after 2080, as a result of the very small stocks.

The literature suggests no management strategies for carbon storage in mild climates, but in extreme climates cannot be a solution. Therefore, under the cloud of increased disturbance and pressure of climate change, the substitution strategy is more effective and safer than sequestration.

 

How to cite: Cosofret, C., Bouriaud, O., and Bouriaud, L.: Comparing the efficiency of forest mitigation policies: Is sequestering more efficient than using wood?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5483, https://doi.org/10.5194/egusphere-egu24-5483, 2024.

EGU24-6377 | ECS | Posters on site | BG3.6

Global trends in forest fragmentation using multiple metrics 

Yibiao Zou, Thomas Crowther, Gabriel Smith, Haozhi Ma, Lidong Mo, Zhaofei Wu, Dominic Rebindaine, and Constantin Zohner

Deforestation has exacerbated the fragmentation of habitats into smaller, more isolated patches, driving global declines in biodiversity. Yet, a comprehensive global perspective of the trends in forest fragmentation, and its key drivers in relation to forest cover change remains elusive. To provide a comprehensive global overview of recent changes in forest fragmentation, we compare multiple fragmentation metrics, including those that are sensitive to forest cover and those that are not. Our analysis reveals that, according to cover-sensitive metrics that reflect the ecological implications of forest fragmentation, 52% of the world's forests have become more fragmented over the last two decades, a trend that is primarily attributed to increased deforestation in tropical zones. This value is twice as high than estimates from previous research, which estimated that forest fragmentation is declining across 75% of the global forest area. This discrepancy arises from a mathematical artifact, as previous cover-insensitive metrics equate declines in forest cover with decreased fragmentation. By adjusting for this and focusing on metrics that capture the ecologically relevant aspects of forest fragmentation, our study highlights a worrying trend: the ecological integrity of the global forest system has been significantly deteriorating in recent decades. This underscores the importance of using appropriate metrics to accurately assess the ecological impacts of forest fragmentation, especially in the context of global environmental change.

How to cite: Zou, Y., Crowther, T., Smith, G., Ma, H., Mo, L., Wu, Z., Rebindaine, D., and Zohner, C.: Global trends in forest fragmentation using multiple metrics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6377, https://doi.org/10.5194/egusphere-egu24-6377, 2024.

EGU24-6618 | ECS | Orals | BG3.6

Simulating CO2 seasonal cycle amplitude in northern high latitudes with an eco-evolutionary optimality model 

Wenjia Cai, Iain Colin Prentice, and Joram Hooghiem

Land-atmosphere carbon exchanges and feedbacks constitute one of the largest uncertainties in future climate projections. Seasonal variations in atmospheric CO2 content depend on uptake by photosynthesis and release by autotrophic and heterotrophic respiration, providing an atmospheric signal of land ecosystem activity. Large increases in the seasonal cycle amplitude (SCA) of CO2 have occurred since the 1950s, especially in northern high latitudes. However, land surface and dynamic vegetation models have produced a wide range of magnitudes for the SCA, and have generally underestimated its increase. We explored the controls of the SCA by using a parameter-sparse eco-evolutionary optimality (EEO) model, the ‘P model’, combined with generic representations of plant and decomposer respiration, to simulate seasonal cycles and decadal trends of net ecosystem exchange (NEE). Simulated NEE fields were used to model near-surface CO2 concentrations during the satellite era, with the help of the atmospheric chemistry-transport model TM5. The P model has previously been shown to reproduce trends of gross primary production (GPP) at flux sites with long records. Our model set-up also generated a realistic simulation of global net terrestrial carbon uptake, comparable with results produced by more complex dynamic vegetation models; and allowed us to attribute causes to observed SCA increases at high-latitude CO2 monitoring stations.

How to cite: Cai, W., Prentice, I. C., and Hooghiem, J.: Simulating CO2 seasonal cycle amplitude in northern high latitudes with an eco-evolutionary optimality model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6618, https://doi.org/10.5194/egusphere-egu24-6618, 2024.

EGU24-7557 | Orals | BG3.6

VODCA v2: Multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring  

Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo

Vegetation optical depth (VOD) is a model-based indicator derived from microwave Earth observations. It quantifies the attenuation of surface microwave emissions by the overlaying vegetation. VOD is an indicator of the total water content stored in the vegetation canopy and is related to vegetation density, its relative moisture content, and above-ground biomass (AGB). VOD has been used in various applications such as phenology analysis, drought,  biomass monitoring, and estimating the likelihood of fire occurrence, leaf moisture, and gross primary productivity. Most of these applications require consistent long-term measurements, which are not provided by single-sensor time series.  

The first version of the global, long-term Vegetation Optical Depth Climate Archive (VODCA v1)[1] enables long-term analysis by harmonising VOD retrievals from multiple passive microwave sensors, derived through the Land Parameter Retrieval Model (LPRM)[2]. VODCA v1 provides separate VOD products for different spectral bands, namely the Ku-band (period 1987–2017), X-band (1997–2018), and C-band (2002–2018).   

Here, we present a new version of the VODCA dataset. VODCA v2 comprises two new products: a multi-frequency product called VODCA CXKu (1987 – 2021), obtained by merging the C-, X- and Ku-band observations and an L-band product (2010 – 2021) based on LPRM-derived VOD from the SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Active Passive) missions. Even though the single-frequency products of VODCA v1 have merits on their own, merging them into VODCA CXKu yields a dataset with lower random levels and improved temporal sampling. It provides similar spatiotemporal information to optical and microwave vegetation indicators, such as the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from MODIS and the slope of the backscatter incidence angle relation of Metop ASCAT (ASCAT slope). VODCA CXKu agrees best with fAPAR in short vegetation (Spearman's R: 0.57) and broadleaf forests (Spearman's R: 0.49) and with ASCAT slope in grassland (Spearman's R: 0.48) and cropland (Spearman's R: 0.48). Additionally, VODCA CXKu shows temporal patterns similar to the Normalised Microwave Reflection Index (NMRI) from in situ L-band GNSS measurements of the Plate Boundary Observatory (PBO) and sapflow measurements from SAPFLUXNET. VODCA L shows strong spatial agreement (Spearman's R: 0.86) and plausible temporal patterns with yearly AGB maps from the Xu et al. (2021) dataset. 

We conclude that VODCA CXKu provides valuable information to study the vegetation canopy response to climate variability and anthropogenic impacts. We recommend using it in long-term vegetation monitoring studies focusing on short vegetation types and broadleaf forests. VODCA L provides valuable insight into AGB.

[1] Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA), Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020, 2020.  

[2] Van der Schalie, R., de Jeu, R.A., Kerr, Y.H., Wigneron, J.P., Rodríguez-Fernández, N.J., Al-Yaari, A., Parinussa, R.M., Mecklenburg, S. and Drusch, M., 2017. The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E. Remote Sensing of Environment189, pp.180-193. 

How to cite: Zotta, R.-M., Moesinger, L., van der Schalie, R., Vreugdenhil, M., Preimesberger, W., Frederikse, T., de Jeu, R., and Dorigo, W.: VODCA v2: Multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7557, https://doi.org/10.5194/egusphere-egu24-7557, 2024.

EGU24-7624 | ECS | Posters on site | BG3.6

The potential carbon benefit in drylands of China 

Zimin Tan and Shuai Wang

China’s drylands cover a large area and provide important ecosystem services as carbon sink by storing large amounts through vegetation and soils, so that it can be the key component of China’s terrestrial ecosystems. Due to water limitation and severe carbon-water trade-offs, China’s drylands are highly dynamic, which has an important impact on the trend of carbon sequestration in ecosystems of China and the interannual variability. Many studies have focused on carbon storage in cropland, grassland and forest ecosystems, but few comprehensive analyses focused on carbon storage and potentials in China's drylands. Here, we train a model with multiple influence factors to simulate the carbon storage potential in drylands of China to predict the biomass carbon carrying capacity of China’s drylands. After comparing observed and predicted biomass carbon density of drylands of China, we find that the carbon storage in China’s drylands realised by nearly 70 percent. The carbon actual storage in the drylands of the east of Inner Mongolia, the Northeast China, the northern part of Xinjiang, and the Huang-huai-hai region are the highest, and the potential carbon benefits of these places are highest too. Following by the Qinghai-Tibet Plateau and Jin-Shaan-Gan areas, and the lowest carbon storage and potential carbon benefits were found in the central and western parts of Inner Mongolia. Divided by the aridity gradient, it was found that the semi-arid zone has highest potential for carbon storage. We also identified areas where vegetation has not yet reached its full potential, such as the eastern and southern parts of the Tibetan Plateau and the Xinjiang region. Although the potential carbon storage in these areas is low, the proportion of carbon storage realised is below 40 percent, which has higher potential and conservation priority, indicating that the conservation of carbon in drylands of China needs to pay attention to the proportion of carbon sequestration realised at the same time, in addition to the potential carbon benefits.

How to cite: Tan, Z. and Wang, S.: The potential carbon benefit in drylands of China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7624, https://doi.org/10.5194/egusphere-egu24-7624, 2024.

EGU24-8510 | ECS | Posters on site | BG3.6 | Highlight

 The GEO-TREES initiative: high-accuracy ground data for satellite-derived biomass mapping 

Iris Dion, Jerome Chave, Stuart Davies, Alvaro Duque, Oliver Phillips, Camille Piponiot-laroche, Beatriz Schwantes Marimon, Klaus Scipal, and Irie Casimir Zo Bi

Verifiable and consistent measurement of forest carbon stocks and fluxes are necessary and they require to know where the biomass carbon is whether the vital functions of forests are changing, and what their future holds. Space agencies have made enormous investments in Earth Observation missions to map forest biomass across continents to support climate science and carbon markets. But satellites alone cannot produce accurate carbon maps–all maps vitally rely on field data collected by people and instruments to train their models and validate their products. To ensure satellites are producing reliable maps, it is needed frequently-acquired, high-quality field data. Furthermore, the challenge of acquiring ground biomass measurements is also one of environmental and social justice. The forests for which reference data are most needed, and the people depending on these forests, already suffer the worst impacts of climate change. Those in-country partners with unique forest expertise are key players in the fight against climate chaos, yet they are among the most disadvantaged globally. It follows that they need sustained support not only to collect data but to grow, train, and develop their own group's capacities. The GEO-TREES initiative proposes to fill this critical gap by building the world's first ground-based, standardized, open-access, equitably developed, reference forest biomass validation system to ensure that satellite observations accurately represent real forest carbon stocks, today and in the future. GEO-TREES is an ambitious world-wide network. It aims to establish at least 100 high-intensity forest biomass reference sites, to represent the main environmental and anthropogenic dimensions over which forests occur globally, and achieve greater sampling intensity in the critical tropics with an additional 210 lower-cost highly-distributed sites. Standing at the nexus of ecology and remote sensing, GEO-TREES builds on four principles: 1. Partnerships & engagement: To generate high-quality ground measurements, GEO-TREES partners with ecological and botanical specialists around the world. Partners are fully engaged and involved in every step of building the reference system. Without strong representation and fair funding of partners, particularly from the Global South, science capacity cannot be advanced, and the long-term sustainability of the GEO-TREES system would not be possible. 2. Innovative technologies: Ground measurement involves four integrated sets of measurements: forest inventory plots, airborne laser scanning, terrestrial laser scanning, and climate monitoring. GEO-TREES is based on established recommendations of the Committee on Earth Observation Satellites for validating biomass observations (https://lpvs.gsfc.nasa.gov/AGB/AGB_home.html), and will improve them based on new advances when necessary. 3. Long-term commitment: Forests are alive. Forest carbon stores change, sometimes rapidly, through space and time. Maintaining current, accurate estimates of carbon and biomass stocks requires continued long-term measurements. Long-term measurements also ensure the continued engagement and participation of partners throughout the system. 4. Open-access data: GEO-TREES is committed to equitably produced and openly shared global forest biomass reference measurements. High-quality, high-resolution maps of the world’s forests developed through the Earth Observation missions in partnership with GEO-TREES will be made open to all.

How to cite: Dion, I., Chave, J., Davies, S., Duque, A., Phillips, O., Piponiot-laroche, C., Schwantes Marimon, B., Scipal, K., and Zo Bi, I. C.:  The GEO-TREES initiative: high-accuracy ground data for satellite-derived biomass mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8510, https://doi.org/10.5194/egusphere-egu24-8510, 2024.

EGU24-9771 | Orals | BG3.6

Changes in global vegetation distribution and composition under idealized overshoot scenarios 

Lars Nieradzik, Hanna Lee, Paul Miller, Jörg Schwinger, and David Wårlind

Within the framework of the project IMPOSE (Emit now, mitigate later? IMPlications of temperature OverShoots for the Earth system) six idealized emission-overshoot simulations have been performed with the Earth System Model NorESM2-LM2 and used as forcing for the 2nd generation dynamic global vegetation model LPJ-GUESS to investigate the impact of different CO2 overshoots on global vegetation.

The simulations describe a set of scenarios with high, medium, and low cumulative CO2 emissions, each of which has a short (immediate) and a long (100 years) peak of cumulative CO2 emissions before declining towards a baseline simulation where a cumulative 1500 PgC is emitted within the first 100 years. The simulations have been performed in a “World without humans”, i.e. without land-use change, urban areas, fire-suppression, etc. to eliminate the somewhat arbitrary human factor.

The results clearly show that the height of the overshoot has a large impact on global vegetation distribution and composition while its duration does not seem to play a significant role. Overall, we can state that any overshoot scenario results in vegetation patterns that are different from (though converging towards) the non-overshoot baseline simulation. The higher the overshoot, the larger the initial deviation.

We have observed that there is less savannah after an overshoot and less so, the higher the overshoot, due to a reduced amount of tropical rain-green trees. As a result, there is also significantly less potential for fire. Further, there is more boreal vegetation, partly at the expense of temperate summer-green trees. A convergence towards the baseline simulation seems to be possible but isn’t reached by the end of the simulation window.

Furthermore, it can be observed that overshoots are asymmetrical when it comes to succession, i.e. while there are well-known succession patterns when global temperatures rise and vegetation is expanding into previously colder regions, patterns are different when the temperatures on the decline.

Finally, we like to state that dynamic vegetation is an important feature in Earth-system models w.r.t. vegetation carbon sequestration. Not only do the biogeophysical feedbacks matter, the total amount of carbon sequestered is about 16% higher than in simulations in which dynamic vegetation was supressed. These, and other feedbacks will be investigated in more detail in the ongoing Horizon Europe projects OptimESM and RESCUE.

How to cite: Nieradzik, L., Lee, H., Miller, P., Schwinger, J., and Wårlind, D.: Changes in global vegetation distribution and composition under idealized overshoot scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9771, https://doi.org/10.5194/egusphere-egu24-9771, 2024.

EGU24-10400 | ECS | Orals | BG3.6

Post-Disturbance Recovery Shifts in Boreal Evergreen Landscapes: Impacts on Carbon Dynamics and Land Surface Properties. 

Lucia S. Layritz, Konstantin Gregor, Andy Krause, Stefan Kruse, Ben Meyer, Tom A. M. Pugh, Carl Boettiger, and Anja Rammig

In the evergreen boreal forest, field studies show that vegetation does not always regenerate to its previous state after disturbance but instead transitions to systems dominated by deciduous trees or non-forest vegetation. Gaining a better understanding of drivers and impacts of post-disturbance recovery is thus crucial to accurately project future vegetation dynamics and associated impacts on the carbon, water, and energy balance of the region. We here perform simulations with the dynamic vegetation model LPJ-GUESS to investigate (1) if observations of post-disturbance recovery dynamics can be reproduced in the model, (2) which environmental factors control such shifts, and (3) how these in turn influence land surface properties such as albedo and evapotranspiration. We find that post-disturbance recovery trajectories can be clustered into distinct response patterns of recovery and shifts to alternative plant types. These shifts occur even in places where multiple plant types can in theory establish in the model and thus emerge due to shifts in competitive advantage mediated by warming and soil properties. We further find that shifts from forested to non-forested ecosystems have strong impacts on land-surface properties while shifts between different forest types are less impactful. We conclude that LPJ-GUESS is capable of reproducing observed disturbance-induced changes in vegetation dynamics following disturbances. Post-disturbance recovery is a key process driving accelerated vegetation change under climate change, further stressing the importance of accurately representing disturbance impact and recovery processes in land surface and coupled modeling.

How to cite: Layritz, L. S., Gregor, K., Krause, A., Kruse, S., Meyer, B., Pugh, T. A. M., Boettiger, C., and Rammig, A.: Post-Disturbance Recovery Shifts in Boreal Evergreen Landscapes: Impacts on Carbon Dynamics and Land Surface Properties., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10400, https://doi.org/10.5194/egusphere-egu24-10400, 2024.

EGU24-10956 | ECS | Posters on site | BG3.6

Crop model calibration at multiple spatial levels in southern Sweden using leaf area index, evapotranspiration and winter wheat yield data 

Xueying Li, Wenxin Zhang, Minchao Wu, Hao Zhou, Stefan Olin, EI Houssaine Bouras, Shangharsha Thapa, and Zheng Duan

Matching the rising demand for food from a rapidly increasing population is a crucial challenge for the 21st century. Crop yield can be strongly impacted by weather conditions, especially extreme events (e.g., floods and droughts). Therefore, understanding the spatial and temporal vaiations of crop yield enables us to develop effective adaptation strategies for enhancing the resilience of agriculture sectors under climate change.

Dynamic global vegetation models (DGVMs) represent growth and development of vegetation based on the understanding of underlying physical and physiological processes, which are efficient tools to assess impacts of climate change and human management on vegetation response to these variations. During the past two decades, satellite observations have emerged as essential gridded datasets to calibrate various vegetation-related variables at large spatial scales, and are often used to benchmark DGVMs. Commonly used satellite-derived variables for model calibration include the fraction of absorbed photosynthetically active radiation, phenological dates, soil properties, leaf area index (LAI), and evapotranspiration (ET).

One of the process-based DGVMs LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) has shown its acceptable performance in simulating crop yield at global and regional scales. However, to the best of our knowledge, no studies have comprehensively investigated the added value of using multi-source data, particularly satellite-derived estimates for calibrating LPJ-GUESS at multiple spatial scales. Therefore, we aim to bridge this gap by calibrating LPJ-GUESS at both site and district level to improve model performance of simulating the winter wheat yield in southern Sweden.

First, all the parameters sensitive to LAI, ET and crop yield in LPJ-GUESS, along with their ranges, are derived from the literature and sensitivity analysis. Second, the LAI-related parameters are calibrated against the in-situ observed LAI at the experimental site in Alnarp during 2022–2023. The simulated yield based on the optimized parameters (achieved from calibration results) is further validated by the observed winter wheat yield at the same site. At the district level, the parameters for ET and crop yield are subsequently calibrated against the satellite-derived ET and crop yield estimates, and the observed district-level winter wheat yield (from Jordbruksverket), respectively during 2003–2012. Finally, the observed district-level yield during 2013–2022 are used for the model validation to access the performance of the calibrated LPJ-GUESS. We expect this proposed calibration framework can be applied to other DGVMs and geographic extents focusing on high details of local landscape.

How to cite: Li, X., Zhang, W., Wu, M., Zhou, H., Olin, S., Bouras, E. H., Thapa, S., and Duan, Z.: Crop model calibration at multiple spatial levels in southern Sweden using leaf area index, evapotranspiration and winter wheat yield data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10956, https://doi.org/10.5194/egusphere-egu24-10956, 2024.

EGU24-11047 | ECS | Orals | BG3.6

Future Predictions of Ecosystem Changes in California’s Sierra Nevada over the coming century using Remote-Sensing Constrained Terrestrial Biosphere Model Simulations 

Liling Chang, Shaoqing Liu, Alexander Antonarakis, Marcos Longo, Hao Tang, John Armston, and Paul Moorcroft

Reliable predictions of ecosystem dynamics and carbon stocks depend on accurate initialization of ecosystem states in process-based model simulations. Unlike traditional potential vegetation simulations which assume that ecosystems equilibrate with long-term climate, observation-initialized simulations integrate the impacts of previous history of disturbance events and human activities on ecosystem structure and composition. However, observation-constrained initialization is challenging at regional scales due to limited availability of spatially-comprehensive measurement data. In this study, we assimilate remote-sensing estimates of canopy structure from Global Ecosystem Dynamics Investigation (GEDI) and canopy composition from AVIRIS imaging spectrometry into Ecosystem Demography version 2 (ED2), a cohort-based Terrestrial Biosphere Model. We drive model simulations with future climate scenarios and rising atmospheric CO2 concentrations to predict ecosystem responses to environmental changes over an elevational transect region in California’s Sierra Nevada by the end of the century. Our simulations suggest that predictions are significantly impacted by ecosystem initial condition at the multi-decadal (50+ year) scale. The impacts are stronger in dense-canopy forests at mid-to-high elevations than woody savannahs at low elevations. Under a hotter and drier future climate with CO2 enrichment, ecosystems across the elevational transect are predicted to act as a net carbon sink but with marked changes in composition. Aboveground biomass (AGB) is predicted to increase at low elevations due to increasing abundance in both deciduous and coniferous trees. However, at mid-to-high elevations, AGB increases are caused by increasing abundance of coniferous trees but large declines in the abundance of deciduous trees. Our research demonstrates how large-scale remote-sensing data can be assimilated into process-based model simulations to improve future predictions of ecosystem dynamics.  

How to cite: Chang, L., Liu, S., Antonarakis, A., Longo, M., Tang, H., Armston, J., and Moorcroft, P.: Future Predictions of Ecosystem Changes in California’s Sierra Nevada over the coming century using Remote-Sensing Constrained Terrestrial Biosphere Model Simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11047, https://doi.org/10.5194/egusphere-egu24-11047, 2024.

EGU24-11507 | ECS | Posters on site | BG3.6 | Highlight

Integrated global assessment of the natural forest carbon potential 

Lidong Mo, Constantin Zohner, Thomas Crowther, and Haozhi Ma

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.

How to cite: Mo, L., Zohner, C., Crowther, T., and Ma, H.: Integrated global assessment of the natural forest carbon potential, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11507, https://doi.org/10.5194/egusphere-egu24-11507, 2024.

EGU24-12243 | ECS | Orals | BG3.6

The bark carbon storage of Austrian commercial forests 

Muhammed Sinan, Mathias Neumann, and Hubert Hasenauer

In Austria, the Austrian Federal Office and Research Centre for Forests (BFW) provides basic forest data such as volume stock or the national carbon inventory. The Austrian carbon inventory currently records the carbon stored in the bark as part of the forest's total tree carbon stock. However, tree bark plays a vital role in the life span of a tree and is also important for the decomposition process following tree death. There is a veritable need to quantify the proportion of bark accurately because it has an important impact on economic calculations. In this study we assess the amount of carbon stored in the stem bark of Austrian commercial forests (in German “Wirtschaftswald”) as it can be derived from (i) the taper curve, (ii) the bark percentage, (iii) the bark density, and (iv) the bark fissure index. We applied this “bark carbon model" to the latest data from the Austrian National Forest Inventory (NFI). The model predicts for each tree the corresponding bark carbon content, which can be easily aggregated to plot or regional level for further use. Our results suggest, that about 7% of the total carbon in Austrian commercial forest is stored in the bark of the tree stems. The findings provide bark carbon information that can also be used for other purposes like potential harvesting of bark, or determining the fire adaptation of tree species. Moreover, this study helps to provide information for the bark carbon share of the Austrian National carbon inventory.

How to cite: Sinan, M., Neumann, M., and Hasenauer, H.: The bark carbon storage of Austrian commercial forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12243, https://doi.org/10.5194/egusphere-egu24-12243, 2024.

EGU24-13116 | Posters on site | BG3.6

Carbon assimilation limitations during and after the European 2022 drought and heat wave 

Emilie Joetzjer, Sebastien Lafont, Matthias Cuntz, Benjamin Loubet, Pedro Herig Coimbra, Nicolas Delpierre, Jean Marc Limousin, Jean Christophe Domec, and Guillaume Simioni

In 2022, Europe experienced a widespread severe summer edaphic drought and heat event. We explore how the gross primary productivity (GPP) was affected by this dry spell by contrasting 2022 with previous years, using high-frequency Eddy-Covariance and meteorological monitoring from 16 ICOS forest stations spanning across Europe. With the exception of Scandinavian forests, all monitored stations experienced a reduction of GPP ranging from 5 to 60% and a reduction of evapotranspiration ranging from 10 to 62% during summer. GPP reduction was predominantly attributed to a decrease in the maximum apparent carboxylation rate rather than a direct effect of soil water content limitation on stomatal aperture at the canopy scale. Some sites showed more GPP than usual after the drought due to abnormally hot and wet autumn conditions. However, most severely affected sites did not fully recover to normal GPP levels after the drought, suggesting a potential lagged effect of the adverse summer conditions.

How to cite: Joetzjer, E., Lafont, S., Cuntz, M., Loubet, B., Herig Coimbra, P., Delpierre, N., Limousin, J. M., Domec, J. C., and Simioni, G.: Carbon assimilation limitations during and after the European 2022 drought and heat wave, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13116, https://doi.org/10.5194/egusphere-egu24-13116, 2024.

EGU24-13194 | Orals | BG3.6

Transient and lagged effects of vegetation dynamics on the global CO2 growth rate 

Hui Yang, Maurizio Santoro, Ingrid Luijkx, Philippe Ciais, Siyuan Wang, Markus Reichstein, Simon Besnard, and Nuno Carvalhais

The land carbon cycle is fundamental in regulating atmospheric CO2 dynamics from seasonal to centennial scales. The fine equilibrium between photosynthetic gains spent in metabolic costs and/or lost in mortality underpins the contribution of terrestrial ecosystems to the global carbon cycle. Uncertainties and divergent hypotheses on the role of climate in regulating their underlying mechanisms hamper our current diagnostic and prognostic abilities despite growing evidence on ecosystem vulnerability to present and future changes in climate. However, quantitative knowledge of the contributions of different carbon cycle processes regulating carbon uptake and release still need to be improved, inflating the uncertainties in future projections of net land-atmosphere carbon exchanges. In this study, we rely on satellite-based Earth observation retrievals of above-ground biomass and vegetation primary productivity to reconstruct the land-atmosphere carbon exchange dynamics over the last two decades, through the application of a three-box model at the pixel level. Our approach confidently reproduces 60% of the observed variability in atmospheric CO2 growth rate (CGR) over throughout 1997-2019 (R = 0.78, p-val < 0.05), with a low RMSE of 1.0 PgC yr-1. We further detail CO2 release from vegetation dynamics emerging from quick turnover induced by wildfires and leaves senescence, as well as the slow turnover from plant and soil decomposition mechanisms. This allows us to differentiate between transient and lagged effects on land-to-atmosphere fluxes. The carbon release, characterized by a lag of over one year, referred to as lagged effects. Globally, the lagged responses accounted for 50% of the variability in CGR, exceeding three times the contribution of transient fluxes from live vegetation. We have yet to a change or trend in the total contributions of vegetation dynamics to CGR. Yet, the relative role of lagged effects to CGR via decomposition fluxes increased by 50%, possibly due to accelerated mortality and decomposition fluxes. As global warming imposes higher stress on vegetation while increasing temperature-mediated decomposition, our results highlight the importance of quantifying their underlying metabolic responses. Such understanding is instrumental for assessing the contribution of adaptation and mitigation measures that will shape the contribution of the terrestrial carbon cycle to dampen the effects of anthropogenic emissions on global climate.

How to cite: Yang, H., Santoro, M., Luijkx, I., Ciais, P., Wang, S., Reichstein, M., Besnard, S., and Carvalhais, N.: Transient and lagged effects of vegetation dynamics on the global CO2 growth rate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13194, https://doi.org/10.5194/egusphere-egu24-13194, 2024.

EGU24-14716 | ECS | Orals | BG3.6

Resolving uncertainty in the response of Australia's terrestrial carbon cycle to projected climate change 

Lina Teckentrup, Martin De Kauwe, Andy Pitman, Anna Ukkola, David Wårlind, and Benjamin Smith

Semi-arid ecosystems, common across the Australian continent, strongly influence the inter-annual variability and trend in the global terrestrial net carbon sink. Here we explore the future Australian terrestrial carbon cycle using the CMIP6 ensemble, and the dynamic global vegetation model LPJ-GUESS. Uncertainty in Australia’s carbon storage in vegetation ranged between 6 and 49 PgC at the end of the century and was strongly linked to biases in the meteorological forcing. Using LPJ-GUESS with bias-corrected meteorological forcing reduced uncertainty in the vegetation carbon storage to between 14 and 20 PgC, with the remaining range linked to model sensitivities to rising atmospheric CO2 concentration, temperature, and precipitation variability. Reducing this uncertainty will require improved terrestrial biosphere models, but also major improvements in the simulation of regional precipitation by Global Climate Models.

How to cite: Teckentrup, L., De Kauwe, M., Pitman, A., Ukkola, A., Wårlind, D., and Smith, B.: Resolving uncertainty in the response of Australia's terrestrial carbon cycle to projected climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14716, https://doi.org/10.5194/egusphere-egu24-14716, 2024.

EGU24-15303 | Orals | BG3.6

Impacts of drought on ecosystem carbon uptake 

Sebastian Wolf, David L. Miller, and Eugenie Paul-Limoges

Climate extremes threaten the land carbon sink and it is important to understand their impact in a changing climate. An elevated incidence of drought has been observed recently in some regions (e.g. Europe), and projections indicate an increased prevalence with climate warming. This is concerning because ecosystem carbon uptake currently mitigates increases in atmospheric CO2 concentrations. Although the link between drought and reduced carbon uptake is well established, important questions remain regarding the impact of recurrent droughts, the strength of seasonal and regional compensation effects, land-atmosphere feedbacks that can exacerbate heatwaves, and forest management strategies in a changing climate.

Here we present an overview on the current knowledge of drought impacts on ecosystem carbon uptake and related feedbacks on energy and water fluxes. These results are based on a recent perspective1 and a global synthesis of ecosystem flux measurements combined with terrestrial biosphere models (TBMs)2.

Reduced carbon uptake during drought originates from stress-related declines in photosynthesis. Respiration from plants and soil is also reduced due to limitations in soil moisture, but this is typically to a lower extent than photosynthesis. These relative differences result in reduced net carbon uptake or even net losses. For forests, the combined stress of intense drought over prolonged periods (or recurrent events) leads to increased crown and eventually tree mortality. During severe drought, enhancing (i.e. positive) land-atmosphere feedbacks often further exacerbate extremely dry and hot conditions: as water transpired by plants and evaporated from soils is reduced, evaporative cooling becomes less efficient and more of the available energy heats the air.

While ecosystem carbon uptake is typically reduced during severe summer drought1, there is also evidence for increased photosynthesis (i.e. gross primary productivity, GPP) during meteorological drought (i.e. precipitation deficit) in energy-limited ecosystems, particularly during spring2. Comparing ecosystem observations of GPP from eddy covariance (EC) flux towers across the Northern Hemisphere with TBM outputs across the water-energy limitation spectrum, we found a consistent increase in GPP from EC during spring drought in energy-limited ecosystems. Half of spring GPP sensitivity to precipitation was predicted solely from the wetness index (an indicator for aridity) , with weaker relationships in summer and fall. Our results suggest GPP increases during spring drought for 55% of vegetated Northern Hemisphere lands (>30° N). Comparing theses sensitivities with the output from TBMs indicated that the TBMs were insufficiently sensitive to spring precipitation deficits.

Reduced carbon uptake during drought might be no longer exceptional in a warming climate, revealing the vulnerability of the land carbon sink to such climate extremes – particularly for forests. Comparing ecosystem EC observations for GPP with TBMs indicates a need for TBMs to better account for the varying effects of meteorological drought on carbon cycling in mid- and high-latitude ecosystems.

 

References

1 Wolf S, Paul-Limoges E. (2023) Drought and heat reduce forest carbon uptake. Nature Communications, 14: 6217.

2 Miller DL, Wolf S, Fisher JB, Zaitchik BF, Xiao J, Keenan TF (2023) Increased photosynthesis during spring drought in energy-limited ecosystems. Nature Communications, 14: 7828.

How to cite: Wolf, S., Miller, D. L., and Paul-Limoges, E.: Impacts of drought on ecosystem carbon uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15303, https://doi.org/10.5194/egusphere-egu24-15303, 2024.

EGU24-16050 | Orals | BG3.6 | Highlight

Pantropical tree growth resilience to drought  

Pieter Zuidema, Flurin Babst, Peter Groenendijk, Mizanur Rahman, and Valerie Trouet and the Tropical Tree-ring Network

An increasing incidence and intensity of droughts under anthropogenic climate change jeopardizes the potential of tropical forests and woodlands to capture carbon in woody biomass and act as CO2 sink. A pantropical quantification of drought impacts on tree stem growth is needed to evaluate this risk.

We assessed drought impacts in a pantropical network of 477 tree-ring chronologies (>10,000 trees from >150 species and 35 plant families) and found modest stem growth declines (median: 2-4%) during drought years. Growth declines were larger for dry-season than wet-season droughts, specifically for Gymnosperms, and at hotter and more arid sites. Lagged growth reductions during post-drought years were rare. Over half of the growth reduction during drought years was mitigated during wet extreme years.

Thus, drought impacts on tropical forest carbon sequestration through stem growth have been small and short-lived. Yet, risks of increasing drought-induced carbon loss is expected to aggravate under climate change, in particular through elevated mortality associated with droughts.

How to cite: Zuidema, P., Babst, F., Groenendijk, P., Rahman, M., and Trouet, V. and the Tropical Tree-ring Network: Pantropical tree growth resilience to drought , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16050, https://doi.org/10.5194/egusphere-egu24-16050, 2024.

EGU24-16058 | ECS | Orals | BG3.6

ADAPTForRes: Assessing Forest resilience and carbon dynamics in differing Irish forest types to promote more sustainable sinks 

Stephen Byrne, Ken Byrne, Brian Tobin, Silvia Caldararu, Blair Ruffing, Luke Dowd, and Matt Saunders

Climate change poses a significant threat to the carbon (C) sequestration capacity of Irish forests, exacerbated by heightened risks from pests, pathogens, and escalating climate extremes, including drought and intense rainfall. Building resilience in forest ecosystems is vital to protecting the ecosystem services they deliver and has therefore gained increased attention from both research and industry. ADAPTForRes is a project dedicated to assessing forest management options and identifying enhanced climate-smart mitigation strategies.

In this study, we utilise Eddy Covariance (EC), soil chamber and biometric methodologies to investigate the C stock and flux dynamics of three distinct forest types: commercial Sitka spruce coniferous forest on mineral soil, broadleaf-dominated native woodland on mineral soil, and a mixed species (Norway spruce and Birch) forest on peat soil. Initial results suggest that the Sitka spruce forest nearing the end of its first rotation assimilates the most C, while the native deciduous broadleaved forest shows near C neutrality due to the age/maturity of the stand and high quantities of decaying biomass on the forest floor. The C dynamics of the Norway spruce/Silver birch mixed forest were dominated by high levels of ecosystem respiration driven by the high organic content of the soil and low water table heights in summer.

Furthermore, advanced footprint analyses have been employed to address the heterogenous nature of the native Irish forest studied here – acknowledging challenges posed by dynamic forest management practices, diversity in vegetative distribution and complex terrain. This approach provides additional insight into the flux dynamics from the forest compartments and encompasses management practices (thinning, clearfelling, underplanting), phenology (budburst, leaf expansion, senescence), inventory (species, ages, height), NDVI and disease outbreak information. The additional parameters generated from this analysis enhances data richness, allowing for a greater understanding of ecosystem C dynamics. Additionally, biometric stocks of C and soil derived C flux measurements including auto- and heterotrophic partitioning experiments have been conducted to further explore the impacts of forest composition and management on fluxes from wider ecosystem carbon pools.

These data are also being used in combination with the QUINCY land surface model to assess the model’s performance in capturing the effects of management, soil, forest type and climate on the ecosystem C balance. The EC data provides a foundational basis for the development and parameterization of the model, whereby ground-truthing is increasing our predictive capacity for future C budgets under various management regimes and varying magnitudes of climate change. The EC, biometric and soil flux data in combination with QUINCY model outputs will inform future management options for greater adaptability, as well as policy targets around strategic land-use goals for multifunctional and resilient forests.

How to cite: Byrne, S., Byrne, K., Tobin, B., Caldararu, S., Ruffing, B., Dowd, L., and Saunders, M.: ADAPTForRes: Assessing Forest resilience and carbon dynamics in differing Irish forest types to promote more sustainable sinks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16058, https://doi.org/10.5194/egusphere-egu24-16058, 2024.

EGU24-17051 | ECS | Orals | BG3.6

Representation of dynamic grass density in land surface model ORCHIDEE trunk v4.1 

Siqing Xu, Yves Balkanski, Sebastiaan Luyssaert, Philippe Ciais, and Jean Sciare

In semi-arid regions, grasslands naturally display a self-organized pattern that optimizes resource utilization and productivity. Representing this type of vegetation in land surface model constitutes a difficult challenge. To simulate these grasses, the ORCHIDEE land surface model treats grass density as the ratio of the area occupied by individuals to the Plant Functional Type (PFT) area, assuming a fixed grass density of 1 for maximal occupancy. However, the fixed maximal grass density lacks the response of grassland to environmental perturbations. In addition, the low biomass contained in certain pixels results in frequent mortality, indicative of resource limitations at the plant individual level. To address this considerable limitation, we introduced dynamic reduction of grass density based on mortality indicators, hence enhancing individual biomass and alleviating mortality occurrences. The adaptive approach significantly decreased mortality events across most pixels while enhancing leaf area index (LAI) for the majority of them. Our findings suggest that optimizing resource through grass density reduction in response to environmental condition, could not only improve individual biomass to alleviate mortality but also enhance overall grassland production.

How to cite: Xu, S., Balkanski, Y., Luyssaert, S., Ciais, P., and Sciare, J.: Representation of dynamic grass density in land surface model ORCHIDEE trunk v4.1, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17051, https://doi.org/10.5194/egusphere-egu24-17051, 2024.

EGU24-19555 | Orals | BG3.6

How to model all the plants on Earth?  An approach to managing system complexity in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES).  

Rosie Fisher, Charles Koven, Ryan Knox, Jessica Needham, Gregory Lemiuex, Chonggang Xu, Adrianna Foster, Rutuja Chitra-Tarak, and Zachary Robbins

The relationship between carbon dioxide emissions and their accumulation in the atmosphere is one of the most important elements of the function of the Earth system.  Exertion of control over the terrestrial carbon budget, via afforestation, reforestation, bioenergy production and other methods to enhance land carbon storage (biochar, enhanced weathering) all imply a need to forecast and understand the dynamics of these carbon stores as they evolve in changing atmospheric CO2 and climatic conditions. The dynamics of the carbon cycle, however, are notably complex and require comprehension of models representing the functioning of numerous coupled systems which must produce predictions under these no-analog conditions, and so must necessarily embed process understanding to allow for meaningful extrapolation into the future. 

Models of the terrestrial biosphere, often embedded in Earth system models, thus contain advanced representations of a large set of processes that are known to impact ecosystem carbon storage.  This complexity, however, has presented a substantial barrier to objective calibration using conventional statistical approaches, as the number of model parameters and the computational expense of the models means that comprehensive exploration of the parameter space is effectively unmanageable. Further, many ecosystem processes exhibit non-linear and threshold properties (notably, vegetation death, competitive interactions, fire thresholds) and thus are challenging for methods that assume linearity. 

Here we propose a method for decomposing the complexity of one such model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) that allows investigation, calibration and comprehension of individual parts of the system in isolation (driven by observed data fields). This ‘modular complexity’ approach allows the full complexity model to be run in a series of ‘modes’ that can operate as domain-specific models for, e.g. ecohydrology, community ecology, biogeochemistry etc. while also allowing the full complexity version to be used for higher order problems, such a predicting global vegetation dynamics under future climate scenarios.  We describe a series of investigations using FATES that illustrate the potential for this model decomposition approach and discuss the potential for further application of this philosophy. 

 

How to cite: Fisher, R., Koven, C., Knox, R., Needham, J., Lemiuex, G., Xu, C., Foster, A., Chitra-Tarak, R., and Robbins, Z.: How to model all the plants on Earth?  An approach to managing system complexity in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19555, https://doi.org/10.5194/egusphere-egu24-19555, 2024.

EGU24-20269 | Orals | BG3.6

Representing canopy structure dynamics within the LPJ-GUESS dynamic global vegetation model 

David Wårlind, Jette Elena Stoebke, Stefan Olin, Paul A. Miller, and Thomas A. M. Pugh

Several efforts are being pursued to improve the representation of ecological demographic processes that govern terrestrial vegetation canopy structure within Dynamic Global Vegetation Models (DGVM) as it influences critical fluxes of carbon, nutrients, and water. How trees are structured within the canopy determines how they absorb incoming solar radiation and is partitioned between different tree cohorts. Here we present two new schemes with more detailed vegetation canopy structure representation in the DGVM LPJ-GUESS. These new schemes provide a closer linkage to observations to better constrain processes of growth and mortality, improve the representation of species coexistence as well as the capability to represent reestablishment in small canopy gaps following small-scale mortality or selective harvest. LPJ-GUESS is currently structuring its canopy with vertically overlapping cohort crowns without horizontal spatial structure as the crowns are distributed uniformly across the entire patch area. This original approach does not provide a realistic representation of competition between trees of different heights and sizes, nor canopy gaps following mortalities. A first solution to amend the model is to adopt an approach similar to the perfect plasticity approximation in which cohorts are sorted according to tree height and perfectly fill the patch area with each cohort crown area. When the patch is filled an understory layer is created with the next tallest tree and so on for each consecutive layer. A second solution is to explicitly position cohorts within the patch according to forest floor light conditions during establishment. The death of a tree will result in a gap formation which will persist over time and allow new cohorts to establish within the gap exposed to full light conditions. All schemes have been evaluated against aboveground woody biomass, aboveground woody mortality, and aboveground woody productivity split into diameter at breast height size classes and how forestry thinning generates re-establishment of a woody understory. Also, their capability to represent species coexistence has been evaluated. We see improvements in the capability to simulate stand biomass-size distributions, species coexistence, and reestablishment in small canopy gaps with a more detailed canopy structure scheme.

How to cite: Wårlind, D., Elena Stoebke, J., Olin, S., A. Miller, P., and A. M. Pugh, T.: Representing canopy structure dynamics within the LPJ-GUESS dynamic global vegetation model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20269, https://doi.org/10.5194/egusphere-egu24-20269, 2024.

EGU24-21067 | ECS | Posters on site | BG3.6

An abrupt shift in gross primary productivity over Eastern China-Mongolia and its inter-model diversity in land surface models 

Danbi Lee, Jin-Soo Kim, So-Won Park, and Jong-Seong Kug

The terrestrial ecosystem in East Asia mainly consists of semi-arid regions that are sensitive to climate change. Therefore, gross primary productivity (GPP) in East Asia could be highly variable and vulnerable to climate change, which can significantly affect the local carbon budget. Here, we examine the spatial and temporal characteristics of GPP variability in East Asia and its relationship with climate factors over the last three decades. We detect an abrupt decrease in GPP over Eastern China-Mongolia region around the year 2000. This is attributed to an abrupt decrease in precipitation associated with the phase shift of the Pacific decadal oscillation (PDO). We also evaluate the reproducibility of offline land surface models to simulate these abrupt changes. Of the twelve models, eight were able to simulate this abrupt response, while the others failed due to the combination of an exaggerated CO2 fertilization effect and an underrated climate impact. For accurate prediction, it is necessary to improve the sensitivity of the GPP to changes in CO2 concentrations and the climate system.

How to cite: Lee, D., Kim, J.-S., Park, S.-W., and Kug, J.-S.: An abrupt shift in gross primary productivity over Eastern China-Mongolia and its inter-model diversity in land surface models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21067, https://doi.org/10.5194/egusphere-egu24-21067, 2024.

EGU24-21672 | ECS | Orals | BG3.6

Characterising space-based aboveground biomass change: from global to local 

Nezha Acil, Richard Lucas, Maurizio Santoro, and Heiko Balzter

Recent advances in the spatial resolution and sensitivity of satellite sensors have allowed the mapping of aboveground biomass (AGB) with enhanced levels of detail and a wall-to-wall worldwide coverage. However, determining the magnitude and direction of AGB changes over time remains challenging due to large uncertainties in AGB estimates (biases and random errors), inconsistencies across sensors/instruments and limited availability of ground-truth data (national forest inventories, multi-census plots and airborne lidar). Combining multiple environmental descriptors derived from independent (mainly optical) satellite-based data sources, we apply a framework that infers evidence of pressures and impacts to characterise temporal changes in vegetation (fast or slow, gain or loss) and check agreement with the changes detected in the global ESA CCI Biomass time series product. We deploy the approach at the global scale focusing on forests that we define with a tree cover greater than 10% and tree height greater than 5 m. We illustrate the comparison with local case studies, highlighting processes such as regrowth, degradation and disturbances, and differentiating between natural and anthropogenic causes (e.g., wildfire, flooding, harvest, plantations). Selected sites represent different biomes and continents, including tropical moist forests in the Amazon, tropical drylands in Africa, temperate forests in Europe, Mediterranean woodlands in Australia and boreal forests in Siberia and North America. The results provide enhanced understanding of the processes underlying AGB changes in different regions and allow new insights into the quality of remotely-sensed AGB for tracking changes in carbon stocks and informing decision-making.

How to cite: Acil, N., Lucas, R., Santoro, M., and Balzter, H.: Characterising space-based aboveground biomass change: from global to local, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21672, https://doi.org/10.5194/egusphere-egu24-21672, 2024.

Biodiversity and associated functional diversity are expected to improve ecosystem stability in response to climate change. Land surface models (LSMs), such as Dynamic Global Vegetation Models (DGVMs), currently represent each plant functional type (PFT) as a "mean" plant, characterized by a set of global-scale average parameters that are static in space and time. However, this approach neglects to consider the diversity of traits observed in natural populations. To address this limitation, we incorporated the functional biogeography in the ORCHIDEE model, one of the most known DGVMs.  In this study, we aim to refine the representation of trait-based models to better capture the complexity of natural ecosystems.

We used a 5 km map of French permanent grasslands (FPGs) generated as part of the DIVGRASS project.  In this study, we focused on the case of FPGs for the 1960-2019 period. First, trait data were collected, and the distribution of traits was analysed at the national scale in France. The primary objective is to introduce the concept of Community-Weighted Means (CWM) of two key traits,  namely the specific leaf area (SLA) and the maximum rate of carboxylation (VCMAX) to better capture trait diversity within communities. We calculated the leaf lifespan (LLS), one of the traits represented in the model by a constant value. Five different experiments were performed using the ORCHIDEE model in order to simulate the net primary productivity (NPP) in each scenario. Furthermore, this study emphasizes the need to examine not only the productivity of grasslands in France but also the stability of grassland productivity. The choice of which stability productivity component to consider is pivotal for understanding the ecosystem functioning. Thus, we focused on the temporal invariability (constancy) and the maximum deviation from the average level of functioning baseline (resistance) of grassland productivity over time. Subsequently, we established relationships between productivity, constancy and resistance when all grasslands are combined on one hand and across four distinct grassland habitats with a contrasting floristic composition on another hand.  Finally, we used the satellite observations to assess the spatial similarity with the simulated NPP by the ORCHIDEE model in each of the 5 experimental cases. 

This study underscores the importance of incorporating community-weighted metrics and trait diversity in order to enhance the ecological relevance and accuracy of DGVMs. Understanding how trait values affect productivity and its stability is vital, especially when considering land surface models such as ORCHIDEE. 

 

Keywords:  C3 permanent grasslands, functional biogeography, biodiversity, ecoinformatics, land surface model,  plant traits, community weighted mean, constancy, resistance, dynamic global vegetation model, ORCHIDEE model, productivity, climate change, satellite observations

 

How to cite: Chebbo, S.: Functional biogeography integration in a land surface model: Spatial trait variability impact on productivity and stability of permanent grasslands in France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-71, https://doi.org/10.5194/egusphere-egu24-71, 2024.

EGU24-1292 | ECS | Orals | BG3.7

Conduits and interconduit pits of Pinus sylvestris and Picea abies scale with water transport distance 

Magdalena Held, Tuula Jyske, and Anna Lintunen

Ensuring sufficient water transport to the leaves is crucial for trees to survive under varying water availability. Both hydraulic efficiency and safety depend highly on the anatomical structure of the conduits and particularly of their connections, the pits. On the one hand, wider conduits and pits enable higher water flow. On the other hand, air seeding (hydraulic failure) occurs through the pits, and wider pits and conduits (with more and/or larger pits) have a lower hydraulic safety, i. e., they are more susceptible to air seeding under stressed conditions. Conduits widen with distance from the treetop to counterbalance the resistance to water transport that accumulates with tree height. Although pits represent the main resistance to water transport in the xylem, we know little about the widening of pits or the coordination of conduit and pit dimensions. Trees exposed to stressful conditions may adjust the conduit- and potential pit-widening pattern to increase their hydraulic safety, otherwise they need to grow shorter. Our study aims to a) shed new light onto the coordination of conduit and pit dimensions at different distances from the treetop, and b) study if trees adjust the widening pattern of their conduits and particularly their pits to environmental conditions.

For our study, we sampled Scots pines (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) on two sites with different environmental conditions (forest types) and thus different tree growth rates. We took wood samples along the water transport pathway from the treetops to the roots. Then, we prepared light microscopical images from cross sections and analyzed the mean conduit diameter, mean hydraulic diameter, and cell wall reinforcement. Furthermore, we prepared tangential sections for scanning electron microscopy to measure the diameter of the margo (pit membrane), torus (central thickening of the pit membrane), and pit aperture. With those dimensions, we calculated the following pit functional properties: the margo flexibility, torus overlap, and valve effect, as well as the absolute torus overlap.

In both species, we found that the conduit and pit dimensions increase, whereas cell wall reinforcement decreases from the treetop towards the base of the tree. Roots do not necessarily follow the scaling pattern. In general, trees coordinated pit dimensions with the mean hydraulic diameter of conduits. The pit functional properties behaved differently in the two species. For example, the valve effect, which is strongly associated with hydraulic safety, increased in pine with distance from the treetop, whereas in spruce it decreased. Furthermore, torus overlap, valve effect, and absolute torus overlap increased in pine and decreased in spruce with mean hydraulic diameter. We detected no differences between the sites so far, but statistical analysis is still ongoing.

We conclude from the preliminary analyses, that the studied trees widen their conduit and pit dimensions with distance from the treetop to maintain a sufficient water flow through their stems while they grow in height. Overall, conifers seem to coordinate their conduit and pit dimensions well.

How to cite: Held, M., Jyske, T., and Lintunen, A.: Conduits and interconduit pits of Pinus sylvestris and Picea abies scale with water transport distance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1292, https://doi.org/10.5194/egusphere-egu24-1292, 2024.

Dusty secrets: REE unveil hidden trends in foliar plant nutrition under rising CO2

 

Anton Lokshin1,2, Avner Gross2, Daniel Palchan1

 

1Department of Civil Engineering, Ariel University, Ariel 40700, Israel

2 Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel

 

The emerging phenomenon of direct foliar nutrient uptake, where dust deposits replenish plant ionome under stress, holds potential as a significant adaptation in a changing world. Dust's rapid leaf deposition, bypassing soil contact, offers a unique nutrient source, particularly relevant in soils of limited fertility. Rising CO2, known to hinder root nutrient uptake, along with an expected decrease in soil fertility, further underscores the potential importance of this pathway. Here, we present findings from laboratory experiments in which chickpea plants were treated with atmospheric particles used as natural fertilizers. These particles, including fire ash, volcanic ash, and desert dust, were applied to plant foliage under ambient and elevated CO2 conditions. We examined the foliar nutrient pathway from the Rare Earth Elements (REE) perspective and demonstrated that REEs serve as an excellent tool for its exploration. Analysis of the REE within the treated plants showed enrichment in Light REE compared to Heavy REE concurrent with higher biomass and improved carbon assimilation – proving the nutrients were assimilated into the plant rather than just surface retention. Finally, our results elucidate a couple of trends in the foliar nutrient uptake pathway: (1) under elevated CO2 levels, the foliar uptake is larger, and (2) nutrient transport from dust to plant is in the following order- volcanic ash > desert dust > fire ash. Analysis of REE patterns and ratios, alongside other biological parameters, provides novel insights into the extent and dynamics of foliar nutrient uptake across dust types and CO2 levels, shedding light on previously unexplored aspects of this crucial adaptation.

How to cite: Lokshin, A.: Dusty secrets: REE unveil hidden trends in foliar plant nutrition under rising CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1697, https://doi.org/10.5194/egusphere-egu24-1697, 2024.

EGU24-2371 | ECS | Posters on site | BG3.7

Beyond roots: Foliar dust as a vital nutrient source for plants under elevated CO2 

Daniel Palchan, Anton Lokshin, Elnatan Golan, Ran Erel, and Stephen Fox

While roots have long been considered the sole pathway for plant nutrient uptake, a surprising discovery reveals a hidden source: foliar dust. This study demonstrates that plants can directly acquire crucial minerals like P, Fe, and Ni from deposited dust particles, bypassing the root system altogether. In our experiments, we had applied two types of dust on plant foliage and examined biomass, P content, and ionome. Remarkably, utilizing radiogenic Nd isotopes, we show that this foliar pathway surpasses root uptake in just weeks, contributing over 60% of a plant's nutrient profile under elevated CO2 conditions.

These findings shed light on a previously unrecognized adaptation that could be critical for plant survival in a CO2-rich world. As eCO2 levels are predicted to decrease soil nutrient availability, the dust-as-nutrient phenomenon offers a potential lifeline for plants and ecosystems. Moreover, understanding this alternative pathway could pave the way for novel agricultural strategies to combat "hidden hunger" malnutrition triggered by CO2-induced nutrient deficiencies.

How to cite: Palchan, D., Lokshin, A., Golan, E., Erel, R., and Fox, S.: Beyond roots: Foliar dust as a vital nutrient source for plants under elevated CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2371, https://doi.org/10.5194/egusphere-egu24-2371, 2024.

EGU24-2477 | ECS | Posters on site | BG3.7

Combining citizen science and Earth observation data to produce global maps of 31 plant traits 

Daniel Lusk, Sophie Wolf, Álvaro Moreno Martínez, Jens Kattge, Francesco Maria Sabatini, and Teja Kattenborn

The acceleration of global environmental change underscores the pressing need for a comprehensive understanding of how the biosphere interacts with its environment. To reliably examine these connections across diverse ecosystems, having extensive and spatially comprehensive data on plant functional traits is imperative. The TRY database boasts an extensive repository of plant trait measurements for thousands of species, and, while previous approaches have attempted to spatially extrapolate these traits using environmental predictors and remote sensing data, the scarcity of the original data leads to significant uncertainty in the extrapolations. Meanwhile, citizen scientists have been actively gathering dense observations of species occurrences worldwide, and when matched with trait data, can adequately represent global trait patterns. Here, we explore the use of citizen science and Earth observation data to generate global maps of 31 ecologically relevant plant functional traits. The study utilizes sparse spatial grids created by linking species occurrences from the Global Biodiversity Information Facility (GBIF) with the TRY gap-filled database to generate continuous global trait maps as a function of climate, soil, and remote sensing data. We first evaluated model performance using spatial cross-validation, and they demonstrated up to R2 = 0.53 with a normalized RMSE = 0.21. We then compared mean trait values from the GBIF-based extrapolations to community-weighted mean traits from sPlotOpen, a global, environmentally balanced dataset of vegetation plot data. Our results show correlations between the two datasets of up to r = 0.73 with particular resilience to decreasing map resolution. When compared to similar extrapolations based on sPlotOpen alone, we found that GBIF-based extrapolations increased global spatial applicability for all maps by up to 12%. Additionally, we show that GBIF-based extrapolations have higher correlations to sPlotOpen-derived maps than the majority of previously published trait maps. Despite the inherent noise and biases of their crowd-sourced origins, GBIF-based models are remarkably capable of producing even closer approximations of the trait distributions of scientifically controlled vegetation plots than their own sparse reference data. Considering the rapid growth and availability of crowd-sourced data, the capacity of models to overcome their noisy and opportunistic nature further affirms the potential of databases such as GBIF to complement more scientifically rigorous data collections.

How to cite: Lusk, D., Wolf, S., Moreno Martínez, Á., Kattge, J., Maria Sabatini, F., and Kattenborn, T.: Combining citizen science and Earth observation data to produce global maps of 31 plant traits, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2477, https://doi.org/10.5194/egusphere-egu24-2477, 2024.

Plant symbiosis with dinitrogen-fixing bacteria is a plant trait that affects plant fitness directly. Indirectly, symbiotic N-fixation influences the ecosystem nitrogen cycle. However, little is known about the ecology of symbiotic nitrogen fixation and specifically its feedback with the addition and recycling of soil nitrogen. Our studies examined how the conditions that influence plant performance also influence its regulation of symbiotic nitrogen fixation at the level of individual plants, and how these two, in turn, determine whether new nitrogen enters the soil, or other components of the ecosystem.

Our findings indicate that a diversity of nitrogen fixation strategies have been adopted by ephemeral herbaceous legumes, while perennial drought-adapted legumes, which have to survive through a dry rainless summer, always downregulated their investment in fixation when provided with external nitrogen source (facultative strategy).  We found that stress conditions (such as plant-plant competition) also invoked strong downregulation of nitrogen fixation in response to nitrogen availability in the soil. Downregulation of symbiotic nitrogen fixation was stronger in juveniles compared to mature individuals, and in woody perennials compared to herbaceous annuals. These results highlight that regulation of N-fixation is influenced both by plant N-demand and by a tradeoff between N-fixation and other carbon-demanding processes.

At the level of the ecosystem nitrogen cycle we found that, contrary to expectations, there is no added nitrogen in the surrounding of our studied N-fixing shrubs. Instead, we show that fixed nitrogen is allocated to different tissues within the plant and is lost and decomposed indirectly, primarily via grazing and fruit predation.

We conclude that regulation of nitrogen fixation and nitrogen conservation, are key adaptations influencing the fitness and persistence of nitrogen-fixing plants in the community, with broader consequences on existing perceptions on how N-fixation influences the ecosystem nitrogen cycle.

How to cite: Sheffer, E.: Adaptations of symbiotic nitrogen fixation minimize its contribution to ecosystem nitrogen cycles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3438, https://doi.org/10.5194/egusphere-egu24-3438, 2024.

EGU24-4475 | ECS | Posters on site | BG3.7

Across-crown and canopy variations of plant functional traits and spectra for deciduous broadleaf and evergreen coniferous species in a temperate forest 

Roxanne Lai, Tatsuro Nakaji, Tomoko Kawaguchi Akitsu, Fujio Hyodo, Hibiki Noda, and Hideki Kobayashi

Rapid and large-scale characterizations of forest canopies using remote sensing and modelling techniques are necessary, but the extent to which leaf-level traits and spectra can be upscaled to validate larger scale remote sensing data and vice versa is still not well understood. For one, spatial variations of leaf-level traits across tree crowns and canopies can bias results. While differences in extreme crown variations (e.g., shade and sun leaves) have been observed, across crown variation (i.e., sunlit leaves from top and sides of crown), which is of particular importance to increasingly higher resolution optical airborne and satellite remote sensing applications, have not been as widely documented.

Here, we investigated the across-crown and canopy variations of leaf-level plant functional traits and spectral reflectances and transmittances in a temperate forest in northern Japan. Our study period spanned the growing and senescence periods from July to October 2023 as well as deciduous broadleaf and evergreen conifer tree species. For each tree, we collected and processed sunlit leaves from two different crown positions visible to overhead aircraft: the top of the tree crown (TC) and at the tree crown periphery (CP).

We found differences in certain trait values (e.g., carbon (C) concentration,  d13C, leaf mass per area (LMA), chlorophyll, and total carotenoids) and spectra between TC (average height of 16.7 m above ground level) and CP (average height of 12.5 m above ground level) positions. We also show that differences between trait values and spectra between crown positions varied across tree species and over the growing and senescence periods. Overall reflectance and transmittance spectra across species showed increasing difference between TC and CP, especially in the near-infrared (NIR) region, from the growing to the senescence periods. Collectively, results suggest that crown sampling positions should be considered in the estimation of functional traits from spectral information, reflecting the dynamics of crown architecture. Particularly in spectral regions such as the NIR or short-wave infrared (SWIR), as well as during periods of senescence, where greater difference between crown positions were found.

How to cite: Lai, R., Nakaji, T., Akitsu, T. K., Hyodo, F., Noda, H., and Kobayashi, H.: Across-crown and canopy variations of plant functional traits and spectra for deciduous broadleaf and evergreen coniferous species in a temperate forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4475, https://doi.org/10.5194/egusphere-egu24-4475, 2024.

The tree height–diameter at breast height (H–DBH) and crown radius–DBH (CR–DBH) relationships as well as wood density are key for forest carbon/biomass estimation, parameterization in vegetation models and vegetation–atmosphere interactions. Although the H–DBH relationship has been widely investigated on site or regional scales, and a small amount of studies have involved CR–DBH relationships based on plot-level data, few studies have quantitatively verified the universality of these two relationships on a global scale. Moreover, in current Earth System Models/Dynamic Global Vegetation Models (ESMs/DGVMs), wood density is also oversimplified, being defined either as a uniform constant or as plant functional type-dependent (PFT-dependent) constants worldwide. Such oversimplifications may lead to simulation biases in morphology of woody PFTs, ecosystem transition and vegetation-atmosphere interactions.

In our study, the ability of 29 functions to fit the H–DBH and CR–DBH relationships for six different plant functional types (PFTs) are evaluated on a global scale, based on a global plant trait database. Then, the relationships between H-DBH, CR-DBH, wood density and climate are investigated. This work provides a valuable foundation for parameterization improvements in vegetation models, and some clues to forest field investigations.

How to cite: Song, X., Li, J., and Zeng, X.: Adaptions of tree individual morphology and stem wood density to multiple climate and soil characteristics gradients, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4927, https://doi.org/10.5194/egusphere-egu24-4927, 2024.

EGU24-5255 | ECS | Orals | BG3.7

Why do acquisitive fine-roots exude more carbon: A cost-benefit model simulation 

Lijuan Sun, Tonghui Wu, and Xinyao Yang

Plants manipulate the activities of microbial decomposition in the rhizosphere, i.e. the so-called rhizosphere effects (REs). The more nutrient-acquisitive plants seem to allocate more carbon (C) to the rhizosphere to meet their nutrient demands. Alternatively, it is probably the fast-growing species are more C leaky. In this study, we induced plant regulation processes on C release and nutrient acquisition to the biogeochemical model of microbial decomposition. We simply increased two parameters, namely root exudation and plant competition capacity  against microbes for available nitrogen. Our model showed that C investment to the rhizosphere and plant nutrient-acquisition capacity with decomposers together determine the cost-benefit balance of rhizosphere effects. For each specific species with a specific nutrient-acquisition capacity, there is an optimal exudation invest for the plant’s best interests. Furthermore, co-existing species can have similar efficiency of C cost against N benefit by optimal pairs of exudation and competition capacity. Our model not only give mathematical explanation why acquisitive plants release more root exudation but also show promising tools to modeling rhizosphere effects at ecosystem levels.      

How to cite: Sun, L., Wu, T., and Yang, X.: Why do acquisitive fine-roots exude more carbon: A cost-benefit model simulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5255, https://doi.org/10.5194/egusphere-egu24-5255, 2024.

EGU24-5264 | ECS | Posters on site | BG3.7

Ecological trade-offs between leaf structure and plant nutrient demand to predict nutrient resorption in a terrestrial biosphere model 

Gabriela Sophia, Silvia Caldararu, Benjamin Stocker, and Sönke Zaehle

Nutrient resorption from senescing leaves is a critical process of plant nutrient cycling that can significantly affect plant nutrient status and growth, making it essential for land surface models in order to predict long-term primary productivity. Most models assume leaf resorption to be a fixed value of 50% for N and P partially because we lack the knowledge of what drives this process, being unknown its implications when simulating nutrient cycling. Based on our own analysis of global patterns of nutrient resorption from trait data, we developed a dynamic scheme of nutrient resorption for nitrogen and phosphorus driven by leaf structure, longevity and environmental factors, to be implemented in the QUINCY model. We present the concept behind this novel scheme through ecophysiological traits trade-offs, as well as first implications for ecosystem functioning. We show that we can better predict plant and soil nutrient dynamics at steady state and crucially, under altered climate and CO2 conditions. Plant internal nutrient cycling has cascading implications for ecosystem nutrient pools and fluxes, being an essential process in ecosystem models, that allows us to improve our predictions of the future and furthers our understanding of nutrient cycling processes.

How to cite: Sophia, G., Caldararu, S., Stocker, B., and Zaehle, S.: Ecological trade-offs between leaf structure and plant nutrient demand to predict nutrient resorption in a terrestrial biosphere model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5264, https://doi.org/10.5194/egusphere-egu24-5264, 2024.

EGU24-5574 | ECS | Posters on site | BG3.7

Towards global maps of vegetation trait change - the VESTA project 

Mateus Dantas de Paula and Thomas Hickler

Exploring the intricate interplay between global biodiversity patterns and the looming impact of climate change stands as a paramount inquiry within the realm of earth system science. Furthermore, the acknowledgment of shifts in plant functional diversity emerges as a key catalyst, wielding substantial influence over pivotal ecosystem processes like the carbon cycle. Various essential plant traits, intricately tied to vegetation function—ranging from photosynthesis to carbon storage and water/nutrient uptake—underscore the significance of comprehensive global trait maps. These maps prove indispensable for unraveling environmental interactions, identifying threats to the biosphere, and fostering a profound understanding of our planet's intricacies. However, the sparse and non-representative nature of current trait observations poses a formidable challenge. Presently, global maps of vegetation traits are constructed by bridging observational gaps, primarily relying on empirical or statistical relationships between trait observations, climate and soil data, and remote sensing information. However, these approaches exhibit limited explanatory power, struggle to encompass a myriad of traits, and face constraints in ensuring ecological consistency in their extrapolations.

The VESTA (Vegetation Spatialization of Traits Algorithm) project emerges as a groundbreaking initiative aimed at refining our grasp on global above and belowground plant traits. This endeavor involves integrating a trait-based dynamic global vegetation model (DGVM) with Earth observation (EO) data. Trait-based DGVMs, rooted in a process-based foundation, forge a direct nexus between the environment, plant ecology, and emerging vegetation patterns. Leveraging insights from contemporary global trait databases, the model is initialized to mirror real-world conditions. Subsequently, EO data enters the equation to fine-tune the model through a calibration process, adjusting trait relationship curves having as reference satellite measurements of vegetation structure and productivity.

Drawing parallels to prior methods used in climate reanalysis, EO-constrained trait-based DGVMs yield a multivariate, spatially comprehensive, and coherent record of global vegetation traits. The resultant dataset encapsulates trait distributions, offering detailed insights into plant functional diversity metrics—mean, variance, skewness, and kurtosis—at specific locations. Notably, these trait maps extend beyond mere snapshots, evolving into a temporal series that affords a nuanced comprehension of the prevailing state of functional diversity and its temporal shifts. Ultimately, the fruition of this project manifests as an invaluable EO product, showcasing leaf, wood, and root traits and their change through time.

How to cite: Dantas de Paula, M. and Hickler, T.: Towards global maps of vegetation trait change - the VESTA project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5574, https://doi.org/10.5194/egusphere-egu24-5574, 2024.

EGU24-5706 | ECS | Posters on site | BG3.7

Incorporating roots into Plant-FATE, a dynamic eco-evolution trait-based vegetation model 

Tania L. Maxwell, Elisa Stefaniak, Florian Hofhansl, and Jaideep Joshi

To predict the response of forest ecosystems and how projected climate change will shift plant species composition, we need models that can account for adaptations encompassing multiple temporal and organizational scales. Recently, eco-evolutionary optimality-based models have emerged, which need fewer parameters than their empirical counterparts, i.e. standard dynamic global vegetation models. The new Plant-FATE (Plant Functional Acclimation and Trait Evolution) model embodies functional diversity through the representation of species across trait space. It integrates ecosystem adaptations across three distinct levels: firstly, it captures the acclimation of plastic traits in individual plants by harnessing the principles of eco-evolutionary optimality. Secondly, to simulate shifts in species composition through demographic changes and species immigration, a trait-size-structured demographic vegetation model is implemented. Lastly, the model addresses the long-term genetic evolution of species by incorporating novel evolutionary theory tailored for trait-size-structured communities. Currently, Plant-FATE implements fine roots by scaling these to total leaf area, and coarse roots as a fraction of stem mass. Thus, rooting structures, plant root traits, and belowground trade-offs are not represented.

To expand the modelling framework, we are implementing fine roots in a similar way as the crown, as a function of the root length profile and the root projection area. We are maintaining the current model structure so that total fine root mass is related to total leaf mass, which reduces the additional parameters needed to model. Instead, we are incorporating one additional trait, specific root length (SRL), which will determine the rooting profile, and which can evolve by natural selection in response to environmental changes. This allows for a depth distribution of fine roots, and for the plant water uptake to be dependent on both soil water potential and root distribution. At a community level, this implementation now means that changes in soil water content, e.g., during drought, can influence belowground competition and trade-offs between above- and below-ground biomass for different species. By modelling rooting strategies of deep-rooted vs shallow-rooted species, or evergreen vs deciduous species, the new root implementation in Plant-FATE will enable correct prediction of differential drought and climate response of coexisting plant species in line with the observed trade-offs in relative investment in above- and belowground tissues in association with their life-history strategy. It will thus allow to create a continuum of plants and their eco-evolutionary niches, which will allow us to predict plant functional diversity in response to environmental cues. Ultimately, incorporating roots in Plant-FATE will better represent ecosystem adaptation and community shifts in response to a changing climate.

How to cite: Maxwell, T. L., Stefaniak, E., Hofhansl, F., and Joshi, J.: Incorporating roots into Plant-FATE, a dynamic eco-evolution trait-based vegetation model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5706, https://doi.org/10.5194/egusphere-egu24-5706, 2024.

EGU24-6445 | ECS | Orals | BG3.7

Do leaf phytochemical fingerprints vary with mycorrhizal association? 

Thomas Guzman, Pierre Petriacq, Yves Gibon, Josep Valls-Fonayet, Thomas Dussarrat, Nicolas Devert, Cédric Cassan, Amélie Flandin, and Lisa Wingate

Mycorrhizal symbiosis is a ubiquitous plant-fungal association widespread across the plant kingdom. Considering the different characteristics and distributions of arbuscular (AM) and ectomycorrhizal (EM) fungal types across biomes, mycorrhizal types can be associated with different climatic and edaphic conditions, reinforced by feedback between soil conditions and plant traits. Although it is becoming clear that AM and EM trees differ in leaf litter quality and nutrient acquisition strategies, studies investigating how leaf traits differ across mycorrhizal associations have led to contrasting results. Here for the first time, we used a combination of quantitative targeted measurements and an untargeted metabolomic approach on 32 European tree species to demonstrate that AM and EM-associated tree species show distinct leaf metabolic fingerprints. Finally, we discuss the link between AM and EM function with key leaf metabolites that emerged from our integrated metabolomic approach.

How to cite: Guzman, T., Petriacq, P., Gibon, Y., Valls-Fonayet, J., Dussarrat, T., Devert, N., Cassan, C., Flandin, A., and Wingate, L.: Do leaf phytochemical fingerprints vary with mycorrhizal association?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6445, https://doi.org/10.5194/egusphere-egu24-6445, 2024.

EGU24-6476 | Orals | BG3.7

Leveraging Crowd-sourced Biodiversity Data for an Enhanced Plant Functional Trait Mapping 

Alvaro Moreno-Martínez, Jordi Muñoz-Marí, Jose E. Adsuara, Benjamin Dechant, Jens Katge, Teja Kattenborn, Francesco Maria Sabatini, Ethan Butler, Peter M. van Bodegom, Fabian D. Schneider, Miguel Mahecha, Josep Peñuelas, Philip A. Townsend, Gerhard Boenisch, Emma Izquierdo-Verdiguier, Nuno Carvalhais, Gregory Duveiller, Daniel Lusk, and Gustau Camps-Valls

Plant functional traits play a crucial role in determining how terrestrial ecosystems function. However, most Earth system models (ESMs) oversimplify this information, representing it with a limited number of static, empirically fixed values assigned to a selection of plant functional types (PFTs). This results in a reduction of the diversity of plant communities into a relatively small number of categories and the loss of key variability within individual PFTs. As a result, local processes occurring within ESM grid cells are not well represented, leading to uncertainties in predicting ecosystem functions.

The TRY global plant traits database is home to the most extensive collection of in-situ trait observations for a broad spectrum of species across the globe. Nonetheless, despite the numerous species and samples included in TRY, it still falls short compared to the overall richness and diversity of species and ecosystem functions worldwide. As a result, various initiatives have emerged to create global maps of plant traits. In this study, we created maps of essential plant traits, such as specific leaf area (SLA), leaf nitrogen content (LNC), and leaf phosphorus content (LPC), at a spatial resolution of 1 km. We took an innovative approach by leveraging the use of biodiversity, trait databases, and remote sensing data as primary sources of information. Additionally, we provide ancillary data layers that indicate regions where  data gaps currently exist and  where more samples are needed to improve trait representation in TRY.

We compared our results to plot-level estimates for thousands of sites globally. The comparison demonstrated strong correlations (r > 0.5) and low relative errors (rME < 6% and rRMSE < 11%) for all considered traits despite the challenges in scaling up from local to global scales. Our results reveal the non-Gaussian nature of trait distributions at a global scale when computing community representative mean trait values and further statistical descriptors, including standard deviation, skewness, and kurtosis estimations. These higher-order moments provide a more detailed and nuanced view of plant functional diversity and distribution. Using these new data to parameterize global ecological models could lead to more accurate predictions and a better understanding of the main drivers of different ecosystem processes.

How to cite: Moreno-Martínez, A., Muñoz-Marí, J., Adsuara, J. E., Dechant, B., Katge, J., Kattenborn, T., Maria Sabatini, F., Butler, E., van Bodegom, P. M., Schneider, F. D., Mahecha, M., Peñuelas, J., Townsend, P. A., Boenisch, G., Izquierdo-Verdiguier, E., Carvalhais, N., Duveiller, G., Lusk, D., and Camps-Valls, G.: Leveraging Crowd-sourced Biodiversity Data for an Enhanced Plant Functional Trait Mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6476, https://doi.org/10.5194/egusphere-egu24-6476, 2024.

EGU24-8705 | ECS | Posters on site | BG3.7

Incorporating the acclimation of photosynthesis and leaf respiration in the Noah-MP land surface model: model development and evaluation 

Yanghang Ren, Han Wang, Sandy Harrison, Colin Prentice, Giulia Mengoli, Long Zhao, and Kun Yang

Leaf photosynthetic and respiratory processes are important for the terrestrial carbon cycle. Leaf physiological traits, such as the maximum carboxylation rate and leaf respiration rate at 25˚C (Vcmax,25, R25), the key parameters affecting photosynthesis and respiration rate, acclimate to environmental changes. However, many land surface models (LSMs) assume a constant R25 and Vcmax,25 by plant functional types (PFTs) due to limited understanding of plant acclimation processes. Here, we incorporated the acclimation of photosynthesis and leaf respiration into a land surface model (Noah MP) using the Eco-Evolutionary Optimality principle (Noah MP-EEO), and evaluated the performances of the EEO and standard schemes to simulate photosynthesis and respiration using global plant trait measurements and data from FLUXNET. We demonstrate that R25 and Vcmax,25 varied temporally and spatially within the same PFT (C.V. >20%). This behaviour is captured by the EEO scheme (R2 =0.69 and 0.62 for temporal and spatial variations) but ignored by the standard scheme. At the FLUXNET sites, the standard scheme underestimates gross primary production (GPP) but this is reduced in the EEO scheme. The EEO scheme explains 66% of the variation of site-annual GPP compared to 55% in the standard scheme. The EEO scheme also simulates the variation of leaf respiration (Rleaves) better than the standard scheme (R2 increases from 0.45 to 0.77). The EEO scheme shows less temperature sensitivity than the standard scheme because of acclimation. This study indicates that adopting EEO approaches that do not require PFT-specific parameters improves carbon cycle predictions and could be used in Earth system models for better understanding the climate-carbon feedback.

How to cite: Ren, Y., Wang, H., Harrison, S., Prentice, C., Mengoli, G., Zhao, L., and Yang, K.: Incorporating the acclimation of photosynthesis and leaf respiration in the Noah-MP land surface model: model development and evaluation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8705, https://doi.org/10.5194/egusphere-egu24-8705, 2024.

EGU24-8983 | ECS | Orals | BG3.7

Cascading effects of shrub encroachment in sub-alpine grasslands from a trait-based perspective 

Lucía Laorden-Camacho, Elena Tello-García, Karl Grigulis, Marie-Pascale Colace, Christiane Gallet, Ursula Peintner, Ulrike Tappeiner, Georg Leitinger, and Sandra Lavorel

In the context of climate change, shrub encroachment is expected to advance in temperature-sensitive ecosystems such as arctic and alpine grasslands. In mountain regions, shrub encroachment is further triggered by grassland management changes (i.e., land abandonment or extensification). Shrub encroachment is expected to significantly impact ecosystem properties and functions like carbon stocks in both aboveground and belowground compartments, nutrient concentrations, and to slow down biogeochemical cycles. While studies of shrub encroachment processes and their effects on plant and soil functioning have increased our understanding of underpinning processes, there is still a lack of integrated studies and knowledge gaps on the interaction between plant-soil changes and their cascading effects. Our study focuses on understanding these effects on plant community traits and soil properties, and whether these changes are linear. We took herbaceous, shrub and soil samples along gradients of encroachment in sub-alpine grassland communities at two sites in the Alps: Lautaret (France) and the Stubai Valley (Austria). We used a trait-based approach to analyze hypothesized nonlinear functional changes in communities, using community-weighted means (CWM) to scale herbaceous and shrub functional traits and plant allometries. Structural equation models (SEM) support our hypothesis that changing CWM with increasing shrub biomass flows on to changes in soil properties. Dwarf shrub encroachment leads to more conservative and less nutrient-rich plant communities, resulting in an accumulation of recalcitrant organic matter and nutrient-poor soils. Nevertheless, contrary to our expectations, decreased nitrogen in plant communities along the encroachment gradient did not lead to decreased soil available nitrogen. Our results generally suggest it is possible to characterize shrub encroached ecosystems in the Alps using well-studied traits of the global plant economic spectrum, like nitrogen content or dry matter content. With these findings, we are confident that well-researched trait-based models are also applicable for dwarf shrubs, allowing to scale-up from plant traits to the delivery of ecosystem services. This research provides a novel understanding of shrub encroached ecosystems and is a first step in understanding the patterns and mechanisms underpinning their provision of ecosystem services.

How to cite: Laorden-Camacho, L., Tello-García, E., Grigulis, K., Colace, M.-P., Gallet, C., Peintner, U., Tappeiner, U., Leitinger, G., and Lavorel, S.: Cascading effects of shrub encroachment in sub-alpine grasslands from a trait-based perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8983, https://doi.org/10.5194/egusphere-egu24-8983, 2024.

EGU24-15797 | ECS | Posters on site | BG3.7

Global-scale plant trait-environment relationships based on sPlotOpen and TRY data 

Benjamin Dechant, Ryan Pavlick, Jens Kattge, Fabian Schneider, Francesco M. Sabatini, Alvaro Moreno-Martinez, Teja Kattenborn, Helge Bruehlheide, and Philip A. Townsend

Relationships between plant functional traits and environmental variables have been intensively studied in the ecological community due to their importance for applications such as generating upscaled trait maps and predicting trait responses due to climate change. However, such relationships have been found to be relatively weak for various potential reasons.

We analyzed global-scale trait-environment relationships using plot-level trait estimates based on the sPlotOpen and TRY databases. In addition to the commonly used community weighted mean (CWM), we considered a top-of-canopy weighted mean (TWM) metric that excludes understory vegetation. For both trait metrics, we quantified the change in trait-environment relationships when considering the dominant plant functional type (PFT) of the plot. 

We found that, overall, TWM combined with PFT had the strongest correlations to environmental variables and TWM also had the strongest increase in correlation when adding PFTs. CWM, in contrast, tended to show slightly higher correlations than TWM when not adding PFTs, but the correlations for CWM combined with PFTs were also substantially higher than CWM without PFTs. Overall, we found stronger trait-environment relationships compared to the existing literature. Our findings confirm the relevance of considering PFT-specific trait-environment relationships and demonstrate the considerable impact of different plot-level trait metrics. The choice of the most suitable trait metric depends on the application and the availability of ancillary data that can be used as weighting factors in CWM.

How to cite: Dechant, B., Pavlick, R., Kattge, J., Schneider, F., Sabatini, F. M., Moreno-Martinez, A., Kattenborn, T., Bruehlheide, H., and Townsend, P. A.: Global-scale plant trait-environment relationships based on sPlotOpen and TRY data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15797, https://doi.org/10.5194/egusphere-egu24-15797, 2024.

EGU24-16156 | ECS | Posters on site | BG3.7

Genotypic variability and phenotypic plasticity of leaf minimum conductance 

Songwei Wang, Günter Hoch, Sven Hopf, and Ansgar Kahmen

During drought, when trees have lost access to soil moisture, the survival time of trees is intimately linked to leaf minimum water conductance (gmin), which determines the residual water loss after a tree has fully closed its stomates. Large differences in gmin are known among different tree species from contrasting climates. In addition, gmin typically exhibits strong and highly species-specific thermal sensitivity (T) with rising temperatures. Within a species, the genetic variability (G) and phenotypic plasticity (P) of gmin, and especially the G and P of the thermal sensitivity, in natural tree populations remains unknown. Here we examined the thermal sensitivity of four tree species (Acer pseudoplatanus, Fagus sylvatica, Picea abies, and Pseudotsuga menziesii) and assessed G, P, and the interaction of G x P of gmin and T in a provenience trial. Additionally, we determined the relative distance plasticity index (RDPI) among populations for each species and how leaf cuticular and stomatal traits are related to the intraspecific variation in gmin. The trees that we investigated were grown in three trials with different hydroclimatic conditions in Switzerland. Our results show a strong effect of T on gmin, which increased by a factor of two to seven when the temperature increased from 30 to 50 °C for all studied species. Importantly, gmin in two deciduous broadleaf tree species displayed strong G, with gmin values being higher for genotypes originating from wet climates than those of trees originating from dry climates. In contrast, there was little G in gmin for two evergreen conifers. On the other hand, significant P of gmin was found in all tested tree species, with higher gmin values for trees grown in wet rather than dry environments. RDPI was typically low across provenances for all studied tree species, suggesting the limited absolute P of gmin. Interestingly, there was a dramatic interaction of P x T for Fagus, showing stronger temperature responses under wet growing conditions rather than dry growing conditions. Interestingly, G and P of gmin could not be simply explained by leaf stomatal and cuticular traits. Our study provides novel insights into the long-term evolution and short-term adaptation of gmin, suggesting that gmin may be capable of acclimating to future hotter and drier environments in some but not all species. Our findings provide practical measurements for improving European forest management in the context of global-change-type drought.

How to cite: Wang, S., Hoch, G., Hopf, S., and Kahmen, A.: Genotypic variability and phenotypic plasticity of leaf minimum conductance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16156, https://doi.org/10.5194/egusphere-egu24-16156, 2024.

EGU24-16900 | ECS | Orals | BG3.7

A new modeling approach to evaluate the effects of climate change on plant functional diversity in the Amazon rainforest 

Bárbara Rocha Cardeli, David Montenegro Lapola, Thomas Hickler, and Mateus Dantas de Paula

Climate change is impacting all regions of the world, particularly tropical ecosystems like the Amazon rainforest. The Amazon rainforest, being the largest tropical forest globally, plays a crucial role in acting as a carbon sink and mitigating the effects of climate change. However, studies indicate that the increasing levels of CO2 in the atmosphere can disrupt the ability of ecosystems to act as effective carbon sinks. The use of vegetation models, known as Dynamic Global Vegetation models (DGVMs), has become increasingly frequent in understanding the impact of climate change on vegetation through computer simulation of ecological and physiological processes. Some DGVM models, referred to as trait-based vegetation models, also allow the representation of different plant functional strategies within an ecological unit. Given the immense influence of mega-diverse ecosystems like the Amazon rainforest on the global carbon cycle and atmosphere CO2 concentrations, it is crucial to study the connections between the forest's ecosystem functioning and climate change. For this, we present a novel approach called “inverse modeling”. Conventional vegetation modeling approaches treat traits as parameters (i.e. independent variables) and carbon storage and productivity as outputs (i.e. dependent variables), however, in this approach, we will invert this arrangement. So, through the development of an inverse modeling framework we aim to identify the combination of functional traits that best maintain the Amazon forest's capacity as a carbon sink and ensure essential processes such as evapotranspiration, which impacts rainfall and the water cycle at the local level under climate change scenarios. The inverse algorithm will be developed using two trait-based DGVMs to ensure reproducibility and enhance the algorithm's robustness: CAETÊ (Carbon and Ecosystem functional Trait Evaluation model) and the LPJ-GUESS-NTD (Nutrient-Trait Dynamics). The main input data of this algorithm will be the values of the processes of (i) net primary productivity (NPP), (ii) biomass, and (iii) evapotranspiration rates. Three functional traits, related to productivity, carbon stock and evapotranspiration processes, will be considered to evaluate the functional composition: Specific Leaf Area (SLA, m²/g), Wood Density (WD, g/cm³), Specific Root Length (SRL, cm/g), and the parameter that describes the plant water use strategy related to CO2 assimilation rates (g1). And, simulations will be made under the climate change predicted according to the IPCC Sixth Assessment Report (2021; increase [CO2] and average temperature and reduces precipitation to Amazon region). Therefore, we will present to the scientific community an innovative approach to applying ecosystem modeling that allows testing and elucidating new hypotheses about climate change and its impacts on terrestrial ecosystems of global relevance, such as the Amazon. Highlighting the significance of plant functional traits in sustaining ecosystem functioning and resilience, and contributing to discussions on effective management and restoration techniques and methods of modeling.

How to cite: Rocha Cardeli, B., Montenegro Lapola, D., Hickler, T., and Dantas de Paula, M.: A new modeling approach to evaluate the effects of climate change on plant functional diversity in the Amazon rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16900, https://doi.org/10.5194/egusphere-egu24-16900, 2024.

EGU24-17097 | Posters on site | BG3.7

Temporal and plant-structural constraints for eco-evolutionary optimality models 

Karin Rebel, Astrid Odé, Jan Lankhorst, and Hugo de Boer

Quantifying leaf transpiration and photosynthesis is crucial for modeling global vegetation in a changing climate, but deriving general relationships and responses to environmental drivers across time scales remains challenging. A promising new approach to predict general leaf trait responses is the P-model (Prentice et al., 2014), which is based on eco-evolutionary optimality (EEO) theory. Leaf-level optimality is defined as the optimal ratio of leaf internal CO2 partial pressure to ambient CO2 partial pressure, resulting in maximum assimilation while minimizing respiration and transpiration costs. This process is coordinated via changes in both stomatal conductance and photosynthetic biochemistry, and results in a fundamental model with a strong dependency on climatic variables including temperature, relative humidity, CO2 levels, and light quantity. The P-model currently predicts instantaneous changes in leaf-level traits of photosynthesis and gas exchange without explicitly considering timescales of adaptation and acclimation, and the associated ranges of phenotypic plasticity of individual plants. It is also limited/confined to leaf-level traits, without considering whole-plant processes, like resource allocation. Thus, it is uncertain how leaf-level optimality and their related costs translate to organ level carbon and nitrogen allocation.

Our work focuses on further developing and evaluating the P-model by incorporating time scales of acclimation and adaptation, as well as upscaling leaf-level traits to whole-plant traits. To achieve these aims, we first developed a theoretical framework which allows the distinction of different timescales. Using a literature review, we identified and highlighted the tight relationship between leaf traits across timescales, and we also identified constraints on key leaf-level EEO optimality traits, and the timescales at which these constraints occur. We then propose a new framework to separate these responses at physiological, developmental, and evolutionary timescales. Second, we performed experimental work in order to evaluate the link between leaf-level optimality and whole-plant acclimation. Our experiments showed a strong response in whole-plant resource allocation to nutrient availability while leaf-level optimality was unresponsive to the nutrient treatments. This indicates that while leaf-level optimality is regulated mainly by climatic variables, whole-plant performance is strongly influenced by below-ground resource availability.

This research is a way forward in bridging plant ecophysiology and vegetation modeling, while acknowledging timescales and plasticity ranging from meteorology to deep time climate research. This work can be used to further develop EEO-modeling, and specifically the P-model.

How to cite: Rebel, K., Odé, A., Lankhorst, J., and de Boer, H.: Temporal and plant-structural constraints for eco-evolutionary optimality models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17097, https://doi.org/10.5194/egusphere-egu24-17097, 2024.

Terrestrial climate and vegetation exhibit distinct zonal patterns in relation to longitude, latitude, and altitude, a phenomenon known as three-dimensional zonality. Accelerated warming rates since the industrial revolution, along with changes in latitude and altitude, have the potential to influence the geographical distribution of vegetative phenology. To comprehend and accurately predict changes in terrestrial ecosystems, it is critical to understand the three-dimensional zonal variations in global vegetation phenology. Using the PEP725, USA-NPN, and CPON phenological network datasets, we examined and compared the spatiotemporal dynamics of longitudinal, latitudinal, and elevational gradients at the beginning (SOS) and end (EOS) of the growing season over the last forty years in different regions and identified the potential mechanisms underlying these variations. It is revealed that the changes in latitudinal, longitudinal, and altitudinal gradients of SOS vary by location. Between 1980-1990 and 2008-2018, the latitudinal gradient of SOS in Europe decreased threefold, from 1.38 days/degree to 0.37 days/degree. In China, the longitudinal, latitudinal, and altitudinal gradients of SOS have all decreased, indicating that SOS is becoming more synchronized across longitude, latitude, and elevation. Unlike SOS, the latitudinal, longitudinal, and altitudinal gradients of EOS differ from species. For example, in Europe, the correlation between EOS and latitude has weakened for Aesculus hippocastanum and Betula pendula, indicating a reduced latitudinal gradient in EOS for these two tree species. In contrast, the correlation between latitude and EOS for Fagus sylvatica has strengthened, suggesting an increased latitudinal gradient in EOS for this species. In North America, due to the limited observation period, the changes in latitudinal gradients of plant phenological periods are not yet clear. These findings of mixed three-dimensional zonal variations in global vegetation phenology pose challenges for mitigating the possible adverse impacts of climate change.

How to cite: Gao, M.: Mixed three-dimensional zonal variations in vegetation phenology based on global site observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17553, https://doi.org/10.5194/egusphere-egu24-17553, 2024.

Understanding how crops contribute to carbon, water and nitrogen cycling under different fertiliser regimes will be crucial for improving ecosystem models and predicting future yields. Synthetic fertilisers hugely boost crop yields, but excessive application often leads to negative environmental impacts including increased nitrous oxide emissions (about c. 300x more potent than CO2). To maximise crop yields and optimise fertiliser and water application, rapid retrieval of plant traits and fluxes will be critical. Here, we explore the effectiveness of optical (trait-based) and thermal (flux-based) remotely-sensed data collected from ground-based and drone platforms for quantifying differences in plant physiological performance and overall yield in field-grown wheat under different nitrogen, sulphur and or sugar treatments.

Research was undertaken at a winter wheat variable nutrient field trial in North Yorkshire, UK during June, 2021. Across 24 treatment plots (3 plot replicates per treatment), leaf level hyperspectral reflectance data was obtained using a Spectral Evolution PSR+ 3500 Spectroradiometer which was paired with stomatal conductance (gsw) measurements (collected using a LI-COR LI-600 porometer) and photosynthetic capacity (Vcmax) measurements (collected using a Li-6800 portable infra-red gas analyser). Plant thermal images were captured using a handheld FLIR T650-C thermal imaging camera (640x480). Field-assessed leaves were destructively harvested for leaf chlorophyll and nitrogen content analysis. Drone flights were conducted using a DJI Matrice M200 with a MicaSense RedEdge-Mx multispectral imaging sensor (1456 x 1088) and a Parrot Analfi thermal drone (160 x 120) at a 10 m altitude above ground.

Results show that plants fertilised with sulphur and nitrogen had the highest or equal-highest leaf chlorophyll values (c. 60-70 µg/cm2), followed by plants that only received nitrogen (c. 40-55 µg/cm2), with unfertilised controls having the lowest chlorophyll values (c. 15-20 µg/cm2). Sugar did not significantly affect leaf chlorophyll values but an interaction was detectable between sugar and fertiliser at the plot level (Two-way ANOVA, p < 0.05). Strong relationships were found between the MERIS terrestrial chlorophyll index (MTCI) spectral vegetation index, calculated from drone-acquired optical reflectance, and both leaf chlorophyll content (R2 = 0.76; p < 0.0001) and crop yield (R2= 0.90; p < 0.0001). Vcmax assessment also revealed a strong relationship with chlorophyll across fertiliser treatments (R2 = 0.77, p < 0.0001), with sulphur and nitrogen application again producing the highest trait values. Plants receiving nitrogen or nitrogen and sulphur had c. 50% higher gsw, with leaf temperatures that were c. 1-3 °C cooler than unfertilised controls. Sugar did not significantly affect leaf gsw or temperature. Using ground-based and drone-mounted thermal cameras, strong correlations were shown between leaf temperature and gsw (R2 = 0.64; p < 0.0001  and R2 = 0.6; p < 0.001 respectively).  Data captured during the drone flights enabled the production of spatial maps of Vcmax (~3 cm spatial resolution) across the field trails to reveal clear differences in photosynthetic capacity both across and within nutrient treatments. Overall, remote sensing data accurately captured subtle differences in plant traits and water fluxes paving the way for field-scale mapping of crop physiological, biochemical and structural traits.

How to cite: Caine, R., Berry, P., Storer, K., and Croft, H.: Modelling crop productivity, water fluxes and yield in winter wheat from remotely-sensed drone data under differential sulphur, nitrogen and or sugar application., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17600, https://doi.org/10.5194/egusphere-egu24-17600, 2024.

EGU24-18306 | Orals | BG3.7

Rising CO2 and warming reduce global canopy demand for nitrogen 

Ning Dong and Iain Colin Prentice

Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced-CO2­ experiments and satellite records signify increasing N limitation of primary production. We estimated changes in Vcmax andbased on optimality principles over decades, and the changes in leaf-level photosynthetic N assuming proportionality with leaf-level Vcmax at 25˚C. using satellite-based and predicted , and converted to annual N demand using estimated leaf turnover times.The predicted spatial pattern of Vcmax shares key features with an independent reconstruction based on remotely-sensed leaf chlorophyll content. Leaf-level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than greening has increased it. Our finding provides an alternative explanation for declining N that does not depend on increasing N limitation, also could use as evidence for recently increasing N limitation on primary production.  

How to cite: Dong, N. and Prentice, I. C.: Rising CO2 and warming reduce global canopy demand for nitrogen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18306, https://doi.org/10.5194/egusphere-egu24-18306, 2024.

EGU24-22186 | Posters on site | BG3.7

Non-matching predictions from different models simulating the effects of elevated atmospheric CO2 on the Amazon forest’s functional diversity 

Carolina C. Blanco, Bianca F. Rius, João Paulo Darela-Filho, Barbara Cardeli, Izabela Aleixo, Simon Scheiter, Liam Langan, Jaideep Joshi, Florian Hofhansl, Shipra Singh, Mateus Dantas De Paula, Thomas Hickler, Shasank Ongole, Steven Higgins, Katrin Fleischer, Anja Rammig, Jeremy Lichstein, and David M. Lapola

The continuous rising of atmospheric carbon dioxide (CO2) concentration is undoubtedly affecting the resilience of tropical forests worldwide. However, the magnitude of such effects is poorly known, limiting our capacity to assess the vulnerability of tropical forests and to improve their representation by models. Functional diversity (FD) is an important component of biodiversity enhancing ecosystem resilience, as high FD can provide higher response diversity and capacity to buffer against climate change. How FD is represented by different Dynamic Global Vegetation Models (DGVMs) may affect how such models predict the impacts of environmental changes on hyperdiverse ecosystems. We compared simulations of five trait-based DGVMs (i.e., with flexible, variable traits) constrained with data from the Amazon rainforest in the scope of the AmazonFACE project. Simulations were conducted considering initial high or low diversity scenarios under ambient and elevated CO2 (400 ppm and 600 ppm, respectively). We searched for correspondence between the functional identity of simulated plant strategies and their ecophysiological performances under elevated CO2. As models take different approaches to simulating functional trait distributions and they differ in their structure and in the trade-offs implemented, we found important intermodel differences in simulated results. Nevertheless, we took advantage of these differences in order to assess the most likely scenarios in terms of functional composition under elevated CO2, as well as to give feedback for better harmonization of model inputs and outputs and future model improvements. In the face of the pessimistic scenarios that project a continuous increase in CO2 levels, resolving the divergent responses among model predictions is critical, given the global importance of the Amazon rainforest's biodiversity and climate regulation, as well as the approximately 30 million people that directly or indirectly depend on the forest for their well-being.

How to cite: Blanco, C. C., Rius, B. F., Darela-Filho, J. P., Cardeli, B., Aleixo, I., Scheiter, S., Langan, L., Joshi, J., Hofhansl, F., Singh, S., De Paula, M. D., Hickler, T., Ongole, S., Higgins, S., Fleischer, K., Rammig, A., Lichstein, J., and Lapola, D. M.: Non-matching predictions from different models simulating the effects of elevated atmospheric CO2 on the Amazon forest’s functional diversity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22186, https://doi.org/10.5194/egusphere-egu24-22186, 2024.

EGU24-2019 | ECS | Orals | BG3.9 | Highlight

Towards high-resolution prediction of drought effects on Switzerland’s Beech forests for improved management 

Colin Bloom, Tiziana Koch, Katrin Meusburger, Daniel Scherrer, Lorenz Walthert, and Andri Baltensweiler

Over the past decade, extreme temperature and drought have resulted in widespread early leaf discoloration in European Beech (Fagus sylvatica) forests across central Europe. Discoloration during the particularly hot and dry summer of 2018 was ultimately associated with increased rates of crown dieback and tree mortality. Given the trend towards hotter and drier growing seasons under a changing climate, there is an increasing demand for site-specific recommendations on drought-resilient forest management practices in Switzerland. Making these recommendations requires a robust understanding of empirical forest disturbance and estimates of future forest health under a range of climatic and management conditions. To that end, using 2018 field observations, manual mapping of forest discoloration in aerial imagery, and multispectral Sentinel-2 imagery, we are developing 10 m/pixel estimates of European Beech discoloration across Switzerland during the 2018 to 2023 foliated periods. To date, we have 1) developed a robust interpolated Sentinel-2 time series from 2018 to 2023 for all of Switzerland, 2) trained a random forest model using 2018 ground control data and several vegetation indices from the Sentinel-2 time series to predict 2018 early leaf discoloration across Switzerland’s European Beech forests with c. 90% accuracy and, 3) used the Chlorophyll Red-Edge Index derived from the Sentinel-2 time series to approximate tree phenology and the length of the foliated period. We estimate that the 2018 foliated period was, on average, 45±19 days shorter for discolored sites as compared to sites without discoloration. Our results generally align well with previous studies of the 2018 drought in Switzerland and additional observational data is being compiled to validate the application of 2018 ground truth data across the foliated periods from 2018 to 2023. In combination with high-resolution soil maps, meteorological data, topographic derivatives, and information on Swiss forest structure, we will use empirical discoloration estimates to train ensemble models of site-specific susceptibility to drought. By artificially varying the meteorological and forest structure variables in these models we will have the unique opportunity to better understand European Beech susceptibility to drought and test the influence of a range of future climate scenarios and forest management strategies on Swiss forest health at a high spatial resolution.

How to cite: Bloom, C., Koch, T., Meusburger, K., Scherrer, D., Walthert, L., and Baltensweiler, A.: Towards high-resolution prediction of drought effects on Switzerland’s Beech forests for improved management, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2019, https://doi.org/10.5194/egusphere-egu24-2019, 2024.

EGU24-2927 | ECS | Posters on site | BG3.9 | Highlight

Impacts of land use and climate change on montane forest ecosystem services in Africa 

Temesgen Alemayehu Abera, Eduardo Maeda, Janne Heiskanen, Mohammed Muhammed, Netra Bhandari, Binyam Hailu, Petri Pellikka, Thomas Nauss, and Dirk Zeuss

Tropical montane cloud forest ecosystems contain some of the world's biodiversity hotspots and provide essential ecosystem services, including high quality freshwater and microclimate buffering against climate extremes. The microclimate buffering service provides microrefugia that allow species to persist under climate change, while the ability of montane forests to intercept cloud water from the atmosphere maintains freshwater availability. However, with increasing pressure from anthropogenic land use and climate change, the stability of montane forests to provide such ecosystem services remains unresolved. In this study, we investigated the impacts of deforestation and climate change on the cloud water interception capacity of montane forests in Africa over the last two decades. We predicted 2-m air and dew point temperature using satellite and in situ observations and ensemble machine learning. In addition, we estimated local warming due to deforestation and tested the 'lifting cloud base height' hypothesis attributed to deforestation and climate change separately. Our preliminary results show that 18% of montane forests in Africa were lost between 2003 and 2022, and deforestation increased the air temperature and lifted the cloud base height stronger than climate change. Deforestation weakened the cloud water interception capacity of montane forests in Africa. Overall, this study sheds light on the impacts of montane deforestation on local climate and water supply, which may have far-reaching implications for montane forest biodiversity and ecosystem service provision in Africa. 

This work is part of the MOFESD (montane forest ecosystem service dynamics in Africa) postdoctoral project funded by Alexander von Humboldt Foundation.

How to cite: Abera, T. A., Maeda, E., Heiskanen, J., Muhammed, M., Bhandari, N., Hailu, B., Pellikka, P., Nauss, T., and Zeuss, D.: Impacts of land use and climate change on montane forest ecosystem services in Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2927, https://doi.org/10.5194/egusphere-egu24-2927, 2024.

EGU24-5792 | ECS | Orals | BG3.9

Improving forest disturbance labels through Sentinel-1 change detection validation 

Franziska Müller, Laura Eifler, Felix Cremer, Vitus Benson, Gustau Camps-Valls, and Ana Bastos

Global forest ecosystems face unprecedented challenges, such as fire, wind, drought, and insect outbreaks, resulting in rapid forest decline. Analyzing these disturbances on a large scale requires the use of remote sensing techniques, but the spatial and temporal uncertainty in forest disturbance reference data poses a significant obstacle.

In this study, we validate and refine existing disturbance labels of the U.S. Forest Service Forest Health Protection [1] Dataset USDA by using a change detection algorithm [2] based on radar data from Sentinel-1. To this end, we analyze the spatio-temporal overlap of disturbed areas from Sentinel-1 with the USDA labels and further explore spatio-temporal fingerprints of remote sensing indices commonly used for disturbance detection. As the analysis of the remote sensing indices shows, this refinement of the accuracy of disturbance labels provides a more reliable basis for ecological research and land management practice.

 

References:

[1] Coleman, T. W., Graves, A. D., Heath, Z., Flowers, R. W., Hanavan, R. P., Cluck, D. R., & Ryerson, D. (2018). Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. Forest Ecology and Management, 430, 321–336. https://doi.org/10.1016/j.foreco.2018.08.020

[2] Cremer, F., Gans, F., Cortes, J. & Thiel, C. (2023). Mapping Forest Loss in Europe with Sentinel-1. In European Commission, Joint Research Centre, Soille, P., Lumnitz, S., Albani, S., Proceedings of the 2023 conference on Big Data from Space (BiDS’23) – From foresight to impact – 6-9 November 2023, Austrian Center, Vienna, Soille, P.(editor), Lumnitz, S.(editor), Albani, S.(editor), (pp. 361 - 364) Publications Office of the European Union, 2023, https://data.europa.eu/doi/10.2760/46796

 

How to cite: Müller, F., Eifler, L., Cremer, F., Benson, V., Camps-Valls, G., and Bastos, A.: Improving forest disturbance labels through Sentinel-1 change detection validation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5792, https://doi.org/10.5194/egusphere-egu24-5792, 2024.

Among the main issues affecting European forests, forest fires, windstorm and bark beetles outbreaks nowadays represent the most relevant one. In this regard, local stakeholders are  actually facing with critical circumstances both concerning the implementation of efficient silvicultural management of forest stands affected by such problematics. The storm Vaia occurred in 2018 in northeastern Italy created an unexpected scenario for Italian Alps. Following the windthrow produced by the storm, bark beetles proliferated from the downed logs, therefore moving to the neighbour standing forest and modifying the characteristics and the availability of forest fuel. In this context, the development of remote sensing techniques such as Light Detection and Ranging  (LiDAR) and Unmanned Aerial Vehicle (UAV)-based data acquisition, together with wildfire behaviour models, allow researchers to perform detailed estimation of forest fuels, necessary to simulate fire behaviour over disturbed forested areas over time. The prediction of key factors related to wildfire risk (e.g., fire type, rate of spread, flames lengths) is useful in estimating fire behaviour also in those areas affected by bark beetles proliferation. In this connection, new methods able to overcome notable limitations in forest fire simulations is nowadays needed. In particular, the interaction between bark beetles outbreaks and wildland fire dynamics were investigated focusing on a forested catchment (Veneto region, Italy) recently affected by the VAIA storm and hence involved in a widespread outbreak of bark beetle (Ips typographus). Extensive field data collection and the FlamMap fire behaviour model were coupled with high-resolution LiDAR and UAV-based analysis, to compare wildfire behaviour before and after beetle outbreak. Results could enrich the amount of information available for local administration of the Alpine region, in order to find effective interventions and management options for the areas affected by similar natural disturbances over time. 

How to cite: Mauri, L. and Lingua, E.: Modeling the interaction between wildfire behaviour and bark beetle outbreak from LiDAR data: new perspective for Italian forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7607, https://doi.org/10.5194/egusphere-egu24-7607, 2024.

EGU24-8180 | ECS | Posters on site | BG3.9

Alternative tree-cover states of dryland ecosystems: Inconsistencies between global and continental scales 

Li Ma, Liping Yang, Qinqin Chang, Siqing Wang, Chao Guan, Ning Chen, and Changming Zhao

Dryland ecosystems are complex systems that can exhibit alternative tree-cover states, making conservation and restoration efforts challenging. However, our understanding of these states is still limited, particularly at the global level. In this study, we utilized remote sensing data to analyze the distribution of tree cover in drylands and assess the impacts of factors such as the aridity index, temperature, fire frequency, and grazing on tree cover at both the global and continental scales. The results showed that dryland ecosystems in Asia, Australia, and South America exhibited alternative tree-cover states, while dryland ecosystems at the global scale and in Africa, Europe, and North America did not. Livestock density and the aridity index appeared to be the primary drivers of these states in the regions where they occurred. This study highlights the importance of considering the variability in dryland vegetation states across different scales and regions, as small-scale processes may not always accurately predict large-scale dynamics. By examining dryland woody vegetation at both global and continental scales, our work contributes to a more comprehensive understanding of the factors that affect the tree-cover states in these ecosystems.

How to cite: Ma, L., Yang, L., Chang, Q., Wang, S., Guan, C., Chen, N., and Zhao, C.: Alternative tree-cover states of dryland ecosystems: Inconsistencies between global and continental scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8180, https://doi.org/10.5194/egusphere-egu24-8180, 2024.

EGU24-11577 | Posters on site | BG3.9

Drivers and impacts of combined soil and atmospheric droughts on the CO2 fluxes of a mixed deciduous forest in Switzerland 

Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann

Climate change is increasing frequency and intensity of droughts across Europe, with major consequences for forest ecosystems. Often soil and atmospheric droughts occur simultaneously, resulting in combined soil atmospheric drought (CSAD) events. Which effects such CSAD events have on forest CO2 fluxes is not clear. At the Lägeren site (CH-Lae), a mixed deciduous forest in Switzerland, we identified the three years with the lowest cumulative precipitation and the highest cumulative vapor pressure deficit (VPD) during the growing season (May – September), namely 2015, 2018 and 2022, since net ecosystem CO2 exchange (NEE) measurements started in 2005. We then determined the CSAD events, i.e., periods in which soil and atmospheric drought occurred simultaneously. Our objectives were to (1) quantify the impacts of CSAD events in 2015, 2018 and 2022 on CO2 fluxes against the long-term mean, (2) identify the environmental drivers of net ecosystem production (NEP) in 2015, 2018 and 2022 and forest floor respiration (Rff) in 2018 and 2022 compared to the long-term fluxes, (3) assess the temporal course of the effects of soil and atmospheric drought on NEP and Rff during the CSAD events against the long-term means. CO2 fluxes were measured continuously with the eddy covariance technique at two distinct locations at the CH-Lae forest: above the canopy at a height of 47 meters (from 2005 to 2022) and below the canopy at 1.5 meters (from 2018 to 2022). The drivers of NEP and Rff were determined with machine learning approaches, i.e., random forest conditional variable importance and Shapley Additive exPlenations (SHAP). We found a decrease in NEP of 35%, 38% and 41% during the CSAD events in 2015, 2018 and 2022 respectively compared to the mean 2005-2022, and a decrease of 16% and 41% in the Rff during the CSAD events in 2018 and 2022 compared to the mean 2019-2021. Light is usually the main driver of NEP during the growing season, as we found in 2015, 2018 and in the mean 2005-2022. While soil water content (SWC) was the main driver of NEP for the growing season in 2022, enhancing the key effect of soil drought in the 2022 growing season. The SHAP analysis revealed the negative impacts of high temperature, high VPD, and low SWC on NEP during all CSAD events, with low SWC and high VPD in 2022 having the larger impacts on NEP. Rff was mainly decreased by low SWC in 2018 and 2022. This led to a decrease in temperature sensitivity of Rff during CSAD events compared to the mean 2019-2021. With this study we assessed the impacts CSAD events on the CO2 fluxes of a mixed deciduous forest. Yet, the intensity, the timing, and the pre-conditions of CSAD events are crucial to explain ecosystem responses to such events. Furthermore, the increase in frequency and intensity of droughts and precipitation events with global warming call into question the predictability of forests capacity to store carbon, which is crucial for climate change mitigation through nature-based solutions.

How to cite: Scapucci, L., Shekhar, A., Aranda-Barranco, S., Bolshakova, A., Hörtnagl, L., Gharun, M., and Buchmann, N.: Drivers and impacts of combined soil and atmospheric droughts on the CO2 fluxes of a mixed deciduous forest in Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11577, https://doi.org/10.5194/egusphere-egu24-11577, 2024.

The Horizon Europe project “eco2adapt” aims to provide support to stakeholders, forest owners and practitioners for managing forests and optimise social and environmental resilience using the concept of nature-based solutions. The project relies on a network of study cases (“Living Labs”), for which distinct management objectives are set. The overarching research question is to identify suitable management strategies to face climate change and novel disturbance regimes. In all Living Labs, the model LandClim will be used to evaluate different management approaches and their outcomes. LandClim is a spatially explicit, dynamic vegetation model that simulates the interactions between climate, natural disturbances and forest management at the landscape scale.

The Swiss Living Lab is located in the Surselva valley, in the canton of Graubünden. It represents the Alpine environment, featuring a wide range of elevations and thus biogeographical zones. Particular attention is dedicated to the protective function of forests against natural hazards (e.g., rockfall and avalanches), since it is the most particular feature of this Living Lab. Sustainable timber production is a key ecosystem service that is investigated as well, especially in the different climate change scenarios. The ultimate goal for the Swiss Living Lab is to identify how different management practices affect the sustainable provision of timber and the protective function of forests in future climate scenarios.

To achieve this goal, we are working with different climate change scenarios (RCP 4.5 and RCP 8.5) as well as with a no management scenario, in order to evaluate the potential natural vegetation of the study area, and with multiple management scenarios that are co-created with local stakeholders. The protective efficiency of future stands is evaluated using specific indices for rockfall protection and avalanche mitigation. Simulation results are discussed with stakeholders in order to determine the management scenario to use for the final outputs. The final simulation results are made available to stakeholders so as to support the development of management guidelines and best practices.

How to cite: Costa, M. and Bugmann, H.: Implications of the interactions between climate change, natural disturbances, and management for forest dynamics in Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12739, https://doi.org/10.5194/egusphere-egu24-12739, 2024.

Forests globally are experiencing unprecedented levels of disturbances, negatively impacting ecosystem functioning and services. Ecosystem restoration (ER) is a global priority to counteract and reverse the effects of disturbances, highlighted by initiatives such as the UN Decade for ER and the Convention on Biological Diversity 30x30 target.   

With increased investments in ER, more effective monitoring is required. Conventionally, ER monitoring relies on field surveys which are costly and infeasible for large or remote restoration sites. Recent advances in remote sensing technologies are seeing this technology increasingly being used to evaluate impacts of natural disturbances on forest ecosystems. Previous research has demonstrated strong correlations between remotely sensed spectral data and the recovery of forest ecosystems post-disturbance. These remote sensing recovery monitoring methods have relied on pre-disturbance status to assess recovery progress. However, increasingly multidisciplinary initiatives and ER management in practice require more flexibility in defining recovery targets. Additionally, ER practitioners face barriers to use remote sensing technology due to computational demands and complexity of time series analysis. 

To address these issues, the Pioneer Earth Observation apPlications for the Environment (PEOPLE) ER project, funded by the European Space Agency, developed spectral-recovery, an open-source, flexible, remote sensing tool to support monitoring of vegetation recovery in forested ecosystems. Written in the open-source Python programming language, the spectral-recovery package provides simple computational methods for analyzing Sentinel-2 or Landsat satellite data time series, with straightforward interfaces that allow users to select from a variety of spectral indices and recovery metrics to monitor recovery trends and trajectories over time. To facilitate the integration of the tool with existing ER practices, users have the flexibility to determine recovery targets using either a historic method, based on the restoration site's historical conditions, or a reference method, which uses reference sites for target conditions. The tool produces raster layers for each index and recovery metric, along with recovery trajectory graphs for each restoration site. This allows for flexible post-tool analysis and mapping visualizations. In this presentation, the potential of this tool is demonstrated via case studies in Canada and Europe of detecting and quantifying forest recovery from wildfire verified by using airborne laser scanning (ALS) data. Results in the Canada case study found that 84% of the tool's estimated recovered area also had met structural recovery targets of height and/or cover, supporting the use of the spectral-recovery tool to monitor, quantify, and map post-disturbance forest recovery at multiple scales. The tool’s ability to provide wall-to-wall recovery estimates over entire restoration sites or landscapes enables the comparison of various restoration activities over time and space through continuous monitoring and consistent metrics, addressing the most prevalent limitations of current ER monitoring efforts.  

The spectral-recovery tool is openly available via Github with demonstration notebooks and documentation, and is presented as an important tool for monitoring forest recovery, and assisting European and other countries in monitoring commitments under international agreements, EU policies, and at national level. 

How to cite: Birch, M., Zwiep, S., Coops, N. C., Dean, A., Kavlin, M., and Seifert, F. M.: Monitoring forest disturbance recovery using metrics derived from multi-spectral satellite time-series: introducing the spectral recovery open-source package with European and Canadian use cases, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13697, https://doi.org/10.5194/egusphere-egu24-13697, 2024.

EGU24-15123 | Orals | BG3.9

Significant increase observed in tree mortality in boreal forests in Southern Finland 

Samuli Junttila, Minna Blomqvist, Ville Laukkanen, Hannah O'Sullivan, Antti Polvivaara, Markus Holopainen, and Heli Peltola

Simultaneous increases of severe drought and heat extremes with bark beetle outbreaks have recently increased tree mortality globally. The lack of accurate tree mortality data over large areas has limited the development and applications of tree mortality models. Available tree mortality data has mainly been collected using field observations with limited spatial extent. However, the use of high-resolution remote sensing data, such as aerial imagery with automated imagery analysis, may change this situation. 

 

In this study, we analysed the development of tree mortality (standing dead wood) and factors contributing to it during 2017-2023 over an area of 117 366 ha of boreal forested landscape in Southern Finland. For this purpose, we developed a convolutional neural network (CNN) based on U-Net architecture, allowing segmenting of standing dead wood automatically from aerial imagery in 2017, 2020 and 2023 with a spatial resolution of 0.5 m. We trained the model using 22300 segments of manually delineated dead trees from various geographic regions in Finland. The model showed high accuracy in detecting the dead trees with an F1 score of 0.93 based on an independent validation dataset. We also combined the information on detected dead trees with open forest resource information based on extensive field campaigns and airborne laser scanning, to estimate standing dead wood volume during 2017-2023. 


The total standing dead wood volume increased substantially in our boreal study area, by 543 % from 8660 m3 to 52659 m3 between 2017 and 2023. Similarly, the total forest area of standing dead wood increased by 456 % between 2017 and 2023. Both variables followed an exponential growth curve with a nearly perfect fit for the 2017, 2020 and 2023 time series, indicating that tree mortality increased rapidly. Tree mortality occurred mainly in Norway spruce (Picea abies) dominated forests on relatively fertile soils. The mean age of forest stands suffering from tree mortality decreased from 69.7 to 62.6 years between 2017 and 2023, indicating that tree mortality has transitioned towards younger forests. Our findings highlight the increasing risk of tree mortality in boreal forests and the need for large-scale monitoring to keep up to date on the fast-paced changes in boreal forest mortality. This is also required for timely risk management measures in forestry under changing climate, associated with simultaneous increases of severe drought and heat extremes with bark beetle outbreaks.

How to cite: Junttila, S., Blomqvist, M., Laukkanen, V., O'Sullivan, H., Polvivaara, A., Holopainen, M., and Peltola, H.: Significant increase observed in tree mortality in boreal forests in Southern Finland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15123, https://doi.org/10.5194/egusphere-egu24-15123, 2024.

EGU24-15141 | ECS | Posters on site | BG3.9

Biological legacies as nature-based solutions to maintain protective effects in alpine mountain forests 

Paul Richter and Emanuele Lingua

In mountainous regions, protective forests are crucial for maintaining ecosystem stability. The impact of natural disturbances on these forests and their ability to provide essential ecosystem services is evident. Therefore, evaluating the remaining protection offered by biological legacies and the dynamics of forest recovery becomes highly relevant in the face of climate change.

This research adopts a multiscale methodology, ranging from individual trees to landscape analysis, employing diverse techniques and data sources such as field studies, lidar, satellite imagery, and UAV data. The primary objective of this study is to enhance comprehension regarding the impact, capabilities, and real-time service life of natural disturbance legacies within protective forests, particularly in mitigating rockfall risks. Additionally, the research aims to contribute to a more profound understanding for a more ecologically sound and effective post-disturbance forest management approach. The study zones are located in the North-East of Italy and include areas impacted by windthrow as well as forest fire sites.

Between five to ten years post-event, ongoing field assessments aim to comprehensively evaluate the degradation status of existing deadwood. This analysis takes into account specific conditions, including altitude, tree species, and soil characteristics. This comprehensive analysis involves the deployment of sensors for prolonged monitoring of moisture levels, water content in logs, climate data collection, and sampling for dry-matter content and decay assessment of deadwood. The ultimate objective of this research is to enhance scientific insights into decay conditions, contributing to a substantiated, application-oriented understanding of the "service lifetime" of biological legacies following a disturbance event in protective forests, particularly in their role against rockfall.

How to cite: Richter, P. and Lingua, E.: Biological legacies as nature-based solutions to maintain protective effects in alpine mountain forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15141, https://doi.org/10.5194/egusphere-egu24-15141, 2024.

EGU24-15147 | ECS | Posters on site | BG3.9

Navigating the Biogeography of Short-forests in Global Drylands 

Xiaoxue Dong, Xinyu Liu, Xiao He, Ning Chen, and Changming Zhao

The canopy height is pivotal in sustaining carbon cycling and upholding the ecological and biodiversity functions, which is also true or particularly the case for dryland ecosystems. Meanwhile, restorations in drylands have seen massive short-forests because of various reasons like insufficient water input. This study is committed to an exhaustive exploration of the biogeographic distribution and pivotal unknown determinants of short-forests in global drylands, offering indispensable insights for devising conservation strategies tailored to dryland forest vegetation. Here we divide satellite global dryland forests into the Tall-forests (17.30 ± 3.00 m) and the Short-forests (9.24 ± 2.57 m). The short-forests are ubiquitously distributed in global drylands, consist of 8.17% planted forests and 91.83% natural forests. These short-forests predominantly occur in ecosystems characterized by substantial climatic (temperature, precipitation) variations, impoverished soil textures, frequent human activities, and moderate to high elevations. Notably, within the short-forests, limitations on the canopy height of the natural forests appear to reach threshold values in specific factors earlier than in the planted forests such as Mean temperature of warmest quarter (11.73 ℃ vs. 12.64 ℃). Our discoveries explicate a nuanced comprehension of dryland short-forests, potentially serving as a crucial guide for informing future ecological restoration and sustainable management practices therein.

How to cite: Dong, X., Liu, X., He, X., Chen, N., and Zhao, C.: Navigating the Biogeography of Short-forests in Global Drylands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15147, https://doi.org/10.5194/egusphere-egu24-15147, 2024.

EGU24-15598 | ECS | Posters on site | BG3.9

Detecting tree mortality using waveform features of airborne LiDAR 

Antti Polvivaara, Ilkka Korpela, Samuli Junttila, and Mikko Vastaranta

Tree mortality impacts biodiversity, carbon dynamics and the management of forests. Climate change is expected to increase tree mortality, but understanding of tree mortality rates and the underlying processes is limited; thus, more accurate and efficient tree mortality mapping methods are required. In this study, we investigated the feasibility of using airborne light detection and ranging (LiDAR) waveform (WF) features in detecting dead trees to monitor tree mortality and studied how the WF features of dead trees change over time.

We used three consecutive LiDAR campaigns using fixed sensor and flight parameters in a boreal forest in Southern Finland (61.5°N, 24.2°E). The campaigns spanned four years and were carried out in 2011, 2013 and 2015. A Riegl LMS-Q680i LiDAR sensor, which operates at 1550 nm wavelength, provided return WF data to study the geometric-optical properties of living and dead trees and monitor mortality of Norway spruce (Picea abies H. Karst.).

Our findings highlight the differences in radiometric and geometric WF features between living and dead trees. The return WFs from dead trees were consistently elongated and contained more backscattering energy. We also found that as a tree died, the canopy and branch structures became less dense and more irregular, leading to more complex return WFs. The WF features were used for binary classification of living and dead trees, resulting in classification accuracies between 94.7 and 98.5 %, depending on the campaign. Distinguishing between living and dead trees is challenging for trees that have died recently when there are only minor defects in the crown and discoloration of foliage. Tree decay after death improved the discernability between living and dead trees as the geometric-optical properties of the crown change. There is, however, a limit after which further stages of decay might impair the discernability of living and dead trees.

The radiometric and geometric WF features and canopy mortality effects on the WF features are consistent across datasets implying intrinsic quality of information in the WF features. The within-class variance of WF features in dead trees is greater than that in living trees, indicating significant variations in the geometric and radiometric properties of trees between stages of decaying and dying. Our results imply that LiDAR WFs can be used for the accurate detection of dead trees to map tree mortality.

How to cite: Polvivaara, A., Korpela, I., Junttila, S., and Vastaranta, M.: Detecting tree mortality using waveform features of airborne LiDAR, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15598, https://doi.org/10.5194/egusphere-egu24-15598, 2024.

EGU24-15638 | Orals | BG3.9

Natural disturbances and protective forests: the effects of cascading and compound hazards after the storm VAIA  (Northeastern Italy) 

Emanuele Lingua, Paul Richter, Lorenzo Faes, Frédéric Berger, Matteo Garbarino, and Raffaella Marzano

Climate change is undeniably responsible for the increase in climate-related disturbances affecting Alpine communities. These phenomena are often the result of compound events, a combination of multiple climate-related hazards that contribute to socio-ecological risks. Among the key drivers of the increased vulnerability of Alpine communities are changes in forest cover, structure and species composition. Forests provide essential ecosystem services that support human well-being and play a crucial role in the mitigation of climate change. However, their health and stability are also particularly affected by large and high-severity climate-related disturbances. Therefore, in the framework of MOSAIC, an Alpine Space Interreg project funded by the European Union, a focus is being devoted to hazard-resilient and sustainable protective forest management, which is essential for managing climate-related hazards.  In order to support Alpine climate action plans, the project partners aim to collect, harmonise and share data on Alpine climate-related disturbances and hazards, as well as forecasting their future trends. MOSAIC strives to raise awareness among foresters, risk managers, decision makers and the public through an Alpine network of forest living labs. Here, some case studies and examples of disturbance interactions and their effects on protective forest stands are presented and discussed, with a special focus on the aftermath of VAIA, a windstorm that affected Northeastern Italy in 2018.

How to cite: Lingua, E., Richter, P., Faes, L., Berger, F., Garbarino, M., and Marzano, R.: Natural disturbances and protective forests: the effects of cascading and compound hazards after the storm VAIA  (Northeastern Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15638, https://doi.org/10.5194/egusphere-egu24-15638, 2024.

Forests are susceptible to sudden disturbances, particularly those induced by wind, which can cause ecological and economic losses. Researchers have published a large number of articles from different disciplines and perspectives, leading to multidisciplinary intersections and increased literature in this field, which reduces the efficiency of traditional literature review. Employing quantitative techniques, bibliometric analysis has a great advantage in analyzing large amounts of literature and providing a visualized overview of the development and trends of the research field. This study conducted a comprehensive bibliometric analysis to elucidate the evolving landscape of research on forest wind disturbance. The methodology involved a systematic data collection process from the Web of Science Core Collection, resulting in the identification of 839 relevant publications for bibliometric analysis. The results show that there has been a consistent and steady growth in publications, with a distinct spike corresponding to Hurricane Hugo. Publications have mostly come from the United States, which also possesses the leadership in international collaboration. The standout topics include windthrow, tree motion during windstorms, European forests, wind damage risk estimation, hurricanes' impact on forests, and the long-term impacts of wind disturbances. Furthermore, four prospective directions for future research are identified, including studies into hurricanes, forest structure, climate change, and typhoon-related impacts. Our research collectively contributes to a comprehensive understanding of the dynamic landscape of forest wind disturbance research, providing a foundation for future research and strategic planning in this critical field.

How to cite: Gao, W. and Larjavaara, M.: Mapping the Landscape of Research on Wind Disturbance in Forests: A Comprehensive Bibliometric Analysis and Systematic Review, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16902, https://doi.org/10.5194/egusphere-egu24-16902, 2024.

EGU24-17328 | ECS | Posters on site | BG3.9

Fire regime alteration and regeneration dynamics in Pinus ponderosa stands of the Southwestern United States 

Giulia Mantero, Nadav Mouallem, Larissa Yocom, Matteo Garbarino, and Raffaella Marzano

The wildfire regime of dry conifer forests dominated or co-dominated by ponderosa pine (Pinus ponderosa Douglas ex C. Lawson) in the Southwestern United States has been increasingly altered in the last decades. These changes, caused by the ongoing climate change and by the fuel build-up due to several decades of fire exclusion, resulting in a denser and more homogeneous forest structure, are leading to uncharacteristically large and severe wildfires, uncommon for these stands, adapted to fire regimes characterized by frequent low-severity surface fires. Large openings resulting from high-severity fires, together with post-fire drought and competition from herbaceous and shrubby vegetation, may hinder ponderosa pine regeneration, leading to shifts in forest composition or transition towards shrubland or grassland. The lack of pine regeneration caused by the higher severity of a first fire event can be reinforced by subsequent reburning, whose frequency is also increasing in the area. This study investigates how an altered fire regime can interrupt successional pathways in ponderosa pine stands in the Southwestern United States, focusing on the ecological and management implications associated with repeated fire occurrences after an initial high-severity wildfire. We analyzed the spatial and temporal patterns of post-fire regeneration after reburns through a combination of field surveys, remote sensing, and historical fire records, considering fire severity, topography, distance to seed trees, and time between the reburn events. The study aims to enhance our understanding of post-fire regeneration dynamics in the context of an altered fire regime and the ecological consequences and management strategies associated with this phenomenon.

How to cite: Mantero, G., Mouallem, N., Yocom, L., Garbarino, M., and Marzano, R.: Fire regime alteration and regeneration dynamics in Pinus ponderosa stands of the Southwestern United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17328, https://doi.org/10.5194/egusphere-egu24-17328, 2024.

EGU24-17652 | ECS | Posters on site | BG3.9

Attribution of forest disturbance agents in the European Alps: a multidecadal analysis based on Landsat time series 

Donato Morresi, Matteo Domanico, Raffaella Marzano, and Matteo Garbarino

Alpine forests have been shaped by human and natural disturbances for millennia, resulting in highly heterogeneous and fragmented landscapes. Interactions between land use change and natural disturbances have been observed in recent decades. In addition, climate change is altering the disturbance regime in many forest ecosystems, including those in the Alps, by increasing the severity, extent and frequency of natural disturbance events. In this study, we aimed to attribute the disturbance agent to forest patches that experienced stand-replacing and non-stand-replacing events during the last four decades in the European Alps. In particular, we considered both natural disturbance agents, i.e., wind, fire, snow, insects, ice, and drought, and human activities. The latter included both primary and secondary disturbances, i.e., salvage logging following a natural disturbance. We trained an eXtreme Gradient Boosting (XGBoost) machine learning model using disturbed forest patches detected annually by an automated algorithm based on Landsat time series from 1984 to 2022. We obtained information on the disturbance agent using both historical field data from several European countries and visual interpretation of remote sensing data, e.g., Landsat imagery, aerial orthophotos, and high-resolution satellite imagery. We built the final classification model after selecting predictor variables from several disturbance, topography, patch, and climate-related metrics. Preliminary results showed that the model had good predictive performance, as highlighted by the accuracy metrics obtained from a fivefold cross-validation approach, i.e., Cohen’s Kappa equal to 0.81 and balanced accuracy of 0.82. The elevation range, pre-disturbance spectral values, the climate moisture index, and the range of the spectral change magnitude of each disturbed forest patch were among the most important variables. In particular, the elevation range emerged as a key predictor for discriminating between natural and anthropogenic disturbances. Similarly, pre-disturbance spectral values were important for distinguishing between certain natural disturbances, such as windthrows and snow avalanches. Spatially explicit results from this study are expected to allow a thorough characterisation of the changes in disturbance regimes in the European Alps that have occurred over the last four decades, and to provide useful information on the main drivers that have determined these recent shifts.

How to cite: Morresi, D., Domanico, M., Marzano, R., and Garbarino, M.: Attribution of forest disturbance agents in the European Alps: a multidecadal analysis based on Landsat time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17652, https://doi.org/10.5194/egusphere-egu24-17652, 2024.

EGU24-17861 | ECS | Posters on site | BG3.9

Guiding post-fire recovery: an assessment of Scots pine seed predation in the framework of active restoration interventions after a high-severity wildfire 

Matteo Domanico, Giulia Mantero, Francesco Pastore, Fabio Meloni, Matteo Garbarino, and Raffaella Marzano

The increase of wildfire severity and frequency in the Mediterranean area combined with the harsher environmental conditions damped by ongoing climate change, can hinder regeneration recruitment, particularly for obligate seeders in mountain ecosystems. Therefore, rethinking current post-fire management strategies in mountain ecosystem is crucial to mitigate the consequences of wildfire regime alterations on forest ecosystems and to re-establish ecosystem trajectories after large and severe wildfires. The high temperatures and scarce rainfall that characterized Autumn 2017 in Piedmont (North-Western Italy) led to an uncommon fire season, with ten large wildfires that burned about 9700 ha. The Susa fire was the largest event, burning with mixed severity almost 4000 ha, with Scots pine (Pinus sylvestris L.) stands being affected with the highest severity. Following the event, a reforestation project was started, aiming to restore the forest cover, particularly in large high severity patches far away from seed trees, likely to be affected by further degradation phenomena. Given the scarcity of Scots pine seedlings available in forest nurseries, direct seeding was considered a valid option, but it needed to be carefully planned, especially because of seed predation and run-off. Indeed, post-dispersal seed predation plays a key role in the natural dynamics of forest ecosystems as it can deeply affect the number of seeds available for recruitment. To assess the dynamics and rate of seed predation by different taxa and to identify the magnitude of seed losses, an experimental approach was then applied. Specific field experiments are being performed in both the fall and spring seasons, starting from October 2023, to evaluate the magnitude of post-dispersal seed predation within the high severity patches of the Susa fire, its spatial distribution considering three different microhabitats (open areas, close to deadwood, under shrubs) and the main predators involved among insects, birds, and rodents. Understanding the impact of post-dispersal seed predation is a crucial aspect to develop targeted post-fire management strategies, possibly reducing restoration costs and improving its success.

How to cite: Domanico, M., Mantero, G., Pastore, F., Meloni, F., Garbarino, M., and Marzano, R.: Guiding post-fire recovery: an assessment of Scots pine seed predation in the framework of active restoration interventions after a high-severity wildfire, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17861, https://doi.org/10.5194/egusphere-egu24-17861, 2024.

EGU24-18341 | ECS | Posters on site | BG3.9

Post-windstorm natural regeneration dynamics in Italian Alps: roughness indices as a proxy for disturbance legacies. 

Davide Marangon, Tommaso Baggio, and Emanuele Lingua

Disturbance legacy can be defined as the amount, the availability and the distribution of resource, spatial pattern, and habitat left behind after a disturbance, and are key factor in the restoration processes, especially after large high-severity disturbances. Survived trees and green islands are a fundamental source for seed dissemination, while deadwood (e.g., stumps, logs, snags) and other structures (e.g., pit and mound morphology) create favorable microsites for regeneration establishment and survival. After stand replacing disturbance, like high-severity windstorm, disturbance legacies are responsible for most of the terrain roughness in the damaged area. The aim of this study is to test roughness indices as a proxy to infer the role of disturbance legacies on promoting natural regeneration establishment in the short term (3 years after the storm). From a drone-based point cloud we compute high resolution digital surface model (DSM) in four areas affected by a stand replacing windstorm in 2018 in eastern Italian Alps, then we calculate six different metrics for five different roughness indices. In the same areas we established 100 circular plots to measure regeneration density. Logging methods (salvage logging and no-intervention) have also been considered in the analysis. Preliminary results showed that only three indices (standard deviation of profile curvature SD_PC, standard deviation of the residual topography SD_RT, and vector dispersion VD) are significantly correlated with regeneration density, and among them, the 90th quantile of SD_PC is the best fit. Overall, there is a positive significant correlation between roughness and regeneration density in the short term. In conclusion, the results suggest that roughness could be a good proxy for the disturbance legacies abundance and drone surveys are a powerful tool to adopt to estimate the roughness at slope scale. More detailed analysis on the threshold and influence of other parameters is needed and can be implemented to provide valuable management guidelines.

How to cite: Marangon, D., Baggio, T., and Lingua, E.: Post-windstorm natural regeneration dynamics in Italian Alps: roughness indices as a proxy for disturbance legacies., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18341, https://doi.org/10.5194/egusphere-egu24-18341, 2024.

EGU24-19533 | ECS | Orals | BG3.9

Detection of Forest disturbances using multi source Remote sensing data.  

Basil Tufail, Emilio Dorigatti, Michele Claus, Alexander Jacob, and Peter James

With recent impacts due to the climate crisis, the number of extreme events has increased globally. Floods, droughts, windthrows, and landslides are affecting the environment around us, increasing the difficulty of mapping and monitoring its conditions.  Forests are particularly suffering from such events and the ones affected by repeated damage usually don’t have enough time to recover and become more vulnerable to other threats. The 2018 Vaia storm, the subsequent snow breaks, and the spread of bark beetles in the forests of Trentino-South Tyrol are prominent examples that caused large-scale disturbances in the region. In this research, we focus on the detection of forest disturbances caused by such extreme events. Approaches like Breaks for Additive Season and Trend (Bfast) have been implemented to detect breaks and vegetation response patterns [1] whereas Continuous Change detection and Classification (CCDC) also performs well with long-term optical time series data like Landsat and Sentinel-2 to monitor vegetation phenology [2]. However, only a few studies have focused on advances in Synthetic Aperture Radar (SAR) data for detecting changes in radar datasets [3]. SAR data can provide timely information on disturbances in areas where frequent cloud cover makes it impossible to map the changes with optical data for long periods. Thus, the ability to acquire imagery regardless of clouds and severe weather conditions makes SAR data a viable solution to map such disturbances, though this still requires further testing. This study aims at benchmarking methodologies applied using open-source software's to create change detection maps with freely available data including both optical and SAR. Using various, already established change detection methods implemented in FAIR (Findability, Accessibility, Interoperability, and Reusability) manner to evaluate the added benefit of fusing data from different kinds of sensors. 

[1] Watts, Laura M., and Shawn W. Laffan. "Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region." Remote Sensing of Environment 154 (2014): 234-245. 

[2] Zhou, Qiang, Jennifer Rover, Jesslyn Brown, Bruce Worstell, Danny Howard, Zhuoting Wu, Alisa L. Gallant, Bradley Rundquist, and Morgen Burke. "Monitoring landscape dynamics in central us grasslands with harmonized Landsat-8 and Sentinel-2 time series data." Remote Sensing 11, no. 3 (2019): 328. 

[3] Hirschmugl, Manuela, Janik Deutscher, Carina Sobe, Alexandre Bouvet, Stéphane Mermoz, and Mathias Schardt. "Use of SAR and optical time series for tropical forest disturbance mapping." Remote Sensing 12, no. 4 (2020): 727. 

How to cite: Tufail, B., Dorigatti, E., Claus, M., Jacob, A., and James, P.: Detection of Forest disturbances using multi source Remote sensing data. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19533, https://doi.org/10.5194/egusphere-egu24-19533, 2024.

EGU24-20213 | ECS | Orals | BG3.9 | Highlight

High-resolution mapping of tree mortality in European forests 

Yan Cheng, Stefan Oehmcke, Clemens Mosig, Beloiu Mirela, Teja Kattenborn, Christin Abel, Dimitri Gominski, Thomas Nord-Larsen, Rasmus Fensholt, and Stephanie Horion

Tree mortality has escalated worldwide in recent years due to climate warming and unprecedented drought events. However, mapping tree mortality across forest ecosystems has not yet been achieved. Aerial photos provide opportunities to reveal the spatial and spectral characteristics of canopy death at local to landscape scales. In this work, we present a deep learning model for mapping tree mortality from aerial photos in various forested ecosystems across Europe. This model builds on a baseline model trained with data on dead tree canopies from California using sub-meter resolution aerial photos and allows the use of various spatial resolutions of the input images (ranging from 10 to 60 cm). By comparing our results to ground observations and/or state-of-the-art forest disturbance and loss products, we will discuss the advantages and limitations of aerial photo-based tree mortality mapping. The proposed framework can be used for large-scale mapping of tree mortality from multi-year aerial photos. The tree mortality maps provide detailed information that can help understand the mechanisms of tree mortality under climate change. Furthermore, aerial photo-based maps can serve as training labels for mapping pixel-level deadwood fractions from satellite images, which enables seamless spatial coverage and could be an essential step towards a global map of tree mortality. 

How to cite: Cheng, Y., Oehmcke, S., Mosig, C., Mirela, B., Kattenborn, T., Abel, C., Gominski, D., Nord-Larsen, T., Fensholt, R., and Horion, S.: High-resolution mapping of tree mortality in European forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20213, https://doi.org/10.5194/egusphere-egu24-20213, 2024.

EGU24-276 | Orals | BG3.10 | Highlight

Controls of atmospheric carbon transfer to soil by root exudates 

Melanie Brunn

The interaction between plants and soil plays a decisive role in controlling the formation of soil organic matter (SOM) - a critical factor for the functioning of ecosystems and the mitigation of climate change. Carbon compounds that plants release into the soil as root exudates have important impacts on the stability of SOM and can shift with climate change. Yet, a generalizable understanding of the biotic and abiotic controls on the relationships between plant-soil carbon exchanges and large-scale carbon fluxes and SOM formation is still lacking.

Here, I compile data from different forest ecosystems to illustrate: 1) the response of root exudates in distinct ecozones to species mixing, 2) the impact of drought and recovery on plant-soil interactions, and 3) the quantitative correlation between rhizodeposition and ecosystem carbon uptake, as well as its association with SOM formation.

Observations point to a connection between carbon exudation and root growth, with greater root growth leading to reduced exudation rates and vice versa. However, exudation rates across diverse ecozones were highly responsive to even minor alterations in the sampling method, suggesting careful considerations when comparing datasets from different studies. The rhizosphere showed increased levels of stabilized SOM that endured after drought, suggesting the potential for rhizodeposition to enhance the preservation of soil carbon.

Current data indicates that a substantial fraction of carbon in the atmosphere is allocated towards root exudates, likely serving as a crucial element in the ability of ecosystems to respond to climate change. Understanding plant-soil interactions in a global context requires aligning sampling methods within an ecozonal context.

How to cite: Brunn, M.: Controls of atmospheric carbon transfer to soil by root exudates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-276, https://doi.org/10.5194/egusphere-egu24-276, 2024.

EGU24-2866 | Posters on site | BG3.10

Soil warming influences organic carbon composition at the microscale in Blodgett Forest 

Mike Rowley, Jasquelin Pena, Matthew Marcus, Rachel Porras, Elaine Pegoraro, Margaret Torn, and Peter Nico

The impact of warming on the soil organic carbon (SOC) cycle and its potential positive feedback with increasing atmospheric CO2 concentrations is of global concern. Earth System Models currently predict that warming will increase soil CO2 efflux faster than net primary productivity (Crowther et al., 2016); yet there are still large uncertainties associated with these modelled estimates, which can be reduced by process-based observations from whole-soil warming experiments. To identify the influence of 7.5 years of +4°C whole-soil warming on SOC and its elemental associations at the microscale, we used scanning transmission X-ray spectromicroscopy at the carbon K-edge (STXM C NEXAFS). We focused our analyses on soils collected from three depth intervals (10-20, 40-50, 60-70 cm) at the control and warmed plots from the whole-soil warming project at Blodgett Experimental Forest (granitic Alfisols). Relative to control plots, samples from the warmed plots had elevated aromatic and phenolic C content, and this observation was most pronounced in the 40-50 cm depth samples. This result differed from previous observations at the bulk-soil level (Ofiti et al., 2021), which demonstrated a decrease in the relative abundance of these compound classes with warming, particularly at depth. These contrasting results may be explained by a difference in SOC dynamics at the bulk scale relative to the microscale, with STXM investigating SOC bound in organo-mineral assemblages at the microscale, while bulk soil measurements include larger partulate organic matter. It could also be indicative of the changes in root dynamics with warming that were also recorded in Ofiti et al. (2021). The STXM data also showed that organic carbon was strongly associated with calcium in these acidic soils, which had a more plant-like nature than C associated with iron. This supports similar observations, which were recently made in soils from an acidic grassland soil series at Point Reyes, California that had developed in a different parent material (sandstone; Rowley et al., 2023). This study highlights the importance of investigating how organo-mineral or -metal associations will respond to changing environmental conditions at various analytical scales. 

References

Crowther et al., 2016. Quantifying global soil carbon losses in response to warming. Nature 540(7631), 104-108.
Ofiti, et al., 2021. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biology and Biochemistry 156, 108185.
Rowley et al., 2023. Association between soil organic carbon and calcium in acidic grassland soils from Point Reyes National Seashore, CA. Biogeochemistry 165, 91-111.

How to cite: Rowley, M., Pena, J., Marcus, M., Porras, R., Pegoraro, E., Torn, M., and Nico, P.: Soil warming influences organic carbon composition at the microscale in Blodgett Forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2866, https://doi.org/10.5194/egusphere-egu24-2866, 2024.

EGU24-3377 | Posters on site | BG3.10 | Highlight

Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition  

Xiaofei Liu, Ye Tian, Jakob Heinzle, Erika Salas, Steve Kwatcho-Kengdo, Werner Borken, Andreas Schindlbacher, and Wolfgang Wanek

Microbial necromass carbon (MNC) accounts for a large fraction of soil organic carbon (SOC) in terrestrial ecosystems. Yet our understanding of the fate of this large carbon pool under long-term warming is uncertain. Here we show that 14 years of soil warming (+4 °C) in a temperate forest resulted in a reduction of MNC by 11% (0-10 cm) and 33% (10-20 cm). Warming caused a decrease in the production of MNC due to a decline in microbial biomass carbon and reduced microbial carbon use efficiency. This reduction was primarily caused by warming-induced limitations in available soil phosphorus, which, in turn, constrained the production of microbial biomass. Conversely, warming increased the activity of soil extracellular enzymes, specifically N-acetylglucosaminidase and leucine-aminopeptidase, which accelerated the decomposition of MNC. These findings collectively demonstrate that decoupling of MNC formation and decomposition underlie the observed MNC loss under climate warming, which could affect SOC content in temperate forest ecosystems more widespread.

How to cite: Liu, X., Tian, Y., Heinzle, J., Salas, E., Kwatcho-Kengdo, S., Borken, W., Schindlbacher, A., and Wanek, W.: Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3377, https://doi.org/10.5194/egusphere-egu24-3377, 2024.

The impact of warming on the carbon cycling of terrestrial ecosystems determines the carbon cycle-climate change feedback and the future climate. Specifically, how warming affects the carbon cycling in deep soils (>20 cm) remains uncertain, because most of existing manipulation experiments only warm surface soils (<20 cm). In 2018, we started a Total-soil-warming Experiment in an Alpine Meadow (TEAM). We have maintained year-round warming (+4 oC) of the whole soil profile (0-100 cm) in an alpine meadow on the Tibetan Plateau. We anticipate running the experiment for >10 years. I will present an overview and some of the results of TEAM during the first 5 years (2018-2023), including treatment effects on plant communities, soil and microbial properties, and ecosystem processes.

First, warming did not significantly affect plant richness and diversity, and above- and belowground biomass and productivity, but changed the relative proportion of plant functional groups in aboveground biomass (decrease in legumes and increase in forbs). Second, soil physico-chemical properties (including organic carbon and total nitrogen concentrations) and microbial community characteristics (such as carbon use efficiency, community diversity and composition) throughout the profile were mostly unresponsive to warming, although they changed dramatically (e.g. declined) with depth. Third, warming significantly stimulated soil respiration (and microbial respiration) and soil N2O emission, but did not significantly change root respiration and soil CH4 uptake. Lastly, warming promoted plant growth, soil microbial respiration, and soil fauna feeding by 8%, 57%, and 20%, respectively, but caused dissimilar changes in their phenology during the growing season. Overall, although ecosystem carbon stocks were not significantly affected by the whole-soil-warming, some processes and variables of the alpine grassland ecosystem showed significant responses. We will continue to monitor these processes and variables to gain a long-term mechanistic understanding of the response of ecosystem carbon cycling to whole-soil-warming in the alpine grassland.

How to cite: Zhu, B.: Whole-soil warming effects on carbon cycling of an alpine grassland ecosystem on the Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4917, https://doi.org/10.5194/egusphere-egu24-4917, 2024.

Climate warming has caused widespread global concern. However, how warming affects soil microbial diversity, richness, community structure and biomass is still poorly understood. Therefore, this study conducted a meta-analysis of 1044 observations from 144 publications by collecting relevant data on a global scale. The results showed that warming significantly altered soil temperature, soil water content, community structure of soil bacteria and fungi, and beta diversity of fungi. Warming decreased soil microbial diversity, richness and biomass, but the overall effect was not significant, while warming increased soil physicochemical and plant biomass indicators. Soil bacteria and fungi showed opposite trends in response to warming (e.g., the weighted mean effect values of the bacterial Shannon index, OTU Richness, and PLFA were all negative, whereas those for fungi were all positive), with fungi being more sensitive to warming than bacteria. Model selection analysis indicated that the RR (response ratio) of pH, ecosystem type and warming magnitude are important factors influencing the RR of soil bacterial diversity and richness. In addition, warming significantly decreased the OTU richness of forest soil bacteria and significantly increased the OTU richness of cropland soil fungi. The RR of bacterial richness (Chao1, OTU Richness) was significantly different among ecosystems, whereas that of fungal richness was not. The RR of diversity and richness of soil bacteria showed significant correlations with the RR of pH and warming magnitude. Overall, these findings improve our understanding of soil microbial responses under global warming.

 

How to cite: Wang, X. and Zhu, B.: Warming has differential effects on the diversity, richness and biomass of soil bacteria and fungi, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4980, https://doi.org/10.5194/egusphere-egu24-4980, 2024.

EGU24-5007 | ECS | Posters on site | BG3.10

Bacterial necromass is more responsive to global change than fungal necromass 

Wenao Wu and Biao Zhu

As an important component of soil organic matter (SOM), soil microbial necromass largely determines the dynamics of SOM under global change. However, the response of soil microbial necromass to global change is not well understood. Hence, this study conducted a meta-analysis to assess the global response of soil microbial necromass to warming, altered precipitation, nutrient addition, and elevated CO2. Results showed that global change had no significant effects on total necromass carbon (TNC) and fungal necromass carbon (FNC). However, we found that bacterial necromass carbon (BNC) was significantly responsive to warming (+9.70%), increased precipitation (+10.15%), and nitrogen (N) addition (+8.62%). Furthermore, the response of BNC could be regulated by ecosystem types, climate factors, soil properties, and experimental conditions, but the influencing factors under different global change factors could be different. Correlation analysis suggested that the response of BNC was associated with the change of soil pH under warming, while it had a positive correlation with the response of soil microbial biomass carbon under N addition. Overall, this study contributes to the understanding of how soil microbial necromass responds to global change on a global scale, and emphasizes the important role of BNC in SOC dynamics under global change.

How to cite: Wu, W. and Zhu, B.: Bacterial necromass is more responsive to global change than fungal necromass, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5007, https://doi.org/10.5194/egusphere-egu24-5007, 2024.

EGU24-5029 | Orals | BG3.10

Climate change will increase Cd accumulation in spinach leaves 

Marie Muehe, Aleksandra Pienkowska, Alexandra Glöckle, Natalia Sánchez, Shitalben Khadela, Paul-Georg Richter, Ines Merbach, Martin Herzberg, and Thomas Reitz

Metal contamination in agricultural soils poses a notable environmental and health concern. When available in soils, metals can be assimilated and accumulated by crops, emphasizing the potential for human exposure to elevated metal levels through the consumption of contaminated agricultural produce. Our recent research shows that future climate change conditions of +4°C, doubled atmospheric CO2, and reduced soil moisture [1] increases the mobility of the heavy metal Cd in agricultural soils [2]. It remains uncertain whether this climate-augmented Cd bioavailability in agricultural soils transfers into the food chain.

To address this gap in knowledge, we cultivated four varieties of spinach (Spinacia oleracaea) in four soils with diverse geochemistry and heavy metal contents. Spinach, chosen as a model for leafy crops prone to heavy metal accumulation in edible parts, boasts a global production volume of 63 billion kg in 2021 [3]. Under anticipated climatic conditions with +3°C, +300 ppmv CO2 and 10% less water [1], three out of four spinach varieties yielded more edible biomass compared to today’s climate typical for spring spinach with 20°C daytime temperature and 50% water holding capacity. The non-essential heavy metal Cd and the micronutrient Zn proved most responsive to the imposed future climatic conditions, exhibiting increased accumulation in the edible part. Factors such as soil-root transfer and root to shoot translocation will be discussed to elucidate the climate-induced rise in Cd and Zn contents in spinach leaves beyond soil Cd mobility.

Our findings offer significant insights into forecasting future spinach production and quality, applicable to other leafy vegetables, and underscore the importance of addressing combined climate and heavy metal contamination issues to sustain food quality.

 

[1] IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

[2] Drabesch et al., submitted, Climate induced microbiome alterations increase Cd bioavailability in agricultural soils.

[3] UN Food and Agriculture Organization, 2023. Spinach production in 2021; Crops/Regions/ World/Production Quantity/Year from pick lists.

How to cite: Muehe, M., Pienkowska, A., Glöckle, A., Sánchez, N., Khadela, S., Richter, P.-G., Merbach, I., Herzberg, M., and Reitz, T.: Climate change will increase Cd accumulation in spinach leaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5029, https://doi.org/10.5194/egusphere-egu24-5029, 2024.

EGU24-6341 | Orals | BG3.10

Drivers of soil carbon emission in warmed tropical soil 

Andrew Nottingham, Erland Bååth, Kirk Broders, Patrick Meir, Maria Montero-Sanchez, Kristin Saltonstall, Alicia Sanjur, Jarrod Scott, and Esther Velasquez

Soil microbes form some of the most diverse biological communities on Earth and are fundamental in regulating the terrestrial carbon cycle. Their response to climate warming could therefore have major consequences for future climate, particularly in tropical forests where high biological diversity coincides with a vast store of soil carbon. We used an in-situ soil warming experiment to test the response of tropical forest soil microbial communities, growth, enzyme activities and respiration to three years of soil warming. We first determined the response to warming of the microbial community composition and asked whether community change was related to a change in the intrinsic sensitivity of microbial growth. Second, we asked whether the response to warming of microbial growth sensitivity could explain the response of heterotrophic soil CO2 emission under in situ warming. The experiment, SWELTR (Soil Warming Experiment in Lowland TRopical forest) consists of five pairs of circular control and warmed plots (whole-profile warming, using buried resistance cables) distributed evenly within approximately 1 ha of semi-deciduous moist lowland tropical forest on Barro Colorado Island, Panama. Each warmed plot is heated across the full soil profile, resulting in a total of 120 m3 of warmed soil for the experiment. For this study we established two subplots per treatment plot that differed with distance to the heating source, thus providing two treatments of, on average, 3ºC and 8ºC warming of surface soils and performed field campaigns during the wet season (when soil moisture was not limiting to microbial activity). Microbial diversity declined markedly, especially of bacteria. As the microbial community composition shifted under warming, many taxa were no longer detected and others, including taxa associated with thermophilic traits, were enriched. The activity of 7 out of 10 measured soil enzyme activities increased with warming. The community shift resulted in an adaptation of growth to warmer temperatures, which we used to specify a microbial model to predict changes in soil CO2 emissions. However, the observed in situ soil CO2 emissions increase exceeded the rates predicted by our model three-fold. Our results show that the soil microbial community and growth response to warming was decoupled from large increases in CO2 emission, which was potentially boosted by an abiotic effect of warming on soil enzyme activity. Our results suggest that warming of tropical forests will have rapid, detrimental consequences both for soil microbial biodiversity and future climate.

How to cite: Nottingham, A., Bååth, E., Broders, K., Meir, P., Montero-Sanchez, M., Saltonstall, K., Sanjur, A., Scott, J., and Velasquez, E.: Drivers of soil carbon emission in warmed tropical soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6341, https://doi.org/10.5194/egusphere-egu24-6341, 2024.

EGU24-6587 | ECS | Orals | BG3.10 | Highlight

Hydrological controls on soil carbon dynamics: from pores to cores 

Kaizad Patel, Vanessa Bailey, Ben Bond-Lamberty, Sarah Fansler, Allison Myers-Pigg, and A. Peyton Smith

Core-scale soil carbon fluxes are ultimately regulated by pore-scale dynamics of substrate availability and microbial access, which are strongly influenced by soil water. The global water cycle is intensifying, and moisture extremes like drought and flood are increasing in frequency and intensity. It is therefore important to understand how these changing moisture regimes will affect carbon availability and fluxes in soils. We conducted two laboratory incubation experiments to investigate how drought and flood altered soil carbon availability and mineralization. Antecedent moisture conditions were found to be an important control on soil carbon availability, as soil respiration and carbon availability showed distinct hysteresis during drying and rewetting. Additionally, when comparing impacts of drought and flood across different soils, the soil carbon response was not consistent across sites, and was influenced by site-level pedological and environmental factors such as soil texture and historic stress conditions. These studies highlight the importance of pore-scale physicochemical and biochemical properties when studying soil biogeochemical transformations at the core scale.

How to cite: Patel, K., Bailey, V., Bond-Lamberty, B., Fansler, S., Myers-Pigg, A., and Smith, A. P.: Hydrological controls on soil carbon dynamics: from pores to cores, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6587, https://doi.org/10.5194/egusphere-egu24-6587, 2024.

EGU24-6894 | ECS | Orals | BG3.10

Increased snow depth and vascular plant species promote Arctic soil methane emissions 

Jung In Kim, Jeongeun Yun, Ji Young Jung, Sung Jin Nam, Jaehyun Lee, and Hojeong Kang

Atmospheric temperatures are steadily rising on a global scale, with the Arctic region experiencing an alarming rate of increase, double that of the global average. This temperature surge not only signifies anticipated changes but also forecasts a consequential rise in winter precipitation. Within the context of climate change, this leads to a significant upturn in net methane (CH4) emissions. During winter, augmented snow depth enhances thermal insulation of the underlying soil, subsequently increasing soil moisture upon melting. This results in warmer and wetter soil conditions, fostering an anoxic environment that stimulates methanogenic activity. Furthermore, methane emissions are accelerated through plant-mediated CH4 transport. Studies propose a potential shift in vegetation communities, favoring vascular species with extensive aerenchyma under warming conditions.

While projections suggest an increase in CH4 flux with greater winter precipitation, the combined effects of heightened snow cover and the presence of vascular plant species on CH4 production remain largely unexplored. This study, conducted using snow fences installed since 2017 in Council, Alaska, aims to unravel the legacy effect of deepened snow during winter and plant-mediated transport on soil CH4 emissions during the growing season (Jul–Aug, 2023). Our investigation involves the analysis of soil CH4 flux, soil chemical properties, and microbial abundance and communities in both control and high snow depth (HS) conditions, comparing bare soil and Eriophorum angustifolium dominant soil.

Results indicate that deeper snow significantly increased the average CH4 emission rate from 2.65 to 16.6 mg m-2 day-1. The presence of E. angustifolium amplified CH4 emission strength in both control and HS conditions (63.4 and 116 mg m-2 day-1, respectively). Increased CH4 emissions in HS conditions were primarily driven by enhanced carbon source availability and higher ammonium concentrations. Deeper thaw depth in HS conditions increased carbon source availability, particularly in vegetated soils, promoting methanogenic activity. Higher ammonium concentrations in HS conditions contributed to inhibiting methanotrophs from oxidizing CH4.

Consistent variations in soil characteristics were observed at a microbial scale, confirming increased methanogenic activity and decreased methanotrophic activity in HS conditions, for both bare and vegetated soil. These findings underscore the synergistic legacy effect of increased CH4 flux resulting from the complex interaction between deepened snow depth and the presence of vascular species, creating conditions conducive to elevated CH4 production during the growing season.

How to cite: Kim, J. I., Yun, J., Jung, J. Y., Nam, S. J., Lee, J., and Kang, H.: Increased snow depth and vascular plant species promote Arctic soil methane emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6894, https://doi.org/10.5194/egusphere-egu24-6894, 2024.

EGU24-7338 | ECS | Posters on site | BG3.10

Increased decomposition of root-derived biomass by warming in a temperate forest soil is depth-dependent 

Binyan Sun, Cyrill Zosso, Guido Wiesenberg, Elaine Pegoraro, Margaret Torn, and Michael Schmidtt

Increased decomposition of root-derived biomass by warming in a temperate forest soil is depth-dependent

 

Sun B, Zosso, C.U., Wiesenberg GLB, Pegoraro E., Torn MS, Schmidt MWI

 

The IPCC climate scenario RCP 8.5 suggests temperate regions will warm 4°C by 2100, which could accelerate soil carbon loss, greenhouse gas release, and further promote global warming. Despite low carbon concentrations, subsoils (> 30 cm) store more than half of the total global soil organic carbon stocks. However, it remains largely unknown how this deep soil carbon will respond to warming and how root-derived carbon, a potentially slower cycling part of soil carbon, could contribute to long-term carbon sequestration in soil.

After three years of in-situ root-litter incubation, we i) quantified decomposition of root-litter at different depths in a +4°C warming field experiment, ii) assessed whether root-derived polymers degraded differently in warmed and ambient temperature conditions, and iii) identified decomposition products of plant biomass remaining.

In a field warming experiment in a temperate forest (Blodgett Forest, Sierra Nevada, CA, USA), 13C-labelled root-litter was incubated at three soil depths (10-14, 45-49, 85-89 cm) in soil cores for one and three years at ambient temperature and +4°C. For bulk soil, we measured carbon and nitrogen concentrations, and δ13C isotope composition. We further quantified and determined the δ13C isotope composition of microbial (PLFA) and root-derived (suberin) molecular marker.

The results showed that:

1) In bulk soil, on average there was higher 13C-excess in the control compared to heated plots in topsoil (10-14 cm), meaning more decomposition and loss in the heated plots, but there was no difference in subsoils (45-49, and 85-89 cm).

2) The root-specific molecular marker suberin indicated that warming accelerated the loss of root biomass in topsoil. However, this trend was not found in subsoils and this could be due to scattered hotspots of microbes in subsoil. Nevertheless, 13C-excess of suberin biomarkers was higher than that of bulk soil carbon, which indicates a slower turnover of hydrolysable lipids in root litter compared to bulk root carbon.

3) With warming, the concentrations of hydrolysable lipids (normalized to carbon content) increased at all three depths. This indicates a potential preferential preservation of hydrolysable lipids. But this could also be attributed to faster litter decomposition and incorporation in mineral soil due to warming, especially in the topsoil.

In conclusion, warming increased decomposition of root-derived carbon and hydrolysable lipids in topsoil but not in subsoil. On the other hand, warming also increased plant-derived input into topsoil which accelerated the turnover of carbon at this shallower depth. Root-derived hydrolysable lipids in roots are relatively less decomposable than bulk tissues and could be preferentially preserved with warming. Therefore, warming could accelerate the turnover of root-derived carbon, but this is strongly dependent on depth and whether the tissues are available to microorganisms.

How to cite: Sun, B., Zosso, C., Wiesenberg, G., Pegoraro, E., Torn, M., and Schmidtt, M.: Increased decomposition of root-derived biomass by warming in a temperate forest soil is depth-dependent, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7338, https://doi.org/10.5194/egusphere-egu24-7338, 2024.

EGU24-7359 | Orals | BG3.10

Exploring the interaction between global changes, soil properties and vegetation patterns on soil phosphorus transformation in alpine grasslands of the Tibetan Plateau 

Zuonan Cao, Qingzhu Gao, Thomas Scholten, Peter Kühn, Jin-sheng He, Zhen-Huan Guan, Hasbagan Ganjurjav, Guozheng Hu, and Shanting Hu

The grassland ecosystems of the Tibetan Plateau have witnessed substantial transformations in recent decades, driven by various global factors, including alterations in temperature and precipitation, nitrogen (N) deposition, and regional effects. Despite documented shifts in species richness and distribution towards higher elevations, there is a scarcity of comprehensive plant and soil data along elevation gradients in alpine grasslands. The intricate interplay of soil properties and nutrient supply on vegetation patterns at high altitudes, particularly the response of the "grass-line" to global warming, remains unexplored. To bridge these knowledge gaps, our research investigated the impacts of global changes, specifically warming and N deposition, and soil properties on soil phosphorus (P) transformation and plant P uptake. Leveraging insights from long-term nutrient addition experiments, random sampling, and open-top chamber experiments along elevation gradients in an alpine grassland on the northeastern Tibetan Plateau, the study delved into soil properties such as texture, bulk density, soil organic carbon (SOC), and soil P fractions. Furthermore, it explores plant and microbial P pools, P acquisition strategies, and biomass. Results revealed that N input had a discernible effect on plant P requirements, particularly under conditions of deficient soil available P. Changes in P acquisition strategies wielded a more substantial influence on community structure and composition than alterations in root traits. The addition of P significantly impacted plant growth, signifying a shift from nitrogen to P limitation with increased N input. Soil properties exhibited variations among sites, while pH remained stable in the 0–10 cm soil depth due to the adequate levels of calcium and magnesium in the soil, which could buffer the impact of N deposition on soil acidification in the grassland ecosystem. Strong positive correlations observed between organic P pools, SOC, and total N underscored the pivotal role of soil organic matter in sustaining soil P reserves. More importantly, P limitation did not emerge as the primary factor propelling grasses to higher elevations; instead, other soil properties and nutrients might play a key role. These findings underscore the importance of specific combinations of soil properties in constraining plant growth on the northeastern plateau, thereby influencing biodiversity and biomass production. This research highlights the factors influencing effective soil nutrients and provides valuable insights for predicting the impact of global changes on the stability and productivity of alpine grassland ecosystems.

How to cite: Cao, Z., Gao, Q., Scholten, T., Kühn, P., He, J., Guan, Z.-H., Ganjurjav, H., Hu, G., and Hu, S.: Exploring the interaction between global changes, soil properties and vegetation patterns on soil phosphorus transformation in alpine grasslands of the Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7359, https://doi.org/10.5194/egusphere-egu24-7359, 2024.

EGU24-9591 | ECS | Orals | BG3.10

The age and sources of respired CO2 from soils of dominant land use types across Switzerland   

Luisa Minich, Margaux Moreno Duborgel, Dylan Geissbühler, Annegret Udke, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Markus Egli, and Frank Hagedorn

Soil CO2 efflux is one of the largest C fluxes between terrestrial ecosystems and the atmosphere and originates from different sources such as rhizosphere respiration and the mineralization of various soil organic matter components. Alterations of soil respiration induced by environmental changes, such as climate and land use change, can thus affect atmospheric CO2 levels. Land use regulates soil CO2 fluxes and their source contributions through various factors such as vegetation type, root density, nutrient input, and management. Soil CO2 fluxes from different land use types are likely to vary in their susceptibility to climate change induced perturbations. However, a systematic comparison of the age and sources of the soil CO2 efflux between different land use types remains elusive. Isotopic techniques using radiocarbon (14C) and stable carbon (13C) represent a powerful approach to identify the sources of soil CO2 fluxes. In this study, we investigated how land use affects the age and sources of soil-respired CO2 across Switzerland and in different seasons by using radiocarbon and stable isotopic approaches.

We measured in situ rates and isotopic signatures (14C, 13C) of soil-respired CO2 in summer and winter from 18 sites of six dominant land use types in Switzerland: forests, croplands, managed peatlands (original and covered with mineral soil), and grasslands (lowland and alpine). The sites vary in their physico-chemical soil properties and span a climatic as well as elevational gradient from 400 to 3000 m a.s.l. across Switzerland. We further disentangled source contribution (autotrophic vs. heterotrophic respiration) to total soil respiration for each site by separating 14C, and 13C signatures of CO2 derived from root and soil incubations.

In summer, the age of in situ soil-respired CO2 increased from lowland grasslands towards alpine grasslands, forests, croplands, and peatlands. We attribute this pattern to an increase of the mean age of soil organic matter along this trajectory. Additionally, we assume a decreasing contribution of rhizosphere respiration from grasslands to forests and arable land. We found managed peatlands to be hotspots of old carbon release, with the respired CO2 being around 500 to 1500 years old. Grasslands released the most modern CO2, in the range of contemporary atmospheric 14CO2 levels. Within grassland sites, we observed an increased age of soil-respired CO2 with increasing elevation (lowland towards alpine) which we attribute to slower C turnover in alpine areas due to cooler climatic conditions. CO2 respired from forest soils originates from bomb-derived decadial old carbon, indicating a reduced turnover as compared to grasslands. Isotopic data of CO2 derived from soil and root incubations will provide insights into source contribution.

How to cite: Minich, L., Moreno Duborgel, M., Geissbühler, D., Udke, A., McMackin, C., Wacker, L., Gautschi, P., Egli, M., and Hagedorn, F.: The age and sources of respired CO2 from soils of dominant land use types across Switzerland  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9591, https://doi.org/10.5194/egusphere-egu24-9591, 2024.

Due to persistent low temperatures, permafrost ecosystems experience constraints in nitrogen (N) turnover, resulting in long-term ecosystem nitrogen limitation. Climate warming would induce the release of N trapped in permafrost, making it available for plant growth and thereby enhancing ecosystem carbon sequestration. Additionally, increased soil N availability would alleviate nutrient limitations for soil microorganisms, promoting greenhouse gas emissions through enhanced soil organic matter decomposition. Against this background, it is crucial to resolve the response of N cycling in permafrost ecosystems to warming, to accurately understand the feedbacks between permafrost carbon-nitrogen dynamics and climate warming. Given the low N deposition in permafrost zones, biological nitrogen fixation (BNF) serves as the primary N input for ecosystems (~50-80% of the annuals). Nitrogen-fixing microbes in moss and soil play crucial roles in BNF in permafrost ecosystems, through symbiotic and autotrophic pathways. Warming may induce alteration in moss and soil characteristics (e.g. moss and soil drying), which would subsequent affect BNF in moss and soil. However, it remains unclear whether microbial BNF in moss and soil would exhibit contrasting responses to warming, and how active nitrogen-fixing microbes modulates such responses. To address these questions, we performed an interactive experiment involving warming and moss removal (warming vs. ambient × moss removal vs. retention) in response to whole-ecosystem warming at the Simulate Warming at Mountain Permafrost (SWAMP). In the in situ labeling procedure, we took two soil columns (10 cm in diameter and in depth) in the surface of each plot, separated them in the middle, and placed them in two incubation container with a dividers, designing one side for moss removal and the other side for moss retention. The two containers were filled separately with 10% 14N2 and 15N2, incubated in situ for 7 days to determine the BNF rate. In the in-house experiment, we employed the 15N-DNA Stable-Isotope Probing to elucidate changes in active microbial groups engaged in BNF, allowing us to uncover their impacts on regulating BNF to warming. Warming resulted in a significant reduction of moss cover by 37.8%. Concurrently, BNF rate significantly increased under warming conditions, especially in the moss-retention treatment. Conversely, warming did not alter BNF rate in the moss-removal treatment. Such finding suggested that warming enhance BNF rate primarily by stimulating a higher microbial BNF rate in moss rather than in soil. The results of microbial functional genes showed that, for moss, although warming didn’t affect the richness of nifH genes, but significantly reduced the Shannon-Wiener index and evenness, leading to an altered functional structure; for soils, warming didn’t change functional structure or any microbial α-diversity indices of nifH genes. These results suggest that the potential for BNF by moss would be further stimulated under warming, resulting in a higher N fixation efficiency. These gains may compensate for the decline in ecosystem-level BNF triggered by the reduction in moss cover. In other words, N supply from BNF in permafrost ecosystems will not decrease due to the trade-off between decreased cover and enhanced BNF ability for moss in a warmer scenario.

How to cite: Bai, Y., Zhou, W., and Yang, Y.: Contrasting responses of biological nitrogen fixation in soil and moss to ecosystem warming in an alpine permafrost ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9859, https://doi.org/10.5194/egusphere-egu24-9859, 2024.

Atmospheric nitrogen deposition was artificially increased for 27 years (1995-2022) by sprinkling rain water enriched with NH4NO3 (+22 kg ha-1 y-1 N) to a small headwater catchment in a spruce (Picea abies) forest growing on gley soils at Alptal (central Switzerland). This treatment was compared to a control in a paired catchment design. Nitrate leaching increased already during the first rain events after starting the treatment and continued to increase within the first 5 years. Later, it increased again markedly after part of trees had been girdled then felled in 2010. As shown by 15N labelling, most of the added N remained in the soil. In plots receiving the same treatment, this lowered the C/N ratio, changed the composition of the fungal community and tended to reduce the total microbial biomass, the abundance of Collembola and soil respiration. Soil acidification was observed in those plots located on small mounds but was effectively buffered in topographical depressions. Denitrification was clearly increased, but other processes like mineralisation were not significantly affected. Over time, trees took up about 1/10 of the added N and used it mainly to build larger needles. Their growth was slightly improved, presumably by a better use of the light in their relatively open canopy. Both the soil microbiote and the trees showed signs of limitation by other nutrients like P and Mg, but the poor aeration remained the major limiting factor of the gley soils on this site.

How to cite: Schleppi, P.: Fate and effects of nitrogen added in a long-term experiment to a sub-alpine forest in Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10159, https://doi.org/10.5194/egusphere-egu24-10159, 2024.

EGU24-10828 | ECS | Orals | BG3.10

Temperature-dependent Degradation of Soil Organic Matter in an Incubation Experiment 

Dario Püntener, Tatjana C. Speckert, Carrie L. Thomas, and Guido L. B. Wiesenberg

Climate change induced warming of soils will have a strong impact on the carbon cycle, especially the decomposition of soil organic matter (SOM) is likely to increase with rising temperature. Alpine regions are especially prone to those changes with earlier and higher expected temperature increase compared to the global average. Carbon cycling in these regions has been also increasingly influenced by land-use changes, such as afforestation, the abandonment of alpine pastures and the resulting bush encroachment, as well as an increasing elevation of the tree line. However, it is still largely unknown how these changes affect the degradation of different compound classes of soil organic matter. A one-year laboratory incubation experiment was carried out to investigate the degradation of SOM at a molecular level.

Two soils with different land-use histories including a soil from an afforested subalpine forest site and a nearby pasture soil from the same site located near Jaun (Canton Fribourg, Switzerland) were incubated under controlled conditions. The incubation was carried out under three different temperatures, the current average growing season temperature (12.5 °C) as a control, as well as two increased temperature treatments of +4 °C (16.5 °C) and +8 °C (20.5 °C) that represent the range of temperature increase expected for Alpine regions under a high emission scenario. To trace the decomposition of organic matter input, 13C-labelled plant litter was added to a subset of the incubated samples. The incubation ran for a period of one year with six different sampling times (14, 28, 56, 168, 360 days).

In samples without labelled litter, the bulk carbon (C) concentration decreased for pasture and forest soils from initial C concentrations of 45.5 and 43.3 mg/g, respectively, by 3.3 % and 5.6 % on average. This is also reflected in lignin concentrations, with a decrease of 13.8 % for pasture and 20.2 % for forest soils.

With litter addition, the degradation was higher than for samples without labelled litter for bulk C, lignin as well as for free extractable lipid fractions. The strongest degradation was observed already during the initial phase of the incubation experiment. E.g., a decrease of more than 50% of the 13C signal of individual lignin phenols could be observed already during the first 14 days, which indicates a fast degradation mainly of the added litter.

In general, the degradation of individual compounds increased with increasing temperature with the highest degradation being observed for the highest temperature treatment.

Higher temperatures have led to increased degradation of SOM during the laboratory incubation experiment, even in seemingly more recalcitrant compounds as lignin. In alpine regions, an expected rise in temperature can therefore lead to increased decomposition of recalcitrant components of SOM. In addition, increased degradation in forest compared to pasture soils indicates a higher vulnerability of forest than pasture soils in alpine regions, which points to complex responses of SOM cycling following land-use changes such as afforestation.

How to cite: Püntener, D., Speckert, T. C., Thomas, C. L., and Wiesenberg, G. L. B.: Temperature-dependent Degradation of Soil Organic Matter in an Incubation Experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10828, https://doi.org/10.5194/egusphere-egu24-10828, 2024.

EGU24-11139 | ECS | Orals | BG3.10

Do we obtain valid data from climate change incubations using soils of today? 

Aleksandra Pienkowska, Paula Kosel, Sören Drabesch, Oliver Lechtenfeld, Carsten Simon, Scott Fendorf, Thomas Reitz, and E. Marie Muehe

Assessing climate change effects on soils usually involves conducting comparisons of biogeochemical processes under projected future conditions against ambient ones. This is typically achieved through incubation experiments utilizing today’s soils. However, a significant limitation of relying on present-day soils is the oversight of the ongoing evolution of soils in terms of geochemistry and microbiology over several years in response to future climatic conditions.

This study challenges the traditional approach by asking: Can climate change experiments accurately replicate future biogeochemical processes and their outcomes using soils with today's geochemistry and microbiome? To address this question, we collected oxic and anoxic soils from experimental climate studies, exposed to both present-day and concurrently predicted future climate conditions. We reintroduced these soils with varying climate histories to both sets of climatic conditions (ambient/future), employing a crossover design. This unique experimental setup enables us to discern which biogeochemical processes are influenced by the soil’s historical context and which are contingent on the specific incubation conditions imposed.

For the oxic soil, with an eight-year night temperature increase of up to 2°C coupled with altered precipitation patterns (a 10% increase in spring and autumn, a 20% decrease in summer), our findings indicate a notable influence of soil history on soil respiration, surpassing impacts of the incubation climate. This implies that the historical context of the soil wielded a stronger influence than the specific incubation conditions in shaping organic matter pools and turnover within oxic soils. Conversely, iron(III) reduction, as a pivotal indicator of geochemical evolution, was primarily regulated by incubation conditions related to soil moisture rather than being dictated by the soil’s historical background.

In the anoxic soil, with a one-year treatment of temperature increases of 4°C and doubled atmospheric CO2, a more pronounced reductive iron(III) dissolution occurred in the soil with the future climate history compared to soils with today’s history. This observation suggests that, over the course of soil history, a larger pool of reducible iron became available to microorganisms in soil with a future climate history than in those with today's soil history. Interestingly, the release of arsenic from these ageing iron minerals was higher in soils with a future climate history compared to today’s soils. This indicates that studies investigating arsenic mobility and its impact on crop performances using present-day soils may underestimate the potential environmental consequences of arsenic. Additionally, the history of future soil conditions favoured greater microbial growth than the incubation conditions. However, soil respiration deviated from this pattern, with a predominant increase attributed to the future incubation climate and, to a lesser extent, influenced by soil history.

Complementary data on compositional variations in soil organic matter (LDI-FT-ICR MS) and microbial community (16S rRNA amplicon sequencing) assessing differences based on soil history and short-term experimental conditions will also be presented for both soils.

Our findings indicate that soil history plays a differential role for biogeochemical processes and outcomes of the future with biogeochemical outcomes and temporal trajectories possibly being over- or underinterpreted when studies on climate change utilize present-day soils.

How to cite: Pienkowska, A., Kosel, P., Drabesch, S., Lechtenfeld, O., Simon, C., Fendorf, S., Reitz, T., and Muehe, E. M.: Do we obtain valid data from climate change incubations using soils of today?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11139, https://doi.org/10.5194/egusphere-egu24-11139, 2024.

EGU24-11870 | Orals | BG3.10

Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models 

Rebecca Varney, Peter Cox, Pierre Friedlingstein, Sarah Chadburn, and Eleanor Burke

Achieving climate targets requires mitigation against climate change, but also understanding of the response of land and ocean carbon systems. In this context, global soil carbon stocks and its response to environmental changes is key. In this presentation, the global soil carbon feedbacks to both changes in atmospheric CO2 and associated climate changes for Earth system models (ESMs) in CMIP6 are quantified. A standard approach is used to calculate the carbon cycle feedbacks, which are defined as soil specific carbon-concentration (βs) and carbon-climate (γs) feedback parameters. Amongst CMIP6 ESMs, it is shown that the sensitivity to CO2 is found to dominate global soil carbon changes at least up to a doubling of atmospheric CO2. However, the sensitivity of soil carbon to climate change is found to become an increasingly important source of uncertainty under higher atmospheric CO2 concentrations.

How to cite: Varney, R., Cox, P., Friedlingstein, P., Chadburn, S., and Burke, E.: Soil carbon-concentration and carbon-climate feedbacks in CMIP6 Earth system models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11870, https://doi.org/10.5194/egusphere-egu24-11870, 2024.

EGU24-12234 | ECS | Orals | BG3.10

Water fluxes under threat by changes in land cover and climate in the Brazilian Cerrado biome 

Dimaghi Schwamback, Edson Wendland, Ronny Berndtsson, and Magnus Persson

In developing countries, the economy is commonly based on agriculture, and combined with the demand for the expansion of urban centers, large natural territories have been converted into agricultural and urban areas. In Brazil, the productive engine for agricultural activities is mainly situated in the wooded Cerrado biome, which has undergone agricultural expansion that led to almost 50% of the native forest vegetation. Besides being well know the role land cover plays on water fluxes, there is still requirement to further coupling with climate change component. The predicted alteration of climate patterns under future climate change scenarios can potentially alter infiltration/runoff rates, aquifer recharge, and soil-water availability for plants, impacting plant growth and development. In this research, we evaluated changes in water fluxes (surface flux, evaporation, soil-water storage, infiltration, bottom flux, and root uptake) at intermediate (2040-2070) and distant future (2071-2100) due to climate change occurring in the Brazilian Cerrado Biome. The two specific objectives included the calibration and validation of the Hydrus model through an eight-year soil moisture monitoring on experimental plots in Cerrado, pasture, and sugarcane areas (i), as well as the incorporation of outcomes from climate change models (10 CMIP6 models under SSP2-4.5 and SSP5-8.5 scenarios) into the validated Hydrus models (ii). The predicted water fluxes were made by Hydrus, a computational that uses the finite element method to achieve the numerical solution of the Richards Equation to describe saturated/unsaturated flows. The study is composed of experimental plots (100 m² and 9% slope) with weather variables and soil moisture fluctuations from 2011 to 2018. We tested different parameter combinations during calibration and found that for sugarcane and pasture simulations plots, saturated soil water content, parameter N in the soil retention function, and saturated hydraulic conductivity were the most sensitive ones and led to better calibration statistics. The first observation is that we cannot point out that climate change is affecting preferentially superficial fluxes rather than sub-superficial ones since each variable has a singular behavior under climate scenarios. Nonetheless, climate change poses a higher threat to certain water fluxes than others, being at a hierarchical (bottom-top) sequence: soil-water storage, bottom flux, infiltration, surface flux, evaporation, and root uptake. The same sequence is applied to all land cover, differing in magnitudes. Comparing the actual water fluxes due changes in to land cover with those due to climate, we concluded that the intensification of land cover change poses a higher risk of water fluxes than those predicted due to climate change. The intricate relationship between land cover and climate necessitates a nuanced understanding to anticipate and mitigate the consequences on water fluxes.

How to cite: Schwamback, D., Wendland, E., Berndtsson, R., and Persson, M.: Water fluxes under threat by changes in land cover and climate in the Brazilian Cerrado biome, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12234, https://doi.org/10.5194/egusphere-egu24-12234, 2024.

EGU24-12840 | ECS | Orals | BG3.10 | Highlight

Soil microbes increase investment into storage compounds during drought conditions. 

Alberto Canarini, Mona Lauritz, Katharina Sodnikar, Thilo Hofmann, Lucia Fuchslueger, Margarete Watzka, Erich M. Pötsch, Andreas Schaumberger, Michael Bahn, and Andreas Richter

The rise of atmospheric CO2 concentrations, with subsequent increase in global warming and the frequency and duration of severe droughts, is altering the terrestrial carbon (C) cycling, with potential feedback to climate change.  Microbial growth, turnover and carbon use efficiency, are major controls of soil carbon fluxes to the atmosphere. Given the prominent role of soil microbial physiology for C cycling, quantifying microbial physiological responses to climate change is essential. Advances in the field now permit the quantification of community-level microbial growth and carbon use efficiency in dry conditions, by introducing stable isotopes in soil water via a water vapor equilibration technique. This has recently allowed, for the first time, to evaluate microbial physiology under drought conditions.

We here used the water vapor equilibration technique to measure deuterium (2H) incorporation into phospholipid and neutral fatty acids (PLFA and NLFA) and polyhydroxybutyrate (PHB). We applied this approach to soil samples collected from a long-term climate change experiment (ClimGrass) where warming, elevated atmospheric CO2 (eCO2) and drought are manipulated in a full factorial combination. Samples were taken in the field at four time points: before drought, one month and two months into drought, and few days after rewetting. We used a high-throughput method to extract PLFAs and NLFAs from soil, as well as a newly developed method to extract PHB, and measured 2H enrichment in these compounds via GC-IRMS.

We showed that during drought, bacterial growth rates are reduced, except for Actinobacteria, which maintain similar mass specific growth rates as compared to control conditions. Similarly, fungi growth rates are not affected by drought. Production of NLFAs (belonging to fungi and gram-negative bacteria) increased up to 4 to 6 folds when compared to production of membrane lipids. PHB production rates did not change compared to control conditions, revealing a higher production per unit of active bacteria. Our study demonstrates that climate change can have strong effects on microbial physiology. Investment into storage compounds is a major strategy present across different soil microbial groups in response to drought. Soil fungi and actinobacteria are key taxa in the microbial response to drought, maintaining most of the growth rates of the soil microbial community.

 

How to cite: Canarini, A., Lauritz, M., Sodnikar, K., Hofmann, T., Fuchslueger, L., Watzka, M., Pötsch, E. M., Schaumberger, A., Bahn, M., and Richter, A.: Soil microbes increase investment into storage compounds during drought conditions., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12840, https://doi.org/10.5194/egusphere-egu24-12840, 2024.

EGU24-13803 | ECS | Posters on site | BG3.10

Microbial diversity controls soil multifunctionality across the European continent 

Xingguo Han, Anna Doménech-Pascual, Joan Pere Casas-Ruiz, Jonathan Donhauser, Karen Jordaan, Jean-Baptiste Ramond, Anders Priemé, Anna Romaní, and Aline Frossard

Soil microorganisms, crucial players of soil organic matter degradation, contribute substantially to global carbon and nitrogen biogeochemical cycles. Although microbial community structure and diversity have been extensively studied at different latitudes worldwide, the relationship between microbial communities, environmental drivers, and ecosystem functions across latitudes has yet to be explored. Here we investigate soil bacterial and fungal community structure and diversity, and ecosystem multifunctionality across different biomes of the European continent from southern Spain (37°N) to Sweden (60°N). Bacterial alpha-diversity increased with increasing the latitude, while fungal alpha-diversity showed an opposite pattern. Fungal communities were more geographically dispersed than bacterial communities. Microbial communities were structured by soil temperature, water content, and resources (TOC, C/N ratio and phosphate). While multifunctionality index related to N cycling functions decreased linearly and significantly with increasing bacterial diversity, it increased significantly with the increases in fungal diversity indices. Our study sheds light on the soil microbial complexity, microbial diversity and function relationship across latitudes and biomes, and highlights the importance of microbial diversity and community structure in driving soil multifunctionality.

How to cite: Han, X., Doménech-Pascual, A., Casas-Ruiz, J. P., Donhauser, J., Jordaan, K., Ramond, J.-B., Priemé, A., Romaní, A., and Frossard, A.: Microbial diversity controls soil multifunctionality across the European continent, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13803, https://doi.org/10.5194/egusphere-egu24-13803, 2024.

How climate and soil properties limit mineral-associated organic carbon (MAOC) accrual under afforestation. Findings from a climate gradient study in warm drylands.

David Yalin, William Mlelwa, Eyal Rotenberg, Dan Yakir and José M. Grünzweig

The efficiency of afforestation in climate mitigation has been a matter of debate in recent years. Specifically, there have been doubts about whether afforestation in drylands can be climate-positive. If afforestation can contribute to accumulation of soil organic carbon (SOC) and to the buildup of the mineral-associated organic C (MAOC) pools this may be a significant contribution to long-term C capturing in dry environments. However, there are still gaps in our understanding of how the interactions between vegetation type and climate affect MAOC storage. Furthermore, studies of MAOC dynamics have often disregarded the finite capacity of soils to store MAOC. In this work, we aimed at bridging these gaps by examining SOC and its partitioning between different soil size fractions in sites planted with Aleppo pine over 50 years ago (PF) as compared to neighboring fallow sites which were not actively forested (NF). This was performed at 16 sites along a climate gradient in Israel (ranging from 250-800 mm in annual precipitation) and differing in soil properties. MAOC in the 0-10 cm and 10-20 cm showed a general trend of increase with precipitation (more statistically significant in PF sites). Calcareous sites (>10% CaCO3 equivalent) showed lower MAOC concentrations, which may arise from smaller fine-grain soil fraction but also from reduced input from vegetation due to poor nutrient availability. MAOC composed between 37-83% of total SOC with a weak decreasing trend with increasing SOC (regardless of afforestation). The decrease in MAOC/SOC points to possible MAOC saturation at~40 g C kg-1 soil, a value previously suggested for saturation in European soils. To investigate whether saturation could be limiting MAOC accrual, we examined the saturation limit using topsoil samples (collected at the 0-2 cm depth) selected for high total SOC. In the topsoil fine fraction SOC reached 95 g C kg-1 soil-fine-fraction, slightly above global reports for soils with high activity clays. Based on these topsoil measurements, MAOC even in the high SOC soils (at 0-10 cm depth), reached less than 70% of its capacity, suggesting that saturation was not a limiting factor. However, density fractionation of the topsoil samples raised questions about whether they truly represent soil capacity to associate organic carbon. In the presentation we will discuss the concept of MAOC capacity in light of these findings and its implications for afforestation in dry climates.

 

How to cite: Yalin, D., Mlelwa, W., Rotenberg, E., Yakir, D., and Grünzweig, J. M.: How climate and soil properties limit mineral-associated organic carbon (MAOC) accrual under afforestation. Findings from a climate gradient study in warm drylands., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14798, https://doi.org/10.5194/egusphere-egu24-14798, 2024.

EGU24-16246 | ECS | Posters on site | BG3.10

Climatic conditions impact As and Cd mobility differently in flooded paddy soils 

Tianyu Wang, Britta Planer-Friedrich, Steffen Kümmel, and E. Marie Muehe

Arsenic (As) and cadmium (Cd) contamination in rice paddy soil are prevailing due to human activities including the application of agrochemicals and wastewater irrigation. Due to their inherently different geochemistry, As transitions to the porewater becoming more mobile under flooded water management while Cd binds to sulfidic minerals becoming more immobile. We currently have little understanding to which extent future climatic conditions imprint on native and elevated Cd and As mobilities in paddies, and whether they influence each other when being present in elevated concentrations together.

In order to close this gap in knowledge, we performed an incubation experiment with flooded paddy soils exposed to two different climatic conditions. The soil either contained the native metal(loid) content or elevated As and Cd realistic for contamination scenarios (+15 mg/kg As, +0.7 mg/kg Cd, or combined with +15 mg/kg As and +0.7 mg/kg Cd). Future climatic conditions were set relative to today’s climatic conditions (ambient CO2 and room temperature) with 850 ppm atmospheric CO2 and +4°C air temperature.

Adsorbed As approximated with 0.01 M CaCl2 extraction and outer-mineral associated As approximated with 0.1 M HCl extraction increased under flooded soil conditions over the incubation period, whereas 0.01 M CaCl2-extractable Cd decreased and 0.1 M HCl-extractable Cd remained stable, supporting prior knowledge on the contrasting geochemical behaviour of these two contaminants under flooded conditions. Future climatic conditions enhanced the increase of CaCl2 –extractable As but not 0.1 M HCl-extractable As when present as a single contaminant, indicating that climatic conditions influenced As dynamics on the surface of minerals but were not able to exert deeper into mineral phases. CaCl2- and HCl-extractable Cd were not affected by climatic conditions when present as a single contaminant, indicating resilience to climatic change. In the presence of combined As and Cd, the enhancement of the increase of CaCl2-extractable As by future climatic conditions was eliminated suggesting a toxicity of Cd to As-cycling related microbes which offset the stimulation by future climatic conditions.

Respirational output and other microbial dynamics data will be discussed relative to climatic impacts on either of these two contaminants and their combination.

Our findings show a link between climatic conditions and metal(loid) contaminant mobility under flooding conditions. The results of combined elevated As and Cd indicate a more realistic situation which is potentially overlooked in previous studies.

How to cite: Wang, T., Planer-Friedrich, B., Kümmel, S., and Muehe, E. M.: Climatic conditions impact As and Cd mobility differently in flooded paddy soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16246, https://doi.org/10.5194/egusphere-egu24-16246, 2024.

EGU24-16689 | ECS | Orals | BG3.10

Flux of CO2, CH4 and N2O from temperate woodland soil under elevated CO2 

Alex Armstrong, Sami Ullah, Liz Hamilton, Elena Vanguelova, Mike Morecroft, Nathan Basiliko, Rob MacKenzie, Niall McNamara, and Nine Douwes Dekker

Atmospheric fluxes of greenhouse gases (GHG’s) in the form of CO2, CH4 and N2O from temperate forest soils are an important aspect of the net global warming potential and climate change mitigation function of forests. However, it remains unclear how the magnitude of these atmospheric fluxes of GHG’s will respond to rising atmospheric CO2 concentrations in mature temperate forests. An increase in carbon capture by temperate forests under elevated atmospheric CO2 concentration (eCO2) and its subsequent storage in biomass and soils can have direct impact on the activities of soil microbes. In addition to indirect effects through shifting soil moisture regimes, potentially altering GHG production and consumption processes and hence net emissions from temperate forests. The Birmingham Institute of Forest research established a Free Air Carbon Enrichment Facility (BIFoR-FACE) whereby a mature temperate forest in the UK is exposed to +150 ppm CO2 above the ambient (aCO2), mimicking future CO2 conditions. Understanding GHG exchange from soils under elevated atmospheric CO2 levels is critical for addressing this component of the systems response to eCO2. Fumigation started in 2017 and continues to date, where the ecological and biogeochemical responses of the forest is being studied. In this abstract, the focus is placed on quantifying ~5-years (2019 – 2024) of GHG flux response to eCO2 to elucidate shifts in fluxes as influenced by eCO2 and local microclimatic conditions.

The flux of CO2 from the soil has been continuously measured within fumigated treatment (eCO2) and ambient control (aCO2) arrays since 2017 via LI-COR 8100A long-term measurement systems. With capabilities to additionally measure CH4 and N2O being added in 2020 through a coupled Picarro-G2508 analyser. Initial trends from 2017 - 2020 indicated that eCO2 arrays had a higher efflux of CO2 relative to paired aCO2 arrays by +20%. However, from 2020 – 2022 a significant decline of -46.6% in the efflux of CO2 was detected, in addition to a -76.6% reduction in N2O effluxes and a -44.3% decline in the CH4 uptake by the soil component. This period corresponds to a significant decline in soil moisture across the soil profile from the surface (0.05m) to a depth of 0.4m, equivalent to a -36% decline in volumetric water content under eCO2 relative to aCO2. Which when coupled with the prevalence of drought periods during the growing seasons of 2021 and 2022 suggest an enhanced drying of soil under eCO2, which is in turn exacerbated by drought events. During 2023 and the wettest July on record for the UK, the moisture deficit between eCO2 and aCO2 shrunk, reducing the variance in the efflux of CO2 to just ~4.5%. Therefore, it is possible that a functional change in the heterotrophic and autotrophic mediated flux dynamic could be occurring, driven by significant soil drying under eCO2, an affect which is exacerbated during drought events. Inter and intra-seasonal patterns of GHG fluxes will be examined in further detail, whilst also partitioning between autotrophic and heterotrophic contributions.

How to cite: Armstrong, A., Ullah, S., Hamilton, L., Vanguelova, E., Morecroft, M., Basiliko, N., MacKenzie, R., McNamara, N., and Douwes Dekker, N.: Flux of CO2, CH4 and N2O from temperate woodland soil under elevated CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16689, https://doi.org/10.5194/egusphere-egu24-16689, 2024.

EGU24-16701 | Orals | BG3.10 | Highlight

Seasonal changes of microbial functions along high-Arctic tundra soil toposequences 

Aline Frossard and the Climarctic team (Biodiversa ERANET project)

High-arctic tundra-soil ecosystems are particularly sensible to global changes due to their proximity to freezing, snow cover, light availability and scarcity of vegetation. Seasonal dynamic are large in these biomes with a very short vegetation growing season. Hydrological fluctuations in these soils are also important, directly impacting the soil biological activity. Yet, little is known on the seasonal dyanmic in the regulation of microbial functions in high-arctic soils and their impact on greenhouses gas exchanges with the atmosphere. Fluxes of greenhouse gases (CO2, CH4 and N2O) and microbial functions linked to C and N cylcing were assessed at each season along a slope toposequence in high-arctic tundra soils near Ny-Ålesund (Svalbard) and compared with prokaryotic and fungal community structures. Microbial functional diversity exhibited strong seasonal patterns, with most microbial functions acquiring C, N and P enhanced in summer, at the peak of the plant growing season. Seasonal dynamics was also evident for greenhouse gas fluxes but were not consistent across seasons. While CO2 fluxes were clearly increased in summer, CH4 fluxes were slightly higher in Autumn, especially in the upslope soils, alike methanogenesis gene abundance mcrA which distinctly increased in both biocrust and soil layer of the upslope site in Autumn. N2O gas fluxes were clearly higher in both shoulder seasons (i.e. Spring and Autumn), when freeze-thaw cycle are frequents. Seasonal microbial functional changes however did not mirror the prokaryotic and fungal community structure, which were more influenced by the microtopography and the soil depth layers (biocrust vs underneath mineral soil). These findings highlight the intricate relationships between microbial functions, diversity, and environmental factors in high-Arctic soils and underscore the importance of considering both seasonal and microtopography factors in understanding soil microbial dynamics in Arctic ecosystems.

How to cite: Frossard, A. and the Climarctic team (Biodiversa ERANET project): Seasonal changes of microbial functions along high-Arctic tundra soil toposequences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16701, https://doi.org/10.5194/egusphere-egu24-16701, 2024.

EGU24-17254 | Posters virtual | BG3.10

Impact of urease inhibitor and biofertilizer application on N2O emissions derived from fertilizer using 15N-labelled urea 

Maria Heiling, Rayehe Mirkhani, Christian Resch, Rebecca Hood-Nowotny, and Gerd Gerd Dercon

The introduction of nitrogen (N) fertilizers into agricultural soils represents the predominant anthropogenic contributor to the emission of the greenhouse gas N2O. The impact of N management choices on nitrous oxide (N2O) fluxes is contingent upon interactions with both soil biotic and abiotic factors. This study, conducted by the Joint FAO/IAEA Centre in the spring of 2022 at the experimental station of the University of Natural Resources and Life Sciences (BOKU) near Vienna, Austria, aims to explore the influence of a urease inhibitor (UI) and biofertilizer (BI) on N2O emissions arising from fertilizer use in wheat cropping systems. Employing a randomized complete block design with five treatments and four replicates, including a control treatment (T1), urea-only application (T2), urea with UI (T3), urea with BI (T4), and urea with both UI and BI (T5). For this study, the application rate was 50 kg N ha-1 at the tillering stage (GS 31), except for T1. N-(n-butyl) thiophosphoric triamide (nBTPT) was used as the UI, and Azotobacter chroococcum as the BI. N2O gas fluxes were measured using the static chamber method eight times between 3 to 84 days post-fertilizer application, and gas samples were analysed via off-axis integrated cavity output spectroscopy (ICOS, Los Gatos). The highest cumulative N2O and 15N2O emissions occurred in the T3 treatment, where urea was combined with UI. The emission factors for N2O in T2, T3, T4, and T5 were 0.63%, 0.85%, 0.52%, and 0.68%, respectively. Results from 15N2O emissions and the fraction of N2O from 15N-urea confirmed that UI increased N2O release from the added fertilizer source. The fraction of N2O from 15N-urea reached 26% in the Urea+UI (T3) treatment, decreasing to 12% in the Urea+BI (T4) treatment.

 

 

How to cite: Heiling, M., Mirkhani, R., Resch, C., Hood-Nowotny, R., and Gerd Dercon, G.: Impact of urease inhibitor and biofertilizer application on N2O emissions derived from fertilizer using 15N-labelled urea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17254, https://doi.org/10.5194/egusphere-egu24-17254, 2024.

EGU24-17930 | ECS | Posters on site | BG3.10

DeepSoil2100 and SWÆDIE (the Soil WArming Experiment Data Integration Effort) 

Jeffrey Beem Miller, Margaret Torn, Peter Reich, William Riley, and Michael Schmidt

How do soils respond to warming temperatures? The importance of soils in the global carbon cycle and as hotspots of biogeochemical processes in terrestrial ecosystems underscores the imperative of understanding this response. Soil warming experiments have proved to be a key tool for probing the mechanisms underlying warming responses. However, climate, mineralogy, flora, fauna, and methodology specific to each experimental site hamper efforts to generalize and upscale these findings. The DeepSoil 2100 project was initiated to synthesize data from soil warming experiments worldwide through the creation of a harmonized database (SWÆDIE, the Soil WArming Experiment Data Integration Effort). SWÆDIE emphasizes experiments in which soils have been warmed ≥ 1 m, and will enable us to explore depth-dependence and coupling between above and belowground processes, assess feedbacks and interactions between C stocks, nutrients, and soil moisture, compare short versus long-term warming responses, and identify global patterns.

Collaborative projects such as SWÆDIE require establishing clear guideline for data sharing and attribution of credit, for which we are building on the models provided by Ameriflux and NutNet. We have also drawn from other soil carbon-focused synthesis efforts such as ISRaD, SoDaH, and ISCN to construct a transparent and flexible data model with a user-friendly data access interface. Data are organized hierarchically, with a static site-level table and dynamic subordinate data tables, e.g., time series of fluxes, moisture, and temperature, resolved by depth. We maintain raw data files that are harmonized in a scripted data entry pipeline with the aid of separate metadata files describing variable names and units. Such an approach facilitates new data ingestion while also ensuring reproducibility and transparency.

We will present the results from the initial site characterization, including quantification of heating efficacy and the relationship to changes in soil moisture with depth and across sites. This initial site characterization will also allow us to compare data coverage and define the scope of soil, climatic, and vegetation gradients across the database. On the basis of this comparison, we will present plans for coordinated future sampling. Finally, we will present initial work on establishing improved metrics for model benchmarking, i.e., which modellable response variables are both sensitive and robust when measured across sites?

How to cite: Beem Miller, J., Torn, M., Reich, P., Riley, W., and Schmidt, M.: DeepSoil2100 and SWÆDIE (the Soil WArming Experiment Data Integration Effort), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17930, https://doi.org/10.5194/egusphere-egu24-17930, 2024.

EGU24-18305 | Posters on site | BG3.10

Nitrogen deposition effects on forest ecosystems: Linking N leaching patterns to long-term dynamics of soil C/N ratios in Swiss ICP Forests Level II Plots 

Peter Waldner, Alessandra Musso, Margaux Moreno Duborgel, Luisa Isabell Minich, Anne Thimonier, Maria Schmitt, Andreas Rigling, Alexander S. Brunmayr, and Katrin Meusburger

Forests play a major role in wood production and other ecosystem services, such as carbon (C) sequestration and filling reservoirs in drinking water quality. However, it is still under discussion to what extent environmental changes, such as elevated nitrogen (N) deposition and related eutrophication, may affect such services.

Our study aimed to assess long-term changes in N and C storage in Swiss forest soils along a gradient in N deposition (about 10 to 30 kg N/ha/y). At five long-term forest ecosystem research plots in Switzerland, which are part of the ICP Forests Level II network, nutrient fluxes (atmospheric deposition, litterfall, soil solution) have continuously been measured since the 1990s. Soil samples were taken from fixed depth layers in the course of soil inventories in the 1990s and 2022.

The observed flux patterns indicated that the forests had reached nitrogen saturation on some sites, resulting in nitrogen leaching. At sites with a higher carbon-to-nitrogen ratio (C/N), we found comparatively lower levels of N leaching. The comparison of the two soil inventories showed that the N concentration in soils has actually increased (and the C/N ratio decreased) on the sites with high C/N ratio and high N deposition. We will discuss the observed accumulation and transformations of organic C and N in these soils and the potential impacts on selected ecosystem services. 

How to cite: Waldner, P., Musso, A., Moreno Duborgel, M., Minich, L. I., Thimonier, A., Schmitt, M., Rigling, A., Brunmayr, A. S., and Meusburger, K.: Nitrogen deposition effects on forest ecosystems: Linking N leaching patterns to long-term dynamics of soil C/N ratios in Swiss ICP Forests Level II Plots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18305, https://doi.org/10.5194/egusphere-egu24-18305, 2024.

Numerous studies have shown that nitrification inhibitors (NIs) are an effective tool to reduce direct N2O emissions. However, some studies have showed the positive effect of NIs on ammonia volatilization and increase the indirect N2O emission from AV. This study aimed to investigate the effect of nitrapyrin (NP) as a NI and gibberellic acid (GA3) as a plant growth regulator (PGR) on direct and indirect N2O emissions. A randomized complete block design including three treatments and five replicates was used in this study. The treatments were: T1 (control treatment-without N fertilizer), T2 (Urea only), and T3 (Urea+NI+GA3). Urea was applied in three split applications. GA3 was foliar sprayed only at stem elongation stage. NP and GA3 were applied at a rate of 0.51% and 0.03% of the applied N (weight/weight), respectively. Ammonia volatilization was measured with semi-static chambers and direct N2O emission was measured with static chambers. Cumulative N2O was 1.45 ± 0.13 and 1.11 ± 0.10 (kg N2O-N ha-1) in urea alone and urea in combination of NP+GA3. The estimated values of indirect N2O-N produced from AV in urea and urea+NP + GA3  were 0.38 and 0.45 kg N ha− 1, respectively. The results showed that the indirect N2O emission from the ammonia path in this type of soil which has high pH cannot be ignored and should be included in the net emission. Also, the results showed that the increase in the indirect emission of N2O from ammonia path induced by NP is negligible.

 

How to cite: Mirkhani, R., Shorafa, M., and Dercon, G.: Direct and indirect nitrous oxide emissions with application of nitrification inhibitor and plant growth regulator in a calcareous soil , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19196, https://doi.org/10.5194/egusphere-egu24-19196, 2024.

EGU24-19400 | ECS | Orals | BG3.10 | Highlight

Soil carbon storage in response to forest disturbance  

Mathias Mayer, Florian Hechenblaikner, Andri Baltensweiler, Jason James, Silvan Rusch, Markus Didion, Lorenz Walthert, Stephan Zimmermann, Andreas Rigling, and Frank Hagedorn

Forest soils have significant potential to mitigate climate change through their ability to store large amounts of organic carbon. However, forests are increasingly subject to natural disturbances such as windthrow, wildfire or disease outbreaks, which threaten the permanence of this large carbon stock. In response to increasing disturbances and ongoing climate change, forests are expected to lose their ability to return to pre-disturbance conditions involving a reorganization of tree species composition and stand structure. If tipping points are crossed, even a complete vegetation shift and conversion to non-forest ecosystems is possible. Here we aimed to assess the sensitivity of forest soil carbon to disturbance and its recovery with contrasting successional trajectories by combining two field studies on soil carbon stocks in windthrown forest stands and a global meta-analysis on the effects of different disturbance agents. Our results along an altitudinal gradient in Switzerland show that mountain forests with high carbon stocks in thick organic layers were particularly sensitive to disturbance by windthrow, losing up to 90% of their carbon stored belowground. In contrast, low-elevation forest soils with thin organic layers and smaller carbon stocks were barely affected. These results are consistent with our meta-analysis, which shows that disturbance-induced carbon losses increase with the size of initial carbon stocks. Boreal and high-elevation forests with large soil carbon stocks are highly sensitive to severe and long-lasting carbon losses due to damage from storms, wildfire, insects, and harvesting, while in most temperate and tropical forests soil carbon stocks recover more rapidly and losses are smaller. Results from a disturbance chronosequence in Austria also suggest that vegetation shifts following forest damage can strongly influence the recovery of soil carbon stocks after disturbance. Disturbed sites that remained in a non-forest, grass-dominated state for three decades accumulated about a third more soil carbon than sites that regenerated with trees. In addition to high litter inputs from herbaceous fine roots at grass-dominated sites, we relate this difference to changes in microbial community structure and function. In conclusion, our results underline that the magnitude and duration of soil carbon losses after disturbance depend on the forest type and site specific soil properties. Moreover, vegetation shifts during succession significantly modify the re-accumulation of soil carbon after disturbance.

How to cite: Mayer, M., Hechenblaikner, F., Baltensweiler, A., James, J., Rusch, S., Didion, M., Walthert, L., Zimmermann, S., Rigling, A., and Hagedorn, F.: Soil carbon storage in response to forest disturbance , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19400, https://doi.org/10.5194/egusphere-egu24-19400, 2024.

EGU24-19770 | Posters on site | BG3.10

The influence of penguin activity on the Nitrogen-Phosphorus cycle in the Ross Sea region 

Zhangqin Zheng, Xueying Wang, Jihua Hao, and Xiaodong Liu

As the limiting nutrient elements, nitrogen (N) and phosphorus (P) play important roles in forming biological organisms, promoting primary productivity, and changing ecological community structures. Until now, the research on the N and P cycle and the mechanisms in eutrophic lakes under human influence have been in-depth. However, in Antarctica, the research is still scarce. Adélie penguin, as the most important advanced predator in Antarctica, feeds mainly on krill in the ocean, while rearing and colonizing on land, which has important impacts on the N and P cycle in the fragile Antarctic terrestrial ecosystem.

In this study, soils and lacustrine sediments in the Ross Sea, Antarctica, which were heavily influenced or uninfluenced by penguin activities, were analyzed for N and P forms, N isotopes of NH4+ and NO3-, and O isotope of NO3-. Combined with the basic physicochemical properties, elements, and mineralogical analysis results of XRD, SEM/EDS, the mineralogical and morphological characteristics in sediments were discussed for the influence of penguin activities. The results show that penguin bio-transport inputs a large amount of N and P into soils and lacustrine sediments, Especially Ca-P, Mg-P, and NH4+. Mineralogical results such as XRD and SEM/EDS showed that the surface morphology of mineral particles heavily influenced by penguin activities was different from that in the natural environment. Phosphorus input from penguin guano forms a large amount of struvite (MgNH4PO4 6H2O) and other relatively stable minerals in aquatic environments. The results of TN and NH4+-N isotopes showed that the sediments influenced by penguin activities were more positive (about +30~40‰) than uninfluenced soils and sediments, which would be affected by the form of struvite. The N and O isotopes of NO3- were more complicated in the sediments, which may be related to the nitrification and denitrification processes in soils and sediments. The results of this study provide an important scientific basis for further understanding of the N and P cycle in the Antarctic affected by penguin activities under climate change.

How to cite: Zheng, Z., Wang, X., Hao, J., and Liu, X.: The influence of penguin activity on the Nitrogen-Phosphorus cycle in the Ross Sea region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19770, https://doi.org/10.5194/egusphere-egu24-19770, 2024.

EGU24-219 | ECS | Posters on site | BG3.13

Rhizodeposition in the Plant Economic Space for 15 grassland species and its links to biogeochemical cycles (C,N) 

Chloé Folacher, Estelle Forey, Angèle Branger, Matthieu Chauvat, and Ludovic Henneron

Understanding how photosynthetic carbon is delivered into the soil system through rhizodeposition is of utmost importance in a changing world, as it represents an essential part of carbon cycling in soils. The plant economic space (PES) is a theoretical model representing plant strategies resource acquisition strategies based on two independent trade-offs: (i) resource acquisition vs conservation and (ii) exploration outsourcing (cooperation with mycorrhizal fungi) vs do-it-yourself. The PES is known to be related to a set of chemical and morphological traits, but some physiological traits such as rhizodeposition lack attention because they are harder to measure, while they are crucial for our understanding of resource allocation strategies and their linkages to ecosystem processes. For example, gross rhizodeposition can represent more than 40% of belowground carbon allocation.

We aimed to provide more insights on the relationship between rhizodeposition and the two dimensions of the PES, with a focus on the second axis, as arbuscular mycorrhizal fungi (AMF) are supposed to play an essential role of sink in the sink/source model of rhizodeposition. To do so, we grew 15 grassland plant species with contrasting resource acquisition strategies in a 3-month long pot experiment, with or without litter inputs. By means of 13C pulse-labelling, we traced carbon fluxes from recent photosynthates in major pools, including above-and belowground parts of the plant, but also in microbial biomass and microbial functional groups using PLFAs, soil organic matter, and soil respiration. We also measured net and gross nitrogen mineralisation.

We hypothesise that (i) rhizodeposition will be strongly link to the fast-slow gradient, fast-growing species being associated with higher rhizodeposition rates, but (ii) rhizodeposition will also show significant relationships with the exploration gradient, as tighter plant-soil biota association – including more AMF colonisation – could promote higher rhizodeposition rate, because of sink mechanisms. Higher rhizodeposition should also be associated (iii) with a shift in microbial community toward functional groups more dependant to plant carbon such as AMF and Gram negative bacteria, as well as (iv) higher soil respiration and nitrogen mineralisation.

How to cite: Folacher, C., Forey, E., Branger, A., Chauvat, M., and Henneron, L.: Rhizodeposition in the Plant Economic Space for 15 grassland species and its links to biogeochemical cycles (C,N), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-219, https://doi.org/10.5194/egusphere-egu24-219, 2024.

EGU24-743 | ECS | Posters on site | BG3.13

Assessing Fine Root Production in Terrestrial Forests: A Comparative Analysis of AI and Human Annotation Using Minirhizotron Images 

Imogen Carter, Grace Handy, Marie Arnaud, Rob Mackenzie, Gael Denny, Abraham Smith, and Adriane Esquivel-Muelbert

Fine roots are a major source of the stabilised carbon in soils. However, the response of fine root production to an increase in atmospheric CO2 and its impact on carbon dynamics in terrestrial forests remain poorly understood. Minirhizotrons can help to quantify fine root production and associated carbon dynamics in long-term, in-situ experiments such as Free Air CO2 Enrichment experiments. Yet, using minirhizotrons requires the manual annotation of thousands of images. Artificial Intelligence (AI) technology for image processing is fast developing and has proven to be successful in simple systems, such as agronomous crops. Here, we quantified how AI (RootPainter) annotation compares with humans, and determined the implications in terms of root production and carbon dynamics in a mature deciduous forest (BIFOR-FACE). Firstly, we quantified the variation in outputs of 30 annotated minirhizotron images using AI and human analysts of varying levels of expertise, comparing them to a gold standard established through expert consensus. We find that root annotation varied substantially among humans, with novices and AI over-annotating root length by 244% and 206% respectively, compared to our gold standard. Secondly, we quantified root length for five minirhizotron tubes in March and June (n = 1060 images) using AI and then a trained human analyst. AI over-estimated root length by more than an order of magnitude compared to a trained human user, and there was a poor linear relationship between annotated images with  AI and humans (r² < 0.22 for both months). This over-annotation by AI resulted in inaccurate quantification of root production and mortality, and thus erroneous carbon budget.

How to cite: Carter, I., Handy, G., Arnaud, M., Mackenzie, R., Denny, G., Smith, A., and Esquivel-Muelbert, A.: Assessing Fine Root Production in Terrestrial Forests: A Comparative Analysis of AI and Human Annotation Using Minirhizotron Images, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-743, https://doi.org/10.5194/egusphere-egu24-743, 2024.

The enhancement of biodiversity's positive impact on ecosystem functioning (BEF) over time is commonly observed and attributed to the accumulation of mutualists and dilution of antagonists in more diverse communities. If antagonists play a role in the BEF relationship, the reduction of plant antagonists in more diverse communities, could allow plants to reduce allocation to defence. This study aimed to assess the influence of plant diversity on the expression of defence traits in 16 plant species. Our hypotheses were: (1) increased plant diversity reduces allocation to defence, (2) this reduction is more pronounced in roots than in leaves, and (3) this effect varies among species.

We measured both physical and chemical defence traits in leaves and fine roots across communities with varying plant species richness in a 19-year-old biodiversity experiment. Using established methods and an innovative metabolome approach, we explored the interactive effects of plant diversity and species identity on defence traits through linear mixed models.

Our findings were mixed concerning the first hypothesis, with only some leaf defence traits (leaf mass per area, leaf dry matter content, and hair length) showing reduction along the diversity gradient. Unexpectedly, the values of some root traits, root tissue density and nitrogen content, suggested increased allocation to defence along the same gradient. This might be attributed to these traits serving other functions, e.g. in resource acquisition and competition, which potentially overruled the impact of declining antagonists on plant defences. Our results did not support the third hypothesis, suggesting an overall convergence responses to biotic and abiotic factors related to plant diversity after two decades.

While evidence for a consistent reduction in defence trait expression along the diversity gradient was limited, our findings underscore the complex nature of BEF relationships. Further experiments, possibly controlling confounding factors on trait expression or manipulating antagonist pressures along diversity gradients, are needed to elucidate the underlying mechanisms.

How to cite: Bassi, L.: Intra- and inter-specific changes in leaf and root defence traits along an experimental plant diversity gradient., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3368, https://doi.org/10.5194/egusphere-egu24-3368, 2024.

Road construction efforts have significantly increased in developing countries in recent decades. While expanding road networks have promoted economic development, it may result in the fragmentation of ecological landscapes and an increased risk of soil erosion. However, knowledge about these consequences is limited. This study aimed to characterize the expansion of the road network, landscape ecological risk, and soil erosion sensitivity on the Luochuan tableland of the Chinese Loess Plateau from 1990 to 2020. In this study, the landscape ecological risk refers to the spatial and temporal heterogeneity within a region, as well as the scale effect and the impact of landscape pattern fragmentation on regional ecological risk. The results of this study showed that 1) the road network on the Luochuan tableland has significantly expanded over the past 30 years, and the proportion of areas with high road density (kernel density value > 120 km/km2) increased from 10.13% to 37.18% of the total area between 1990 and 2020. 2) The landscape ecological risk was the highest in 2005; from 1990 to 2005, the land area with extra-high landscape ecological risk increased from 0 to 13.30 km2 and then decreased to 0 in 2020. 3) Similar to the variations in landscape ecological risk, the soil sensitivity was severe in 2005 on the Luochuan tableland. 4) Areas with a higher landscape ecological risk were mainly concentrated in areas of high road density. The road kernel density was significantly and positively correlated with landscape ecological risk and soil erosion sensitivity (P < 0.01). This study could help to understand the potential impact of road network expansion on landscape ecological risk and soil erosion at a regional scale.

How to cite: Yang, S. and Jin, Z.: Impact of road network expansion on landscape ecological risk and soil erosion sensitivity on the Luochuan Tableland of the Chinese Loess Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3397, https://doi.org/10.5194/egusphere-egu24-3397, 2024.

EGU24-3412 | ECS | Posters on site | BG3.13

Unravelling the spatial structure of regular environmental spatial patterns  

Karl Kästner, Roeland C. van de Vijsel, Daniel Caviedes Voullieme, and Christoph Hinz

Spatial patterns where patches of high biomass alternate with bare ground occur in many resource-limited ecosystems. Especially fascinating are regular patterns, which are self-similar at a lag distance corresponding to the typical distance between patches. Regular patterns are understood to form autogenously through self-organization, which can be generated with deterministic reaction-diffusion models. Such models generate highly regular patterns, which repeat at the characteristic wavelength and are therefore periodic. Natural patterns do not repeat, as they are noisy and as the patch size and spacing vary. Natural patterns are therefore usually perceived as perturbed periodic patterns. However, the self-similarity of natural patterns decreases at longer lag distances, which indicates that their spatial structure is not a perturbed periodic structure originating through deterministic processes. Here, we provide an overview of our recent work on the spatial structure and formation of natural environmental spatial patterns as a basis for discussion: First, we develop a statistical periodicity test and compile a large dataset of more than 10,000 regular environmental spatial patterns. We find that neither isotropic (spotted) nor anisotropic (banded) patterns are periodic. Instead, we find that their spatial structure can be well described as random fields originating through stochastic processes. Second, we recognize the regularity as a gradually varying property, rather than a dichotomous property of being periodic or not. We develop a method for quantifying the regularity and apply it in a metastudy to a set of natural and model-generated patterns found in the literature. We find that patterns generated with deterministic reaction-diffusion models do not well reproduce the spatial structure of environmental spatial structure, as they are too regular. Third, we develop an understanding of pattern formation through stochastic reaction-diffusion processes, which incorporate random environmental heterogeneities. We find that regular patterns form through filtering of the environmental heterogeneities and identify stochastic processes which reproduce both isotropic and anisotropic patterns.

How to cite: Kästner, K., van de Vijsel, R. C., Caviedes Voullieme, D., and Hinz, C.: Unravelling the spatial structure of regular environmental spatial patterns , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3412, https://doi.org/10.5194/egusphere-egu24-3412, 2024.

EGU24-5143 | Posters on site | BG3.13

Quantification of rhizodeposition and priming effect of intermediate crops via 13CO2 labeling. 

Baptiste Hulin, Simon Chollet, Folrent Massol, and Samuel Abiven

When assessing the carbon storage potential of a crop, it is useful to 1) quantify the inputs that return to the soil, such as roots, rhizodeposition and sometimes aboveground biomass, and 2) estimate the carbon gains or losses attributed to the priming effect. This allows to draw up a balance of inputs and outputs at the end of the growing season. While the quantity of carbon supplied by roots and aboveground biomass is relatively easy to measure, the quantity of rhizodeposition and the priming effect are not.

To establish such a balance, 12 intercropping plant species from 3 plant families (brassicaceae, fabaceae and poaceae) were grown for two months in mesocosms (15 liters) under controlled conditions simulating a temperate summer climate in real time in an ecotron. Multi-pulse atmospheric labeling with 13CO2 99% was used to trace photosynthesized carbon and thus quantify aboveground and root biomass, rhizodeposition and variations in carbon stock due to the priming effect.

The results show that rhizodeposition represents a significant carbon input (around a quarter of root biomass), positively correlated with root biomass. Root biomass is therefore one of the main traits to be considered for increasing inputs. At the same time, 10 out of 12 plants accelerated the mineralization of soil organic matter (positive priming effect), resulting in a cumulative carbon loss over the course of the plant's growth that can be of the same order of magnitude as the biomass input.

This priming effect is highly heterogeneous and difficult to explain by plant traits, but seems quantitatively more important for brassicaceae. We propose that this variability is due both to the spatial heterogeneity inducing these processes, but also to the great variability of processes that can occur in the rhizosphere, processes that can simultaneously lead to an acceleration and/or deceleration of the decomposition of native soil organic matter.

How to cite: Hulin, B., Chollet, S., Massol, F., and Abiven, S.: Quantification of rhizodeposition and priming effect of intermediate crops via 13CO2 labeling., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5143, https://doi.org/10.5194/egusphere-egu24-5143, 2024.

EGU24-5403 | ECS | Posters on site | BG3.13

Effects of soil phosphorus on root exudates in central Amazonia 

Tatiana Reichert, Lucia Fuchslueger, Sara A. L. de Andrade, Taryn Bauerle, Alexandre Borghi, João P. Darela-Filho, Katrin Fleischer, Benjamin Hafner, Iain P. Hartley, Raffaello Di Ponzio, Carlos A. Quesada, Anja Rammig, Jessica Schmeisk, and Laynara F. Lugli

Plants in tropical forests are thought to allocate a substantial portion of their photosynthetically fixed carbon (C) to the rhizosphere as exudates. These exudates serve multiple functions, including the mobilization of soil nutrients such as phosphorus (P), which is crucial for plant growth. In Amazonia, the predominant soils have notably low P concentrations, and plants likely employ a variety of strategies for P acquisition. However, the role of root exudates in P-impoverished Amazonian soils has not been empirically explored so far. To fill this gap, we investigated the largely uncharted territory of root exudation, as part of the Amazon fertilization experiment (AFEX), in a mature tropical forest growing on highly-weathered P-impoverished soils of central Amazonia. Our research examined root exudation in situ, both under natural soil conditions and P addition. We assessed the concentration of total organic carbon (TOC), total nitrogen (TN), and a suite of organic acids in root exudates, as well as additional root physiological and morphological traits of relevance, to potentially explain the variability in root exudation rates.

Our study revealed higher root exudation rates of TOC and organic acids in control, compared to P-addition plots, which suggests that plant C allocation to root exudates is an adaptive response to P availability. We also found that root exudation traits align with various morphological and physiological traits within the root economic space. Our findings provide insights into the hidden dynamics of root-soil interactions and have significant implications for understanding C cycling in tropical forests, shedding light on the complex coordination of root P acquisition strategies under different soil P conditions. 

How to cite: Reichert, T., Fuchslueger, L., de Andrade, S. A. L., Bauerle, T., Borghi, A., P. Darela-Filho, J., Fleischer, K., Hafner, B., Hartley, I. P., Di Ponzio, R., A. Quesada, C., Rammig, A., Schmeisk, J., and Lugli, L. F.: Effects of soil phosphorus on root exudates in central Amazonia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5403, https://doi.org/10.5194/egusphere-egu24-5403, 2024.

EGU24-7383 | Orals | BG3.13

Water availability controls seasonal shifts in root growth timing 

Richard Nair, Martin Strube, Marion Schrumpf, and Mirco Mirco.MIGLIA

Root growth dynamics are difficult to observe both on phenological and sub-daily scales as manual destructive measurement is high effort and prone to error. Close synchrony and prescriptive links with more easily observed above ground dynamics on seasonal timescales are often assumed, affecting interpretation of greenhouse gas fluxes without a solid basis in observational whole system data. Increasingly, we now recognize that seasonal root growth can be desynchronized from leaves, causing a rethink of these relationships. However sub-daily patterns are still opaque because measuring field root dynamics remains extremely difficult, especially this frequently. This is even more true over sustained, seasonal timescales where controls and dynamics may shift. Potential drivers of diel growth include photosynthesis (carbon), cell turgor (water), environmental temperature, and intrinsic circadian rhythms. Controls may differ through time, and between organs, and are difficult to separate under natural conditions in observational studies.

We use automated minirhizotrons and neural networks for image interpretation to bypass many previous observational constraints and gather resampled root dynamics data at up to sub-daily resolution. We observing roots four times a day for two years, every day, in a temperate grassland in Germany. We observed a strong underlying cell turgor signal in these uniquely frequent observations, visible through diel oscillation of root width. Removing this signal, we found root growth generally had little diel pattern except in periods of leaf-level water stress. Here roots consistently grew during the day and not at night. We examine the reasons for this switch in diel dynamics through the lens of potential environmental, water and carbon control. We found little evidence for direct temperature limits in our system. Instantaneous C supply, which should increase as canopies develop through the season, also did not appear to impact rate of growth despite previous isotope tracer studies showing a tight temporal coupling between carbon assimilation and bulk soil CO2 efflux. Our observations point towards water and cell turgor as the main control on root growth timing variation in contrast to the carbon-centric view of plant-soil system functioning indicated by pulse chase experiments. Underlying growth dynamics and their controls should be considered when interpreting whole system fluxes, and their sensitivity to environmental conditions in our dynamic and changing world.  

How to cite: Nair, R., Strube, M., Schrumpf, M., and Mirco.MIGLIA, M.: Water availability controls seasonal shifts in root growth timing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7383, https://doi.org/10.5194/egusphere-egu24-7383, 2024.

EGU24-7528 | ECS | Posters on site | BG3.13

Increasing root-derived soil carbon input to agricultural soils by variety selection of winter wheat 

Henrike Heinemann, Felix Seidel, Axel Don, and Juliane Hirte

Climate change mitigation and adaptation is a major challenge of modern agriculture. Increasing the incorporation of atmospheric carbon (C) as organic matter into soils through improved crop management seems to be a promising agricultural management option for supporting climate change mitigation. In order to build up soil organic C increased organic C inputs to the soil are urgently needed. In agricultural soils, crop roots are the major source of C inputs and pivotal for long-term C storage compared to aboveground biomass as their turnover is 2 to 3 times slower. This suggests, that variety selection towards increased root biomass can enhance root C inputs to the soil and could therefore increase C stocks and potentially facilitate C sequestration in soils. To quantify whether biomass allocation is affected by variety x environment interaction, we assessed root biomass, root distribution to 1 m soil depth and root: shoot ratios in a set of 10 different varieties grown at 11 experimental sites, covering a large European climatic gradient from Spain to Norway.

Preliminary results show a broad variety-specific variation in biomass production and its allocation between roots and shoots. Root biomass ranged from 1 to 3.5 Mg ha-1 in the best variety and could be increased by 20% by selecting the best variety compared to the average root biomass without compromising yield. Root to shoot ratios varied between 0.04 and 0.58 with a mean of 0.16. Increased root biomass due to deeper roots may stabilise yields under future climate change conditions where increased frequency of drought events during vegetation periods are expected and may therefore be a climate change adaptation measure that increases the crops resilience towards changing environmental conditions. Thus, improved variety selection can help to achieve both goals of modern agriculture: climate change mitigation and adaptation.

How to cite: Heinemann, H., Seidel, F., Don, A., and Hirte, J.: Increasing root-derived soil carbon input to agricultural soils by variety selection of winter wheat, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7528, https://doi.org/10.5194/egusphere-egu24-7528, 2024.

EGU24-8136 | ECS | Posters on site | BG3.13

Model-based evaluation of the impact and longevity of a novel sustainable subsoil melioration method (Soil³ method) on root growth  

Tobias Selzner, Anne E. Berns, Daniel Leitner, and Andrea Schnepf

The subsoil, commonly defined as the soil beneath the tilled or formerly tilled soil horizon, contains large amounts of nutrients and water. Large fractions of these subsoil resources are not readily available to agricultural crops due to compacted layers of high bulk density. Although there are conventional methods for loosening compacted subsoils (e.g., mechanical subsoiling and deep ploughing), their effects are often quickly reversed or can even be harmful to the soil structure. Eventually, the brief enhancement in subsoil access for crops is often insufficient to justify the considerable expenses associated with the methods. To facilitate a more efficient use of subsoil resources, the Soil³ project for sustainable subsoil melioration derived a novel  approach, which is carried out in a single crossing of the field. First, the top soil of a 30 cm wide strip is excavated and deposited on the soil surface beside the strip, creating a furrow. The subsoil in this furrow (30-60 cm depth) is then loosened and intermixed with organic material (e.g., compost). After mixing, the excavated topsoil is lead back into the furrow, thus closing it again. The method therefore preserves the natural soil structure by not mixing the top and subsoil substrates, while the loosened subsoil structure is stabilized by incorporating organic material. Additionally, the operating costs are kept reasonable by only loosening the soil in a strip-wise manner.

Here, we use and extend the 3D functional-structural plant model CPlantBox to investigate the impact of the Soil³ method on root growth. On the soil side, we employ pedo-transfer functions to model the evolution of soil bulk density (soil setting) and the resulting changes in soil hydraulic properties in time. The pedo-transfer functions are parameterized based on data of the Soil³ field trials and are solved for different soil depths, as well as for the soil layers on and beside the melioration strips. In our model, we account for the time-dependent changes in soil hydraulic properties of all soil layers by implementing the usage of variable Van-Genuchten parameter sets within a single simulation run. Based on the parameterized soil domain, we simulate root growth and root water uptake from the different soil layers. Experimental data is used to parameterize general root growth parameters (e.g., root length density, planting density, transpiration). The explicit 3D root system architecture, however, is a result of the model, and its growth is modeled as a function of bulk density, water content and penetration resistance. By performing virtual replications of the field trials over multiple consecutive years, we can evaluate the impact and longevity of the subsoil melioration on root growth and its underlying processes.

How to cite: Selzner, T., Berns, A. E., Leitner, D., and Schnepf, A.: Model-based evaluation of the impact and longevity of a novel sustainable subsoil melioration method (Soil³ method) on root growth , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8136, https://doi.org/10.5194/egusphere-egu24-8136, 2024.

EGU24-8292 | ECS | Orals | BG3.13

Exploring the root economics space in shrub-encroached subalpine grasslands 

Elena Tello-García, Anna-Lena Neunteufel, Lucía Laorden-Camacho, Marie-Nöelle Binet, Camille Marchal, Marie-Pascale Colace, Karl Grigulis, Bello Mouhamadou, Ursula Peintner, Ulrike Tappeiner, Sandra Lavorel, and Georg Leitinger

Shrub encroachment, a global phenomenon caused by land abandonment and shifts in traditional land use practices, is particularly prevalent in subalpine grasslands. This ecological shift is characterized by increased woodiness, which leads to changes in biogeochemical cycles and microbial composition. These changes in turn impact the soil's abiotic environment, particularly on carbon and nitrogen availability. While the influence of these changes on aboveground plant traits is well recognized, a substantial knowledge gap remains regarding their effects belowground. Understanding how shrub encroachment affects root morphological traits and mycorrhization is crucial, as they play a key role in nutrient uptake and transfer. This study focuses on the effects of shrub encroachment on root morphological traits and arbuscular mycorrhiza fungi (AMF) colonization at the levels of both herbaceous plants and of communities, i.e. including herbaceous and dwarf shrub plants, along a gradient of shrub encroachment in subalpine grasslands. We also aimed to describe the root economics space in encroached grasslands and to identify key soil changes correlated with changes in root traits. In herbaceous plants, shrub encroachment decreases AMF colonization and specific root length (SRL), and increases root tissue density (RTD). At the community level, AMF colonization, SRL, and RTD all decrease with shrub encroachment. Surprisingly, the observed root economics space at the community level does not follow the already established negative correlations of “do-it-yourself” strategies with high SRL and “outsourcing” strategies with increased root diameter and AMF colonization. Moreover, we observed a negative correlation between RTD and AMF. Our results highlight the importance of soil characteristics, specifically the carbon/nitrogen ratio (C:N) and soil pH, for changes in root traits. We conclude that shrub encroachment promotes the development of shorter and less dense roots and causes a decrease in AMF colonization through changes in the soil abiotic environment, such as an increase in C:N and a decrease in pH. This research provides valuable insights by expanding our understanding of belowground responses to shrub encroachment and highlights the importance of considering root traits in the broader context of ecosystem functioning.

How to cite: Tello-García, E., Neunteufel, A.-L., Laorden-Camacho, L., Binet, M.-N., Marchal, C., Colace, M.-P., Grigulis, K., Mouhamadou, B., Peintner, U., Tappeiner, U., Lavorel, S., and Leitinger, G.: Exploring the root economics space in shrub-encroached subalpine grasslands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8292, https://doi.org/10.5194/egusphere-egu24-8292, 2024.

EGU24-9347 | ECS | Posters on site | BG3.13

The impacts of several global change drivers on tropical root traits and dynamics 

Laynara F. Lugli and Daniella Yaffar and the TropiRoots Network - Tropical Root Trait Initiative

Tropical ecosystems are threatened by escalating anthropogenic activities that worsen global change, potentially disrupting the carbon (C) equilibrium in tropical forests and affecting global climate regulation. While considerable research has explored the impact of global change on aboveground tropical vegetation, our comprehension of belowground components, particularly roots that mediate plant-soil interactions, such as nutrient and water uptake, remains limited. We conducted an analysis of existing research on how tropical roots respond to key global change drivers, including warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Drawing from tree species- and community-level outcomes from experimental studies, we compiled 266 root trait observations from 96 studies conducted across 24 tropical countries. From the existing knowledge, we noted in this review that tropical root systems tend to increase in biomass in response to warming and eCO2, but community-level experiments were rare for warming and non-existent for eCO2. Drought increased root:shoot ratio without changing root biomass, indicating a reduction in aboveground biomass. While N deposition may not greatly impact most tropical forests in the short term due to strong phosphorus limitation, mycorrhizal colonization and root phosphatase exudation were predominantly down- and up-regulated, respectively. Cyclones, fires, and flooding resulted in decreased root biomass, which, under elevated CO2 and warming, could lead to greater carbon losses from tropical soils. Cyclones and fires increased root production, potentially in response to plant community shifts and nutrient input, while flooding altered compounds related to plant regulatory metabolism due to low oxygen conditions. We also emphasize the importance of in situ studies, comparing adapted versus non-adapted species to these disturbances and the need for methodological consistency among experiments. Our findings underscore the necessity for further research to enhance our understanding of tropical root responses to global changes. The responses of root traits and dynamics to several global change drivers would affect the functioning of the whole forest and, consequently, carbon cycling and stocks above and belowground.

How to cite: Lugli, L. F. and Yaffar, D. and the TropiRoots Network - Tropical Root Trait Initiative: The impacts of several global change drivers on tropical root traits and dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9347, https://doi.org/10.5194/egusphere-egu24-9347, 2024.

EGU24-9636 | ECS | Posters on site | BG3.13

Exudate dynamics and rhizosphere priming in wetland ecosystems 

Namid Krüger and Peter Mueller

The release of organic substances from roots (exudates) to the soil system can induce changes in the mineralization rate of soil organic carbon (SOC) via so-called priming effects. Compared to other terrestrial ecosystems, mechanistic knowledge about priming effects in anoxic wetland soils is scarce, and few studies have investigated the composition and magnitude of root exudation in wetland plants. Given the disproportionate role of wetlands in the global soil carbon budget, this represents a critical knowledge gap in our understanding of terrestrial soil-climate feedbacks.

Here we present data from (1) a meta-analysis to summarize all quantitative and qualitative observations on wetland root exudation; and (2) exudate-surrogate incubation experiments testing for exudate effects on wetland SOC decomposition under anoxic conditions.

The meta-analysis shows that few comparable data on wetland exudation rates exist because extraction methods differ strongly, and only few species have been evaluated frequently. The data demonstrate that wetland plants not only release sugars, amino acids and organic acids into the rhizosphere, but also secondary compounds with a high allelochemical (e.g. gallic acid) or decomposition-hampering potential (e.g. phenolics). Their combined effect on the stability of soil carbon stocks is currently unpredictable on the ecosystem level. Our incubation experiments show that labile C inputs into an anoxic soil have a great potential to suppress SOC decomposition via negative priming. This finding contrasts to positive priming effects commonly found in oxic terrestrial soils and yields important implications for the stability of wetland SOC stocks in response to climate induced vegetation shifts.

How to cite: Krüger, N. and Mueller, P.: Exudate dynamics and rhizosphere priming in wetland ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9636, https://doi.org/10.5194/egusphere-egu24-9636, 2024.

The Hengduan Mountains (HDM) is one of the most biologically diverse mountain ranges on the planet, with exceptionally high levels of endemism. We expect that the geological and climate changes of the regions shaped endemism though dispersal and speciation processes by modulating landscape connectivity. Here, we characterise the plant endemism in the HDM, by mapping the distribution of 3,165 endemic species, representing approximately 25% of the total plant species richness. We show that endemic richness is highest along the southern front of the HDM, and especially concentrated along the Shangri-la Plateau and the three-river parallel region at elevations between 2,700 and 4,200 meters a.s.l. We demonstrate a geographically differentiated effect of connectivity on endemic richness and composition. In the endemic hotspot, we find a negative connectivity-diversity relationship, while we find a positive connectivity diversity relationship in the northern and southern HDM. Our result suggests a dominant role of isolation-induced allopatric speciation. Low connectivity may facilitate allopatric speciation in shaping distinct lineage in central HDM; while in the north of HDM, similar cold habitats in high elevation where habitats are more connected than the southern part, have likely facilitated species migration during the Quaternary glaciation. Thus, the degree of connectivity varied within HDM depending on their topographical configuration. Geographic contrasts in diversity further match endemic composition, which suggest the effect of geological history in shaping the diversity and composition of this exceptional flora. Overall, we conclude that landscape connectivity is a key driver of endemic plant speciation in HDM, explaining richness patterns that cannot be explained by temperature and other classic predictors.

How to cite: Yuan, Z.: Regional hotspots of Hengduan plant endemism inferring local speciation in response to connectivity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9893, https://doi.org/10.5194/egusphere-egu24-9893, 2024.

EGU24-12367 | ECS | Posters on site | BG3.13

Increasing root trait complementarity in species mixtures may be detrimental for soil carbon storage 

Shuang Yin, Xinli Chen, César Terrer, Zhenghu Zhou, Ji Chen, and Diego Abalos

Designing plant mixtures with potential to increase soil organic carbon (SOC) appears to be a powerful nature-based tool to restore some of the carbon lost in agroecosystems. However, we are uncertain about the best way to design such benign plant mixtures. Trait-based approaches are increasingly used to explain the relationship between plant diversity and ecosystem functions, offering a conceptual opportunity to address this knowledge gap. In this study, we combine a global meta-analysis of 407 paired SOC content observations with a root traits database from GRooT, to explore the optimum way for the design of plant mixtures to increase SOC. We found that specific root traits at the community level were important predictors of the response of SOC to plant mixtures. Species mixtures could increase SOC content when the overall plant community had low variation in root mycorrhizal colonization and root tissue density. The positive response of SOC content to species mixtures was linked to increases in soil microbial biomass carbon and root biomass. Additionally, the SOC enhancements by plant mixtures were often found in regions with high precipitation and low sand content. Our meta-analysis presents a framework based on plant traits to enhance SOC sequestration using plant mixtures, which will enable farmers to optimize plant mixtures towards soil carbon sequestration.

How to cite: Yin, S., Chen, X., Terrer, C., Zhou, Z., Chen, J., and Abalos, D.: Increasing root trait complementarity in species mixtures may be detrimental for soil carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12367, https://doi.org/10.5194/egusphere-egu24-12367, 2024.

EGU24-13758 | ECS | Posters on site | BG3.13

Assessing Sediment Delivery from Catchment Areas to Coastal Ecosystems in the Pacific Islands: A Study in an Urban Context 

Eliana Jorquera, Jose Fernando Rodriguez, Patricia Mabel Saco, Juan Pablo Quijano Baron, Angelo Breda, Steven Sandi, Danielle Verdon-Kidd, and Filomena Nelson

Coastal mangroves provide vital habitats for marine and coastal ecosystems while also stabilising coastlines, preventing erosion and mitigating the impact of storms. Sea-level rise poses a significant threat to these areas, causing submergence, vegetation changes, and hydrodynamic alterations. Sediment accretion can attenuate the effects of sea-level rise by promoting sedimentation. Mangroves trap sediments with their roots, which gradually create soil layers. The balance between soil accretion and sea-level rise will determine the mangrove's ability to adapt and survive. It is, therefore, crucial to determine the amount of water and sediments produced in the tributary catchment that reaches mangrove areas.

Moata'a is an urban village on the Upolu Island of Samoa, comprising around 300 to 500 households. It is home to a mangrove wetland that has been negatively impacted by human activities such as urban expansion, uncontrolled extraction of natural resources, pollution, and modification of input flows and tidal regime. Furthermore, Moata'a is susceptible to extreme weather conditions such as tropical cyclones, floods, and droughts, which may worsen as a result of climate change.

The amount of water and sediments that flow into the Moata'a mangrove area is influenced by the Vaisigano River. Moata'a is situated in the Vaisigano River's floodplain region, one of the primary rivers on Upolu Island. The Vaisigano River catchment is characterised by a hilly terrain covered with forests and a narrow coastline. During significant flooding events, water is transferred from the Vaisigano to the Moata'a catchment. Significant sediments can be discharged into the mangrove areas in these extreme circumstances.

This contribution presents a hydro-sedimentological assessment of the Moata’a’s mangrove catchment. The Soil & Water Assessment Tool (SWAT) was used to quantify the amount of water and sediment generated in the Moata’a’s catchment and the water and sediments produced by the Vaisigano catchment that are transferred to Moata’a’s mangroves during extreme events.

How to cite: Jorquera, E., Rodriguez, J. F., Saco, P. M., Quijano Baron, J. P., Breda, A., Sandi, S., Verdon-Kidd, D., and Nelson, F.: Assessing Sediment Delivery from Catchment Areas to Coastal Ecosystems in the Pacific Islands: A Study in an Urban Context, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13758, https://doi.org/10.5194/egusphere-egu24-13758, 2024.

EGU24-14679 | ECS | Orals | BG3.13

Changes in soil organic carbon content affect plant available water more strongly in subsoil than in topsoil 

Laura Skadell, Ullrich Dettmann, and Axel Don

With the increase of drought events due to climate change, agricultural production is under pressure to maintain yields. The subsoil (> 30 cm) often harbours unexploited water and nutrient resources that can meet the needs of plants when the topsoil has already dried out. The fertility of the soil is also closely linked to its organic carbon (OC) content. A higher soil organic carbon (SOC) content can improve the soil structure, which is associated with a higher water infiltration rate and a higher water retention capacity and thus can facilitate the adaptation of agriculture to a changing climate. However, the knowledge about quantity changes, especially in subsoils, is insufficient. Therefore, we analysed soils from eleven field sites to quantify the effects of SOC content on topsoil and subsoil plant available water (PAW), here defined as the water content between pF = 1.8 and pF = 4.2. Long-term experiments were set up at four sites, which we sampled after a duration of 57-68 years. In addition, four short- to medium-term trials with a duration of <1-10 years were sampled, as well as three treposols that were deep ploughed once 52-54 years prior to sampling. At all sites there is a management-related OC gradient over a wide range of clay contents (4-28%). Preliminary results of the long-term experiments showed that topsoil SOC contents increased on average by 43 % after the application of farmyard manure. PAW was also higher, with an average increase of 6 %, indicating a positive correlation between SOC content and PAW, although this was not linear. Significantly stronger effects on PAW were observed in the subsoil, where changes averaged 40 %. Our results therefore emphasise the importance of considering the subsoil when adapting agriculture to changing climatic conditions.

How to cite: Skadell, L., Dettmann, U., and Don, A.: Changes in soil organic carbon content affect plant available water more strongly in subsoil than in topsoil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14679, https://doi.org/10.5194/egusphere-egu24-14679, 2024.

EGU24-14784 | ECS | Posters virtual | BG3.13

Vegetation Phenological Metrics and Accumulated Antecedent Precipitation (AAP) in dryland pastures. 

Carlos Brieva, Jose Rodriguez, and Patricia Saco

Vegetation dynamics in dryland systems is highly dependent on soil moisture availability. Arid and semi-arid ecosystems are under the pressure of climate change and are facing overgrazing and logging, leading to increased degradation and desertification. The drylands of Mendoza, Argentina, are fragile ecosystems devoted to cattle breeding on native bushes and rangelands. Livestock farming relies on the productivity of natural resources, closely related to the monthly, annual, and seasonal rainfall, which is a critical driver of vegetation productivity and dynamics. However, the limited availability of precipitation data from gauging stations prevents a detailed analysis of the relationship between rainfall and vegetation. Therefore, satellite-estimated rainfall becomes a valuable information source to overcome this constraint.

This study aims to analyze the relationship between the antecedent accumulated precipitation (AAP) and the vegetation dynamics in terms of phenological metrics (Length of Growing Season – LGS; Peak of Growing Season – PGS; Amplitude of Growing Season – AGS) for four vegetation types in Southeast Mendoza, Argentina (Bush steppe with low land cover; Open Bush; Forest of Prosopis Flexuosa; and Psammophilous Grassland).

Vegetation parameters were derived using the software TIMESAT from Savitzky-Golay smoothing NDVI series of MODIS-Terra (MOD13Q1 V6.1) over 20 years (June 2000 to May 2020) and then correlated to AAP estimated by satellite using GPM (Global Precipitation Measurement) considering three time periods: Spring (accumulated precipitation of September to December), Spring plus Summer (September to February) and the duration of the Growing Season of each vegetation type.

All vegetation types showed a similar response and behavior regarding the AAP and vegetation dynamics metrics. The LGSs are similar, from 187 days for Psammophilous grassland to 198 days for Forest of Prosopis. However, there are differences at the start of the season. The PGSs (peak of NDVI) and the AGS show higher correlations to the spring and summer precipitation, while the LGS correlates to spring and accumulated precipitation during the growing season.

This information can help manage cattle grazing, avoid overgrazing, and manage production sustainably. Tracking vegetation responses to rainfall in space and time is of utmost importance for managing the limited resources,

How to cite: Brieva, C., Rodriguez, J., and Saco, P.: Vegetation Phenological Metrics and Accumulated Antecedent Precipitation (AAP) in dryland pastures., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14784, https://doi.org/10.5194/egusphere-egu24-14784, 2024.

EGU24-16942 | Orals | BG3.13

Temperate Forest of 2050's: carbon and nutrient cycling responses to seven years of elevated CO2 enrichment at BIFoR-FACE 

Sami Ullah, Carolina Mayoral, Manon Rumeau, Richard Norby, Anna Gardner, Johanna Pihlblad, Michaela Reay, Grace Handy, Liz Hamilton, Kris Hart, Andy Smith, Iain Hartley, and Robert MacKenzie

Land ecosystems absorb ~29% of the total CO2 emissions from anthropogenic sources. Global forests contributes ~62% to the total land ecosystem atmospheric CO2 sinks. The carbon (C) sink in forests is predicted to increase with increasing atmospheric CO2 concentration, called the “CO2 fertilization effect”. However, the projections of the land C sink by the end of the 21st Century based on simulations of state-of-the-art Earth System Models (ESM) is relatively uncertain where a 25 to 50% reduction in the C sink is predicted when nutrient  availability including nitrogen (N)  is accounted for. This uncertainty emanates from poor representation of key ecosystem types, particularly mature forests, to changing nutrient supplies under eCO2.

To elucidate the feedbacks between elevated CO2 (eCO2), C capture and nutrient availability, the Birmingham Institute of Forest Research (BIFoR) established a Free-Air CO2 Enrichment (FACE) facility in a mature temperate forest in the UK, where three FACE arrays (30 m dia) are exposed to elevated CO2 (+150 ppm above the ambient) during the growing season.1 The FACE enrichment started in 2017 and continues to date. In response to the CO2 enrichment, photosynthetic CO2 uptake increased by an average of 23% in the first three years and this enhanced uptake was sustained by the seventh year of CO2 enrichment.2 The enhanced CO2 uptake resulted in an overall significant increase in tree dry matter (+10.5%) and a 28% increase in tree basal area increments.  Belowground C allocation via litter fall (+9.5 %), root exudates (+40%) and fine root biomass and specific root length in organic and mineral soil layers were increased as well. The overall net primary productivity calculated for years 2021 and 2022 was higher by ~2 tons of dry matter under eCO2 compared to ambient arrays confirming and quantifying the extent of the CO2 fertilization effect.

Whilst the litter fall increased under elevated CO2, the N content of the litter decreased significantly pointing towards N conservation via resorption by trees before senescence. Similarly, root C exudation increased; however, exudation of N was not affected, thus leading to a shift in the C:N ratio from an average of 13 to 18 under eCO2. Thus N was conserved via resorption and low root N exudation by trees to sustain enhanced photosynthesis and growth. Gross N mineralization rates were 20% higher under eCO2.3 Enhanced N cycling processes sustained larger soil mineral N supply (~25 kg N ha-1 y-1) under eCO2. Root uptake of N increased by 26% and potential uptake rates of amino acids was larger than mineral N. Tree N conservation and faster N cycling in soils appear to have sustained enhanced tree N uptake and demands. The implications of nutrient availability for C sequestration will depend on how long upregulation of soil N availability via soil organic matter decomposition will last before manifestation of nutrient limitation, if any.

References

1 Hart, K. M. et al. 2020. Global Change Biology 26, 1023-1037. https://doi.org:10.1111/gcb.14786

2 Gardner, A., et al. 2022. Tree Physiology 42, 130-144. https://doi.org:10.1093/treephys/tpab090

3 Sgouridis, F. et al. 2023. Soil Biology & Biochemistry 184. https://doi.org:10.1016/j.soilbio.2023.109072

 

How to cite: Ullah, S., Mayoral, C., Rumeau, M., Norby, R., Gardner, A., Pihlblad, J., Reay, M., Handy, G., Hamilton, L., Hart, K., Smith, A., Hartley, I., and MacKenzie, R.: Temperate Forest of 2050's: carbon and nutrient cycling responses to seven years of elevated CO2 enrichment at BIFoR-FACE, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16942, https://doi.org/10.5194/egusphere-egu24-16942, 2024.

EGU24-17586 | ECS | Orals | BG3.13

Root functional strategies as drivers of the functional composition of soil fungal communities 

Justus Hennecke and Alexandra Weigelt

Plant functioning heavily relies on roots. Many root functions, however, are intrinsically linked with fungal mutualists or can be reduced by fungal antagonists. Consequently, a better knowledge of the factors shaping fungal community composition is essential for our understanding of plant and ecosystem functioning. Beyond abiotic factors, the identity and composition of the plant community itself influence the soil fungal community. Depending on their root functional strategies, plants may engage differently with the soil microbial community. The root economics space (RES) has advanced our understanding of these root functional strategies, and the close association of the collaboration gradient with mycorrhizal fungi indicates that root traits could provide insights into soil fungal communities.

We hypothesize that root trait strategies along the collaboration and conservation axes of the RES, as well as plant diversity, influence the composition of soil fungal communities. For instance, we hypothesize a decrease in the abundance of plant pathogenic fungi in more diverse plant communities and those with well-defended species. Higher plant defense is typically associated with root traits related to high mycorrhization ("outsourcing") and high tissue density ("slow"). Arbuscular mycorrhizal fungi are expected to exhibit contrasting trends compared to pathogens. We expect saprotrophic fungi to be mostly affected by the change in litter quality along the conservation gradient (‘fast-slow’). Hence, our study explores the interactive and additive effects of root trait gradients and plant species richness on soil fungal communities.

In plots of the Jena Experiment with varying levels of plant species richness, we measured root traits at the community level and sampled soil microbial communities. Using amplicon sequencing, PLFA analyses, and microbial respiration measurements, we determined relative abundances of mycorrhizal mutualists, plant pathogens, and saprotrophs as well as absolute fungal and microbial biomass. Our findings indicate a significant decrease in the diversity and relative abundance of plant pathogenic fungi in plant communities with outsourcing root strategies. This highlights the central role of the root collaboration axis in shaping soil fungal communities beyond the direct link with arbuscular mycorrhiza. Changes in fungal and microbial biomass, however, are strongly determined by plant diversity and not driven by root traits.

How to cite: Hennecke, J. and Weigelt, A.: Root functional strategies as drivers of the functional composition of soil fungal communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17586, https://doi.org/10.5194/egusphere-egu24-17586, 2024.

EGU24-17904 | Posters on site | BG3.13

Improved root development leads to higher root derived carbon stocks in formerly deep-plough soils - A biomarker-based approach 

Martina Gocke, Dymphie Burger, Florian Schneider, Arne Kappenberg, and Sara Bauke

Roots can add significant amounts of carbon (C) to the subsoil, which enhances soil fertility and can mitigate climate change. About 5% of agricultural soils in Germany have been deep-ploughed (ploughing depth 30-120 cm) at least once. This technique can provide better root access to the subsoil and may help to increase yields. Studies on deep-ploughed soils focused on C stability, whereas not much is known about root-derived C in the subsoil (>0.3 m). We hypothesized that five decades after deep-ploughing, root-derived C stocks were higher compared to conventionally ploughed treatments due to better root development. This was measured by analysing suberin and cutin monomers as tracers for root- and shoot-derived C at three former deep-ploughed sites in N Germany with different soil textures and different deep-ploughing depths. Concentrations of suberin monomers in the soil were positively correlated with root biomass, this was especially strong at one sandy site. Suberin contributed more to the bulk soil organic carbon (SOC) stocks than cutin throughout the soil profile, independently of the ploughing depth. The three sites responded differently to deep-ploughing. The contribution of suberin monomers to the bulk SOC stock at silty site Banteln and the sandy site Essemühle was 38% higher in the deep-ploughed plots than at the reference plot, respectively, these differences were most visible in the subsoil of Essemühle. We conclude that when deep-ploughing enhances C stocks and root development, suberin SOC stocks increase as well, especially in the subsoil of sandy sites with low pH.

How to cite: Gocke, M., Burger, D., Schneider, F., Kappenberg, A., and Bauke, S.: Improved root development leads to higher root derived carbon stocks in formerly deep-plough soils - A biomarker-based approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17904, https://doi.org/10.5194/egusphere-egu24-17904, 2024.

EGU24-18166 | Posters on site | BG3.13

Subsoil management as tool for climate-change adapted agriculture 

Wulf Amelung, Sabine Seidel, Kathlin Schweitzer, Michael Baumecker, Martina Gocke, Sara Bauke, and Oliver Schmittmann

Agricultural production in Central Europe increasingly suffers from extreme drought events. Improving root access to nutrient and water resources in the subsoil below the plow layer is a potential option to maintain productivity during dry summers. Here, we tested a strip-wise subsoil amelioration system that combines subsoil loosening with injections of 50 t per hectare fresh weight organic matter incorporation into the subsoil (biowaste or green waste compost) and compared it with a treatment comprising only subsoil loosening or a non-ameliorated control. Randomized block design field experiments were conducted on Luvisols and Retisols with an argic (Bt) horizon and rotations of spring barley and winter wheat as well as of rye and maize, respectively. We then monitored yields, protein contents as well as physical and chemical soil properties including changes in stable isotope composition as indicators for plant stress and nutrient uptake. We found that subsoil amelioration has the potential to prevent yield losses of up to 20% for cereals and up to 50% for maize after biowaste compost injection, particularly in dry summers, i.e., depending on weather conditions. These benefits were accompanied by a decrease in soil bulk density at the depth of compost incorporation when biowaste compost was used, but not when green waste compost had been incorporated. In contrast, nutrient stocks, nutrient availability, and microbial biomass were not consistently affected by the subsoil amelioration, but root growth was. Differences in crop development could not be explained by any single soil parameter, suggesting that it was rather a combined effect of loosened subsoil and better supply of subsoil resources that increased subsoil root length density and subsequent better crop performance when the summer was dry.

How to cite: Amelung, W., Seidel, S., Schweitzer, K., Baumecker, M., Gocke, M., Bauke, S., and Schmittmann, O.: Subsoil management as tool for climate-change adapted agriculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18166, https://doi.org/10.5194/egusphere-egu24-18166, 2024.

EGU24-19210 | Posters virtual | BG3.13

Management of belowground inputs is crucial to maintain soil carbon storage under climate change 

Cornelia Rumpel, Teng Hu, Sparkle Malone, and Abad Chabbi

Globally, agricultural soil management leads to soil organic carbon (SOC) losses, which contribute to increase atmospheric CO2 concentrations and thereby climate change. Grassland introduction into cropping phases (ley grasslands) was suggested as an appropriate management strategy to reduce these losses. Here we examine the impact of ley grassland durations in crop rotations on soil organic carbon in temperate climate from 2005 to 2100. We considered two IPCC scenarios, RCP4.5 and RCP8.5, with and without atmospheric CO2 enhancements. We used the DailyDayCent model and a long-term field experiment to show that ley grasslands increase SOC storage by approximately 10 Mg ha−1 over 96 years compared with continuous cropping. Surprisingly, extending ley duration from 3 to 6 years does not enhance SOC, while it had a positive effect on plant residue accumulation in soil. Furthermore, in comparison with non-renewed grasslands, those renewed every three years demonstrated a notable increase in SOC storage, by 0.3 Mg ha−1 yr−1. These results may be explained by the enhanced input of root C in young grassland systems and its preferential contribution to soil organic matter formation. We concluded that management of root C inputs by ley grassland ploughing and renewal intervals is crucial for maximizing SOC stocks in agricultural soils, through balancing biomass carbon inputs during regrowth and carbon losses through soil respiration.

How to cite: Rumpel, C., Hu, T., Malone, S., and Chabbi, A.: Management of belowground inputs is crucial to maintain soil carbon storage under climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19210, https://doi.org/10.5194/egusphere-egu24-19210, 2024.

EGU24-19602 | Posters on site | BG3.13

Influence of soil moisture content on water repellency after a forest burnt 

Glenda Garcia-Santos, Manjana Puff, Christian Kogler, Angel Fernandez, and Eileen Eckmeier

A wildfire occurred in 2012 in one of the protected relic laurel forests of Europe (the National Park of Garajonay, Canary Islands). Soils from unburnt and burnt areas were studied and compared on its water repellence level at different soil moisture content from 2004 till 2023. 32 study sites and more than 100 soils were prepared under saturation conditions (sprayed of distilled water on the surface of each sample). Starting from saturation till oven-dried conditions, lower soil moisture contents were established in successive increments after the end of the WDPT test. The petri dishes were weighted at each step to determine the gravimetric soil water content (g g -1) by the thermogravimetric method at the end of the sequence. To describe the influence of soil moisture content on water repellency, three phases were distinguished. Phases I and II corresponded with the air-drying phase and phase III to the oven-drying phase.

Results of the study highlight that the water repellency of in both unburned and burnt sites strongly depended on the soil moisture content. After 11 years from the fire, the infiltration capacity of the soils showed improved levels of water repellency and in some cases total recovery. In order to reproduce the soil hydrophobic behavior under naturally occurring drying conditions (phases I and II), the time required for infiltration was modelled as a function of gravimetric moisture content during air-drying. Variability (standard deviation) increased with increasing times to infiltration (i.e. decreasing moisture content), which can be attributed to evaporation and soil hydraulic effects influencing the results during longer tests.

 

How to cite: Garcia-Santos, G., Puff, M., Kogler, C., Fernandez, A., and Eckmeier, E.: Influence of soil moisture content on water repellency after a forest burnt, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19602, https://doi.org/10.5194/egusphere-egu24-19602, 2024.

EGU24-19700 | ECS | Orals | BG3.13

Topographic controls on lateral expansion and large-scale patterns of peatlands in the northern boreal landscape 

Betty Ehnvall, Joshua L. Ratcliffe, Elisabet Bohlin, Mats B. Nilsson, Mats G. Öquist, Ryan A. Sponseller, and Thomas Grabs

Despite their importance in global carbon and hydrogeochemical cycles, large-scale spatiotemporal analyses of the lateral expansion and landscape patterns of peatlands have been scarce. This has impeded our possibility to scale-up important peatland processes and properties, such as carbon accumulation to the landscape level. Here we combine landscape-level analysis of ten mire chronosequences to study lateral expansion rates, with an in-depth analysis of mire morphometry in a single chronosequence, to quantify controls on peatland distribution patterns. All ten chronosequences are located along the Swedish coast of the Bothnian Bay Lowlands, and span an age range of 0-9000 years of post-glacial land-uplift. Our findings challenge the widespread misconception of linear mire expansion, and showcase how the extent of entire mire populations evolved over the Holocene, and under the control of upland hydro-topography. Landscape wetness, for instance, favored more rapid lateral expansion rates in relatively young parts of the landscapes. Moreover, based on the in-depth analysis of over 3 000 peatlands at one chronosequence, we found time since land emergence an important control on peatland coverage, and on the formation of large mire complexes. Topography, on the other hand, controlled peatland fragmentation and number regardless of landscape age. Altogether, our results illustrate how time since initiation combined with topographic controls influenced lateral expansion, and present-day peatland distribution patterns in the northern boreal landscape.

How to cite: Ehnvall, B., Ratcliffe, J. L., Bohlin, E., Nilsson, M. B., Öquist, M. G., Sponseller, R. A., and Grabs, T.: Topographic controls on lateral expansion and large-scale patterns of peatlands in the northern boreal landscape, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19700, https://doi.org/10.5194/egusphere-egu24-19700, 2024.

EGU24-19872 | Posters on site | BG3.13

Subsoil amelioration in agriculture: Deep loosening and compost incorporation in a Retisol 

Julien Guigue, Kathlin Schweizer, Oliver Schmittmann, Michael Baumecker, and Ingrid Kögel-Knabner

Subsoils can store significant amounts of water, soil organic carbon and nutrients. In consequence, agricultural subsoil management is being increasingly tested as an option to sustain crop productivity under unfavourable conditions.

The Soil3 project funded by the Federal Ministry of Education and Research of Germany aims at investigating the potential of subsoil management for agriculture. In the frame of this project, we collected samples from a field experiment taking place in Thyrow (Brandenburg, Germany), at a location with low precipitations and the soil was classified as a Retisol. The experiment was designed to investigate the potential benefits of deep ploughing together with deep placement of organic fertilizers on agricultural productivity and soil organic matter stocks. We focus on three treatments, namely the control plots, the plots after deep loosening, and the plots after deep loosening and compost incorporation.

We quantified the changes in C and N stocks and in two size fractions obtained by wet sieving (<20µm and >20µm). We also recorded hyperspectral images of 1-metre soil cores in the Vis-NIR range (400-990 nm) and modelled the C distribution at a high spatial resolution (pixel size = 53×53 μm²).

The spatial distribution of soil organic matter resulting from the incorporation of organic fertilizer in the subsoil is modelled at the sub-millimetric scale. The organic matter stocks and C:N stoichiometry are both impacted by the agricultural management and the imaging technique allows us to distinguish between increased amount of organic matter in hotspots or in soil mineral matrix, and to discuss the mechanisms controlling the observed changes.

How to cite: Guigue, J., Schweizer, K., Schmittmann, O., Baumecker, M., and Kögel-Knabner, I.: Subsoil amelioration in agriculture: Deep loosening and compost incorporation in a Retisol, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19872, https://doi.org/10.5194/egusphere-egu24-19872, 2024.

EGU24-20148 | Posters on site | BG3.13

Exploring Non-traditional Metal(loid) Stable Isotope Tools for Agricultural Systems  

Anne E. Berns, David Uhlig, Bei Wu, Kathlin Schweitzer, Sara L. Bauke, Arnd J. Kuhn, Roland Bol, and Amelung Wulf

Ratios of non-traditional metal(loid) stable isotopes are a well-established tool in geosciences, used to semi-quantitatively trace geological transformation processes and biological cycling of mineral nutrients in the soil-plant system. Even though these processes also occur in agricultural systems, non-traditional metal(loid) isotope ratios are rarely used in agronomy. Their potential lies in revealing variations in isotope composition of metal elements like Fe and Mg between soil compartments and crops due to isotope fractionation occurring along the solubilization-uptake-translocation pathway [e.g., 1-5]. Agricultural management practices may influence isotope ratios in plant-available soil pools and, consequently, in plants.

The BonaRes-project Soil3 aims to enhance crop yield by optimizing nutrient and water use efficiency for field crops through subsoil management. We hypothesized that creating favorable conditions for crops in subsoil, like reducing physical resistance for roots or creating nutrient-rich hotspots, will stimulate crops to develop deeper root systems than without subsoil management. To examine our hypothesis, we altered subsoil conditions in field trials by cultivating deep-rooting pre-crops and employing technical subsoil improvement techniques through strip-wise deep loosening and organic matter injection. To assess the influence of standard management practices, such as liming, and possible nutrient deficiencies on isotope ratios in soil compartments and plants, we also investigated the isotope composition of nutrient pools in the deep subsoil of long-term field experiments and set up controlled pot experiments with defined nutrient conditions.

In the context of subsoil management experiments, we first conceptually explored the extent to which the Mg isotope composition of soil compartments and crops would be influenced by subsoil management. The novel outcome of this concept is that the Mg use efficiency of crops can be solely quantified from Mg stable isotope ratios, provided that agricultural lime is not applied to the fields [2]. Secondly, we used 87Sr/86Sr ratios to assess alterations in nutrient uptake depth in the subsoil managed plots. Our findings indicate that deep loosening with compost incorporation indeed deepened the nutrient uptake depth, with crops reaching previously unused nutrient reservoirs [6].

Regarding the influence of liming on Fe and Mg isotope compositions in a 100-year field experiment, we found a shift towards heavier Fe isotopes in rye, indicating an upregulation of the phytosiderophore complexation mechanism to counteract reduced Fe solubility at higher pH [5], and a pronounced shift towards lighter Mg isotopes in the exchangeable Mg pool, mainly attributed to an increased removal of heavy Mg isotopes by plant uptake [3]. A controlled pot experiment revealed that Mg deficiency altered the Mg isotope composition in wheat organs, indicating stress-induced shifts in Mg translocation within the plant [4].

Non-traditional metal(loid) stable isotopes hence provide powerful insights into biogeochemical cycling of nutrients that conventional analyses cannot detect.

[1] Wu et al., Earth-Science Reviews 2019, 190:323-352.

[2] Uhlig et al., Chem. Geol. 2022; 611:121114.

[3] Wang et al., Eur. J. Soil Sci. 2021; 72:300–312.

[4] Wang et al., Plant Soil 2020; 455:93–105.p

[5] Wu et al., Eur. J. Soil Sci. 2021; 72:289-299.

[6] Uhlig et al., Plant Soil 2023; 489: 613–628.

How to cite: Berns, A. E., Uhlig, D., Wu, B., Schweitzer, K., Bauke, S. L., Kuhn, A. J., Bol, R., and Wulf, A.: Exploring Non-traditional Metal(loid) Stable Isotope Tools for Agricultural Systems , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20148, https://doi.org/10.5194/egusphere-egu24-20148, 2024.

During last glacial cycle that peaked ~18,000 years (B.P.), the southwestern United States was much wetter and cooler than in the Holocene (last 11,000 years) and today. Since the Last Glacial Maximum (LGM), wetter and cooler climate in most arid and semiarid regions has generally transitioned to drier and warmer conditions, establishing their characteristic (i.e., today’s native) ecosystems and fire regimes 3,000 - 5,000 years B.P. We use the Landlab earth surface modeling toolkit to explore the implications of the climate since the late Pleistocene on ecosystem patterns, driven by a reconstructed climate. Alternative grass and shrubs states emerged as the modern climate established due to randomness in fire arrivals. The role of topography is explored. Our findings offer an explanation for observed shrub and grass ecotones under similar environmental conditions in central New Mexico. 

How to cite: Istanbulluoglu, E., Nudurupati, S., and Collins, S.: Alternative grass and shrub states emerge in paleo-climatic cellular-automaton ecohydrology model simulations for central New Mexico, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21054, https://doi.org/10.5194/egusphere-egu24-21054, 2024.

EGU24-21749 | Orals | BG3.13

Effect of different methods of subsoil loosening on the physical soil properties, root growth, soil water withdrawal and crop yield of a dry sandy soil 

Kathlin Schweitzer, Michael Baumecker, David-Paul Klein, Vera Porwollik, and Oliver Schmittmann

Compaction of the subsoil on intensively used arable land is one of the main causes of restricted vertical root growth. As a result, nutrient and water resources from the subsoil can only be used by the plant to a very limited extent. Particularly during temporary drought, the drying out of the topsoil and the associated reduction in nutrient availability, is no longer possible to compensate by using the water and nutrient reserves from the subsoil.

Subsoil loosening is increasingly discussed as a suitable method to increase crop yields in drought-prone areas. In the “Soil^3”project funded by the Federal Ministry of Education and Research of Germany, a field trial with winter rye and silage maize has been carried out on a dry highly compacted sandy soil in Thyrow (Germany) since 2019. The soil of the experimental site is classified as a Retisol, the climate is humid continental.

Five treatments are tested in the trial, where mechanical subsoiling using the Soil^3 method (Schmittmann et al., 2021) in 45 cm deep furrows with a spacing of 1 m (FU), in furrows with incorporation of organic compost (FU+CO) or with incorporation of straw (FU+ST) is compared with subsoiling with Paraplow to a depth of 50 cm (PP) and with reduced tillage to a depth of 15 cm (RT) as a control treatment. The effects of subsoiling on physical soil properties, penetration resistance and soil moisture profile as well as on root growth (vertical distribution of root length density down to a depth of 90 cm) and crop yield are being investigated.

The results of the first four years of the trial have shown that soil loosening with Soil^3 technology improved the physical soil properties within the furrows, with the water holding capacity of the soil only being increased in the furrows with incorporated organic matter. Root growth was limited to the first 20 cm of soil depth in the control treatment and in the area between the furrows. In the furrows, root length increased uniformly up to a depth of 50 – 60 cm. Total root length and rooting depth was highest in furrows with compost. The incorporation of straw can inhibit root growth. The cultivation with the Paraplow also led to an even vertical root distribution up to a depth of 50 cm, but not to a greater total root length.

The net water removal from the furrows in treatments with Soil^3 technology, but also from the areas between the furrows, was up to 50 % higher than in the control treatment. However, significant furrow effects were observed in winter rye during prolonged drought, with emergency ripening occurring in the areas between furrows.

On average over the first four years of the field trial, subsoiling achieved a maximum yield increase of 0.8+0.1 t ha-1 DM ha for winter rye in the "PP" treatment and 2.3 +1.4 t ha-1 DM ha for silage maize in the "FU" treatment of the Soil^3 technology. Thus, loosening in furrows appears to be particularly effective for row crops.

How to cite: Schweitzer, K., Baumecker, M., Klein, D.-P., Porwollik, V., and Schmittmann, O.: Effect of different methods of subsoil loosening on the physical soil properties, root growth, soil water withdrawal and crop yield of a dry sandy soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21749, https://doi.org/10.5194/egusphere-egu24-21749, 2024.

EGU24-22049 | Posters on site | BG3.13

Rapid alteration of organic matter cycling in a boreal peatland in response to rising temperatures 

Guido L.B. Wiesenberg, Nicholas Ofiti, Arnaud Huguet, Paul J. Hanson, and Michael W.I. Schmidt

Global warming and increasing air temperatures also result in rising soil temperatures. Although acceleration of soil organic carbon cycling can be expected, the order of magnitude and speed of adaptation of carbon cycling to warming still remains largely unknown. This is especially crucial in boreal peatlands, where large reserves of terrestrial carbon are stored and these systems are known for their vulnerability to environmental changes.

We investigated the organic matter composition in the SPRUCE (Spruce and Peatland Responses Under Changing Environments) experiment, where a boreal peatland was exposed to temperatures of up to +9°C and increased CO2 concentration compared to control conditions in open top chambers. A broad set of molecular markers (e.g., free extractable and bound lipids, lignin, benzene polycarboxylic acids) was used to trace incorporation and cycling of organic matter in the peat profile down to three meters depth four years after the start of the experiment.

A strong response to increasing temperature was observed in the plant, microbial and peat chemical composition, the latter mainly in the acrotelm (0-30 cm) and partially also in the mesotelm (30-70cm). The response of the plant chemical composition was species-specific with the exception of nitrogen concentrations that increased for all plants. This is related to the stronger degradation of peat organic matter and thus increasing availability of nitrogen with rising temperature. All investigated molecular markers indicated a very fast response of carbon cycling in the whole acrotelm of the peat profile. This resulted from a dropping water table and thus more oxic conditions in the peat, which further enabled increasing shrub and tree root growth and increasing microbial abundance and activity. As a consequence of the more aerobic conditions, not only the comparatively easily degradable free extractable lipids, but also slow cycling polymeric substances such as suberin/cutin, lignin, and benzene polycarboxylic acids rapidly degraded and reflect an unexpectedly fast cycling of organic matter in the boreal peatland with increasing temperature. The acceleration of carbon cycling within the peatland with rising temperature is also reflected by the partial uptake of respired CO2 by the plants as indicated by the bulk and compound-specific d13C composition of the plants. Overall, our results illustrate the fast alteration of organic matter cycling in a boreal peatland when exposed to increasing temperature.

How to cite: Wiesenberg, G. L. B., Ofiti, N., Huguet, A., Hanson, P. J., and Schmidt, M. W. I.: Rapid alteration of organic matter cycling in a boreal peatland in response to rising temperatures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22049, https://doi.org/10.5194/egusphere-egu24-22049, 2024.

EGU24-22056 | ECS | Posters on site | BG3.13

The use of cover crops in climate change scenarios 

Derlis Enciso Santacruz, Raúl de Pablo Gonzalez, Jorge D. García, Mariela Navas, Chiquinquirá Hontoria, Ana Moliner, Fernando Peregrina, and Ignacio Mariscal-Sancho

Cover crops (CC) are emerging as key tools in agrosystems, providing essential ecosystem services for climate change adaptation and mitigation. The great diversity of possible cover crops and climate scenarios makes it necessary to investigate how combinations of these two factors (cover crop type and climate scenario) affect agrosystems.

The experiment was carried out with mesocosms with soil of a Typic Calcixerept, inside a growth chamber with continuous control and programming of temperature, humidity, luminosity and ventilation. The climatic scenarios studied correspond to an average temperature increase of +3 oC and three levels of rainfall or water availability of: +10%, -5% and -20% with respect to the records of the reference area in the center of the Iberian Peninsula in the period 1950-2015.

In this work, the effect of five CC was evaluated: i.e. 1) without CC. 2) With CC composed by a Brassica (Camelina sativa L.). 3) with CC composed of a grass (Hordeum vulgare L.). 4) with CC composed of a legume (Vicia sativa L.) and 5) with CC composed of a mixture of the three species mentioned above. After the simulation from October 15 to January 1, the total population of Fungi (ITS), Archaea (16SA), Bacteria (16SB), electrical conductivity, macro and micro nutrients in the rhizospheric soil were evaluated. In addition, the biomass production and their macro and micronutrient concentrations were quantified.

The results obtained were modulated by water availability and microbial activity in the soil. In this sense, an increase in the population of ITS and 16SB was observed as the available water increased, especially at the +10% level. These results allow us to establish that the increase in moisture favored microbial activity in the study conditions, which is related to greater mineralization of organic matter. The CC composed of grasses and +10% rainfall stood out with a greater contribution of plant biomass, revealing the importance of soil moisture and the presence of grasses to increase the contribution of organic matter to the soil. On the contrary, the lower water availability (-20%) and the soil without cover produced an increase in electrical conductivity with respect to other treatments, and adversely affected numerous variables.

Among the cover crops, the legume and the mixture proved to be less affected by changes in the amount of available water. In addition, the mixture exhibited a mechanism that enabled it to achieve the highest Mg concentration in the plant. Possibly because the acquisition traits of the different species showed some complementarity.

For future research, the study of these CC will be carried out under other climatic scenarios, in order to elaborate a digital twin of each CC that will provide a more accurate information on their effects on the agrosystem according to the expected temperatures and water availability. This could help to choose the best cover crop for each scenario and objective.

How to cite: Enciso Santacruz, D., de Pablo Gonzalez, R., García, J. D., Navas, M., Hontoria, C., Moliner, A., Peregrina, F., and Mariscal-Sancho, I.: The use of cover crops in climate change scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22056, https://doi.org/10.5194/egusphere-egu24-22056, 2024.

EGU24-729 | ECS | Orals | BG3.15

Ground beetles trophic interactions alter available nitrogen in forest soils 

Janey Lienau, Marlyse C. Duguid, and Oswald J. Schmitz

The dominant paradigm is that nitrogen cycles from plants to soil organic matter, being released in mineral form in the soil after organic matter is decomposed by microbes to be taken up again by plants. It is generally held that the process of decomposition is the rate-limiting step in the cycle. Ground dwelling macroinvertebrates may play a large role in ecosystem function by mediating microbe decomposition via predation and could be key links between plant litter and nitrogen availability in soil nutrient cycles. Ground beetles (Carabidae) are an abundant family of soil invertebrates that prey on groups of decomposing invertebrates. The goal of this study was to develop how predation from ground beetles contributes to nitrogen cycling as forests age. We hypothesized that ground beetles in young and old forests would indirectly impact available nitrogen. Our approach to addressing predator impacts on nitrogen cycling in forest soils was an experiment in young and old forest stands at Yale-Myers Forest in the northeastern United States using mesocosm cages stocked with predatory and detritivore ground beetles to create a trophic cascade over 68-days. Both forest sites had five blocks of three clustered treatments (n = 30). Treatments consisted of a control, detritivore, and predator and we took soil cores in each cage to assess available nitrogen. We used standard mesocosm cages that were designed for research on arthropod trophic interactions in ecosystems 1 m2, 0.8 m tall cylindrical mesocosms constructed with a scaffolding covered with fine mesh aluminum stocked with live beetles. We conducted a series of linear mixed-effect models in RSudio from the nlme package and lme() function in R Studio to predict the delta nitrogen mineralization rate by treatment in both young and old forests separately. We used ground beetle treatment as a fixed effect and block as a random effect to account for variation in microsite differences. Here we show differences in available nitrogen between forest types (P-value = 0.03). Our hypothesis that predators would impact available nitrogen was supported in young forests. Net nitrogen mineralization (P-value = 0.007) was consistently higher in the predator treatments compared to the control. In conclusion, this study suggests predator top-down control may be important for soil nitrogen availability in temperate forest soil via mediating microbe decomposition. Macroinvertebrates and their food web interactions in the soil should be further investigated and included in soil biogeochemical models.

How to cite: Lienau, J., Duguid, M. C., and Schmitz, O. J.: Ground beetles trophic interactions alter available nitrogen in forest soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-729, https://doi.org/10.5194/egusphere-egu24-729, 2024.

EGU24-1454 | ECS | Orals | BG3.15

A meta-analysis addressing the effects of eucalypt plantations on soil invertebrate density and diversity 

Raquel Juan-Ovejero, Marie L.C. Bartz, Dilmar Baretta, José Paulo Sousa, and Verónica Ferreira

Eucalypt plantations may have negative consequences on soil properties, yet a comprehensive understanding of their impact on soil invertebrate communities is lacking. This knowledge gap constrains our ability to unravel the potential effects of these fast-growing plantations on soil functioning. Hence, to analyze the overall impact of eucalypt plantations on soil invertebrates and to determine the main factors influencing these effects, we conducted a meta-analysis of studies comparing eucalypt plantations with different land use types (i.e. native forests, other forestry plantations, croplands, grasslands, integrated production systems, and invasive copses). We assessed their effects on both the density (analyzing 26 studies with 143 comparisons) and diversity (examining 14 studies with 168 comparisons) of soil invertebrate communities. The impact of eucalypt plantations on the density and diversity of soil invertebrate communities did not show statistically significant differences when considering all land use types together. However, the effects of eucalypt plantations on soil invertebrate density and diversity varied based on the specific land use types considered for comparison. The density was lower in eucalypt plantations relative to other forestry plantations but higher than in grasslands and integrated production systems. Contrarily, diversity was lower in eucalypt plantations compared to native forests but higher compared to other forestry plantations. Furthermore, the impacts of eucalypt plantations on soil invertebrates relative to other forestry plantations were influenced by factors such as the type of other forestry plantation (angiosperms versus gymnosperms), mean annual temperature, and annual precipitation of the study sites. These findings suggest that the effects of eucalypt plantations on soil invertebrate communities are context-specific and heavily influenced by the diverse characteristics of the different land use types considered for comparison. Taking into account the specific management practices and environmental conditions within eucalypt plantations and other land use types can provide insight into how alterations in land cover affect soil invertebrate communities.

How to cite: Juan-Ovejero, R., Bartz, M. L. C., Baretta, D., Sousa, J. P., and Ferreira, V.: A meta-analysis addressing the effects of eucalypt plantations on soil invertebrate density and diversity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1454, https://doi.org/10.5194/egusphere-egu24-1454, 2024.

Earlier studies show that across all biomes about half of litter fall is consumed by soil fauna. Part of that litter can be incorporated in to mineral soil by process called bioturbation. Soil fauna bioturbation may affect various processes related to decomposition and stabilization of organic matter, soil water retention, formation of habitat for soil biota and so on. 

In this contribution I summarized global experiment aimed to estimate amount of litter which is incorporated in soil by soil fauna bioturbation.  To do so a I used a filed mesocosm experiment located in 23 locations in all major biomes of northern hemisphere from tundra to tropical rain forest.   Mesocosms containing litter and mineral soil in two separate compartments were exposed in soil litter interface. These mesocosm were either accessible to soil fauna or not which allow to measure removal of litter from soil surface as well as accumulation of litter in mineral soil as well as overall loss of litter from the mesocosm. Mesocosm were supplied in local litter. Overall fauna significantly increased carbon accumulation in mineral soil. The effect was higher in temperate and tropical climate and lover in cold and dry biomes. Amount of carbon incorporated by fauna into mineral soil significantly positively correlated with actual evapotranspiration and negatively with CN ratio of litter.  In comparison with previous studies of litter consumption it can be estimated that about half of litter consumed by soil fauna is incorporated in mineral soil.  To put this together it appears that in natural ecosystem about half of annual litter fall is consumed by soil fauna and half of that fauna incorporate into mineral soil. This makes soil fauna important player in global carbon cycle

How to cite: Frouz, J.: Global pattern of soil fauna drivel litter mixing incorporation to soil in relation to climate and litter quality , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3228, https://doi.org/10.5194/egusphere-egu24-3228, 2024.

EGU24-3873 | Orals | BG3.15

Alleviation of functional limitations by soil fauna is key to climate feedbacks from arctic soils 

Eveline J. Krab, Gesche Blume-Werry, Jonatan Klaminder, and Sylvain Monteux

Alleviation of functional limitations by soil fauna is key to climate feedbacks from arctic soils

Arctic soils play an important role in Earth’s climate system, as they store large amounts of carbon that, if released, could strongly increase greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important groups of soil organisms, and here, we highlight recent empirical evidence that soil fauna presence or absence is key to understanding and predicting future climate feedbacks from arctic soils. We propose that the arrival of certain soil fauna into arctic soils may introduce “novel functions”, resulting in increased rates of, for example, nitrogen cycling, litter fragmentation, or bioturbation, and thereby alleviate functional limitations of the current soil organism community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent micro- meso-, and macroorganisms into new regions and newly thawed soil layers can drastically affect soil functioning. These new observations make us question the current view that neglects organism-driven “alleviation effects” when predicting future feedbacks between arctic ecosystems and our planet’s climate. We therefore advocate for an updated framework in which soil biota and the functions by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems.

How to cite: Krab, E. J., Blume-Werry, G., Klaminder, J., and Monteux, S.: Alleviation of functional limitations by soil fauna is key to climate feedbacks from arctic soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3873, https://doi.org/10.5194/egusphere-egu24-3873, 2024.

EGU24-5867 | Orals | BG3.15

Tree species effects on stocks and stability of soil carbon: Links to mycorrhizal association and soil biota composition and functioning 

Lars Vesterdal, Christina Steffens, Yan Peng, Haifeng Zheng, Huimin Yi, and Petr Hedênec

Tree species with leaf litter traits driving slow rates of leaf litter decomposition have traditionally been associated with accumulation of higher soil organic carbon (SOC) stocks than tree species with fast litter decomposition rates. This hypothesis has mainly been based on observations of thick C-rich forest floors under tree species associated with ectomycorrhizae (ECM). However, a recent hypothesis suggested that tree species with foliar litter traits conducive to fast decomposition will lead to more pronounced microbial transformation and stabilization of litter C. The latter tree species are often associated with arbuscular mycorrhizae (AM) and may enhance deeper incorporation of C by more active soil fauna communities and by higher belowground rates of litter input. The Danish multi-site common garden tree species experiment includes ECM and AM tree species that differ widely in traits such as foliar litter chemistry. The experiment has been studied over the last 15 years to document and explain soil C stocks supported by emerging studies of soil fauna and soil microbial community composition and functioning.

The six common European tree species formed distinct groups in soil carbon characteristics as well as in soil biota community composition and functioning that partly reflected their mycorrhizal association. Forest floor C stocks were consistent with the traditional perception of slowly decomposing leaf litter in ECM species being conducive to high C stocks. However, an intriguing pattern of higher C stocks in the mineral soil in AM tree species with high litter quality and characteristic soil biota functioning supported the recent microbial stabilization hypothesis and suggested deeper incorporation of C in more stable forms.

Based on new results on microbial, macro- and mesofauna communities and their functioning, and on repeated soil sampling, this talk will revisit the common garden experiments for a synthesis of processes and patterns in organic matter formation that may explain observed patterns in quantity and quality of SOC.

How to cite: Vesterdal, L., Steffens, C., Peng, Y., Zheng, H., Yi, H., and Hedênec, P.: Tree species effects on stocks and stability of soil carbon: Links to mycorrhizal association and soil biota composition and functioning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5867, https://doi.org/10.5194/egusphere-egu24-5867, 2024.

EGU24-6636 | ECS | Posters on site | BG3.15

Soil fauna presence in post-mining area after afforestation with diverse tree species 

Wiktoria Ogar, Rüdiger M. Schmelz, Bartłomiej Woś, Tomasz Wanic, Marcin Pietrzykowski, and Agnieszka Józefowska

Soils around the world are facing increasing degradation due to human activities such as mining. This degradation adversely affects soil functioning and, consequently, the ecosystem services it provides. Therefore, our research concerns various strategies for restoring forest ecosystems at such sites. Soil fauna can play a key role in restoring degraded soils, positively influencing their properties, especially in the case of newly formed soils. Providing an influx of organic matter, such as through afforestation, can promote the growth of microorganisms and subsequently facilitate the emergence of soil fauna and the process of soil formation.

Our main research question is how different tree species and soil disturbances, in this case especially mining, affect enchytraeid and earthworm communities and how soil fauna contribute to the soil-forming process in post-mining soil. We selected sandy soil in sandpit excavations afforested with various tree species, including Scots pine (Pinus sylvestris L.), European larch (Larix decidua Mill.), Silver birch (Betula pendula Roth) and European oak (Quercus robur). Soil profiles were described and samples were taken for basic soil analysis, including pH, soil organic carbon and nitrogen content, and soil porosity. In addition, earthworms and enchytraeids were collected from all plots to assess the density and species diversity of the soil fauna.

Based on the WRB classification, the studied soils were classified as Arenosols. The studied soils generally showed acidic pH, subangular structure in the upper layers and slightly acidic pH with a lack of structure in the subsoil. Slight differences were observed in the thickness of the humus layer between the soil profiles. Areas undergoing reclamation after sand mining were characterized by low enchytraeid densities. The Shannon index reached the highest value for the birch site and was 0.64 and the lowest for the pine site and was 0.08. In turn, the highest density of enchytraeid occurred at the oak site and was 34574 ind. m-2 and the lowest at the larch site and was 10123 ind. m-2. Soils under deciduous species show higher density and biomass of earthworms compared to soils under coniferous species. The highest density of earthworms was noted at the birch site and was 25 ind. m-2 and the lowest at the larch site and was 0 ind. m-2. It is worth noting that the birch site showed the highest diversity of enchytraeid species and highest abundance of an earthworm species. The density of the studied soil fauna was not high, but their presence and diversity may indicate a positive trajectory of changes occurring in these soils. 

This research was funded by The National Science Centre, Poland, grant No. 2021/42/E/ST10/00248. The analyses were performed in the Laboratory of Forest Environment Geochemistry and Reclaimed Areas, University of Agriculture in Krakow.

Key words: earthworm, enchytraeid, sand mine, sandy soil

How to cite: Ogar, W., Schmelz, R. M., Woś, B., Wanic, T., Pietrzykowski, M., and Józefowska, A.: Soil fauna presence in post-mining area after afforestation with diverse tree species, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6636, https://doi.org/10.5194/egusphere-egu24-6636, 2024.

EGU24-6768 | Posters on site | BG3.15

Earthworms impact on soil organic matter mineralization sheds new light on their ecological groups  

Gwenaëlle Lashermes, Luna Vion-Guibert, Yvan Capowiez, Gonzague Alavoine, Ludovic Besaury, Olivier Delfosse, and Mickaël Hedde

Earthworms contribute to numerous ecological functions by impacting the soil biogeochemistry. Through their bioturbation activity, they modify the soil structure and the distribution of its components. By ingesting soil and secreting mucus, earthworms bring microorganisms and organic matter into contact under conditions that favor microbial activity, thus stimulating the mineralization of carbon and nutrients by soil microorganisms. While these effects are relatively well known for the dominant agricultural species, the diversity of earthworm habitats and functional traits suggests that not all would have the same impact.

Recently, Capowiez et al. (2024) proposed a classification of earthworms into functional groups (sensu Hedde et al. 2022) in relation to bioturbation (reorganization of soil particles). The aim of our work was to study the linkages between the organic matter mineralization and soil bioturbation functions performed by earthworms. We aimed to assess the different impacts on biogeochemical cycles of earthworm species belonging to different bioturbation functional groups.

Six earthworm taxa were incubated in soil columns in the presence of alfalfa litter: Octodrilus complanatus (intense tunneler or anecic), Lumbricus terrestris and Aporrectodea caliginosa meridionalis (burrower or epi-anecic), Alollobophora chlorotica (shallow biotubator or epi-endogeic), Octolasion cyaneum (deep bioturbator or hypo-endogeic), Microscolex dubius (intermediate). After 6 weeks of incubation, the gallery networks were scanned, and pictures were analyzed. The columns were then opened, and soil samples were taken to quantify carbon and nitrogen mineralization, as well as the abundance and diversity of microorganisms in different soil compartments: casts (earthworms surface excrement), drilosphere (soil around the galleries) and surrounding bulk (soil not directly altered by earthworms).

The results on earthworm bioturbation activity were consistent with those obtained by Capowiez et al. (2024) and made it possible to distinguish five functional groups (A. c. merdionalis and O. cyaneum being indistinguishable from each other). The presence of earthworms increased carbon and nitrogen content and stimulated mineralization in the casts but had low impact on the drilosphere. Biogeochemical and microbiological measurements tended to separate the taxa studied into two groups: species that stimulated carbon and nitrogen mineralization in the casts, by selecting bacteria (during passage through the digestive tract) and maintaining high humidity, and those that had little effect on microbial communities and their activity. Furthermore, the results showed that L. terrestris, often used as a "model" worm, had a higher impact on soil structure and on the mineralization of organic matter than most of the other taxa studied, and is therefore not representative of the role of earthworms in soils.

References:

Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M., & Bottinelli, N. (2024). Soil Biology and Biochemistry, 188, 109209.

Hedde, M., Blight, O., Briones, M. J., Bonfanti, J., Brauman, A., Brondani, M., ... & Capowiez, Y. (2022). Geoderma, 426, 116073.

 

How to cite: Lashermes, G., Vion-Guibert, L., Capowiez, Y., Alavoine, G., Besaury, L., Delfosse, O., and Hedde, M.: Earthworms impact on soil organic matter mineralization sheds new light on their ecological groups , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6768, https://doi.org/10.5194/egusphere-egu24-6768, 2024.

Sugar maple (Acer saccharum Marsh.) forests are the dominant ecosystems in southern Quebec (Canada) and are widely used for maple syrup production, wood products manufacturing, recreation, and sometimes converted to hybrid poplar plantations. Consequently, human footprints on these ecosystems are multifarious, with potential impacts on soil greenhouse gas (GHG) emissions. We studied the principal and interactive effects of three anthropogenic factors (liming, introduction of non-native earthworms, and tree litter quality) on soil CO2 and N2O emissions, and on related soil properties. Thirty-two PVC pipes (1.0 m x 30 cm dia.) were set upright and filled with homogenized soil collected from a sugar maple stand. Each of these mesocosms was assigned one of eight treatments from a 2×2×2 factorial array of three experimental factors (± liming, ± earthworms, maple vs. poplar litter), replicated in four complete blocks. Over the course of a 15-month trial, we measured soil CO2 and N2O emissions from each mesocosm. At the conclusion of the trial, we measured soil pH, % organic matter (SOM), mineralizable nitrogen (Nmin), water-stable aggregate index (WSAI), δ13C, and mineral-associated organic matter (C-MAOM) at each of four soil depths (0, 20, 40 and 60 cm). The effects of earthworms (+EW) and liming on the response variables were generally greater than the effects of litter types. Liming increased pH by 0.6 units in the soil surface layer. Treatments had negligible effects on SOM throughout the soil profile. Nmin increased by factors of ×15 and ×7 in the surface layer of the Liming and EW treatments respectively. In contrast, mineralizable NO3-/NH4+ ratios were 125 and 80 in the EW and EW+Liming treatments respectively, and only 30 in the Liming and Control treatments, suggesting that nitrification was stimulated by soil mixing/aeration rather than by pH. Accordingly, cumulative N2O emissions were higher in the EW and Ew+Liming treatments (500 and 250 mg N2O-N m-2, respectively) compared to the Control and Liming treatments (< 50 mg N2O-N m-2). Likewise, cumulative CO2 emissions increased in the EW treatment and decreased in the Liming treatment relative to the Control; liming offset the positive effect of earthworms when both factors were combined.  Liming increased δ13C by 3‰ in the soil surface layer, hinting that lower CO2 emissions in this treatment could have resulted from higher microbial processing of litter leading to more stable SOM. However, all treatments had no effect on C-MAOM, suggesting instead that higher δ13C in the Liming treatment resulted from higher 13C in the liming material compared to native soil C. Moreover, both Liming and EW treatments increased WSAI, thus refuting the premise that CO2 and aggregate stability were related. We conclude that the spread of non-native earthworms in sugar maple forests of southern Quebec is potentially increasing soil N2O and CO2 emissions by up to one order of magnitude. Increased N2O emissions are likely due to increased nitrification, whereas CO2 emissions cannot be predicted by changes in C-stability. Liming could potentially be used to mitigate the positive effects of earthworms on soil GHG emissions.

How to cite: Jordan, F. and Ouimet, R.: Liming offsets the increase in soil greenhouse gas emissions due to non-native earthworms in sugar maple forests., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6967, https://doi.org/10.5194/egusphere-egu24-6967, 2024.

EGU24-7303 | ECS | Posters on site | BG3.15

Earthworm-microbe interactions: what can we learn from controlled earthworm introduction into boreal forest soil? 

Péter Garamszegi, Karina E. Clemmensen, Thomas Keller, Björn D. Lindahl, and Eveline J. Krab

Earthworms are considered ecosystem engineers due to their remarkable influence on the soil system. While creating the drilosphere in the soil, they interact with microorganisms both directly and indirectly and thereby greatly affecting soil carbon and nutrient cycling. Earthworm activity may reshape soil microbial communities in several ways. Amongst others, earthworms may cause shifts in microbial communities and activities/processes by damaging hyphal networks, selectively feeding on substrates hosting certain bacteria and fungi, and by redistributing nutrients in the litter-soil continuum of the soil. However, interactions between earthworms and soil microbes, especially fungi, are poorly understood, and the mechanisms by which earthworms affect microorganisms are challenging to study. First, given the widespread presence of earthworms, finding soils that have not been previously affected by earthworms is difficult. Second, controlled laboratory incubation experiments generally exclude certain functionally important groups of fungi such as plant-associated ectomycorrhizal (EcM) fungi. In our recently initiated project, we aim to study earthworm influence on soil fungal communities and associated soil biogeochemical processes by introducing soil-dwelling earthworms into to date yet uncolonised northern forest soils. Therefore, we established mesocosm boxes filled with soil turfs including tree saplings from northern boreal forests and placed them in an experimental forest in southern Sweden. Later on, we will introduce earthworms (Aporrectodea and Lumbricus spp) into the mesocosms and measure (depth specific) changes in microbial communities and genes using RNA and DNA sequencing. Potential microbial changes will be related to measurements of carbon and nitrogen cycling, such as carbon-dioxide flux measurements and soil mineral nitrogen content analysis in the growing season after earthworm introduction.

How to cite: Garamszegi, P., Clemmensen, K. E., Keller, T., Lindahl, B. D., and Krab, E. J.: Earthworm-microbe interactions: what can we learn from controlled earthworm introduction into boreal forest soil?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7303, https://doi.org/10.5194/egusphere-egu24-7303, 2024.

EGU24-7464 | Orals | BG3.15

Structure and functioning of soil animal food webs across temperate and tropical forests 

Anton Potapov, Sergey Thurikov, Stefan Scheu, and Alexei Tiunov

Soil biogeochemical cycles are regulated by soil food webs. However, variation of soil food web structure and functioning across key environmental gradients remains unknown, hampering generalisations of any suggested links between fauna and biogeochemistry. Here, we used two complementary approaches to quantify soil animal food web variation across forest types, from southern taiga to rainforests. First, we applied the energy flux approach to explore patterns of energy distribution across micro-, meso- and macrofauna. We showed that tropical soil food webs have consistently higher energy flux, proportionally higher predation rates (31 vs 18-27% of the total energy flux) and relied more on the plant energy channel (21 vs 10%), but less on the bacterial (5 vs 9-18%) and litter energy channels (14 vs 18-32%), than temperate soil food webs. Second, we compiled a large database (>8000 records) of stable isotope composition of soil animals to see how detritivory and microbivory in soil animal communities change with environmental temperature and litter quality. Despite little effect of temperature, shift in 15N concentrations suggested that in most cases low litter quality (high %C and low %N) result in a switch from feeding directly on litter to feeding on microorganisms. Thus, soil animals change their functional role from competitors to consumers of microbes. Our studies show how the functioning of soil animal food webs changes across biomes with different climate and litter quality and summarise functional roles animals play in different biomes.

How to cite: Potapov, A., Thurikov, S., Scheu, S., and Tiunov, A.: Structure and functioning of soil animal food webs across temperate and tropical forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7464, https://doi.org/10.5194/egusphere-egu24-7464, 2024.

EGU24-7897 | ECS | Orals | BG3.15

Trophic cascades in simplified soil food webs and consequences for carbon cycling 

Justine Lejoly, Yuxin Wang, Esther van Hoof, Valentin Favre, Casper Quist, Stefan Geisen, and Ciska Veen

The soil microbiome is widely recognized as an important driver of soil carbon (C) cycling but the role of soil fauna is largely overlooked. It is proven that microbivores, e.g., bacterivorous nematodes, can alter the microbiome composition and activity, but the microbivores themselves can be controlled by their predators. How these higher trophic interactions impact the soil microbiome, through trophic cascades, remains to be investigated, as well as the consequences for soil C cycling.

We tested the existence and direction of trophic cascades in soil food webs by manipulating the presence of bacterivorous-dominated nematode communities and their predators (nematode-feeding mite Gaeolaelaps aculeifer) in a full factorial design. After microbial re-inoculation of sterilized grassland soil and soil food web reconstruction, we monitored the decomposition of added grass litter and associated C mineralization during five weeks. We also characterized the soil microbiome composition by phospholipid fatty acid analysis and 16S sequencing.

While the presence of nematodes mostly did not affect C cycling, the addition of predators decreased C mineralization by 10 %. However, litter decomposition rates were unaffected by soil food web composition. Taken together, these results suggest that the presence of predators may result in enhanced soil C stabilization, at least in the short term. The presence of predators also resulted in a shift in microbiome composition, notably with higher Gram(+):Gram(-) ratios, but no change in microbial biomass, suggesting that nematodes may shift their diet because of predation. Our results confirm that the effects of nematodes and their predators on the soil microbiome are not additive and that predators can alter soil C cycling trough trophic cascades. As predators are often sensitive to land use change and intensification, these findings suggest that loss of belowground predators may result in increased C losses following litter decomposition.

How to cite: Lejoly, J., Wang, Y., van Hoof, E., Favre, V., Quist, C., Geisen, S., and Veen, C.: Trophic cascades in simplified soil food webs and consequences for carbon cycling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7897, https://doi.org/10.5194/egusphere-egu24-7897, 2024.

The most powerful tool to explore nutrient turnover in complex systems such as soils are stable isotope fractionation and labelling studies. This has been extensively used when investigating microbial carbon cycles by targeting the carbon stable isotopes in microbial phospholipid fatty acids (PLFA). However, exploring the role of mesofauna during carbon turnover in soil ecosystems has long been limited due to the small size and weight of those organisms and therefore issues in the detection and quantification of carbon stable isotope ratios. Only recently, carbon stable isotope analysis of fatty acids (FA) have been established and opened the window to include mesofauna into carbon turnover studies. We have used this new possibility after refining the available FA method to discover the role of microarthropods together with the microbial PLFA analysis. This study is to our knowledge the first, which has used 13C labelled plant material and has followed its incorporation into microbial PLFAs and microarthropodal FAs in a greenhouse experiment containing heavy metal contaminated and remediated soils.

Total microbial biomass and 13C incorporation into microorganisms was significantly increased and the PLFA pattern shifted after remediation of heavy metal contaminated soil. In accordance, the abundance of the microarthropodal groups Gamasina, Oribatida and Collembola were also increased, while Astigmata were not affected. The relative FA patterns of those groups differentiated significantly among each other, but were not influenced by soil treatment, meaning that the altered microbial PLFA pattern was not transferred into microarthropodal FA. However, the amount (nmol FA) per individuum was elevated in the heavy metal contaminated soil. In contrast, incorporation of 13C into FA was lower in contaminated soil in Gamasina, Astigmata and Collembola. 13C incorporation of Oribatida was at a constantly high level over the different soil treatments.

These first results revealed, that the relative FA pattern of the microarthropodal groups was not affected by changes in the microbial PLFA pattern due to soil treatments. Differences in the absolute FA amount per individuum and the 13C uptake were rather governed by the life and reproduction strategies, with higher fattiness and low abundance under adverse environmental conditions (contaminated soil), constant 13C incorporation in K-strategist (Oribatida) and higher 13C incorporation of mainly r-strategist (Gamasina, Astigmata and Collembola) under improved conditions.

How to cite: Watzinger, A., Christoph, N., Wissuwa, J., and Friesl-Hanl, W.: The role of microarthropodal groups in carbon turnover as revealed by 13C fatty acids analysis – method development and impact of heavy metal remediation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9456, https://doi.org/10.5194/egusphere-egu24-9456, 2024.

     Forested riparian buffer strips (FRBS) are common in temperate agroecosystems due to their ability to sequester nutrients from agricultural runoff and to sequester carbon. The full environmental benefits of FRBS can only be evaluated, however, by accounting for a wide range of criteria that go beyond stream water quality. For example, it is important to determine the net greenhouse gas (GHG) balance of FRBS relative to adjacent agricultural fields. It is also important to identify the factors controlling these GHG emissions in order to propose optimal FRBS designs that maximize their environmental benefits. One such factor is the spread of non-native earthworms, whose burrowing activities may modify soil emission rates of CO2, N2O and CH4. To test the effects of earthworms on GHG emissions, microcosm studies were conducted using a replicated factorial design comprising of three soil origins (deciduous FRBS, coniferous FRBS, agricultural field) × two soil textures (field conditions, high clay) × three EW life habits (anecic, endogeic, no earthworms). At different intervals over the course of a 10-week trial, we measured net CO2 emissions under aerobic conditions, as well as potential N2O emissions in microcosms amended with acetylene gas.  In a separate trial using the same experimental design, we measured gross production and consumption rates of CH4, in both aerobic and anaerobic conditions, using an 13CH4 isotope dilution technique. Anecic earthworms had a positive effect on soil CO2 and denitrification, which decreased after a few weeks. Increasing soil clay content had a negative effect on the emission of these two GHGs. Additionally, soils from FRBS emitted more CO2, N2O and CH4 than soils from agricultural fields. Gross CH4 consumption rates were greater under aerobic than aerobic conditions, especially under deciduous trees.  Results suggest that the inclusion of trees in riparian buffer strips combined with the introduction of non-native earthworm species could substantially increase GHG emissions of agroecosystems and mitigate the environmental benefits of FRBS.

(Note: The first and second authors contributed equally to this presentation).

How to cite: Boilard, G., Cameron, A., and Šimek, M.: The inclusion of trees and the introduction of non-native earthworms may increase greenhouse gas emissions from riparian buffer strips.  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9819, https://doi.org/10.5194/egusphere-egu24-9819, 2024.

EGU24-10318 | Posters on site | BG3.15

The Impact of Tree Species and Charcoal on Soil Fauna in Post-Fire Forest Ecosystems 

Thi Hong Van Tran, Agnieszka Józefowska, Bartłomiej Woś, Marcin Pietrzykowski, Tomasz Wanic, Rüdiger M. Schmelz, and Jan Frouz

Soil fauna, particularly enchytraeids and earthworms, play a crucial role as soil engineers, actively contributing to nutrient cycling through the breakdown and ingestion of litter material. These organisms engage in intricate interactions with microorganisms responsible for decomposing and mineralizing detritus. The present study seeks to delve into the complex interplay among tree species, charcoal presence, and soil fauna within post-fire forest ecosystems. The investigation took place in Rudziniec, Poland, a site that witnessed one of Europe's largest fires in 1992. Two delineated areas were observed: one with post-fire charcoal presence and another with removed charcoal. Four distinct tree species—pine (Pinus sylvestris L.), larch (Larix decidua Mill.), birch (Betula pendula Roth), and oak (Quercus robur L.)—were selected as representative species for the study. Samples were obtained from locations adjacent to the trees at a depth of 0-10 cm for echytraeids and at a depth of 0-25 cm for earthworms. The study elucidates the impacts of post-fire charcoal removal or retention on soil fauna across diverse tree species. When considering the various tree species, enchytraeid density was higher in coniferous trees (pine and larch) compared to deciduous trees (birch and oak). Among these, oak trees exhibited the highest enchytraeid species diversity, yet their density was lowest (60944 ind.m-2). Among experimental plots, in birch plots with post-fire charcoal retention, enchytraeid density was lowest (27470 ind.m-2); conversely, in charcoal removal plots, it showed the highest number with 105355 ind.m-2. Regarding earthworm biodiversity, a maximum of two species were observed across all plots. Earthworm density was lower in coniferous trees (12.65 ind.m-2 in pine and 10.67 ind.m-2 in larch) compared to deciduous trees (20.09 ind.m-2 in birch and 14.67 ind.m-2 in oak). With charcoal presence, earthworm density sharply decreased in coniferous trees while increasing in deciduous trees. A similar trend was observed in earthworm biomass. Among all experimental plots, the highest biomass value was found in pine trees with charcoal removal (4.54 g.m-2) whereas the lowest value with charcoal presence (0.35 g.m-2). These differences suggest an intricate relationship between post-fire charcoal management, tree species, and their consequential impact on soil fauna. The insights gathered from this study hold valuable implications for informing ecosystem management and restoration strategies, contributing to a more comprehensive understanding of the intricate dynamics within post-fire environments.

This research was funded by The National Science Centre, Poland, grant No. 2021/42/E/ST10/00248. The analyses were performed in the Laboratory of Forest Environment Geochemistry and Reclaimed Areas, University of Agriculture in Krakow.

How to cite: Tran, T. H. V., Józefowska, A., Woś, B., Pietrzykowski, M., Wanic, T., Schmelz, R. M., and Frouz, J.: The Impact of Tree Species and Charcoal on Soil Fauna in Post-Fire Forest Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10318, https://doi.org/10.5194/egusphere-egu24-10318, 2024.

To understand carbon dynamics and how it is affected by ongoing climate change, we need a better appreciation of the belowground ecological interactions driving plant allocation patterns and ecosystem carbon fixation. It has become increasingly clear that belowground root inputs contribute significantly more to soil carbon sequestration than aboveground plant inputs. Yet, current understanding of the role of belowground root herbivory in ecosystem carbon dynamics is weaker than that of aboveground herbivory. We addressed this gap by merging three complementary and novel areas of research, namely testing how: (1) biotic interactions between plants and nematode herbivores affect belowground biomass allocation in grasses; (2) how these biotic interactions and their consequences for biomass allocation are modified by a pervasive perturbation, namely drought, which is becoming more intense and frequent; and (3) how belowground responses vary across contrasting ecosystems. Results of complementary controlled and multi-site field experiments showed that: (1) nematode root herbivory modulates the relationship between water availability and belowground biomass allocation; (2) drought-induced increases in nematode root herbivory impede plants from increasing biomass allocation to roots under drought; and (3) these nematode effects are greater in magnitude in mesic compared to semiarid and arid grasslands. These findings suggest that the fate of carbon in mesic ecosystems under increasing drought frequency is highly influenced by nematode herbivores in the soil, and encourage investigations into the unknown consequences for soil carbon formation and persistence.

How to cite: Franco, A. and Gherardi, L.: The influence of belowground nematode herbivory on carbon allocation in drought-prone ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10509, https://doi.org/10.5194/egusphere-egu24-10509, 2024.

EGU24-11070 | ECS | Orals | BG3.15

Increased N2O emissions by the soil nematode community cannot be fully explained by enhanced mineral N availability 

Junwei Hu, Meng Kong, Astrid Françoys, Farideh Yarahmadi, Orly Mendoza, Ummehani Hassi, Mesfin T. Gebremikael, Wim Wesemael, Steven Sleutel, and Stefaan De Neve

Soil nematodes, being the most abundant soil fauna, can significantly impact soil N mineralization via interaction with soil microorganisms. As a consequence, nematodes likely also influence soil N2O production and emissions but the very few studies on this matter were carried out in simplified setups with single nematode species and in (highly) disturbed soil conditions. Here we measured soil N2O emissions in a 74-day incubation experiment in the presence or absence of the entire soil nematode community with minimal disturbance of the soil microbial community and soil nutrients. This was e.g. evidenced by readily recovery of nitrifiers after the mild and selective sterilization and soil powder inoculation. N2O emissions increased in the presence of nematodes, varying between soils +747.7 % in a loamy sand, +55.8 % in a loam, and +51.9 % in a silt loam cropland topsoil, in line with nematode abundance in these soils. In particular, the loamy sand soil showed an atypical N2O emission peak at the time of high nematode abundance. Soil nematodes also increased net N mineralization by +8.4, +6.8 and +4.75 %, in these respective soils and to a smaller extent C mineralization as well. The extra soil nitrate buildup and the overall net stimulation of N mineralization by nematodes could not or just slightly explain the observed increased N2O emissions. This research revealed the important role of soil nematodes in regulating N2O emissions, and further stresses the need to consider the change in community composition and activity of denitrifiers, and connectivity of soil pores, rather than the stimulation of N mineralization as potential explanations for this role of nematodes.

How to cite: Hu, J., Kong, M., Françoys, A., Yarahmadi, F., Mendoza, O., Hassi, U., Gebremikael, M. T., Wesemael, W., Sleutel, S., and De Neve, S.: Increased N2O emissions by the soil nematode community cannot be fully explained by enhanced mineral N availability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11070, https://doi.org/10.5194/egusphere-egu24-11070, 2024.

EGU24-16422 | ECS | Posters on site | BG3.15

Unraveling the structure and function of soil food webs using an untargeted lipidomics approach 

Rahul samrat and Wolfgang wanek

Belowground (soil) communities are highly diverse and encompass higher plants, bacteria, fungi, protists, invertebrates and vertebrates. The feeding relationships are as diverse, ranging from symbiotic associations (e.g. mycorrhizae), saprotrophs, grazers, shredders, predators and parasites. These material flows underly the biogeochemical functions of soils, driving organic matter decomposition, soil carbon sequestration, nutrient recycling and greenhouse gas emissions. Despite the importance of understanding the structure and dynamics of such complex soil food webs we are still lacking quantitative and detailed approaches to characterize them. Recently lipidomics analysis of intact polar lipids of soil communities has emerged indicating its potential to allow disentangling the food web structure beyond just abundances of bacteria and fungi based on phospholipid fatty acids or amplicon sequencing data, but extending this analysis across the whole soil food web including its base, higher plants, and including higher consumer levels with diverse protists and invertebrates Our study introduces and develops an untargeted lipidomics platform, employing reversed-phase liquid chromatography and electrospray ionization tandem mass spectrometry (UPLC ESI Orbitrap MS), to examine the intact polar lipidomes of soil biota. With advanced high resolution mass spectrometry and a newly adopted bioinformatics toolbox, we analyze lipidomes from complex soil communities and from pure cultures and single species, including plants, archaea, bacteria, fungi, protists (amoebozoa, ciliophora, cercozoa, etc.), collembola, mites, nematodes, and other soil fauna, as well as their diets. Our workflow facilitates the rapid identification and quantification of thousands of unique intact polar lipid molecules, representing a variety of biological classes, which we currently analyze for their biomarker potential, for being indicative for the presence and activity of specific groups of soil organisms. Utilizing this method of biomarker analysis, finally in combination with isotopic tracing into the fatty acyl residues (containing carbon, hydrogen and oxygen) and the lipid head groups (containing additionally nitrogen, sulfur and phosphorus), is expected to provide valuable quantitative insights into the structure of soil food webs and their activity and matter transfer, by following the incorporation and transfer of isotopically labeled matter and how this responds to climate and land use change. Thereby we foresee to improve our understanding of the contributions made by soil organisms to the stability and function of soil ecosystems, thus providing a foundation for ongoing ecological and environmental research.

How to cite: samrat, R. and wanek, W.: Unraveling the structure and function of soil food webs using an untargeted lipidomics approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16422, https://doi.org/10.5194/egusphere-egu24-16422, 2024.

Earthworms may act as double-edged swords for soil organic matter (SOM). While they can enhance organic matter (OM) mineralization via increased microbial activity they can also elevate OM stabilization in aggregates as particulate or mineral-associated OM. In this study, we are testing this potentially opposing impact in beech-dominated (Fagus sylvatica L.) mixed forests on limestone, a forest ecosystem with particularly high earthworm activity. A specific focus lies on OM transformation along the continuum from the forest floor (O horizons) to mineral soil (A horizons). The forest floor can represent a substantial OM-pool which is an important source for SOM formation via bioturbation or leaching but can be vulnerable to alterations due to climate change. In a lab mesocosm experiment, we are incubating local earthworm species in soil columns consisting of O and A horizons from two contrasting beech forest sites from 600 and 1250 m elevation in the Swiss Jura Mountain range. Both sites have a mull-type forest floor with the high-elevation site exhibiting an Of horizon present throughout the year while an Of horizon is not present all year at the low-elevation site. We established four earthworm treatments for each site all including the respective mineral soil and forest floor: (1) no earthworms, (2) two Octolasion cyaneum S., (3) one Lumbricus terrestris L., and (4) two O. cyaneum together with one L. terrestris. In this setup, the Ol horizon was replaced with beech litter highly enriched with 13C, 15N, and 2H. Soil respiration (CO2) and leaching (C, N, and H in dissolved OM) are repeatedly measured. Total respiration (12C and 13C) is measured weekly for the first four months and biweekly afterward. Every two months fluxes from A and O horizons are measured separately. After approximately 4 and 10 months each, a set of mesocosms is harvested to investigate isotope enrichment in earthworm biomass, cast, physical soil fractions, PLFAs, and microbial necromass. We find first indications for stabilization of new litter input as, under similar total CO2 fluxes, the litter-derived fraction is higher for treatments without worms. However, if both earthworm species are present, the cumulative heterotrophic respiration is elevated compared to the treatments involving only one earthworm species and the no-earthworm treatment. This is presumably due to higher earthworm density and, therefore, increased bioturbation. In contrast, we find no differences in the amount of dissolved organic matter leached out of the mesocosms between the treatments so far. X-ray CT scans will inform us about earthworm behavior within the mesocosms. This will help us understand how their activity translates into the vertical distribution of the isotopic label.

How to cite: de Jong, P., Schleppi, P., and Hagedorn, F.: The role of earthworms in the organic matter cycling of forest floors in temperate forests – A mesocosm experiment with labeled beech litter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18389, https://doi.org/10.5194/egusphere-egu24-18389, 2024.

Soils harbor a diverse fauna, ranging in size from <200 µm to several cm. These animals are direct producers of greenhouse gas (GHG) emissions via their respiratory and metabolic activities and can indirectly change soil carbon and nitrogen cycling by changing physical, chemical and biological soil properties, e.g. through bioturbation, defecation, herbivory, and litter fragmentation and redistribution. In addition, they can create microhabitats which offer more favorable conditions to microorganisms than bulk soil. Thus, soil fauna is able to substantially effect the spatial and temporal variability of GHG fluxes in ecosystems. However, emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from and associated with soil fauna remain poorly quantified and have been limited to only a few regions and species. The literature review presented here gives an overview of GHG emission studies addressing soil fauna taken place since 2010. For each GHG (CO2, CH4 and N2O) the keywords “emission* OR flux*” were combined with keywords querying different soil fauna groups. The initial search using the databases Web of Science Core Collection and Lens.org resulted in 282 and 531 journal articles, respectively, of which 165 studies were duplicates. This literature (n = 648) is being screened according to the following categories: i) location of study (geographical location, field, laboratory), ii) soil type, iii) ecosystem type, iv) species, v) GHG fluxes, and vi) methodologies (flux measurements, species monitoring). Based on this, the current state of knowledge, research gaps and methodological challenges will be identified to provide ideas and guidance for the design of future research projects trying to further our understanding of the quantitative role of soil fauna in the soil carbon and nitrogen cycle in natural and managed ecosystems.

How to cite: Görres, C.-M.: Greenhouse gas (CO2, CH4, N2O) emissions from soil fauna – what have we learned over the past decade?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18778, https://doi.org/10.5194/egusphere-egu24-18778, 2024.

EGU24-546 | ECS | Posters on site | BG3.16

Integrating palaeoecological, dendrochronological and remote sensing data to explore the impact of climate and forest management on a Sphagnum peatland (Tuchola Pinewoods, N Poland) 

Mariusz Bak, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, and Katarzyna Marcisz

Assessing the scale, rate and consequences of climate change, manifested primarily by rising average air temperatures and altered precipitation regimes, is a critical challenge in contemporary scientific research. These changes are accompanied by a variety of anomalies and extreme events that negatively impact ecosystems worldwide. Understanding how different ecosystems function under climatic and anthropogenic pressures is important for their conservation and management. Monoculture forests, including Scots pine monocultures, are particularly vulnerable to these changes due to their homogeneous structure and simplified ecosystem linkages compared to mixed forests, making them more sensitive to extreme events such as insect outbreaks, droughts, fires and strong winds. In the context of global warming, forest fires are becoming extremely dangerous, and the risk of their occurrence increases as average temperatures rise. The situation becomes even more dramatic when fire enters areas of peatlands, as these ecosystems effectively withdraw carbon from the rapid carbon cycle and store it for up to thousands of years. Consequently, peatlands become emitters of carbon dioxide into the atmosphere.

The aim of our research is to trace the historical development of peatlands situated in a Scots pine monoculture area over the last three centuries. Our focus is on the Okoniny peatland located within the Tuchola Pinewoods in northern Poland, one of the country's largest forest complexes. We delved into the phase when the peatland's surroundings transitioned from a mixed forest to a pine monoculture. We also investigated the impact of changes in forest management at the turn of the last three centuries on the local vegetation and hydrology of peatlands. In addition, we wanted to answer the question of how the peatland ecosystem responded to different types of disturbance. Our reconstructions are based on a multi-proxy approach using: pollen, plant macrofossils, micro- and macrocharcoal and testate amoebae. We also use Pinus sylvestris dendrochronological data to compare it with the peatland record. Our results show that a change in forest management and progressive climate warming affected the development of the peatland. Testate amoebae analysis showed an increase in acidity over the analysed period and a decrease in the water table over the last few decades. Pollen data revealed that the lake-peatland transition took place before 1930 and progressed with the strongest agricultural activity in the area. However, the 20th century was a period of continuous decline in agriculture and an increase in the dominance of Scots pine in the landscape as the effect of afforestation. Dendroclimatic data indicate a negative effect of temperature on Scots pine and pressure from summer rainfall deficiency. Additional remote sensing analysis, using hyperspectral and thermal airborne images, provided information about the current condition of the peatland vegetation. With the application of spectral indices and the analysis of land surface temperature, spatial variations in peatland drying have been identified. Considering the context of forest management and the protection of valuable ecosystems in monocultural forests, the conclusions are relevant for peatland and forest ecology, palaeoecology and forestry.

A study financed by the National Science Centre, Poland, grant no. 2020/39/D/ST10/00641.

How to cite: Bak, M., Lamentowicz, M., Kołaczek, P., Wochal, D., Matulewski, P., Kopeć, D., Wietecha, M., and Marcisz, K.: Integrating palaeoecological, dendrochronological and remote sensing data to explore the impact of climate and forest management on a Sphagnum peatland (Tuchola Pinewoods, N Poland), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-546, https://doi.org/10.5194/egusphere-egu24-546, 2024.

EGU24-1417 | ECS | Orals | BG3.16

Measures to reduce land subsidence and greenhouse gas emissions in peatlands: a Dutch case study 

Tommy Wils, Jan van den Akker, Mandy Korff, Guido Bakema, Dries Hegger, Rudi Hessel, Mandy van den Ende, Martijn van Gils, and Daan Verstand

Worldwide, peatlands suffer from land subsidence and greenhouse gas emissions due to artificial drainage inducing peat decomposition. Under anthropogenic climate change, these issues require measures to reduce the emission of greenhouse gases and protect low-lying areas from increasing flood risk. It is evident that tighter control of groundwater levels is required, both within existing agricultural systems and through the development of new agricultural systems suitable for farming under high groundwater levels or inundation. The complexity and value-laden nature of the issue warrants the development of a comprehensive overview of potential and side effects of measures. In this paper such an overview is synthesized based on a mixed-method approach for a special case, The Netherlands. The Dutch peatlands comprise extensive land areas in the low-lying west and north of The Netherlands. The case is exceptional as most of the these peatlands lie below sea level, sustain world-class intensive dairy farming and are subject to multiple other environmental, economic and societal challenges. Here, land subsidence increases flood risk, salt water intrusion and the costs of water management, particularly under global climate change. We review 27 technical measures and alternative land use options and synthesize evidence and insights for 15 effects. Technical measures allowing continuation of existing dairy farming provide relatively low-risk interventions, but will only reduce, not stop land subsidence and greenhouse gas emissions. Alternative land-use options, particularly paludiculture, are in a pioneering stage of development and can stop land subsidence. However, more research is required to reduce and control methane and nitrous oxide emissions during inundation required for crops such as (narrowleaf) cattail and azolla. Paludiculture can provide ecosystem services related to water management and nutrient status, as well as raw materials for a bio-based economy. Gradual transitions in space and time between farming and nature can be envisaged, providing incentives to diversify land use in the Dutch peatlands. This case study identifies key questions and provides valuable insights for peatland management worldwide. Reducing land subsidence and greenhouse gas emissions from peatlands is feasible, but requires thoughtful interventions that cautiously make and align trade-offs between various interests and uncertainties.

How to cite: Wils, T., van den Akker, J., Korff, M., Bakema, G., Hegger, D., Hessel, R., van den Ende, M., van Gils, M., and Verstand, D.: Measures to reduce land subsidence and greenhouse gas emissions in peatlands: a Dutch case study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1417, https://doi.org/10.5194/egusphere-egu24-1417, 2024.

Approximately 1.19 x 106 km2 of Canada is covered by peatlands containing over 110 to 150 Gt C.  Most are relatively pristine.  A tiny area (~ 0.21 x 106 ha) of Canadian peatlands is affected by land-use change.  The most common land disturbances are due to agriculture, fossil fuel and mineral exploration and extraction, and the creation of hydroelectric reservoirs.  A small area of peatlands (~350 km2) is disturbed by peat extraction for use in horticulture.  We have simulated the emissions of CO2 from pristine, extractive and restored peatlands using the Coupmodel.  Coupmodel reproduces the exchanges of energy, water and carbon well for pristine peatlands and shows their sensitivity to changes in water storage.  We have also successfully simulated the emissions from peatlands that are undergoing extraction.  Our results show that extraction converts a peatland from a sink of ~ 20 to 100 g C m-2 yr-1 to a source of ~ 150 – 200 g C m-2 yr-1.  Finally, we have simulated peatlands that have been restored using ecological approaches (e.g. the moss transfer technique).  They return to being a sink in the same range of undisturbed peatlands 14 years after restoration.  The sink strength is a function of water table depth.  Simulations also show that the restored peatlands are relatively insensitive to climate change over the projected conditions for the next one hundred years.  The key to successfully simulating the carbon dynamics of pristine and disturbed peatlands is to be able to simulate the hydrological and thermal conditions well.  We demonstrate Coupmodel’s capabilities against measurements from pristine, disturbed and restored peatlands.   Simulating the biogeochemistry beyond the range of measurements can provide insight for emissions accounting, climate-smart management, and land-use decisions. 

How to cite: Roulet, N. and He, H.: Simulating the exchange of carbon in Canadian pristine, disturbed and restored peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1503, https://doi.org/10.5194/egusphere-egu24-1503, 2024.

EGU24-1976 | Orals | BG3.16

Measuring Methane (CH4) Fluxes from Two Rewetted Peatland Sites located in Irish Midlands 

Amey Tilak, Stephen Barry, Michael Clancy, Clare O’ Doherty, Harry Kelly, Mark McCorry, Hannah Mealy, Brian Mollahan, Matthew Saunders, and Kenneth Byrne

     Rewetting of drained peatlands is known to substantially reduce the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes. However, rewetting can increase the methane (CH4) fluxes from peatlands to the atmosphere, especially from peatland/wetland vegetation species specialized in plant-mediated transport. The typical peatland/wetland vegetation species exhibiting plant-mediated transport and commonly found in rewetted Irish peatlands are Eriophorum vaginatum, Carex rostrata, Typha latifolia and Phragmites australis. Two rewetted peatlands (namely Ballycon and Derries), located in Co. Offaly, Ireland were monitored for CH4 fluxes using the chamber method. Both sites were used for industrial peat extraction from the 1960s until 2000-2001. Ballycon and Derries were rewetted in 2005-2006 and 2017 respectively by constructing drain blocking structures to raise the water table at the peat surface. Ballycon has shallow (0.5-2.5 m) and deep (> 2.6 m) peat depths, while the Derries has a shallow peat depth of less than 1 m. The CH4 flux monitoring at Ballycon and Derries began in June 2023 and October 2023 respectively and is on-going at both sites. The CH4 flux is being monitored in different microsites at Ballycon (Sphagnum mosses, Eriophorium, Molonia grass, open water (no vegetation), Carex rostrata and Phragmites australis) and Derries (Carex rostrata, open water (no vegetation) and Typha latifolia). At both the peatland sites, CH4 fluxes in each microsite measured using a 60 x 60 cm stainless steel square collar (3 collars each microsite), transparent chamber (L x W x H: 60 x 60 x 50 cm), 2 stacked transparent chambers (50 cm height) and a LICOR 7810 gas-analyzer. The CH4 flux measurements were conducted at each of these microsites between 10.00 am to 4.30 pm on the sampling days. The measurements were conducted twice every month in the spring, summer, and autumn, and once in the winter months. Alongside the CH4  flux measurements, environmental variables such as peat and air temperatures and water table depths were measured. In this presentation, the field measured CH4 fluxes from different wetland vegetation species (Carex, Eriophorum, Typha and Phragmites) at two peatland sites (Ballycon and Derries) will be discussed alongside environmental variables. Field results from the Ballycon site showed that the CH4 fluxes from the Carex species (range: 0.029 to 0.144; average: 0.083 g m−2 hr−1) were larger than CH4 fluxes from the Eriophorum species (range: 0.0028 to 0.24; average: 0.059 g m−2 hr−1), while the CH4 flux from the Phragmites species (range: 0.00023 to 0.004; average: 0.00158 g m−2 hr−1) was the smallest. Field results from the Derries site showed that the CH4 fluxes from the Typha species (range: 0.0019 to 0.083; average: 0.033 g m−2 hr−1) were higher than the CH4 fluxes from the Carex species (range: 0.0026 to 0.0161; average: 0.011 g m−2 hr−1) based on the transparent chamber data. We concluded that all wetland vegetation species specialized in plant mediated transport at both peatland sites (Ballycon and Derries) were CH4 sources to the atmosphere.

 

How to cite: Tilak, A., Barry, S., Clancy, M., O’ Doherty, C., Kelly, H., McCorry, M., Mealy, H., Mollahan, B., Saunders, M., and Byrne, K.: Measuring Methane (CH4) Fluxes from Two Rewetted Peatland Sites located in Irish Midlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1976, https://doi.org/10.5194/egusphere-egu24-1976, 2024.

EGU24-2147 | Posters on site | BG3.16

Modelling CO2 and CH4 fluxes from a Rice Crop grown on Organic Soils in Temperate Climate 

Kenneth A Byrne, Merit van den Berg, Ko van Huissteden, Tanya Lippman, Avni Malhotra, Matthew Saunders, Chloe Wüst-Galley, and Amey S Tilak

    Globally peatlands have been drained for agricultural production, decreasing their carbon sequestration potential, and increasing CO2 fluxes into the atmosphere. Peatland rewetting can reduce these fluxes, but this can have the undesired effect that food production on this land ceases. The cultivation of flooded rice on peat soils might however protect the peat, reducing CO2 emissions, whilst maintaining food production. Recently, farmers in Switzerland have started to cultivate paddy rice on flat valley bottoms of the Swiss plateau. However, the cultivation of flooded rice is often associated with high methane (CH4) fluxes. An outdoor mesocosm experiment was conducted at Zurich Reckenholz (47.42796º N, 8.51769 º E, 444 m a.s.l.) in the eastern part of the Switzerland’s Central Plateau. In 2021, this experiment measured CH4 and N2O fluxes (Wüst-Galley et al. 2023)
and CO2 flux (unpublished data) from rice grown on peat soil (water levels: -6 to -17 cm) and from conventional (deeply drained) grassland. Results showed that the climate impact of the higher CH4 emissions from the wet rice cultivation was more than compensated by the reduced CO2 emissions resulting from higher water levels. However, very few modelling studies have investigated the biogeochemical controls exerted by below ground biomass (roots exudates, root depth, root senescence and senescence of the above ground litter) on the resulting CO2 and CH4 fluxes from a rice crop grown on peat soils in the temperate climate. The CH4 transport pathways (plant mediated, diffusion and ebullition) in this same system have not been investigated via modelling. This study utilizes a process-based plot scale model known as Peatland VU to quantify the impacts exerted by the belowground biomass (roots exudates, root depth, root senescence, senescence of the above ground litter) on the resulting CO2 and CH4 fluxes. But before quantifying the above-mentioned impacts, the Peatland VU model is calibrated and validated against measured CO2 and CH4 fluxes from a rice crop grown on peat soil having controlled water levels (shallow and deep). However, the stabilization of different soil organic matter reservoirs (peat, root exudates, roots and litter, microbial biomass, and humus pool) must be conducted before the Peatland VU model is calibrated and validated against the measured data. This stabilization is conducted to diminish the influence of initial boundary conditions. In this modelling study, stabilization of the different soil organic matter reservoirs was conducted for 20+ years (1990-2019) using peat hydrophysical properties and past climatic data consisting of daily inputs (precipitation, evaporation, mean air temperatures and solar radiation). The stabilized model was then calibrated and validated against measured CO2 and CH4 flux data from 2021 to 2022. The parameters utilized to calibrate and validate CO2 and CH4 fluxes will be discussed. The stabilized, calibrated, and validated model will be utilized to test the effect of variable root depths, root senescence, root and shoot factor, exudate factor and senescence of the above ground litter on resulting CO2 fluxes and dominant CH4 pathway (plant transport or ebullition or diffusion). 

 

How to cite: Byrne, K. A., van den Berg, M., van Huissteden, K., Lippman, T., Malhotra, A., Saunders, M., Wüst-Galley, C., and Tilak, A. S.: Modelling CO2 and CH4 fluxes from a Rice Crop grown on Organic Soils in Temperate Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2147, https://doi.org/10.5194/egusphere-egu24-2147, 2024.

Peatlands have been disturbed throughout the Anthropocene. Peatland extraction and peat use results in a significant net emission of greenhouses gases over a relatively short time frame. However, not all carbon in extracted peat is lost to the atmosphere. To understand net-zero emissions, it is important to understand how emissions can be mitigated through management practices, and what offsets are required for irreducible emissions. Our research has the aims: (1) to develop an environmental systems model based on previous research, introduce land use change and management phases to the model runs, and consider the implications of the fate of peat; and (2) to ascertain net biospheric carbon emissions according to model phases and their variations.
The model approximates peat mass and accumulation in an undisturbed peatland system, then simulates the removal by extraction of horticulture peat.  The model replicates typical accumulation rates and measured emissions due to extraction. The environmental systems model has been coupled with a basic hydrological sub-model, and the model was evaluated by comparing simulated outputs to peat core 14C, C:N and FTIR field measurements from Riviere-du-Loup, Qc, Canada. 
We will present how management practices such as extraction duration, extraction intensity, and restoration delay impact simulated biospheric carbon emissions. Our simulations will also include the fate of extracted peat, demonstrating how peat use, storage and stabilised peat carbon impact net emissions. Based on our current restoration and extraction scenarios, we have deduced that it takes several thousand years to restore the biospheric carbon store of an extracted peatland. Preliminary work suggests that, depending on the assumed fate of the peat scenario, the biospheric restoration time can be reduced by 50-75% to recover carbon lost through peat extraction and use. Subsequently, offsets required for irreducible emissions to meet 2050 and 2100 targets can also be reduced.
Our results will allow the Canadian peat industry to employ a backwards induction approach to meeting its net-zero targets by enabling us to infer when net-zero biospheric carbon emissions and carbon neutral conditions will be met without offset mechanisms and the duration with offset mechanisms.

How to cite: Watts, A. and Roulet, N.: Simulated net biospheric carbon emissions of managed peatlands, and implications for net-zero and net-zero targets., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2486, https://doi.org/10.5194/egusphere-egu24-2486, 2024.

EGU24-3047 | Orals | BG3.16

Investigating ecological baselines and critical thresholds in ombrotrophic nemoral peatlands: implications for ecological restoration 

Mariusz Lamentowicz, Mariusz Gałka, Mateusz Draga, Vincent E.J. Jassey, Christian Fritz, Stephan Glatzel, Bjorn Robroek, Hanna Meyer, Jan Lehmann, Radosław Juszczak, Bogdan H. Chojnicki, and Klaus-Holger Knorr

Peatlands are increasingly prone to climate extremes, such as drought, with long-lasting effects on plant and soil communities and, thus, on C cycling. Unveiling past tipping points is a prerequisite for understanding how individual plant species and entire ecosystems respond to future climate changes. Across Europe, however, vast areas of peatlands have been degraded or destroyed, mainly by drainage, peat extraction or agricultural cultivation. Consequently, degraded peatlands have turned from sinks into sources of atmospheric C, which pivots to restoring ecosystem functions to mitigate climate warming. Our main objective is to develop a spatiotemporally explicit indicator framework for restoration success across peatland sites affected by drainage and/or extraction, as peatlands are increasingly designated as priority areas for conservation/restoration. Yet, knowledge of how management actions play out in the long-term development of protected ombrotrophic peatlands and their response to human activity and climatic changes is often limited. However, palaeoecological high-resolution data can provide such information, reconstructing past vegetation, hydrology, climate, and ecosystem resilience. Palaeoecological investigations on site succession and development can also provide a basis for setting restoration goals regarding the target water table depth for rewetting. Our research evaluates baselines and restoration pathways based on paleoecological proxies and by evaluating the historical development of the site. The project objectives target representative peatland ecosystems in the nemoral zone from Western (Netherlands, Northwest Germany) to Eastern (Poland), and Northern (Southern-Sweden) to Southern (Austria) Europe. The sites are affected by various degradation factors, including drainage, climate change, intensive land use or different management techniques, and different approaches for restoration have been (partly) applied. We analysed testate amoebae and plant macrofossils from the peat. Furthermore, we reconstructed water table depth using a testate amoebae calibration data set. Then, we used broken-line regression models to identify whether plant community composition experienced different states over time. We also analysed patterns in plant species along the hydrological gradient (all sites were pooled) using a threshold indicator taxa analysis. New high-resolution data on testate amoebae and plant macrofossils show that the six peatland ecosystems experienced different disturbances.  All sites experienced noticeable anthropogenic pressure (expressed in vegetation transitions and water table) during the drainage and peat harvesting time. We provide novel data about peatland states before the disturbance and their different resilience potential that may help to set the restoration goals. According to former results, we hypothesised that the critical transition was ca 12 cm. However, in our calculations, the tipping point appeared to be higher at DWT of ca 5 cm, which suggests a range of the ideal wetness for healthy peatlands in various biogeographical and climatic settings. The palaeoecological results provide the critical baseline for the future rewetting scenarios in Sphagnum-dominated peatlands in Europe.

This research was funded through the 2020-2021 Biodiversa+ and Water JPI joint call for research projects, under the BiodivRestore ERA-NET Cofund (GA N°101003777), with the EU and the funding organisations DFG (Germany), FWF (Austria), NSC (Poland) and the LNV (The Netherlands).

 

 

 

How to cite: Lamentowicz, M., Gałka, M., Draga, M., Jassey, V. E. J., Fritz, C., Glatzel, S., Robroek, B., Meyer, H., Lehmann, J., Juszczak, R., Chojnicki, B. H., and Knorr, K.-H.: Investigating ecological baselines and critical thresholds in ombrotrophic nemoral peatlands: implications for ecological restoration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3047, https://doi.org/10.5194/egusphere-egu24-3047, 2024.

Peatlands are crucial carbon reservoirs, containing one-third of global soil carbon. Many peatlands undergo extensive drainage for agriculture, causing land subsidence and substantial greenhouse gas (GHG) emissions. Peatland drainage contributes approximately 5% to global anthropogenic GHG emissions. Rewetting is considered an effective climate and subsidence mitigation strategy, strongly reducing CO2 emissions. However, this comes at the cost of reduced agricultural productivity and can (temporarily) increase methane emissions. This paper addresses these trade-offs by developing a bio-economic optimal control model for managing subsiding peatlands, incorporating social costs and emission impacts.
Our model integrates water level management, subsidence dynamics, and monetization of effects on agricultural profits, management costs, and GHG emissions. Through numerical simulations, the model optimizes the groundwater level pathway (g(t)) over time achieved through drainage, maximizing net societal benefits. We model the relation between drainage intensity and the peat thickness (S(t)), and monetize the impacts on agricultural profits (y(S, g, t)), water management costs (m(g, t)), and climate costs (c(S, g, t)), thus considering the objective function:

Subject to land subsidence:

Where t ∈ [0, T ] represents the exploitation period of peat before full rewetting.
We apply our model to the Dutch peat meadows, which suffer from severe subsidence and are responsible for 3% of Dutch yearly GHG emissions. We parametrize our model based on empirical data found in literature, existing physical subsidence models and peatland emission factors. For a welfare analysis, we compare the optimal pathway to a Business-as-Usual (BAU) scenario in which financial net benefits are maximized, ignoring climate costs.
Baseline simulations for a typical peatland plot indicate that it is socially optimal to lower drainage intensity from year 0 and reduce the exploitation period before full rewetting, compared to the BAU. Sensitivity analysis reveals that optimal pathways are particularly sensitive to changes in agricultural prices and marginal damage costs of carbon. The net social benefit of adopting the optimal drainage path over BAU is around € 46,800 ha−1 in the baseline, growing considerably with lower discount rates and higher marginal cost of carbon. Using a spatial soil and subsidence data set of Dutch peat meadows, we are able to analyse spatial differences in optimal pathways and identify key areas where (quick) rewetting would be most beneficial.
This research underscores the efficacy of a bio-economic optimal control model in designing sustainable subsidence and climate mitigation measures for peatlands. Results suggest that (partial) rewetting of peatlands yields significant long-term social benefits, even with reduced agricultural productivity.

How to cite: Verhoeven, D.: Optimal Control Model for Managing Land Subsidence and GHG Emissions in Peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3619, https://doi.org/10.5194/egusphere-egu24-3619, 2024.

EGU24-3842 | ECS | Posters on site | BG3.16

The simultaneous effects of groundwater table dynamics on greenhouse gas emissions and phosphorus leaching in drained peatlands 

Iida Höyhtyä, Maarit Liimatainen, Anne Tolvanen, Anna-Kaisa Ronkanen, Katharina Kujala, Tung Pham, Maarit Hyvärinen, Bjørn Kløve, Milla Niiranen, Jaana Nieminen, and Hannu Marttila

Boreal peatlands are long-term reservoirs of carbon, and vast peatland areas are drained for variable land-use activities. Drainage of peatlands leads to elevated emissions of greenhouse gases (GHG) measured as carbon equivalents, increased leaching of nutrients, and loss of soil carbon and biodiversity. Negative GHG impacts can be reduced by raising groundwater table level (GWT), which in turn may cause leaching of nutrients such as phosphorus (P) from decaying peat layers, increasing the risk for eutrophication of water bodies. Traditionally, emissions and leaching impacts are studied separately and thus it is essential to produce more knowledge about the simultaneous effects of groundwater table conditions on GHG emissions and P leaching.

Our studies explore how different GWT levels and dynamics affect greenhouse gas emissions (CO2, N2O, CH4) and P leaching risk in drained peatlands. The study areas are in North Ostrobothnia, Finland and share a similar geological history. They include afforested peatland, cultivated peatland with varying peat depths, abandoned peat field, and pristine peatland. The potential P leaching risk is studied with chemical extractions of P from different soil depths. Simultaneous GHG emissions and P leaching with different GWT levels and variable dynamics are studied with a column experiment in controlled conditions. The actual GHG emission dynamics in field conditions are studied with static dark chamber and snow gradient methods and linked to functional vegetation diversity, which is studied with visual cover estimations. 

Our studies increase scientific understanding of P retention and leaching processes as well as GHG emission dynamics within drained and decomposing peat soils in different GWT conditions and with different land use forms. This knowledge is essential e.g., in Finland, where extensive peatland drainage in the 1900th century has led to considerable GHG emissions and elevated nutrient leaching from large areas. Currently, national climate policy sets pressures for GHG emission reductions in drained peatlands, and these reductions must be made by avoiding further P leaching to water bodies and sea areas. Land use changes may be unavoidable in some cases, and our study setup with multiple land uses provides information for correct decision-making.

How to cite: Höyhtyä, I., Liimatainen, M., Tolvanen, A., Ronkanen, A.-K., Kujala, K., Pham, T., Hyvärinen, M., Kløve, B., Niiranen, M., Nieminen, J., and Marttila, H.: The simultaneous effects of groundwater table dynamics on greenhouse gas emissions and phosphorus leaching in drained peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3842, https://doi.org/10.5194/egusphere-egu24-3842, 2024.

EGU24-3998 | ECS | Posters on site | BG3.16

Pond emissions of CO2 and CH4 in a rewetted peatland  

Karoline Kudsk, Kathrine Lindblad Carlsen, Klaus Steenberg Larsen, and Jesper Riis Christiansen

Natural peatlands are crucial for global terrestrial carbon storage but have historically been extensively drained. Mitigating enhanced greenhouse gas (GHG) emissions linked to peatland drainage often involves rewetting, leading to pond formation. While rewetting is perceived to contribute to net GHG reduction, observational data of carbon dioxide (CO2) and methane (CH4) emissions from these restored ecosystems remains highly variable and overall insufficient. Ponds created after rewetting may be hot spots for CH4 emissions and this study focused on assessing net CO2 and CH4 emissions from a pond in a rewetted peatland over a one-month period in 2023.

The field study took place on a former fen at Mårumhus Pond in Gribskov, Denmark, rewetted in 2008 by clear-cutting a Norway spruce plantation and blocking ditches. This intervention resulted in a permanent pond covering the entire former fen area, with water depths ranging from approximately 0.5 to 1 meter. CO2 and CH4 fluxes were measured using automated chambers (AC) and manual bubble traps (BT). The study, conducted from September 19th to October 18th, 2023, involved eight AC and BT devices deployed along a 50-meter transect perpendicular to the pond's shore.

Throughout the measurement period, the daily average CO2 efflux from all eight AC chambers ranged between 3663 – 9074 mg CO2 m-2 d-1. Concurrently, daily average net CH4 emission from these AC chambers ranged from 224 – 1231 mg CH4 m-2 d-1, contrasting significantly with the average BT-derived CH4 flux range of 30 – 91 mg CH4 m-2 d-1. AC measurements indicated ebullition as the primary emission pathway, with one main hotspot across the transect, a pattern also observed by the BT. Interestingly, CO2 and CH4 emission patterns showed no correlation with water depth but demonstrated a clear response to the disruption of thermal stratification during the measurement period, attributed to wind-driven mixing of the water column. CH4 emissions measured with the AC increased during sudden air pressure drops.

AC and BT displayed substantial differences in measured fluxes, with AC showing CH4 fluxes nearly ten times higher than BT, which also failed to capture valid CO2 emissions. These difference can be attributed to method specific limitations, which will be discussed. The observed variations in CO2 fluxes using the AC method align with literature values, while CH4 emissions are notably higher. This study underscores the need to include spatiotemporal variations in both fluxes and environmental drivers and emphasizes the need for further research and method development of GHG emissions from ponds in rewetted peatlands, as these environments may serve as significant hotspots for CH4 emissions.

How to cite: Kudsk, K., Carlsen, K. L., Larsen, K. S., and Christiansen, J. R.: Pond emissions of CO2 and CH4 in a rewetted peatland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3998, https://doi.org/10.5194/egusphere-egu24-3998, 2024.

EGU24-4032 | ECS | Orals | BG3.16

Modelling the future distribution and biodiversity of European fen habitats under global change  

Patrícia Singh, Borja Jiménez-Alfaro, Liene Auniņa, Petra Hájková, Tatiana Ivchenko, Florian Jansen, Tiina Kolari, Paweł Pawlikowski, Tomáš Peterka, Alessandro Petraglia, Teemu Tahvanainen, Łukasz Kozub, and Michal Hájek

Along with the historical decline of fens due to anthropogenic impact, climate change is expected to jeopardise fen biodiversity by reducing their geographic extent and altering species composition. Yet, the impact of climate change on fen distribution and biodiversity in the future remains unclear. We used 27,555 vegetation plots representing eight fen habitat types widely distributed in Europe to compute Ecosystem Distributional Models. For each fen habitat type, we projected their future potential occupancy area and range shift and evaluated the influence of different climate scenarios and groundwater pH on distribution and biodiversity. Our findings could be helpful for the nature protection authorities across Europe to assess conservational and restoration measures to mitigate potential future biodiversity loss in European fen habitats.

How to cite: Singh, P., Jiménez-Alfaro, B., Auniņa, L., Hájková, P., Ivchenko, T., Jansen, F., Kolari, T., Pawlikowski, P., Peterka, T., Petraglia, A., Tahvanainen, T., Kozub, Ł., and Hájek, M.: Modelling the future distribution and biodiversity of European fen habitats under global change , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4032, https://doi.org/10.5194/egusphere-egu24-4032, 2024.

EGU24-5504 | Orals | BG3.16

Natural and restoration peatland pools contain mainly contemporary carbon 

Joshua Dean, Michael Billett, Edward Turner, Mark Garnett, Roxane Andersen, Rebecca McKenzie, Kerry Dinsmore, Andy Baird, Pippa Chapman, and Joseph Holden

Peatlands accumulate soil carbon (C) over millennia and are a globally important long-term terrestrial C store. This C store is at risk of destabilisation by climate and human disturbance. Many peatlands have pools or ponds at the surface which often contain very high C concentrations in organic (dissolved and particulate organic C) and gaseous (CO2 and CH4) forms. The radiocarbon composition (14C) of this C can tell is where these high C concentrations are primarily generated; i.e., from contemporary primary production or C released from deeper, old peat layers due to destabilisation. We present novel 14C and stable C (δ13C) isotope data from six peatland pool locations in the United Kingdom. Our data are from two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). We focus on dissolved and particulate organic C and dissolved CO2, with additional sediment, CH4 and ebullition (bubble) observations (total n = 97). The majority of pools contained mainly contemporary C, with the most C (~50-75%) in all forms being younger than 300 years old. Both natural and restoration pools were found to transform and decompose organic C in the water column and emit CO2 to the atmosphere. Mixing with ambient atmosphere and subsequent greenhouse gas emissions were more evident in the generally larger natural pools. Little evidence of deep, old C was found either in natural or restoration pools, even though there is substantial old C in the surrounding peat matrix. We did observe some potential evidence for old C emission via CH4 ebullition, however. Our results suggest that some millennial-aged C can be emitted by peatland pools. But the overwhelming age of C in our sampled pools was contemporary. Our results suggest that restoration pools formed by management interventions such as ditch blocking can be effective at preventing the release of old C via the aquatic pathway.

How to cite: Dean, J., Billett, M., Turner, E., Garnett, M., Andersen, R., McKenzie, R., Dinsmore, K., Baird, A., Chapman, P., and Holden, J.: Natural and restoration peatland pools contain mainly contemporary carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5504, https://doi.org/10.5194/egusphere-egu24-5504, 2024.

EGU24-5937 | ECS | Posters on site | BG3.16

Unveiling the Anthropocene Tapestry: A Journey into Norway's Peatlands 

Daria Wochal, Katarzyna Marcisz, Piotr Kołaczek, Mateusz Grygoruk, Hanna Silvennoinen, Anders Lyngstad, Harry Roberts, Michał Słowiński, and Mariusz Lamentowicz

Peatlands cover 3% of Earth's land surface and store 25% (600 GtC) of global soil carbon, playing a vital role in local and global water and carbon cycles. These ecosystems, with distinctive biodiversity, preserve Europe's natural heritage. Despite that, peatlands are some of the fastest disappearing ecosystems in the world. The Anthropocene is the time when humans became the main drivers shaping the environment, including wetlands. Many studies show that human activities have increasingly impacted peatlands since the Middle Ages as a result of economic and societal changes. Initially, minor disturbances like small settlements and limited forest clearings occurred. However, the growing economy led to deforestation, fires, drainage, and peat extraction, disrupting water conditions, especially over the past 300 years. Anthropogenic climate change causes rising temperatures that affect peatland ecosystems: plant communities, microbes, hydrology, and microclimate. Our research aims to reconstruct peatlands' environmental development to better understand these ecosystems' functioning under pressure from human activities and climate change. We will present preliminary results of water level and vegetation reconstructions at the Midtfjellmosen peatland in southern Norway. We hypothesized that climate and land-use-related feedbacks have triggered water table deficits in Norwegian peatlands, leading to groundwater lowering in the long term that altered vegetation and microbial communities. We used paleoecological methods to reconstruct the environmental conditions in the peatland. Palynological analysis provided information on changes in the vegetation within the peatland. Furthermore, analysis of testate amoebae (TA) allowed us to identify changes in water level. These single-celled protists build shells for protection and are deposited in peat after death, with species-specific shells aiding identification. Changes in TA communities indicate environmental disturbances, enabling the reconstruction of hydrological conditions, geochemistry, and pH in peatlands, that can be correlated with other proxies like pollen and plant macrofossils. The surface sampling from Sphagnum peatlands across Norway allowed for the construction of a novel TA calibration data set. The newly developed transfer function was used to reconstruct paleohydrological changes that occurred during the development of the Midtfjellmosen peatland. The reconstructions will enable us to identify the human impact on this peatland and will allow us to assess whether the observed changes are related to global warming, an important issue for the sustainable management of this unique ecosystem. It should be emphasized that the emerging transfer function and high-resolution reconstruction from other proxies, will contribute to peatland ecology and paleoecology in Norway.

A study financed by the National Science Centre, Poland, grant no. 2021/41/B/ST10/00060. 

How to cite: Wochal, D., Marcisz, K., Kołaczek, P., Grygoruk, M., Silvennoinen, H., Lyngstad, A., Roberts, H., Słowiński, M., and Lamentowicz, M.: Unveiling the Anthropocene Tapestry: A Journey into Norway's Peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5937, https://doi.org/10.5194/egusphere-egu24-5937, 2024.

EGU24-6280 | ECS | Orals | BG3.16

Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on formerbog grassland in Germany 

Caroline Daun, Vytas Huth, Greta Gaudig, Anke Günther, Matthias Krebs, and Gerald Jurasinski

The cultivation of peat mosses on rewetted peatlands (= Sphagnum paludiculture) is a promising alternative to drainage-based land use, as the production function is maintained while greenhouse gas (GHG) emissions are reduced. However, to date, GHG exchange studies that cover the entire production system and a complete production cycle are missing. Therefore, we combined data from the establishment phase (2011-2013) with data from the production phase (2017-2018) of a seven-year Sphagnum paludiculture in northwestern Germany including export by harvest. GHG exchange was recorded on all elements of the production system (Sphagnum production fields, ditches, causeways) with closed chamber measurements. Over the entire production cycle, Sphagnum production fields represented net GHG sinks of -3.2 ± 4.2 t ha-1 a-1 (in CO2-eq), while ditches and causeways were GHG sources of 13.8 ± 11.5 and 29.3 ± 9.8 t ha-1 a-1, respectively. Corrected for the percentage of area of each element of the production system and including partial harvest of peat moss (in dry matter) of ~13.8 ± 0.6 t ha-1, Sphagnum paludiculture was a net GHG source of 10.7 ± 4.6 t ha-1 a-1, reducing net GHG emissions by ~20 t ha-1 a-1 compared to grassland on drained organic soils. Per ton of dry biomass harvested, Sphagnum paludiculture emitted 9.9 ± 4.6 t CO2-eq. Because of their high area share, causeways contributed the most to net warming, suggesting a reduction in causeway area in future Sphagnum paludiculture. Therefore, a realistic future "best practice" approach features area percentages of 80% Sphagnum production fields, 5% ditches, 15% causeways, and a full biomass harvest, with the top 5 cm of harvested peat moss lawn used on-site for reseeding Sphagnum production fields. This approach reduces CO2 equivalent emissions from Sphagnum paludiculture to up to 4.3 ± 1.9 t ha-1 a-1 or 0.9 ± 2.1 t per ton of dry matter harvested.

How to cite: Daun, C., Huth, V., Gaudig, G., Günther, A., Krebs, M., and Jurasinski, G.: Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on formerbog grassland in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6280, https://doi.org/10.5194/egusphere-egu24-6280, 2024.

EGU24-6373 | ECS | Orals | BG3.16

Carbon Emissions from Active Horticulture Peat Extraction Sites in Canada: Five Years of Field-based Measurements 

Miranda L. Hunter, Laura Clark, Rebecca J. Frei, Ian B. Strachan, Nigel T. Roulet, and Maria Strack

Peat extraction substantially alters the carbon dynamics, peat structure, and hydrology of peatland sites. In Canada, companies install drainage ditches every ~30 m, dividing the sites into fields of peat bounded by ditches, and remove the surface vegetation and upper acrotelm. Peat is then vacuum harvested, processed, and sold for horticulture use. Despite this disturbance covering only a small percentage of Canadian peatlands, the shift from being a net sink to a net source of carbon during the 15-35 years of extraction makes them an important system to study.

We conducted research at eight actively extracted peatland study sites in Quebec (Eastern Canada) and Alberta (Western Canada), ranging from 3–28 years post the start of extraction. Our objectives were to i) assess spatial distribution of CO2 and CH4 emissions; 2) assess seasonal and interannual variability of these emissions; and 3) understand their environmental drivers. To do this, we employed measurement techniques at the plot and ecosystem scale. 

Plot scale chamber-based measurements of CO2 and CH4 were conducted weekly to biweekly from May to September at eight sites from 2018 to 2022, with each site being measured in at least one study year. The drainage ditches were hotspots of carbon emissions with around double and at least seven times the CO2 and CH4 emissions respectively, of the fields. Time since the start of extraction was a useful metric to estimate current CO2 emissions when sites were within one bog complex. More research will be required to extrapolate emissions to other locations however, as peat substrate quality differences between locations also contributed to variation in carbon loss.

Ecosystem scale measurements of daytime March to October CO2 and CH4 emissions were conducted at a subset of the study sites for two to three years using the eddy covariance technique. We observed comparable March and April CO2 emissions to those in July, highlighting the importance of thaw dynamics on the yearly carbon budget. Interannually, CO2 emissions were lowest during a dry summer, suggesting a moisture limitation for decomposition at the surface under severe drainage. We found weak dependence of CO2 emissions on soil temperature, though it was strongest when the water table was within the top 40 cm of the peat.

This research will aid in validating Canada’s emission factor values for peat extraction, which are currently based on a few measurements in Quebec at post extracted, unrestored peatlands. Using several different assumptions for wintertime emissions, we estimated annual CO2 budget of 256 – 385 g C m-2 yr-1, which agrees with Canada’s current Tier 2 emission factor value of 310 g C m-2 yr-1. Methane emissions accounted for < 1 g C m-2 yr-1. This research will also support process-based models looking at the effect of site management, and the changing climate, on carbon emissions from these sites.

How to cite: Hunter, M. L., Clark, L., Frei, R. J., Strachan, I. B., Roulet, N. T., and Strack, M.: Carbon Emissions from Active Horticulture Peat Extraction Sites in Canada: Five Years of Field-based Measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6373, https://doi.org/10.5194/egusphere-egu24-6373, 2024.

EGU24-6512 | ECS | Posters on site | BG3.16

Legacy  of drained northern landscapes: consequences of rewetting and ditch cleaning on hydrology and water quality . 

Virginia Mosquera, Eliza Hasselquist, and Hjalmar Laudon

Drainage for forestry has created ~1 million km of artificial waterways in Sweden, making it one of the largest human-induced environmental disturbances in the country. These extensive modifications of both peatland and mineral soil dominated landscapes still carry largely unknown, but potentially enormous environmental legacy effects. However, the consequences of contemporary ditch management strategies, such as hydrological restoration via ditch blocking or enhancing forest drainage to promote biomass production via ditch cleaning, on water resources are unclear. To close the gap between science and management, we have developed a unique field research platform to experimentally evaluate key environmental strategies for drained northern landscapes with the aim to avoid further environmental degeneration. The Trollberget Experimental Area (TEA) includes replicated and controlled treatments applied at the catchment scale based on a BACI approach (before-after and control-impact). The treatments represent the dominant ecosystem types impacted by ditching in Sweden and the boreal zone: 1) rewetting of a drained peatland, 2) ditch cleaning in productive upland forests and 3) leaving these ditches unmanaged. Here we describe the TEA platform, report initial results, suggest ways forward for how to best manage this historical large-scale alteration of the boreal landscape, as well as warn against applying these treatments broadly before more long-term results are reported.  

How to cite: Mosquera, V., Hasselquist, E., and Laudon, H.: Legacy  of drained northern landscapes: consequences of rewetting and ditch cleaning on hydrology and water quality ., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6512, https://doi.org/10.5194/egusphere-egu24-6512, 2024.

EGU24-7398 | ECS | Posters on site | BG3.16

The mitigation of greenhouse gas emissions by manipulating water table level on peat soil growing grass in eastern Finland –mesocosm and field experiments 

Yu Zheng, Perttu Virkajärvi, Sanna Saarnio, Mari Räty, and Marja Marjanen

Finland commits to carbon neutrality by 2035. Reducing GHG emissions and strengthening carbon sequestration properties from agricultural land is on schedule. Although active agricultural peatlands account for 10% (about 310 000 ha) of total agricultural lands in Finland whereas they contribute to 60% of GHG emissions of agricultural soils. Therefore, large-scale measures are required to Finnish agricultural peatlands. Carbon dioxide (CO2) and nitrous oxide (N2O) are the culprit from agricultural peat soils due to increased soil aeration after peatland drainage. Evidently, the most effective way of remedy would be raising ground water close to soil surface. However, total rewetting is not feasible for food production and may result in methane (CH4) emissions (Regina et al. 2019). There might be a viable water table level reaching the compromise, but effects of underground water elevation in a field scale have not been studied in Finland thus it is not clear about the counterbalance between GHG mitigation and grassland crop yields (under changing water table levels).

This study aimed to tackle the issues being mentioned which incorporate both field and mesocosm experiments. In the field experiment, the underground water levels are manipulated by a drainage well system separating ground water table into high and low levels. Manual chamber and snow gradient methods (Maljanen et al., 2003) were exploited measuring gas fluxes regularly between June 2021 and September 2023 (involving three growing seasons). The mesocosm study was established with the peat soil monoliths taken from the same peat site. Gas fluxes of four water level treatments (below ground -70, -50, -30, -20 cm) were measured with the same methods towards their field counterpart for one year. We will present preliminary results on how water table manipulation will affect gas fluxes and crop yields under Finnish climate.

 

References

Regina K., Heikkinen J., Maljanen M., 2019, Greenhouse Gas Fluxes of Agricultural Soils in Finland. In: Shurpali N., Agarwal A., Srivastava V. (eds) Greenhouse Gas Emissions. Energy, Environment, and Sustainability, https://doi.org/10.1007/978-981-13-3272-2_2

Maljanen M., Liikanen A., Silvola J., Martikainen P.J. (2003) Measuring N2O emissions from organic soils with closed chamber or soil/snow N2O gradient methods. European Journal of Soil Science 54: 625-631.

How to cite: Zheng, Y., Virkajärvi, P., Saarnio, S., Räty, M., and Marjanen, M.: The mitigation of greenhouse gas emissions by manipulating water table level on peat soil growing grass in eastern Finland –mesocosm and field experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7398, https://doi.org/10.5194/egusphere-egu24-7398, 2024.

EGU24-8348 | ECS | Posters on site | BG3.16

Rotational Grazing Approaches for Sustainable Peatland Management: A Focus on the Falklands 

Katy Ross, Christopher Evans, Ross Morrison, Stefanie Carter, and Susan Page

Peatland research, management and restoration efforts have predominantly been focused in the Northern Hemisphere, leaving Southern Hemisphere peatlands, with their confined spatial coverage, relative inaccessibility and smaller research community understudied. To create comprehensive global databases of peat extent, greenhouse gas (GHG) fluxes and support informed restoration efforts, we need to better quantify these Southern Hemisphere peatlands and their role in the global carbon cycle.

Situated in the southern South Atlantic, at the periphery of the climate envelope for peat formation, the Falkland Islands archipelago is believed to support the largest proportional peat extent of any country at 43%. However current estimates of GHG exchange are based on direct measurements from neighbouring Patagonian or distant UK peatlands, or estimated from long-term carbon accumulation rates. These inferred values do not capture the influence of the widespread sheep grazing since the mid-17th Century on this peatland landscape, which, for the first 14,000 years, developed without herbivorous mammals. Livestock grazing is now an integral part of the Falklands with 98% of the peatlands being grazed. Confronting challenges such as drying landscapes, diminishing pasture extent, bare soil exposure to wind erosion and declining wool prices, farmers are exploring alternative holistic and rotational grazing systems or complete removal of sheep to set a trajectory towards peatland restoration.

Over an annual cycle between 2022-2023, direct monthly measurements of CO2 and CH4 were conducted across 13 sites in East Falkland using static chambers. These measurements provide the first directly measured annual estimates of GHG emissions from Falkland peatlands under different management approaches. These measures of ecosystem exchange have been enhanced with the deployment of sediment traps and erosion pins to quantify particulate carbon loss, with preliminary results indicating this pathway of loss to be several orders of magnitude higher than observed in Northern Hemisphere peatlands.

This integrated approach, with the results presented here, facilitates a comprehensive understanding of the impact of grazing and land management practices on peatland carbon balance. While also providing evidence alongside existing biodiversity and socioeconomic studies to determine which grazing systems may be most conducive to sustainable peatland management in the Islands.

How to cite: Ross, K., Evans, C., Morrison, R., Carter, S., and Page, S.: Rotational Grazing Approaches for Sustainable Peatland Management: A Focus on the Falklands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8348, https://doi.org/10.5194/egusphere-egu24-8348, 2024.

EGU24-8662 | Posters on site | BG3.16

Establishment of a German peatland monitoring programme for climate protection - Open land (MoMoK). Monitoring network and data collection. 

Stefan Frank, Ullrich Dettmann, Arndt Piayda, and Bärbel Tiemeyer

Peat and other organic soils store large amounts of soil organic matter, which is highly vulnerable to drainage. Thus, drained organic soils contribute around 7% to the total German greenhouse gas (GHG) emissions and around 44% to the emissions from agriculture and agriculturally used soils, despite covering less than 7% of agricultural area in Germany. With approximately 90% of the total emissions, carbon dioxide (CO2) is the most important GHG with regards to drained organic soils. To evaluate possible GHG mitigation measures such as classical re-wetting, paludiculture or adjusted water management compared to the still widespread status quo of drainage-based peatland agriculture, an improved data set on GHG emissions, in particular CO2, and their drivers is needed. Furthermore, spatial data and upscaling methods need to be improved.

To meet these needs, a long-term monitoring programme for organic soils is currently (2020-2025) being set up for open land at the Thünen Institute of Climate-Smart Agriculture. A consistent long-term monitoring of soil surface motions, representatively covering a broad range of organic soils and land use types will be combined with the repeated measurement of soil organic carbon (SOC) stocks to assess CO2 emissions using standardized and peat-specific methods. Land use types comprise grassland, arable land, paludiculture as well as unutilized re-wetted and semi-natural peatlands. At each of the envisaged approximately 150 monitoring sites important parameters such as groundwater table, vegetation and soil properties are monitored. Together with the updated map of organic soils, all collected data form the basis for improving regionalisation approaches for drivers – particularly water levels and SOC stocks – and CO2 emissions from organic soils in Germany. Here, we will present the structure of the monitoring programme, the used methods for data collection as well as the current status of site establishment.

How to cite: Frank, S., Dettmann, U., Piayda, A., and Tiemeyer, B.: Establishment of a German peatland monitoring programme for climate protection - Open land (MoMoK). Monitoring network and data collection., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8662, https://doi.org/10.5194/egusphere-egu24-8662, 2024.

EGU24-8801 | Orals | BG3.16

Peatland ecohydrology and redox potential 

Markku Koskinen, Sofia Marttunen, Aino Korrensalo, Annalea Lohila, Xuefei Li, Dominik Zak, Valerie Vránova, Paavo Ojanen, Kari Minkkinen, Päivi Mäkiranta, Mika Aurela, Tarmo Virtanen, Jürgen Kreyling, Meline Brendel, Mari Pihlatie, Klaus-Holger Knorr, and Raija Laiho

Anoxic conditions in soils cause microbial populations dependent on oxidation of organic carbon to subsitute alternate terminal electron acceptors (TEA) for oxygen to facilitate the reactions they acquire energy with. Most commonly available alternate TEAs include nitrate, manganese, iron(III) and sulphate, in descending energetic yield. Oxidation by reducing these TEAs offers the microbes more energy per reaction than methanogenesis, and thus they are in principle preferred over it. Different moieties in organic matter itself can also act as TEAs and support non-methanogenic anaerobic decomposition, the most widely known of these being quinones.

Each redox pair (comprising the oxidised and reduced species of a TEA) in principle supports a known electron activity (pe) in solution when they are present in roughly equal activities in the solution. Pe can be measured by an electrode and compared to a reference electrode comprising of a known redox pair, thus creating an electric potential known as redox potential (Eh, mV). 

Continuous Eh measurements are emerging as a tool for ecosystem monitoring, particularly on peatlands and wetlands. Because redox conditions are intrinsically linked to environmental outcomes such as carbon dioxide, nitrous oxide and methane fluxes and phosphorus and iron leaching, there are great hopes that measurements and modelling of redox conditions will improve our understanding of and ability to predict processes in peatlands under sub- and anoxic conditions, and to model the changes in these processes under different management scenarios, such as drainage, restoration, continuous-cover forestry or paludiculture.

Here we present long-term Eh measurements from several boreal peatlands of varying ecohydrological characteristics (ombrotrophic pine bog-mesoeutrophic flark fen) and drainage state (pristine, forestry drained, agricultural). We see the differences in the Eh profiles and their dynamics caused by the dominant water table level (WTL) and the nutrient status, but also that WTL is not sufficient to predict temporal changes in redox conditions. We further explore possible connections between Eh measurements and microform- and ecosystem-level flux measurements.

We also present results of a laboratory incubation experiment showing that iron is the most important mineral TEA in a range of boreal peatland types.

How to cite: Koskinen, M., Marttunen, S., Korrensalo, A., Lohila, A., Li, X., Zak, D., Vránova, V., Ojanen, P., Minkkinen, K., Mäkiranta, P., Aurela, M., Virtanen, T., Kreyling, J., Brendel, M., Pihlatie, M., Knorr, K.-H., and Laiho, R.: Peatland ecohydrology and redox potential, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8801, https://doi.org/10.5194/egusphere-egu24-8801, 2024.

EGU24-8847 | Posters on site | BG3.16

Accelerating raised-bog restoration in a nutrient-rich environment through moss transfer – OptiMuM – a new project to improve restoration practice in Germany 

Vytas Huth, Marvin Beckert, Anke Günther, Florian Jansen, Angela Pannek, and Gerald Jurasinski

Raised bogs are among the most threatened habitats in Northern Germany. Drainage-based land use has caused a shift to grassland vegetation on more than half of former raised bogs. In addition, high greenhouse gas (GHG) emissions from these areas counteract the aims of the Paris Agreement. Because all GHG emission reduction pathways require the so-called “land sink”, the pressure to restore former raised bogs under agricultural use as a nature-based climate solution is constantly increasing. However, since the mid-1980s most restoration projects have been carried out following peat extraction, whereas raised-bog restoration following intensive agricultural use is relatively new. Therefore, experience for successful restoration in a nutrient-rich environment is scarce.

In German restoration practice, topsoil is removed to build cell bunds for water retention simultaneously resetting biogeochemistry (at least on some parts of the area) to more favorable conditions for raised-bog vegetation. An active water management similar to peat moss paludiculture is usually not feasible in large scale restoration, because the goal is to create a self-regulating ecosystem with minimal maintenance need after restoration. However, contrary to e.g., Canadian restoration practice, active introduction of a moss layer is currently not a standard measure, because donor material is essentially missing or strictly protected. Therefore, the return of raised bog habitats to an agricultural landscape strongly depends on nearby refuges of raised-bog species.

Here, we present our new project “OptiMuM”, with which we aim to explore if, with relatively little additional effort, it is possible to speed up the restoration of raised bog habitats through varying degrees of active introduction of bog species under common German restoration practice. We selected three study sites across Northern Germany of which two are already rewetted without active introduction of bog species and one which will be rewetted within the project. On all sites we want to test the effect of active introduction for the restoration success and compare it to the development of areas within the sites without active introduction of bog species. On one site, we also want to test the additional effect of an active water management similar to peat moss paludicultures on the restoration success.

Keywords: ecological restoration, peatlands, Sphagnum, C sequestration

How to cite: Huth, V., Beckert, M., Günther, A., Jansen, F., Pannek, A., and Jurasinski, G.: Accelerating raised-bog restoration in a nutrient-rich environment through moss transfer – OptiMuM – a new project to improve restoration practice in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8847, https://doi.org/10.5194/egusphere-egu24-8847, 2024.

EGU24-9267 | ECS | Orals | BG3.16

Modelling greenhouse gas balances of bogs in Germany based on vegetation types and water levels 

Lukas Guth, Arndt Piayda, Gerald Jurasinski, and Bärbel Tiemeyer

An important share of the greenhouse gas (GHG) emissions of many European and South-East Asian countries is originating from degraded peatlands. However, only the GHG balances of a few sites can be measured directly, as these measurements are both cost- and labour-intensive. Therefore, reliable methods for upscaling peatland GHG balances to a larger scale are necessary. Ideally, such upscaling methods use readily available data and also allow for the assessment of scenarios and implemented restoration measures.

In this study, we focused on unused and extensively used bogs in Germany and collected a dataset of published annual balances of carbon dioxide (CO2) and methane (CH4) from bogs within Germany and the surrounding temperate Europe. Each site was assigned to one of eight vegetation types, which are based on a clustering of the German federal biotope type classification to enable later upscaling based on this data. The relationships of the annual CO2 and CH4-balances to vegetation type, mean annual water level and temperature were then analysed with mixed effects modelling.

As expected, wet extensive grassland had relatively high CO2 and low methane emissions, while semi-natural bogs showed a small CO2-uptake but higher methane emissions. Most degeneration stages showed an intermediate behaviour. Noteworthy are the comparatively low CH4 emissions of recently rewetted sites with sparse vegetation and of wet unused forested areas. Due to very little available data, the uncertainties of GHG emissions from some vegetation types are large. For very wet vegetation types such as semi-natural Sphagnum-dominated sites, water levels did not improve the GHG emission estimates compared to solely using vegetation data. For dryer sites such as wet extensive grassland, incorporating water levels significantly improved the estimation of both CO2 and CH4 fluxes.

The results are broadly in line with previous findings and provide a basis for future upscaling to a German-wide estimation. In some cases, knowledge on water levels after having taking restoration measures will still improve the estimation of GHG exchange. The most severe data shortage occurred for recently rewetted sites with sparse vegetation and wet unused forested bogs as well as subalpine and alpine peatlands.

How to cite: Guth, L., Piayda, A., Jurasinski, G., and Tiemeyer, B.: Modelling greenhouse gas balances of bogs in Germany based on vegetation types and water levels, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9267, https://doi.org/10.5194/egusphere-egu24-9267, 2024.

EGU24-9607 | ECS | Orals | BG3.16

Effects of topsoil removal on greenhouse gas exchange of fen paludicultures 

Philipp Köwitsch, Bärbel Tiemeyer, Sonia Antonazzo, and Ullrich Dettmann

Current agricultural practices on peatlands require drainage, leading to substantial emissions of the greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O). Paludiculture is an option to mitigate these adverse environmental impacts while maintaining productive land use. Whereas the GHG exchange of paludiculture on rewetted bog peat, i.e., Sphagnum farming, is relatively well examined, data on GHG emissions from fen paludicultures remain scarce. Considering that typical fen paludiculture species are aerenchymous plants, the release of methane (CH4) is a crucial aspect when optimizing the GHG balance of such systems. One potential method to reduce CH4 emissions upon rewetting involves removing the topsoil, but retaining a nutrient-rich topsoil might foster the biomass growth.

In this project, Typha angustifolia, Typha latifolia, and Phragmites australis are grown at a fen peatland formerly used as grassland. Water levels are maintained at the surface or slightly above it. In parts of the newly created polder surrounded by a peat dam, approximately 10 cm of topsoil had been removed before planting. In order to separate the effects of topsoil removal and water level, four smaller sub-polders were installed. Here, the water levels can be adjusted independently from the main polder. Greenhouse gas exchange is measured for all three species with and without topsoil removal. Additionally, a reference grassland site close by and a site on the dam are included in the measurements. Using manual transparent and non-transparent chambers and a portable analyser for both CH4 and CO2, GHG measurements are carried out every two to four weeks on a campaign basis. N2O is measured using non-transparent chambers and gas chromatographic analysis. Here, we present GHG balances of the first three years after planting the paludicultures.

Challenges in water management during the initial year after planting caused an infestation with Juncus effusus, especially at the Phragmites australis sites. However, despite suboptimal water levels in the first year, all paludiculture species were a net CO2 sink, irrespective of topsoil treatment. During this period, fluctuating water levels led to very low CH4 emissions, whereas N2O emissions played a more significant role in the GHG balance. Even under more stable hydrological conditions in the second year, CH4 emissions remained rather low, leading to a GHG sink for almost all paludiculture species, even including the first harvest year. Therefore, the current results of our study do not indicate topsoil removal to be necessary as a significant optimization strategy concerning CH4 emissions in fen paludiculture.

How to cite: Köwitsch, P., Tiemeyer, B., Antonazzo, S., and Dettmann, U.: Effects of topsoil removal on greenhouse gas exchange of fen paludicultures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9607, https://doi.org/10.5194/egusphere-egu24-9607, 2024.

EGU24-9800 | ECS | Orals | BG3.16

Raising a peat meadow’s groundwater level: fertilizer strategies to minimize N2O emissions 

Erne Blondeau, Dorien Westerik, Gerard Velthof, Marius Heinen, and Jan Willem van Groenigen

Peat soils store a large part of the global soil carbon stock, which can potentially be lost when they are drained and taken into cultivation. In the Netherlands, 75% of the peat and peaty soils are drained and are mainly used for grassland cultivation. This results in an estimated yearly emission of 5.6 Mton CO2 due to peat oxidation, accounting for about 3% of the national CO2 emissions. Groundwater level (GWL) management has been proposed to mitigate peat soil oxidation, but this may lead to increased emissions of nitrous oxide (N2O). Peat meadows experiencing (intermediate) wet conditions, and frequent fertilization events, are favorable locations for N2O production.

We hypothesize that the selection of a fertilizer with a relatively low mineral nitrogen (N) content (such as farmyard manure), will limit the risk for increased N2O emissions as a result of raising the GWL, compared to fertilizers with a high mineral N content (such as calcium ammonium nitrate).

 

The effects of these two management factors (groundwater level and fertilizer type) were studied in a two-year field experiment. The experiment took place in 2022 and 2023, on two adjacent grassland fields of a dairy farm near Zegveld, in the low-lying western peat area in the Netherlands. On the first field, drainage was controlled by the ditch water levels, leading to GWLs ranging between -100 cm in the summer and -20 cm in the winter. The GWL of the second field was maintained at a more steady level around -40 cm using infiltration drainage pipes. In year two, a third groundwater level treatment was added, with infiltration drainage aimed at a GWL of -20 cm. Following a randomized block design for each GWL object, the N2O emissions and N yields were compared for six fertilizer products and an unfertilized control treatment in four replicates: calcium ammonium nitrate, ammonium sulphate, farmyard manure, cattle slurry and the liquid and solid fraction products after slurry separation.

 

The results of 2022 suggested that the combination of raising the GWL (using infiltration drains aimed at -40 cm) and application of cattle slurry or its liquid fractionation product - both having a relatively high mineral N content - led to a strong increase in N2O emissions. As expected, emissions were lowest for farmyard manure and the solid fraction of slurry. However, these fertilizers in combination with a raised GWL resulted in significantly lower N yield in the harvested grass, making the combination less attractive to a dairy farmer. Variation in N2O emissions was still large, indicating the importance of several measurement years. Here, we will present the combined results of 2022 and 2023, including fertilizer-specific N2O emission factors calculated over two years.

How to cite: Blondeau, E., Westerik, D., Velthof, G., Heinen, M., and van Groenigen, J. W.: Raising a peat meadow’s groundwater level: fertilizer strategies to minimize N2O emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9800, https://doi.org/10.5194/egusphere-egu24-9800, 2024.

EGU24-10218 | Orals | BG3.16

Fine root longevity and biomass production in boreal peatlands 

Kari Minkkinen, Raija Laiho, and Jaana Salomäki

Drainage for forestry alters the carbon (C) dynamics and stocks of peatlands. After drainage soil C stocks usually decrease, because of increased soil organic matter (SOM) decomposition, while the C stocks in vegetation (trees) increase, because of increased primary production. However, sometimes also the soil C stocks have been reported to have increased after drainage, despite of increased SOM decay. This observation can only be explained by the increased above- and belowground litter production.  Above ground litterfall can be easily measured with litter collectors, and there is a rather good understanding of its dynamics and magnitude in forested peatlands. However, the rate of below ground litter input through the growth and death of fine roots, has remained uncertain, because of methodological challenges. One laborous but plausible method to estimate belowground litter input is the minirhitzotron-method, in which the lifetime, i.e., longevity (and its complement: turnover) of roots is measured with repeated photographing of roots through a transparent tube inserted into the ground. With the measurements of in situ root biomass, the root production rate can then be calculated as turnover rate × biomass.

We measured the longevity and biomass of fine roots (d<0.5 mm) in 11 undrained and forestry-drained peatland sites in the southern and central Finland. We followed the life of altogether 23303 roots in 102 minirhitzotrons for 4 years (19 sessions). The median longevity was estimated with the nonparametric Kaplan-Meier -method and a parametric regression model with Weibull error distribution. Root biomass samples (50 cm deep, one core beside every minirhitzotron tube) were collected once in late summer. The roots were separated from the peat sample, dried, and weighed to calculate fine root biomass (g m-2). We analysed the effects of drainage, peatland site type, tree and understory plant species, root thickness, root depth, soil water table level and soil temperature on fine root lifetime/turnover and biomass production.

The median tree fine root longevity varied from 65 to 294 weeks among the 11 sites. Drainage had no effect on the FR lifetime. The longevity was distinctly, and significantly higher in the ombrotrophic, pine-dominated sites (Anova LS mean 276±17 weeks) than in the minerotrophic, spruce/alder -dominated sites (94±10 weeks). In the most nutrient poor site, no tree roots died during the four study years. Pine roots lived longer than spruce, birch, and alder roots, but there was a strong interaction with the site type. Sedge roots had the shortest lifetime. Thicker fine roots lived longer than thinner roots. The annual turnover values for all tree FR together varied between sites from 0.19/year to 0.83/year. Fine root production varied, on average, from 35 to 310 g m–2 a–1 among the sites. Drainage increased fine root production in the minerotrophic, spruce/alder dominated sites but not in the ombrotrophic, pine dominated sites.

How to cite: Minkkinen, K., Laiho, R., and Salomäki, J.: Fine root longevity and biomass production in boreal peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10218, https://doi.org/10.5194/egusphere-egu24-10218, 2024.

EGU24-10588 | ECS | Orals | BG3.16

Peatland GHG emissions estimated with redox potential 

Jim Boonman, Sarah Faye Harpenslager, Duygu Tolunay, Alexander Buzacott, Merit van den Berg, Gijs van Dijk, Alfons Smolders, Mariet Hefting, and Ype van der Velde

Peat decomposition processes account for ~2% of the annual anthropogenic greenhouse gas emissions (GHG). The rate of microbial peat respiration is determined by temperature, the quality and abundancy of organic matter, moisture and electron acceptor (such as O2, Fe[III], SO42-) availability. The redox potential and pH reflect the chemical state of the soil and are an indicator for biogeochemical metabolic processes that occur within the soil. Here, we introduce a novel methodology to estimate peatland GHG emission (CO2 and CH4) by linking soil temperature and redox potential over time and depth with aerobic and anaerobic CO2 and CH4 incubation fluxes. Soil metabolic processes (at 0.1, 0.3, 0.5, 0.7 and 0.9 m depth) were classified based on the redox potential and pH. Individual rates of CO2 and CH4 emission (based on newly acquired and literature lab incubation data) were assigned to aerobic, anaerobic and methanogenic metabolic processes and were multiplied by a soil temperature factor relying on a Q10 relation. The estimated GHG emissions were compared with measured eddy covariance and automated transparent chamber GHG fluxes, both on short and long timescales for various agriculturally managed or semi-natural minerotrophic peatlands in the Netherlands. Our results indicate that seasonal patterns in GHG emissions are well captured by our approach. Moreover, estimations of short term (< 1 week) GHG dynamics matched measured GHG fluxes well for research locations with high methane emission. During our presentation we elaborate upon new results and discuss the suitability to indirectly determine peatland GHG emissions by measuring the soil redox potential.

How to cite: Boonman, J., Harpenslager, S. F., Tolunay, D., Buzacott, A., van den Berg, M., van Dijk, G., Smolders, A., Hefting, M., and van der Velde, Y.: Peatland GHG emissions estimated with redox potential, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10588, https://doi.org/10.5194/egusphere-egu24-10588, 2024.

EGU24-10714 | Orals | BG3.16

Effects of peat inversion on carbon balance and GHG emissions in agricultural peatland 

Mounir Takriti, Miyuru Gunathilake, Synnøve Rivedal, Bjørn Kløve, and Peter Dörsch

The need to mitigate climate change has shifted practices and policy towards restoration and sustainable use of agricultural peatlands as a means to protect carbon (C) stores and other ecosystem services. However, a significant percentage of peatlands in Europe are still maintained under drainage and in use as agricultural land, resulting in continuing loss of soil organic C and CO2 emissions. Mineral soil addition has been used in different regions to improve the agronomic performance of agricultural peatlands, with conflicting effects on GHG emissions reported in the literature. In Norway, “peat inversion” has been employed since the 1970s as an alternative drainage method. Under peat inversion, previously drained peat is covered with a layer of mineral soil excavated from underneath the peat. It has been proposed that peat inversion protects C stores by limiting aerobic decomposition. Data from previous field trials indicate that peat inversion reduces oxygen content in the peat during dry conditions and reduces CH4 emissions under poor drainage conditions. However, the effect on C-budgets, i.e., the balance of gross primary production and ecosystem respiration, remains unknown. We present results from an ongoing study comparing peat inversion with conventional drainage in a peatland used for grass production in Western Norway. Chamber flux measurements are used in combination with continuous measurements of meteorological and soil conditions, as well as biomass exports, to establish annual C budgets. Preliminary results indicate that peat inversion reduces ecosystem respiration under dry conditions without reducing overall productivity.

 

How to cite: Takriti, M., Gunathilake, M., Rivedal, S., Kløve, B., and Dörsch, P.: Effects of peat inversion on carbon balance and GHG emissions in agricultural peatland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10714, https://doi.org/10.5194/egusphere-egu24-10714, 2024.

EGU24-11075 | ECS | Orals | BG3.16

Mitigating greenhouse gas emissions from managed organic soils in the temperate zone by paddy rice cultivation 

Alina Widmer, Lisa Tamagni, Chloé Wüst-Galley, Sonja Paul, Valerio Volpe, Markus Jocher, Robin Giger, Sebastian Dötterl, Thomas Keller, and Jens Leifeld

Large areas of European peatlands have been drained for agriculture, but drained organic soils are a strong source of carbon dioxide (CO2). Reinstalling high water tables would inhibit further peat oxidation and reduce CO2 and nitrous oxide (N2O) emissions, but most cash crops do not grow in waterlogged conditions. Paddy rice cultivation could offer a new option for continuing the agricultural use of these soils under wet conditions. However, paddy rice cultivation is known to be a strong source of methane (CH4), which might cancel out the potential climate benefit from reduced CO2 and N2O emissions. The main aim of this study was, therefore, to quantify for the first time the greenhouse gas (GHG) balance of paddy rice grown on organic soil in the temperate climate zone of the Swiss Plateau.

In an outdoor mesocosm experiment, we measured the greenhouse gases CO2, CH4, and N2O with manual chambers on a weekly to biweekly interval for one year. During the experiment, rice (Oryza sativa L.) was cultivated under flooded conditions with mid-season drainage on organic soil. As a reference treatment, ley was grown on drained organic soil (water table -100 cm).

Preliminary results from the growing season (April - October) including planting and harvest suggest that the overall GHG balance of paddy rice cultivation on organic soil (9.3 ± 1.9 t CO2 eq. ha-1 including harvest exports) was significantly lower than of ley grown on drained organic soil (27.9 ± 5.0 t CO2 eq. ha-1 including harvest exports). This difference was mainly attributed to the strong reduction in ecosystem respiration under flooded conditions compared to ley on drained organic soil. Paddy rice cultivation was a source of methane (49.2 ± 19.7 kg CH4 ha-1), while the drained organic soil covered with ley was a CH4 sink (-0.6 ± 0.1 kg CH4 ha-1). The flooded conditions in the paddy rice mesocosms significantly lowered N2O emissions (0.7 ± 0.3 kg N2O ha-1) compared to drained grassland (4.7 ± 3.1 kg N2O ha-1). N2O and CH4 accounted for 16.0 ± 6.8 % of the total GHG balance in the rice on organic soil treatment, whereas it was only 4.9 ± 2.6 % in the ley on drained organic soil.

Together, we show that paddy rice cultivation on organic soil is a valid alternative to upland agriculture in the temperate zone and offers significant GHG emission reduction potentials.

How to cite: Widmer, A., Tamagni, L., Wüst-Galley, C., Paul, S., Volpe, V., Jocher, M., Giger, R., Dötterl, S., Keller, T., and Leifeld, J.: Mitigating greenhouse gas emissions from managed organic soils in the temperate zone by paddy rice cultivation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11075, https://doi.org/10.5194/egusphere-egu24-11075, 2024.

EGU24-11391 | Orals | BG3.16

Does a mineral soil coverage reduce greenhouse gas emissions from agriculturally managed peatlands? 

Sonja Paul, Christof Ammann, Yuqiao Wang, Christine Alewell, and Jens Leifeld

The agricultural use of organic soils usually requires drainage, resulting in soil subsidence and high greenhouse gas (GHG) emissions, particularly CO2. One proposed strategy to maintain the productivity of these soils is applying a mineral soil cover. However, the impact on the overall GHG budget is unknown. Herein, we determined the net ecosystem carbon budget (NECB) for a pair of covered (Cov) and uncovered (reference, Ref) organic soils under intensive grassland management in the Rhine Valley, Switzerland, over four years (1 March 2018–29 February 2022). The net ecosystem exchange (NEE) of CO2 fluxes was measured using the eddy covariance method, in addition to recording additional carbon exports and imports for harvest and organic fertilisers. N2O and CH4 fluxes were measured using an automatic time-integrating chamber system over three years. Both of the drained peatlands under agricultural use showed substantial soil organic carbon (SOC) losses of 6.5 to 28.9 t CO2 ha- 1 year -1 (Ref) and 4.6 to 30.3 t CO2 ha- 1 year -1 (Cov), driven by the aerated peat carbon stock during summer and accounting for 1.4 %–0.5 % of the total aerated carbon stock. Covering the organic soil with a mineral layer did not significantly reduce the SOC losses relative to the reference site in any of the four years at either site, and CH4 uptake was marginal. However, soil coverage reduced the contributions of N2O to total GHG emissions from 28 % (Ref) to 7 % (Cov). Thus, we conclude that mineral soil coverage per se has little potential to reduce carbon losses from drained organic soils. However, if combined with a considerable rise in the water table, SOC losses may be effectively reduced while maintaining agricultural productivity.

How to cite: Paul, S., Ammann, C., Wang, Y., Alewell, C., and Leifeld, J.: Does a mineral soil coverage reduce greenhouse gas emissions from agriculturally managed peatlands?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11391, https://doi.org/10.5194/egusphere-egu24-11391, 2024.

EGU24-11393 | Orals | BG3.16

Eutrophication and phosphorus release of rewetted peatlands - lesson learned from Neman River basin 

Piotr Banaszuk, Andrzej Kamocki, Mateusz Grygoruk, Michael Manton, and Wendelin Wichtmann

Rewetting peatlands and restoring wetland buffer zones are often considered primary measures to support local biodiversity and mitigate non-point agricultural pollution loads. However, rewetting peat soils (histosols) that were previously used for agriculture, intensive grasslands, or croplands could lead to the release of soil phosphorus and cause eutrophication of soil, groundwater, and adjacent watercourses (Smolders et al., 2006; Banaszuk et al., 2011). Estimates suggest that phosphorus concentration in soil pore water of rewetted fen can be up to three orders of magnitude higher than under natural conditions (Zak et al., 2008).

Under the framework of the Interreg Baltic Sea region project "DESIRE", we estimated the total phosphorus (TP) accumulation within the topsoil (up to 50 cm in depth) in four peatlands planned for restoration in three countries (Lithuania, Poland, Russia - Kaliningrad Region) of the Neman River basin.

Results show that the long-term agricultural use of histosols may result in total phosphorus accumulation in the topsoil, ranging from 50 to over 300 g P m2. A significant part of P consists of metal oxide compounds as redox-sensitive phosphorus characterized by variable dynamics. Soil anoxia increases after rewetting, causing reductive Fe (III) compounds to dissolve, leading to a high discharge rate of Fe (II) and P. Therefore, a significant P release is expected, which can amount to up to 6 g P m2 (NH4Cl_P + BD_P fractions), followed by severe ground- and surface water pollution.

The initial influx of nutrients after rewetting can be significant, and affect the expected restoration outcome (Cabezas et al., 2013). Eutrophication can support the spread of fast-growing generalist plant species, mainly Phragmites australis and Typha sp., instead of the diverse vegetation composition targeted by restoration planners (Kreyling et al., 2021). Nonetheless, these new rewetted ecosystems may provide some services comparable to pristine wetlands, and the export of nutrients by regular harvesting under paludiculture management reduces the risk of nutrient losses to open waters.

In conclusion, elevated release of P is initially expected for nutrient-rich rewetted histosols. Nevertheless, in the long run the benefits from rewetting outweigh the disservices of draining peatlands. 

How to cite: Banaszuk, P., Kamocki, A., Grygoruk, M., Manton, M., and Wichtmann, W.: Eutrophication and phosphorus release of rewetted peatlands - lesson learned from Neman River basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11393, https://doi.org/10.5194/egusphere-egu24-11393, 2024.

EGU24-11725 | ECS | Orals | BG3.16

Organic Carbon Degradation and Preservation in a Drained and Reflooded Peat Soil  

Guy Sapir, Alon Angert, Yoav Oved Rosenberg, and Rotem Golen

Peatlands cover about 3% of the earth's land surface and store ~650 Pg of carbon in organic matter (OM), about 20% of the total global soil carbon stock. Unfortunately, these carbon stocks are largely at risk as many have been exploited intensively by humans since the Industrial Revolution. The most common reason for peatland deterioration is land reclamation for agricultural purposes which led to a massive global peat draining. The drainage of the Hula Marsh in Israel, in 1957, caused soil fires, enhanced erosion, subsidence, and nutrient enrichment of the downflow water system. This led to the decision to reflood part of the area in 1994 and to keep the groundwater level in surrounding cropland at roughly ~ 0.8 to 1.4 m below the surface. As a result, the Hula Marsh has peat sections that were drained for ~37 years before reflooding, while other sections are still drained for more than ~ 66 years. Hence, the Hula Marsh allows us to study the aerobic degradation of organic matter following drainage, and its preservation following reflooding. Five sediment cores (4 m long) were excavated from cropland over the historic marsh area at different discrete locations. Using RockEval-7 (RE7) analyses and soil aerobic respiration experiments, we have evaluated the organic matter of the drained, re-flooded, and saturated sections of the soil profile.

 

Our findings show that in the upper, drained peat section, total organic carbon (TOC) is the lowest and the OM resistivity index (R-index) is the highest, inversely to the saturated section. The reflooded section values are a transition between these two sections. Both trends align with the expected oxidation and mineralization of the upper peat section and correlate to the water table history in all the soil profiles. The reflooded section experienced mineralization in the past, which presumably was lessened under the newly saturated conditions. Preliminary respiration experiment results indicate that the reflooded section has the highest decomposition rates and is more prone to decomposition. However, the drained and saturated sections have lower and similar respiration rates (per gram carbon) despite the differences in their OM characteristics.

Further study will focus on respiration rates in all cores and the OM characterization in the drained and reflooded sections.

How to cite: Sapir, G., Angert, A., Oved Rosenberg, Y., and Golen, R.: Organic Carbon Degradation and Preservation in a Drained and Reflooded Peat Soil , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11725, https://doi.org/10.5194/egusphere-egu24-11725, 2024.

EGU24-11763 | Posters on site | BG3.16

A new low-cost device for the continuous measurement of peatland surface motion (“LoCoMotion”)  

Bärbel Tiemeyer, Stefan Frank, Arndt Piayda, Ullrich Dettmann, Ronny Seidel, and Dirk Lempio

The surface of both wet and drained peatlands is permanently in motion due to both physical and biological processes. For a long-time, manually measured changes in surface elevation have been used as a proxy for carbon losses. High resolution measurements, however, are needed to avoid misinterpretation of such, e.g., annual, measurements, to improve process understanding and, potentially, to inform remote sensing approaches which are increasingly used to detect surface motion.

So far, different methods have been employed to determine surface motion in a high temporal resolution, but the devices are either costly, demand extensive maintenance or acquire data sets (photos) requiring comparatively complicated data analysis. As we intended to measure surface motion in the German peatland monitoring programme and are thus establishing numerous monitoring sites distributed all over Germany, low costs and low energy demand are necessary. Furthermore, the device needs to be robust enough for year-round measurements and require little maintenance as monitoring sites could usually only be visited once a year. Finally, we aimed at high precision and simple data sets which can be easily handled and analysed. As none of the existing measurement approaches met our requirements, we developed a new device based on the potentiometric measurement of cable length combined with an affordable data logger.

Here, we intend to introduce this new measurement device and demonstrate its suitability to acquire high-quality data sets on surface motion under different conditions regarding land use, hydrology and peat properties. Using case studies with data from different sites, we first tested the temperature stability and the comparability with established approaches (peat camera, double pressure sensors). To ensure the reproducibility at small spatial scale, we employed three replicate sensors within short distance at three contrasting peatlands. Further, we compared three anchoring methods. To determine the limits of our method, we tested the applicability to a site with presumably little surface motion (very shallow peat-derived soil).

Results show no influence of air temperature on measurement results and good comparability with established devices. Depending on site conditions, different anchoring methods might be chosen. At all sites, surface motion was plausible given the water level, peat properties and weather conditions. We could detect surface motion even for shallow peat-derived soils. Further, we could also show for all three peatlands that the three replicate sensors show the same results unless distances to drainage pipes differ. Overall, the newly developed LoCoMotion device can be recommended for peatland research. 

How to cite: Tiemeyer, B., Frank, S., Piayda, A., Dettmann, U., Seidel, R., and Lempio, D.: A new low-cost device for the continuous measurement of peatland surface motion (“LoCoMotion”) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11763, https://doi.org/10.5194/egusphere-egu24-11763, 2024.

EGU24-11898 | Posters on site | BG3.16

Biomass quality of rich fen bryophytes along the temperate to subarctic gradient sheds light on possible effects of climate change on peat formation in fens 

Łukasz Kozub, Izabela Jaszczuk, Jan Kucharzyk, Ewa Jabłońska, and Wiktor Kotowski

Introduction:
Fens, unlike bogs, are mires fed by ground or surface water, usually enriched by minerals and nutrients, which allows them to support high and specific biodiversity. Fens are dominant mires of the more continental temperate areas and the Arctic but they are also common in some of the boreal regions. Even though much less recognized than bogs, they remain globally important carbon stores and sinks. Their major peat builders are sedges and so-called brown mosses (non-Sphagnum bryophytes) which have been much less studied in the context of biomass quality than Sphagnum species. In the presented study we aimed to quantify the biomass quality (decomposability) of the common fen bryophytes along more than 15 degrees south-to-north transect.
Material and methods
We studied the biomass quality of fen bryophytes in three regions: temperate fens of NE Poland, mid-boreal Trøndelag, and sub-arctic Finnmarksvidda (both latter in Norway). Studied species were Campyllium stellatum, Scorpidium cossonii, Sphagnum warnstorfii and Tomentypum nitens. In each region, mosses were collected from several sites during the summer of 2022. Each collected moss sample was divided into two. One was quickly dried and the latter was kept alive and later grown in a common garden in standardized conditions, for more than a month, to produce new biomass. Both the biomass collected in the field and the new biomass produced in the common garden experiment were analysed with NIR spectroscopy to assess their biomass quality. We compared the impact of origin on biomass quality of both original biomass and the one produced in common conditions using mixed effect models with location and species as the random factors.
Conclusions
The obtained results shed light on the possible impacts of climate warming on peat formation in fens. Assuming that fens will maintain their integrity in the course of climate change, this change may impact the peat-forming potential of fens via changes in bryophyte community composition as well as by impacting the performance and biomass quality of the locally occurring species. Thus studying bryophyte biomass quality along the climatic gradient might help us to better predict the future of carbon accumulation in fens.

How to cite: Kozub, Ł., Jaszczuk, I., Kucharzyk, J., Jabłońska, E., and Kotowski, W.: Biomass quality of rich fen bryophytes along the temperate to subarctic gradient sheds light on possible effects of climate change on peat formation in fens, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11898, https://doi.org/10.5194/egusphere-egu24-11898, 2024.

EGU24-12469 | ECS | Orals | BG3.16

Carbon Dynamics in a Passively Rewetted Fen Peatland: A Two-Year Study 

Johannes WM Pullens, Andres F. Rodriguez, and Poul Erik Lærke

Peatlands, vital carbon sinks, face significant challenges due to drainage activities, thereby disrupting their natural functions. When drained for agriculture, peatlands release stored carbon into the atmosphere. Rewetting may reduce further carbon emissions and promote carbon sequestration, but restoring anaerobic soil conditions may also promote methane emissions. The rewetting of such nutrient-rich agricultural peatland could lead to different patterns and pathways in terms of GHG balance compared to a more pristine peatland.

In this study, we want to identify the different drivers of net ecosystem exchange (NEE) in a previously drained agricultural fen peatland while rewetting is ongoing. We hypothesize that the increase in the water table will have a positive effect on the carbon balance, i.e. a higher amount of carbon sequestered. We also hypothesize that during different periods, different drivers of the NEE will be dominant and that these drivers do not match with the drivers for methane (CH4) emissions from the peatland.

Here we present two-year Eddy Covariance data (CO2 and CH4) obtained from a fairly wet peatland in Vejrumbro, central Jutland, Denmark. This fen-type peatland was drained in the early last century and used for agriculture. The field became gradually wetter during this century because of land subsidence, and during the period of EC measurements, the water table in the ditches gradually increased (mean water table depth in winter: -0.3 ± 2.8 cm, in summer: -27.5 ± 9.5 cm). This site provides a unique context to explore the impacts of restoration efforts on carbon dynamics. Eddy Covariance data, raw data analysis, meteorological data, and modelling techniques are used to elucidate the temporal patterns of carbon exchange during this rewetting process.

The study utilizes a comprehensive dataset, including high-resolution EC measurements containing net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (Re). The analysis of the combined datasets indicates nuances in carbon fluxes associated with the rewetting process. Meteorological data integration enhances the contextual understanding of environmental drivers influencing carbon dynamics.

Our modelling approach incorporates theoretical concepts to explore the mechanistic underpinnings of carbon exchange in the rewetted peatland, by looking at the annual, seasonal, and monthly drivers of CO2 and CH4 fluxes. The effects of air/soil temperature, water table depth, global radiation and vegetation dynamics are assessed on these different timeframes. The preliminary results indicate that the shorter the timeframe, the better the fit of the model compared to the measured data indicating the importance of short-term periodic drivers of CO2 and CH4 fluxes. The results also show differences in drivers during the rewetting process. By focusing on two years of rewetting, our research contributes valuable insights into the trajectory of carbon fluxes during the critical early phases of restoration.

How to cite: Pullens, J. W., Rodriguez, A. F., and Lærke, P. E.: Carbon Dynamics in a Passively Rewetted Fen Peatland: A Two-Year Study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12469, https://doi.org/10.5194/egusphere-egu24-12469, 2024.

EGU24-13337 | ECS | Posters on site | BG3.16

Carbon flux, energy balance and vegetation change of a recently restored forest peatland in the Solling mountains, Germany 

Simon Drollinger, Daniel Schwindt, Birgitta Putzenlechner, Stephen Boahen Asabere, Timo Pascal Lehmann, and Daniela Sauer

Peatlands represent the most space-effective and largest terrestrial carbon sink, delivering multiple crucial ecosystem services. In contrast, drained peatlands have been identified as hotspots of greenhouse gas (GHG) emissions and constitute a relevant climate factor. Projections suggest that, due to severe human impacts, peatlands worldwide will shift from a global net GHG sink to a source in the near future, causing positive radiative forcing. Restoring peatlands therefore constitutes an effective and relevant nature-based climate change mitigation measure. However, effects of drainage and afforestation on temperate peatlands are still uncertain, and data on multi-year carbon exchange rates between recently restored afforested peatlands and atmosphere of Europe's low mountains are non-existent.

Here we analyse 2.5 years of eddy covariance flux measurements of carbon dioxide, methane, sensible and latent heat of a clear-cut forest peatland during early stages of restoration in the Solling region, Lower Saxony. We found large amounts of carbon to be released from the peatland to the atmosphere in the first years after the implementation of restoration measures. This is due to extraordinarily high ecosystem respiration rates that cannot be compensated by gross primary productivity and are clearly regulated by moisture conditions of the peat. Calculations of GHG fluxes were complemented by UAV flights, geophysical measurements, soil analyses and vegetation surveys to disentangle the spatio-temporal variability of influencing factors. We related results of repeated electrical resistivity tomography to soil properties and discuss the effects of their spatial heterogeneity on gas fluxes. True colour orthophotos obtained from repeated UAV flights were used to delimit vegetation units and changes in plant composition with ongoing plant succession. Based on variations in heat capacity of different matter, thermal images were used to assess fine-scale differences in soil moisture to evaluate their potential to model and upscale spatio-temporal trends of thermal characteristics and ecosystem respiration in unprecedented detail. Finally, we evaluate underlying factors of GHG fluxes, discuss implications of restoration measures and outline potential future developments.

To allow for careful consideration of restoration measures in temperate peatlands formerly drained for forestry, the benefits of restoration must be contrasted with the initial investments and future losses when the land is taken out of economic production. Outcomes from this study will provide the needed insights into forest peatland restoration and its associated processes in temperate peatlands.

How to cite: Drollinger, S., Schwindt, D., Putzenlechner, B., Asabere, S. B., Lehmann, T. P., and Sauer, D.: Carbon flux, energy balance and vegetation change of a recently restored forest peatland in the Solling mountains, Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13337, https://doi.org/10.5194/egusphere-egu24-13337, 2024.

EGU24-13441 | Posters on site | BG3.16

Modelling solar energy effects on rewetted peatlands 

Philipp Porada, Bärbel Tiemeyer, and Arndt Piayda

The rewetting of agriculturally used peatland is essential to reduce carbon (C) emissions and may thus make an important contribution to climate protection. As one possibility to maintain economical use of the areas despite permanently wet ground, the installation of photovoltaic systems was suggested. In addition to generating energy, the solar panels could have other positive effects on the ecosystem: They potentially reduce evaporation and thus dryness in summer, which is important for reducing emissions. More stable moist conditions may also promote the establishment of specialized species of raised bog vegetation, which are the goal of nature conservation efforts. However, high coverage of solar panels could also lead to a lack of light, and the resulting absence of specialized bog species may even increase C emissions via indirect effects. Here we present a new bog vegetation modelling approach that aims to provide an initial estimate of the optimal degree of solar panel coverage from the perspective of climate protection and nature conservation, for given climatic and soil conditions. The model is validated against observational data of microclimate variables, soil temperature and water level from a test site on rewetted peat soil, under the influence of different coverage levels of solar panels in a multifactorial experiment. With our approach, we plan to provide recommendations for action for the planning of solar parks on rewetted, formerly agricultural peatlands to landowners and other stakeholders.

How to cite: Porada, P., Tiemeyer, B., and Piayda, A.: Modelling solar energy effects on rewetted peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13441, https://doi.org/10.5194/egusphere-egu24-13441, 2024.

EGU24-13987 | Posters on site | BG3.16

ESA’s WorldPeatland project – Developing Earth Observation-based peatland mapping and monitoring tools for peatland restoration and conservation 

Gerardo López Saldaña, Michel Bechtold, Susan Page, Fred Worrall, Stefano Salvi, Kevin Tansey, Gabrielle De Lannoy, Iuliia Burdun, Ian Jory, and Yara Al Sarrouh

Peatland restoration and conservation, including sustainable peatland management, require robust, consistent, efficient, and accessible methodologies to map peatlands, and identify and better understand the changes and impacts of natural and anthropogenic changes, including restoration measures. Peatland mapping and monitoring tools should enable users to (i) locate peat soils; (ii) identify peatlands at risk of degradation and in need of protection and/or restoration; (iii) monitor the success of management interventions; and (iv) support national and international reporting requirements. Given the spatial scale of peatlands lend themselves to use of Earth Observation techniques. In response to these needs, ESA’s WorldPeatland project will work closely with stakeholders in the peatland community to define, validate, and promote Earth Observation-based products and tools that facilitate the mapping and monitoring of peatlands in different states and biomes.  

This presentation consists of two parts. In the first part, we summarize the outcome of a survey on the user requirements for Earth Observation-based peatland mapping and monitoring and the associated EO-based tools. The survey consisted of an online questionnaire and two user requirement workshops. In the second part, the project structure is presented with details about the planned development of innovative monitoring products and tools along with some initial results from case studies. 

How to cite: López Saldaña, G., Bechtold, M., Page, S., Worrall, F., Salvi, S., Tansey, K., De Lannoy, G., Burdun, I., Jory, I., and Al Sarrouh, Y.: ESA’s WorldPeatland project – Developing Earth Observation-based peatland mapping and monitoring tools for peatland restoration and conservation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13987, https://doi.org/10.5194/egusphere-egu24-13987, 2024.

EGU24-15045 | ECS | Orals | BG3.16

Management alternatives on a poorly drained fen peatland  

Andres F. Rodriguez, Johannes W.M. Pullens, and Poul E. Lærke

Even though peatlands cover 3% of the terrestrial surface, they store approximately 30% of the global soil C pool. Peatland drainage promotes peat mineralization and CO2 emissions. Water table is the main controlling factor of CO2 emissions from drained peatlands; however, nutrient status can also affect emissions. Rewetting can reduce emissions, therefore, paludiculture has emerged as an alternative productive management of peatlands under wet conditions. The objectives of this study were to (1) quantify the effect of reed canary grass (RCG) management on a rewetting fen peatland, (2) relate water chemistry parameters to CO2 emission trends, and (3) calculate annual CO2 emissions using detailed water table data. The study was conducted in a fen peatland in central Denmark. Four plots established with RCG in 2019 were selected and subdivided into subplots corresponding to three management (harvest, fertilisation) treatments (0, 2, and 5-cut). The 2-cut and 5-cut harvest treatments received 200 kg N ha-1 y-1 in equal split doses. CO2 and CH4 measurements were conducted biweekly between May 1st 2021 and April 30th 2022 using a transparent manual chamber connected to a GLA131-GGA Los Gatos gas analyser and manipulating light intensities with four shrouding levels. Water chemistry parameters (NO3, NH4, total N, total dissolved N, total P, total dissolved P, total organic C, dissolved organic C, and Fe) were measured biweekly in water samples collected from piezometers. Auxiliary measurements (water table depth (WTD), ratio vegetation index (RVI), soil and air temperature, photosynthetically active radiation, and redox potential) were taken on each campaign or continually to assist model-based interpolation of measured ecosystem respiration (Reco) and gross primary productivity, the latter calculated as the difference between net ecosystem exchange (NEE) and Reco. Hourly CH4 fluxes were calculated from linear interpolation of measured data. The Reco models gave the best fit to measured data when WTD and RVI were included (Nash-Sutcliffe efficiencies between 0.74 and 0.98). The net ecosystem C balances were between 6.0 and 6.9 t C ha-1 yr-1 for all harvest treatments, while the NEE was 2.16, 2.18, and 6.90 t C ha-1 yr-1 for the five, two, and zero cut treatments, respectively. Considerable differences in NEE were found between the studied plots with some plots having as much as 8 times higher NEE than others. Significant differences in water chemistry parameters were found between plots, with the plot farthest from the stream (plot with lowest NEE) having the lowest C, N, P, and Fe concentrations and the plot closest to the stream (plot with highest NEE) having the highest nutrient concentrations. Methane emissions averaged 118 kg CH4 ha-1 yr-1 with most of the emissions taking place during summer. Results showed considerable differences in NEE among plots with the same management, which could be explained partly by differences in nutrient status of the peat soil. Results also indicated that paludiculture may reduce CO2 emissions from nutrient rich fens in comparison with no biomass management during the process of peatland rewetting.

How to cite: Rodriguez, A. F., Pullens, J. W. M., and Lærke, P. E.: Management alternatives on a poorly drained fen peatland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15045, https://doi.org/10.5194/egusphere-egu24-15045, 2024.

EGU24-15166 | ECS | Posters on site | BG3.16

Soil nitrous oxide and methane fluxes from drained peatlands under grasslands in the hemiboreal zone 

Hanna Vahter, Muhammad Kamil Sardar Ali, Thomas Schindler, Andis Lazdiņš, Arta Bardule, Ain Kull, Ieva Līcīte, Ülo Mander, Aldis Butlers, Jyrki Jauhiainen, Dovilė Čiuldienė, and Kaido Soosaar

Organic peat soils, common in boreal, temperate, and tropical wet climate zones, represent one of the largest natural terrestrial carbon reservoirs. Europe has approximately 33 million hectares of organic soils, with 4.2% managed and 3.7% unmanaged. Grasslands, constituting 17.8% of managed organic soils (1.1% in Baltic countries), are often subjected to drainage, a common practice transforming these carbon-rich environments into significant greenhouse gas (GHG) sources. The drainage process alters nutrient cycling, impacting microbial activities that control nitrous oxide (N2O), methane (CH4), and other GHG production and consumption.

Our research aims to quantify CH4 and N2O emissions from grasslands on organic soils in the hemiboreal zone and evaluate to which extent they are regulated by drainage depth. Furthermore, this research contributes to the broader goal of sustainable agriculture and effective climate change mitigation strategies by updating and addressing the pressing need for updated region-specific emission factors (EF). The default IPCC (2014) Tier 1 EFs for grasslands on drained organic soils in the temperate zone are based on values from only seven sites presented in two publications. So far, there is no information from the hemiboreal zone in which the Baltic countries are located.

To address these objectives, we conducted continuous field measurements in different periods in the years 2016–2023 in 14 sites in the Baltic Countries (Estonia, Latvia, Lithuania). The full-year study periods cover the winter and growing seasons to capture seasonal dynamics. We divided the grasslands into groups: deep drained and shallow drained grasslands, and, as a reference, two undrained grasslands. We have taken the IPCC distribution as a basis, where deep drained sites have a mean groundwater level (GWL) of more than -30 cm and shallow drained sites with a mean GWL of less than -30 cm.

Soil N2O and CH4 fluxes from the soil were measured using the manual dark static chamber technique, with the number of measurement subplots ranging from 5 to 9. The frequency of measurements varied, being conducted biweekly (Estonia) and monthly (Latvia, Lithuania). During each gas sampling session, soil water content (SWC) and soil temperature (Tsoil) were measured manually at each monitoring point close to the GHG measurement subplots. Additionally, GWL parameters such as pH, electrical conductivity, and oxygen concentration were manually measured during each sampling session. Water samples for chemical analysis were taken once a month from the sampling wells to analyze.

At the conference, updated EFs for Baltic countries, the soil N2O and CH4 flux dynamics, and their relation to the GWL will be presented.

How to cite: Vahter, H., Sardar Ali, M. K., Schindler, T., Lazdiņš, A., Bardule, A., Kull, A., Līcīte, I., Mander, Ü., Butlers, A., Jauhiainen, J., Čiuldienė, D., and Soosaar, K.: Soil nitrous oxide and methane fluxes from drained peatlands under grasslands in the hemiboreal zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15166, https://doi.org/10.5194/egusphere-egu24-15166, 2024.

EGU24-15495 | ECS | Posters on site | BG3.16

Drivers of CH4 flux quantity and variability in re-wetted European peatlands 

Kyle Boodoo and Stephan Glatzel

Peatlands cover ~3% of the global land surface, yet they store 21 – 30% of the world’s soil organic carbon. Large areas of pristine peatland have been drained to facilitate traditional agricultural activity, leading to increased levels of anthropogenic greenhouse gas (GHG) emissions from these degraded peatlands. Currently, the ~12% global peatlands that are drained (~0.3% of global land area) account for ~4% of all anthropogenic GHG emissions. Within the EU, more than 50% of peatlands are degraded, with Germany having 92% of its peat soils drained for agriculture and forestry. Rewetting peatlands can reduce, or even reverse GHG emissions. While substantial research has focused on the effects on nutrient from peatland re-wetting in bogs, and within pristine Northern European environments, less work has been conducted on central European fens, and on the effect of rewetting on nitrogen in previously drained and nitrogen rich agricultural sites. We investigated the effect of three different landuses (high-, low-intensity paludiculture, wet wilderness) and two different nitrogen (N) levels on CH4 emissions from 14 different fens, located in Germany, the Netherlands and Poland, to determine landuse management optima and thresholds for reduction in GHG emissions from rewetted, formerly deeply drained agricultural peatlands. We found the highest CH4 fluxes to occur during Summer and Autumn, and lowest fluxes during Winter, across all landuses and nitrogen (N)-levels. While CH4 did significantly vary at some sites on a diurnal basis, there was no clear pattern, or definite driver of diurnal CH4 fluxes. While CH4 flux significantly increased with increasing level of paludiculture at both N-levels in Germany, CH4 flux decreased with higher intensity paludiculture at the lower-N Netherlands sites, and conversely increased with higher intensity paludiculture at high-N Polish sites. These differences in treatment effect on CH4 fluxes among the different country sites highlight the complex interaction of different drivers responsible for determining CH4 fluxes from peatlands. Overall, soil phosphorous concentration was linked to higher CH4 fluxes, while bulk density was inversely related to CH4 flux. Furthermore, general additive models showed that CH4 flux increased with soil temperature and moisture, peaking at specific carbon (C):N ratios and bulk densities. This is of relevance for management strategies, as it suggests that there is the potential for manipulation of these 4 drivers within rewetted peatlands in order to reduce future CH4 fluxes. Our results highlight the importance of maintaining minimum water table levels, and maintaining N-levels below certain thresholds in order to effectively manage CH4 fluxes, and mitigate against GHG emission contributions to global warming from current and previously drained peatlands.

 

How to cite: Boodoo, K. and Glatzel, S.: Drivers of CH4 flux quantity and variability in re-wetted European peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15495, https://doi.org/10.5194/egusphere-egu24-15495, 2024.

EGU24-16159 | ECS | Posters on site | BG3.16

Assessing the Impact of Land Use on peat degradation in alpine bogs 

Yujing Deng, Kyle Boodoo, and Stephan Glatzel

Peatlands play a crucial role as reservoirs of soil organic carbon and nitrogen, storing twice as much carbon as all the world's forests. However, land-use changes such as drainage for agriculture or forestry have led to more than 50% of Europe's peatlands being classed as degraded, with Austria facing an even higher disturbance rate at 90%. This degradation is causing serious environmental consequences, notably increased greenhouse gas emissions and nutrient leaching that contaminates the surrounding groundwater. Despite this, the impact of land-use on peatlands is still not well understood.

To evaluate the influence of land use on peat decomposition and nitrogen concentration over depth, we investigated physical and chemical properties, as well as dissolved carbon and nitrogen forms of three different valley bogs with a common origin, but under different land use management. Our study sites included: a pristine bog, a heavily drained afforested spruce stand, and an intensive meadow, located in the Enns River Valley of the Eastern Alps, Austria.  We divided 1 m peat cores into separate 10 cm sections and analysed these peat samples for bulk density, loss on ignition, water content, carbon and nitrogen contents and ratios, stable carbon and nitrogen isotope signatures and four humification indices (based on Fourier transform infrared spectroscopy) and dissolved organic carbon, dissolved total nitrogen, ammonium and nitrate.

The afforestation site showed a significantly higher degree of peat decomposition across its vertical profile, possibly owing to higher levels of drainage. The similar levels of dissolved organic carbon and total nitrogen, but higher concentrations of ammonium and nitrate in the 0-50 cm layer, compared to the pristine bog, suggests that spruce rhizosphere activity and increased aerobic conditions due to drainage may promote nitrogen mineralisation and nitrification. Conversely, the intensive meadow site showed the highest degree of peat decomposition in the top 30 cm, with the deeper layers resembling the pristine bog. The intensive meadow site also revealed comparatively higher dissolved organic carbon, total nitrogen and organic nitrogen, but similar ammonium and nitrate as the pristine bog. This was probably due to the combined influence of agricultural nutrient inputs, plant uptake and leaching. Principal component analysis of the measured parameters for the three sites clearly indicate differences between the study sites, and between the surface and deeper layers, with indicators of peat decomposition and nutrient status being the main factors differentiating the study sites .

Our results facilitate an improved understanding of how afforestation and intensive meadow management can contribute to peat degradation, and highlight potential environmental consequences of these practices on drained peatlands, particularly with respect to nutrient leaching into deeper peat layers (below 30 cm). Furthermore, this research emphasizes the critical need for sustainable land management practices in mitigating peatland degradation, particularly in managing drainage and agricultural activities, to preserve the ecological balance and prevent adverse effects such as further degradation and groundwater contamination.

How to cite: Deng, Y., Boodoo, K., and Glatzel, S.: Assessing the Impact of Land Use on peat degradation in alpine bogs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16159, https://doi.org/10.5194/egusphere-egu24-16159, 2024.

EGU24-16603 | Orals | BG3.16

High CO2 emissions from drained peat soils that transition to organo-mineral soils: Implications for GHG inventories 

Lars Elsgaard, Cecilie Hermansen, Peter L Weber, Charles Pesch, Mogens H Greve, Lis W de Jonge, Jens Leifeld, and Zhi Liang

Drained agricultural peat soils are hotspots for biogenic CO2 emissions, contributing to elevated atmospheric CO2 levels. Due to microbial mineralization, the organic carbon (OC) content of these soils transitions to that of mineral soils, but it remains unclear how the residual OC content controls the rate of CO2 emission. This hinders the integration of soils with 6-12% OC into national greenhouse gas inventories. Based on a comprehensive laboratory study with organic soils from 103 sites in Denmark, we show that area-scale CO2 emissions from soils with >6% OC are not controlled by OC content and OC density, i.e., that soil OC content (wt/wt) is a poor predictor of area-specific CO2 emissions. The empirical data suggest that CO2 emission factors for 6-12% and >12% OC soils should be considered the same. On the other hand, the data also suggest that disaggregation of emission factors for soils with even higher OC contents is not necessary. We conclude that a global underestimation of CO2 emissions from 6-12% OC soils occurs in countries with large proportions of organic soils in transition from organic to organo-mineral soils due to agricultural management. Refining CO2 emission estimates for 6-12% OC soils is critical for the accuracy of national inventories, but also for recognizing the climate benefits of emerging initiatives to rewet drained organic soils.

How to cite: Elsgaard, L., Hermansen, C., Weber, P. L., Pesch, C., Greve, M. H., de Jonge, L. W., Leifeld, J., and Liang, Z.: High CO2 emissions from drained peat soils that transition to organo-mineral soils: Implications for GHG inventories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16603, https://doi.org/10.5194/egusphere-egu24-16603, 2024.

EGU24-16615 | Posters on site | BG3.16

An Assessment of Palaeoecological and Geochemical Indicators for the Re-establishment of Peat Formation in Ombrotrophic Bogs 

Klaus-Holger Knorr, Maxime Lemmens, Robin Derichs, Christian Fritz, Mariusz Galka, Stephan Glatzel, Mariusz Lamentowicz, Hanna Meyer, and Bjorn Robroek

The restoration of peatlands is becoming an increasingly important topic for both policymakers and the scientific community. However, knowledge on the past succession of ombrotrophic bogs, the extent of disturbance, and their response to current human impacts and restoration efforts remains limited. An adequate understanding of what factors promote peat formation, as well as the environmental conditions that preserve peat quality, is essential for the establishment of effective and predictable restoration trajectories. To identify and evaluate biogeochemical conditions that promote carbon (C) accumulation, as well as those that maintain low C decomposition rates, peat cores were taken from two rewetted (KR1 and DM1) peatlands and one degraded (AV1) peatland. Each core was dated using radiocarbon and analysed in high resolution for (1) its geochemistry to infer about peat quality, (2) testate amoeba to reconstruct past water table levels, and (3) its C accumulation rates.

Apparent C accumulation rates were high in the young, upper layers for cores DM1 and KR1 (ranging up to 400 and 600 g C m-2 y-1, respectively) relative to the lower pre-restoration layers, indicating a successful re-establishment of peat formation. At the degraded site AV1, apparent C accumulation rates were significantly lower (max. 40 g C m-2 y-1), and current conditions indicate overall C losses, since restoration efforts have yet to be made here. The identified periods of strong C accumulation go hand in hand with low C/N ratios, indicative of a low degree of peat decomposition. This was confirmed by an FT-MIR spectroscopy derived humification index (HI). The HI and C/N ratio showed a roughly opposite pattern, as expected for little decomposed peat being relatively high in polysaccharides. Surprisingly, there was no significant correlation between a testate amoebae reconstructed water table depth (WTD) and C/N ratios for AV1 and KR1. In DM1, a positive relationship between WTD and C accumulation rates was observed, whereas an inverse relationship would be expected. Still, reconstructed WTD coincided mostly well with vegetation succession. These findings suggest the importance of multiple parameters to assess re-establishment of peat formation by novel vegetation and the degree of historical degradation. Moreover, redox sensitive species, such as iron, sulphur and phosphorus, apparently served as suitable indicators for the current average water table depth. Second, they indicate at what depth the redox conditions in the peat are reducing, and thus where decomposition rates can drop significantly.

In summary, this study discusses various palaeoecological and geochemical parameters that can help assess re-establishment of C accumulation in peatlands under restoration. Individual parameters, such as a reconstructed WTD may not always correspond to C decomposition indices in such transient systems. The accumulation of redox sensitive species may potentially be a suitable indicator for successful rewetting, as it marks the depth of increasingly reducing conditions favourable for C storage.

This research was funded through the 2020-2021 Biodiversa+ and Water JPI joint call for research projects, under the BiodivRestore ERA-NET Cofund (GA N°101003777), with the EU and the funding organisations DFG (Germany), FWF (Austria), NSC (Poland) and the LNV (The Netherlands).

How to cite: Knorr, K.-H., Lemmens, M., Derichs, R., Fritz, C., Galka, M., Glatzel, S., Lamentowicz, M., Meyer, H., and Robroek, B.: An Assessment of Palaeoecological and Geochemical Indicators for the Re-establishment of Peat Formation in Ombrotrophic Bogs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16615, https://doi.org/10.5194/egusphere-egu24-16615, 2024.

EGU24-17283 | ECS | Orals | BG3.16

Monitoring of waterlogging in peatland under agricultural land use with Copernicus satellite data  

Ariane Tepaß, Bärbel Tiemeyer, and Stefan Erasmi

The majority of peatlands in Germany were drained for agriculture and other land use and therefore make a significant contribution to greenhouse gas (GHG) emissions from land use, land use change and forestry (LULUCF). In Germany, they correspond to around 7.5% of the total emissions and 44% of emissions from agriculture and agriculturally used land (UBA 2022). According to the Climate Protection Act, the LULUCF sector should have a sinking capacity of 40 million tonnes of CO2 equivalent by 2045 (German Federal Council 2021). If the water level is raised accordingly, peatlands have enormous GHG reduction potential. A comprehensive data basis is needed for monitoring and evaluating climate protection measures on peatlands. In this context, the project “Copernicus lights green”, which focusses on satellite applications in grassland monitoring, developed satellite-based indicators with Copernicus data that are suitable for characterizing the hydrological condition of peatland areas under agricultural use. In addition to the intensity of use, reflected by mowing events, overflowing or surface water caused by waterlogging was considered as an indirect proxy for the water level of the organic soils.

This contribution presents the method and results of an approach that estimates the duration and extent of waterlogged areas based on monthly composites of satellite data time series from Sentinel-1 and -2. The work builds on a random forest classifier using the Framework for Operational Radiometric Correction for Environmental monitoring (FORCE) (Frantz, 2020) that detects waterlogged areas in agricultural land on organic soils. Due to the heterogeneity of agricultural land use in Germany and its varying open ground frequency as well as the lack of availability of cloud-free images in the winter months, an approach considering a combination of two models according to the vegetation period was developed. It optimizes the selection of training data and input features in order to generate reliable information on a monthly basis. The chosen study area in Lower Saxony in Germany showed good prediction results in 2018 and 2019, whereas the resulting model predictions achieved an F1 score between 85-91% with a variability of 2-5%. This provides a methodological base for comprehensive monitoring.

How to cite: Tepaß, A., Tiemeyer, B., and Erasmi, S.: Monitoring of waterlogging in peatland under agricultural land use with Copernicus satellite data , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17283, https://doi.org/10.5194/egusphere-egu24-17283, 2024.

EGU24-17316 | ECS | Orals | BG3.16

Quantifying methane flux dynamics in rewetted boreal peatlands: Impact of water table depth and soil temperature 

Roosa Hautala, Paavo Ojanen, Gopal Adhikari, Liisa Jokelainen, Otto Liutu, and Kari Minkkinen

Peatland restoration starts with rewetting by blocking or filling the ditches. Successful rewetting is anticipated to start the restoration process towards the conditions of natural peatland. One of the major processes, affected by drainage and restoration, is hydrology and more precisely water table depth (WT). Drainage lowers the water table creating oxic conditions where rewetting aims to increase the WT and restore anoxic environment in the soil.

Most of the methane production in peatland happens in anaerobic waterlogged conditions by methanogenic Archaea during methanogenesis, and we know that the rate of CH4 gas flux is influenced by factors such as soil temperature, water table depth, plant community and pH. At the same time, methane oxidation happens in the aerobic peat layer and the balance between production and consumption determines the methane flux to the atmosphere.

We measured methane gas flux at 27 rewetted, 6 natural and 7 drained, fertile peatland forests in Southern and Central Finland between 6/2021-11/2023.  Sites were rewetted 3-30 years ago. We used the closed chamber method with portable gas analyzers. Flux measurements were done biweekly to monthly while water table and soil temperature were measured with automatic water and temperature loggers hourly. Vegetation mapping was done during the summer 2023. We will compare methane fluxes in drained, rewetted and pristine peatlands using this new material and old published data from Finnish peatlands.

We hypothesize to see an increase in methane emissions after rewetting from drained towards natural levels. We also expect to see higher seasonal methane dynamics in rewetted than in natural peatlands, as WT dynamics appears to be higher in rewetted than in natural mires.

 

How to cite: Hautala, R., Ojanen, P., Adhikari, G., Jokelainen, L., Liutu, O., and Minkkinen, K.: Quantifying methane flux dynamics in rewetted boreal peatlands: Impact of water table depth and soil temperature, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17316, https://doi.org/10.5194/egusphere-egu24-17316, 2024.

EGU24-17687 | Orals | BG3.16

GHG emissions of agricultural peatlands in the Netherlands. 

Ype van der Velde, Ralf Aben, Daniel van de kraats, Merit van den Berg, Stijn Peeters, Coline Boonman, Jim Boonman, Bart Vriend, and Gilles Erkens and the NOBV Team

Peatlands used for intensive daity farming are drained to increase productivity. However, drainage lowers the groundwater table, increases oxygen intrusion, and causes decomposition of the peat soil. This decomposition emits CO2 and is estimated to contribute up to 5% of the Dutch national GHG-emissions. Reducing these emissions requires detailed understanding of the spatial and temporal variability of these emissions and the effects of rewetting measures.

Here, we present a unique measurement setup and its results to quantify CO2 emissions of Dutch peatlands. We show the results of more than 30 site years of near continuous CO2 flux measurements with automated chambers across a wide range of peat types and different wetness conditions. We interpret the net yearly CO2 emissions in relation to water management, peat type and profile. We find clear relationships between yearly average groundwater level, the carbon density in the top 30 cm of the peat profiles, and the estimated yearly CO2 emissions from peat decomposition. However, these relationships come with a large variability between sites and between years that requires further attribution to other site characteristics such as management and history. Moreover, we compare our results to previous studies and discuss the differences and similarities.

How to cite: van der Velde, Y., Aben, R., van de kraats, D., van den Berg, M., Peeters, S., Boonman, C., Boonman, J., Vriend, B., and Erkens, G. and the NOBV Team: GHG emissions of agricultural peatlands in the Netherlands., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17687, https://doi.org/10.5194/egusphere-egu24-17687, 2024.

EGU24-18878 | Orals | BG3.16

The impacts of peatland restoration on greenhouse gas emissions – importance of holistic carbon and water budget quantification and integration 

Shane Regan, Mark O'Connor, Peter Cox, Mohammad Shamsuzzaman, Francis Mackin, and Owen Naughton

The restoration of drained peatlands is now considered to be an essential and effective natural solution to curb greenhouse gas (GHG) emissions. This is particularly relevant in Ireland, where a nationwide programme in peatland restoration is underway, backed by significant financial investment and driven by international biodiversity and climate action plans and obligations. To demonstrate the impact of restoration on GHG emissions a representative lowland peatland in the midlands of Ireland was instrumented in 2020 with an eddy covariance tower and hydrometric monitoring network measuring water levels and flow, coupled with fluorescent dissolved organic matter (FDOM) sensors and static flux-chambers. The site, All Saints Bog, was formerly used as a horticultural site, with significant drainage, though over 2m of peat remained in-situ isolating the peatland from underlying groundwater flows. Between 2021 and 2022, large scale engineering restoration management was carried out across the site and consisted mainly of the construction of contoured berms and water level control stations. Prior to the start of the restoration the baseline emission of carbon dioxide (CO2), was in the order of 10t CO2 per ha per year. This flux increased to c. 20t CO2 per ha per year following restoration. It is likely this is a result of CO2 degassing from substantial areas of open water resulting from the restoration work and the decomposition of peat organic matter from the formerly exposed substrate. Whilst the peatland system is still equilibrating and stabilising after restoration, the loading of dissolved organic carbon (DOC) has decreased significantly, due mainly, to the reduction in runoff on account of an increase in water storage on the site. So whilst the land based CO2 emissions have increased significantly, and also methane (CH4), DOC has reduced and overall the net increase in C is marginal. The results indicate that until ecology reforms substantially across the site, it will take time for the land-atmosphere C-emission to be significantly reduced from the baseline levels preceding restoration. However, fluvial C losses are reduced due to enhanced water storage, and the overall net C emission has not increased significantly, and will reduce in the long-term. This study demonstrates that long-term, system-based studies are critical when interpreting ecosystem dynamics, carbon budgets and the short to long-term impacts of restoration management.  

How to cite: Regan, S., O'Connor, M., Cox, P., Shamsuzzaman, M., Mackin, F., and Naughton, O.: The impacts of peatland restoration on greenhouse gas emissions – importance of holistic carbon and water budget quantification and integration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18878, https://doi.org/10.5194/egusphere-egu24-18878, 2024.

EGU24-20032 | Posters on site | BG3.16

Bias in chamber-based methane flux estimates in the presence of ebullition and methods for mitigation 

Nicholas Nickerson, Katharina Jentzsch, and Claire Treat

Natural ecosystems, particularly wetlands, are among the largest sources of methane emissions. Accurately quantifying these emissions is crucial for developing effective climate change mitigation strategies. In this context, flux chambers have emerged as a vital tool, allowing researchers to accurately quantify methane emissions over space and time. The increasing availability of high-precision, real time, field deployable methane analyzers has helped improve the accuracy and reliability of these measurements; however this high-resolution data has also introduced new methodological considerations around how to best fit time series data to determine flux rates. 

With these new analyzers, ebullition events are easily detected but traditional methods of fitting data to determine fluxes assume diffusion-dominated fluxes and do not appropriately account for ebullitive events. Researchers often adapt existing flux calculation methods to suit the behaviour of the time series data where ebullition is present, however no study of the impacts of these adjustments has been conducted. 

Here we use a one-dimensional soil model to simulate diffusive and ebullitive methane fluxes into a chamber and explore the impact of back-diffusion and chamber leakage on the fluxes calculated using traditional and modified approaches. We find that generally diffusive fluxes calculated using these approaches are underestimated when ebullition is present, and the size of the underestimation can be significant in the context of upscaling these chamber based measurements particularly in low flux environments. Approaches to improve accuracy including chamber design, data filtering and new fitting methods are considered as a means to provide more accurate chamber-based methane emissions estimates.

How to cite: Nickerson, N., Jentzsch, K., and Treat, C.: Bias in chamber-based methane flux estimates in the presence of ebullition and methods for mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20032, https://doi.org/10.5194/egusphere-egu24-20032, 2024.

EGU24-20580 | ECS | Orals | BG3.16

Small-scale spatial relationships between peat properties and surface microtopography in minerotrophic peatlands depend on management regimes 

Sate Ahmad, Adam Bates, Miaorun Wang, Francesco Martini, Shane Regan, Jennifer McElwain, and Laurence Gill

Fens, in their natural states, are characterized by rich biodiversity and high carbon and water storage, playing a major role in providing several important ecosystem services. However, most fens in Europe were drained in the past for agriculture, leading to degradation and a reduction of their multifunctionality. While restoration, primarily through rewetting, is gaining prominence in Europe, there are substantial knowledge gaps in understanding spatial landscape and ecosystem processes in these environments, rendering successful restoration or rehabilitation of functions challenging. Determining peat properties and their relation to soil surface processes at small scales is key to revealing different pathways that ecosystem recovery may take, not only in terms of carbon storage but also hydrophysical functioning. In the absence of long-term monitoring of fen peatlands, both pre- and post-rewetting, drained and rewetted paired comparison studies are the next best approach to study the effects of drainage and rewetting and how degraded peatlands differ from their near-natural counterparts. Here, we compare the spatial structures of peat properties, such as soil moisture content, soil organic matter, and carbonate content, in a drained and a rewetted fen peatland in Ireland and investigate how surface microtopography influences such properties. This is done by constructing variograms and investigating the differences in range, partial sill, and nugget-to-sill ratio. Overall, soil properties in the near-natural fen show much lower spatial autocorrelation based on nugget-to-sill ratios, and these properties reach autocorrelation range at much shorter distances compared to those of the drained site. This indicates that the drained site is more homogeneous in terms of soil properties compared to the near-natural fen. The bivariate autocorrelation between the different soil properties and surface microtopography is much stronger in the drained site compared to the rewetted site, indicating that surface microtopography plays a larger role in controlling ecosystem processes in drained peatlands than in the near-natural fens. Our results highlight the importance of spatial peat sampling at short intervals for small-scale processes and for the identification of carbon storage hotspots and formulation of appropriate monitoring scale and plan.

How to cite: Ahmad, S., Bates, A., Wang, M., Martini, F., Regan, S., McElwain, J., and Gill, L.: Small-scale spatial relationships between peat properties and surface microtopography in minerotrophic peatlands depend on management regimes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20580, https://doi.org/10.5194/egusphere-egu24-20580, 2024.

EGU24-22515 | Orals | BG3.16

Effect of water table restoration on microbial communities and enzyme activities in drained peatland 

Yuting Wang, Klaus-Holger Knorr, Guangyuan Xu, Dejing Sun, Zhiwei Xu, and Shengzhong Wang

Hydrological conditions are the most important environmental controlling factors in the restoration of drained peatlands. And soil microorganisms are sensitive to environmental changes. In this study, soil samples were collected from 0 - 50 cm in the natural area, drained area, and rewetted area in the Baijianghe peatland of the Changbai Mountains to determine soil physicochemical properties, phospholipid fatty acids (PLFAs), two oxidative enzymes (peroxidase and polyphenol oxidase) and three hydrolytic enzymes (β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminidase and acidic phosphatase). This study aimed to reveal the characteristics of changes in soil microbial communities and enzyme activities during water table restoration and their influencing factors, and to provide data to support the restoration of drained peatlands. The results showed that the microbial communities and enzyme activities differed considerably among the three areas and that the degree of change varied by depth in the profile. Soil oxidase activities of the oxic zone were significantly lower in the rewetted area than in the drained and natural areas. However, for the transitional and anoxic zones, they were higher than the drained area but lower than the natural area. Soil hydrolytic enzymes in the oxic zone were significantly higher in the rewetted area than in the drained. For the transitional zone, soil hydrolytic enzyme activities were significantly lower in the rewetted area than in the drained area. Water table depth (WTD) restoration had significant effects and soil microbial biomass and community structure. Soil total PLFAs, fungal, actinomycetes, and G- bacterial PLFAs of the oxic zone were significantly higher in the rewetted area than in the drained and natural areas. For the transitional zone, soil total PLFAs, bacterial, and G+ PLFAs were significantly higher in the rewetted area than in the drained. We found that these variations in the microbial communities and enzyme activities were associated with differences in the litter quality, soil organic carbon (SOC), soil water content (SWC), phenolics (PHEN), and pH among three areas. Changes in the WTD the SWC and affect other physicochemical properties of the soil by changing the redox conditions and the availability of O2, which in turn affects the decomposition of SOC. PHEN and SWC explain the highest degree of SOC accumulation, but mainly regulate it by controlling the C limitation of soil microbial activities. Rewetting is conducive to improving the C sink capacity of drained peatlands. 

How to cite: Wang, Y., Knorr, K.-H., Xu, G., Sun, D., Xu, Z., and Wang, S.: Effect of water table restoration on microbial communities and enzyme activities in drained peatland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22515, https://doi.org/10.5194/egusphere-egu24-22515, 2024.

EGU24-22517 | Posters on site | BG3.16

Carbon Sink Capacity under Livestock Overgrazing in the Catalan Pyrenees’ Peatlands  

Violeta Martinez, Silvia Poblador, Alexandra Castañeda, Carolina Olid, Olga Margalef, Francesc Sabater, and Aaron Pérez

Peatlands are considered strategic ecosystems in climate change mitigation due to their high capacity to accumulate carbon (C). However, the role of mountain peatlands as C sinks is severely threatened by rising temperatures and human activities, particularly livestock overgrazing. Negative impacts include adverse changes in aboveground biomass, plant composition, hydrology, and changes in greenhouse gas emissions due to the compaction and remotion of peat soil by trampling and pugging. Despite these impacts, the consequences of overgrazing on the C balance of peatlands and the potential implication for climate feedback remain unknown. 

The PYREPEAT project, in collaboration with the ALFAwetlands initiative, aims to fill this knowledge gap by providing 1) the first estimate of C stocks and net C balance, and 2) a better understanding of the impact of overgrazing on CO2 emissions in Pyrenean Mountain peatlands. With this aim, we selected 3 peatlands in the Catalan Pyrenees that have been under grazing exclusion since 2016-2018. The selected peatlands are characterized by different water chemistry conditions: i) an acid fen dominated by Carex nigra, ii) a moderately acid fen, and iii) an alkaline fen dominated by Carex davalliana. For each site, 3 levels of livestock exclusion (permanent exclusion, temporal exclusion, and no exclusion) were established. To determine the spatial scale at which the overgrazing signal was evidenced, within each treatment we classified plots on three habitats: plots with low water table level (WTL) and compaction, plots with medium WTL and trampling, and plots with high WTL and pugging. For each 1 mplot we monitored C fluxes (i.e., CO2), vegetation composition, WTL, and soil water content monthly from July to October 2023. CO2 measurements were made using an EGM-5 infrared gas analyzer (PP-systems) connected to a closed static chamber in two successive phases: a light phase in which the chamber receives solar radiation and records net ecosystem exchange (NEE), and a dark phase in which the chamber records autotrophic and heterotrophic respiration (RE). The water table level was monitored using PVC wells. Additionally, soil water was sampled using lysimeters and analyzed for pH and conductivity on each occasion. 

Determining whether peatlands will continue to function as net C sinks in the long term is complex because of the spatial variability and the different interacting mechanisms that influence their functioning. The spatial and temporal data collected during the first year of the project has the potential to provide important insights into C dynamics in mountain peatlands and the effects of overgrazing on the C balance. Ultimately, this work will contribute with valuable data to support management solutions, such as exclusion fences, to ensure the role of peatlands as carbon sinks. 

How to cite: Martinez, V., Poblador, S., Castañeda, A., Olid, C., Margalef, O., Sabater, F., and Pérez, A.: Carbon Sink Capacity under Livestock Overgrazing in the Catalan Pyrenees’ Peatlands , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22517, https://doi.org/10.5194/egusphere-egu24-22517, 2024.

Abstract:Peatlands play a key role in the global carbon cycle as an important carbon reservoir in terrestrial ecosystems. Many peatlands exist in volcanic terrains, but we still have limited understanding of the effects of volcanic ash deposition on peatland development and carbon dynamics. There are abundant peatlands in Northeast China, and the Changbai Mountains—a volcanic mountain range with a crater lake at 2189 m a.s.l.—experienced multiple eruptions during the Holocene, including a major eruption in 946 CE (Millennium Eruption: ME).  Here we used multi-proxy records from 10 cores at a high-elevation (1570 m a.s.l.) peatland complex on the southern slope—13 km from the crater lake Tianchi—to understand the peatland initiation and carbon accumulation processes under the influence of volcanic eruption. Volcanic glass abundance in peat core shows multiple ash-rich layers, with the ME being the largest one, visible to the naked eyes. Plant macrofossil data show that the peatland has been a rich fen dominated by sedges (Carex and Eriophorum) and rush (Scheuchzeria palustris) during the last 4000 years, transitioning to a Sphagnum-dominated poor fen only in recent decades. The major ME volcanic ash deposition caused a large decrease in species richness and led to a persistent shift in the peatland species composition from overwhelming dominance of Carex to an increase from <10% to about 40% of Eriophorum. Three out of four other minor volcanic ash layers induced a brief increase in Sphagnum after each ash deposition, but had little impact on species richness. The divergence in response of species composition to different sizes of volcanic ash depositions indicates both beneficial and detrimental impacts, perhaps depending on modifying nutrient or hydrological status of the peatland. Our results also show that the volcanic ash layer from the 5-cm thick ME acted as an impermeable layer, increasing surface moisture conditions and promoting the formation of new peatlands on the landscape. Moreover, the ash deposition caused a significant decrease in the carbon accumulation rate, lasting for >200 years. Our study indicates that volcanic eruption may have very different impacts on peatlands by promoting new peatland initiation but impeding carbon accumulation of existing peatlands, implying that the balance of these processes would determine the carbon sink capacity of peatlands as a whole.

How to cite: Yan, Q. and Yu, Z.: Effects of volcanic ash deposition on peatland development and carbon accumulation on the southern slope of the Changbai Mountains, Northeast China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-373, https://doi.org/10.5194/egusphere-egu24-373, 2024.

EGU24-1102 | Orals | BG3.17

Iron-associated organic carbon as a major carbon sink in permafrost-affected peatlands of Northeast China 

Liang Yang, Ming Jiang, Zicheng Yu, and Yuanchun Zou

Permafrost-affected peatlands are hotspots globally because of their large carbon storage and climate sensitivity. However, there have been limited studies on the abundance and controlling factors of iron-associated organic carbon (Fe-OC) in these important ecosystems. Here we conducted a large-scale comparison study of soils across major terrestrial ecosystems—including croplands, forest, grasslands, wetlands and peatlands—to understand differences in the distribution of Fe-OC abundance. Our results show that the Fe-OC abundance of peatlands (13.3±9.6 g kg-1) are higher than that in non-peat forming wetlands (6.4±4.5 g kg-1) and mineral soils, such as croplands (9.1±9.3 g kg-1), forest (10.5±11.1 g kg-1) and grasslands (2.0±2.2 g kg-1), implying the efficient binding capacity of iron minerals with OC in peatlands. Further, our field and laboratory investigations focus on Northeast China, the major peatland-dominant region in China with permafrost-affected and non-permafrost peatlands—including Sphagnum-dominated bogs and sedge-dominated fens, to clarify the processes and mechanisms of Fe-OC accumulation. We find that permafrost-affected peatlands contain near 5-fold higher Fe-OC than non-permafrost peatlands. Our parallel factor analysis of fluorescence excitation-emission matrix results shows that microbial-derived carbon accounts for 25.5-90.7% of Fe-OC in permafrost peatlands, with an average contribution of 56.0%. Moreover, we observed a positive correlation between the Fe-OC abundance and the proportion of OC derived from microbes. Iron minerals in permafrost peatlands tend to bind a greater proportion of labile carbon—whether derived from plants or microbes—than in non-permafrost peatlands, suggesting that the presence of permafrost offers an important mechanism for climate change mitigation. Furthermore, nutrients (such as nitrate, phosphate and C:N ratio) are major controlling factors for Fe-OC in non-permafrost peatlands (with a total effect of up to 96.9%), while reactive Fe (with an effect of up to 96.9%) and other factors (including pH, climate, FeRB and microbial-derived OC) positively influence Fe-OC in permafrost peatlands. These findings demonstrate that iron minerals act as a crucial ‘OC protectors’ that greatly boost the rusty carbon sink in cryogenic ecosystems. Future climate warming and permafrost thaw will not only reduce low-temperature protection of previously frozen carbon—some of them labile—but also diminish the mineral-association protection of a large quantity of carbon.

How to cite: Yang, L., Jiang, M., Yu, Z., and Zou, Y.: Iron-associated organic carbon as a major carbon sink in permafrost-affected peatlands of Northeast China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1102, https://doi.org/10.5194/egusphere-egu24-1102, 2024.

EGU24-4204 | ECS | Orals | BG3.17

Process-based modelling of long-term carbon dynamics in a temperate swamp peatland 

Oluwabamise Afolabi, Hongxing He, and Maria Strack

Temperate swamps hold substantial carbon (C) in their standing biomass and can potentially accumulate peat. In Southern Ontario, Canada, swamp peats are estimated to store ~1.1 Pg C, with this C accumulation supported by distinct hydroclimatic conditions. Previous studies on swamps C fluxes are mostly based on short-term (<5 years) field measurements that limit our understanding of the long-term (>30 years) interactions and feedbacks that exist between temperate swamp C flux and biophysical conditions. In this study, we adopted a process-based model (CoupModel, www.coupmodel.com) to simulate daily plant processes, energy, water, and C fluxes in one of the most well-preserved swamps in Southern Ontario, Beverly Swamp, over a 40-year period (1983-2023). CoupModel reproduced the measured C flux and controlling variables with (coefficient of determination, R2) values of 0.75, 0.94 & 0.6 for soil respiration, surface soil temperature (0-5 cm) and water table depth, respectively. Analysis of the interrelationships (R2 values) between the simulated carbon flux and biophysical conditions showed that 88%, 51%, 31%, 68% of soil respiration rates were explained by soil surface temperature, soil volumetric moisture contents (0-30 cm), water table depth and gross primary productivity, respectively.  Our model simulation showed the swamp’s C uptake capacity, as net ecosystem exchange, dwindled over the simulated period but it was a net C sink in most years. This decreasing trend can be attributed to warmer and drier conditions in the region, which may be exacerbated with future climate change predictions. Overall, the study shows that processed-based models (CoupModel) are effective tools for improving our understanding of long-term C dynamics of temperate forested wetlands and the interactions that exist between C flux components and abiotic conditions. This has implications for informed decision-making on the management of temperate swamp ecosystems and the C stored within them.

How to cite: Afolabi, O., He, H., and Strack, M.: Process-based modelling of long-term carbon dynamics in a temperate swamp peatland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4204, https://doi.org/10.5194/egusphere-egu24-4204, 2024.

EGU24-4287 | Orals | BG3.17

Long-term changes and impacts of nutrient addition to vegetation and CO2 fluxes at ombrotrophic Mer Bleue Bog, Canada 

Tuula Larmola, Jill Bubier, Eero Liski, Joel Kostensalo, Tim Moore, Jani Antila, Elyn Humphreys, and Sari Juutinen

To study long-term impacts of nutrient addition on carbon sequestration capacity, we investigated changes in vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) and in non-fertilized control plots for 13-18 years. The vegetation structure and species composition were measured in all treatments mid July 2001-2018 (14 measurement years) using a point intercept method. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during June–August 2001-2016 (7 measurement years, usually every two years) using climate-controlled chambers. Using Bayesian approach, we analyzed whether there were changes over time in vegetation and ecosystem CO2 exchange and whether those trends differed between treatments. We found that shrubs had become taller and more abundant at the unfertilized plots during the 18 study years likely owing to warmer summers and a drying trend that favor shrubs. At the fertilized plots, the increase in shrub height was greater and faster than in unfertilized plots, and the addition of PK with N further accelerated growth of the shrub canopy. Among the dwarf shrubs, only Chamaedaphne calyculata benefitted from the fertilization. No change towards more gramineous vegetation was observed. Because the plants at the bog are N-P co-limited rather than N-limited, PK addition alleviated growth limitation. Sphagnum cover decreased with the increasing nutrient load. Ecosystem respiration increased in all treatments, but it increased faster and more in fertilized plots than in unfertilized plots. In all treatments, increases in ecosystem respiration resulted in less net CO2 uptake during the recent ten years (since 2008), because gross photosynthesis rates did not compensate for increases in ecosystem respiration. In general, the magnitude of this trend of reduced net C sink potential did not differ markedly in unfertilized from fertilized plots. These CO2 flux trends could be explained by changes in nutrient availability, a larger proportion of nongreen biomass in dense stands and enhanced peat decomposition. Our long-term field experiment revealed that ecosystem responses to the combination of nutrient addition and drying must be considered when evaluating the impact of climate change on the carbon sink potential of peatlands.

How to cite: Larmola, T., Bubier, J., Liski, E., Kostensalo, J., Moore, T., Antila, J., Humphreys, E., and Juutinen, S.: Long-term changes and impacts of nutrient addition to vegetation and CO2 fluxes at ombrotrophic Mer Bleue Bog, Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4287, https://doi.org/10.5194/egusphere-egu24-4287, 2024.

EGU24-5008 | ECS | Orals | BG3.17

Role of mineral-organic matter interactions in carbon cycling in permafrost peatlands 

Prachi Joshi, Ankita Chauhan, Eva Voggenreiter, Katrin Wunsch, and Andreas Kappler

Permafrost peatlands, primarily occurring at northern latitudes, are a major stock of organic carbon. Although these peatlands have historically acted as a carbon sink, they are expected to transition to a carbon source due to the mobilization and rapid decomposition of accumulated organic carbon by microorganisms upon thawing. Predictions of the timescale of this transition are limited by insufficient understanding of the controls on organic carbon decomposition. One major control on microbially mediated decomposition and release of greenhouse gases carbon dioxide (CO2) and methane (CH4) is the interaction of organic carbon with minerals (predominantly high surface area iron minerals). Although well studied in common soil systems, the role of organic carbon-mineral interactions in carbon cycling is poorly understood in permafrost peatlands. This knowledge gap is particularly critical in the case of permafrost thaw, during which redox conditions may switch from oxic to anoxic due to extensive waterlogging.

            In this work, we investigated the interaction between organic carbon and minerals and their effect on carbon cycling in thawing permafrost peatlands. We chose Stordalen mire near Abisko, Sweden, as a representative field site as it includes a thaw gradient from intact permafrost plateaus to thaw ponds and fully thawed wetlands. Specifically, we investigated whether interaction with iron minerals protected organic carbon from microbial decomposition and release as CO2 and CH4 over thaw in field manipulation and laboratory microcosm experiments. To do this, we synthesized iron mineral-organic carbon phases using organic matter from the peatlands and added them to the soil. We then followed dissolved organic carbon dynamics as well as CO2 and CH4 release. In addition, we tracked the fate of the minerals over thaw. In a complementary study, we characterized mineral-organic carbon phases present within the soil and thaw ponds. Upon addition of the mineral-organic carbon phases to the soil, we observed a small decrease in greenhouse gas release over the short term, consistent with the results from other soil systems. However, over the timescale of weeks, the greenhouse gas release increased substantially relative to control experiments, especially in the case of CO2 (up to 130%). This increase could be attributed to the use of iron within the mineral-organic carbon phases as an electron acceptor by microorganisms, promoting organic carbon decomposition. The results of this work suggest that (a) iron mineral-associated organic carbon in permafrost peatlands may not be protected from microbial decomposition, and (b) increased water levels in permafrost peatlands due to thaw may result in increased greenhouse gas release, particularly CO2.

How to cite: Joshi, P., Chauhan, A., Voggenreiter, E., Wunsch, K., and Kappler, A.: Role of mineral-organic matter interactions in carbon cycling in permafrost peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5008, https://doi.org/10.5194/egusphere-egu24-5008, 2024.

EGU24-5082 | Posters on site | BG3.17

Wetland hotspots on the edge – large N2O emissions dominate the soil greenhouse gas budget in a recipient fen 

Jesper Riis Christiansen, Annelie Skov Nielsen, Poul Erik Lærke, and Klaus Steenberg Larsen

Rewetting fens in agricultural landscapes serves as a method to counteract net emissions of greenhouse gases (GHGs) into the atmosphere. The prevalent assumption is that the rewetted area exhibits uniform behavior; however, peripheral zones of a wetland may experience elevated nutrient levels from the surrounding landscape's drainage, leading to internal gradients of biogeochemical processes within the wetland. This aspect is frequently overlooked in GHG budgets for rewetted fens.

In this investigation, we employed an automated GHG flux system (SkyLine) to quantify the annual soil GHG budget at the transition from mineral upland to organic soils in a wet fen, including a partially obstructed drainage ditch. From February 2022 to January 2023, CO2, CH4, and N2O fluxes were automatically measured at 27 plots along a 30-meter transect resulting in over 40.000 fluxes per gas for the site. Spatiotemporal patterns of GHG fluxes were studied alongside measurements of groundwater level, soil moisture, and temperature. Due to the chamber configuration, vegetation was excluded from the measurement plots, allowing for the assessment of net soil GHG exchange.

Overall, CO2 and N2O fluxes exhibited similar seasonal trends, indicating comparable climatic and hydrological drivers. CO2 fluxes displayed a distinct seasonal pattern, peaking during the warmest periods. Similarly, N2O fluxes reached maximum values in the summer, however, responding rapidly to fluctuating groundwater caused by precipitation. During these hot moment N2O fluxes increased from close-to-zero to maximum values and reaching minimum again within hours to days. CH4 fluxes were overall below zero with minimal seasonal variability, resulting in a net uptake, though occasional emission spikes occurred. Temporal stability of GHG fluxes across the transect was observed, but flux magnitudes varied significantly between individual plot. Annual soil CO2 effluxes varied sixfold, and annual N2O emissions varied tenfold across the transect.

Converted to CO2-equivalents, it became evident that, in the absence of plants, that the GHG budget in the border zone of the fen was dominated by N2O emissions, likely due to the net import of nitrogen with groundwater from upland fields fueling high rates of denitrification in the subsoil. CH4 did not significantly contribute to the GHG budget for the plots on peat but dominated for the ditch due to ebullitions.

Our findings show the dynamic nature of GHG fluxes in response to environmental variations in peat soils, emphasizing the impact of fluctuating groundwater. While rewetting may enhance complete denitrification and reduce net N2O, border zones of rewetted wetlands may still experience dynamic hydrology and nutrient inputs. Factors, that collectively promote N2O emissions, particularly during critical, short-lived hot moments. Episodic N2O emissions from this zone can disproportionately influence the magnitude of GHG emission reduction following rewetting.

Preliminary results of our net soil GHG budget analysis for this location will be presented, highlighting the necessity for high-frequency flux measurements to elucidate underlying causes of temporal patterns in GHG fluxes and their relationship to biogeochemical, hydrological, and climatic drivers.

How to cite: Riis Christiansen, J., Skov Nielsen, A., Lærke, P. E., and Steenberg Larsen, K.: Wetland hotspots on the edge – large N2O emissions dominate the soil greenhouse gas budget in a recipient fen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5082, https://doi.org/10.5194/egusphere-egu24-5082, 2024.

EGU24-5132 | ECS | Orals | BG3.17

Peatland carbon dynamics in a changing climate: A 13-year flux time series of a fen in Northern Finland  

Angelika Kübert, Mika Aurela, Juha Hatakka, Tuomas Laurila, Maiju Linkosalmi, Juuso Rainne, Juha-Pekka Tuovinen, Henriikka Vekuri, and Annalea Lohila

Northern peatlands act as a global carbon sink. At the same time, they are a major source of methane. Rising temperatures due to global warming may severely change carbon dynamics. However, long-term studies to evaluate the impact of global warming on northern peatland ecosystems are rare. Here, we monitored carbon dioxide (CO2) and methane (CH4) dynamics at a subarctic/boreal fen in northern Finland throughout 13 years (2007-2019) using the eddy covariance technique accompanied by measurements of abiotic and biotic drivers. Mean yearly CH4 and CO2 exchange were +21.7 g CH4 and –0.14 kg CO2, respectively. The peatland was an average sink of carbon, with a mean annual uptake of –21.4 g C. It remained also a sink during the exceptionally warm summer of 2018 (–52.3 g C y-1). Soil temperatures strongly drove CH4 emissions whereby summer soil temperatures governed the annual budget (p < 0.001) and summer emissions determined the annual budget (45-57%, p < 0.001). Observed warming in late summer (+2.1 °C, 2007-2019) did not increase CH4 emissions as soil temperatures remained unchanged. Air and soil temperatures during the growing season and the number of snow-free days controlled annual net CO2 exchange (p=0.003). We found an increasing trend in respiration and primary production in the late growing season, keeping net CO2 exchange equally. Warmer temperatures in the late growing season increased respiration, however, primary production responded only positively to warmer temperatures in spring. Instead, warmer late summers and longer extended autumn growing seasons likely delayed autumn senescence and increased greenness, keeping primary production high. Our results suggest that with ongoing global warming and rising summer soil temperatures, methane emissions from boreal peatlands will further increase, feedbacking on the climate through its high global warming potential. The carbon sink potential will be determined by the number of snow-free days and growing season temperatures. Vegetation changes in the late growing season may offset higher respiration due to warming.  

How to cite: Kübert, A., Aurela, M., Hatakka, J., Laurila, T., Linkosalmi, M., Rainne, J., Tuovinen, J.-P., Vekuri, H., and Lohila, A.: Peatland carbon dynamics in a changing climate: A 13-year flux time series of a fen in Northern Finland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5132, https://doi.org/10.5194/egusphere-egu24-5132, 2024.

EGU24-5174 | ECS | Orals | BG3.17

Seasonal dynamics in the allocation of newly assimilated carbon in a northern peatland 

Kyohsuke Hikino, Antonia Hartmann, Mats Öquist, Järvi Järveoja, Mats Nilsson, and Matthias Peichl

Peatlands play an essential role for the global climate, providing a large storage of carbon (C) and the largest natural source of methane (CH4). Previous studies revealed that carbon dioxide (CO2) flux varies at the seasonal scale depending on plant phenology and species compositions. In addition to the C sink-strength, allocation of newly assimilated C is another important process to estimate C pool size and turnover, and also a key to understand the connection between plant-assimilated CO2 and CH4 emissions. To date, seasonal variations in the link between plant CO2 uptake and CH4 emissions in response to phenology have not been investigated in detail.

To reveal diurnal and seasonal dynamics of CO2 and CH4 flux with a high temporal resolution, we used data from an automated chamber system established in an oligotrophic minerogenic mire complex in northern Sweden (Degerö Stormyr). To identify the role of plant species composition, experimental plots without vascular plants (moss plots) and without any vegetation (bare peat plots for assessing heterotrophic respiration) were established next to the natural control plots. We conducted two in-situ 13C pulse labelling experiments at two distinct phenology stages (green-up and senescence) during 2023. The fate of the newly assimilated 13C was tracked through the entire C flow from plants (vascular plants and mosses), to dissolved organic and inorganic 13C in pore water, to 13CO2 and 13CH4 flux. The main objectives were to investigate 1) seasonal variations in the C allocation pattern and turnover time, and 2) the separate roles of vascular plants and mosses in regulating C allocation dynamics.

Our results indicate that in the green-up stage, both natural and moss plots released around 20% of the total newly assimilated 13C as CO2 flux during the 30 days after the labelling. In the senescence stage, the amount in the moss plots increased to 26 ± 3%, while that of natural plots remained at 20%. In comparison, release of newly assimilated C as CH4 did not show any seasonal variations in neither natural nor moss plots, highlighting a close link between plant C uptake and CH4 emission. However, existence of vascular plants increased the proportional release as CH4 emission tenfold from 0-0.02% of total 13C uptake in moss plots to 0.1-0.2% in natural plots.

These results highlight the importance of plant species composition and phenology in regulating the allocation of assimilated carbon in northern peatlands.

How to cite: Hikino, K., Hartmann, A., Öquist, M., Järveoja, J., Nilsson, M., and Peichl, M.: Seasonal dynamics in the allocation of newly assimilated carbon in a northern peatland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5174, https://doi.org/10.5194/egusphere-egu24-5174, 2024.

EGU24-5368 | ECS | Orals | BG3.17

Climate warming and elevated CO2 alter peatland soil carbon sources and stability  

Ofiti Nicholas, Schmidt Michael, Abiven Samuel, Hanson Paul, Iversen Colleen, Wilson Rachel, Kostka Joel, Wiesenberg Guido, and Malhotra Avni

Peatlands are an important global carbon (C) reservoir storing at least one-third of global soil organic carbon (SOC), but little is known about the stability of these vast C stocks under climate change. Here, we examine the impact of four years of warming (+0, +2.25, +4.5, +6.75, +9 °C) and two years of elevated atmospheric CO2 concentration (eCO2) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO2 increased plant-derived SOC compounds. Further, using biopolymers distinct to either leaf/needle (cutin) or root (suberin), we observed increasing root-derived inputs and declining leaf-derived C inputs into SOC under warming and eCO2. Unsurprisingly, SOC derived from historical pyrolysis (pyrogenic C) was unaffected by warming or eCO2. The decline in SOC compounds with warming and gains from new root-derived C under eCO2, suggest that warming and eCO2 may shift peatland C budget towards pools with faster turnover. Together, our results indicate that climate change may increase inputs and enhance decomposition of SOC potentially destabilising C storage in peatlands.

How to cite: Nicholas, O., Michael, S., Samuel, A., Paul, H., Colleen, I., Rachel, W., Joel, K., Guido, W., and Avni, M.: Climate warming and elevated CO2 alter peatland soil carbon sources and stability , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5368, https://doi.org/10.5194/egusphere-egu24-5368, 2024.

EGU24-5479 | ECS | Posters on site | BG3.17 | Highlight

Greenhouse Gas Flux Patterns from Abandoned Peat Extraction Sites and Recently Restored Peatlands in Estonia 

Kadir Yıldız, Isaac Okiti, Ain Kull, Mihkel Pindus, Marko Kohv, and Kuno Kasak

Intact peatlands sequester and store substantial amounts of carbon over the long-term period. However, if these peatlands are drained for various purposes, e.g., peat mining, agricultural use, or forestry, they become significant greenhouse gas sources. In Estonia, there are still large areas where peat extraction stopped decades ago, and no significant restoration activities have been implemented. All these areas are significant greenhouse gas sources. Restoring such areas into wetlands may turn these large CO2 sources into sinks and mitigate climate change. However, there remains considerable uncertainty as to whether these sites will become net carbon sinks and to what degree restoration and management methods affect CO2 sequestration efficiency and potential increase in CH4 emissions. Our current study focuses on carbon fluxes from abandoned peat extraction sites and recently restored peatlands in Estonia. Both sites (Lavassaare and Ess-soo bogs) were used for peat mining and were abandoned more than 30 years ago. Ess-soo bog was successfully rewetted in 2021. However, the Lavassaare site is currently abandoned, with restoration works scheduled to begin in late 2024. Here, we use eddy covariance towers to synthesize the continuous CO2 and CH4 flux data from both study sites using open path analyzers (LI-7500 and LI-7700, LICOR Biosciences). The eddy towers were installed at the Lavassaare site in September 2022 and Ess-soo in June 2023. Our results showed that Lavassaare abandoned peat extraction area is still a significant carbon source with annual emissions of 125 g CO2-C m-2 y -1 and 1.5 g CH4-C m-2 y -1. Preliminary results from Ess-soo restored bog indicate reduced CO2 loss and increased CH4 flux. However, the vegetation is still under development. This study shows that abandoned peat extraction sites are continuous carbon sources to the atmosphere, while simply rewetting these sites could remarkably reduce CO2 loss.

How to cite: Yıldız, K., Okiti, I., Kull, A., Pindus, M., Kohv, M., and Kasak, K.: Greenhouse Gas Flux Patterns from Abandoned Peat Extraction Sites and Recently Restored Peatlands in Estonia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5479, https://doi.org/10.5194/egusphere-egu24-5479, 2024.

EGU24-5786 | ECS | Orals | BG3.17 | Highlight

Irish Peatland Resilience and Presence Across National Climate Gradients  

Nima Sabokrouhiyeh, Ype Van der Velde, John Connolly, and Nicholas Kettridge

Peatlands are essential for providing crucial ecosystem services such as carbon sequestration, water regulation, and biodiversity conservation. However, in Ireland, these vital ecosystems have undergone significant degradation due to practices like land use alterations, drainage, and peat extraction activities. The collective impact of these disturbances, amplified by the influence of climate change, presents a substantial threat to the resilience of Irish peatlands. Here we evaluate the impact of climate gradients on Irish Peatland Resilience at a national scale through the application of a mechanistic model. We identify critical tipping points that signify shifts between peatlands and forests and assess how these vary with climate, and how these impact ecosystem carbon stores. Through  this approach we delineated various peatland types prevalent in Ireland, such as western blanket bogs, mountain blanket bogs, and raised bogs. Furthermore, model outputs were used to derive the resilience index for these diverse peatland systems, providing an indication of their capacity to withstand environmental changes. The insights from this research offer valuable guidance to help target national peatland restoration strategies. Ultimately, this study contributes to the broader goal of sustainable peatland management and preservation amidst changing environmental conditions.

How to cite: Sabokrouhiyeh, N., Van der Velde, Y., Connolly, J., and Kettridge, N.: Irish Peatland Resilience and Presence Across National Climate Gradients , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5786, https://doi.org/10.5194/egusphere-egu24-5786, 2024.

EGU24-5924 | Orals | BG3.17

How will climate warming impact winter CO2 emissions from northern peatlands? 

Fereidoun Rezanezhad, Arash Rafat, Eunji Byun, Stephanie Slowinski, Katie Hettinga, Saraswati Saraswati, Bhaleka Persaud, William L. Quinton, Elyn. R. Humphreys, Kara Webster, Haojie Liu, Bernd Lennartz, Maria Strack, and Philippe Van Cappellen

Canada’s peatlands hold more than half of the organic carbon stocks stored in all Canadian soils. Over 90% of these peatlands are in the boreal and subarctic regions that are undergoing accelerated climate warming. Climate models project that the rate of warming will continue through the 21st century, with the greatest warming occurring during the non-growing season (NGS). Given that NGS carbon dioxide (CO2) emissions are mainly driven by microbial respiration, warming, even at sub-zero temperatures, is expected to increase the CO2 emissions during the NGS. Therefore, understanding the factors that regulate CO2 emissions during the NGS is critical for predicting the fate of the climate-sensitive peat organic carbon stocks. In this presentation, we examine the role of environmental variables in NGS CO2 emissions at a Canadian peatland research site to infer how these emissions may evolve under climate warming scenarios. We developed a support-vector regression machine-learning model whose results imply that soil moisture, soil temperature, snow cover, and photosynthesis are key predictor variables explaining the variability of net ecosystem CO2 fluxes during the NGS. The model was applied to a 13-year (1998-2010) continuous record of eddy covariance flux measurements at the Mer Bleue Bog (located near Ottawa, Canada). The CO2 fluxes were most sensitive to the net radiation above the canopy, wind speed, soil temperature, and soil moisture. Next, we used regional climate projections for the site to forecast future changes in the net ecosystem exchange of CO2 during the NGS. Under the highest radiative forcing scenario, the NGS Mer Bleue peatland CO2 emission rates could experience a 103% increase by 2100. Time permitting, we will also discuss results from a laboratory incubation CO2 experiment with soils from Canadian boreal and temperate peatlands under variable moisture and temperature conditions. The incubation temperature ranged from −10 to +35°C and included freeze–thaw events. The results showed that CO2 production rates increased more sharply with temperature for the boreal peatland soils than the temperate ones. This indicates that boreal peatlands may increase future NGS CO2 losses to a larger degree than temperate peatlands. Our results thus further highlight the potential for a strong positive climate feedback loop from accelerated peatland CO2 emissions. They also point to the need for more realistic representations of northern soil processes in earth system models.

How to cite: Rezanezhad, F., Rafat, A., Byun, E., Slowinski, S., Hettinga, K., Saraswati, S., Persaud, B., Quinton, W. L., Humphreys, E. R., Webster, K., Liu, H., Lennartz, B., Strack, M., and Van Cappellen, P.: How will climate warming impact winter CO2 emissions from northern peatlands?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5924, https://doi.org/10.5194/egusphere-egu24-5924, 2024.

EGU24-6255 | ECS | Posters on site | BG3.17

A Synthesis of Sphagnum Litterbag Experiments: The Role of Initial Leaching Losses and a Test of the Holocene Peatland Model 

Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr

Decomposition is one of the major controls of long-term sequestration of carbon in northern peatlands. Our knowledge of the magnitude and controls of decomposition rates is derived to a large extent from litterbag experiments and estimated decomposition rates and environmental controls inform decomposition modules in dynamic peatland models.

Here, we combine synthesized Sphagnum litterbag data from 15 studies with simulation and modeling to address the following questions:

1. How large are initial leaching losses in Sphagnum litterbag experiments?

2. How does considering or ignoring initial leaching losses affect decomposition rate estimates?

3. Can the Holocene Peatland Model (HPM) (Frolking et al., 2010) predict decomposition rates from litterbag experiments?

We provide a systematic overview on Sphagnum decomposition rates and initial leaching losses. Data from litterbag experiments suggest that the assumption that leaching losses from Sphagnum litterbag experiments generally account for only few percent of the initial mass is wrong. Average initial leaching loss estimates range between 2 to as much as 22 percent of the initial mass. Ignoring initial leaching losses when estimating one-pool decomposition rates can bias predicted remaining masses when extrapolated to several decades because decomposition rates are overestimated.

With standard parameters, the HPM had an average root-mean square error (RMSE) of 0.06 yr-1 for decomposition rates estimated separately from litterbag data (reference decomposition rate estimates). The HPM and reference decomposition rate estimates could be made compatible with each other (training RMSE = 0.02 yr-1) by constraining the reference decomposition rate estimates and by adjusting HPM parameters with information from the litterbag experiments.

In terms of HPM parameters, the analysis suggests that oxic decomposition rates may be fastest at larger water contents and that anoxic decomposition rates may be less limited with depth below the water table (= larger under anoxic conditions) than assumed by the HPM, indicating either misspecification of the HPM or the influence of varying water table levels on the litterbag data. Since a previous sensitivity analysis of the HPM has shown that limitation of anoxic decomposition rates is important for peat accumulation (Quillet et al., 2013), the HPM may currently overestimate peat accumulation rates.

References

Frolking, S., N. T. Roulet, E. Tuittila, J. L. Bubier, A. Quillet, J. Talbot, and P. J. H. Richard. 2010. “A New Model of Holocene Peatland Net Primary Production, Decomposition, Water Balance, and Peat Accumulation.” Earth System Dynamics 1 (1): 1–21. https://doi.org/10.5194/esd-1-1-2010.

Quillet, Anne, Michelle Garneau, and Steve Frolking. 2013. “Sobol’ Sensitivity Analysis of the Holocene Peat Model: What Drives Carbon Accumulation in Peatlands?” Journal of Geophysical Research: Biogeosciences 118 (1): 203–14. https://doi.org/10.1029/2012JG002092.

How to cite: Teickner, H., Pebesma, E., and Knorr, K.-H.: A Synthesis of Sphagnum Litterbag Experiments: The Role of Initial Leaching Losses and a Test of the Holocene Peatland Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6255, https://doi.org/10.5194/egusphere-egu24-6255, 2024.

EGU24-6460 | ECS | Orals | BG3.17

Impact of soil and vegetation characteristics on CH4 fluxes in Arctic wetlands of the Northwest Territories, Canada  

Kseniia Ivanova, Mathias Goeckede, Judith Vogt, and Annelen Kuechenmeister

Arctic wetlands have been identified as significant emitters of CH4, accounting for about 2% of the global methane budget, but the underlying processes remain poorly constrained. These wetlands show not only a considerable variability in CH4 flux estimates, but also varying levels of emissions between different regions and even among various elements within the same wetland. The pronounced spatial variability in ecosystem characteristics across scales requires observational approaches that can cover larger landscapes while still being capable of resolving fine-scale details.

This study presents findings based on flux chamber measurements with a portable gas greenhouse analyser for CH4/CO2/H2O (LI-7810), conducted at the Trail Valley Creek research station in the Canadian NW Territories. We collected data from two polygonal mires and a small gulley, all plots organized as transects across moisture gradients. Our approach included analysing variations in CH4 fluxes across microsites within wetland complexes, such as rims, trenches, or polygon centres. In addition to greenhouse gas signals, we examined soil parameters (pH, temperature, moisture) and vegetation (height, composition, green fraction) to understand their influence on CH4 fluxes. Random forest models highlighted soil moisture at 12 cm as a primary control factor, explaining 41% of the predictive power and demonstrating higher accuracy compared to linear models for CH4 flux prediction. Based on partial dependence analyses, we classified our measurements into three groups based on soil moisture at 12 cm. In the low moisture scenario, soil moisture at deeper levels (30 cm) was more influential, while in medium moisture conditions, soil temperature at 10 and 20 cm depths played a crucial role. In the high moisture category, the presence of Carex aquatilis was a key factor influencing the CH4 flux. 

Our study also showed that the CH4 flux varied significantly among different wetland elements. The gully area showed the lowest rate, whereas the polygonal mires had higher fluxes. Notably, within a polygonal mire, the rim exhibited lower flux compared to the wet polygonal centres and trenches, the latter showing the highest emissions. These findings underscore the complexity and variability of CH4 fluxes in Arctic wetland ecosystems and highlight the importance of considering both soil and vegetation characteristics in understanding and predicting CH4 emissions from these critical regions.

The authors acknowledge funding from the European Research Council (ERC synergy project Q-Arctic, grant agreement no. 951288).

How to cite: Ivanova, K., Goeckede, M., Vogt, J., and Kuechenmeister, A.: Impact of soil and vegetation characteristics on CH4 fluxes in Arctic wetlands of the Northwest Territories, Canada , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6460, https://doi.org/10.5194/egusphere-egu24-6460, 2024.

EGU24-6668 | Orals | BG3.17

The impact of wildfire and droughts on the GHGs exchange in temperate wetland. 

Krzysztof Fortuniak, Włodzimierz Pawlak, Mariusz Siedlecki, and Jan Górowski

We analyzed 10 years (2013-2022) of CO2 and CH4 flux data measured using the eddy covariance method in the Biebrza National Park in north-eastern Poland. The Biebrza wetlands are among the largest in Central Europe, comprising a contiguous area of more than 250 km².  The measurement site (53°35′30.8′′ N, 22°53′32.4′′ E, 109 m a.s.l.) was located in the central basin of Biebrza valley at the area dominated by patches of reeds, high sedges, and rushes, very typical of Biebrza wetlands. In the analyzed period the studied ecosystem was affected by severe droughts in 2015 and 2018-2020. Moreover, on April 20–25, 2020, the Biebrza National Park was touched by huge fires that consumed over 5,500 ha of landscape. The measurement site was located at the north-eastern edge of the burned area and the entire source area of eddy-covariance system was affected by the fire. The system suffered some damage, but flux measurements were re-established about a week after the fire. 

The response of the CH4 flux to changes in hydrometeorological conditions is quite simple - the thermally determined annual course of CH4 is strongly modified by the water table level (WTL). The annual emission of CH4 reached 21 gC-CH4·m-2·yr-1 in the wettest year and dropped even below 1 gC-CH4·m-2·yr-1 in dry years. The CO2 exchange response is more complex. In the case of net ecosystem exchange (NEE), a linear relationship is observed between the average WTL and the annual sum of CO2 flux. In wet years the studied peatland was a significant sink of CO2 (down to −250 gC-CO2·m-2·yr-1) whereas in dry years we observed a substantial release of CO2 (up to +300 gC-CO2·m-2·yr-1). A similar linear relation was observed for ecosystem respiration (ER), which ranged from 830 to 1400 gC-CO2·m-2·yr-1 in wet and dry years respectively. In contrast, gross ecosystem production (GEP) followed WTL changes only in the first 3 years of observations. Vegetation then switched to drier conditions and GEP remained on similar level up to 2020, when it increased significantly after the April fire. Excluding 2020, GEP varied in the range of 910-1250 gC-CO2·m-2·yr-1.

 

Acknowledgements: Funding for this research was provided by the National Science Centre, Poland under project UMO-2020/37/B/ST10/01219 and University of Lodz under project 4/IDUB/DOS/2021. The authors thank the authorities of the Biebrza National Park for allowing the continuous measurements in the area of the Park.

How to cite: Fortuniak, K., Pawlak, W., Siedlecki, M., and Górowski, J.: The impact of wildfire and droughts on the GHGs exchange in temperate wetland., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6668, https://doi.org/10.5194/egusphere-egu24-6668, 2024.

EGU24-7100 | ECS | Orals | BG3.17

Modelling sub-grid peatland vegetation dynamics in the ORCHIDEE-PEAT land surface model 

Chunjing Qiu and Philippe Ciais

Peatlands store about one-third of global soil organic carbon. The carbon dynamics and storage of peatlands depend on the balance between plants’ carbon uptake and microbial carbon decomposition. As a result of global warming and climate-driven ecohydrological changes, the plant community composition of peatlands is projected to change, affecting the carbon sequestration and storage capacity of these ecosystems both directly and indirectly by modulating water flows. However, while there has been a notable focus on studying the variation in the water table position of peatlands and its consequential influence on the dynamics of peatland soil carbon, the impacts of peatland plant community composition have been largely overlooked. To accurately predict peatland carbon dynamics, land surface models need to account for the diversity of peatlands plant types and the competitive interactions among them. We incorporated six plant functional types (PFT) into the ORCHIDEE-PEAT model to represent mosses, grasses, shrubs, and trees growing in peatlands. Areas covered by each PFT are functions of the bioclimatic limitations, mortality, and establishment of each PFT, as well as competitions among PFTs. The model will be employed to assess the effect of climate change on peatland vegetation dynamics and carbon fluxes.

How to cite: Qiu, C. and Ciais, P.: Modelling sub-grid peatland vegetation dynamics in the ORCHIDEE-PEAT land surface model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7100, https://doi.org/10.5194/egusphere-egu24-7100, 2024.

EGU24-8066 | Posters on site | BG3.17

What does the oxygen budget of a peatland tell us about global carbon budgets? 

Fred Worrall, Gareth Clay, Catherine Moody, Catherine Hirst, and Timothy Burt

The oxidative ratio is a fundamental property of an environment and at global scale controls the magnitude of the terrestrial biosphere carbon sink. The oxidative ratio of the terrestrial biosphere is defined as the ratio of the O2 released to the CO2 adsorbed by a terrestrial environment. It has proved difficult to estimate the OR of environments. This study proposed that the OR of an ecosystem could be calculated from the organic matter budget of a peatland environment constrained by stoichiometry and thermodynamics of the organic matter transfers. This study used the detailed stoichiometry of the organic matter reservoirs of a peatland. The IPCC estimates global OR = 1.1; and this study showed that OR = 0.88. The OR of the study environment is independent of many of the organic matter transfer pathways but dependent on the initial fate ot primary productivity and the N cycle within the environment. The calculated OR is consistent with disproportionation of C occurring in the environment with a reduced component being accumulated into the terrestrial biosphere while an oxidised component of organic matter is lost to the atmosphere.  The method is transferrable to other environments where there is elemental analyses of the organic matter cycle. The implication of OR < 1 is that the magnitude of the carbon sink has been over-estimated.

How to cite: Worrall, F., Clay, G., Moody, C., Hirst, C., and Burt, T.: What does the oxygen budget of a peatland tell us about global carbon budgets?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8066, https://doi.org/10.5194/egusphere-egu24-8066, 2024.

EGU24-8907 | ECS | Posters on site | BG3.17

CO2 emission from a subarctic mire with different permafrost status  

Patryk Łakomiec, Jutta Holst, and Janne Rinne

The main goal of this work is to quantify the differences in net ecosystem exchange (NEE) of CO2, and its component processes, Gross Primary Production (GPP) and ecosystem respiration (Reco) across surfaces with different permafrost status at a sub-arctic mire complex. The study site, Abisko-Stordalen mire in Swedish Lapland, is situated in the mire (68°20' N, 19°30' E). We used data from the Integrated Carbon observation system (ICOS) Ecosystem station (SE-Sto). Palsa plateu and thawing sector data were used from the years 2014-2021, and for fen for 2014.  

We analyzed CO2 diel cycle for the summer months (June, July, August), to compare it for the three ecosystems. We found out that diel cycle is similar in terms of time but order of magnitude of CO2 fluxes is different for the fen than for the palsa and the thawing sector. CO2 responds for the air temperature and incoming radiation were compared among three ecosystems.    

We used three different gapfilling methods: REddyProc (Jena), artificial neural network (ANN), and generalized linear models (GLM) for the annual balance calculation. Gap-filling was made on a half-hour basis, and this allow us to divide fluxes to Reco and GPP.  Comparison of those two NEE components has been done for the palsa plateu and the thawing sector for the whole period.

Of the three surfaces that were examined in this study, the tall sedge fen had the highest CO2 uptake during the daytime in the summer and the highest net respiration at night as the growing season. However, there were no significant differences in CO2 fluxes between the palsa plateau and the thawing sector, despite their different permafrost conditions and vegetation characteristics. In contrast, there were significant differences in methane emissions between these systems. Multiple gap filling methods were found to be important for accurate CO2 emission estimation.

How to cite: Łakomiec, P., Holst, J., and Rinne, J.: CO2 emission from a subarctic mire with different permafrost status , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8907, https://doi.org/10.5194/egusphere-egu24-8907, 2024.

EGU24-9601 | Orals | BG3.17

Modelling the northern peatland methane fluxes with a process-based model 

Mousong Wu, Wenzuo Duan, Koffi Noumonvi, Joshua Ratcliffe, Mats Nilsson, Matthias Peichl, and Per-Erik Jansson

Northern peatlands are significant carbon reservoirs, serving as long-term atmospheric carbon dioxide sinks and sources of methane and nitrogen dioxide. However, methane processes interacting with environmental changes in Northern peatlands, remain unclear. Therefore, the need for better simulation of key processes of methane in peatlands is still urgent. In this study we used the process-based CoupModel combining the long-term in-situ measurements to successfully constrain the energy, water and carbon fluxes modeling in a boreal peatland (CH4, r2=0.62). We noticed that plant transportation is the most dominant pathway for methane emissions from this peatland (57.87% of total CH4 emission), followed by surface diffusion (31.06%) and ebullition (11.07%). The relationship between CH4 fluxes and water table depth is non-linear, and the dominant CH4 emission pathway varies as the water table regime changes. Our study provided new insights into the emission mechanisms of methane in boreal minerotrophic mire and contributed to a better understanding of boreal peatlands for both modelling and observation communities.

How to cite: Wu, M., Duan, W., Noumonvi, K., Ratcliffe, J., Nilsson, M., Peichl, M., and Jansson, P.-E.: Modelling the northern peatland methane fluxes with a process-based model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9601, https://doi.org/10.5194/egusphere-egu24-9601, 2024.

Temperate peatlands and heathlands are at increasing risk of severe wildfires under future climates which may combust legacy carbon stocks. The moisture content of the different fuel layers determines the threat posed. The controls on fuel moisture and their response to extreme weather have previously been unknown. Here, we show that controls differ between fuel layers. Fine dead fuel moisture is dominated by weather, live fuel by temporal controls including season and phenology, and soil organics by elevation and soil type. This separation of controls in time and space produces a landscape resistance to severe wildfire. However, extreme weather events break the phenological control on live fuel moisture and the landscape control of organics, resulting in low moisture content across all fuel types. This leads to the most severe conditions for fire ignition, spread and impact in traditionally non-fire prone regions, producing a landscape susceptible to severe environmental impacts and carbon emissions within a new summer wildfire regime.

How to cite: Ivison, K., Little, K., Graham, L., and Kettridge, N.: Extreme weather breaks phenological and landscape controls on temperate peatland fuel moisture; implications for carbon stock release through changing wildfire regimes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11396, https://doi.org/10.5194/egusphere-egu24-11396, 2024.

EGU24-11533 | Orals | BG3.17

Compounding effect of fire history and freeze thaw cycles on ecosystem resilience in northern temperate peatlands 

Liam Heffernan, Michael Peacock, Maliheh Mehrshad, Sofia Papadopoulou, Bjorn J.M. Robroek, and Scott J. Davidson

Rising air temperatures are leading to both an increase in frequency of freeze-thaw cycles (FTCs) during the winter months, and increased fire frequency and severity during the growing season in northern temperate peatlands. Both FTCs and fires have been shown to impact plant and microbial community composition, nutrient availability, and plant-microbe interactions. Ultimately such changes may affect carbon cycling in peatlands. While examples from the vegetation are numerous, no study has assessed the resilience of peatland microbial communities and carbon cycling to the combined disturbance effect of fire and FTCs. The objectives of this study were to (a) determine how peatland microbial community structure and activity are affected following fire, and (b) assess if the impact of FTCs on peatland microbial communities and soil carbon stores is affected by fire history. To address these objectives, we conducted an FTC and incubation experiment using surface peat (2 – 15 cm) from a pristine peatland and nearby peatland that burned in 2006 located in southern Sweden. Peat from both sites was exposed to 15 FTCs, with each FTC consisting of 18 hours at -20 °C followed by 6 hours at +20 °C. Following the termination of the FTCs we incubated the peat at +20 °C for 40 days, measuring peat respiration as the change in headspace greenhouse gases throughout. We measured peat pore water chemistry, hydrolytic enzyme kinetics, and microbial community assembly using metagenomics before and after the FTCs and incubation. Extracellular enzyme kinetics and pore water chemistry data suggest a legacy effect of the fire, whereby the pristine site exhibits greater enzyme degradation and greater lability of dissolved organic matter before and after FTCs. We also saw greater rates of respiration in peat from the pristine site. We found that FTCs in fire affected peat caused an increase of dissolved organic carbon and aromatic compounds in peat pore water, leading to a reduction in extracellular enzyme and respiration rates. We conclude that while FTCs have the potential to disrupt the stability of peatlands, the legacy of fire exerts a greater constrains on biogeochemical processes. This project highlights that growing season disturbances may have a longer lasting impact on peatland resilience.

How to cite: Heffernan, L., Peacock, M., Mehrshad, M., Papadopoulou, S., Robroek, B. J. M., and Davidson, S. J.: Compounding effect of fire history and freeze thaw cycles on ecosystem resilience in northern temperate peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11533, https://doi.org/10.5194/egusphere-egu24-11533, 2024.

EGU24-11837 | ECS | Posters on site | BG3.17

Greenhouse gas fluxes from grassland on organic soil used for beef grazing in the Irish midlands 

Ian Clancy, James Rambaud, George Gleasure, Rachael Murphy, Gary Lanigan, and Matthew Saunders

Irish grasslands act as a significant carbon store, containing approximately 1.5 billion tonnes of carbon in grasslands under mineral and organic soils. Histosols, recognized as substantial carbon sinks, typically contain between 1000-4000 tC ha-1, with carbon sequestration influenced by hydrological status, vegetation type, and associated management. It is currently estimated that more than 350,000ha of these soils are drained for permanent pasture in Ireland. Due to their high carbon stocks, these soils emit large quantities of carbon dioxide (CO2) upon drainage, which is further accelerated by farm management to an estimated ~8 Mt CO2 eq yr-1.

This study measured field-scale fluxes of carbon dioxide (CO2) and methane (CH4) to establish land-use and land management emission factors for grasslands situated on shallow-drained nutrient-rich histosols in 2023. This site has been actively rewetted through partial drain blocking, presenting a potential greenhouse gas (GHG) mitigation tool. The research contributes to more robust emission factors for key greenhouse gases, enhancing our understanding of the drivers of net ecosystem exchange (NEE). Additionally, it explores the relative impacts of changes in water table management on NEE and assesses how farm management influences the annual carbon budget.

The eddy covariance technique is employed in this study to gauge the impact of water table management on a grassland with organic soil used for beef grazing in the Irish midlands. In early 2023, a weir was installed at the field's border to limit water loss. This study examines the impact of this change on CO2 and CH4 fluxes, incorporating meteorological observations and farm management data. Early results indicate that the site was a net source of CO2 in 2023, with variations in NEE throughout the year influenced by changes in water table height, meteorological conditions, and farm management. This investigation builds upon existing work in Ireland and other similar sites, comparing differences in management practices and evaluating their relative impact on a site's carbon balance. Furthermore, it addresses site-specific considerations when utilizing this data for national inventories or policy implementation.

How to cite: Clancy, I., Rambaud, J., Gleasure, G., Murphy, R., Lanigan, G., and Saunders, M.: Greenhouse gas fluxes from grassland on organic soil used for beef grazing in the Irish midlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11837, https://doi.org/10.5194/egusphere-egu24-11837, 2024.

EGU24-12362 | ECS | Posters on site | BG3.17

Effects of inorganic nitrogen additions on methane and carbon dioxide production from incubated boreal bog samples 

Marianne Böhm, Mackenzie Baysinger, Karin Potthast, Susanne Liebner, and Claire Treat

Peatland soils are projected to respond to rising global temperatures with an increase in microbial respiration rates. At the same time, nutrients that were previously bound in undecomposed organic matter will increasingly become available to the decomposer microbial communities. The pathway and magnitude of response in respiration rates to a changing nutrient status remains an open question, especially given that these ecosystems are typically limited in nutrients like nitrogen.

In my ongoing Master thesis within the FluxWIN project, I investigate the effects of adding nitrate and ammonium to incubated peat samples from Siikaneva bog in boreal Finland. Preliminary results from 190 days of incubation indicate that carbon dioxide production was reduced by ammonia additions. Data on methane production were less conclusive, but also point to an average reduction of total C respiration with the N addenda. In summary, this implies that nitrogen was not the sole limiting factor to microbial decomposition, and that the peatland carbon sink is not endangered by nitrogen release.

Samples from above and below the water table exhibit different patterns of carbon mineralization, which may be an expression of different microbial communities: most prominently, a complete lack of methanogenesis in the surface samples. Microbial abundance assays are currently on the way and will help understanding the microbial regime. Further analyses will focus on how the treatments impacted the trajectories of carbon production over time, which will help with understanding how the coupled C and N cycles interact in a warming climate.

How to cite: Böhm, M., Baysinger, M., Potthast, K., Liebner, S., and Treat, C.: Effects of inorganic nitrogen additions on methane and carbon dioxide production from incubated boreal bog samples, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12362, https://doi.org/10.5194/egusphere-egu24-12362, 2024.

EGU24-13076 | Posters on site | BG3.17

Negative feedback? Documenting hydrological, geomorphological, biogeochemical, and botanical aspects of climate-change-driven palsa deterioration 

Mateusz Grygoruk, Anna Sieczko, Hanna Silvennoinen, Wiktor Kotowski, Pouya Ghezelayagh, Anders Lyngstad, Marta Stachowicz, Maria Grodzka-Łukaszewska, Grzegorz Sinicyn, Krzysztof Kochanek, Ewa Jabłońska, Łukasz Kaczmarek, Bartosz Bednarz, Jan Kucharzyk, Izabela Jaszczuk, Fia Bengtsson, Mariusz Lamentowicz, and Łukasz Kozub

Abrupt global warming poses threats to hydrological cycles and peatland ecosystem development. Northern peatlands, such as palsa mires, experience prompt degradation due to disappearing ice cores caused by increasing air temperatures and changes in precipitation patterns that induce the development of thicker snow covers insulating existing ice cores that impair their development. Disappearing palsa mires are experiencing subsidence, which in turn is flattening their topography and changing their hydration. What's more, changes in the shape and position of the ice cores cause local changes in water flow, and the lowering surface of the peatlands approaches the groundwater table, increasing their saturation. Increasing the moisture content of the topsoil within the degrading palsa mire system, in turn, causes changes in biogeochemical processes manifested in changes in water balance, carbon balance, and plant species composition. It, therefore, seems that the ongoing decomposition of palsa mires results in the development of novel peatland ecosystems, which, despite not being affected by the thermokarst processes, are suspected to become effective carbon sinks capable to sequestrate massive amounts of carbon that, in turn, may decrease greenhouse gas emissions.

We conducted a comprehensive field-research-based study on Šuoššjávri palsa mire located in Northern Norway (Finnmark). We documented the water balance of the peatland. We described the structure of the palsa mire with the use of electrical resistivity imaging. We modeled the directions of groundwater flow. We applied an Interferometric Satellite Radar approach to quantify the speed of peatland subsidence. We used automated chambers to measure greenhouse gas emissions in a gradient of palsa peatland deterioration and a thermokarst lake. We also applied a novel approach to document vertical profiles of dCO2 and dCH4 content in groundwater at different levels of the peatland with the use of newly developed piezometers to check whether palsa-deterioration-driven groundwater flow patterns can affect carbon sequestration.

We documented that subsidence of palsa peatland occurs at a rate of about 2 mm/year while peatlands formed in place of disappearing palsa peatland grow steadily, most likely due to the persistence of stable moisture content and the maintenance of a proper peat-forming process. We revealed that the degradation of palsa mire can be expressed by a range of hydrological indicators representing the duration of groundwater levels at specific depths: inundation time at matured peatlands that remain one of the last steps of palsa mire degradation is shortening, which, in turn, results in limiting methane emissions, yet keeping the carbon dioxide emissions at levels twice as low as the ones documented in a thermokarst lake. Botanical analyses allowed us to describe the development of peatlands that formed in the place of degraded palsa mires and to quantify biomass production and peat accumulation.

In the light of results of our study, we hypothesize that degradation of palsa peatlands due to climatic change results in the development of peatland ecosystems that are likely to prevent global warming due to stable and high topsoil saturation followed by an efficient carbon sequestration in the peat-forming process and novel peatland development.

How to cite: Grygoruk, M., Sieczko, A., Silvennoinen, H., Kotowski, W., Ghezelayagh, P., Lyngstad, A., Stachowicz, M., Grodzka-Łukaszewska, M., Sinicyn, G., Kochanek, K., Jabłońska, E., Kaczmarek, Ł., Bednarz, B., Kucharzyk, J., Jaszczuk, I., Bengtsson, F., Lamentowicz, M., and Kozub, Ł.: Negative feedback? Documenting hydrological, geomorphological, biogeochemical, and botanical aspects of climate-change-driven palsa deterioration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13076, https://doi.org/10.5194/egusphere-egu24-13076, 2024.

EGU24-13259 | ECS | Posters on site | BG3.17

Vegetation succession, peat and carbon accumulation in a peatland affected by permafrost thaw in Nunavik, Northern Quebec, Canada 

Édith Auclair-Fournier, Pascale Roy-Léveillée, and Michelle Garneau

Permafrost peatlands are vulnerable to warming, yet the net effect of thaw-induced carbon (C) release vs accumulation due to increased primary productivity is still unclear. Even tough there is an abundance of climate and greenhouse gas emissions projections, the permafrost C feedbacks remain largely uncertain. This project documents the timing and trajectory of vegetation succession following permafrost thaw in a thermokarst landscape near Kangiqsualujjuaq, Nunavik (Québec, Canada). The main objectives are to i) reconstruct vegetation succession following permafrost thaw, ii) quantify peat and C accumulation since thaw supported by 14C and 210Pb chronologies, and iii) assess small scale variability within the site.

In the field, short peat cores (n= 23) have been collected from the edges of four thermokarst ponds along outward transects perpendicular to each side of the pond. Metal boxes of 30 to 50­-cm length were used to collect subsurface samples, as the focus of the study was to reconstruct recent vegetation succession. In each site, surface vegetation surveys were also conducted. On each core, loss on ignition (LOI) at 1‑cm interval was performed to quantify organic matter and estimate organic C content (50% of organic matter mass). Plant macrofossils analyses at a minimum of 4-cm interval was realized to reconstruct historical plant succession and hydrological variations in the peat. High resolution chronologies using 14C and 210Pb dating will support estimations of the successional changes in relation with climate warming and permafrost thaw. The chronologies will be used to compute age-depth models, as well as peat and apparent C accumulation rates.

Diachronic analysis of aerial photographs highlighted changes in thermokarst features in the palsa site, where numerous ponds have been infilled with vegetation between 1964 and 2021, while new ones have formed. Preliminary results show that recent accumulation and related C content is variable between the vegetated pool edges. Vertical C content follows similar but offset paths according to position within transects. Peat layers with higher C content were associated with qualitatively greater decomposition and found deeper in cores closest to the pond. The reconstruction of peat and C accumulation rates using 14C and 210Pb chronologies (to come), will support improved understanding of the vegetation successions and related C dynamics.

Incorporation of spatiotemporal heterogeneity in C accumulation might present challenges in C budget modeling. This study emphasizes the significance of empirical data in documenting small scale ecological processes under the scope of remote sensing and modeling. Results will contribute to the evaluation of the responses of high-latitude peatland ecosystems to climate warming. Additionally, documentation of recent changes in peat accumulation environments in northern latitudes can support conservation decision making, as protection of C stocks and sinks is increasingly recognized as a natured-based solution in global warming mitigation.

How to cite: Auclair-Fournier, É., Roy-Léveillée, P., and Garneau, M.: Vegetation succession, peat and carbon accumulation in a peatland affected by permafrost thaw in Nunavik, Northern Quebec, Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13259, https://doi.org/10.5194/egusphere-egu24-13259, 2024.

EGU24-14977 | ECS | Orals | BG3.17

Phenology controls on CO2 exchange in a northern peatland: insights from a decade-long record of phenocam imagery and eddy-covariance data 

Gillian Simpson, Järvi Järveoja, Mats Nilsson, and Matthias Peichl

Northern peatlands are recognised as important long-term carbon sinks. However, measurements from a number of peatland sites reveal a large amount of interannual variability in their net carbon dioxide (CO2) balance. Differences in both weather conditions and plant phenology (i.e. the seasonal development of the vegetation canopy) between years are thought to be key here. Timing of the growing season (i.e. start, end, length) regulates the period over which vegetation can actively photosynthesise. Hence, a longer growing season is often related to increased seasonal CO2 uptake for example. At the same time, meteorological conditions (e.g. air temperature, water-table depth) affect not only plant physiology, but also its phenological cycle. Our current understanding of the complex interplay between these two main drivers of peatland carbon dynamics has been limited by a lack of long-term phenology studies. This work explores a unique, decade-long record of phenocam and eddy-covariance data from Degerö Stormyr, a northern Swedish peatland. We used structural equation modelling (SEM) to identify the pathways regulating CO2 uptake, and found that phenology plays an important ‘mediator’ role over the growing season. Our analysis of the interannual and seasonal variability in the drivers of CO2 uptake further suggest that increases in vegetation greenness are linked to increased CO2 uptake over the growing season. These findings provide valuable insight on the controls of peatland carbon dynamics, and its feedbacks with future climate change.

How to cite: Simpson, G., Järveoja, J., Nilsson, M., and Peichl, M.: Phenology controls on CO2 exchange in a northern peatland: insights from a decade-long record of phenocam imagery and eddy-covariance data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14977, https://doi.org/10.5194/egusphere-egu24-14977, 2024.

EGU24-15053 | ECS | Posters on site | BG3.17

Geologic exploration activities increase methane emissions from boreal peatlands. 

Percy Korsah, Maria Strack, Scott Davidson, and Bin Xu

In recent years the preservation and restoration of peatlands has been pushed to the forefront of climate change mitigation plans. Unfortunately, boreal peatlands in Canada are threatened by extensive industrial exploration and extraction of natural resources. Many of these anthropogenic disturbances include linear pathways for geologic exploration of petroleum and mineral resources, also known as seismic lines. Apart from reported changes in peatland micro-topography and the lack of tree re-establishment, seismic lines crossing peatlands impact ecohydrological conditions leading to alterations in carbon (C) cycling. However, few studies have quantified the extent of these changes, resulting in a lack of reporting of these impacts in estimates of anthropogenic greenhouse gas emissions.

 

This study took place in northern Alberta (Canada), across wooded bogs and a wooded fen. The primary objective was to evaluate the impact of seismic lines on CH4 and CO2 fluxes in the field and under laboratory conditions. CH4 fluxes and the net ecosystem exchange of CO2 (NEE) was measured over two growing seasons from 48 paired plots across the bogs and fen using the closed chamber technique, while 144 incubation jars with replicate samples were deployed in the lab. Corresponding data on environmental variables including peat temperature, vegetation cover, biomass and water table depth were recorded as well.

 

Seismic lines crossing peatlands significantly increased CH4 emissions, almost doubling in fens (176%) and tripling in bogs (261–308%) compared to their surrounding peatland areas. This was driven by warmer and wetter conditions on the line as well as a vegetation shift to more productive species. These results are essential for accurate greenhouse gas reporting as well as restoration planning and design.

How to cite: Korsah, P., Strack, M., Davidson, S., and Xu, B.: Geologic exploration activities increase methane emissions from boreal peatlands., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15053, https://doi.org/10.5194/egusphere-egu24-15053, 2024.

EGU24-15209 | ECS | Posters on site | BG3.17

Soil microbial communities in Danish lowlands are shaped by soil pH  

Anne-Cathrine Danielsen, Charles Pesch, Cecilie Hermansen, Caitlin Margaret Singleton, Thomas Bygh Nymann Jensen, Yu Yang, Per Halkjær Nielsen, Mogens Humlekrog Greve, Peter Lystbæk Weber, Emmanuel Arthur, Sebastian Gutierrez, Per Møldrup, Signe Normand, and Lis Wollesen de Jonge

Agricultural activity on drained lowlands is a common practice in Denmark and there are suggestions to rewet some of them for climate mitigation purposes. Rewetting those lowlands might result in a change in microbial community composition. This study investigates the current prokaryotic diversity and community composition in soil samples from cultivated lowlands to provide the baseline for monitoring changes after rewetting. Furthermore, variations in soil properties between sites are examined, and the properties driving differences in prokaryotic diversity and community composition are identified. In total, 116 samples were collected from field sites across Denmark that were categorized as one of four different land-use types: Crop, Grass, Fallow, and Other. Soil properties were selected to cover chemical (soil water repellency, pH, electrical conductivity), hydrological (depth to ground-water table, soil water content at field capacity (-100 hPa)), nutrient-related (total nitrogen, organic carbon, carbon-to-nitrogen-ratio, fractions of pyrolizable and residual organic matter), and structural (total porosity, pore size distribution index) functions of the soil. Soil samples exhibited significant variations in their chemical and physical properties, including pH ranging from 2.02 to 7.55, organic carbon ranging from 3 g 100g-1 to 50 g 100g-1, soil water repellency ranging from 71.27 mN m-1 (hydrophilic) to 33.85 mN m-1 (very strongly hydrophobic), and total porosity ranging from 51% to 95%. Soil samples clustered according to soil class (mineral, organo-mineral, organic, highly organic) but not according to land-use type (crop, grass, fallow, other). Prokaryotic alpha diversity, measured as Shannon’s diversity index (H), ranged from 4.16 to 5.89 across samples and could best be predicted by pH, followed by total porosity, fraction of pyrolizable carbon, and pore size distribution index. The pH alone explained 36% of the variation in H between samples. Hierarchical clustering identified three prokaryotic clusters highly correlated with pH. A weak correlation was found between differences in community composition (beta diversity) and geographic distance (r = 0.15, p < 0.001). However, pH was also the main driver of beta diversity, explaining 11% of the variation. At the same time, models including additional variables only had marginally better explanatory power. In conclusion, pH was the predominant driver of prokaryotic alpha and beta diversity across land-use types in lowland soils.

How to cite: Danielsen, A.-C., Pesch, C., Hermansen, C., Singleton, C. M., Bygh Nymann Jensen, T., Yang, Y., Halkjær Nielsen, P., Humlekrog Greve, M., Lystbæk Weber, P., Arthur, E., Gutierrez, S., Møldrup, P., Normand, S., and Wollesen de Jonge, L.: Soil microbial communities in Danish lowlands are shaped by soil pH , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15209, https://doi.org/10.5194/egusphere-egu24-15209, 2024.

EGU24-15219 | Posters on site | BG3.17

The apparent temperature sensitivity (Q10) of peat soil respiration: A synthesis study 

Haojie Liu, Fereidoun Rezanezhad, Ying Zhao, Hongxing He, Philippe Van Cappellen, and Bernd Lennartz

The temperature sensitivity (Q10) of soil respiration is a critical parameter in modeling soil carbon dynamics; yet the regulating factors and the underlying mechanisms of Q10 in peat soils remain unclear. To address this gap, we conducted a comprehensive synthesis data analysis from 87 peatland sites (361 observations) spanning boreal, temperate, and tropical zones, and investigated the spatial distribution pattern of Q10 and its correlation with climate conditions, soil properties, and hydrology. Findings revealed distinct Q10 values across climate zones: boreal peatlands exhibited the highest Q10, trailed by temperate and then tropical peatlands. Latitude presented a positive correlation with Q10, while mean annual air temperature and precipitation revealed a negative correlation. A noteworthy discovery was the pronounced negative relationship between the soil carbon-to-nitrogen ratio (C/N) and Q10, echoing the carbon-quality temperature hypothesis that decomposition is more temperature-sensitive in low-quality than in high-quality carbon. However, the relationship between C/N and Q10 varied significantly between peat types. Our data analyses also revealed that Q10 was influenced by soil moisture levels, with significantly lower values observed for peat soils under wet than dry conditions. Essentially, boreal and temperate peatlands seem more vulnerable to global warming-induced soil organic carbon decomposition than tropical counterparts, with wet peatlands showing higher climate resilience.

How to cite: Liu, H., Rezanezhad, F., Zhao, Y., He, H., Van Cappellen, P., and Lennartz, B.: The apparent temperature sensitivity (Q10) of peat soil respiration: A synthesis study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15219, https://doi.org/10.5194/egusphere-egu24-15219, 2024.

EGU24-15758 | ECS | Posters on site | BG3.17

Peat Quality and Enzymatic Activities Control the Recovery of Peatlands’ C Sink Function in Addition to Rewetting 

Maxime Lemmens, Maxim Dorodnikov, and Klaus-Holger Knorr

Due to land use intensification and drainage many peatlands have lost their C sink function. Consequently, rewetting has become an important strategy to mitigate increased greenhouse gas emissions from degraded peatlands. Whereas CO2 emissions decrease under reducing conditions upon waterlogging, CH4 production rates increase. The exact effect of rewetting may depend on the initial degree of degradation of a peatland and resulting peat quality. Therefore, the aim of this study was to elucidate waterlogging effects on C mineralization rates of peat from two contrasting sites. Near-surface peat soils from a long-term drained area and a rewetted site with newly formed floating mat were incubated under aerobic and anaerobic conditions for 90 days. CO2 and CH4 production rates were measured with weekly intervals. At the beginning and at the end of the incubation, liquid phase samples were taken and analysed for (in)organic ions, element stoichiometry, UV absorbance spectra and, DOC concentrations. When CO2 and CH4 production had reached steady states, we measured C-, N- and P-related hydrolytic enzyme activities of the peat. We expected that hydrolytic enzyme activities decrease, resulting in lower CO2 production rates, under anaerobic conditions. Furthermore, it was hypothesized that C mineralization rates of the pristine floating mat would exceed those of the degraded drained peatland due to higher availability of more labile organic matter in the former site.

As expected, rewetting, as simulated by anoxic incubations, slowed CO2 production rates and activities of beta-glucosidase as compared to the oxic controls. Moreover, the availability of oxygen stimulated near-surface peat decomposition supported by a strong decrease in DOC concentrations after aerobic incubation in the degraded peat. However, the average rate of CO2 production was six times higher in the degraded drained site compared to the restored floating mat (189.84 and 29.76 μmol CO2 g dw-1 d-1, respectively). CH4 production from the long-term drained site began after 75 days of anoxic incubation and was almost negligible compared to the restored site (0.06 v. 0.46 g dw-1 d-1 after 75 days of incubation, respectively). Due to the high CO2 production rates measured at the drained site, it is unlikely that high peat recalcitrance was the cause of low CH4 production. In contrast to CO2 production rates, there were no significant differences in beta-glucosidase activities between the two sites. Probably other substrates than cellulose were involved in peat decomposition from the degraded site compared to decomposition of the floating mat. Therefore, this may either imply that degraded peat has an adapted community of microbes releasing enzymes that are able to breakdown a wide spectrum of organic sources, including aromatics. Or, alternatively, the build-up of phenolics in the Sphagnum-rich restored site inhibits hydrolytic enzyme activity and consequently leads to lower CO2 production rates. Thus, under anoxic conditions, overall low activities of hydrolytic enzymes partly supported the enzymatic latch paradigm. We have shown that rewetting slows CO2 production rates and may not result in immediate CH4 production. Moreover, peat quality and enzyme activities appear an important control on peatland restoration that requires further investigation.

How to cite: Lemmens, M., Dorodnikov, M., and Knorr, K.-H.: Peat Quality and Enzymatic Activities Control the Recovery of Peatlands’ C Sink Function in Addition to Rewetting, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15758, https://doi.org/10.5194/egusphere-egu24-15758, 2024.

EGU24-16094 | ECS | Orals | BG3.17

Seasonal controls on methane flux components in a boreal peatland - combining plant removal and stable isotope analyses 

Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat

Wetlands are the largest natural source of atmospheric methane and highly vulnerable to climate change. In our study we aim to better understand the environmental controls on the strength and seasonal variation of methane flux components from hollows, typically the high-emitting wettest microtopographic features in a boreal bog. We measured methane fluxes from intact vegetation as well as on vegetation removal treatments and analyzed pore water methane concentrations and stable carbon isotopes of dissolved and emitted methane. Using these data, we quantified the rates of total methane emission, methane oxidation and plant-mediated methane transport for the summer and shoulder seasons of 2021 and 2022. Total methane emissions from areas with intact vegetation range from 13 to 2171 mgCH4 m–2 d–1 during shoulder seasons and summer months and are mainly controlled by the leaf area of aerenchymatous plants. Methane oxidation in the Sphagnum moss layer decreases total methane emissions by 82 ± 20 % while transport of methane through aerenchymatous plants increases methane emissions by 80 ± 22 %. Both methane oxidation and plant-mediated methane transport rates follow a seasonal cycle with lower but still significant rates during the shoulder seasons compared to the summer months. As a net effect, the presence of Sphagnum mosses and vascular plants reduces methane emissions from the study site. This balance, however, appears to be highly sensitive to climate change, i.e. increasing soil temperatures and changing leaf area and composition of the wetland vegetation. The provided insights can help to improve the representation of environmental controls on the methane cycle and its seasonal dynamics in process-based models to more accurately predict future methane emissions from boreal peatlands.

How to cite: Jentzsch, K., Männistö, E., Marushchak, M. E., Korrensalo, A., van Delden, L., Tuittila, E.-S., Knoblauch, C., and Treat, C. C.: Seasonal controls on methane flux components in a boreal peatland - combining plant removal and stable isotope analyses, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16094, https://doi.org/10.5194/egusphere-egu24-16094, 2024.

EGU24-17535 | Posters on site | BG3.17 | Highlight

Impact of climate extremes on peatland carbon dynamics across Northern Europe 

Pia Gottschalk, Aram Kalhori, Mika Aurela, Sari Juutinen, Annalea Lohila, Ivan Mammarella, Eeva-Stiina Tuittila, Claudia Nielsen, Christian Wille, and Torsten Sachs

Climate change and concurrent climate extremes lead to rapid changes in environmental conditions globally. These changes impact the role of terrestrial ecosystems in the global carbon (C) cycle, thus creating a feedback mechanism to climate. Peatlands, specifically, play a critical role in the terrestrial C cycle due to their high-density organic C stocks, thus, slight changes in the environmental drivers can trigger strong responses in their C dynamics. Here, we investigate the impact of climate extremes, such as hydrological and temperature anomalies on the C emission dynamics of a series of peatlands across Northern Europe. We use long-term datasets of high-resolution carbon exchange measurements and environmental variables of peatlands to systematically identify extreme events in the carbon fluxes as well as in their environmental drivers and how they connect. We subsequently quantify the impact of drivers’ anomalies on CO2 and CH4 exchange of peatland ecosystems. We specifically focus on the response of C-emissions to changes in water level, temperature and vegetation development before, during, and after the 2018 European summer drought to show the combined effect on the annual CO2 and CH4 balances in rewetted and pristine peatlands. Categorizing these impacts according to the environmental conditions and/or their changes, duration, frequency and severity of anomalies and peatland type will help to refine common peatland emission factors used to estimate C dynamics for national and international greenhouse gas emission inventories.

How to cite: Gottschalk, P., Kalhori, A., Aurela, M., Juutinen, S., Lohila, A., Mammarella, I., Tuittila, E.-S., Nielsen, C., Wille, C., and Sachs, T.: Impact of climate extremes on peatland carbon dynamics across Northern Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17535, https://doi.org/10.5194/egusphere-egu24-17535, 2024.

EGU24-17896 | Orals | BG3.17 | Highlight

Warming of Northern Peatlands Increases the Global Temperature Overshoot Challenge 

Biqing Zhu, Chunjing Qiu, Thomas Gasser, Philippe Ciais, and Robin D. Lamboll

To meet the Paris Agreement temperature goal, allowable carbon emissions in the future are tightly limited. It is very likely that the 1.5°C temperature limit will be at least temporarily exceeded (overshoot) under an emission pathway following current climate policies and actions. Peatlands store large amounts of soil carbon, the destabilization of which could potentially cause large amplifying feedback on global warming. Using the reduced-complexity Earth system model OSCAR v3.1.2 and a new peat carbon module, we assessed whether carbon emissions from northern peatlands triggered by climate change will increase the chance and intensity of temperature overshoot. We found that, although northern peatlands continue to accumulate carbon, they represent positive feedback under climate change through their high CH4 emissions. For a 1°C increase in peak temperature anomaly, emissions from peatlands further contribute to the peak temperature by 0.02 (0.01-0.02) °C. Considering northern peatlands would lead to a reduction in the carbon budget by about 40 (16-60) GtCO2, or 8.6% for 1.5°C, and a reduction of about 105 (45-166) GtCO2 reduction (or 4.2% relative decrease) for 2.5°C. Our findings highlight the importance of properly accounting for northern peatland emissions for estimating climate feedbacks, especially under overshoot scenarios.

How to cite: Zhu, B., Qiu, C., Gasser, T., Ciais, P., and Lamboll, R. D.: Warming of Northern Peatlands Increases the Global Temperature Overshoot Challenge, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17896, https://doi.org/10.5194/egusphere-egu24-17896, 2024.

EGU24-18409 | Orals | BG3.17

CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linne, Svalbard 

Anders Lindroth, Norbert Pirk, Ingibjörg Jonsdottir, Christian Stiegler, Leif Klemedtsson, and Mats Nilsson

We measured CO2 and CH4 fluxes using chambers and eddy covariance (only CO2) from a moist moss tundra in Svalbard. The average net ecosystem exchange (NEE) during the summer (9 June-31 August) was negative (sink) with -0.139±0.032 µmol m-2s-1 corresponding to -11.8 g C m-2 for the whole summer. The cumulated NEE over the whole growing season (day no. 160 to 284) was -2.5 g C m-2. The CH4 flux during the summer period showed a large spatial and temporal variability. The mean value of all 214 samples was 0.000511±0.000315 µmol m-2s-1 which corresponds to a growing season estimate of 0.04 to 0.16 g CH4 m-2. Thus, we find that this moss tundra ecosystem is closely in balance with the atmosphere during growing season when regarding exchanges of  CO2 and CH4. The sink of CO2 as well as the source of CH4 are small in comparison with other tundra ecosystems in high Arctic.

Air temperature, soil moisture and greenness index contributed significantly to explain the variation in ecosystem respiration (Reco) while active layer depth, soil moisture and greenness index were the variables that best explained CH4 emissions. Estimate of temperature sensitivity of Reco and gross primary productivity (GPP) showed that the sensitivity is slightly higher for GPP than for Reco in the interval 0 – 4.5 ºC, thereafter the difference is small up to about 6 ºC and then it began to raise rapidly for Reco. The consequence of this, for a small increase in air temperature of 1 degree (all other variables assumed unchanged) was that the respiration increased more than photosynthesis turning the small sink into a small source (4.5 gC m-2) during the growing season. Thus, we cannot rule out that the reason why the moss tundra is close to balance today is an effect of the warming that has already taken place in Svalbard.

How to cite: Lindroth, A., Pirk, N., Jonsdottir, I., Stiegler, C., Klemedtsson, L., and Nilsson, M.: CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linne, Svalbard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18409, https://doi.org/10.5194/egusphere-egu24-18409, 2024.

EGU24-18513 | Orals | BG3.17

Modelling CO2 and CH4 fluxes from drained and natural peatlands with the PEATLAND-VU model 

Merit van den Berg, Jacobus van Huissteden, Tanya T.R. Lippmann, Jim Boonman, Alexander J.V. Buzacott, and Ype van der Velde

Draining peatlands results in oxic soil conditions that causes microbial oxidation of peat. Drained peatlands are a large source for CO2 emissions, contributing 2-5% to the total anthropogenic greenhouse gas emissions. Understanding processes that contribute to peat oxidation are useful to simulate, predict and project CO2 emission in different environmental conditions. In wet conditions, soil is anoxic, which leads to an increase in methane (CH4) emission. Wetlands, including peatlands, are the largest natural source of CH4. Weather conditions, water table height, substrate availability, and vegetation type play a crucial role in the amount of CH4 that is emitted. The dynamic of CH4 production and oxidation, driven by the above mentioned factors, is complex. Nevertheless, for both CO2 and CH4, it is essential to be able to simulate these fluxes with a mechanistical model for monitoring and predicting greenhouse gas emission from peatlands.

PEATLAND-VU is a 1D process based model, consisting of four submodels for 1) soil physics (water table, soil temperature and soil moisture), 2) biomass production, 3) CH4 production, oxidation and transport (diffusion, ebullition and plant transport), and 4) CO2 production. Here, CO2 production is represented as the sum of decomposition from different soil organic matter (SOM) pools, like litter, root exudates, microbial biomass, and peat.

We calibrated the PEATLAND-VU model for two intensively used drained peat meadows and a wet Sphagnum-reed peatland in the Netherlands. These sites have 2-4 years of CO2 flux and CH4 flux (Sphagnum-reed peatland only) data. In our presentation we will show that the model performed well for simulating CO2 and CH4 fluxes. We will focus on the contribution of peat oxidation to the total CO2 emission, and show results of different water table management and future climate scenarios. Furthermore, for the Sphagnum-reed peatland the modelled CH4 production, CH4 oxidation, and the transport pathways resulting in the net CH4 flux will be discussed.

How to cite: van den Berg, M., van Huissteden, J., Lippmann, T. T. R., Boonman, J., Buzacott, A. J. V., and van der Velde, Y.: Modelling CO2 and CH4 fluxes from drained and natural peatlands with the PEATLAND-VU model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18513, https://doi.org/10.5194/egusphere-egu24-18513, 2024.

EGU24-19189 | ECS | Posters on site | BG3.17

Impact of future climate on Caithness and Sutherland peatlands 

Praveen Rao Teleti, Roxane Andersen, Mascha Bischoff, and Chris Marshall

High-latitude boreal peatlands store up to a third of all the terrestrial carbon as peat, partially as decomposed organic matter. And, they act as reservoirs of vast amounts of GHG (Greenhouse gases) such as methane. The balance between being a source, or a sink of GHGs depends on continuation of favourable conditions under which peat is accumulated, or at least maintained through a series of complex feedback mechanisms linking mechanics, ecology and hydrology. Several peatland ecosystems have been disturbed in the past due to land-use change, build-up of roads and other infrastructure, and changing water flow in and out of peatlands. While these disturbances have significantly changed characteristics of many peatlands, they have affected a relatively small area of global peatlands. However, projected climate changes in the future threaten the balance of all global peatland ecosystems.

 

Total rainfall and mean temperature are known to play a significant role in sustaining and expanding blanket bogs – a globally rare type of peatland confined to high latitude regions with year-round cool climate. However, the number of rain days, and length and severity of drought conditions are also important for peatland health. Here, we present projected land use changes and GHG emissions under various RCP climate scenarios along with seasonal weather changes on blanket bogs in Caithness and Sutherland regions of Scotland. Our results show that high precipitation-low temperature climatic regimes necessary for maintaining and restoring peatlands may be changing with the highest contribution from changing rainfall patterns. We highlight how this could impact resilience mechanisms across a range of scales. 

How to cite: Teleti, P. R., Andersen, R., Bischoff, M., and Marshall, C.: Impact of future climate on Caithness and Sutherland peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19189, https://doi.org/10.5194/egusphere-egu24-19189, 2024.

Peatlands occupy only 3% of the land area, but store nearly 30% of soil organic carbon (Yu et al., 2010; 2014). Thus, peatlands are one of the most important carbon reservoirs on land. Whether peatlands will become a carbon source or sink as the climate warms varies in different study regions (Gallego-Sala et al., 2018). In order to answer this question, it is necessary to select the past typical warm period as the "historical similarity" to explore the relationship between the carbon accumulation in peatland and climate change during this period. The past 2000 years includes the Roman Period, the Medieval Warm Period, the Little Ice Age and the Global Warming Period, which are the focus of the International Program on Past Global Changes (PAGES). A study of the relationship between peatlands and climate change in the last millennium on a global scale shows that the carbon sink of peatlands in northern regions is increased after rising temperature, while the opposite is true for peatlands in low latitudes (Galleau-Sala et al., 2018). Where is the latitude limit?

The Changbai Mountain is located between the northern peatlands and low-latitude peatlands. The peatlands distribute widely in the Changbai Mountain and are less affected by human activities. Thus, the Changbai Mountain is one of the ideal regions to explore the response of peatland development to climate change (Hong et al., 2000; Zhou et al., 2010; Zheng et al., 2018). In this paper, four peatlands (Jinchuan, Baijianghe, Lushuihe and Laolike) were selected from west to east around the main peak of Changbai Mountain, and six peat profiles were drilled in total. With the support of AMS14C and 210Pb/137Cs techniques, the dynamics of carbon accumulation in peatlands and its response to climate in this area in the past 2000 years were discussed. The results show that the carbon accumulation rate of the four peatlands with similar latitudes was higher during the warm and wet period of the Roman Period and the Medieval Warm Period, and lower during the Little Ice Age, which is consistent with the northern peatlands. But the carbon accumulation rate showed a downward trend during the global warming period, which is similar to the low-latitude peatlands. This suggests that the carbon accumulation rate of peatland in Changbai Mountain may increase with the increase of temperature within a certain range. But the rate of carbon accumulation will decrease when the temperature rises beyond the limit. It also suggests that if the climate continues to warm in the future, the carbon sink function of peatlands in the region will be weakened. Exploring the response of carbon accumulation dynamics to climate change in peatland of Changbai Mountain is helpful to clarify the latitude limit of carbon accumulation change in peatland and predict the trend of carbon accumulation change in peatland after climate warming.

How to cite: Zhao, H., Liu, X., and Li, H.: Response of carbon accumulation dynamics in the peatlands of Changbai Mountain to climate change over the past 2000 years, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20259, https://doi.org/10.5194/egusphere-egu24-20259, 2024.

EGU24-22163 | Posters virtual | BG3.17

SPRUCE-MIP: Model Intercomparison of Northern Peatland Carbon Cycle Over the SPRUCE Site 

Daniel Ricciuto, Xiaoying Shi, Yaoping Wang, Paul Hanson, Jiafu Mao, Yiqi Luo, Xiaofeng Xu, Dafeng Hui, Hongxing He, Siya Shao, Ayesha Hussain, Qing Sun, Chunjing Qiu, Akihiko Ito, Joe Melton, Eleanore Burke, Fortunat Joos, Jian Zhou, and Jingwei Zhang

Peatlands cover only 3% of Earth’s land surface but contain about 30% of the global soil carbon pool. The strong sensitivity of C cycle to environmental factors such as soil temperature and moisture has let to concerns about potential positive feedbacks to climate change. However, global models disagree as to the magnitude and spatial distribution of emissions, partially due to missing representations of peatland relevant processes and a scarcity of in situ observations. The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment is a large‐scale climate change manipulation that focuses on the combined response of multiple levels of warming at both ambient and elevated CO2 concentration (eCO2), making it a valuable testbed for the broader modeling community to improve the diagnosis and attribution of C fluxes in peatland ecosystems. Currently, there are 11 models participating in the SPRUCE Model Intercomparison Project (SPRUCE-MIP). In the first stage, all model groups used observed ambient plot atmospheric forcing data to drive a model spin-up simulation with pre-industrial conditions, and a transient simulation with transient atmospheric CO2 concentrations and nitrogen deposition from 1850 to 2014. Then, measured plot-level meteorological forcing and CO2 concentrations from the 10 treatment enclosures and the ambient plot drove 11 transient simulations from 2015 to 2021. The total of 11 simulations represents five levels of temperature treatment with two CO2 levels, and ambient control plot with no enclosure. The five treatment temperatures are +0, 2.25, 4.5, 6.75, 9oC, and the two CO2 levels are ambient and +500 ppm. We evaluated the performance of multiple models against SPRUCE observations, such as the net ecosystem exchange (NEE) and CH4 fluxes warming responses under ambient and eCO2 conditions and found that there were wide spreads for warming responses among different models. We will further evaluate the model performances and quantify the associated uncertainties, which may have helpful implications for our understanding of the peatland C cycle and for future projections of Earth system models.

How to cite: Ricciuto, D., Shi, X., Wang, Y., Hanson, P., Mao, J., Luo, Y., Xu, X., Hui, D., He, H., Shao, S., Hussain, A., Sun, Q., Qiu, C., Ito, A., Melton, J., Burke, E., Joos, F., Zhou, J., and Zhang, J.: SPRUCE-MIP: Model Intercomparison of Northern Peatland Carbon Cycle Over the SPRUCE Site, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22163, https://doi.org/10.5194/egusphere-egu24-22163, 2024.

EGU24-720 | ECS | Posters on site | BG3.18

An adaptive mapping framework for the management of peat soils: a new Irish Peat Soils Map. 

Louis Gilet, Terry Morley, Raymond Flynn, and John Connolly

Accurate mapping is necessary for effective management of peat soils to help reduce GHG emissions and improve environmental quality. However, mapping peat soils remains a major challenge: definitions of peat soils vary substantially, field data are sparse and difficult to produce, and remote sensing of limited use for converted peatlands. Using an Adaptive Mapping Framework developed for the Derived Irish Peat Map, this study describes our work to update the map with refined and new datasets. These include incorporation of areas considered to be underlain by shallow peat soils (≥ 10 cm and ≥ 8.6 % Organic Matter content), and augmentation of the overall test dataset with an additional ~ 20,000 points.

The workflow for map generation employed 20 Decision Tree Output Maps (DTOMs), aggregated into 33 Map Combinations (MCs). The MC selected for the update had the highest accuracy metrics (≥ 80 %), consisting of DTOMs with a user accuracy ≥ 60 % and assessed over a minimum number of test points ≥ 50. The resulting map reveals peat to underlie 1.66 M ha of Ireland (~ 23.3 % of the country), with an overall accuracy of 84 % and a F1 score for peat areas of 85 %. This extent is 13.2 % larger than that delineated in previous versions and at least 18.8 % larger than areas presented in other previous maps. The methodology also allows transparency from which data sources the different peat layers of the new map are coming from and to distinguish different peat thickness ranges (≥ 10 cm, ≥ 30-40 cm).

We demonstrate the utility of the mapping framework to facilitate the production of a more reliable peat map than previous mapping attempts. This approach has potential relevance for peat mapping elsewhere, in areas containing disparate datasets (e.g., land cover, soil map, etc.), covering different time periods, or employing different production methods. The accuracy metrics generated also suggest that the approach can be used as a basis for implementing or updating European and national regulations concerning carbon-rich soils in comparable settings to those encountered in Ireland.

How to cite: Gilet, L., Morley, T., Flynn, R., and Connolly, J.: An adaptive mapping framework for the management of peat soils: a new Irish Peat Soils Map., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-720, https://doi.org/10.5194/egusphere-egu24-720, 2024.

EGU24-1164 | Posters on site | BG3.18 | Highlight

Long-term interventions by conservation and development projects support successful recovery of tropical peatlands in Amazonia 

Euridice Honorio Coronado and the Research team

Sustainable management of non-timber forest products, as a means to increase the value of standing forest, has long been a goal of conservation in the tropics. However, there are few studies of the long-term ecological, social, and economic impacts of sustainable management initiatives. This study addresses this issue in the context of fruit harvesting of the arborescent palm, Mauritia flexuosa. In Amazonia, M. flexuosa grows naturally at high densities in carbon-rich peatland ecosystems and its fruit is an important resource for local communities. Typically, the fruit has been harvested by felling the trees. However, over recent decades, some communities have adopted climbing techniques to harvest the fruits. We analyse for the first time the potential of M. flexuosa populations and fruit production to recover in two rural communities in Peruvian Amazonia where climbing palms was adopted between 1999 and 2002. Since then, these communities have been supported by conservation and development projects.

In both communities, we conducted interviews to assess the perceptions of change after the introduction of climbing and carried out forest inventories to estimate changes in two socio-economic indicators (volume of harvested M. flexuosa fruits and income) and three ecological indicators (pole stem density of M. flexuosa, seedling and sapling density, and the sex ratio of adult palms). Our results highlight the positive impacts of the use of climbing to harvest fruits on a range of both ecological and socio-economic indicators in these communities. These results demonstrate that sustainable fruit production is a viable way to conserve the forests, the high carbon stocks beneath the ground and the livelihood of people living in these ecosystems. These findings therefore will be of interest to a wide range of researchers, policymakers, and practitioners seeking to promote sustainable practices in these, and similar, ecosystems across the world and provide support for community-led conservation across the tropics.

How to cite: Honorio Coronado, E. and the Research team: Long-term interventions by conservation and development projects support successful recovery of tropical peatlands in Amazonia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1164, https://doi.org/10.5194/egusphere-egu24-1164, 2024.

EGU24-2171 | Orals | BG3.18

Flark area monitoring in boreal aapa mires using multi-resolution optical remote sensing 

Kaapro Keränen, Aleksi Isoaho, Aleksi Räsänen, Jan Hjort, Timo Kumpula, Pasi Korpelainen, and Parvez Rana

Peatlands have globally suffered significant degradation due to human activities which has necessitated monitoring of the condition of and changes in peatland ecosystems. With remote sensing, point-based in-situ observations can be upscaled to larger areas but there is a need to develop scalable monitoring methods. We hypothesize that the upscaling can be conducted by combining multispectral uncrewed aerial vehicle (UAV) and optical satellite imagery observations. We tested the hypothesis in predicting wet flark area extent, a key ecological indicator for patterned aapa mires with flarks, in five sites in central Finland. We asked: 1) How does the spatial and spectral resolution of widely used optical satellite image sensors (Landsat 8-9, Sentinel-2, and PlanetScope) influence flark area coverage prediction? 2) Are there seasonal and site-specific differences in prediction accuracy? 3) Is it feasible to upscale flark area coverage to larger mire areas? We employed UAV-derived flark area classification as a ground reference to compare predictive accuracy of satellite imagery data. We predicted flark area coverage using spectral bands and indices as explanatory variables in random forests regressions. Our findings revealed that all sensors provide accurate results, but there were differences in explanatory capacities between Landsat (pseudo-R² 32−84%, root-mean squared error (RMSE) 10−18%), Sentinel-2 (R² 61−92%, RMSE 6−14%), and PlanetScope (R² 46−92%, RMSE 6−17%) data. The shortwave infrared bands of Landsat and Sentinel-2 did not increase the prediction accuracy. There were notable site-specific variations in prediction accuracy despite all the sites having typical aapa mire wet flark–dry string patterns. With single-site models the prediction accuracies were similar for early and late summer conditions, but when transferring the models to the other sites, performance decreased considerably, especially with the models constructed with the late-summer imagery. Finally, we successfully upscaled the single-site models to detect flark area coverage across entire mire areas. Our results demonstrated that UAV-satellite image combination can be used to track key indicators of peatland conditions and monitoring changes in them.

How to cite: Keränen, K., Isoaho, A., Räsänen, A., Hjort, J., Kumpula, T., Korpelainen, P., and Rana, P.: Flark area monitoring in boreal aapa mires using multi-resolution optical remote sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2171, https://doi.org/10.5194/egusphere-egu24-2171, 2024.

EGU24-2944 | ECS | Orals | BG3.18

Investigating the Kuan Kreng Peat Swamp Forest using Electrical Resistivity and Ground Penetrating Radar for Carbon Stock Estimation 

Theethach Phiranram, Piyaphong Chenrai, Akkaneewut Jirapinyakul, and Narongsak Rachukan

Peatlands, also known as bogs, fens, and especially peat swamp forests in tropical regions, are wetland ecosystems where peat layers are present due to anoxic conditions. Immense amounts of carbon are stored in peat layers, making it an important carbon sink for atmospheric carbon and playing a major role in carbon cycle. These peat layers are vulnerable to becoming a carbon emission source due to the disturbance of the peat layer by natural and anthropogenic processes. Southern Thailand comprises several peatlands that have encountered degradation due to cultivation and forest fires, especially the Kuan Kreng peat swamp forest, which is the second largest peatland in Thailand and serves for carbon storage. To evaluate the impact of peatland degradation, carbon stock estimation is necessary; thus, the thickness and distribution of the peat layers are necessary. This study utilizes ground penetrating radar and electrical resistivity imaging, along with conventional core studies, to investigate physical and chemical characteristics and also delineate peat layer.

Significant relationships between chemical and physical properties of the peat layer are represented, which is useful for geophysical interpretation. The resistivity profiles show a high resistivity response, in the range of 21.9 to 145.0 ohm-m, which is interpreted as peat layers in the shallow subsurface. The high amplitude, contorted to sub-parallel reflection from GPR profiles, represents a peat layer that has a relatively lowest velocity with the highest dielectric constant. In order to evaluate carbon stock, average values of bulk density (0.19 g/cm­3) and TOC (31.18 wt. %) from the drilling core samples are advocated, resulting in 59.24 Kg C/m3 of carbon density. Then the peat layer average thickness of 18.00 cm from the geophysical survey and core samples are used to estimate the carbon stock per unit area. Therefore, considering the entire area of the Kuan Kreng peat swamp forest, the carbon stock is estimated at a minimum of 7.53 Mt.

How to cite: Phiranram, T., Chenrai, P., Jirapinyakul, A., and Rachukan, N.: Investigating the Kuan Kreng Peat Swamp Forest using Electrical Resistivity and Ground Penetrating Radar for Carbon Stock Estimation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2944, https://doi.org/10.5194/egusphere-egu24-2944, 2024.

EGU24-3219 | ECS | Posters on site | BG3.18

Peat soil thickness and carbon storage in the Belgian High Fens: insights from multi-sensor UAV remote sensing 

Yanfei Li, François Jonard, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, and Kristof Van Oost

Peatlands are known to store a large amount of carbon, but global warming and associated changes in hydrology have the potential to accelerate peatland carbon emissions. An in-depth understanding of carbon dynamics within these peatlands is therefore important. However, peatlands are complex ecosystems, and acquiring accurate and reliable estimates of how much carbon is stored underneath the Earth’s surface is inherently challenging even at small scales. Here, Unmanned Aerial Vehicles (UAVs) equipped with RGB, multispectral, thermal infrared, and LiDAR sensors were combined with Ground Penetrating Radar (GPR) technology and traditional field surveys, to provide a comprehensive 4D monitoring of a peatland landscape in the Belgian High Fens. Data was collected along a hillslope-floodplain transition. We aimed to establish links between the above- and below-ground factors that control soil carbon status, identify the key drivers of carbon storage as well as explore the potential of UAV remote sensing for spatial mapping of peat depth and carbon stock. Our results indicated that peat thickness widely varied (0.2 to 2.1 m) at small scales and is negatively correlated with elevation (r= -0.39, p<0.001). We found that soil organic carbon (SOC) stock is spatially organized, as abundant carbon was observed at the summit and shoulder of the hill, with an average storage of 670.93 ± 108.86 t/ha and 601.47 ± 133.40 t/ha, respectively. Moreover, the carbon storage exhibited heterogeneity under different vegetation types, with trees having the highest mean SOC stocks at 722.21 ± 37.92 t/ha. Through multiple linear regression, we identified 6 environmental variables that can explain 71.44% of SOC stock variance. Clay content is the most critical factor, accounting for nearly 40% of the variance, followed by topography. Contributions from land surface temperature and vegetation remain below 10%. In addition, UAV data provided accurate estimations of both peat depth and SOC stock, with RMSE and R2 values of 0.13 m and 0.88 for the peat depth test dataset, and 114.42 t/ha and 0.84 for the SOC stock. Our study bridged the gap between surface observations and the hidden carbon reservoir below, this not only allows us to improve our ability to assess the spatial distribution of C stocks but also contributes to our understanding of the drivers of C turnover in these highly heterogeneous landscapes, providing insights for environmental science and climate projections.

How to cite: Li, Y., Jonard, F., Henrion, M., Moore, A., Lambot, S., Opfergelt, S., Vanacker, V., and Van Oost, K.: Peat soil thickness and carbon storage in the Belgian High Fens: insights from multi-sensor UAV remote sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3219, https://doi.org/10.5194/egusphere-egu24-3219, 2024.

EGU24-4700 | Posters on site | BG3.18

Large CO2 and CH4 emissions from drainage ditches in oil palm plantations on peat soil 

Kuno Kasak, Kaido Soosaar, Iryna Dronova, Lulie Melling, Gx Wong, Faustina Sangok, Reti Ranniku, Jorge Villa, and Ülo Mander

Tropical peatlands contain approximately 17% of the total global peat carbon and are under pressure for deforestation and the formation of oil palm plantations. The conversion of large peatland forests in Malaysia and Indonesia has resulted in these plantations becoming substantial sources of greenhouse gases. While previous research has focused on estimating the C loss from the soil, the impact of drainage ditches on the overall C budget remains largely unexplored. However, on average, drainage ditches with free surface water cover roughly one-third of the total drained land. Hence, these ditches could be significant CO2 and CH4 sources and while not considered for C budget calculation it could lead to significant underestimation of total C loss from these ecosystems. Here we represent the CO2 and CH4 emissions from drainage ditches in an oil palm plantation located in Sarawak, Malaysia. CO2 and CH4 samples (n=107) were collected from a recently created plantation (~5 y.o.) and from the plantation, which is under second rotation using a floating chamber and LI7810 analyzer (LICOR Biosciences). Additional parameters such as water pH, electrical conductivity, dissolved oxygen concentration, temperature, turbidity, salinity, water level, and dissolved gas concentration (dCO2 and dCH4; analyzed in the lab with GC-2014, Shimadzu) were measured from each sampling spot. After measurements, we collected sediment samples for soil TN, TOC, TIC, DOC, DIC, and DN analyses. The results revealed that the average net CH4 flux (combining both diffusive and ebullitive emissions) from drainage ditches in the first and second rotations was 0.31 ± 0.65 g m-2 d-1 and 0.29 ± 0.54 g CH4-C m-2 d-1, respectively. The average CO2 flux from the first and second rotations was 4.27 ± 2.1 g CO2-C m-2 d-1 and 4.4 ± 2.5 g CO2-C m-2 d-1, respectively. To estimate surface water coverage at the whole site, green vegetation, open water, and bare soil were mapped from the site drone imagery collected in Spring 2023 using object-based supervised classification and spectral indicators computed from red, green, and blue image bands. The total surface water coverage will give us an understanding of the total CO2 and CH4 flux in the entire region that originates from drainage ditches. Our results strongly underscore the significant role of drainage ditches in contributing to the overall carbon loss from oil palm plantations on organic soils. Proper consideration of these emissions is essential for accurate carbon budget calculations and for devising effective strategies to mitigate greenhouse gas emissions in these ecosystems.

How to cite: Kasak, K., Soosaar, K., Dronova, I., Melling, L., Wong, G., Sangok, F., Ranniku, R., Villa, J., and Mander, Ü.: Large CO2 and CH4 emissions from drainage ditches in oil palm plantations on peat soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4700, https://doi.org/10.5194/egusphere-egu24-4700, 2024.

Northern peatlands provide key climate regulating services by sequestering and storing atmospheric carbon as peat, but they also harbour highly specialized plant and animal species. Yet, 50% of peatlands in the European Union are currently degraded. To understand the effect of recent restoration efforts on habitat suitability and peat accumulation rate, there is a need to develop and refine efficient and standardised methods that can effectively target the multiple ecosystem services that peatlands provide. Given the spatial characteristics of peatlands, as well as the direct link between vegetation structure and peatland functioning, vegetation mapping with unmanned aerial vehicles or drones is ideal for such tasks.

For this study, we collected very-high-resolution drone imagery (2.8cm) of five Irish peatlands (ranging between 35–124 ha) in September 2022. We then used Random Forest classifiers to map fine-scale vegetation patterns (microform and plant functional type) in all peatlands using the resulting remote sensing products. Hereafter we subdivided and labelled each peatland into 20x20m grid cells using polygon-shaped field-based ground truth maps of peatland, and classified large-scale peatland habitats (ecotopes, and status or Active versus Degraded Raised Bog) with Support Vector Classifiers while using the proportions of microforms and plant functional types and topography as input datasets. Lastly, we assessed model performance and mapping accuracy between models trained on a singular peatland to those trained using a pooled ground truth dataset from the four other peatlands to evaluate the spatial transferability of habitat mapping over multiple peatlands.

Our results highlight that model performance for fine-scale vegetation patterns were consistently high (>90%) for all peatlands. Subsequent classifications of peatland habitats were also relatively consistent for singular peatlands with overall model performances of 73.0% and 89.3% for ecotopes and status respectively. Nevertheless, we observed notable reductions in overall model performances of 11.0% and 6.2% using pooled ground truth datasets. Inconsistencies in classification models resulted largely from artificial landscape features created by restoration, sun and shading, variation in plant phenology, suboptimal elevation models, and development of a gridded ground truth dataset from an original polygon-shaped and field-based map.

Our findings highlight that fine-scale vegetation patterns and peatland habitats can be classified accurately and consistently on the scale of whole peatlands using drone-derived imagery products and machine learning classifications. Our study provides comprehensive and novel insights into the multiple requirements for accurate vegetation mapping on which future drone studies can build to further optimize and standardise monitoring of vegetation dynamics in a wide variety of peatlands and peatland types of contrasting eco-hydrological integrity.

How to cite: Steenvoorden, J. and Limpens, J.: Towards efficient and standardised large-scale monitoring of peatland habitats through fine-scale drone-derived vegetation mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5078, https://doi.org/10.5194/egusphere-egu24-5078, 2024.

EGU24-6027 | Orals | BG3.18

Sphagnum peatlands of Reunion Island: potential and limitations as environmental archives for the Quaternary of the Indian Ocean. 

Gaël Le Roux, Claudine Ah-Peng, Rongqin Liu, Oskar Hagelskjaer, Henar Margenart, Jeroen Sonke, Sophia V. Hansson, Natalia Piotrowska, Corinne Pautot, Pieter Van Beek, Thomas Zambardi, Marc Souhault, François De Vleeschouwer, Laurent Bremond, Fabien Arnaud, Laure Gandois, Dominique Strasberg, and David Beilman

Contrary to temperate and boreal peatlands built after the glacial retreat, tropical peatlands are potentially recording environmental information pre-dating the Holocene. However on tropical volcanic islands, Sphagnum moss are scarce and/or rarely build peat.

Within the framework of the several projects on the territory of Reunion Island, we sampled peat bogs and Sphagnum mats of Reunion Island in 2021 (Margenat and Le Roux, 2023). The objectives were originally to use them as microplastic traps and thus reveal the history of atmospheric contamination by microplastics in the Indian Ocean over the last fifty years. It turns out some peat cores are older than expected and can provide amazing archives for the Holocene and Last Glacial environmental history of the Indian Ocean and La Réunion Island itself including the last period of strong volcanic activities. For example, one site located in the heart of the National Park is 25 ky old.

In this talk, we will present the diversity of the Sphagnum peatlands of La Réunion, the first results of peat characterization, and the first results of radiometric age dating covering the last glacial maximum, the Holocene, and the most recent periods. We will then discuss potential and limitations of La Réunion peat records in paleo-landscape, paleo-atmosphere and carbon cycle aspects.

 

References:

Margenat, H., Le Roux, G., 2023. POST EXPEDITION REPORT Field Expedition La Réunion Island, France ATMO-PLASTIC Project. Zenodo. https://doi.org/10.5281/zenodo.7643599

 

How to cite: Le Roux, G., Ah-Peng, C., Liu, R., Hagelskjaer, O., Margenart, H., Sonke, J., Hansson, S. V., Piotrowska, N., Pautot, C., Van Beek, P., Zambardi, T., Souhault, M., De Vleeschouwer, F., Bremond, L., Arnaud, F., Gandois, L., Strasberg, D., and Beilman, D.: Sphagnum peatlands of Reunion Island: potential and limitations as environmental archives for the Quaternary of the Indian Ocean., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6027, https://doi.org/10.5194/egusphere-egu24-6027, 2024.

EGU24-6028 | Orals | BG3.18

Using JULES to Model the Congo Peatlands 

Peter Anthony Cook, Richard Betts, Sarah Chadburn, and Eleanor Burke

The Cuvette Centrale swamp forest around the Congo has the most extensive peatland complex in the tropics, but due to its remoteness the extent and depth of the peat was only recently determined.  The international project CongoPeat has researchers from the UK, the Republic of the Congo and the Democratic Republic of the Congo, working alongside the local people in studying the peatlands to determine how they formed and the possible threats since it is vital that the peat is preserved.  While the peatlands are at least 20,000 years old the peat is thin compared to other tropical peatlands of similar age.  The JULES land surface model has been driven by a reconstruction of the past annual rainfall and meteorological data from a HadCM3 paleo global model to simulate the development of the peatlands.  The model results closely match measurements from the CongoPeat fieldwork and support the hypothesis that a long period of reduced rainfall a few thousand years ago lead to a large loss of peat.  This confirms that a consistently high water table is needed to keep decomposition of the peat to a minimum and hence preserve the peatlands.  Though JULES was unable to recreate the measured Carbon age profile, whereas simpler peat models did, this is only due to its low vertical resolution.  The JULES run was then continued with future climate projections from four global climate models to simulate how the peatlands are likely to change up to 2100.  In each projection there are lower water tables and increased decomposition of peat, but large losses only occur when rainfall is reduced or when drainage is introduced to represent disruption of the peatlands, both of which further lower the water tables.  This is in-spite of increased CO2 concentration affecting the vegetation by increasing the productivity and litterfall while reducing the amount of transpiration.

How to cite: Cook, P. A., Betts, R., Chadburn, S., and Burke, E.: Using JULES to Model the Congo Peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6028, https://doi.org/10.5194/egusphere-egu24-6028, 2024.

EGU24-7452 | Posters on site | BG3.18

How does land use change impact tropical peatland surface elevation changes?  

Daniel Murdiyarso, Meli F Saragi-Sasmito, Sigit D Sasmito, Nyahu Rumbang, and Adi Jaya

Tropical peat swamp deforestation followed by extensive drainage and recurrence of fires leads to peat subsidence and subsequently carbon release to the atmosphere. While many previous studies have assessed the positive relationship between greenhouse gas (GHG) emissions and peat subsidence, an accurate field-based measurement of peat subsidence remains methodologically challenging. Between 2015 and 2020, we monitored peat subsidence (surface elevation change) in tropical peatlands of Central Kalimantan by using Rod Surface Elevation Table (RSET) installed across 22 locations representing range of land use types, including natural forest as reference. We observed that the largest net surface elevation loss was found in burned areas of -35.1 ± 87.2 mm yr-1, followed by the drained peatland sites with -11.1 ± 16.9 mm yr-1 and the agricultural impacted sites with -6.3 ± 13.1 mm yr-1. Further, we observed substantial net surface elevation loss in secondary protected forests by -12.1 ± 77.2 mm yr-1. By contrast, natural forest reference experienced net surface elevation loss as much as -8.8 ± 24.4 mm yr-1. Our findings suggest that all the study sites in the tropical peatlands of Central Kalimantan have experienced net surface elevation loss with their degree of losses vary depending on past land use and current land management.

Keywords: peat subsidence, peat compaction, peat drainage, peat conversion, GHG emission

How to cite: Murdiyarso, D., Saragi-Sasmito, M. F., Sasmito, S. D., Rumbang, N., and Jaya, A.: How does land use change impact tropical peatland surface elevation changes? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7452, https://doi.org/10.5194/egusphere-egu24-7452, 2024.

EGU24-7914 | Orals | BG3.18 | Highlight

The climate impact of tropical peatland degradation 

René Dommain, Steve Frolking, Aurich Jeltsch-Thömmes, Fortunat Joos, John Couwenberg, Paul Glaser, Alexander Cobb, and Charles Harvey

Southeast Asia is a global hotspot of peatland degradation and related greenhouse gas emissions. Anthropogenic impacts, mainly associated with agricultural conversion, shift Southeast Asian peatlands from carbon sinks to significant carbon sources. Here we first describe the impacts of anthropogenic drainage on landscape-scale carbon dynamics of individual peatlands and then use an impulse‐response model of radiative forcing to quantify the climate impacts of peat-carbon losses. Whereas water-table elevation (i.e. drainage depth) determines the magnitude of CO2 emissions at the site-scale, the geometric arrangement of artificial drainage networks determines carbon losses on the landscape-scale. Among all peatland greenhouse gas fluxes, the rapid release of large quantities of CO2 with lowered water tables has the greatest impact on atmospheric radiative forcing. While peat accumulation in undisturbed peatlands produces a slowly increasing net radiative cooling, drainage, within decades, causes a shift in radiative forcing to a positive atmospheric perturbation (i.e. net warming), which can persist for centuries to millennia. The pace of this shift in radiative forcing and the magnitude and duration of the warming effect depend on the age and carbon pools of peatlands.

How to cite: Dommain, R., Frolking, S., Jeltsch-Thömmes, A., Joos, F., Couwenberg, J., Glaser, P., Cobb, A., and Harvey, C.: The climate impact of tropical peatland degradation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7914, https://doi.org/10.5194/egusphere-egu24-7914, 2024.

EGU24-8359 | Orals | BG3.18

Leveraging hydrological constraints on bog morphology to better map raised peatlands 

Alex Cobb, René Dommain, Kimberly Yeap, Cao Hannan, Nathan C. Dadap, Bodo Bookhagen, Paul H. Glaser, and Charles F. Harvey

Raised peatlands, or bogs, are recognized as exceptionally carbon-dense terrestrial ecosystems in which peat accumulates into convex shapes that rise above their boundaries. Because of this convexity, bogs are vulnerable to artificial drainage, and mapping them is important to evaluate whether and how to protect or restore their carbon stocks. Recently, we showed that hydrological constraints create a pattern in the morphology of bogs that holds under a broad range of conditions, as illustrated by eight examples of bogs from northern, through tropical and further to southern latitudes. Specifically, we found that if bog surface elevation, mean water table elevation and transmissivity are related to one another in similar ways across a bog, the relationships among these variables define a bog-specific monotonic function that generates the bog morphology from a solution to Poisson’s equation. This pattern is like a signature for raised bog morphology, and could be used to help identify the boundaries of raised bogs. In addition, the pattern can be used to infer the full morphology of bogs from limited data, which in turn enables estimation of a bog’s stock of vulnerable carbon. We discuss how these findings can be combined with field and remote sensing data to better map the extent and vulnerable carbon stocks of raised peatlands around the world.

How to cite: Cobb, A., Dommain, R., Yeap, K., Hannan, C., Dadap, N. C., Bookhagen, B., Glaser, P. H., and Harvey, C. F.: Leveraging hydrological constraints on bog morphology to better map raised peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8359, https://doi.org/10.5194/egusphere-egu24-8359, 2024.

EGU24-9398 | Posters on site | BG3.18

Integrating UAS-based lidar data in eddy covariance flux footprint modelling 

Jan Rudolf Karl Lehmann, Visweshwar Arulmozhi Nambi, Laura Giese, Hanna Meyer, and Mana Gharun

Peatlands, covering 3% of the global land area, store twice the carbon of all the world's forests combined, acting as crucial carbon sinks. However, under varying environmental conditions induced by global warming and land cover changes, they can transition into carbon sources. Monitoring gas exchanges in peatland ecosystems involves employing the eddy covariance method, often interpreted using flux footprint models. This study focuses on the application of the FFP model, specifically addressing the influence of spatially varying roughness parameters.

Utilizing Unoccupied Aerial Vehicle (UAS)-based high-resolution LIDAR data, we incorporated spatially varying roughness values into the FFP model, comparing the results with traditional scalar roughness length values. Our findings reveal that spatially varying roughness introduces spatial heterogeneity, resulting in more irregular and smaller footprints. The inclusion of spatially varying roughness based on the surface reduced the area contribution to fluxes by 40%, emphasizing the significance of accounting for this spatial variability.

Moreover, we investigated the impact of surface and terrain conditions on footprint modeling in a peatland previously subjected to extraction. Our analysis indicates that variations in terrain (both natural and extraction-induced) reduced the footprint contours by 18% compared to the original FFP model footprints. This underscores the importance of considering terrain changes in footprint modeling, especially in peatlands with a history of extraction activities.

In conclusion, this research enhances our understanding of (1) the impacts of spatially varying roughness on modeled footprints and (2) the influences of surface and terrain on footprint size in peatland ecosystems. These insights contribute to improved modeling accuracy and aid in effective carbon management strategies for peatland conservation.

How to cite: Lehmann, J. R. K., Arulmozhi Nambi, V., Giese, L., Meyer, H., and Gharun, M.: Integrating UAS-based lidar data in eddy covariance flux footprint modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9398, https://doi.org/10.5194/egusphere-egu24-9398, 2024.

EGU24-10580 | Orals | BG3.18

Mapping and characterizing peatland using ground-penetrating-radar and nuclear-magnetic-resonance 

Mike Müller-Petke, Bárbara Blanco Arrué, Jan Igel, Tobias Splith, and Stephan Costabel

Peatlands are of importance for a number of environmental services and ecological processes. They are a crucial component of the global carbon cycle and, therefore, of special interest in times of climate change. On the one hand, drained peatlands irreversibly degenerate when used for agriculture and lose their physicochemical functionality. On the other hand, activities on renaturation or joint use are in discussion or already in practice. Consequently, there is a demand for knowledge of the state of the peat layers and for the ability to monitor their changes, most preferably in high detail and on a large scale. Airborne geophysics and remote sensing (e.g. optical images, radar or electromagnetics) are  approaches to gain large-scale information on the lateral extend of peatlands, however, covering the large scale comes along with limitations and uncertainties on knowledge about thickness, internal structure, or degradation states.

We conducted a ground-penetrating-radar (GPR) and nuclear-magnetic-resonance (NMR) survey at a peatland site in northern Germany, which has been in agricultural use for decades. The site is characterized by a peat layer of varying thicknesses between 0--4 m covering mineral sediments. While GPR provides a fast 3D insight into the internal structure, extent, and thickness, NMR enables the characterization of the internal layers detected by GPR in more detail and may provide information on their degradation states. The results are compared to visually inspected vertical soil sampling data. Our study demonstrates that ground-based geophysics can provide the demanded detailed information and may easily be upscaled to effectively cover areas at the kilometre scale.

How to cite: Müller-Petke, M., Blanco Arrué, B., Igel, J., Splith, T., and Costabel, S.: Mapping and characterizing peatland using ground-penetrating-radar and nuclear-magnetic-resonance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10580, https://doi.org/10.5194/egusphere-egu24-10580, 2024.

EGU24-12027 | ECS | Posters on site | BG3.18

Resistant high tree cover mode with increasing fire in Indonesian natural peatland ecosystems 

Eufrasia B. A. Diatmiko, Max Rietkerk, and Arie Staal

The vulnerability of tropical ecosystems to global changes is a growing concern, with tree cover distribution patterns playing a pivotal role in their responses to changing environmental conditions. It is important to understand how natural ecosystems respond to these changes to assess the resilience of the ecosystems. While extensive research has investigated tree cover distributions in the tropics, a notable gap exists in understanding the effects of environmental variables to tree cover and the underlying mechanisms in Indonesian natural ecosystems, with its vast peatland areas. In response to this gap, we analyze the relative importance of environmental variables, specifically precipitation and fire, on shaping tree cover distributions in peatland and non-peatland ecosystems in Indonesia. We use the Global Forest Change dataset on tree cover with the spatial resolution of 30 meters. To focus on natural ecosystems, we filter out areas with human intervention. We find a consistent unimodal distribution of tree cover in the gradients of fire frequency and precipitation, marked by a distinct peak in each value range of the variables. In non-peatland, we observe a switch from high to low tree cover mode with increasing fire, which occurs at intermediate fire frequency. In contrast, peatland ecosystems show a remarkable resistance of the high tree cover mode despite increasing fire incidents. This implies that peatland could be more resistant to the same intermediate fire frequency than non-peatland. Our findings are relevant for ecosystem resistance in Indonesian peatlands and non-peatlands and their potential vulnerability to disturbances, particularly in the face of ongoing global environmental changes.

How to cite: Diatmiko, E. B. A., Rietkerk, M., and Staal, A.: Resistant high tree cover mode with increasing fire in Indonesian natural peatland ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12027, https://doi.org/10.5194/egusphere-egu24-12027, 2024.

EGU24-13540 | ECS | Posters on site | BG3.18

Mapping Italian Alpine Peatlands Using Multisource Satellite Imagery and Machine Learning Approach 

Qiqi Li, Manudeo Singh, and Sonia Silvestri

While we are aware that the Italian Alps host thousands of small peatlands, the precise estimate remains uncertain due to the absence of a comprehensive map. These ecosystems are extremely valuable because, in addition to storing large amounts of organic carbon, they provide many other ecosystem services. They regulate water flow, retaining it during wet seasons and releasing it during dry periods. Furthermore, they purify water by retaining nutrients such as nitrogen and phosphorus and provide water to wildlife even during droughts. Moreover, they are characterized by high biodiversity, serving as habitats for several endangered species.

Conventional approaches to mapping peatlands typically involve surveys characterized by long update cycles and considerable costs. Some remote sensing approaches, such as UAV and aerial photography, have the disadvantages of being weather dependent, and have high costs and limited coverage. In contrast, satellite remote sensing imagery presents several advantages, including broad coverage, cost-effectiveness, and frequent temporal resolution. Hence, our research emphasizes the mapping of Alpine peatlands by integrating multiple remote sensing datasets and employing machine learning algorithms. The spatial distribution of Alpine peatlands shows a correlation with topographic and hydrological conditions. These peatlands, averaging around 1 hectare in size, exhibit distinctive vegetation, topographic, and hydrological characteristics compared to non-peatland regions. Therefore, the differentiation in these features extracted from remote sensing imagery stands as a critical factor for identifying peatlands.

We present the results of integrating Sentinel-2 optical data, Sentinel-1 radar imagery, and the CLO-30 from the Copernicus digital elevation model (DEM) through the Google Earth Engine (GEE) platform. This integration aims to map Alpine peatlands employing a pixel-based Random Forest algorithm. We focus on a section of the Adige River basin, located within the Trentino Alto-Adige Region in Italy. Within this area, we collected and updated an inventory of 157 peatland sites, divided into two groups. One subset was used to calibrate the algorithm, while the other served to validate the results. Several sets of features were extracted from the multi-source remote sensing dataset. The findings suggest that both the DEM itself and the topographic features derived from it contributed most significantly to the classification results. Hydrological connectivity was also found to be a significant feature, probably due to the crucial role that water flow and retention play in the establishment and sustainability of peatlands. A key finding is the impact of these features surpassed that of optical and radar data in enhancing the accuracy of the classification. Since our peatland mapping methodology is implemented on the GEE platform and uses freely available datasets, it can be applied across the entire Alpine region and in other mountainous areas worldwide.

How to cite: Li, Q., Singh, M., and Silvestri, S.: Mapping Italian Alpine Peatlands Using Multisource Satellite Imagery and Machine Learning Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13540, https://doi.org/10.5194/egusphere-egu24-13540, 2024.

EGU24-14157 | Posters on site | BG3.18

Methane and Nitrous Oxide Fluxes in Soil and Stems of Malaysian Tropical Peat Swamp Forest 

Kaido Soosaar, Lulie Melling, Reti Ranniku, Faustina E. Sangok, Jaan Pärn, Guan Xhuan Wong, Sebestian Kalang William, Kuno Kasak, Mikk Espenberg, Maarja Öpik, and Ülo Mander

Tropical peat swamp forests are crucial global carbon (C) reserves. Prevailing waterlogged conditions in peat soils prevent the complete decomposition of dead plant material. As a result, more organic matter is produced than decomposed, leading to the gradual accumulation of peat. However, the destabilisation of tropical peatlands through climate warming, droughts, and changes in land use threaten this C sink capacity. Anaerobic conditions in peat soils lead to methane (CH4) production through decomposition and nitrous oxide (N2O) production under moderate levels of soil oxygen content. Earlier evidence suggests that tree stems in tropical peat swamp forests are significant sources of CH4; however, little information is available on their exchange of N2O.
This study investigated CH4 and N2O exchange of soil and stems of Combretocarpus rotunditus and Shorea albida trees in a peat swamp forest in Sarawak, Malaysia, from September 2022 to September 2023. To describe the temporal dynamics of greenhouse gas (GHG) exchange, we measured gas fluxes from the soil and stems at different heights (10, 80 and 170 cm from the tree's base) using the manual static chamber method and spectroscopic gas analysis. The chemical composition of the soil was analysed and several environmental parameters, including groundwater level, soil moisture content, soil and air temperature, were simultaneously measured with the GHG fluxes to determine the relationships between the fluxes and environmental factors.
Soil CH4 emissions varied between 52.3 and 807 μg C m−2 h−1, with higher values observed during the wet season in conjunction with higher groundwater levels. On the other hand, the soil N2O fluxes were relatively low and did not show a distinct seasonal pattern, ranging from -1.33 to 3.54 μg N m−2 h−1. Annual average soil CH4 and N2O emissions were 392 μg C m−2 h−1 and 0.65 μg N m−2 h−1, respectively. The highest average stem CH4 emissions (1.48 μg C m−2 h−1) were recorded at the lowest parts of trees, with a vertical decrease in emissions and an overall uptake observed at the highest measurement point. In contrast, stem N2O emissions were small, with no clear trend with measurement height.

In summary, we observed moderate and variable soil CH4 emissions with limited generalisable relation to measured environmental parameters. Soil and stem N2O emissions were relatively small. These results indicate the need for further comprehensive soil and stem GHG analyses in tropical peat swamp systems to better understand the GHG dynamics of this critical ecosystem.

How to cite: Soosaar, K., Melling, L., Ranniku, R., Sangok, F. E., Pärn, J., Wong, G. X., William, S. K., Kasak, K., Espenberg, M., Öpik, M., and Mander, Ü.: Methane and Nitrous Oxide Fluxes in Soil and Stems of Malaysian Tropical Peat Swamp Forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14157, https://doi.org/10.5194/egusphere-egu24-14157, 2024.

EGU24-14254 | ECS | Posters virtual | BG3.18 | Highlight

Saltwater intrusion may aggravate carbon loss from tropical peatlands 

Hasan Akhtar, Salwana M. Jaafar, Rahayu S. Sukri, and Massimo Lupascu

Tropical peatlands, covering approximately 23 million hectares, constitute 6% of the global peatlands, predominantly situated in low-lying coastal regions of Indonesia, Malaysia, Borneo, and Papua. Unfortunately, due to land-use change and accompanying subsidence, these low-lying coastal peatlands may be inundated with seawater due to sea level rise in response to climate warming in the coming decades. This would not only result in carbon losses in fluvial form but may also alter the biogeochemistry of peat, thereby affecting the peat decomposition process. Therefore, in this peat incubation study, we attempted to simulate the effect of saltwater intrusion on CO2 emissions under a factorial setup of two salinity levels (15 ppt, 30 ppt), tidal cycle (high tide as flooded peat vs low tide as mesic peat), and labile carbon mimicking plant root exudates (in the form of glucose addition @ 0.1 mgC/g of peat/day) with peat incubated at 28 °C (the long-term average temperature at site).

            We found that salinity and carbon addition significantly (p < 0.01) affected the rate of CO2 emissions with the highest mean values for treatment with 30 ppt salinity (251.7 ± 61.3 mgCO2/g of peat/hr), which was approximately three times higher than the control (72.3 ± 9.3 mgCO2/g of peat/hr). Similarly, we found that the mesic peat (reflecting low tide) showed almost twice the mean CO2 values (150 ± 36 mgCO2/g of peat/hr) compared to flooded peat (79.9 ± 15.1 mgCO2/g of peat/hr). These results underscore the vulnerability of these ecosystems to future sea level rise, potentially transforming them into a significant carbon source. The urgency to conserve these vital terrestrial carbon reserves is further emphasized by the implications of our study, emphasizing the need for proactive measures to mitigate the impact of land use and climate change on tropical peatlands.

How to cite: Akhtar, H., Jaafar, S. M., Sukri, R. S., and Lupascu, M.: Saltwater intrusion may aggravate carbon loss from tropical peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14254, https://doi.org/10.5194/egusphere-egu24-14254, 2024.

EGU24-17791 | ECS | Posters on site | BG3.18

Identifying the Transition Zone between Peat and Mineral Soils Using Airborne Radiometric Data: a national scale case study from Ireland 

David O Leary, John Connolly, Louis Gilet, Patrick Tuohy, Jim Hodgson, and Eve Daly

National and international climate change mitigation plans require a knowledge of peat soil extent across large geographic areas. Peat soils, which play a vital role in carbon storage and climate regulation, have a physical margin where soils change from high to low organic content. Accurate delineation of both national extent of peat soils and peat to mineral soil transition is required for assessing land use and planning effective conservation and carbon loss mitigation strategies. This abstract presents a novel approach for defining both peat soil extent nationally and transition zones between peat and mineral soils at field scale.

At a national scale, peat soil maps are created using optical satellite remote sensing or legacy soil/quaternary maps or a combination of both. However, optical remote sensing cannot detect peatlands under landcover such as forest or grassland and legacy maps are often created from sparse in-situ auger data making the accurate delineation of the boundary between peat and mineral soils difficult and cost prohibitive.

Airborne radiometric data, which measures natural environmental radiation, has been shown to differentiate between peat and mineral soils due to high attenuation of gamma rays in organic soils. Radiometric data is considered a direct measurement of the subsurface and so is minimally affected by landcover. Additionally, as airborne radiometric data can be acquired in a spatially consistent manner, it has the potential to identify areas of peat soil across the landscape and highlight areas of transition between high and low organic soils.

In Ireland, the Tellus survey, acquired by Geological Survey Ireland (GSI) aims to acquire airborne data (including radiometric data), consistently across the country (flight line spacing of 200m) at a resolution of 50 x 50 m. Utilising this national radiometric dataset, a machine learning classification methodology is presented. Data are classified as peat (> 30 % organic material) or non-peat, with 85 % accuracy, is validated using a national soils sampling survey. A confidence value is extracted, once data are classified, which results in the identification peat soils. Several field sites across the midlands of Ireland, which are located at verified transition zones, are then used to show the effectiveness of the classification at identifying transition zones at the field scale.

The methodology is robust and can be applied in all areas where these data exist. The results highlight that inclusion of an airborne radiometric dataset in a national climate plan can be used to update national and international carbon inventories of peatlands areas and inform European policy. Understanding the location of these peat to mineral soil transitions is paramount when considering the impact on climate change mitigation strategies such as potential impact of rewetting of peat soils.

How to cite: O Leary, D., Connolly, J., Gilet, L., Tuohy, P., Hodgson, J., and Daly, E.: Identifying the Transition Zone between Peat and Mineral Soils Using Airborne Radiometric Data: a national scale case study from Ireland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17791, https://doi.org/10.5194/egusphere-egu24-17791, 2024.

EGU24-17838 | Orals | BG3.18

Quantifying spatial peat depth with seismic micronodes and the implications for carbon stock estimates 

Tarje Nissen-Meyer, Jack Muir, Simon Jeffery, Joe Collins, Alice Marks, and Nathan Brake

Peatlands are a major store of soil carbon, due to their high concentration of carbon-rich decayed plant material. Consequently, accurate assessment of peat volumes are important for determining land-use carbon budgets. Determination of carbon stocks at the scale of individual peat sites has principally relied on either mechanical probing or electromagnetic geophysical methods. In this study, we investigated the use of seismic nodal instrumentation for quantifying peat depth. We used Stryde nodes for a deployment at the Whixall Moss in Shropshire, England. We measured seismic arrival times from peat-bottom reflections, as well as dispersive surface waves to invert for a model of variable peat depth along a linear cross-section using level-set based interface inversion for peat depth. We found that the results from seismic surveying corresponded well with manual probe depths, and delivered high spatial resolution. The use of very small seismic nodes (micronodes) allows for particularly rapid deployment on challenging terrain.

How to cite: Nissen-Meyer, T., Muir, J., Jeffery, S., Collins, J., Marks, A., and Brake, N.: Quantifying spatial peat depth with seismic micronodes and the implications for carbon stock estimates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17838, https://doi.org/10.5194/egusphere-egu24-17838, 2024.

EGU24-18342 | Posters on site | BG3.18

A simple approach to upscale methane emissions from peatlands using Planetscope satellite data and machine learning algorithm 

Ruchita Ingle, Matthew Saunders, Wahaj Habib, John Connolly, Laurent Bataille, Ronald Hutjes, Jan Biermann, Wilma Jans, Wietse Franssen, Laura vander Poel, and Bart Kruijt

Peatland plays a significant role in methane (CH4) emissions, and methane dynamics are governed by ecohydrological variables and site heterogeneity. Emission quantification from different stages of peatland is vital to understanding the impacts of peatland on climatic feedbacks for effective rehabilitation of these sensitive ecosystems. Chamber measurement and eddy covariance techniques are widely used to understand methane dynamics. These measurements are either at a point or footprint scale, making it challenging to upscale these emissions to the site scale considering the heterogeneity of peatlands. Here, we present a simple approach to upscale methane emissions from closed chambers using PlanetScope high-resolution satellite data along with the random forest algorithm and weighted-area approach. This methodology was tested at three peatlands covering near-natural, under-rehabilitation, and degraded sites in Ireland for a span of two years. The annual vegetation maps were mapped with an accuracy of 83% at the near-natural site and around 98-99% at the under-rehabilitation and degraded sites. The highest site-scale fluxes were observed at the near-natural site (2.25 and 3.80 gC m−2 y−1), and the site-scale fluxes were close to net zero for the under-rehabilitation (0.17 and 0.31 gC m−2 y−1) and the degraded site (0.15 and 0.27 gC m−2 y−1). As a step forward, this approach will be applied to upscale eddy covariance fluxes from three fen sites in the Netherlands. Overall, the easy-to-implement methodology proposed in this study shows potential to apply it across various heterogeneous land-use types to assess the impact of peatland rehabilitation on methane emissions.

How to cite: Ingle, R., Saunders, M., Habib, W., Connolly, J., Bataille, L., Hutjes, R., Biermann, J., Jans, W., Franssen, W., vander Poel, L., and Kruijt, B.: A simple approach to upscale methane emissions from peatlands using Planetscope satellite data and machine learning algorithm, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18342, https://doi.org/10.5194/egusphere-egu24-18342, 2024.

EGU24-18587 | ECS | Posters on site | BG3.18

Deciphering Congo Peat Chemistry; Using Plants to Understand the Peat. 

Kirby Robinson, Sue Page, Nick Girkin, Lydia Duffy, and Arnoud Boom

The chemistry of tropical peat has been shown to vary significantly according to differences in plant litter chemistry and hence the composition of the peat-forming vegetation. In the Central Congo peatlands, peat forms under two forest types; hardwood and palm swamp forests.

The complex chemistry of the organic matter (OM) in peat involves multiple compounds including; carbohydrates, cellulose, lipids, lignin and various secondary metabolites, each with different decay rates. Thus, the chemical nature of the OM determines its recalcitrance. Likewise, due to both chemical and structural differences between plant material from different species and between different litter components, not all plant fractions are conducive to or make a similar contribution to peat production. Previous studies suggest there is a relatively greater accumulation of root material in tropical peats compared to other fractions due to its high lignin content, which renders it more resistant to decay, but linking the physiochemical properties of tropical peats and their decomposability to the botanical origins of the plant litter remains understudied. As a result, there are significant gaps in our knowledge regarding the links between plant litter inputs, peat organic geochemistry and our understanding of their role in both peat formation and GHG emissions.

Important recalcitrant moieties such as lignin can be analysed via geochemical analytical methods such as pyrolysis GC-MS, to provide insights into peat composition and vegetative origin. Lignin is an abundant and complex class of organic polymer, that forms key structural plant tissues. Categorised into three monolignols: coniferyl alcohol (Guaiacyl type; G), sinapyl alcohol (syringyl type; S) and p-coumaryl alcohol (p-hydroxyphenyl type; P). The amalgamation of these monolignols results in the creation of complex and diverse lignin structures, related to plant physiology for example between monocot and dicot angiosperms and to tissue type e.g. woody and non-woody. Consequently, key vegetation types exhibit varying concentrations of these monolignols, resulting in variations in relative proportions of G, S & P – which have identifiable pyrolysis signatures, and thus can be used to differentiate between types of lignin in the Congo peat. By examining their relative concentrations, this method allows the discrimination of plant inputs and their subsequent influence on peat organic geochemistry.

This study aims to characterise the organic geochemistry of peat from various locations across the Congo Basin; investigating the vegetative origin of the peat and OM transformations in both palm and hardwood dominated swamp forests. Initial results demonstrate distinct chemical (pyrolysis) signatures reflective of plant inputs and type, leading to discernible variations in peat chemistry over short distances and significant differences in the lignin composition corresponding to hardwood and palm dominated peat. The relevance of these findings for improved understanding of peat formation in this location is discussed.

How to cite: Robinson, K., Page, S., Girkin, N., Duffy, L., and Boom, A.: Deciphering Congo Peat Chemistry; Using Plants to Understand the Peat., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18587, https://doi.org/10.5194/egusphere-egu24-18587, 2024.

EGU24-18973 | ECS | Posters on site | BG3.18

The Use of Ground-Penetrating Radar for Mapping Peatland Subsurface in Afforested Peatland Restoration 

Laura Hughes-Dowdle, Bernd Kulessa, Tavi Murray, Jonathan Walker, Rob Low, Robin Cox, and Joey Pickard

Peatland afforestation and drainage are major causes of upland peatland degradation and have resulted in ongoing issues including increased flood risk, biodiversity loss, and carbon emissions. The last decades have witnessed increasing global investments in peatland restoration, as exemplified in South Wales. Here, the peatlands of Pen y Cymoedd coexist as the UK’s highest altitude windfarm and are being restored post tree-felling through a process known as ‘forest-to-bog’ restoration. Yet, there is a definite need to improve understanding of the impacts and effectiveness of these interventions, which can be gained through the mapping and representation of peatland structure and in particular, its ecohydrological properties.

Traditional peatland investigations involving manual probing and coring are environmentally intrusive and time and labour intensive. However, recent studies have demonstrated that geophysical approaches such as ground penetrating radar offer an alternative approach, enabling peat depth to be rapidly surveyed over large areas. Afforested peatlands, however, present new challenges for both radar and probe-based approaches, for example, the presence of tree roots can obstruct the probe from reaching the true depth of the peat body and create complex reflectors on the radargram. There remains little guidance on appropriate use of ground-penetrating radar methodologies in afforested peatland settings, particularly on peatlands that have different hydrogeophysical properties resulting from various land use interventions.

In this study, ground-penetrating radar surveys were conducted on peatland sites representing four different condition states: intact, afforested, felled, and restored. The surveys aim to map peat depth and explore the structure of the shallow subsurface. We adjust the parameterisation and processing flows involved in ground-penetrating radar surveys to determine the most appropriate approach dependant on peatland condition and the purpose of survey. Furthermore, by comparing reflection properties from different peatland sites which were selected to replicate the successive stages of forest-to-bog restoration, the structural changes caused by forestry and subsequent restoration attempts are revealed. This research will therefore help to inform operational best-practice and policy of peatland restoration, both within and beyond Wales.

How to cite: Hughes-Dowdle, L., Kulessa, B., Murray, T., Walker, J., Low, R., Cox, R., and Pickard, J.: The Use of Ground-Penetrating Radar for Mapping Peatland Subsurface in Afforested Peatland Restoration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18973, https://doi.org/10.5194/egusphere-egu24-18973, 2024.

EGU24-19643 | Posters on site | BG3.18

A Satellite-derived Peatland Ecotype Classification Method Using Artificial Neural Network Hierarchical Ensembles 

Corrado Grappiolo, Veeresh Gurusiddappa, Shane Regan, Oisín Boydell, and Eoghan Holohan

Being able to identify, map and monitor areas of different ecological quality of peatland habitats, or ecotypes, provides important information on spatial peatland condition, the potential for restoration of degraded areas and ecotype carbon (C) emission and/or sequestration capacity when coupled with known C-flux factors. Regular and accurate mapping of such ecotypes is also a requirement under the European Union (EU) Habitats Directive, and will be required in some form to help guide the framework and implementation of the upcoming EU Nature Restoration Law.

Although the most precise way to identify the presence of certain ecotypes is via in-situ surveying, this approach clearly suffers from scaling issues, as it is only feasible in small selected peatlands (or even portions of them) and requires a lot of resources, e.g. skilled domain experts and time. A solution might come from remote sensing and Earth Observation technologies, which have been increasingly utilised to map the occurrence and extent of peatland environments in recent years. With this respect, the European Space Agency's Copernicus Program's Sentinel-2 satellite constellation could be a viable data source, as it allows for a multi-spectral, systematic and regular coverage of land surfaces with a spatial resolution up to 10 square metres and 5 days of revisit frequency. Nevertheless, the remote detection and mapping of ecotypes within the peatland complex itself is relatively under-studied and there is no currently accepted method that can be deployed at landscape scale. 

In this work we present a rather simple machine learning pipeline for ecotype detection at scale. The focus of this study are lowland peatlands, or raised bogs, in the Republic of Ireland. The pipeline assumes the existence of ground truth ecotype data (for machine learning training purposes), raised bogs map boundaries (shapefiles) and Sentinel-2 imagery. Both training, testing and validation datasets undergo the same pre-processing procedure. In the training step we train an ensemble of binary classifiers - specifically one multilayer perceptron network per ecotype - organised in a hierarchical fashion, to reduce the complexity of the problem. The ecotype classification would be done in a cascade - in accordance with the hierarchy - via canonical ensemble learning classification. 

The preliminary results gathered not only seems to indicate that our approach could provide reliable estimations about raised bog ecotype composition at scale, they also highlight the potential need for seasonal ensembles. Furthermore, we will present the results of a crowdsourcing experiment, in which domain experts were: (1) presented with ecotype map images, resulting from the inference of a plethora of ensemble classifiers of different settings and hyperparameters, and (2) asked to cast a vote on which image most closely resembled the related ground truth image.

How to cite: Grappiolo, C., Gurusiddappa, V., Regan, S., Boydell, O., and Holohan, E.: A Satellite-derived Peatland Ecotype Classification Method Using Artificial Neural Network Hierarchical Ensembles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19643, https://doi.org/10.5194/egusphere-egu24-19643, 2024.

Peatlands, which cover a significant proportion of the wetland ecosystems globally, play a vital role in maintaining biodiversity and regulating water and climate. However, these ecosystems are currently undergoing degradation as a result of human activities, particularly the draining of peatlands for agricultural purposes, peat extraction, and forestry. Irish raised bogs, which constitute over half of the EU's oceanic raised bogs, have been extensively drained for various land-use activities. Efforts are being made to conserve these ecosystems by implementing measures such as rewetting, restoration, and rehabilitation. However, this requires the identification and accurate mapping of artificial drainage ditches. This study uses a U-net-based convolutional neural network to develop a very high-resolution map of the artificial drainage network in Irish raised bogs, covering an area of 523,000 hectares. The map also quantifies drainage in different land-use categories, such as industrial and domestic peat extraction. The results of this study will aid in implementing conservation activities, such as drain blocking to promote rewetting and improve carbon and greenhouse gas emission accounting at the national scale.

How to cite: Habib, W. and Connolly, J.: Automated Mapping of Artificial Drainage in Peatlands Using Deep Learning and Very High-Resolution Aerial Imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21619, https://doi.org/10.5194/egusphere-egu24-21619, 2024.

EGU24-21989 | ECS | Posters virtual | BG3.18

Mapping global peatlands thickness and carbon stock 

Marliana Tri Widyastuti, José Padarian, Federico Maggi, and Budiman Minasny

Peatlands, occupying just 3–4% of the Earth's surface area, are remarkable for holding nearly 30% of the world's terrestrial carbon (C), securely stored in their soil. These ecosystems are incredibly diverse, found from the Arctic to the Tropics and at various elevations. They perform numerous critical functions and ecosystem services, crucial for achieving the Sustainable Development Goals.

The 2022 Global Peatland Assessment reported over 500 million hectares of peatlands worldwide, emphasising the importance of evaluating their baseline status and routinely assessing their conditions. This is vital for the conservation of these significant ecosystems. While global and national extent maps of peatlands exist, there's a notable gap in information regarding global peatland thickness and carbon stock.

This study aims to perform a preliminary evaluation of global peatland thickness and carbon stock by employing digital mapping techniques. We gathered over 5,000 data points on peatland characteristics (including thickness, carbon content, and bulk density) from existing observations and maps worldwide.  We combined these observations with spatial data from earth observations representing climate, topography, and vegetation as covariates for use in machine learning methods to explicitly estimate peatland thickness and carbon stock globally at a 1 km resolution. The outcome of this work provides a first comprehensive global quantification of peat thickness, carbon content, and stock, aiding in the global modelling of peatland status and conditions.

How to cite: Widyastuti, M. T., Padarian, J., Maggi, F., and Minasny, B.: Mapping global peatlands thickness and carbon stock, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21989, https://doi.org/10.5194/egusphere-egu24-21989, 2024.

EGU24-22001 | ECS | Posters virtual | BG3.18

Remote sensing of peatland degradation – a review on gaps and hotspots of research across the northern hemisphere 

Farina de Waard, Alexandra Barthelmes, Hans Joosten, John Connolly, and Sebastian van der Linden

While mapping peatlands worldwide remains an important task, capturing their status using earth observation technologies has received less attention. Approximately 500,000 km² of degraded peatland worldwide contribute an excessive 5% of global greenhouse gas emissions. Most human use of peatlands remains unsustainable and can disrupt the balance of peat, water, and vegetation that maintain a stable or even growing peatland. With growing threats like the climate crisis and a need for safe water supplies and other ecosystem services, the restoration of degraded areas becomes ever more eminent. Standardized degradation classifications and land cover mapping techniques that address the severe outcomes of degraded peatlands are important tools but lacking.

The temperate and boreal zones of Northern America, Europe and Asia host a large proportion of the worlds’ peatland area. While temperate regions are often densely populated, causing high pressures on peatlands, the far north is facing increasing challenges such as permafrost melt, intensification of fire, mining, and wood harvesting. Based on a Web of Science literature search, this review identified and analyzed articles with a focus on peatland degradation research using remote sensing. 115 articles with study areas across the northern hemisphere were identified. Using a new approach to cluster this research based on a three-dimensional cube, each study’s degradation foci were evaluated along three directions of peatland degradation that build the three directions of the cube: peat, hydrology, and vegetation.

Five clusters of different weights emerge from this concept, including two-dimensional and three-dimensional research. Vegetation-focused research dominates, while there are only few holistic approaches (12 of 115) that address peatland degradation along all three dimensions. Almost 80% of all research papers between 1981 and 2023 were published on eight hotspot regions across the northern hemisphere. While there is a general increase in article numbers over the last years, publications from other countries decrease. Restoring peatland ecosystem functions after degradation presents a significant challenge. With this review, we aim to highlight cold- and hotspots of research with regard to geography, research topics and used remote sensing tools to help improving peatland degradation research using remote sensing.

How to cite: de Waard, F., Barthelmes, A., Joosten, H., Connolly, J., and van der Linden, S.: Remote sensing of peatland degradation – a review on gaps and hotspots of research across the northern hemisphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22001, https://doi.org/10.5194/egusphere-egu24-22001, 2024.

EGU24-22008 | ECS | Orals | BG3.18 | Highlight

Carbon dynamics of high-elevation tropical cushion peatlands in the Andes 

Mary Carolina Garcia Lino, Simon Pfanzelt, Alejandra Domic, Isabell Hensen, Karsten Schittek, Rosa Isele Meneses, and Maaike Bader

High-Andean tropical peatlands occur up to 5000 m a.s.l., where conditions vary from cool to freezing cold on a daily basis. In the tropical and subtropical Andes, these high-elevation peatlands are mainly composed of vascular cushion plants and occur in topographically wet locations in climates ranging from very humid paramos in the north to arid puna in the south. Like other peatlands, Andean cushion peatlands store large amounts of carbon, but with high amount of sediments and higher recent carbon accumulation rates. Often, these amounts have not been quantified, nor are the controls on carbon gains and losses sufficiently known to predict changes in carbon storage due to land-use and climate change. We reviewed the literature on carbon stocks and dynamics in (sub-)tropical Andean cushion peatlands, aiming to understand the topographic, hydrologic, climatic and biotic drivers and geographic patterns. We identified important roles for catchment size and sediment inputs, temperature in combination with water availability, and vegetation, but none of these roles can be quantified yet based on currently available data. However, it is clear that predicted regional differences in climatic changes (seasonality, permafrost behavior, temperature, precipitation regimes) imply that carbon-balance trends of cushion peatlands will differ regionally, with those in paramo most likely to continue as C sinks, while those in dry puna are more likely turning to C sources under increasing aridification.

How to cite: Garcia Lino, M. C., Pfanzelt, S., Domic, A., Hensen, I., Schittek, K., Meneses, R. I., and Bader, M.: Carbon dynamics of high-elevation tropical cushion peatlands in the Andes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22008, https://doi.org/10.5194/egusphere-egu24-22008, 2024.

EGU24-3836 | ECS | Orals | BG3.19 | Highlight

Using MONICA model to investigate the water, carbon, and nitrogen dynamics in wet grasslands for future rewetting plans. 

Valeh Khaledi, Roland Baatz, Danica Antonijević, Mathias Hoffmann, Ottfried Dietrich, Gunnar Lischeid, Mariel F Davies, Christoph Merz, and Claas Nendel

Introduction

Wet grassland sites have accumulated large amounts of carbon in their soil over millennia. While under excessive drainage and intensive agriculture, these sites have shown substantial losses of the stored carbon to the atmosphere, the current climate mitigation strategies see a conversion of this process through rewetting. Situated in the fringe of ascending groundwater, these sites respond very sensitively to changes in the water table, both in the vegetation and the turn-over processes in the soil. While researchers have extensively investigated how wet grasslands respond to changes in environmental conditions or management practices from various perspectives, there is a lack of a comprehensive simultaneous study addressing the intricate interplay of water, carbon, and nitrogen cycles in these ecosystems. This study aimed at addressing the water, carbon, and nitrogen dynamics in a wet grassland site using a process-based agroecosystem model to prepare the model for future scenario simulations under various options for rewetting.

Material and method

The study site is situated in the Spreewald wetlands, where a lysimeter station featuring four lysimeters with different groundwater level management practices has been installed. Within the lysimeter station, a weather station records the meteorological conditions. Above-ground biomass is measured after each cut, and various parameters including evapotranspiration, gross primary productivity, ecosystem respiration, nitrogen amount in biomass, nitrate leaching, and N2O are monitored. The process-based model employed in this study is the MONICA model (Model for Nitrogen and Carbon in Agro-ecosystems). The SPOTPY algorithm was used for optimising the model.

Results

Presented in three categories are the results: firstly, evapotranspiration as a vital component of the water cycle; followed by gross primary productivity and ecosystem respiration, offering insights into the carbon cycle. Additionally, nitrogen content in biomass, nitrate leachate, and N2O are examined, providing information related to the nitrogen balance.

Within a wet grassland ecosystem, MONICA has effectively reproduced these essential variables, showcasing remarkable performance with rRMSE ranging between 0.05 to 0.81, and Willmott’s Refined Index of Agreement dr ≥ 0.3 in all cases. This substantiates its capability to simulate the impacts of environmental or management changes, particularly those associated with modifications in surface-near groundwater conditions. The model's robust replication of crucial variables emphasizes its suitability for comprehensive assessments in dynamic ecological scenarios.

Keywords: Wet grasslands, Carbon, Nitrogen, MONICA, SPOTPY algorithm

How to cite: Khaledi, V., Baatz, R., Antonijević, D., Hoffmann, M., Dietrich, O., Lischeid, G., Davies, M. F., Merz, C., and Nendel, C.: Using MONICA model to investigate the water, carbon, and nitrogen dynamics in wet grasslands for future rewetting plans., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3836, https://doi.org/10.5194/egusphere-egu24-3836, 2024.

EGU24-7642 | ECS | Orals | BG3.19

Accurate simulation of greenhouse gas emissions across fertilizer scenarios with DNDC 

Tulasi Thentu, Daniel Forster, Perttu Virkajärvi, Matthew Tom Harrison, and Narasinha Shurpali

The aim of this paper was to compare effects of organic and mineral fertilizers on greenhouse gas (GHG) emissions from legume grasslands in Finland. We invoke DNDC, a process-based model that integrates effects of agricultural practices, soil characteristics, nitrogen mass balance and climate change on GHG emissions from soil-plant ecosystems. Data measured in the field were collected from 2017 to 2020 using an eddy covariance site cultivated with legume grass species (Phleum pratense L., Festuca pratensis Huds, Trifolium pratense L., Hordeum vulgare L.) at Anttila, Maaninka, eastern Finland. The focus of the modelling was to evaluate the performance of DNDC heat exchange version under two distinct management practices: organic input, utilizing digestate residue (slurry), and mineral input (NPK) with chemical fertilizer. The primary emphasis was on understanding the model's accuracy in simulating greenhouse gas emissions and comparing the total annual greenhouse gas exchanges between these two management approaches. The DNDC heat exchange model version was calibrated and validated for key processes, including Gross Primary Productivity (GPP), Net Ecosystem Exchange (NEE), Ecosystem Respiration (Reco), Soil Temperature, and Water-Filled Pore Space (WFPS) at 5 cm and 20 cm depths. The model demonstrated satisfactory performance in estimating the total annual GHG exchanges during validation years under both management practices. For the mineral treatment, the model demonstrated fair performance (Spearman's correlation (ρ) for GPP (0.81), NEE (0.72), and Reco (0.85)). Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values indicated reasonable agreement between model predictions and measured data. Notably, soil temperature simulations demonstrated an excellent correlation (ρ=0.99) with low RMSE and MAE. Water-Filled Pore Space (WFPS) at both 5 cm and 20 cm depths exhibited good correlations, with acceptable RMSE and MAE values. Similarly, for organic inputs, the DNDC model had fair correlation (ρ) for GPP (0.81), NEE (0.72), and Reco (0.85). Soil temperature and WFPS at 5 cm presented high positive correlations (ρ=0.98 and 0.55), accompanied by low RMSE and MAE. WFPS at 20cm, while exhibiting good correlation (ρ=0.065), displayed a slightly elevated RMSE and MAE. Overall, we conclude that the model offered valuable insights into GHG dynamics associated with organic and mineral fertilization practices. Overestimation of biomass yield for some of the data by DNDC suggests that future work would be well placed targeting physiology determinants of biomass in the model.

How to cite: Thentu, T., Forster, D., Virkajärvi, P., Harrison, M. T., and Shurpali, N.: Accurate simulation of greenhouse gas emissions across fertilizer scenarios with DNDC, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7642, https://doi.org/10.5194/egusphere-egu24-7642, 2024.

In the last century, the global N (nitrogen) cycle has been profoundly disturbed by human influences. One of the most detrimental consequences is the release of large quantities of N2O (nitrous oxide) into the atmosphere, which significantly contributes to global warming (Gulev et al., 2021). Most of the anthropogenic contribution to atmospheric N2O originates from the transformation of excessive reactive N inputs in agricultural food production systems (Tian et al., 2019). Mitigation strategies propose the use of EEFs (Enhanced Efficiency Fertilizers), which have shown large potential in decreasing N2O emissions from various types of agricultural systems (Akiyama et al., 2009; Fan et al., 2022). Two types of EEFs are generally considered: NIs (Nitrification Inhibitors) and CRNFs (Controlled Release Nitrogen Fertilizers). However, the effectiveness of EEFs is yet to be estimated at large spatial and temporal scales.

The use of process-based biogeochemical models allows for the estimation of N2O emissions at various spatial and temporal scales and with greater accuracy than widely applied emission factors from the IPCC methodology. Within this thesis, a new routine to model EEFs is implemented in the LandscapeDNDC model framework (Haas et al., 2013). The routine largely follows the recent implementation in the DAYCENT model described by Gurung et al. (2021). For accurate results, biochemical models require their parameters to be calibrated on field data. Therefore, the new LandscapeDNDC routine was calibrated on measurement data from three corn cropping systems in the US. Contrary to DAYCENT model calibration in Gurung et al. (2021), it is the pretense of LandscapeDNDC to not only quantify cumulative emissions but to predict N2O emissions dynamics in higher temporal, e.g., daily time resolution. Thus, the calibration was performed over the entirety of available measurements instead of only on cumulative emissions. Moreover, it was investigated whether calibrating the model over every site simultaneously instead of separately for every site significantly contributes to overall uncertainty in the final results. Our results demonstrate how LandscapeDNDC is able to recreate site and year-specific differences in EEF mitigation potentials. The RRMSE for NIs during the growing season ranges between 1.42 and 2.42. For CRNFs, the range is between 1.05 and 3.52. When reduction factors based on cumulative emissions are concerned, for NIs, the posterior reduction factor proposed by LandscapeDNDC is -12% (- 36% to 12%) (mean and 95% confidence interval), which is lower than the reduction factor suggested by the DAYCENT model -12% (-61.8% to 3.1%) and large observational datasets -38% (-44% to -31%) (Akiyama et al., 2009). For CRNFs, LandscapeDNDC returns a reduction factor of -2% (-28% to +25%), which is again lower than the DAYCENT reduction factor of -12% (52% to +1%) and the reduction factor suggested by large global datasets -35% (-58% to -14%) but compares with a larger observational dataset of multiple US corn cropping systems of -5% (-18% to +7%) (Eagle et al., 2017). However, considering the simulated magnitude and relative EEF reduction potential, large uncertainties remain, which are attributed to site-specific edaphic characteristics and growing season variability.

How to cite: Weber, C., Scheer, C., Kiese, R., and Kraus, D.: Modeling N2O emission reduction potential from Enhanced-efficiency-nitrogen-fertilizers (EEFs) in LandscapeDNDC: Model calibration and assessment of uncertainties , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10394, https://doi.org/10.5194/egusphere-egu24-10394, 2024.

EGU24-10411 | Orals | BG3.19

Grazing dominantly regulates top soil organic carbon and nitrogen stocks in grasslands 

Julia Kepp, Michael Dannenmann, Ralf Kiese, Narda Pacay, Stefanie Schulz, Steffen Schweizer, Michael Schloter, and Theresa Schwärzler

For the past 17 years the Biodiversity Exploratories (BEs) in Germany have collected detailed data on land use intensity (LUI), climate as well as plant and microbial biodiversity for over 100 grassland sites in three different exploratories across Germany. Since these factors alongside physicochemical processes interactively drive soil nitrogen (SON) and carbon (SOC) cycling and storage, the BEs offer a unique opportunity to gain a mechanistic, process-based understanding of the interactions between soil type, climate, biodiversity and management that drive N and C turnover and storage in grasslands.

We quantified SON and SOC stocks as well as δ15N and δ13C isotopic signatures for 25 grassland plots in each of the three exploratories, thereby covering a wide range of LUI. Currently, the results for the Schwäbische Alb exploratory are available. These data clearly show the importance to distinguish for the individual effects of LUI components (fertilization, mowing and grazing). For example, SOC and TN concentrations and stocks in the top 30 cm of soil tend to increase with LUI, but this increase is largely driven by the individual effect of the grazing component of LUI. The C:N ratio on the other hand was largely impacted by mowing and fertilization, possibly because mowing was a relatively important C loss pathway while fertilization was relatively important for N inputs. The narrower C:N ratio with increasing LUI negatively affected plant biodiversity.

Both δ15N and δ13C were related largely to the overall LUI and plant biodiversity. Topsoil δ15N increased with higher LUI and lower plant biodiversity, likely due to the high δ15N of added organic fertilizer and reduced importance of biological N fixation with its low δ15N signature.

Currently, our results indicate that grazing is the dominating management factor regulating SON and SOC stocks in calcareous grasslands of Southwest Germany, with grazing increasing SOC and SON stocks and associated soil functions. Further measurements and data evaluation will show whether this finding is of more universal importance for grasslands across Germany.

How to cite: Kepp, J., Dannenmann, M., Kiese, R., Pacay, N., Schulz, S., Schweizer, S., Schloter, M., and Schwärzler, T.: Grazing dominantly regulates top soil organic carbon and nitrogen stocks in grasslands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10411, https://doi.org/10.5194/egusphere-egu24-10411, 2024.

EGU24-10529 | ECS | Orals | BG3.19 | Highlight

Can soil quality in subtropical agriculture be improved by selected forage species?  

Niklas Wickander, Marit Jørgensen, and Peter Dörsch

Ethiopia is experiencing severe loss of farmable soil due to high erosion and nutrient depletion. The loss of agricultural land puts pressure on Ethiopian farmers to produce more food on less land. The large number of livestock in Ethiopia further exacerbate the situation, since the high grazing intensity removes plant cover and crop residues and limits the return of organic matter to the soils. Introduction of perennial forage species could break the vicious circle by providing high-quality feed to animals while increasing the input of organic matter to the soil and stimulating soil life. We investigated the effect of four forage species, two grasses, Brachiaria hybrid Cayman and Panicum maximum, and two legumes, Desmodium intortum and Stylosanthes guianensis, in varying mixtures planted according to a simplex design at two locations in Southern and Northern Ethiopia. The field sites were established in six different locations, three in the Sidama and three in the Amhara region. In each region we had one large scale site, at Hawassa and Bahir Dar university respectively, and two smaller farm sites. To assess how the species mixtures affected the soil, we measured the above-ground biomass and took soil samples before and after 2 years of plant growth. We measured labile carbon, nitrification rate, and soil enzymatic activity involved in C, N and P acquisition. The effect of plant input will be compared to time-zero measurements to discern if there are any effects of the species mixtures on the soils. Currently, we see an effect of the total above ground yield of the plots on soil functions, indicating that a higher density of plant coverage influences the soil microbial activity and turnover in the soil.

How to cite: Wickander, N., Jørgensen, M., and Dörsch, P.: Can soil quality in subtropical agriculture be improved by selected forage species? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10529, https://doi.org/10.5194/egusphere-egu24-10529, 2024.

Nitrous oxide (N2O) is a significant greenhouse gas that contributes to climate change, with one of the major sources being agricultural fertilizer application. In Europe, grass-clover ley plays a crucial role in the agricultural ecosystem. However, N2O emissions and emission factors (EFs) associated with it are not well documented. We therefore monitored N2O emissions in grass-clover ley and assessed the feasibility of using the process-based model DayCent to simulate N2O emissions and the underlying N cycling. The experiment was undertaken in a long-term fertilization experiment on a ley–arable rotation in Switzerland. We compared N2O emissions and EFs from organic fertilizer (slurry), mineral fertilizer and control (unfertilized) plots over three years (2021–2023). The results showed average N2O emissions of 0.50 ± 0.08, 0.51 ± 0.03 and 0.01 ± 0.04 kg N ha-1 yr-1 from organic, mineral and control treatments, respectively. The N2O EF, which was determined from measured emissions of the fertilized treatments after subtracting of the control treatment, was much lower than the IPCC default of 1%, with values of 0.22% and 0.40% for organic and mineral fertilizer treatments, respectively. DayCent was adjusted for plant C/N ratio parameters and the biological N fixation parameter. It accurately predicted soil moisture, soil temperature, and aboveground N yield, with deviations of 2.2%, 4.4%, and 6.0% from the measured values. Concerning N2O emissions, DayCent simulated average EFs of 0.24% and 0.28% for organic and mineral fertilizers, respectively, suggesting a good agreement with the measurements. Our field observation and model simulation results indicate that using IPCC default EF may overestimate the N2O emission from grass-clover ley, and that, DayCent is able to reproduce the comparatively low N2O emissions. 

How to cite: Wang, Y. and Ammann, C.: Assessing N cycling and N2O emissions from ley within a crop rotation using measurements and modeling , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10897, https://doi.org/10.5194/egusphere-egu24-10897, 2024.

EGU24-11377 | Orals | BG3.19

Pasture N2O emission fluxes by eddy covariance - partitioning and driver analysis 

Christof Ammann and Lena Barczyk

Grazed and fertilized pastures are considerable sources of the greenhouse gas N2O. While fertilizer applications usually lead to short emission pulses, animal excreta lead to small-scaled emission hotspots resulting in a non-homogeneous source distribution. The strong spatial and temporal source variability represents an inherent problem for the quantification of gaseous emissions from pastures with chamber techniques. The eddy covariance method, integrating emissions over a larger footprint domain, is well suited to quantify total field-scale N2O emissions, but the partitioning of emissions for different sources and the determination of source-specific emission factors (according to the IPCC guidelines) is still a challenge.

We present results of two multiple-year field experiments carried out in different regions of Switzerland. The investigated pastures were grazed by dairy cows in an intensive rotational management. The fields were additionally fertilized with organic and/or mineral fertilizer. The field-scale N2O fluxes were quantified with the eddy covariance technique using a fast response Quantum cascade laser spectrometer for N2O concentration measurements. The management and environmental conditions resulted in high temporal and spatial dynamics of the N2O fluxes with highest values typically occurring after fertilization events in the summer months. Total annual N2O emissions amounted to between 2.5 and 5 kg N ha-1 y-1. Data-based partitioning methods of different complexity were used to attribute the observed field-scale emissions to the main source classes (grazing excreta, fertilizer application, and background) and to derive annual N2O emission factors. Using random forest and other regression methods the effect of environmental parameters on grazing-related emissions were analyzed.

How to cite: Ammann, C. and Barczyk, L.: Pasture N2O emission fluxes by eddy covariance - partitioning and driver analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11377, https://doi.org/10.5194/egusphere-egu24-11377, 2024.

EGU24-12037 | ECS | Orals | BG3.19 | Highlight

Re-grazing of an alpine pasture sustains ecosystem services 

Elisabeth Ramm, Diana R. Andrade-Linares, Noelia Garcia-Franco, Jincheng Han, Andreas von Heßberg, Batnyambuu Dashpurev, Anke Jentsch, Alexander Krämer, Michael Schloter, Martin Wiesmeier, and Michael Dannenmann

Alpine pastures have shaped the landscapes of the European Alps for millennia. However, more and more alpine pastures have been abandoned since the 1950s, e.g., due to the work intensiveness at high altitudes. Such abandonment of alpine pastures in the long term leads to natural reforestation. And despite ample potential surface in the mountains, the pressure to provide important ecosystem services by pastures under the auspices of climate change nowadays concentrates on the lowlands, because already abandoned alpine pastures are still very rarely re-established. Meanwhile, it has been widely acknowledged that alpine pastures fulfill important provisioning, regulating, and cultural ecosystem services, with particularly cultural landscape and plant and faunistic biodiversity being at risk due to reforestation.

     Cattle grazing during summer not only means a soil disturbance which can increase plant biodiversity, but also increases nutrient availability and has unclear effects on soil organic carbon and associated soil functions. However, the precise effects of grazing have only rarely been proven. To test whether the preservation of intact alpine pastures by re-introducing cattle grazing is worth supporting, it is important to evaluate the effects of re-grazing on the soil organic carbon (SOC) stocks, the soil nitrogen (N) cycling, and water contamination with nutrients.

     Within the SUSALPS (Sustainable use of alpine and pre-alpine grassland soils in a changing climate) project, a typical alpine pasture in the German Alps abandoned in 1955 (Brunnenkopf, Ammergauer Alpen) is being re-grazed since 2018 with the traditional robust old cow breed “Murnau-Werdenfelser”. Here, we compared non-grazed to different grazed areas (low grazing intensity, high grazing intensity, bare soil due to trampling) after five years of experimental re-grazing. The data show a non-significant effect of grazing on N cycling, with only the bare soil area (6% of the pasture) showing increased gross N mineralization and soil nitrate concentrations. The nitrate concentration in the drainage water stayed overall very low (range 0.3–2.2 mg N L-1). What was striking, however, is a strong and statistically significant re-grazing-induced increase in the SOC stock by 11.8 t SOC ha-1 in five years although we corrected for bulk density increases.

              Our results suggest that extensive grazing- and trampling-induced changes in belowground plant biomass, the soil microbiome, and overall productivity, are fostering soil functions of an alpine grassland soil. These findings are for the first time underpinning the presumed positive effects of grazed alpine pastures on soil functions with data.

How to cite: Ramm, E., Andrade-Linares, D. R., Garcia-Franco, N., Han, J., von Heßberg, A., Dashpurev, B., Jentsch, A., Krämer, A., Schloter, M., Wiesmeier, M., and Dannenmann, M.: Re-grazing of an alpine pasture sustains ecosystem services, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12037, https://doi.org/10.5194/egusphere-egu24-12037, 2024.

EGU24-12121 | ECS | Orals | BG3.19

High importance of organic fertilizer N for grassland plant N nutrition in the years following fertilization 

Jincheng Han, Ralf Kiese, Rainer Gasche, and Michael Dannenmann

We applied 15N labelled cattle slurry over one year to pre-alpine grassland in order to study its importance for plant N nutrition not only in the year of application, but also in the four following years. This five-year 15N tracing study was combined with a space for time climate change experiment in order to assess long-term fertilizer N cycling under current and future climatic conditions. In the year of 15N fertilizer application, the recovery of 15N in harvested aboveground plant biomass was as low as 7-17%, while fertilizer 15N retention in the soil nitrogen pool was considerably higher (32-42%). In the year after its application, fertilizer was of equal importance for plant N nutrition compared to the year of application, as illustrated by a plant 15N recovery of 9-14%. 15N recovery in mowed plant biomass then only slowly declined in the following years and stayed significant over the entire 5 years monitored in this study.

After five years, the cumulative 15N recovery rate in mowed biomass was 33 to 41 %. Considering 15N recovery in soil and roots after 5 years revealed a total 15N tracer recovery of 66% for the climate change treatment and 77% for the climate control treatment. These results show a rapid cycling of nitrogen through soil organic matter until remineralization and plant uptake. Furthermore, we reveal a minimal contribution of recent fertilizer nitrogen to plant nutrition and the dominance of soil organic nitrogen over fertilizer nitrogen for plant nutrition in such grasslands. The findings reinforce the concept that fertilizing such grasslands is largely a fertilization of soils rather than a fertilization of plants, thereby replenishing mineralized soil organic nitrogen (SON) stocks that is exported by harvests. Particularly under climate change conditions, the low N recovery rates of plant nitrogen, high plant N export and the rapid remineralization of soil organic nitrogen led to negative nitrogen balances.

How to cite: Han, J., Kiese, R., Gasche, R., and Dannenmann, M.: High importance of organic fertilizer N for grassland plant N nutrition in the years following fertilization, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12121, https://doi.org/10.5194/egusphere-egu24-12121, 2024.

EGU24-16600 | ECS | Posters on site | BG3.19

Effects of different slurry application techniques on Nitrogen Use Efficiency (NUE) in an extensive grassland 

Sebastian Floßmann, Kaiyu Lei, Sigrid van Grinsven, Ingrid Kögel-Knabner, Jörg Völkel, and Michael Dannenmann

Nitrogen (N) fertilization is essential to increase grassland productivity, but losses of excess N to the environment are causing environmental and health issues such as nitrate contamination and eutrophication of water bodies, greenhouse gas emissions, and impaired soil and air quality.  Especially organic fertilization with cattle slurry is known for high environmental N losses. In that respect, different refined cattle slurry management strategies targeted to increase nitrogen use efficiency (NUE) are legally prescribed. However, a holistic assessment of the nitrogen-related agronomic and environmental impacts is still missing. This study aims to test different slurry application techniques for their effects on NUE, hydrological and gaseous N losses, productivity and fodder quality, soil organic nitrogen formation and total N balances. In a small-scale experiment 15N enriched slurry was applied on 1 m² grassland plots using the following application methods: (1) traditional slurry broadcast spreading under dry weather; (2) application like (1) followed by a heavy rainfall event to increase slurry infiltration into the soil; (3) broadcast spreading of slurry diluted with water; (4) injection of slurry into the soil via shallow slits; and (5) injection of slurry into the soil via deep slits. Variants (4) and (5) represent modern trailing shoe injections requiring extensive machinery. Fates of fertilizer N such as plant uptake, stabilization in soil through microbial immobilization as well as NO3 leaching were investigated by 15N tracing approaches in order to create full fertilizer N balances. Sampling and harvest began 3 months after fertilization with 15N-labeled slurry and first results indicate that both injection treatments lead towards a markedly higher slurry-N retention in the soil compared to broadcast spreading, which was not achieved by slurry dilution and traditional application plus strong irrigation. Based on further isotopic analyses, full fertilizer N balances for the different cattle slurry application techniques will be provided. 

How to cite: Floßmann, S., Lei, K., van Grinsven, S., Kögel-Knabner, I., Völkel, J., and Dannenmann, M.: Effects of different slurry application techniques on Nitrogen Use Efficiency (NUE) in an extensive grassland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16600, https://doi.org/10.5194/egusphere-egu24-16600, 2024.

EGU24-18830 | ECS | Posters on site | BG3.19 | Highlight

Influence of water stress on the productivity of Mediterranean oak savanna grassland  

María J. Muñoz-Gómez, Ana Andreu, María D. Carbonero, Ángel Blázquez-Carrasco, and María P. Gónzalez-Dugo

Grasslands of Mediterranean oak savannas supply numerous ecosystem services and are key for the rural development of extensive regions. Their phenology and overall productivity are significantly influenced by water availability. As a result, the considerable year-to-year fluctuations in production are tied to the variable nature of the Mediterranean climate.

This study aimed to assess the grasslands net primary production (NPP) in a region of Southern Spain for a period of 17-year (2001-2018). The spatiotemporal variations and linkages to water availability, with a focus on practical on-farm management were examined.  A Light-Use Efficiency model to estimate NPP was combined with the Surface Energy Balance System (SEBS) models to derive evapotranspiration and the anomalies of relative evapotranspiration, used as a proxy of water stress. Both models were adapted to the particular structure of these savanna-type systems and applied integrating meteorological information and MODIS satellite data. 

The findings yielded valuable insights into how these grasslands respond to drought conditions in the region. During the major droughts of 2004/2005 and 2011/2012, the reduction in aerial biomass production was 42% and 67%, respectively.  The study pinpointed the most productive area, characterized by low slopes and moderate tree cover. The biomass production time series classification identified four distinct trends in the region, all displaying shifted relationships with similar slopes between production and anomalies of relative evapotranspiration. However, a seasonal and monthly analysis was necessary to explain the behavior of years with unusual relationships. 

In addition to the known importance of spring for annual grassland production in this area, the seasonal analysis highlighted the significance of autumn, particularly with spring water deficits. The most productive years exhibited favorable conditions in both spring and autumn.

The proposed methodology to characterize grassland productivity in relation to water availability can be a useful tool for farmers. When combined with forecast data, it could assist in determining the optimal level of management intensification, leading to an adjustment of their stocking rate.

How to cite: Muñoz-Gómez, M. J., Andreu, A., Carbonero, M. D., Blázquez-Carrasco, Á., and Gónzalez-Dugo, M. P.: Influence of water stress on the productivity of Mediterranean oak savanna grassland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18830, https://doi.org/10.5194/egusphere-egu24-18830, 2024.

In this study the process-based ecosystem model LandscapeDNDC (LDNDC) was calibrated on long-term observations from large weighable grassland lysimeters of the TERENO observatory at two sites, the Graswang site (860 m ASL, 4757′ N, 1103′ E) and the Fendt site (600 m ASL, 4783′ N, 1107′ E) which were both exposed to different management intensities, e.g. intensive and extensive management cultivation, in the pre-alpine region of Germany. The annual average temperature of the high elevation site Graswang was 6.5 °C with an annual precipitation of 1359.3 mm, while the low elevation site Fendt showed an annual air temperature of 8.6 °C and a precipitation of 981.9 mm (2014-2017). 

The observations used for the models calibration were based on daily data of soil temperature, soil moisture and grass biomass yield from cuttings of three lysimeter replicates in a timeframe from 2012-2021, whereby for the biogeochemical observations, the cumulative sums / estimates of annual emissions for nitrogen (N2), nitric oxide (NO), nitrous oxide (N2O) and ammonia (NH4), nitrate (NO3) leaching as well as observed changes in soil carbon and nitrogen stocks were considered. Hereby, N2O observations were derived from sub daily fully automated flux measurements using a robot system together with laser spectrometry. Annual N2 emission estimates were based on isotope ratio mass spectrometer measurements coupled to an elemental analyzer, whereas NH4 observations deployed acid trap passive samplers. 

The observations for the low elevation grassland site in Fendt showed N input via slurry was 76 vs. 174 kg-N, while total N in harvested grass was 127 vs.  230 kg-N for extensive vs intensive management while biological nitrogen fixation was estimated to 10 kg-N ha-1. Estimates for annual N2O emissions were 0.25 vs. 0.6kg N2O-N ha-1, NO emissions of 0.1 kg NO-N ha-1, NH3 volatilization of 15 vs. 36 kg NH3-N ha-1, N2 emissions of 20 vs. 35 kg N2-N ha-1 and NO3 leaching showed rates of 3 vs. 6 kg NO3-N ha-1 for the extensive versus intensive managed grassland cultivation. Annual soil carbon losses of approximately 1.5 ton-C ha-1 for intensive management were observed while extensive SOC losses were 0.8 ton-C ha-1. The observation dataset was split for model calibration and validation. 

With the present study we show a detailed analysis of the model’s calibration including all above quantities to constrain process parameters for the prediction of grassland functionality, representing a novel approach due to using an exceptional high number of different observation quantities and measures.

The calibrated model was finally applied for the assessment of the full nitrogen balance of extensive and intensive grassland cultivation and thereby represents the typical pre-alpine grassland belt of Germany. With that, we can report estimates of gaseous nitrogen emissions and aquatic nitrogen losses into the surface waters, nitrogen exports via grass biomass as well as estimates of the dynamics of the soil carbon stocks. In addition, the described approach presents an uncertainty quantification associated to the LDNDC modelling approach.

How to cite: Müller, A.-L.: Calibration and validation of the LandscapeDNDC model for grassland bio-geochemistry in the prealpine grassland belt of Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20134, https://doi.org/10.5194/egusphere-egu24-20134, 2024.

EGU24-20750 | ECS | Orals | BG3.19

Enhanced Rock Weatherings Effects on Soil and Plant Chemistry in Acidic Biodiverse Grassland 

Derek Bell, jonathan Leake, David Beerling, and Dimitar Epihov

Enhanced rock weathering (ERW) is the process of spreading basalt rock on agricultural soils to absorb carbon dioxide (CO2). If rolled out globally models predict it could sequester gigatonnes of atmospheric CO2 by the end of the century (Beerling et al., 2020). Extensive research is being carried out on identifying potential co-benefits of ERW and validating carbon dioxide sequestration within tilled arable soils; the annual nature of crops grown in these soils and their associated fertiliser use causes plants to have limited total root surface areas and disturbed mycorrhizal networks. ERW’s potential in grasslands, where perennial plants dominate with stable root biomass and mycorrhizal partners, is yet to be tested thoroughly. It does offer potential, as previous studies have shown that mycorrhizal fungal association to plant roots enhances mineral weathering (Quirk et al., 2012). To characterise whether grasslands carry any potential as an ERW system 50 tonnes per hectare of basalt was applied in March 2022 to 5 plots, with 5 adjacent plots being left un-treated within a traditional mildly acidic hay meadow in the Peak District. Over the course of the growing season soil pH, cations, phosphorus, and plant available silicon was assessed at regular intervals for treated and untreated samples. Furthermore, plant yield, nutrition data, and biodiversity were also analysed. Results indicate that rock weathering did occur, with significant increases in soil magnesium, silicon, and pH noted over the course of the experiment. There were no significant changes to plant yield, biodiversity, or nutrition in most cases; however, in basalt treated samples there were significant increases in the plant concentrations of silicon, magnesium, strontium, and sodium. Results indicate that ERW could benefit acidic grasslands through its pH and soil nutrient effects, while also potentially resulting in the absorption of CO2.

How to cite: Bell, D., Leake, J., Beerling, D., and Epihov, D.: Enhanced Rock Weatherings Effects on Soil and Plant Chemistry in Acidic Biodiverse Grassland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20750, https://doi.org/10.5194/egusphere-egu24-20750, 2024.

EGU24-197 | ECS | Orals | BG3.23

Non-living respiration: another breath in the soil 

Clémentin Bouquet, Benoit Keraval, Gaël Alvarez, Mounir Traïkia, Fanny Perrière, Sandrine Revaillot, Anne-Hélène Le Jeune, Hermine Billard, Sébastien Fontaine, and Anne-Catherine Lehours

Containing about three times more carbon (C) than the atmosphere (600-800 PgC) or the Earth’s vegetation, soils are crucial C pools for climate change mitigation. The CO2 flux (~110 PgC yr1) from soils is the largest terrestrial C source to the atmosphere and is about ten times the annual emissions from burning fossil fuels (IPCC 2021). A small change in soil CO2 flux can significantly alter the atmospheric CO2 concentrationand potentially amplify global warming.A complete and reliable identification of soil processes likely to affect soil C balance and CO2 flux is essential to predict future atmospheric CO2 concentrations.

The current scientific consensus is that the dominant component of the soil CO2 flux is heterotrophic microbial respiration. However, this paradigm is challenged by recurrent observations of substantial and persistent CO2 emissions in soil microcosms where sterilization treatments (e.g. γ-irradiations) reduced microbial activities to an undetectable level. To address this shortcoming, we postulated that non-cellular respiratory pathways in soils are capable of performing the complete oxidation of organic matter to CO2. This hypothesis was enhanced (i) by the detection of an isotopic signature of soil CO2 flux (δ13C-CO2 up to −75.4 ± 2.8 ‰) incompatible with a cell-derived respiration and (ii) by the release of 13C-CO2 in sterilized soils supplied with 13C-glucose (Maire et al. 2013; Kéraval et al. 2016; 2018).

Overall our work highlights that non-cellular respiration accounts for 16 to 48 % of CO2 fluxes from sterilized soils worldwide with contrasted physical and chemical properties. We have also demonstrated that sterilized soils have a high and persistent potential for electron transfer and form self-sustaining systems that can maintain CO2 emissions for more than 6 years without external input. Furthermore, untargeted metabolite profiling carried out using proton nuclear magnetic resonance (1H NMR) spectroscopy revealed that non-living soils have an orderly exometabolome dynamics supporting the idea that non-stochastic scenarios mimicking biochemical transformations (i.e. Krebs cycle, fermentation) occurred in sterilized soils (Bouquet, Keraval et al. in prep).

  • Maire, V. et al, 2013. An unknown oxidative metabolism substantially contributes to soil CO2emissions, Biogeosciences, 10, 1155–1167, https://doi.org/10.5194/bg-10-1155-2013,
  • Kéraval, B., et al, 2016. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature, Biogeosciences, 13, 6353–6362, https://doi.org/10.5194/bg-13-6353-2016, 2016
  • Kéraval, B. et al, 2018. Cellular and non-cellular mineralization of organic carbon in soils with contrasted physicochemical properties. Soil Biol. Biochem. 125, 286–289. doi:10.1016/j. soilbio.2018.07.02
  • Bouquet, C., et al. in prep. Non-living respiration : another breath in the soil

How to cite: Bouquet, C., Keraval, B., Alvarez, G., Traïkia, M., Perrière, F., Revaillot, S., Le Jeune, A.-H., Billard, H., Fontaine, S., and Lehours, A.-C.: Non-living respiration: another breath in the soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-197, https://doi.org/10.5194/egusphere-egu24-197, 2024.

EGU24-2201 | ECS | Orals | BG3.23

An innovative soil mesocosm system for studying the effect of soil moisture and background NO contribution on soil surface trace gas fluxes  

Logapragasan Subramaniam, Florian Engelsberger, Benjamin Wolf, Michael Dannenmann, and Klaus Butterbach-bahl

This research investigates the complex dynamics of how soil NO concentrations and soil moisture affect the exchange of greenhouse gases between soils and the atmosphere. To this end, we have developed and tested an automated soil mesocosm system (AU-MES), which allows for dynamically change of headspace and soil NO concentrations, measures trace and greenhouse gas fluxes based on a dynamic chamber approach, and observes and manipulates key soil and environmental metrics such as temperature, light conditions, or moisture.

Initial a brief phase of soil-only incubation experiments demonstrated the influence of soil moisture and soil and headspace NO concentrations of 400 ppbv on gas emissions. We observed that under low soil moisture conditions (30% water-filled pore space), nitrification was favored, as indicated by increased emissions of NO (at zero NO concentration 0.191 kg N ha-1 and at high NO concentration 0.180 kg N ha-1) and NO2 (at zero NO concentration 0.002 kg N ha-1 and at high NO concentration 0.001 kg N ha-1). In contrast, under higher soil moisture conditions (50% water-filled pore space), we observed increased N2O (at zero NO concentration 0.149 kg N ha-1and at high NO concentration 0.147 kg N ha-1) and CO2 (at zero NO concentration 0.122 t C ha-1 and at high NO concentration 0.110 t C ha-1)fluxes, suggesting that denitrification may become more important. These results, particularly under soil rewetting and fertilizer application, illustrate the complex interplay between soil nitric oxide concentrations, moisture levels, microbial activities, and gas emissions.

In summary, the AU-MES system is a valuable tool for investigating soil-atmosphere gas interactions and the effects of various environmental elements on these processes. Our research provides important insights into how nitric oxide may affect soil processes and trace gas exchange at the soil-atmosphere interface.

Keywords
Automated soil mesocosm system, nitric oxide, gas concentrations, headspace purging, soil purging

How to cite: Subramaniam, L., Engelsberger, F., Wolf, B., Dannenmann, M., and Butterbach-bahl, K.: An innovative soil mesocosm system for studying the effect of soil moisture and background NO contribution on soil surface trace gas fluxes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2201, https://doi.org/10.5194/egusphere-egu24-2201, 2024.

EGU24-2971 | ECS | Posters on site | BG3.23

Viral lifestyles modulate prokaryotic community structure and function in thermokarst lakes 

Yutong Song and Yuanhe Yang

Microbes determine the fate of carbon (C) and nitrogen (N) released by rapidly thawing permafrost, with viruses that infect them mediating this process via lysis and metabolic reprogramming. However, little is known about whether and how viruses with different lifestyles modulate microbial community and ecological functions, particularly in thermokarst lakes where studies for viruses were pretty scarce. Here, we conducted metagenome deep sequencing on sediment samples obtained from 60 thermokarst lakes along a 1,100 km permafrost transect, and recovered 4,161 viral and 2,805 microbial genomes from above 3 Tb data, as well as predicted their interactions and functions. We found that viral lifestyles were coupled with microbial life-history strategies along nutrient gradients. Virus-host interactions were more specialized in temperate viruses dominant samples than those in virulent viruses prevailing samples. Further functional predictions revealed that virus-encoded auxiliary metabolic genes (AMGs) exhibited more diverse and higher abundance in virulent viruses dominant community than those in temperate viruses predominant community. What count was that viruses could reduce methane (CH4) emissions from thermokarst lakes via virus-encoded mmoB genes. Overall, these findings highlight the crucial impact of viral life-history strategies on microbial community and key ecosystem function in climate-sensitive thermokarst habitats.

How to cite: Song, Y. and Yang, Y.: Viral lifestyles modulate prokaryotic community structure and function in thermokarst lakes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2971, https://doi.org/10.5194/egusphere-egu24-2971, 2024.

EGU24-4353 | Orals | BG3.23

Soil microsites controls N2O production and emission in undisturbed soils 

Zhifeng Yan and Baoxuan Chang

Soil structures regulate the production and emission of N2O from soils mainly through influencing substrate availability and gas diffusion. However, the respective impacts of substrate availability and gas diffusion and their response to moisture changes remain elusive. This study conducted laboratory incubation experiments with disturbed (sieved) and undisturbed (intact) soil cores under different soil moisture levels (i.e., 40, 60, 80 and 100% water filled pore space (WPFS)). Soil N2O fluxes were continuously monitored over a 21-day incubation period, during which O2 concentration profile was occasionally measured and relative soil gas diffusivity was measured at the end of experiments. The results show that the N2O fluxes from the disturbed soil cores were 2~25 times higher, respectively, than those from undisturbed cores, which are similar to field observations. Nevertheless, the difference in the relative soil gas diffusivity between them was not obvious, especially under high moisture conditions. Therefore, the overestimated soil N2O emission from sieved soil experiments was attributed to increased C availability caused by disturbance rather than changes in gas diffusivity. Additional incubation experiments with 15N tracing further demonstrated the key impacts of soil microsites on N2O production and emission. Overall, this study highlighted the physical protection of soil microsites on carbon sequestration and N2O mitigation.

How to cite: Yan, Z. and Chang, B.: Soil microsites controls N2O production and emission in undisturbed soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4353, https://doi.org/10.5194/egusphere-egu24-4353, 2024.

Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4°C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-20 cm depth. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28%, 29.51%, and 61.05% in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better O2 and CH4 penetration, thereby promoting more efficient activity of MOB. This increased CH4 uptake in subtropical forests has the potential to mitigate the effects of global warming.

How to cite: Zhang, L., Lin, W., and Guo, J.: Exploring the impact of soil warming on methane uptake at different soil depths in a subtropical forest: unraveling the role of decreased water content, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4918, https://doi.org/10.5194/egusphere-egu24-4918, 2024.

EGU24-5323 | ECS | Orals | BG3.23

The influence of glyphosate on soil CO2 respiration and microbial communities structure in histosol and fluvisol 

Adam Furtak, Anna Szafranek-Nakonieczna, Andrzej Górski, and Anna Pytlak

Carbon dioxide is the most important among all greenhouse gases and microbial respiration is one of the fundamental soil processes, that contribute to atmospheric CO2 pool. Many factors influence the respiration of soil microbiota. With regard to agricultural soils, the most discussed are the type of cultivation and fertilisation. Much less attention is paid to herbicides, which are widely used and comprise a frequent contaminant of the soil environment. The most commonly used herbicide worldwide is glyphosate (GFP). In 2018, annual  GFP consumption exceeded 8.25 x 108 kg and is still increasing. GFP is a foliar herbicide that is used in agriculture in the form of commercial formulations (GFC). Due to imprecise dosing, leaf washoff or with plant necromass, GFC reaches the soil environment where can potentially modulate activity and abundance of soil microorganisms. Possible modes of action include toxicity (e.g. due to inhibition of the shikimate pathway) or stimulation due to the fact that GFP is biodegradable and can potentially be a source of all major biogenic elements C, N and P. Due to the widespread use of GFC in agriculture, it may be an important driver of soil-related CO2 emissions, but knowledge in this area is still fragmentary.  

In the current study, a wide range of GFP and GFC (0 – 10 000µg g-1) doses were used to determine its effect on microbial respiration in two agriculturally used soils (histosol and fluvisol). In parallel, the qualitative and quantitative composition of the soil microbial community was studied. Pure glyphosate (GFP) and a commercial formulation (GFC) containing adjuvants in addition to glyphosate were tested.

For both soils, the exposure to GFP and GFC resulted in an increase in microbial respiration. However, this effect was greater for GFC, indicating the important role of adjuvants in shaping the environmental effect of the herbicides used. In accordance with the respiration results, a significant increase in the total bacteria count was found in both studied soils. Qualitatively, communities' structures were not significantly transformed, even under the influence of high doses of the tested preparations.

How to cite: Furtak, A., Szafranek-Nakonieczna, A., Górski, A., and Pytlak, A.: The influence of glyphosate on soil CO2 respiration and microbial communities structure in histosol and fluvisol, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5323, https://doi.org/10.5194/egusphere-egu24-5323, 2024.

EGU24-5799 | Orals | BG3.23

Stable-isotope probing identifies microorganisms actively degrading DMSP in anaerobic saltmarsh sediments 

Özge Eyice, Susan Hawthorne, Stephania Tsola, Ornella Carrión, and Jonathan Todd

Billions of tons of dimethylsulfoniopropionate (DMSP) are produced every year in marine and coastal ecosystems such as saltmarshes and estuaries. DMSP has far-reaching roles in global carbon and sulfur cycling, also as an osmotolerant and signalling molecule. Furthermore, the microbial degradation of DMSP contributes significantly to the formation of dimethylsulfide (DMS) and methanethiol (MT), other abundant organosulfur compounds with ecological significance. Particularly, in anaerobic sediments, microbial DMS and MT degradation leads to the formation of methane, a powerful greenhouse gas. However, research to date has predominantly focused on aerobic settings, revealing diverse groups of microbes and enzymes mediating DMSP degradation. DMSP concentrations in anaerobic ecosystems and microbial populations underlying DMSP breakdown have never been studied, prohibiting improvements in our understanding of global carbon and sulfur cycles. To address this key knowledge gap, we applied stable-isotope probing combined with 16S rRNA sequencing to identify the active DMSP-degraders in anaerobic saltmarsh sediments.

We collected sediments from a 5-10 cm depth of Medway Saltmarshes (UK) using 3.5cm Perspex corers. We transferred the samples to the laboratory and measured in situ DMSP concentrations of 7.7 (±0.5) μmol g−1 wet sediment. In line with the in situ concentrations, we set up replicated incubations anaerobically with 8 μmol g−113C- and 12C-labelled DMSP, and applied stable-isotope probing combined with 16S rRNA sequencing.

We observed immediate degradation of DMSP in the sediment incubations and DMS production, suggesting the existence of a resident microbial community actively carrying out this process. A total of 48 μmol/g 13C- or 12C-DMSP was amended and a total of 34 (±3.2) μmol/g DMS was produced in the incubations over 12 days.  DNA was extracted and ultracentrifugation was applied to separate heavy and light DNA fractions for downstream analysis. 16S rRNA sequencing of the fractions from 13C and 12C-labelled DNA demonstrated significant enrichment of the family Nitrincolaceae within the order Oceanospirillales in 13C-heavy fractions compared to 13C- light and 12C-heavy fractions (P<0.05). Their relative abundance increased from 2% (±1.3) to 27.2% (±9.1). This demonstrates that they are the active DMSP degraders in anaerobic saltmarsh sediments.

This is the first study quantifying significant concentrations of DMSP in anaerobic saltmarsh sediments and demonstrating Nitrincolaceae to be the active DMSP-degraders. Our findings not only broaden our understanding of microbial carbon and sulfur cycling but also highlight a previously overlooked route to methane formation in anaerobic saltmarsh sediments.  Our study underscores the need to identify microbial communities and pathways of DMSP breakdown across diverse anaerobic settings.

How to cite: Eyice, Ö., Hawthorne, S., Tsola, S., Carrión, O., and Todd, J.: Stable-isotope probing identifies microorganisms actively degrading DMSP in anaerobic saltmarsh sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5799, https://doi.org/10.5194/egusphere-egu24-5799, 2024.

EGU24-6777 | Posters on site | BG3.23

Development of an online O2-CO2 soil profile probe for flux estimations 

Martin Maier, Laurin Osterholt, and Elad Levintal

Reliable and accurate measurements of gas fluxes between soil and atmosphere are fundamental to calculate global greenhouse gas budgets. Chamber methods and the eddy covariance method are the most often used methods to measure soil-atmosphere gas fluxes. The gradient method can provide additional information about the localization of gas production within the soil profile. Using this approach gas fluxes in the soil profile are calculated by multiplication of the vertical concentration gradient of a gas in the soil by the effective gas diffusion coefficient of the soil. Technical progress in the field of small gas sensors has made it possible to integrate online CO2 sensors into soil gas profile monitoring systems, which greatly facilitates soil CO2 monitoring. While soil CO2 fluxes have been widely studied during the last decade, the “forgotten half” of this respiratory flux, the counter wise flux of atmospheric oxygen (O2) into the soil is rarely investigated, although it is known that O2 availability is the key for many soil processes.

Our objective was to develop and test a soil gas profile probe for online CO2 and O2 measurements with high temporal resolution that allows (1) soil–atmosphere flux estimation and (2) estimation of soil respiration profiles for both CO2 and O2 including (3) the apparent respiratory coefficient (CO2 efflux divided by O2 influx).

We developed a multilevel O2-CO2 profile probe with small build-in online sensors in multiple depths. The design was based on a modified version of a recently developed CO2 profile probe (Osterholt and Maier, 2020, Osterholt et al 2023). The probe consists of one 3D print segment per depth each containing one small NDIR CO2 and one O2 sensor. Extensive laboratory tests with different O2 sensors were necessary to exclude, or identify and quantify, possible biases in the O2 measurements due to expected environmental changes during field measurements (such as barometric pressure, soil temperature and relative humidity). The segments can be combined to probes of different length. For the installation of the sampler a hole has to be drilled, into which the sampler is inserted. We present first results from laboratory experiments and a field experiment, focusing on methodological issues and the technical performance of the measuring system.

Acknowledgements: This research was supported by the German Research Foundation (DFG, MA 5826/4‑1 project number: 535470615)

Osterholt, L. and Maier, M.: Development of an in-situ CO­2 gradient sampler, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7272, https://doi.org/10.5194/egusphere-egu2020-7272,  2020.

Osterholt, L.; Kolbe, S.; Maier, M. (2022): A differential CO2 profile probe approach for field measurements of soil gas transport and soil respiration #. In J. Plant Nutr. Soil Sci. 185 (2), pp. 282–296. DOI: 10.1002/jpln.202100155.

How to cite: Maier, M., Osterholt, L., and Levintal, E.: Development of an online O2-CO2 soil profile probe for flux estimations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6777, https://doi.org/10.5194/egusphere-egu24-6777, 2024.

EGU24-7425 | ECS | Orals | BG3.23

Hysteretic response of N2O reductase activity to soil pH variations after application of lime to an acidic agricultural soil 

Camille Rousset, Iheb Ouerghi, Florian Bizouard, Henri Brefort, Marjorie Ubertosi, Mustapha Arkoun, and Catherine Hénault

Nitrous oxide (N2O) contributes to increasing the greenhouse effect and is also involved in stratospheric ozone depletion. In soil and water, N2O reductase catalyses the reduction of N2O into the inert form N2 and is then considered as a key environmental enzyme. N2O reductase activity is known to be affected by acidic conditions (Samad et al. 2016) and the application of liming materials to acidic soils is now proposed as a solution for mitigating soil N2O emissions (Barton et al. 2013).

During a one-year laboratory experiment, we studied the functioning of N2O reductase after the application of calcium carbonates to an acidic soil with initially a very low capacity to reduce N2O. The functioning of N2O reductase was characterised through anaerobic incubations using the acetylene inhibition technique combined with a logistic model to determine the main enzyme functioning characteristics (latency, maximal rate).

Both changes in soil pH and soil capacity to reduce N2O were rapidly observed after the application of lime materials. The activity of N2O reductase was observed to be efficient throughout the experiment even when the soil had returned to initial acidic conditions, revealing a hysteretic response of N2O reductase to pH variations. Nevertheless, some signs of lower N2O reductase activity over time were observed mainly after 200 days of applying lime materials. Altogether, these results suggest that, in this soil condition, the beneficial impact of the application of liming materials on N2O emissions could last longer than this on soil pH.

Keywords: Climate change mitigation · N2O reductase · Soil · pH · Lime application · Logistic modelling

 

References:

Barton, L. et al. (2013) Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biology and Biochemistry 62, doi: 10.1016/j.soilbio.2013.02.014

Samad, M. S. et al. (2016) High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization. Plos One 11, doi: 10.1371/journal.pone.0151713  

 

Acknowledgements: The authors gratefully acknowledge funding for the NatAdGES project from the “Investissement d’Avenir” program, ISITE-BFC project (contract ANR-15-IDEX-0003), the European Regional Development Fund (FEDER), the public investment bank (BPI France) and the CMI-Roullier.

How to cite: Rousset, C., Ouerghi, I., Bizouard, F., Brefort, H., Ubertosi, M., Arkoun, M., and Hénault, C.: Hysteretic response of N2O reductase activity to soil pH variations after application of lime to an acidic agricultural soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7425, https://doi.org/10.5194/egusphere-egu24-7425, 2024.

EGU24-8889 | ECS | Orals | BG3.23

Using 15N isotope and microbiome analysis to understand N2O production and consumption processes. 

Mohit Masta, Mikk Espenberg, Jaan Pärn, and Ülo Mander

Nitrous oxide is a potent greenhouse gas which is involved in stratospheric ozone depletion. Even though nitrogen cycle has been studied for a long time, it is still challenging to understand specific N2O production and consumption processes. This is due to the complexity and heterogeneity of soil, wherein multiple processes can take place simultaneously. Isotopic composition of N2O can help us solve this and provide useful information on evaluating N2O sources and calculate global budgets. N2O is a linear molecule and its understanding at molecular scale can provide major insights into partition of its source processes. The N2O site preference (SP), which is the difference in δ15N between N2O molecules substituted with 15N at the central and the peripheral position, has proved to be a major tool to tackle this problem. The objective of this study is to use isotopic and microbial research for N2O sources and process partitioning. We will bring some examples from our recent studies in the lab and in a drained peatland forest.

 

During our lab study based on peat soil from a floodplain fen, we observed bacterial denitrification was a major source of N2O emissions under flooded conditions. We observed this using 15N isotopic mapping technique, which helped separate multiple active processes. We applied a similar method in-situ on a drained peatland in southeastern Estonia and described hybrid N2O formation, where one N atom of the N2O molecule was taken from NH4 and the other N molecule from another source such as organic N, was the dominant source of N2O emissions. The isotopic mapping and molecular enrichment of 15N during our experiment showed that. The isotopic mapping initially suggested nitrification as a major source, but on further investigation of 15N enrichment, we found the presence of hybrid processes (15N nitrogen from two pools or processes). Furthermore, we studied the genetic potential for major N2O processes (denitrification, nitrification, dissimilatory nitrate reduction to ammonium (DNRA)) and combined these with the isotope results, and this integrated approach is an important tool to partition N2O processes. When using 15N tracers, the isotopic technique can partition the sources (nitrate or ammonia) of N2O. Hence, using the isotopic mapping of natural abundances and 15N tracers to partition the source, we can get initial insights into N2O sources and processes together. Isotopic mapping is still under development and further research is required as it also has a problem of overlapping of processes.

How to cite: Masta, M., Espenberg, M., Pärn, J., and Mander, Ü.: Using 15N isotope and microbiome analysis to understand N2O production and consumption processes., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8889, https://doi.org/10.5194/egusphere-egu24-8889, 2024.

The dynamics of soil carbon (C) emissions along with their biogeochemical and environmental control have garnered increasing attention. However, the role of methane (CH4) in soil organic carbon (SOC) modelling has been relatively underexplored compared to carbon dioxide (CO2), and the omission of microbial processes may prevent us from accurately modelling CH4 dynamics under environmental changes. Here, we incorporated an explicit microbial CH4 module into the Microbial-ENzyme Decomposition (MEND) model and evaluated it against a sub-version with the first-order kinetics (First-order) and the previous MEND (MEND_old) model. We conducted a rigorous calibration and validation of MEND with high-resolution CO2 and CH4 efflux observations across two soil types and five different oxygen (O2) fluctuation conditions. Beyond precisely capturing soil CO2 and CH4 effluxes, the model could also effectively simulate the relative contents of microbial biomass and enzymes. The multi-model comparison further revealed that the inclusion of new processes did not necessarily enhance model performance if microbes were not perceived as explicit state variables. Our results demonstrated that adopting microbial functional groups as drivers of soil CH4 cycle could provide a basis for testing hypotheses on microbially mediated CH4 processes and their responses to environmental changes. With the availability of diverse data and the development of genetic technologies, our modelling framework present here will empower ecologists and governments to perceive and intervene in global warming from underlying biogeochemical mechanisms rather than predictions.

How to cite: Wang, G. and Zhou, S.: Representing explicit microbial processes enhances methane modeling under oxygen fluctuation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9741, https://doi.org/10.5194/egusphere-egu24-9741, 2024.

Drylands, constituting approximately 56% of the Earth's terrestrial surface, stand as the largest biome. Despite their vast expanse, our understanding of soil trace gas emissions from these regions remains limited. This knowledge gap arises from an uneven distribution of soil trace gas flux measurements across continents. While North American and East Asian drylands have been extensively studied, reports from other drylands are scarce. This lack of information hinders our ability to effectively constrain the atmospheric budget of reactive carbon and nitrogen gases and to develop predictive models for changes in soil trace gas emissions amid ongoing global environmental changes.

To address this gap, we conducted a comprehensive study in the Negev Desert, Israel, utilizing an array of seven automatic soil static chambers coupled to two infrared gas analyzers. This allowed us to measure soil emissions of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) near-continuously every 15 minutes over three rainless months, measuring ~5000 individual soil fluxes. Our focus was on bare soils with varying organic carbon content (0.2%, 0.5%, and 0.6%) and nitrogen content of ~0.1%.

Our findings reveal significant diurnal variations in both CO2 and N2O emissions. CO2 emissions peaked at noon (1318.2±440.4 µg C m-2min-1) and reached their lowest point at midnight (373.4±228.8 µg C m-2min-1). In contrast, soil N2O flux was highest at 9:00 (0.07±0.02 µg N m-2min-1) and lowest at 21:00 (0.03±0.01 µg N m-2min-1). Soil CH4 flux exhibited minimal variation, with maximum and minimum emissions of 0.43±0.24 and 0.16±0.09 µg C m-2min-1, respectively.

Notably, the distinct peak emission times for CO2 and N2O suggest different underlying mechanisms for the production of these gases in the soil. Furthermore, we observed a strong correlation between soil CO2 emissions and soil water fluxes, while all gaseous fluxes correlated with the organic carbon content of soils. This emphasizes the role of water and soil organic carbon as primary driving factors for trace gas production in desert soils during rainless periods. Specific mechanisms of soil trace gases production in dry desert soils, however, will require further research.

How to cite: Gelfand, I. and Grabovsky, V. I.: During the rainless season, arid soils exhibited large diurnal fluctuations in carbon and nitrous oxides emissions, while displaying a uniform pattern of methane emissions throughout the day. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10301, https://doi.org/10.5194/egusphere-egu24-10301, 2024.

EGU24-11695 | ECS | Posters on site | BG3.23

Microbial nitrogen cycle in sub-tropical peatland cloud forest and wetland ecosystems of Réunion Island 

Fahad Kazmi, Ülo Mander, Reti Ranniku, Maarja Öpik, Kaido Soosaar, Kuno Kasak, Claudine Ah-Peng, and Mikk Espenberg

Peatlands play an essential role in the regulation of carbon and nitrogen cycles. Nitrogen-rich peatlands under warm and dry conditions can be a source of N2O, a potent greenhouse gas. Research on microbial activity, particularly in relation to N2O emissions in sub-tropical peatlands and wetlands, is very limited. In the current study, we investigated two peatland cloud forest sites in Reunion Island, namely Plaine des Cafres (characterized by dominant species Erica reunionensis and Alsophila glaucifolia) and Forêt de Bébour (featuring Erica reunionensis exclusively), alongside one RAMSAR wetland site located in Saint Paul. Both cloud forest sites were located at an altitude of 1500-1600 m, while the wetland was at an altitude of 4 m. to clarify the microbial dynamics of the nitrogen cycle in sub-tropical peatland cloud forests and wetlands.

DNA extraction was performed on these samples, followed by quantification of genes associated with the nitrogen cycle using quantitative polymerase chain reaction (qPCR). Analyses are ongoing for plant samples. In addition, soil samples underwent analyses to assess levels of ammonium (NH4+-N) and nitrate (NO3-N). Soil N2O fluxes were determined by collecting gas samples from the chamber headspace of static soil chamber systems at 20-minute intervals during one-hour sessions. The concentration of N2O was determined from gas samples using a gas chromatographer (Shimadzu, 2014).

All sites emitted negligible soil N2O fluxes (mean: 0.9 µg N m−2 h−1). However, a substantial amount of soil NH4+-N was found across all sites (mean: 77.2 mg/kg). The forests dominated by Erica reunionensis showed the highest values (mean: 106 mg/kg). Soil NH4+-N significantly correlated with the abundance of the nifH gene (R2 = 0.7, p<0.05). This indicates a high potential for microbial nitrogen fixation in all sites. Soil NO3-N varied significantly among different ecosystems. The cloud forests dominated by Erica reunionensis showed the highest values (mean: 139 mg/kg) as compared to the mixed forest (mean: 53.7 mg/kg) and the wetland site (mean: 2.53 mg/kg). Archaeal amoA gene abundance and proportion in soil were higher (p<0.05) in cloud forest sites than in wetland sites, positively correlating with NO3-N (R2 = 0.7, p<0.05). This reveals an archaeal nitrification potential in cloud forests. The nir:amoA ratio, as well as the nirS gene proportion, was significantly higher in the wetland (p<0.05), indicating the anaerobic denitrification potential, which explains the low NO3-N values there. Meanwhile, low soil N2O fluxes in the cloud forest soils can be attributed to the high abundance and proportions of nosZI-type denitrifiers.

The canopy soil from Erica reunionensis had a higher abundance of nirK and nosZI genes than Alsophila glaucifolia's canopy soil (P<0.05). However, it was the opposite in the case of fungal nirK abundance. The presence of denitrification genes in the canopy indicates an aboveground potential denitrification pathway in the cloud forests of the Réunion island. 

How to cite: Kazmi, F., Mander, Ü., Ranniku, R., Öpik, M., Soosaar, K., Kasak, K., Ah-Peng, C., and Espenberg, M.: Microbial nitrogen cycle in sub-tropical peatland cloud forest and wetland ecosystems of Réunion Island, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11695, https://doi.org/10.5194/egusphere-egu24-11695, 2024.

EGU24-12260 | Posters on site | BG3.23

The influence of herbicides on greenhouse gases emissions from soil: a bibliometric analysis 

Anna Pytlak, Adam Furtak, and Anna Szafranek-Nakonieczna

Agriculture is an important factor shaping gas exchange in the soil-atmosphere system. An important mechanism of agricultural impact is through the modulation of the living conditions of soil microorganisms responsible for the biological formation and utilisation of greenhouse gases. In this respect, agrochemicals play an important role. Fertilisers in particular have received much attention to date. The effects of soil supplementation, particularly with mineral nitrogen-containing fertilisers or organic fertilisers, on the microbial communities responsible for GHG transformation are well documented. Far less attention has been paid to other categories of agrochemicals, including herbicides. Meanwhile, the intensification of agriculture and the introduction of herbicide-resistant, transgenic crops involves the introduction of huge quantities of these chemicals (in the thousands of tonnes per year) into the environment. As a result of inaccurate dosing and with dead plant biomass, these compounds end up in the soil environment. The current paper presents a synthesis of information on the current state of knowledge regarding the effects of 4 commonly used herbicides worldwide (glyphosate, glufosinate, atrazine and 2,4-D) on the cycles of the most important greenhouse gases. VOS wiever software, equipped with text mining functionality was used to construct and visualise co-occurrence networks of important terms extracted from a body of scientific literature. An analysis of bibliographic databases for co-occurrence of key words such as "methane", "nitrous oxide", "carbon dioxide" and "greenhouse gas" - separately for each of the studied herbicides revealed that knowledge in this area is scarce and fragmentary. In the context of effects on greenhouse gas balance, only a few papers were recorded for glyphosate and atrazine and none for glufosinate or 2,4-D. In view of increasing global warming and the intensification of agricultural activity, it is important to complete the knowledge in this area.

Acknowledgements

This work was supported by the Project “Effect of glyphosate on the biological methane oxidation in agricultural soils”, no. 2021/41/B/NZ9/03130 which was financed by National Science Centre Poland.

How to cite: Pytlak, A., Furtak, A., and Szafranek-Nakonieczna, A.: The influence of herbicides on greenhouse gases emissions from soil: a bibliometric analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12260, https://doi.org/10.5194/egusphere-egu24-12260, 2024.

EGU24-12641 | Posters on site | BG3.23

Groundwater changes affect soil CO2 dynamics 

Stefan Seeger, Faisal Hayat, Talat Saeidi, and Martin Maier

Soils play a central role in the global carbon (C) cycle and can be a major source or sink of greenhouse gases. The highest concentrations and turnover of soil C is typically found in the top soil (0-0.5m depth). Yet, the total amount stored of soil organic carbon (SOC) in the subsoil (e.g. 0.5-3m) can be large and could be mobilized when soil environmental conditions change. These could be slow changes due to global climate change e.g. in subsoil moisture or temperature affecting subsoil respiration, but also more abrupt changes e.g. subsoil SOC mineralization after a decline in the groundwater level when prior submerged SOC gets exposed to higher O2 levels.

Our objective was (1) to study the effect of a changing groundwater level on soil CO2 concentration dynamics and (2) to test if the gradient method is a suitable tool to identify subsoil respiration effects.

For this pilot study we used a multilevel soil CO2 profile probe that allowed simultaneous online monitoring of soil CO2 concentration at different depth (Osterholt et al 2022), and calculation of the depth distribution of the soil respiration profile based on the gradient method (Maier & Schack-Kirchner, 2014). The CO2 probe and additional sensors were installed in a large (3 m diameter) lysimeter field station with sandy soil where the groundwater table was kept constant for >10 years at 0.8m depth. During the study period the ground water table was changed several times between 0.3-1.0m depth directly inducing effects on the CO2 concentration itself (piston flow) and also on the soil respiration profile (enhanced mineralization after groundwater level drops), which would not have been observed by pure chamber measurements at the surface.

 

Osterholt, L.; Kolbe, S.; Maier, M. (2022): A differential CO2 profile probe approach for field measurements of soil gas transport and soil respiration #. In J. Plant Nutr. Soil Sci. 185 (2), pp. 282–296. DOI: 10.1002/jpln.202100155.

Maier, M., & Schack-Kirchner, H. (2014). Using the gradient method to determine soil gas flux: A review. Agricultural and Forest Meteorology, 192–193, 78–95. https://doi.org/10.1016/j.agrformet.2014.03.006

How to cite: Seeger, S., Hayat, F., Saeidi, T., and Maier, M.: Groundwater changes affect soil CO2 dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12641, https://doi.org/10.5194/egusphere-egu24-12641, 2024.

EGU24-12997 | ECS | Posters on site | BG3.23

Two decades of micrometeorological measurements show dynamic drivers of springtime N2O emissions 

Leah Brown, Ian B. Strachan, David Pelster, Stuart Admiral, Luc Pelletier, Brian Grant, Ward Smith, and Elizabeth Pattey

Nitrous oxide (N2O) is a potent greenhouse gas with a global warming potential 265 times that of carbon dioxide and the ability to destroy stratospheric ozone. Agricultural soils contribute over two-thirds of anthropogenic N2O emissions. Field observations in temperate climates have commonly shown N2O emission peaks occurring in the spring during a period of snow melt and soil thaw. This freeze-thaw period typically accounts for approximately 35% of annual N2O emissions, however, current understanding of its drivers is based off of relatively short observation periods. The analysis of such data over decadal time spans is therefore needed to improve our understanding of key drivers. Here, we report on 21 years (2002-2022) of micrometeorological N2O flux data from a field site in Ottawa, Ontario. Correlation analyses were conducted between the N2O flux during the spring thaw period and variables that are commonly considered drivers. Little to no correlation was seen from linear or multilinear regressions across a range of meteorological, management, and soil variables. The non-linear response of non-growing season cumulative N2O emissions to cumulative freezing degree-days was consistent with previous studies (Wagner-Riddle et al., 2017). However, in isolating freezing degree-days we may be neglecting other possible controls. These results show that the relationship of N2O flux with environmental variables may be related to complex, potentially non-linear, interactions between agricultural practices, weather, soil quality, and other variables. We will further examine the data using other multivariate statistical methods to further investigate potential drivers of these non-growing season emissions with a focus on those emissions occurring specifically during the spring thaw. As these relationships are used in nitrification/denitrification models, improved understanding is still needed to accurately simulate these processes, which is imperative to improving nitrogen budgets and ultimately achieving climate goals.

How to cite: Brown, L., Strachan, I. B., Pelster, D., Admiral, S., Pelletier, L., Grant, B., Smith, W., and Pattey, E.: Two decades of micrometeorological measurements show dynamic drivers of springtime N2O emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12997, https://doi.org/10.5194/egusphere-egu24-12997, 2024.

EGU24-13087 | ECS | Orals | BG3.23

Belowground methane cycling along a stream-to-edge transect in the Lompolojänkkä fen 

Lukas Kohl, Salla A. M. Tenhovirta, Iikka Haikarainen, Mari Pihlatie, Markus Greule, Frank Keppler, and Annalea Lohila

Lompolojänkkä is a nutrient-rich fen located in western Lapland. The site has been the focus of detailed methane flux measurements, which revealed high spatial variability along a transect from the central stream to the edge of the peatland. Surprisingly, the highest fluxes did not occur in the center of the peatlands, but rather at the halfway point between the center and the edge of the peatland, likely due greater oxygen transport by turbulent water flow at the center of the peatland. In this study, we aim to quantify the contribution of hydrogenotrophic and acetoclastic methanogenesis, the fraction of methane oxidized prior to emission to the atmosphere, and the location (depth) of these processes in the peat profile. We further investigate if these processes differ in space along a the stream-to-edge transect and time with the progress of the growth season. To quantify these processes, we collected pore water samples from 15 depth profiles at 20 to 100 cm depth. In these samples we quantified concentrations of dissolved methane, its carbon and hydrogen isotope values, and a suite of geochemical measures. We find that locations close to the central stream are characterized by high methane concentrations at depth, which decrease steeply towards the surface, indicating that high rate of methane are produced at depth but oxidized prior to reaching the surface. Sites located at the edge of the peatland, in contrast, show low methane concentrations throughout the peat profiles, indicating that small amounts of methane are produced relatively close to the surface. Stable carbon and hydrogen isotope values add additional complexity to our understanding of the methane dynamics. Methane oxidation is associated with strong increases in both δ13C and δ2H values in the residual methane and would therefore be indicated by an increase in both isotope values from deep to shallow peat layers. Such a pattern, however, was only detected close to the central stream, where approximately 50% of methane was oxidized prior to reaching the surface. In most other transect points, we found that δ13C increased from deep to shallow layers, whereas δ2H showed the opposite trend, indicating the mixing of hydrogenotrophic methane produced in deep peat layers with acetoclastic methane produced in the rooting zone. An isotope mixing model indicated that that the fraction of hydrogenotrophic methane increased from center to edge of the site (from 45 to 30% at 100 cm depth in June) and with the advancing growth season (32 to 0% in September). In contrast, we typically find less than 15% hydrogenotrophic methane in shallow layers. We note that these numbers are associated with significant external uncertainty stemming from poor certainty about mixing model parameters. Overall, our data demonstrates high and temporal spatial heterogeneity of methane production and oxidation within a single site. We demonstrate the additional information gained methane dual isotope analysis, and reveals how δ13C profiles alone can be ambiguous and misleading.

How to cite: Kohl, L., Tenhovirta, S. A. M., Haikarainen, I., Pihlatie, M., Greule, M., Keppler, F., and Lohila, A.: Belowground methane cycling along a stream-to-edge transect in the Lompolojänkkä fen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13087, https://doi.org/10.5194/egusphere-egu24-13087, 2024.

EGU24-13690 | ECS | Orals | BG3.23

17-Years of Soil Gas Sampling for Assurance Monitoring at an Onshore CCS Demonstration Site in Victoria, Australia 

Kexin Zhang, Svetlana Stevanovic, Zibo Zhou, and Wendy Timms

Carbon capture and storage (CCS) projects aim to capture carbon dioxide (CO2) from hard-to-abate industries and the existing energy industry, for permanent storage in suitable geological formations. CCS technologies offer promising solutions to achieve net-zero emissions and ease the transition towards clean energy. Environmental monitoring is employed to demonstrate minimal influences on the near-surface environment by the CCS operation and provides assurance to the regulators and local communities. Soil gas monitoring is one of the techniques available for monitoring onshore sequestration sites.

The Otway International Test Centre (OITC), Australia’s first demonstration site for deep-well CO2 injection, has demonstrated over 95,000 tonnes of CO2 sequestration into a depleted gas reservoir and a deep saline aquifer. Due to the unique regulatory framework under which the site is permitted, a requirement of the site’s EPA license for the injection of CO2 into the subsurface is soil gas monitoring, which commenced prior to the first injection in 2008. At the OITC, soil gas samples were collected at more than 100 sites across a study area of 3.8 km2 from a 1-meter depth, with soil gas baseline values established in 2007 and 2008. The samples were analysed for major gas concentrations (i.e., oxygen (O2), nitrogen (N2), CO2 and methane (CH4)), 13C analysis on CO2, and selected samples were tested for tracer, including sulphur hexafluoride (SF6), Krypton (Kr) and Xeon (Xe). Based on available data, the injection operations at the OITC have no undesirable impacts on the near-surface environment and, when managed appropriately, CCS operations can be conducted with a high level of confidence.

The 17-year soil gas data from the OITC shows high year-to-year variabilities in soil gas CO2 concentrations, posing a major challenge to ensure robust soil gas baseline monitoring. For this reason, the use of soil gas monitoring for regulatory processes is not supported, however, as a general site check and as a means to garner community confidence, it has proven to be useful. To address the challenge of this naturally occurring variability, a multi-step verification process has been implemented to enhance confidence in identifying or ruling out anomalies. This process incorporates tracer analysis, baseline analysis, and adapted analysis methodologies demonstrated in research papers, such as the process-based analysis. Furthermore, research was conducted to review the evolution of soil gas science in the CCS industry and to optimise the monitoring strategies with data collected from the OITC as a case study.  Valuable lessons highlighted the efficacy of risk-based monitoring adjacent to identified storage formations. For example, monitoring near relatively high-risk legacy wells with compromised well integrity or for highly faulted regions with great geological uncertainty. Risk-based monitoring that includes several locations with higher temporal resolution is supported for future large-scale CCS sites.

How to cite: Zhang, K., Stevanovic, S., Zhou, Z., and Timms, W.: 17-Years of Soil Gas Sampling for Assurance Monitoring at an Onshore CCS Demonstration Site in Victoria, Australia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13690, https://doi.org/10.5194/egusphere-egu24-13690, 2024.

EGU24-14300 | ECS | Posters on site | BG3.23

Hot spots and hot moments of N2O fluxes explained by monthly dynamics of soil microbiome in drained peatland forest 

Mikk Espenberg, Zane Ferch, Fahad Ali Kazmi, Jordi Escuer-Gatius, Sharvari Sunil Gadegaonkar, Reti Ranniku, Martin Maddison, Kaido Soosaar, Jaan Pärn, and Ülo Mander

The nitrogen (N) cycle involves intricate interactions affected by the spatial and temporal variability. Hot moments, occurring short-lived across seasons, significantly contribute to temporal nitrous (N2O) emission fluctuations. Likewise, N2O emissions exhibit localized spatial variability as hot spots. Year long monthly based studies of soil N cycle microbiome dynamics in peatland forests are unknown. This study investigates the relationship between soil microbial communities and N2O gaseous fluxes within a drained peatland forest throughout a year. Key research questions are: how are the genes responsible for N cycling in the peatland spatially and temporally distributed?; what patterns are there between soil characteristics (e.g., soil water content, soil temperature and pH) and N cycling gene abundances?

Soil samples from 12 sites within a drained peatland forest in south-eastern Estonia were collected over a year and analysed for their physical and chemical properties and the abundance of genes associated with N cycling. Quantitative polymerase chain reaction was used to evaluate the bacterial and archaeal community abundances by quantifying the abundances of specific 16S rRNA genes and to evaluating the abundances of 10 genes associated with N cycling: denitrification (nirS, nirK, nosZ clade I, nosZ clade II, and fungal nirK), nitrification (bacterial, archaeal, and comammox amoA), DNRA (nrfA), and N fixation (nifH). This data was paired with N2O flux data collected in automatic dynamic gas chambers throughout the study period.

Spatial variations apparent in the soil's chemical and physical composition reveal distinct vegetation and microbial communities across the area. Archaeal 16S rRNA, along with genes associated with N cycling (fungal nirK, nosZI, bacterial and comammox amoA), exhibited correlations with N2O emissions. Archaeal 16S rRNA, bacterial amoA, fungal nirK, and nosZI were positively correlated with N2O emissions. Throughout the year, water table levels and volumetric water content significantly influenced both N2O emissions and the abundance of N cycling genes. The site encompasses specific areas with consistently higher N2O emissions (hot spots) and periodic peaks in emissions (hot moments) due to the combined interplay of physical, chemical, and genetic attributes within the peatland soil.

How to cite: Espenberg, M., Ferch, Z., Kazmi, F. A., Escuer-Gatius, J., Gadegaonkar, S. S., Ranniku, R., Maddison, M., Soosaar, K., Pärn, J., and Mander, Ü.: Hot spots and hot moments of N2O fluxes explained by monthly dynamics of soil microbiome in drained peatland forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14300, https://doi.org/10.5194/egusphere-egu24-14300, 2024.

EGU24-14918 | Posters on site | BG3.23

Simultaneous Quantification of Soil Water States, Water Fluxes, Greenhouse Gases and BVOC Exchange between soil and atmosphere during transient conditions 

Efstathios Diamantopoulos, Hai Anh Nguyen, Frederic Leuther, and Anke Nölscher

Biogenic volatile organic compounds (BVOCs) are a diverse group of chemicals emitted from living organisms. These compounds are involved in a variety of ecological processes, as well as the formation of aerosols and ozone, which can impact air quality and climate. Recent studies suggest that BVOCs can be released and taken up by soil through biotic and abiotic pathways in high amounts. In this work, we simultaneously quantified the BVOCs exchange between , soil water evaporation fluxes, and matric potential under transient conditions (drying-rewetting experiments). The experiment was conducted with 250 cm³ soil cores (n=4) packed with sieved soil (loamy sand, bulk density: 1.6g/cm³) taken from agricultural topsoil. Aluminum chambers (1L in volume) were attached to the top of the soil cylinders and gas with different BVOCs concentrations was applied at the inlet. At the outlet, the analysis of BVOCs mixing ratios and BVOCs emission was done with a Proton Transfer Reaction – Time of Flight – Mass Spectrometry (PTR-ToF-MS). In addition, a Greenhouse Gas Analyzer (GGA) was used for monitoring the fluxes of methane, carbon dioxide, and water vapor. The analysis of soil water retention curves was done with a Hydraulic Property Analyzer (HYPROP). The results showed a strong negative correlation between ambient mixing ratios and soil emission rates of water-soluble BVOCs when the soil was wet. As the soil moisture fell below a threshold of 0.18 m3m-3 volumetric water content, BVOCs emission negatively correlated to soil water content. The more frequently the soil was rewetted, the more BVOCs could be taken up by wet soil. In conclusion, the study suggests that the BVOCs mixing ratio in the ambient air was the dominant driving factor of the BVOCs emission rate in disturbed soil samples from agricultural land use. Lastly, soil water content affected BVOCs emission mainly when the soil was dry.

How to cite: Diamantopoulos, E., Nguyen, H. A., Leuther, F., and Nölscher, A.: Simultaneous Quantification of Soil Water States, Water Fluxes, Greenhouse Gases and BVOC Exchange between soil and atmosphere during transient conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14918, https://doi.org/10.5194/egusphere-egu24-14918, 2024.

EGU24-15503 | ECS | Posters on site | BG3.23

Differences of nitrogen cycle microbes and nitrous oxide emissions from natural and degraded tropical peatland sites in Malaysia 

Laura Kuusemets, Ülo Mander, Maarja Öpik, Lulie Melling, Kaido Soosaar, Kuno Kasak, and Mikk Espenberg

Tropical peatlands in Southeast Asia are severe threats due to rapid changes in land-cover. Estimates suggest that approximately 25% of natural peatlands in Malaysia have been converted for large-scale agro-industrial development in the last two decades, primarily driven by the rapid expansion of oil palm cultivation. These intense and rapid land-use changes contribute to adverse ecological impacts, including increased greenhouse gas (GHG) emissions, soil degradation, deforestation and the loss of biodiversity. The aim of the study was to assess the genetic potential of nitrogen (N) transformation processes by quantifying functional marker genes of N cycle and measuring nitrous oxide (N2O) emissions from natural tropical peatland and oil palm plantation. This was conducted to understand the effect of land-cover changes on microbial N transformation processes and gaseous N emissions, using the closed chamber method and quantitative polymerase chain reaction (qPCR) analysis. N2O emissions were measured in the natural tropical peatland forest in Maludam (Sarawak, Malaysia) and in the oil palm plantation on peat soil in Betong (Sarawak, Malaysia) in September 2022. qPCR was used to measure the abundance of bacterial and archaeal specific 16S rRNA, nitrification (AOB, AOA and COMAMMOX amoA genes), denitrification (nirK, nirS, nosZ clade I and nosZ clade II genes) and dissimilatory nitrate reduction to ammonium (DNRA; nrfA gene) marker genes in the collected soil, litter and leaf samples.

The average soil N2O emissions were relatively higher from the oil palm plantation, ranging from 2.04 to 131.9 µg N m-2 h-1. Soil N2O emissions from the natural peatland forest were negligible. Quantification of N cycle genes revealed variations in the microbiome between natural peatland and deep-drained oil palm plantation. The microbial analysis showed that the archaeal abundance in leaves did not vary significantly between the two sites, but the abundance of bacteria in leaves was higher in the oil palm plantation. The abundance of denitrifying microorganisms was significantly higher in the natural peatland soil compared to the peat soil in the oil palm plantation. However, the abundances of bacterial amoA and archaeal amoA were found to be lower in the soil of natural site compared to the soil in oil palm plantation, suggesting a higher genetic potential of nitrification in the oil palm plantation. In addition, microbes possessing the archaeal amoA gene seemed to be the primary nitrifiers in the soil of oil palm plantation. The study’s findings indicate that hydrological interventions cause significant changes in the microbial N cycle and N2O emissions of tropical peatlands.

How to cite: Kuusemets, L., Mander, Ü., Öpik, M., Melling, L., Soosaar, K., Kasak, K., and Espenberg, M.: Differences of nitrogen cycle microbes and nitrous oxide emissions from natural and degraded tropical peatland sites in Malaysia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15503, https://doi.org/10.5194/egusphere-egu24-15503, 2024.

Wetting of dry soil after prolonged drought triggers emissions of N-oxides (nitric oxide; NO and nitrous oxide; N2O) and this post-wetting burst may contribute disproportionately to annual soil N-oxides emissions in drylands. During the wetting, nitrification and denitrification were shown to be the major sources of soil N-oxides emissions. Several abiotic reactions involving the nitrification intermediates- e.g. nitrite (NO2-), however, may also contribute to the production of N-oxides in soils. The contribution of these abiotic reaction to N-oxides emissions, despite potential importance is not well quantified. To quantify and partition the contribution of abiotic and biotic processes to post-wetting N-oxides emissions in drylands, we measured soil NO and N2O production in a laboratory incubation with live and gamma-irradiated soils. Samples were collected under canopies of dominant local (Acacia tortilis) and invasive (Prosopis juliflora) trees, as well as from bare soils outside the canopy cover.

We found that that while the overall dynamics of soil NO and N2O emissions were similar in gamma irradiated and live soils under both P. juliflora and A. tortilis trees, as well as in bare soils, the magnitudes and rates of emissions exhibited significant disparities. In particular, gamma irradiated soils under A. tortilis canopies after eight hours’ incubation, emitted ~10 times less NO (~5 ng N g-1) and ~4 times less N2O (~10 µg N g-1) compared to the live soils. While gamma irradiated soils under P. juliflora canopies emitted ~2 times less NO (~7 ng N g-1) and similar N2O (~7 µg N g-1) compared to the live soils, and in the bare soils, ~9 times less NO (~5 ng N g-1) and similar N2O (~10 µg N g-1). Our findings suggest that both biotic and abiotic pathways contribute to N-oxides production following dry soil wetting, however, the relative contribution is dependent on the landscape position and affected by plant presence and species. Specifically, abiotic processes contributed 10% to soil NO and 25% to N2O production in soils beneath A. tortilis canopies and between 10% and 75% in the bare soils. In soil under P. juliflora canopies abiotic processes contributed five times more to the NO production (50%) while N2O production was solely from abiotic activity.

How to cite: Yagle, I. and Gelfand, I.: Quantification and partitioning the contributions of abiotic and biotic processes to soil N-oxides emissions in the Dead Sea valley, Israel., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16201, https://doi.org/10.5194/egusphere-egu24-16201, 2024.

EGU24-17269 | ECS | Orals | BG3.23

Genome-resolved metagenomics of tropical peatland ammonia-oxidising archaea 

Frazer Midot, Kian Mau Goh, Kok Jun Liew, Sharon Yu Ling Lau, and Lulie Melling

Nitrogen cycling, a critical biogeochemical process in ecosystems, involves a complex microorganism network. In nitrification, ammonia oxidation is mainly governed by ammonia-oxidizing archaea (AOA) in acidic soil. Limited information exists about these taxa in tropical peatlands. This genome-centric metagenomic study aimed to identify key taxa and their functional potential driving nitrification in tropical peatlands. After cleaning Illumina reads, draft bins were created, refined, reassembled, and decontaminated through various strategies, involving both semi-supervised and unsupervised binners, including deep-learning-based approaches. This process resulted in 271 medium to high-quality archaeal metagenome-assembled genomes (MAGs). Five near-complete high-quality AOA MAGs were constructed. Phylogenomic analyses placed the AOA MAGs in the Nitrosotalea genus within the Nitrosopumilaceae family. Comparisons to reference genomes using average amino acid identity (AAI) and average nucleotide identity (ANI) suggested these MAGs might represent separate Nitrosotalea species. Besides core ammonia monooxygenase (amoCAB), these Nitrosotalea MAGs also encoded for nitrite reductase (nirK), ferredoxin-nitrite reductase (nirA) and nitric oxide reductase (norQ) that could also lead to the production of nitrous oxide (N2O), a potent greenhouse gas. These tropical peatland autotrophic Nitrosotalea MAGs fixed carbon with the hydroxypropionate/hydroxybutyrate pathway and survive in low pH environments through flagellar motility, various transport proteins, substrate acquisition and pH regulation systems for oxidising ammonia. Genomic analyses of candidate taxa can provide a thorough understanding of important biogeochemical functions as critical baseline information to assess microorganism resilience and response to anthropogenic-induced land use change.

How to cite: Midot, F., Goh, K. M., Liew, K. J., Lau, S. Y. L., and Melling, L.: Genome-resolved metagenomics of tropical peatland ammonia-oxidising archaea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17269, https://doi.org/10.5194/egusphere-egu24-17269, 2024.

EGU24-17493 | ECS | Orals | BG3.23

Differences in the uptake of biogenic volatile organic compounds (BVOCs) between habitat types and peat layers in boreal peatlands 

Aino Korrensalo, Cleo Davie-Martin, Elisa Männistö, James Blande, and Riikka Rinnan

Biogenic volatile organic compounds (BVOCs) released by boreal vegetation have a net cooling impact on climate, both in the boreal and Arctic regions. While boreal forests play a major role in this process, the release and uptake of BVOCs in peatlands is poorly understood, even though they cover up to 28% of the boreal region. Furthermore, soil BVOC sinks and sources are an understudied component of the boreal BVOC budget. Recently, microbial uptake of BVOCs has been found to regulate BVOC release from the soil into the atmosphere. In peatlands, methane emissions from the peat are known to be controlled by microbial oxidation within the living mosses, but it is unknown whether similar uptake occurs with BVOCs.

Our aim was to quantify the release and uptake of BVOCs across different boreal peatland habitats. We collected peat samples, including the living moss layer, from four peatland habitats varying in fertility, wetness, and vegetation composition (bog hollow, bog hummock, fen, bog peat). The samples were split into the living moss layer, as well as the oxic and anoxic peat layers, above and below the water table, respectively. First, we investigated the potential uptake of peat-derived BVOCs in the living moss layer by incubating the peat and moss layers in glass jars both separately and together with other layers from the same habitat. Next, we quantified the uptake of four specific compounds by introducing 13C-labeled BVOCs into jars containing peat or moss layers. The magnitude and compound composition of BVOCs was measured with proton transfer reaction–time of flight–mass spectrometry (PTR-TOF-MS).

Contrary to our expectations, BVOC uptake of peat-derived compounds was observed in the living moss layer, as well as in the oxic and anoxic peat layers. The most important layer for BVOC release and uptake varied between the peatland habitats. For example, the number of released compounds and the total BVOC emissions were largest for anoxic peat in the fen, while it was the living mosses in the bog hollow. Anoxic bog peat had the largest BVOC uptake of all of the habitats and layers. BVOC uptake varied between the studied compounds; while ethanol was taken up by all layers in every habitat, we observed no uptake of acetic acid. Acetone was mostly consumed in the peat layers, while acetaldehyde uptake occurred in bog hummock and fen habitats, regardless of the layer. According to our results, BVOC emissions from boreal peatland soil into the atmosphere are a net outcome of production and consumption both in the peat and moss layers. As these patterns vary even within habitats of the same site, changes in vegetation have the potential to modify BVOC fluxes in boreal peatlands.

How to cite: Korrensalo, A., Davie-Martin, C., Männistö, E., Blande, J., and Rinnan, R.: Differences in the uptake of biogenic volatile organic compounds (BVOCs) between habitat types and peat layers in boreal peatlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17493, https://doi.org/10.5194/egusphere-egu24-17493, 2024.

EGU24-18734 | ECS | Orals | BG3.23

Numerical investigation of methanotrophs in a biofilter for methane emission mitigation 

Morgane Bellec, Cristian Picioreanu, Muhammad Ali, and Laurence Gill

Methane is the second highest contributor to human greenhouse gas emissions. In Ireland, it represented 29% of the total CO2 equivalent emissions in 2022. A drastic reduction methane emissions is thus crucial to meet the Paris Agreement commitment of 30% reduction of emissions between 2005 and 2030. It is, however, challenging as more than half of anthropogenic methane emissions are produced at concentrations below 5%. At such low concentrations, methane cannot be efficiently recovered or even flared as it is lower than its flammability level in air. In Ireland, this concerns mainly the agriculture and the waste sector. In terms of wastewater treatment, on-site domestic wastewater treatment systems serve approximately one third of the households in Ireland and so represent a significant source of methane coming from the anaerobic processes (mainly septic tanks).

A promising alternative way to treat methane is microbial oxidation by methanotrophs grown on a suitable porous media. Such a passive biofilter could be easily placed on top of septic tank gas vents, capturing the emitted methane before it is released into the atmosphere. The methane-oxidizing bacteria will then convert it into carbon dioxide, which is approximately thirty times less potent greenhouse gas in terms of global warming potential.

 

Multiple questions must be addressed to confirm the practical feasibility of this methane biofilter concept. The environmental conditions in the filter must allow the methanotrophs to thrive and outcompete other bacteria, thus ensuring an efficient methane oxidation, without obstructing the airflow. In addition to methane, an adequate supply of oxygen is necessary. This requires complex simulations of both the fluid dynamics involved as well as microbial growth and other kinetic dynamics. To investigate these different physical and biological aspects, a numerical study has been conducted combining computational fluid dynamics (CFD) modelling and multispecies biofilm modelling.

The CFD approach is carried on at the system level, producing velocity fields in the septic tank and the different pipes and vents. Knowledge of the gas flow in the full wastewater treatment system is essential to estimate the inlet flow conditions the biofilter will be subjected to depending on the wind weather. The information obtained on the gas phase, especially oxygen and methane levels, is then fed into a multispecies biofilm model. At this local level, we model the methanotrophs as well as the other bacteria expected to grow, compete for space and oxygen, and decay in the biofilter environment: heterotrophs, nitrifiers and Sulphate Reducing Bacteria. The results show that the methanotrophs should not be outcompeted. Moreover, the model enables the height of the filter to be estimated such that it should reach the target of 90% of methane consumption. Finally, transient simulations give insight into the expected time of usage of the filter before it needs to be regenerated.  

How to cite: Bellec, M., Picioreanu, C., Ali, M., and Gill, L.: Numerical investigation of methanotrophs in a biofilter for methane emission mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18734, https://doi.org/10.5194/egusphere-egu24-18734, 2024.

EGU24-19680 | Orals | BG3.23

Bioelectrochemical biosensors for in-situ monitoring microbial activity in outdoor soil mesocosms from postharvest rice field 

Marc Viñas, Maite Martínez-Eixarch, Abraham Esteve-Núñez, Antonio Berna, Belén Fernández, Yolanda Lucas, Cristy Medina-Armijo, Miriam Guivernau, Lluis Jornet, Joan Noguerol, and Carles Alcaraz

The decomposition of buried straw in rice fields during post-harvest generates volatile fatty acids (VFA), thus activating methanogenesis (1). In this study, bioelectrochemical biosensors were used to measure the in-situ electrical current produced by electroactive microorganisms, related to the biodegradation of buired straw,  in outdoor mesocosms containing rice paddy soil from the Ebro Delta (Spain) .

Three  biosensors (BS1-BS3), based on bioelectrochemical cells buried in the water saturated soil (at a -10 cm), were used in 3 rice paddy soil mesocosms, with a poised working electrode (graphite) potential at +0.2V vs Ag/AgCl, by using a potentiostat. During 5 months (November 2022-March 2023), the production of electrical current (I) in the soil mesocosms was monitored using chronoamperometry. The presence of electroactive microbial biofilms on the electrodes was assessed by cyclic voltammetry (CV). Simultaneously, soil chemical parameters were monitored (total and soluble COD, VFA and CH4 emission), and microbial diversity (bacteria and archaea) in  the soil and the electrodes biofilms was assessed by 16S rRNA-metabarcoding.

Chronoamperometry data in BS1-BS3 showed a marked current production curve from the day 3 to 5 after straw addition, with an I max of 110-180µA (4.26-6.91 µA cm-2) at day 10, remaining higher than the baseline for 30-45 days, and concomitant with VFA accumulation  (69-28 mg-eq Acetic kg-1 soil , 7-40 days) and a high emission rate of CH4 (198.1±101.0 mg C-CH4· m-2 soil · h-1 7 days after straw addition. The CV revealed electroactive profiles in the 3 biosensors, similar in BS1-BS2 (oxidation peak -0.16/-0.22 V vs Ag/AgCl, similar to Geobacter), and different in BS3 (oxidation peak +0.26 V vs Ag/AgCl), revealing different electroactive microbial communities. 16S-based metataxonomy revealed an enrichment of well known electroactive bacteria on the three anode biofilm but with different relative predominances, encompassing mainly Desulfobulbus in BS1-BS3,  Geobacter mainly in BS1, but in less predominance in BS2 and BS3, Proteiniclasticum solely in BS3, and Clostridium in BS2 and BS3.  Methanogenic archaea such as Methanosarcina and Methanobacterium were also depicted on the anode, but at lower relative abundance than observed in the soil, where ammonium oxidizing archaea (Nitrososphaera and candidatus Nitrosocaldus) were also predominant.

The results showed the capacity of the bioelectrochemical-based biosensors for real time detection of microbial in-situ degradation processes of buried edible organic carbon (straw) in the soil of rice  paddy fields, also linked to methane emissions.

Aknowledgements
This research was funded by Agencia Estatal de Investigación (PID2019-111572RB-I00/AEI/10.13039/501100011033 ) from Spain.

References
1. Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, X., Prenafeta-Boldú, F. X., Saldaña-De la Vega, J.A., Català, M.M. & Ibáñez, C. (2018). Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields. PLoS One, 13(5), e0198081. DOI: 10.1371/journal.pone.0202159

How to cite: Viñas, M., Martínez-Eixarch, M., Esteve-Núñez, A., Berna, A., Fernández, B., Lucas, Y., Medina-Armijo, C., Guivernau, M., Jornet, L., Noguerol, J., and Alcaraz, C.: Bioelectrochemical biosensors for in-situ monitoring microbial activity in outdoor soil mesocosms from postharvest rice field, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19680, https://doi.org/10.5194/egusphere-egu24-19680, 2024.

EGU24-20187 | Orals | BG3.23

Soil microbial functional diversity changes under contrasting N2O emission events 

Stefania Mattana, Cinta Sabaté, Tiphaine Tallec, Francois Boland, Tanguy Manise, Bernard Heinesch, Iris Feigenwinter, Fabio Turco, Helena Rautakoski, Annalea Lohila, Rossella Guerrieri, Ivan Janssens, Marilyn Roland, Sílvia Poblador, Enzo Magliulo, Luca Vitale, Liyou Wu, Jizhong Zhou, Josep Peñuelas, and Angela Ribas

Denitrification, the reduction of nitrogen oxides (NO3-and NO2-) to NO, N2O and, ultimately, to N2 gas in soils, is classified as a microbiologically ‘broad process’ which can be conducted by a wide array of microbes belonging to remote phylogenetic groups. Further, understanding how environmental and management factors drive denitrification is challenging because they are scale-dependent, with large scale drivers affecting denitrification fluxes both directly and through drivers working at detailed small scales. 

Despite of this, we hypothesized that denitrification processes, although highly complexes due to the multiple processes and environmental conditions involved, they could present a functional convergence at the microbial community level explained by a short list of microbial groups or functions.  

On the other hand, different methodological approaches to assess soil microbial diversity are currently used; among them are multiple substrate-induced respiration by MicroResp™, enzymes activities and functional genes abundance and structure by GeoChip 5S microarray. We applied all those methods to study functional diversity in 5 different soils from 5 countries: Finland, Belgium; France, Switzerland and Italy. Studied soils have a wide range of soil pH, organic Carbon and Nitrogen content, and texture. Soils were sampled at Hot Moment and Low flux emission of N2O.   

The main objective of this study was to explore possible convergences in terms of functional microbial diversity in contrasting N2O emission events (low emission versus hot moments).  

Result showed that MicroResp™ , enzyme activities and GeoChip 5S microarray were reliable ecological indicator to evaluate soil microbial functionality diversity. Results stressed the importance to study soil microbiome at different magnitude of N2O emission with the aim to gain a deeper knowledge of nitrifiers community. Reciprocal relationship of those methodologies, soil proprieties and magnitude of flux emission of N2O are discussed.   

How to cite: Mattana, S., Sabaté, C., Tallec, T., Boland, F., Manise, T., Heinesch, B., Feigenwinter, I., Turco, F., Rautakoski, H., Lohila, A., Guerrieri, R., Janssens, I., Roland, M., Poblador, S., Magliulo, E., Vitale, L., Wu, L., Zhou, J., Peñuelas, J., and Ribas, A.: Soil microbial functional diversity changes under contrasting N2O emission events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20187, https://doi.org/10.5194/egusphere-egu24-20187, 2024.

EGU24-20747 | ECS | Orals | BG3.23

Dynamics of soil N2O fluxes and hot-moments typification: How are they related to environmental characteristics? 

Maria Cinta Sabaté Gil, Josep Peñuelas, Marcos Fernandez-Martinez, Stephania Mattana, Tiphaine Tallec, François Boland, Bernard Heinesch, Iris Freigenwinter, Helena Rautakoski, Annaela Lohila, Enzo Magliulo, Ivan Jansens, Marilyn Roland, Sílvia Poblador, and Àngela Ribas

To date, extensive field measurements of nitrogen oxide (N2O) exchanges in soils across diverse terrestrial ecosystems, complemented by controlled laboratory incubation studies, have unveiled considerable variability in N2O soil fluxes. This variability arises from the intricate interplay of various factors. Notably, soil N2O emissions display significant spatiotemporal fluctuations, including extreme events. The primary objective of this study is to enhance our understanding of the environmental factors influencing soil N2O fluxes and to characterize instances of pronounced N2O emissions, hereafter termed "hot-moments."

Our investigation encompassed six distinct sites of the Integrated Carbon Observation System (ICOS) network including agricultural systems, sylvicultural systems, and unmanaged forests spanning the northern hemisphere. To identify and categorize hot-moments events, we standardized N2O values and considered events greater than or equal to 4, or -4-fold standard deviations from the mean of each site.

We then conducted wavelet coherence analyses to delve into the patterns of N2O fluxes. In the biwavelet plots, our variable of interest was juxtaposed with each soil environmental variable, illustrating the distribution of correlations in the time-frequency domain of our signals. Employing this advanced approach, we explored N2O patterns and their variability in relation to specific environmental characteristics (soil water content, soil temperature, and CO2 flux) within the six temporal series (different soil types).

Our analyses revealed a recurring pattern across all time series, with a frequency of approximately 24 hours for the N2O vs. CO2 plots, indicating a daily correlation between the emissions of both gases. This correlation may be linked to seasonality in certain sites. Soil temperature emerged as a leading factor in shaping the daily patterns of N2O fluxes in most sites, exhibiting also a 24-hour pattern. Although the periodicities related to soil water content were less clear, a discernible pattern persisted with variations within sites. However, we will deepen into the discussion of these results and their implications in our EGU presentation.

 

Key words: N2O fluxes, hot-moments, soil environmental variables, temporal series, wavelet coherence analysis

How to cite: Sabaté Gil, M. C., Peñuelas, J., Fernandez-Martinez, M., Mattana, S., Tallec, T., Boland, F., Heinesch, B., Freigenwinter, I., Rautakoski, H., Lohila, A., Magliulo, E., Jansens, I., Roland, M., Poblador, S., and Ribas, À.: Dynamics of soil N2O fluxes and hot-moments typification: How are they related to environmental characteristics?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20747, https://doi.org/10.5194/egusphere-egu24-20747, 2024.

EGU24-20969 | ECS | Posters on site | BG3.23

Methanotrophy Potential in Tropical Peatland under Different Land Use in Sarawak, Malaysia 

Claudia Jenai Yeong, Herman Umbau Lindang, Adrian Ho, Sharon Yu Ling Lau, Samuel Lihan, Marcus Andreas Horn, and Lulie Melling

Tropical peatlands hold immense global significance, serving as critical ecosystems that provide a wide range of services including carbon storage. The conversion of a large fraction of tropical peatlands into primarily agricultural lands in Malaysia has raised concern over the dynamics of carbon cycle including methane (CH4) in tropical peat soil. As CH4 is a potent greenhouse gas mainly produced under anoxic conditions, it is widely assumed that the waterlogged nature of peatlands emit a significant amount of CH4, though CH4 emission in tropical peatlands are comparatively lower than boreal peatlands. Methane oxidation (methanotrophy) by methanotrophic bacteria is the only known biological oxidation of CH4. However, there is a limited understanding of the methanotrophy in tropical peat soil of different land use. This study aims to study the methanotrophy potential in both tropical peat swamp forest and oil palm plantations. Soil sampling was carried out in July 2023 (dry season) from peat swamp forest of Maludam National Park and an oil palm plantation (OPP), encompassing both matured and young OPP. All sites are historically from Mixed Peat Swamp (MPS) forest type. Peat sample was collected from the topsoil (0-10 cm depth). Methanotrophy potential was assessed by incubation in 100 mL vial bottle supplemented with 2-3% v/v CH4. Soil pH, moisture content, total C and N, and electrical conductivity were determined. The total N differs significantly (p<0.05) with 1.93%, 1.72%, and 1.53% in the peat swamp forest, matured OPP, and young OPP, respectively. Total N has been associated with methanotroph community composition and its oxidation activity. Soil methanotrophy ranged from 0.35 to 0.60 µmol g dw soil-1 day-1 during the microcosm study. Results from this incubation demonstrated methanotrophy potential rate across three sites showed no significant difference, suggesting methanotrophy of topsoil may not be affected by different land use. In addition, the methanotrophy rate showed no correlation with the total N in this study. Nevertheless, validation of pmoA gene abundance across different land uses using quantitative polymerase chain reaction analysis will be conducted to further confirm if methanotrophy is affected by different land use on tropical peat soil.

How to cite: Yeong, C. J., Lindang, H. U., Ho, A., Lau, S. Y. L., Lihan, S., Horn, M. A., and Melling, L.: Methanotrophy Potential in Tropical Peatland under Different Land Use in Sarawak, Malaysia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20969, https://doi.org/10.5194/egusphere-egu24-20969, 2024.

EGU24-21985 | Posters on site | BG3.23

Dynamics of Microbial Communities and Greenhouse Gas Flux Responses to Short-Term Flooding in Riparian Forest Soil 

Kristel Reiss, Ülo Mander, Maarja Öpik, Kärt Kanger, Thomas Schindler, Kaido Soosaar, and Mikk Espenberg

The growing interest in the impact of short-term floods on various ecosystems is driven by climate change and the increasing occurrence of extreme rainfall events. The control of nutrient quantity and distribution relies on complicated biogeochemical processes. Yet, our understanding of the microbial processes governing carbon and nitrogen cycling needs improvement, hindering our ability to estimate the effects of climate change on forests.

This study aimed to evaluate the influence of short-term flooding on bacterial, archaeal, and fungal communities and microbial processes with greenhouse gas (GHG) emissions in riparian alder forests. Topsoil peat samples were collected from riparian alder forests and analyzed with quantitative polymerase chain reaction (qPCR), and sequencing techniques were employed to assess processes and communities, while physicochemical parameters and in-situ GHG emissions were concurrently measured.

Floods exert a substantial influence on the intricate biogeochemical cycles within soil ecosystems. The flooding event led to a change in bacterial 16S rRNA abundances and a noticeable expansion in the size of Bryobacter and Candidatus Solibacter communities associated with the breakdown of organic carbon. Several aerobic genera like Arthrobacter, Ferruginibacter, Lacunisphaera, and Novosphingobium, which were identifiable before short-term flooding, became undetectable. Many of these organisms were known for their role in breaking down carbon compounds, highlighting the transformative impact of short-term flooding on the composition and functions of soil microbial communities and GHG emissions.

In the examined sites, a diverse array of arbuscular mycorrhizal (AM) fungal genera were identified, including Acaulospora, Archaeospora, Claroideoglomus, Diversispora, and Paraglomus. One pivotal aspect of these fungal communities is their role in establishing arbuscular mycorrhiza, a beneficial symbiotic association between plant roots and fungi. AM fungi contribute significantly to enhancing plant nutrition, stress resistance, and shaping soil structure and fertility.

Nitrifiers, particularly those associated with archaeal amoA, experienced notable shifts. Denitrifiers, identified through the nosZII gene, were also significantly impacted. Moreover, microorganisms engaged in the n-damo process displayed alterations. The flooding event was observed to augment the community size of denitrifying and nitrogen-fixing genera such as Rhodanobacter, Pseudolabrys, and RB41. In contrast, a decrease was noted in the abundance of nitrifiers, exemplified by the decline of Nitrospira. Furthermore, several associations were observed between marker genes of the nitrogen cycle and N2O emissions.

How to cite: Reiss, K., Mander, Ü., Öpik, M., Kanger, K., Schindler, T., Soosaar, K., and Espenberg, M.: Dynamics of Microbial Communities and Greenhouse Gas Flux Responses to Short-Term Flooding in Riparian Forest Soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21985, https://doi.org/10.5194/egusphere-egu24-21985, 2024.

Long-term forest monitoring has a long tradition and provides important information for science-based decisions in forest management and policy. Until recently, mainly “classical” measurements of e.g., radial growth increment, defoliation and mortality have been performed and they are and in future will be core tools for describing forest vitality and functioning. However, new tools are now available that might provide additional information on mechanisms and environmental cause-effect relationships, and I will here give examples spanning from metabolomics via close-to-real-time assessments of growth and water relations to drone-based remote sensing. These methods help to understand the mechanisms which lead to impaired forest functioning and to inform forest adaptive management.

We linked assessments of the leaf and root metabolic profile in Scots pine to defoliation and observed homoeostatic levels across a wide range of defoliation classes. Only at very strong defoliation, levels of metabolites related to defence, oxidative stress, osmoregulation and energy supply strongly decreased in the roots but where upregulated in needles indicating a negligence of root functioning at the expense of aboveground tissues.

Close-to-real-time assessments with point dendrometers allow to dynamically monitor growth and tree water deficit responses to atmospheric and soil drought complementing annual stem diameter measurements. Species-specific risk assessments can be made and the seasonality of specific environmental factors impairing functioning can be quantified. In combination with xylem flow sensors and in situ water isotopologue monitoring systems, the origin of water taken up by trees can be quantified. With such methods it is possible to assess if trees can switch to deeper soil water resources during drought and how fast they recover their water use after a drought event.

With ground-based monitoring it is sometimes not easy to see the forest for the trees. Drone based proximate sensing allows to receive overhead imagery of the crowns and with wavelength-specific sensors reflectance indices can be determined that show stress signals before any classical visual assessment. Drone-based imagery can thus provide early warning signals as well as a link to satellite remote sensing.

Such new suites of methods combined with classical forest monitoring and satellite remote sensing are able to detect early warning signals of loss of forest functioning and might allow to determine areas at particular risk, where adaptive forest management needs to be implemented with high priority.

How to cite: Gessler, A.: New approaches for monitoring forest functioning in a changing climate - crossing scales from molecular mechanisms to stand wide processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2683, https://doi.org/10.5194/egusphere-egu24-2683, 2024.

EGU24-3502 | Orals | BG3.24

Taylor’s law predicts unprecedented pulses of forest disturbance under global change 

Cornelius Senf, Rupert Seidl, Thomas Knoke, and Tommaso Jucker

Climate extremes are causing increasingly large pulses of forest disturbance across biomes, raising concerns that forests are pushed beyond their safe operating space. Predicting future disturbance pulses remains, however, a major challenge, because disturbance pulses are stochastic and driven by complex ecological and socio-economic processes. Here, we provide a tractable solution to this problem using Taylor's law, which relates the mean and variability of a system through a power law relationship (variance ~ meanb). We test the hypothesis that forest disturbance dynamics can be described through Taylor’s law using high-resolution (30 m) annual disturbance maps of Europe’s forests going back 35 years and covering more than 1.6 million km2 of forests. We find strong evidence for a positive power law relationship between mean disturbance rates and their temporal variability (R2 of 0.95), indicating that increasing mean disturbance rates – as observed for Europe and many other parts of the globe – significantly amplify the probability of large pulses of tree mortality. The power law relationship was consistent across natural disturbance agents (bark beetle, fire, wind), spatial scales (100-25,600 km2) and biomes (boreal, temperate, Mediterranean) with a power law coefficient of b = 2.35, and also applied to human-dominated disturbances (R2 of 0.84 but a lower power law coefficient of b = 1.86). Simulations based on the power law model illustrate how increasing mean disturbance rates cause annual disturbance rates to quickly become more variable, and thus more likely to include extremely large disturbance pulses: A long-term mean disturbance rate of 1 % yr.-1 will lead to disturbance pulses with > 5 % annual mortality once every 112 years (0.9 % probability). Increasing disturbance rates to 1.5 % yr.-1, however, we would expect a disturbance pulses of the same magnitude already every five years (19 % probability). Our findings thus challenge the assumption that extreme disturbance pulses as observed recently were unexpected or inherently unpredictable, providing a framework for the integration of future disturbance pulses into forest policy and management.

How to cite: Senf, C., Seidl, R., Knoke, T., and Jucker, T.: Taylor’s law predicts unprecedented pulses of forest disturbance under global change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3502, https://doi.org/10.5194/egusphere-egu24-3502, 2024.

EGU24-4395 | ECS | Posters on site | BG3.24

Seedling dynamics under the pressure of El Niño drought in a seasonally dry tropical forest in Northern Thailand 

Prapawadee Nutiprapun, Sutheera Hermhuk, Dokrak Marod, Mamoru Kanzaki, Satoshi Nanami, and Akira Itoh

El Niño’s impact on tropical forests is critical, as reduced rainfall and severe drought induced by this phenomenon affect species diversity and tree dynamics. As seedling is a crucial stage for forest regeneration to maintain population and species diversity in the forest, it is important to understand how El Niño-induced drought affects seedling dynamics. We monitored the seedling dynamics at monthly intervals for 7 years in a seasonally dry tropical forest (SDTF). We analyzed the differences in seedling recruitment and mortality during the El Niño and non-El Niño periods and compared two forest types in an SDTF: a deciduous dipterocarp forest (DDF) dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. The long-term data on seedling dynamics revealed that El Niño-induced drought triggered immense seedling mortality in both forest types. This effect was stronger in evergreen species, leading to higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which counterbalanced the seedling mortality in the DDF. Consequently, El Niño increased seedling density in the DDF while decreasing it in the LMF. Our findings showed that the El Niño-induced drought effects on seedling dynamics varied by forest type and leaf habit, suggesting that future changes in drought regimes may alter the species composition and spatial distribution of Asian seasonally dry tropical forests through differences in the response of seedlings to drought.

How to cite: Nutiprapun, P., Hermhuk, S., Marod, D., Kanzaki, M., Nanami, S., and Itoh, A.: Seedling dynamics under the pressure of El Niño drought in a seasonally dry tropical forest in Northern Thailand, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4395, https://doi.org/10.5194/egusphere-egu24-4395, 2024.

EGU24-5225 | ECS | Posters on site | BG3.24 | Highlight

Integration of satellite and ground-based analyses in the assessment of Pinus nigra Arnold forest fires 

Francesco Niccoli, Simona Altieri, Jerzy Piotr Kabala, and Giovanna Battipaglia

The Mediterranean basin is exposed to a growing risk of forest fires due to recent climate changes, which are increasing their frequency and intensity. Forest fires can profoundly alter the ecological functions of Mediterranean forests, affecting hydrological regulation, resource supply, soil stability and biodiversity conservation. They also cause physiological dysfunction and tree mortality, significantly reducing the ability of forests to absorb CO2 and mitigate climate change. The study of fire effects is therefore essential for planning effective post-fire management practices and strategies for future fire regimes. Current technological advances allow the integration of ground surveys with satellite analysis, providing a comprehensive approach to fire studies and accurate assessments of ecological effects and post-fire dynamics.

In this context, our research focused on analysing the impacts of a forest fire that occurred in July 2017 in a Pinus nigra Arnold forest on Mt. Cairo in central Italy. We integrated satellite analysis to identify fire-affected areas with forest surveys and tree-ring analysis to assess impacts on tree growth, water use efficiency and post-fire CO2 uptake.

Our results highlight the importance of using remote sensing to accurately identify fire-affected areas and accurately plan ground-based activities. While remote sensing is key to providing an overview of fire size and distribution, it is equally important to integrate this data with detailed field surveys. In particular, the use of dendrochronology and stable isotopes in tree rings allowed us to assess post-fire tree growth and changes in water use. Our analyses showed that defoliated trees experienced a significant reduction in growth and change in water use due to severe canopy damage. We also found a significant reduction in the ability of damaged trees to absorb CO2 from the atmosphere, highlighting serious implications for the ecosystem service of carbon sequestration.

In conclusion, our study shows that the combination of satellite and ground analysis provides a comprehensive understanding of the effects of forest fires, which can significantly contribute to the recovery and restoration goals of fire-affected areas.

How to cite: Niccoli, F., Altieri, S., Kabala, J. P., and Battipaglia, G.: Integration of satellite and ground-based analyses in the assessment of Pinus nigra Arnold forest fires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5225, https://doi.org/10.5194/egusphere-egu24-5225, 2024.

EGU24-5493 | ECS | Posters on site | BG3.24

Xylogenesis responses to drought stress in Quercus ilex L. at Mediterranean site 

Iqra Liyaqat, Angela Balzano, Francesco Niccoli, and Giovanna Battipaglia

Droughts are becoming more frequent in the Mediterranean forests due to warmer climate and longer periods without precipitation. In the Mediterranean region, cambial activity is mostly determined by water availability and it occurs during favorite seasons. However, a few studies have focused on the seasonal patterns of wood formation (xylogenesis) response to ongoing climatic conditions in pure stand oak forests. To investigate tree growth response under predicted climate change scenarios, xylogenesis was assessed in Quercus ilex L. trees growing at a site located in the Vesuvio National Park, southern Italy. Sample were taken every two weeks for two consecutive years, and quantitative wood anatomy was used to study the progressive production of cambium, wood and phloem cells. The primary xylogenesis phases (cambium cell formation, occurrence of post-cambial cells, cell-wall thickening, and maturity) were linked to the climate data over 5 to 15 days’ time periods. In helm oak, cambial activity onset in early April, with the development of wood and secondary phloem simultaneously and stopped in early August. Early June was a favorable season for both late wood and late phloem production. Cell wall thickening increased in June to July and August to September as the temperature rose, and vapor pressure decreased in these months. In conclusion, warm climatic conditions and high evaporation rate during spring and summer enhanced plant growth. Herein, earlier growth peaks in helm oak and maximum responsiveness to spring-summer season allowed mediterranean species to mitigate the impact of summer drought.

How to cite: Liyaqat, I., Balzano, A., Niccoli, F., and Battipaglia, G.: Xylogenesis responses to drought stress in Quercus ilex L. at Mediterranean site, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5493, https://doi.org/10.5194/egusphere-egu24-5493, 2024.

EGU24-6246 | ECS | Orals | BG3.24

Relationships between non-structural carbohydrates reserves and growth resilience of Fagus sylvatica to extreme drought events 

Pierre-Antoine Gaertner, Nathalie Bréda, Bastien Gérard, Vincent Badeau, Joseph Levillain, Georg von Arx, Yann Vitasse, François-Xavier Saintonge, and Catherine Massonnet

Following the 2018’s extreme drought summer in Central Europe and the recurrent episodes of drought in the summers 2019 and 2020, a massive dieback of European beech (Fagus sylvatica) has been observed over the following years in the core of its distribution range. This ecological and ecophysiological study aims at evaluating the role of carbon reserves in tree survival and resilience to extreme drought and recurrent soil water deficit using tree ring width analyses combined with measures of non-structural carbohydrates (NSC) concentrations from 2020 to 2022.

In 2019, 20 study plots were selected in North-Eastern France and 15 beech trees per plot were selected according to contrasted crown condition. The crown transparency of these 300 selected trees was then assessed annually from 2019 to 2023. Each autumn, from 2020 to 2022, trees were sampled at the base of the trunk with an increment borer to measure NSC concentrations. In 2022, an additional core was sampled from each tree at breast height and until the tree heart for a tree-ring growth analysis and to determine tree age, the resistance, recovery and resilience of radial stem growth to soil water deficit. The daily soil water balance was parameterized for each plot with the model Biljou© to compute retrospectively the soil water deficit of each plot from 1959 to 2022.

Our results show that NSC concentrations from 2020 to 2022 were negatively correlated with the crown transparency of the same year. Trees whose crown transparency increased during the monitoring presented lower NSC concentrations in 2021 and 2022.

Trees showing a better resistance, recovery and resilience of the radial growth to the 2018-2020 water shortage period had higher NSC concentrations and trees with higher mean basal area increment during the past 10 years exhibited higher NSC concentrations. During the monitoring, 31 trees died and their NSC reserves were significantly depleted after 3 successive years of soil water deficit. Moreover, 59 % of the trees whose NSC concentrations were below 10  in 2020 died in the three next years while only 2 % of the trees showing NSC concentrations higher than 10  in 2020 died in the next three years. A possible carbon starvation threshold has been identified for the Fagus sylvatica species.

Our results suggest that NSC storage is important for the survival and the resilience of beech radial growth to soil water deficit. The depletion of NSC reserves will be discussed as a key component in the process of beech tree mortality. 

How to cite: Gaertner, P.-A., Bréda, N., Gérard, B., Badeau, V., Levillain, J., von Arx, G., Vitasse, Y., Saintonge, F.-X., and Massonnet, C.: Relationships between non-structural carbohydrates reserves and growth resilience of Fagus sylvatica to extreme drought events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6246, https://doi.org/10.5194/egusphere-egu24-6246, 2024.

EGU24-7313 | Posters on site | BG3.24 | Highlight

Research on the major factor of hyperspectral image measurement method for tree leaves 

Hanna Chang, Su Gyeong Jeong, and Sun Mi Je

Street trees are exposed to various stresses, thus the detection and management of stresses is significant for street tree vitality. Hyperspectral imaging is one of the non-destructive techniques to detect stress responses and vitality of trees. The spectral reflectance of leaves could change as the method for hyperspectral image measurement. We aimed to research the effect of distance and angle between the hyperspectral camera and leaves to recognize the factors for the optical method at the leaf scale. The target is tree seedlings for three major street tree species (Ginkgo biloba L., Chionanthus retusus Lindl. & Paxton and Prunus × yedoensis Matsum.). The hyperspectral images were collected at various distances (30cm and 80cm) and angles (90° (top), 60°, 30°) between the camera and leaves. When measuring, the halogen light was located at the same height as the camera and maintained a 45° angle with leaves. Also, hyperspectral images were collected at various light intensities (low, medium, high) with an 80cm distance and 90° angle between the camera and leaves. We analyze the change in reflectance in the spectral range of 400nm~1000nm as the various measurement methods. For all species, the effects of measurement methods on spectral reflectance were similar. The reflectance near infrared region increased at 30cm distance compared to 80cm distance. Also, the difference in spectral reflectance between 30cm and 80cm distance was continuously increased at over 800nm. However, there were no changes in the spectral response pattern among the light intensities. It means that the reflectance changes due to the distance between the camera and leaves might result from the physical distance, not the light intensity that can increase as the distance gets closer. Meanwhile, the reflectance value could change slightly, but the spectral response patterns were similar among angles between the camera and leaves. The wavelength in which the reflectance value changed differed for species. Therefore, the distance between the camera and leaves might be the major factor in setting the method. We select the distance between the camera and leaves as 80cm to measure the whole seedling crown. Then, we treated the salt stress (three times of 5% CaCl2 500ml with 2-3 days intervals) for G. biloba L. and C. retusus Lindl. & Paxton seedlings. The hyperspectral images were measured before and 7 days after salt treatment with an 80cm distance and 90° angle between the camera and leaves. The changes in the spectral index (R900/800) by the treatment compared between control and salt treatment. The stress responses were detected with the set measurement method; the spectral index increased higher in salt treatment than in the control.

How to cite: Chang, H., Jeong, S. G., and Je, S. M.: Research on the major factor of hyperspectral image measurement method for tree leaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7313, https://doi.org/10.5194/egusphere-egu24-7313, 2024.

EGU24-8211 | ECS | Orals | BG3.24 | Highlight

Remotely sensed vegetation indices improve machine learning performance in predicting Fagus sylvatica L. forest transpiration in Mediterranean climate 

Jerzy Piotr Kabala, Christian Massari, Francesco Niccoli, Francesco Avanzi, Martina Natali, and Giovanna Battipaglia

Transpiration accounts for more than a half of the evaporative water fluxes from land. However, several criticalities still exist in its quantification over the whole land surface. Sap-flux measurement is a widespread technique that allows to retrieve data, at a high temporal resolution, for individual plants or trees. Unfortunately, due to practical constraints the spatial extent of sap-flux data is limited, and the campaigns of measurement are most often limited to one or few vegetative seasons. Hydro-meteorological data can be obtained in a much simpler way than sap-flux, while the vegetation condition is monitored frequently and at a high spatial resolution and with a wide coverage by several remote sensing satellite missions; both this kind of data are related to the transpiration process: on one hand the meteorological forcings drive the evaporation process, while the vegetation exerts control on the stomatal resistance, in response to both the environmental condition as well as its own physiological conditions. Machine learning (ML) is a suitable methodology for extracting and reproducing complex patterns from data; and thus might be able to predict sap-flux based on its physical drivers or proxies.

The objective of this research was to test three different ML algorithms (namely Regression Tree, Random Forest and XGBoost) on timeseries of transpiration based on sap-flux measurements taken in a Fagus sylvatica L. forest located in Southern Italy, during the 2021 and 2022 vegetative seasons, and to evaluate the performance of different vegetation indices (namely NDVI, EVI2 from Sentinel-2 and Cross-Ratio from Sentinel-1) in improving the prediction accuracy. As meteorological predictors Radiation, Air Temperature, Vapour Pressure Deficit, and Soil Moisture were selected. The accuracies obtained by training the algorithms on the meteorological dataset, were compared to those gained with the addition of the different vegetation indices.

The results showed that the vegetation indices always improved the prediction accuracy. EVI2 was the most effective vegetation index, and this is the first study to show that the Sentinel-1 Cross-Ratio is a valuable predictor of vegetation transpiration. With respect to algorithm performance Random Forest and XGBoost outperformed the Regression Tree and showed comparable accuracies between them.

How to cite: Kabala, J. P., Massari, C., Niccoli, F., Avanzi, F., Natali, M., and Battipaglia, G.: Remotely sensed vegetation indices improve machine learning performance in predicting Fagus sylvatica L. forest transpiration in Mediterranean climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8211, https://doi.org/10.5194/egusphere-egu24-8211, 2024.

EGU24-9950 | Orals | BG3.24

Accelerated drought-induced resilience decline across European forests 

Allan Buras, Benjamin Meyer, Konstantin Gregor, Lucia Layritz, Jernej Jevšenak, Christian Zang, and Anja Rammig

The recent intensification of hotter droughts due to climate change has resulted in a reduced resilience of forests at global scale. This response is not only mirrored by increasing rates of tree dieback, but also reflected in a reduced canopy greenness (Buras et al., 2021) as well as emerging statistical early-warning signals of declining forest resilience (EWS, Forzieri et al., 2022). Yet, a systematic investigation on how atmospheric water demand, canopy greenness decline, and EWS are linked across European forests and including the most recent extreme droughts of 2022 and 2023 is missing. To overcome this research gap, we 1) deployed time series of remotely sensed canopy greenness (NDVI) at moderate spatial resolution (6.25 ha) over the period 2001-2023 for the European continent, 2) derived three independent statistical indices of forest resilience, and 3) related these data streams to atmospheric water demand (VPD).

Over the study period, VPD displayed an increasing trend over most of Europe, which was mirrored in a concurrent decline of forest canopy greenness. Moreover, we found a clear and significant non-linear negative impact of rising VPD on canopy greenness for 75% of European forests. The grid-specific frequency of identified EWS was significantly linked to VPD and featured a record extent in 2023 with about one fifth of European forests being affected. This observation was independently supported by a strong increase in the spatiotemporal memory of canopy greenness since the extreme drought of 2018 (Buras et al., 2020). Finally, in the years following 2018 VPD-based predictions increasingly overestimated canopy greenness, hinting at forests decreasing ability to recover from extreme drought impacts. In conclusion, our study underscores the enhanced vulnerability of European forests during the extraordinarily dry period 2018-2023 with important implications for forestry, land-based mitigation plans, and regional climate feedbacks.

 

Buras, A., Rammig, A., Zang, C.S., 2021. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Frontiers in Plant Science 12, 2355. https://doi.org/10.3389/fpls.2021.689220

Buras, A., Rammig, A., Zang, C.S., 2020. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672. https://doi.org/10.5194/bg-17-1655-2020

Forzieri, G., Dakos, V., McDowell, N.G., Ramdane, A., Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539. https://doi.org/10.1038/s41586-022-04959-9

How to cite: Buras, A., Meyer, B., Gregor, K., Layritz, L., Jevšenak, J., Zang, C., and Rammig, A.: Accelerated drought-induced resilience decline across European forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9950, https://doi.org/10.5194/egusphere-egu24-9950, 2024.

EGU24-10975 | ECS | Posters on site | BG3.24

Quantifying the Hydraulic Health of Fennoscandian Boreal Forests in a Changing Climate 

Hannah O'Sullivan and Samuli Junttila

Drought-induced tree mortality in the Anthropocene has increased at an unprecedented rate and is expected to increase even more sharply in the next few decades due to anthropogenic climate change. Fennoscandian boreal forests are particularly at risk of drought-related mortality because they are less adapted to drought conditions compared with lower latitude forests. Currently, tree mortality research is inhibited by a lack of data on tree deaths, but we can still anticipate mortality events by monitoring forest health. In this study we determine indicators of forest ‘hydraulic health’ which we define as the ability of a forest to withstand and recover from drought events. Ultimately, this may help to predict and prevent drought-induced tree deaths under future climatic shifts.  

 To describe the hydraulic health of Fennoscandian forests we examine vegetation water content at both short (sub-daily) and intermediate (weekly) timescales using remotely sensed vegetation optical depth (VOD) measurements. Whilst short-timescale VOD is more tightly linked to water stress, intermediate-timescale VOD can demonstrate forest resilience and recovery to drought events. Here, we use a multivariate time series model to integrate VOD measurements at different timescales, presenting a novel opportunity to disentangle the drivers and responses of forests to drought. 

 The method introduced here is a first step towards quantifying abiotic hazards for forests. By focusing on smaller time steps of VOD data we can minimise the noise attributed to biomass changes over time and can better detect changes in vegetation water content. We hope that by quantifying hydraulic health indicators, they can serve as an early warning system for drought-induced mortality or help in predicting other hazards such as wildfire. Although we focus on Fennoscandian forests, in principle, these methods could be applied to other biomes.  

How to cite: O'Sullivan, H. and Junttila, S.: Quantifying the Hydraulic Health of Fennoscandian Boreal Forests in a Changing Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10975, https://doi.org/10.5194/egusphere-egu24-10975, 2024.

Climate change will increase the frequency and magnitude of extreme meteorological events. Therefore, also windstorm events are expected to increase the amount of damages to natural and human resources. Regarding forests, windstorms are already the first cause of timber damages in Europe. In such sense, it is crucial to predict the vulnerability of forest stands and in this direction, different stochastic and statistical models have been developed and successfully tested on real events. To improve the resistance of forests against windstorms it is also necessary to forecast the future probability of damage (i.e. 100 years scenario) taking into account the changes in the characteristics of the forest cover as species composition, density, stand height, etc. In this way, forest managers can delineate specific silviculture operations in order to obtain more wind-resistant forests in a climate change context. In this study, we simulated the changes in the forest cover due to climate change and past natural events that affected the forest structure through the use of a dynamic vegetation model (e.g. TreeMig). The outcomes of the model are directly transferred to the wind susceptibility model in order to compute the probable critical wind speeds of overturning and breakage. The proposed methodology is applied to the municipality area of Rocca Pietore (74 km2 of which half covered by forest), north eastern Italian Alps. The input data for the forest model are semi-automatically generated by a LiDAR survey while for the climate data high resolution CHELSA dataset has been used. The outputs are post-processed and passed to the wind risk model ForestGALES. The outputs (derived at a fine scale) show the variation in wind vulnerability in accordance with the changes of the forest characteristics. The methodology proposed in this study produce future windthrow vulnerability maps. Consequently, forest managers could quickly identify areas that can be at high risk and test alternative scenarios to increase the stand resistance.

How to cite: Baggio, T., Costa, M., and Lingua, E.: Predicting future windthrow susceptibility coupling forest growth and wind risk models: an application to a study area in the eastern Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12364, https://doi.org/10.5194/egusphere-egu24-12364, 2024.

EGU24-12524 | ECS | Posters on site | BG3.24

The Role of Soil in Forest Drought Response: Remote Sensing-Based Monitoring of Disturbance Hotspots in Central Europe 

Birgitta Putzenlechner, Philipp Koal, Susanne Karel, Martin Kappas, Markus Löw, Philip Mundhenk, Alexander Tischer, Jakob Wernicke, and Tatjana Koukal

Prolonged drought and increased susceptibility to biotic stressors have led to a far-reaching calamity in forests dominated by Norway spruce (Picea abies (L.) Karst.) across Central Europe. European beech (Fagus sylvatica L.) has suffered from crown defoliation and increased mortality. The drastic consequences for forestry and ecosystems urge for comprehensive insights to guide future forest management. The recent drought represents an experimental setting for applying remote sensing-based anomaly detection to understand the role of site conditions for drought response. As quantitative information on soils is scarce and usually available at coarse spatial resolution, knowledge on the role of soil properties is limited. To close this gap, our study pioneers a fine-scale assessment on the role of soil properties based on satellite remote sensing-derived forest disturbance.

We applied an existing forest disturbance modeling framework, based on Sentinel-2 time series data on 340 km² in Central Germany, representing hotspots of forest disturbance. Our approach allowed for a reconstruction of spatio-temporal-dynamics of forest disturbance at 10 m spatial resolution over the initial period (2019 to 2021) of the recent drought. Forest disturbance information was intersected with fine-scale soil information (1:10,000) based on roughly 2,870 soil profiles in three study areas. We investigated on how disturbed area varied among sites with different soil type, texture, stoniness, effective rooting depth and available water capacity (AWC).

Our approach enabled to retrace where initial disturbance took place and how disturbance developed over time. For Norway spruce, we found that stands were most affected on deep Cambisols with medium to high AWC (90 to 160 mm) and rather low stone content, i.e., on soils usually considered as suitable in silviculture. However, these stands seemed to be more prone to suffer from unexceptional water scarcity. In contrast, we could not find evidence for pronounced disturbance on shallow soils or soils with high stone content, even though stands on soils with high AWC (> 160 mm) were least affected. Compared to spruce, the drought response of beech seemed less clearly directed to soil properties, but based on our results, we support the general concern on drought vulnerability of this species. In this regard, only stands on Luvisols with very high AWC (> 180 mm) remained undisturbed. Although long-term post-drought effects are unknown, stands initially affected did not necessarily develop the highest proportions of disturbed area, indicating recovery or adaptive mechanisms.

We conclude that the integration of remote sensing-based forest disturbance monitoring with fine-scale soil information allowed us insights into soil-related drought risks. In view of the currently still high level of spruce die-back due to bark beetle infestation, disturbance in the hotspot regions we investigated will hardly to be stopped. Nevertheless, other areas with a high proportion of spruce could benefit from our findings, by identifying vulnerable stands and target in situ monitoring at an early stage of drought. For long-term strategies related to forest conversion and recovery, we consider fine-scale and quantitative information on soils crucial for implementing precision forestry.

How to cite: Putzenlechner, B., Koal, P., Karel, S., Kappas, M., Löw, M., Mundhenk, P., Tischer, A., Wernicke, J., and Koukal, T.: The Role of Soil in Forest Drought Response: Remote Sensing-Based Monitoring of Disturbance Hotspots in Central Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12524, https://doi.org/10.5194/egusphere-egu24-12524, 2024.

Native forest landscapes globally face unprecedented challenges due to land use changes and climate changes, impacting terrestrial biodiversity conservation. Despite efforts to control forest loss, fragmentation, and degradation, uncertainty persists regarding the effects of climate change on forest dynamics, including shifts in productivity, species composition, and disturbance patterns. This study focuses on the Mediterranean ecosystems in Central Chile, known for their resilience to stressors like drought and wildfires. However, changing disturbance regimes in recent decades have tested their adaptive mechanisms. Understanding the effects of new disturbance regimes and their interactions on forest recovery is crucial, particularly in poorly studied ecosystems like the Mediterranean region in South America. Using remote sensing-based vegetation indices, we analyzed short-term (5-year) vegetation recovery after wildfires in Central Chile during the Mega Drought period (2010-2022) and compared it with two preceding decades (1992-2009). Normalized Difference Vegetation Indices (NDVI) were employed, and environmental variables, including climate, topography, and burn severity, were considered to model post-fire recovery from Random Forest models. Drought duration emerged as the most influential factor negatively affecting post-fire vegetation recovery, particularly in hillside areas. Fire severity showed a complex relationship with recovery, positively correlated in humid years but negatively in dried years. Our findings emphasize the critical role of drought in shaping post-fire vegetation recovery in Mediterranean forests. With the ongoing Mega Drought in Central Chile, understanding these dynamics becomes paramount for adaptive management. The study underscores the importance of comprehensive remote sensing monitoring to assess ecological processes, model ecosystem vulnerability, and study climate and disturbance regime interactions. These insights are essential for developing effective strategies to protect and manage forest ecosystems in the face of changing environmental conditions.

How to cite: Hernandez-Duarte, A. and Saavedra Pimentel, F.: Insights into Post-Fire Dynamics: Evaluating Short-Term Vegetation Recovery During Mega Drought in Central Chilean Mediterranean Forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13580, https://doi.org/10.5194/egusphere-egu24-13580, 2024.

EGU24-15114 | Orals | BG3.24

Dynamics in CO2 uptake, growth, and mortality of an old-growth temperate forest under drought stress 

Franziska Koebsch, Anne Klosterhalfen, Anas Emad, Martina Mund, Christian Ammer, Steffen Dietenberger, Laura Donfack, Marius Heidenreich, Marlin M. Mueller, Dominik Seidel, Christian Thiel, Frank Tiedemann, and Alexander Knohl

Understanding drought stress responses and adaptation mechanisms in forest ecosystems towards climate extremes is crucial. This knowledge aids in assessing adaptive capacities and developing supportive management measures. Here, a comprehensive long-term data set obtained in the Hainich National Park, an old-growth mixed-beech forest in Central Germany (DE-Hai), gives the opportunity to investigate stress effects and transformation processes caused by the 2018 and 2019 summer droughts on tree and stand scale. The forest displays a near-natural, diverse system with a range of tree age classes and species (main species: Fagus sylvatica, Fraxinus excelsior, Acer pseudoplatanus).

In this study, we combined long-term observations of stand-level CO2 exchange obtained with the eddy covariance method with annual growth records and structural indices of 80 trees obtained from dendrometer bands and terrestrial laser scans. Further, drone and satellite imagery provided estimates of tree mortality through canopy gap dynamics. Based on this multi-scale data set, we strive to better understand the link between forest CO2 uptake and tree response dynamics under the influence of a severe drought.

During the drought events in 2018 and 2019, we observed that the forest remained a net CO2 sink, but the CO2 uptake strength was considerably diminished (up to -30%) in comparison to the reference period of the previous 17 years. Moreover, the reduction in CO2 uptake extended beyond the duration of the droughts, which implies significant changes in the mechanisms and dynamics of the forest. Further, an increase in the canopy gap fraction by more than 50% in 2021 indicated a significant increase in tree mortality. Surviving trees were affected differently by the droughts depending on species-specific stress response strategies and a tree’s role as competitor or suppressed individual. In particular, the growth of older and larger trees, mostly Fraxinus excelsior, was impaired during and after the drought period. However, approximately half of the observed trees, mostly suppressed, vital Fagus sylvatica, showed a positive growth trend during and after the drought period.

The structural diversity of the old-growth mixed forest could buffer the drought-induced outage in the CO2 uptake strength, though the increased growth of a large cohort of surviving, suppressed Fagus sylvatica could not compensate for the diminished CO2 uptake by a few dying dominant trees. The natural succession dynamics in the forest ecosystem seem to be accelerated due to drought events. A continuous and consistent long-term monitoring of forest ecosystems is needed to further investigate the initiated transformation processes, the stand and tree resilience, and additionally the impact of legacy effects.

How to cite: Koebsch, F., Klosterhalfen, A., Emad, A., Mund, M., Ammer, C., Dietenberger, S., Donfack, L., Heidenreich, M., Mueller, M. M., Seidel, D., Thiel, C., Tiedemann, F., and Knohl, A.: Dynamics in CO2 uptake, growth, and mortality of an old-growth temperate forest under drought stress, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15114, https://doi.org/10.5194/egusphere-egu24-15114, 2024.

EGU24-15274 | Posters on site | BG3.24

Drought stress vulnerability for mature versus young trees in a mixed temperate forest stand 

Guenter Hoch, Raphael Dups, Richard Peters, David Steger, Tobias Zhorzel, and Ansgar Kahmen

Drought can affect mature and young trees differently, and many studies suggested that large trees might be more prone to drought-related damage and mortality than conspecific smaller individuals. A higher drought vulnerability for tall trees is generally assigned to increasing constraints to water transport with tree height, but a multitude of other biotic and abiotic factors can additionally contribute and modulate their drought resistance. The interrelation of these factors and its consequences for the different drought vulnerabilities between small and dominant trees is so far not well understood and awanting exploration.

Within our study, we took advantage of the Swiss Canopy Crane II (SCC II) site to simultaneously measure critical physiological parameters related to drought stress, namely, pre-dawn and mid-day leaf water potentials (LWP) and stomatal conductance, of mature, ca. 30 m tall individuals and small saplings of 9 common temperate European tree species. These measurements took place throughout the growing season 2023 that was characterized by high temperatures and extended dry periods in late summer and early autumn. Independent of tree size, the increasingly drier conditions caused pre-dawn and mid-day LWP to decrease significantly along the season, with mature trees of some species showing values close or at the species-specific P50 threshold (i.e. the LWP where 50 % loss of xylem conductivity is expected). Our results show that mature trees experienced overall more negative LWP than saplings. Most of these differences could be explained by increasing hydrostatic constraints with increasing tree height. However, even after accounting for this hydrostatic effects (-0.01 MPa per meter tree height), there remained significant differences in pre-dawn and mid-day LWP between mature trees and sapling in some of the investigated species, that were likely caused by either 1) microclimatic effects (especially VPD differences between the upper canopy and the understory), 2) different abilities to refill tree-internal water stores during the night, or 3) differences in soil water access due to rooting differences. Following this first assessment, we are planning to expand our investigations in the next years to better disentangle these different factors that significantly contribute to differences in drought vulnerability with tree size in different tree species, with important implications for the future state and population dynamics of temperate forests.

How to cite: Hoch, G., Dups, R., Peters, R., Steger, D., Zhorzel, T., and Kahmen, A.: Drought stress vulnerability for mature versus young trees in a mixed temperate forest stand, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15274, https://doi.org/10.5194/egusphere-egu24-15274, 2024.

EGU24-15502 | Orals | BG3.24 | Highlight

deadtrees.earth - an open, dynamic database for accessing, contributing, analyzing, and visualizing remote sensing-based tree mortality data. 

Teja Kattenborn, Clemens Mosig, Kc Pratima, Julian Frey, Oscar Perez-Priego, Felix Schiefer, Yan Cheng, Alastair Potts, Janusch Jehle, Mirko Mälicke, and Miguel Mahecha

Excessive tree mortality rates prevail in many regions of the world. Understanding tree mortality dynamics remains elusive as this multifaceted phenomenon is influenced by an interplay of abiotic and biotic factors including, but not limited to, global warming, climate extremes, pests, pathogens, and other environmental stressors. Earth observation satellites, coupled with machine learning, present a promising avenue to unravel map standing dead trees and lay the foundation for explaining the underlying dynamics.

However, the lack of globally comprehensive, georeferenced training data spanning various biomes and forest types has hindered the development of a unified global product detailing tree mortality patterns. Present ground-based observations, e.g., sourced from national inventories, are often sparse, lack standardization, and spatial specificity. Alternatively, aerial imagery captured via drones or airplanes in concert with computer vision methods offers a potent resource for mapping standing deadwood with high precision and efficiency on local scales. Such products can subsequently be used to train models based on satellite data to infer standing deadwood on large spatial scales.

In pursuit of harnessing this potential to enhance our global comprehension of tree mortality patterns, we initiated the development of a dynamic database (https://deadtrees.earth), which enables to 1) upload and download aerial imagery with optional labels on standing deadwood, 2) automatically detect (semantic segmentation) standing dead trees in uploaded aerial imagery through a generic detection computer vision model, 3) Visualization and download of extensive spatiotemporal tree mortality products derived from extrapolating standing deadwood using Earth observation data.

This presentation provides an in-depth overview of the deadtrees.earth database, outlining its motivation, current status, and future perspectives. By integrating Earth observation, machine learning, and ground-based data sources, this initiative aims to bridge the existing gaps in understanding global tree mortality dynamics, fostering a comprehensive and accessible resource for researchers and stakeholders alike.

How to cite: Kattenborn, T., Mosig, C., Pratima, K., Frey, J., Perez-Priego, O., Schiefer, F., Cheng, Y., Potts, A., Jehle, J., Mälicke, M., and Mahecha, M.: deadtrees.earth - an open, dynamic database for accessing, contributing, analyzing, and visualizing remote sensing-based tree mortality data., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15502, https://doi.org/10.5194/egusphere-egu24-15502, 2024.

EGU24-15860 | Posters on site | BG3.24

Evolutionary drivers of phenotypic traits in two European tree species – evidence from common garden networks 

Elisabet Martínez-Sancho, Christian Rellstab, Patrick Fonti, Marta Benito Garzón, Christof Bigler, Charlotte Grossiord, Jose Carlos Miranda, Common-Ring project partners, and Yann Vitasse

Evolutionary processes such as phenotypic plasticity and genetic adaptation are key mechanisms that have enabled tree species to cope with major changes in their environments and to colonize new areas over millennia. Forest populations are currently experiencing extremely rapid environmental changes due to anthropogenic climate change, challenging their adaptation and resilience over the coming decades. Tree ecophysiological traits do not vary independently but are rather coordinated; however, our understanding of whether these functional traits are governed by the same evolutionary processes is far from complete. In this study, we assessed the evolutionary drivers of functional traits of two major European tree species: sessile oak (Quercus petraea (Matt.) Liebl.) and European beech (Fagus sylvatica L.). We used multiple common garden experiments (four per species) established in the 1990s within the distribution area of these two species, each comprising 9 to 11 provenances. We measured the following traits: i) tree growth including diameter at breast height, height and basal area increments; ii) specific leaf area; iii) long-term responses to climate including the correlation between annual tree growth and climate; and iv) short-term responses to extreme drought. Individual traits were modelled as a response of environment (sites), genetic identity (provenance) and genetically based plasticity (its interaction). To explore the potential influence of climate conditions at seed origin, both, genetic identity and genetically based plasticity, were correlated with the 19 bioclimatic variables from the seed origin (1961–1990) using Pearson correlations. Associations between the climate of origin and multi-trait genetic effects and genetically based plasticity, as well as associations between the climate of the site and multi-trait plasticity were also explored for both species.

Our results indicate that range-wide variation in the studied traits of oak and beech is markedly driven by phenotypic plasticity. At the individual trait level, sessile oak showed evidence for both genetic and plastic causes of trait variation. In contrast, the variability of traits of European beech seemed to have been mostly shaped by environmentally driven responses with no clear signs of genetic effects and small genetically based phenotypic plasticity. The results of the integral multi-trait phenotypes, however, suggested genetically driven differences along a resource-use gradient governed by temperature conditions in both species. The plasticity of coordinated traits also reflects the ability of all provenances to adjust to new environmental conditions by optimizing the integrated phenotype along a resource-use gradient. Our results suggest that mitigation strategies for climate change could be directed towards seeking provenances that are more plastic in their integral phenotype across the resource-use gradient, rather than typically searching for populations adapted to the current or future conditions at the target site.

How to cite: Martínez-Sancho, E., Rellstab, C., Fonti, P., Benito Garzón, M., Bigler, C., Grossiord, C., Miranda, J. C., project partners, C.-R., and Vitasse, Y.: Evolutionary drivers of phenotypic traits in two European tree species – evidence from common garden networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15860, https://doi.org/10.5194/egusphere-egu24-15860, 2024.

EGU24-16915 | Posters on site | BG3.24

Biotic and abiotic  heterogeneity show contrasting GPP and growth trends in mediterranean forests 

Daniela Dalmonech, Elia Vangi, and Alessio Collalti

The Mediterranean basin is a well-known drought-prone region, making forest ecosystems potentially vulnerable to drought episodes, heat waves and dry spells. In the last two decades, extreme weather events affected different regions of Europe including mediterranean áreas. This led to significant impacts on forest ecosystems, with extensive mortality events, episodes of crown dieback, and identified reduced tree growth at local level. The predictive abilities to depict early warning signals of negative extreme-induced impacts, well before that the mortality event might occur, are pivotal for monitoring Mediterranean forests. The 3D-CMCC-FEM model, a detailed ecophysiological process-based model, is here applied at gridded level over the Basilicata region, in southern Italy. The model is run on a regular 1x1 km grid for the period 2005-2019 to simulate, among others, gross primary productivity, carbon allocation and tree growth, processes which are controlled by abiotic, e.g. meteorological conditions, and biotic factors, e.g. trees reserve pools, in a mechanistic manner. This modeling approach allows discriminating the degree of decoupling of  carbon assimilation, and tree growth , e.gcarbon woody accumulation. As a result of such interaction between processes and factors, the model  highlighted different emerging patterns of the system under investigation. In particular, results show pronounced differences between European beech dominated areas and oaks dominate areas of the region. Generally, despite a significant drop of summer GPP in beech forests and an overall negative GPP trend, in accordance with remote-sensing based data, the tree growth rate is still positive. Oppositely, the oaks dominated forests show contrasting patterns, with areas where positive trends in GPP can be accompanied by positive but even negative trends in tree growth. The 3D-CMCC-FEM is shown to identify areas which might be prone to statistically significant negative trends in tree growth and, thus, likely to be prone to higher mortality risk in the near future. Indeed, these negative growth trends can not be explained only in terms of forest aging, but also in terms of abiotic factors. Our results show how the diverse degree of coupling between assimilation and growth between different species might be predicted by the model and leading to increase our capability to detect early signals of declining growth, which might already occur in spite of an apparent full recovery after a drought event at canopy level.

How to cite: Dalmonech, D., Vangi, E., and Collalti, A.: Biotic and abiotic  heterogeneity show contrasting GPP and growth trends in mediterranean forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16915, https://doi.org/10.5194/egusphere-egu24-16915, 2024.

EGU24-18230 | ECS | Posters on site | BG3.24 | Highlight

Mapping Tree Mortality at Global Scale Using Sentinel-2 

Clemens Mosig and the co-authors

Excess tree mortality in the wake of climate extremes has been observed globally. However, we still lack precise data on mortality at global scale to understand respective drivers and spatiotemporal dynamics. The Sentinel-2 satellite fleet, equipped with the MultiSpectral Instrument (MSI), covers the entire earth on average every five days at spatial resolutions ranging from 10 m to 60 m. Mapping tree mortality from Sentinel-2 globally in diverse ecosystems requires equally diverse reference data. Using globally distributed high-resolution aerial orthoimagery reference data and artificial intelligence methods, we can translate spectral signatures of remote sensing into deadwood. Specifically, in this study we show how to predict the share of standing deadwood for a 10 m pixel in a specific year. The method takes into account temporal patterns, spatial context, as well as all Sentinel-2 spectral bands. This will enable us to map tree mortality globally at a new level of precision.

How to cite: Mosig, C. and the co-authors: Mapping Tree Mortality at Global Scale Using Sentinel-2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18230, https://doi.org/10.5194/egusphere-egu24-18230, 2024.

EGU24-18383 | ECS | Posters on site | BG3.24 | Highlight

SilvaCuore, a tool for monitoring the health status of Italian forests 

Maria Castellaneta, Marco Borghetti, Michele Colangelo, Giacomo Colle, Angelo Rita, and Francesco Ripullone

The health status of forests is becoming increasingly endangered by drought-induced climate change. In recent decades, widespread forest decline has been reported  worldwide in all biomes. The reports of forest mortality across Italy and the need to be better aware of the extent and magnitude of the phenomenon were the assumptions that led to the development of a web-application called SilvaCuore. A team of researchers from the University of Basilicata has carried out this project to safeguard Italian forests. The aim is to combine scientific research and active community participation (Citizen Science project) through the use of new technologies, in order to better monitor and manage Italy’s forest heritage. The SilvaCuore web-application seeks to census the declining forest sites located in Italy and to create a database that can be used as a basis to improve the forest management. SilvaCuore has been developed as a Progressive Web Application and can be accessed from smartphones, tablets and PCs due to its responsive user interface. The user, after registering in to the web-application, is guided by a user-friendly step-by-step procedure in the reporting process that, besides a brief description or more complex data, allows to take some photos and the GNSS position of the site. The report outcomes will be automatically collected in a cloud web database, immediately accessible to the research team. Verified reports will become publicly accessible from the same web-application, ready to provide a concrete insight into the health of our forests. The application is also linked to a website that provides additional information about the project, the rationale behind the app, and the research activities carried out by the SilvaCuore team. It is crucial to improve the citizen's approach to nature and environmental issues: a more aware citizen will be a citizen who cares more about the environment and its preservation. An case in point is the agreement with PEFC Italy (Program for the Endorsement of Forest Certification Schemes): first, PEFC-certified forest owners will be able to utilize the web-application, in order to implement adaptive forest management and second, this will provide useful alert reporting. The challenge here is to be able to create a monitoring network that not only monitors the current state of forest health but also evaluates potential future dynamics, and becomes increasingly capable of responding to the threat of forest decline.

How to cite: Castellaneta, M., Borghetti, M., Colangelo, M., Colle, G., Rita, A., and Ripullone, F.: SilvaCuore, a tool for monitoring the health status of Italian forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18383, https://doi.org/10.5194/egusphere-egu24-18383, 2024.

EGU24-18521 | ECS | Posters on site | BG3.24

Climatic drivers of cork growth depend on site aridity 

Michele Colangelo, J. Julio Camarero, Angela Sanchez-Miranda, and Luis Matías

Cork is one of the main non-timber forest products in the world. Most of its production is concentrated in the Iberian Peninsula, a climate change hotspot. Climate warming may lead to increased aridification and reduce cork production in that region. However, we still lack assessments of climate-cork relationships across ample geographical and climatic gradients explicitly considering site aridity. We quantified cork growth by measuring cork ring width and related it to climate variables and a drought index using dendrochronology. Four cork oak (Quercus suber L.) forests located from north eastern Spain to south western Morocco and subjected to different aridity levels were sampled. Our results showed that warm conditions in spring to early summer, when cork is formed, reduced cork width, whereas high precipitation in winter and spring enhanced it. The response of cork to increased water availability in summer peaked in the most arid and continental site considering 14-month long droughts. A severe drought caused a disproportionate loss of cork production in this site, where for every five-fold decrease in the drought index, the cork-width index declined by a factor of thirteen. Therefore, site aridity determines the responses of cork growth to the soil water availability resulting from accumulated precipitation during winter and spring previous to cork growth and until summer. In general, this cumulative water balance, which is very dependent on temperature and evapotranspiration rate, is critical for cork production, especially in continental, dry sites. The precipitation during the hydrological year can be used as a proxy of cork production in similar sites. Assessments of climate-cork relationships in the western Mediterranean basin could be used as analogues to forecast the impacts of aridification on future cork production.

How to cite: Colangelo, M., Camarero, J. J., Sanchez-Miranda, A., and Matías, L.: Climatic drivers of cork growth depend on site aridity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18521, https://doi.org/10.5194/egusphere-egu24-18521, 2024.

EGU24-19025 | ECS | Posters on site | BG3.24

Delineating Standing Deadwood in High-Resolution RGB Drone Imagery 

Jakobus Möhring and the co-authors

We have observed tree die-offs in a variety of regions in the world. Understanding the diverse causes of tree mortality requires exact information about which trees are dying and where. With the increased user-friendliness of drones and the availability of airborne imagery, high-resolution imagery of forests is becoming widely available. Delineating standing deadwood in such aerial imagery has become a classic segmentation task and several models with varying accuracy have been developed. However, these machine-learning based models are not generic and limited to specific image resolutions, sensor characteristics, geographic regions, and forest ecosystems. The reason for this lack of generality is that previous models have been trained using only datasets representative of specific regions and obtained from a single source. In this study, we obtain a diverse dataset spanning more than a dozen countries across continents and implement a single convolutional neural network (CNN) model that is able to cope with most forest ecosystems, varying image quality, and spatial resolutions. 

How to cite: Möhring, J. and the co-authors: Delineating Standing Deadwood in High-Resolution RGB Drone Imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19025, https://doi.org/10.5194/egusphere-egu24-19025, 2024.

EGU24-19939 | Posters on site | BG3.24

Global change effects on Mediterranean pine forests: hotspots of dieback 

Raul Sanchez-Salguero, Antonio Gazol, Sergio Vicente-Serrano, Giovanna Battipaglia, Francesco Ripullone, Andrea Hevia, and J. Julio Camarero

The effects of climate extremes on the vulnerability to forest dieback of widely distributed Mediterranean pine species are poorly understood but important for forecasting their responses to climate change. As air temperature increases, evaporative demand will also rise, exceeding the drought tolerance of tree species to pervasive droughts. Using a spatially comprehensive network of six pine species with > 800 tree-ring chronologies, > 500 plots from the the ICP-forest network (defoliation, moratlity, etc) and drought-induced mortality database combined with NDVI (Normalized Difference Vegetation Index) encompassing the wide ecological and climatic gradients across Mediterranean Basin. We show that an increase of climate water deficit produced legacy post-drought effects on growth with strong variation in growth across its distributional range, but common patterns were found within each provenance. Vulnerability to legacy effects of extreme droughts were most prevalent in dry provenances and western, in contrast to limited legacy effects after drought observed in wet provenances and high-elevation sites. Post‐drought legacies decreased with latitude and wetter conditions but decreased with spring precipitation in western mediterranean. Trees from dry, rear-edges sites in the Mediterranean Basin were more vulnerable to recurrent droughts than trees from wet. The increase in summer temperature and evapotranspiration favour hotter droughts that can increase defoliation, decrease tree growth and productity casusing drought-induced forest dieback in drier regions over the next decades.

How to cite: Sanchez-Salguero, R., Gazol, A., Vicente-Serrano, S., Battipaglia, G., Ripullone, F., Hevia, A., and Camarero, J. J.: Global change effects on Mediterranean pine forests: hotspots of dieback, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19939, https://doi.org/10.5194/egusphere-egu24-19939, 2024.

EGU24-20354 | Posters on site | BG3.24

Exploring sex-specific anatomical adaptations in Rhamnus alaternus L. a Mediterranean dioecious shrub: implications for resilience to climate change 

Angela Balzano, Chiara Amitrano, Maks Merela, Riccardo Motti, and Veronica De Micco

Secondary sexual dimorphism plays an important role in shaping the response of plants to different environmental constraints, particularly in relation to energy requirements. Dioecious plants exhibit intricate sex-specific differences that influence stress tolerance mechanisms. In Mediterranean ecosystems, the challenges to stress tolerance are exacerbated by climate change-induced changes in temperature, precipitation patterns and frequency of extreme weather events. Understanding how male and female dioecious plants cope with stress is essential for the development of effective conservation strategies.

This study focuses on the investigation of secondary sexual dimorphism in the wood and leaf anatomy of a Mediterranean shrub Rhamnus alaternus L., to identify potential sex-specific responses to environmental stressors. We conducted a comprehensive analysis of wood and leaf anatomy in male and female individuals at a southern Italian Mediterranean site. Microscopy and subsequent image analysis allowed the quantification of anatomical features related to water-use efficiency, safety against embolism and photosynthetic efficiency. Parameters measured included stem vessel size and distribution, reaction wood formation, stomata characteristics, leaf tissue thickness and mesophyll density.

Our results show a coordinated sex-specific adaptation in anatomical traits that influence either the efficiency or safety of water flow and the regulation of gas-exchange. This knowledge is crucial for improving the resilience and diversity of these plant populations in the face of climate change impacts. The knowledge gained from this study will contribute to the development of targeted conservation strategies for dioecious species in Mediterranean ecosystems.

How to cite: Balzano, A., Amitrano, C., Merela, M., Motti, R., and De Micco, V.: Exploring sex-specific anatomical adaptations in Rhamnus alaternus L. a Mediterranean dioecious shrub: implications for resilience to climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20354, https://doi.org/10.5194/egusphere-egu24-20354, 2024.

Quercus robur/Quercus petraea and Pinus sylvestris are light demanding, drought resistant wide spread European tree species occupying a similar ecological niche on mesotrophic xeric and mesic sites. Increasing drought and heat-spells will decrease their growth, but growth reductions depend on the timing of drought within a year, site characteristics, and inter- and intraspecific competition.

In this study we analysed tree ring series of 1589 trees growing on 36 triplets installed across Europe, spanning a gradient of mean annual temperatures from 5.5°C to 11.5°C. Tree ring data were analysed using a generalized additive model with random effects for triplet, year and tree level and a random slope for age, explaining 87 % of the variation of diameter increment.

High values for potential evapotranspiration in spring and autumn, indicating warm temperatures, positively and non-linearly influenced diameter increment of both species, while the effect in June was linear and negative. Across Europe, June was the most influential month for tree growth. Further, tree growth declined with age and local density and increased with social position.

Modelled random patterns showed no large scale trend, when plotted per site and year indicating highly site specific shifts in competitive advantages.

How to cite: Vospernik, S. and the Oak-pine Europe: Tree species growth of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - dynamic sensitive equilibrium, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20782, https://doi.org/10.5194/egusphere-egu24-20782, 2024.

EGU24-22173 | Posters virtual | BG3.24

Classification of defoliation of Scots Pine using SVM algorithm and Landsat imagery 

Marina Rodes, Rupert Seidl, Paloma Ruiz Benito, Miguel Ángel Zavala, Inmaculada Aguado, Eva Samblás Vives, Cristopher Fernández de Blas, Pedro Rebollo, Julián Tjerín, and García Mariano

Temperatures are expected to rise 1.5ºC for 2100 due to climate change caused by anthropogenic emissions. These risen of temperatures are causing an increase in frequency and intensity of drought events that are expected to get even more frequent and more extreme in the following decades. Most predictions suggests that drought stress will cause a large-scale tree mortality, species distribution range contractions and a general productivity loss throughout this century. Defoliation represents an early stage of dieback, at which some silvicultural practices can be done to reduce competence or to improve water retention. Therefore, identifying and mapping these areas is of crucial importance to forest managers in the context of global change. 

The aim of this study is to develop a classification model to differentiate die-off and healthy Scots Pine plots using field data and Landsat time series and to extrapolate the model results to other areas of the species’ distribution. 

We have 51 plots (17 m ~ Landsat pixel) in four sites with healthy (<30% defoliated) and die-off (>= 30% defoliated) areas for which we collected dasometric information along with defoliation and mortality. We downloaded, decomposed, and modelled Landsat time series (1985-2023) of Tasseled Cap components and fitted linear models since the last severe drought (2017) that affected Pinus sylvestris populations. A set of candidate explanatory variables were built including the slope of the linear model between 2017 and 2024, mean trend values from 2022 and mean amplitude from 2022.  

Field data were randomly divided in two independent groups (train and test plots). This process was repeated 100 times and a support vector machines (SVM) model was calibrated for every possible combination of explanatory variables. The best candidate model was chosen according to the model performance metrics of the 100 calibrated models. 

The best model had an AUC > 96.97%, an OAA>88.23% and a die-off prediction rate over 83.3% for the 75 out of 100 repetitions. Applying model ensemble to all the plots an AUC = 97.5%, a die-off prediction rate of 95% was obtained. With this work we conclude that Landsat info from 2017 can successfully classify plots into healthy and non-healthy ones. The results of the model are good enough to extrapolate to areas of similar conditions to our study plots and will be, hence, applicable to most of the Pinus sylvestris distribution. 

How to cite: Rodes, M., Seidl, R., Ruiz Benito, P., Ángel Zavala, M., Aguado, I., Samblás Vives, E., Fernández de Blas, C., Rebollo, P., Tjerín, J., and Mariano, G.: Classification of defoliation of Scots Pine using SVM algorithm and Landsat imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22173, https://doi.org/10.5194/egusphere-egu24-22173, 2024.

EGU24-22250 | Posters on site | BG3.24

Impacts of pine processionary moth defoliation on tree water use patterns 

Hermine Houdas, Héctor Hernández-Alonso, José Miguel Olano, Kevin Hultine, Susan Bush, Jessica Guo, María de la Encarnación Coca, and Gabriel Sangüesa-Barreda

Stomatal conductance is the principal mechanism of plants to regulate transpiration rates in response to environmental conditions. However, disturbances directly affecting leaves, such as outbreaks of defoliating insects, can impact the ability of trees to control canopy water loss, leading to significant shifts in plant water relations and forest water budget dynamics. One such example is the pine processionary moth (Thaumetopoea pityocampa; PPM), the main defoliating insect of pines and cedars in the Mediterranean Basin, that could have a significant effect on forest ecohydrology and tree vulnerability to drought. However, despite its potential relevance, PPM effects on tree water use patterns remain largely unexplored. Our study aimed to assess the effects of PPM defoliation on tree hydraulic patterns over time, and on tree stomatal sensitivity to soil water limitations during and after defoliation periods. We conducted a 12-month study of two stands in a Pinus nigra forest affected by PPM in Spain by combining measurements of stem sap flux, soil water content, and micrometeorology. The selection of the study site was based on the high presence of PPM nests during October and November, marking the onset of the defoliation period. In each stand, we installed 15 sap flux sensors on trees with contrasting abundance of PPM nests. These devices recorded sap flux density (Js), air temperature and air relative humidity at an hourly resolution. Ten TMS-4 dataloggers were also placed in each stand to measure soil temperature and soil water content (SWC) to a depth of 14 cm. The percentage of defoliation was visually assessed both at the beginning and at the end of the defoliation period, in November and next season May. Sensitivity in tree water use to changes in soil moisture was determined using stepwise regression models to estimate the breakpoint at the tree level between SWC and Js, representing the point at which constraints on water use shifts from SWC to atmospheric vapor pressure deficit (VPD). We hypothesized that defoliation would initially increase tree water use in relation to VPD due to damage to the leaf cuticle and/or reductions in stomatal sensitivity to aridity as the leaves are consumed by PPM. Results indicate a transitory increase in sap flux density with defoliation, with differences between the trees that tend to be reduced over time. By offering novel insights into the importance of defoliation in water use patterns and its regulation in relation to environmental conditions, our study contributes to enhanced decision-making for water conservation efforts.

How to cite: Houdas, H., Hernández-Alonso, H., Olano, J. M., Hultine, K., Bush, S., Guo, J., de la Encarnación Coca, M., and Sangüesa-Barreda, G.: Impacts of pine processionary moth defoliation on tree water use patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22250, https://doi.org/10.5194/egusphere-egu24-22250, 2024.

EGU24-74 | ECS | Posters on site | BG3.25

Future scenarios of forest microclimates using a Land Surface Model. 

Gabriel Hes, Inne Vanderkelen, Rosie A. Fisher, Jérôme Chave, Jérôme Ogée, and Edouard Davin

The forest understory generally experiences temperature variations that are dampened compared to adjacent open areas (known as the “buffering effect”), allowing the development of a forest microclimate and associated ecological conditions. It is however unclear to what extent forests will maintain this buffering effect under increasing global warming. Providing reliable projections of future forest microclimates is therefore crucial to anticipate climate change impacts on forest biodiversity, and to identify corresponding conservation strategies. Recent empirical studies suggest that the buffering of air temperature extremes in forest understory compared to open land could increase with global warming, albeit at a slower rate than macroclimate temperatures. Here, we investigate the trend of this temperature buffering effect in a high-emission global warming scenario, using the process-based Land Surface Model CLM5.1. We find biome-dependant buffering trends with strongest values in tropical forests where buffering increases for every degree of global warming by 0.1 °C for maximum soil temperature, and by 0.2 °C for maximum canopy air temperature. In boreal regions, forest microclimate exhibits a strong seasonality and the effect of global warming on forest understory is less clear. This first Land Surface Model assessment of future forest microclimate highlights the specific importance of tropical forest canopies in particular, in maintaining hospitable conditions for understory species while also increasing their climate debt under global warming. Our research also illustrates the potential and limitations of Land Surface Models to simulate forest microclimate, and calls for further collaborations between Earth system modelers and ecologists to jointly question climate and biosphere dynamics.

How to cite: Hes, G., Vanderkelen, I., Fisher, R. A., Chave, J., Ogée, J., and Davin, E.: Future scenarios of forest microclimates using a Land Surface Model., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-74, https://doi.org/10.5194/egusphere-egu24-74, 2024.

EGU24-1767 | ECS | Orals | BG3.25

Quantifying and modelling feedbacks between forest structure, light, microclimate and carbon cycling in temperate forests 

Emma Van de Walle, Steven De Hertog, Félicien Meunier, Kim Calders, Pieter De Frenne, Zhizhi Yang, Michiel Stock, Francis wyffels, Louise Terryn, Pieter Sanczuk, Tom E. Verhelst, and Hans Verbeeck

Studying the feedback between forest structure and the environment, particularly below canopies, is crucial for sustainable forest management, biodiversity conservation, and climate mitigation. Advanced vegetation models play a key role in unraveling the complex interaction between forest composition and environmental conditions, as these allow to understand the dynamics of ecosystems by simulating the interactions between plant species and their environment. An essential aspect necessitating refinement in these models is understanding how radiation interacts with intricate structures like forest canopies.

In this study, we employ advanced terrestrial laser scanning techniques, distributed fiber-optic, and microclimate sensors to investigate the relationships between light, microclimate, carbon cycling, and forest structure in temperate forests. In a temperate forest in Belgium, we implemented a sensor setup since March 2023. It comprises a Distributed Temperature Sensing (DTS) fiber, Temperature and Moisture Sensor (TMS) microclimate loggers, SurveyTag microclimate loggers, Photosynthetic Active Radiation (PAR) sensors, and pyranometer (direct/diffuse) light sensors along a 135 m long transect from forest edge to core. Monthly 3D terrestrial laser scanning (TLS) of the transect allowed us to quantify forest structure with high spatiotemporal resolution.

Preliminary results reveal distinct microclimate gradients along the transect and seasonal changes in forest structure in 3D space, including budding and changes in canopy volume. These findings will be used to calibrate and improve existing radiative transfer models (RTMs) to be further implemented in vegetation models. Integrating observations and model parameters in a common framework will provide breakthrough insights into the feedbacks between light, forest structure, microclimate, and their impact on the carbon cycle in temperate forests.

How to cite: Van de Walle, E., De Hertog, S., Meunier, F., Calders, K., De Frenne, P., Yang, Z., Stock, M., wyffels, F., Terryn, L., Sanczuk, P., Verhelst, T. E., and Verbeeck, H.: Quantifying and modelling feedbacks between forest structure, light, microclimate and carbon cycling in temperate forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1767, https://doi.org/10.5194/egusphere-egu24-1767, 2024.

EGU24-3637 | Posters on site | BG3.25

Decametric-scale buffering of climate extremes in forest understory within a riparian microrefugia: the key role of microtopography 

Jerome Ogée, Marion Walbott, Adrià Barbeta, Emmanuel Corcket, and Yves Brunet

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. To test this idea, we deployed over 3 years a network of 39 microclimate sensors along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Sensor locations spread along the main geomorphological landscapes, vegetation types and microtopographic situations. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations. Two landscape features (elevation above the river and woodland fraction within a 300m radius) were also strong predictors, while geographical variables such as altitude or distance to the river mouth were marginally important, and mainly contributed to explain offsets in winter and spring minimum temperature. However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and +15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was much higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Such strong microclimatic influence of fine-scale topography and river moisture may well explain the distribution of beech trees in this riparian refugium, restricted to the river gorges where microtopographic variations are the strongest.

How to cite: Ogée, J., Walbott, M., Barbeta, A., Corcket, E., and Brunet, Y.: Decametric-scale buffering of climate extremes in forest understory within a riparian microrefugia: the key role of microtopography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3637, https://doi.org/10.5194/egusphere-egu24-3637, 2024.

EGU24-4103 | Orals | BG3.25 | Highlight

Fine-scale microclimate data improve species distribution models of forest plant species 

Koenraad Van Meerbeek and Stef Haesen

In recent decades, species distribution models (SDMs) have become pivotal in forecasting how changing environmental conditions impact species distributions across space and time. Most SDMs rely on correlations, utilizing statistical or machine-learning techniques to infer links between species occurrences and their environment. Typically, these models rely on a traditional set of bioclimatic variables, often available at a coarse spatial resolution of 30 arc seconds or less. These macroclimatic data are derived through interpolating weather station data, essentially reflecting the free-air temperature conditions in open ecosystems. However, a significant portion of terrestrial life on Earth and many critical ecological processes respond to climate conditions at much finer scales beneath the canopies of trees. Neglecting this mismatch might lead to inaccurate predictions, misinterpretations, and potentially flawed conservation decisions. Hence, there's a pressing need to incorporate finer-scale microclimate data in ecological modelling to ensure more accurate assessments and informed conservation strategies.

By developing an innovative spatial machine learning model capable of quantifying the temperature buffering capacity of European forests at very fine resolutions, we crafted the ForestClim database, containing a novel set of bioclimatic variables. These variables unveil the intricate microclimatic temperature variations within forest ecosystems, marking a significant scientific breakthrough that shows promise to enhance ecological models and predictions. Furthermore, by freely sharing this data, we lower the threshold for fellow ecologists to incorporate pertinent microclimatic information into their research.

Leveraging the open-access ForestClim database, we further assessed how large-scale, gridded microclimate temperature data affect the accuracy of SDMs of European forest plant species and how their modelled environmental niches and projected geographic ranges differ from conventional SDMs. The study's findings demonstrate that SDMs based on microclimate significantly outperform their macroclimate-based counterparts. They also reveal the introduction of a systematic bias in thermal response curves when relying on macroclimate-based models, potentially leading to inaccuracies in forecasting range shifts. Furthermore, the inclusion of microclimate data in these models enables the identification of microrefugia within the landscape - areas where species can find a stable and suitable climate amid unfavourable, changing macroclimatic conditions. This newfound information holds particular significance in the realm of conservation science, as microclimate-based SDMs prove to be valuable tools for gaining insights into biodiversity conservation in the face of climate change. This is especially pertinent given the increasing policy and management emphasis on conserving refugia worldwide.

How to cite: Van Meerbeek, K. and Haesen, S.: Fine-scale microclimate data improve species distribution models of forest plant species, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4103, https://doi.org/10.5194/egusphere-egu24-4103, 2024.

Diurnal hysteresis, characterized by a time lag or phase difference between diurnal cycles of two variables, provides valuable insights into land-atmosphere interaction and ecological processes. While it is widely accepted that diurnal surface temperature and relative humidity variations are inversely locked in phase, recent studies have reported diurnal hysteresis between relative humidity and temperature. This phenomenon arises from contributions related to diurnal water vapor variation resulting from local evapotranspiration and water vapor advection from other regions. This study employed a multi-linear regression approach to quantify the phase lag time between temperature and relative humidity by distinguishing linear and non-linear contributions of diurnal temperature variation to relative humidity. Our analysis utilized data from the FLUXNET2015 dataset, which offers ecosystem-scale meteorological measurements worldwide, the HadISD dataset, providing quality-controlled surface weather data globally, and ERA5-Land, offering finer-scale and accurate land reanalysis data on a global scale, to explore the regions exhibiting diurnal hysteresis globally. Our findings reveal the presence of diurnal hysteresis between relative humidity and temperature in coastal, lakeside, and montane regions, notably in New Guinea, southwestern Arabia, the Andes, and the Himalayas. In these regions, the vapor pressure deficit (VPD) is mitigated due to the out-of-phase diurnal relationship between temperature and relative humidity, leading to a smaller underestimation bias in daily VPD when estimated by daily temperature and relative humidity. Even though lower VPD might reduce evapotranspiration in regions showing diurnal hysteresis due to decreased atmospheric demand, the non-local moisture transport provides these regions with additional water vapor. This counters the temperature rise in the morning and aids in sustaining the diurnal hysteretic relationship, maintaining the VPD mitigation in these regions. Furthermore, climate change is likely to change the diurnal hysteretic relationship, posing a threat to VPD mitigation. This study underscores the importance of identifying regions with diurnal hysteresis and highlights the potential implications of changing diurnal hysteretic relationships on local microclimates.

How to cite: Shih, C.-H. and Lo, M.-H.: The Role of Diurnal Hysteresis between Near-surface Temperature and Relative Humidity on Mitigating Near-surface Atmospheric Dryness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4647, https://doi.org/10.5194/egusphere-egu24-4647, 2024.

EGU24-4745 | Orals | BG3.25

Microclimate change: the hidden driver of species redistributions 

Jonas Lembrechts and SoilTemp network

Recent research has shown that the impacts of climate change on terrestrial species distributions are more complex than expected. Species distributions are showing significant delays in responses, or have shifted in unexpected directions. Scientists have identified several mechanisms that could explain these mismatches, including slow population dynamics, habitat fragmentation, and biotic interactions that limit the spread of species. Yet, one crucial aspect remains largely overlooked: we first need relevant high-resolution baseline climate change data to accurately answer this question.

Indeed, organisms respond to microclimate change, which can differ significantly from macroclimate change. We know that local temperatures near the ground or below vegetation can be several degrees different from weather station data. However, it remains a mystery how quickly these microclimates are changing, as this depends as much on climate change as on land use changes.

In this talk, we will explore how the SoilTemp-database, a global database of more than 75,000 in-situ measured microclimate time series, can be used to improve global microclimate products and ultimately provide better estimates of microclimate change. By applying these products to improve our estimates of species distributions, we can better understand the impacts of climate change on biodiversity, crucial for adjusting biodiversity management to a rapidly changing world.

How to cite: Lembrechts, J. and network, S.: Microclimate change: the hidden driver of species redistributions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4745, https://doi.org/10.5194/egusphere-egu24-4745, 2024.

EGU24-5277 | Posters on site | BG3.25

Climatic functioning of peatlands in the context of microrefugia - the MIRECLIM project 

Sandra Słowińska, Michał Słowiński, Jarosław Baranowski, Arkadiusz Bartczak, Kaja Czarnecka, Agnieszka Halaś, Anna Jarocińska, Joanna Kaczorowska, Adrian Kaszkiel, Patrycja Kowalczyk, Magdalena Kuchcik, Katarzyna Lindner-Cendrowska, and Dominika Łuców

Peatlands often function as glacial microrefugia, as shown by palaeoecological research and the contemporary occurrence of glacial species (e.g. Betula nana). The bogs and poor fens of Poland’s lowlands that we will focus on are islands of the young glacial landscape, which were mainly preserved within forests. Although microclimatic conditions have been identified as one of the most supportive factors for peatland microrefugia functioning, they have not yet been recognized on a larger scale.

In response to this need, in 2023 we initiated the MIRECLIM project, which aims to comprehensively investigate the climatic functioning of numerous mid-forest bogs and poor fens in Poland. 

As multiple feedback mechanisms influence microclimatic conditions, our research will consider meteorological conditions, peatland characteristics, conservation measures, and their surrounding environment. We will also assess the impact of peatland overgrowth due to hydrological disturbance on microclimate, the rate of organic matter decomposition, moss growth and the corresponding changes in the composition of the testate amoeba communities. These indicators serve as valuable proxies for inferring moisture dynamics of peatlands in palaeoecological research.

Our studies will be carried out in a multi-scale approach, from in situ measurements to the analysis of multispectral satellite images Sentinel-2 and Landsat. Measurements will be carried out for at least the next three years, so we encourage all interested people to participate.

One of the significant outcomes of our project will be the development of the MIRECLIM database. It will also serve as a platform to integrate the data obtained from the in situ field measurements with analysed satellite imagery. Another important aspect of our project will be to educate children and local communities about the importance of peatlands as key ecosystems for climate change mitigation, both globally and locally.

Research carried out as part of research project number 2022/45/B/ST10/03423 financed by the National Science Center in Poland.



How to cite: Słowińska, S., Słowiński, M., Baranowski, J., Bartczak, A., Czarnecka, K., Halaś, A., Jarocińska, A., Kaczorowska, J., Kaszkiel, A., Kowalczyk, P., Kuchcik, M., Lindner-Cendrowska, K., and Łuców, D.: Climatic functioning of peatlands in the context of microrefugia - the MIRECLIM project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5277, https://doi.org/10.5194/egusphere-egu24-5277, 2024.

EGU24-5471 | ECS | Orals | BG3.25

The impact of forest canopy structure on modelled photosynthesis 

Megan Stretton, Tristan Quaife, Phil Wilkes, and Mathias Disney

Despite terrestrial vegetation being one of the largest carbon sinks, it’s representation within weather and climate models is simple due to computational and data constraints. Whilst the representation of many processes has been improved, the absorption of light by vegetation canopies is still described using the assumption of a plane-parallel turbid medium, which is not realistic. This approach assumes randomly distributed leaves, with no horizontal or vertical variability, and a flat canopy base. However, it is widely used as it permits the radiative transfer for vegetation to be described using a two-stream model (Sellers, 1985) that can be solved analytically.

This work examines the importance of including realistic vegetation structure in photosynthesis calculations, testing the sensitivity of modelled Gross Primary Productivity (GPP) to the common turbid-media approximation by using detailed forest canopy information. We derive a methodology for calculating GPP from radiative transfer calculations from a high-resolution, computationally demanding, radiative transfer model, DART (Discrete Anisotropic Radiative Transfer). The GPP calculation  is based upon the photosynthesis scheme from the JULES (Joint UK Land Environment Simulator) land surface model. We explore the impacts of structure on GPP for six real forest canopies, from across the globe using 3D vegetation data collected using Terrestrial Lidar Scanning (TLS). The use of a 3D radiative transfer model allows us to investigate how much difference the two-stream approach introduces compared to detailed forest canopies with different levels of structure. We examine the profiles of both the absorbed radiation (fAPAR) and GPP.

Across the six forest scenes used, there is generally a reduction in GPP as more structure is introduced. However, this is particularly the case in scenes where the horizontal variation of LAI is high. Additionally, in these scenes, we find that this increase in GPP is less pronounced at low sun angles. This work suggests that consideration should be taken in incorporating horizontal variability of the vegetation within weather and climate models, particularly when identifying the effects of forests on the global carbon budget.

How to cite: Stretton, M., Quaife, T., Wilkes, P., and Disney, M.: The impact of forest canopy structure on modelled photosynthesis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5471, https://doi.org/10.5194/egusphere-egu24-5471, 2024.

EGU24-6671 | ECS | Posters on site | BG3.25

Exploring microclimate variability across spatial scales 

Andreas Hanzl, Karun Dayal, Kim Calders, and Cornelius Senf

Forest microclimates play an essential role in biodiversity because they buffer temperature extremes and, thus, the impacts of climate change. Yet, our understanding of the small-scale spatial variation in forest microclimate remains vague. This knowledge gap is mainly caused by existing sampling designs capturing large-scale gradients (e.g. elevation gradients, successional gradients) instead of small-scale variation within a site. To bridge this gap, we established eight 1-hectare intensive measurement sites across a diverse gradient of Central European forests, from Atlantic lowland forests in Belgium to mountain forests in Southern Germany. Each site is stocked with 16 microclimate loggers recording temperature and soil moisture on a regular grid. We further quantified forest structure within each site using terrestrial laser scanning, offering a detailed representation of plant material distribution in all three dimensions. This setup allowed us to thoroughly examine spatial variability in microclimates within and between forest types and how variations in microclimates are linked to forest structure across variable spatial scales. Our initial findings show that logger-specific linear regressions between site-average temperature and microclimate temperature had very good fits (mean R2 = 0.98, ranging from 0.85 to 1.00). The standard deviations of regression slopes per site ranged from 0.03 to 0.11 (mean of 0.06), indicating that all sites experienced substantial variation in microclimates at a spatial scale of 20 m. Higher spatial microclimate variability was thereby correlated with higher variability in forest structure. In the next step, we will predict local microclimate variation from structural predictors (i.e. plant area index, height, canopy complexity) at variable spatial scales (from 1 to 20 m), allowing for a more detailed assessment of how microclimate variability scales across space. Hence, our research provides a new and valuable perspective on forest microclimates by specifically considering small-scale spatial variability.

How to cite: Hanzl, A., Dayal, K., Calders, K., and Senf, C.: Exploring microclimate variability across spatial scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6671, https://doi.org/10.5194/egusphere-egu24-6671, 2024.

Connections between microclimate and ecological systems are widely recognized. Recently, the relevance of microclimate to ecological microrefugia has been highlighted in relation to endangered species and relict habitats under changing large-scale climate forcing and anthropogenic habitat losses. While truly undisturbed natural environments are rare, the broader category of non-urban vegetated land is much more widespread globally than urban surfaces. Therefore within-canopy microclimatic processes are globally important for interactions with the macroclimate. Aside from local topographic and hydrologic forcing, the structure, phenology, and behavior of vegetation canopies (forest, woodland, shrub, grassland) interact with radiative, wind, and evapotranspiration processes to modulate and drive site microclimate. To effectively sample the spatiotemporal characteristics of microclimates, it is suggested that numerical modelling, mobile transects, and surface parameters (terrain, vegetation) should be used to design measurement strategies. In particular, the very high spatial resolution of within-canopy measurements from mobile pedestrian measurements are relevant to compare spatial variations to forcing from vegetation cover, terrain, and surface moisture.

A series of microscale measurements of temperature, humidity, and radiation has been launched using a pedestrian mobile system previously developed in the CHEESEHEAD2019 field campaign, in tandem with strategically located stationary sensors over a variety of environments. The initial five sites are located in upland, floodplain, and riverine areas of Mississippi. Other sites with greater topographic relief will be investigated in Maryland and Missouri.

How to cite: White, L.: Spatial and Temporal Patterns of Vegetated Microclimates from Synergistic Mobile and Stationary Measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6794, https://doi.org/10.5194/egusphere-egu24-6794, 2024.

EGU24-8229 | ECS | Posters on site | BG3.25

Spatiotemporal variation and drivers of cool microclimates in high-latitude ecosystems 

Johanna Lehtinen, Juha Aalto, and Miska Luoto

Microclimates have recently been emphasized for their key role in shaping local ecosystems. Their profound impact on species distributions and ecosystem dynamics are increasingly recognized. The variations in temperature, humidity, and other climatic factors within microenvironments may be important for the adaptability and resilience of diverse species. For example, in warming climate, cold-adapted species can occur and persist in cool microclimate pockets beyond their macro-climatic ranges.

In this study, we explore the spatial and temporal variations of cool microclimates at the forest-tundra ecotone, situated at 68° N latitude in the Pallas region, northern Finland. This study seeks to identify the locations and factors influencing the persistence and spatial structuring of cool microclimatic pockets. We build our study on continuous in-situ near-surface temperature measurements during peak growing season from 193 study sites, representing diverse topographical settings, soil conditions, vegetation types and land covers such as peatlands.

We generated microclimate surfaces at a spatial resolution of 10m using statistical multivariate modelling. This process allowed for the mapping of cool microclimates throughout the entire study area.

The results showed the versatility of temperature variations in the landscape. The average daily minimum temperatures in July ranged between 3.7° C and 8.8° C, whereas the average daily maximum temperatures ranged between 15.5° C and 24.5° C, respectively. During the coldest period of the day, typically nighttime, the coolest areas were open wetlands in the bottoms of valleys, whereas during the warmest period of the day, typically afternoon, the coolest areas were the shaded hill slopes with poleward aspects and characterized by coniferous forests. The cool microclimates during nighttime were strongly driven by the cold air pooling into low-elevation areas and the intense long-wave radiative cooling in treeless environments. In contrast, the daytime cool microclimates were determined by the interactive effect of low short wave-solar radiation conditions on north-facing slopes and the dense canopies of mature spruce forests. Cool microclimates exhibited connected spatial patterns both during the nighttime and daytime, but due to different driving factors, these patterns rarely overlapped.

Our results offer novel understanding on the spatiotemporal variation and drivers of cool microclimates in topographically versatile boreal-tundra ecotone. We expect this information to be important in highlighting the significance of cool microclimates for the persistence of cold-adapted species under climate change across high-latitude ecosystems.

How to cite: Lehtinen, J., Aalto, J., and Luoto, M.: Spatiotemporal variation and drivers of cool microclimates in high-latitude ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8229, https://doi.org/10.5194/egusphere-egu24-8229, 2024.

EGU24-10235 | Orals | BG3.25

Large and problematic gradients in temperature and VPD in field research settings 

Kim Novick, Mallory Barnes, and Pierre Gentine

Temperature and vapor pressure deficit (VPD) are fundamental drivers of plant ecophysiological function, and developing conceptual and predictive frameworks describing how photosynthesis, stomatal conductance, and transpiration respond to (and modify) these drivers is an long-standing research challenge. At the plant- and ecosystem-scale, much of our understanding of these processes has been derived by linking whole plant responses (e.g. from flux towers, sap flow, etc) to the temperature and VPD of the air measured some horizontal or lateral distance away from the plants themselves. However, thermodynamic processes frequently promote large gradients between canopy leaf and air temperatures, with tremendous variations across vertical and horizontal gradients. Here, we will synthesize observations from >100 flux towers to show that this difference can amount to 10 degrees C (or more), especially on hot summer days when heat impacts are most deleterious. The gradient between canopy and air temperature is not well explained by plant functional type, albedo, or climate, but are clearly related to canopy height and the dynamics of evapotranspiration. These profound differences in canopy versus air temperature translate into large (e.g. >5 kPa) differences between the VPD of the air and the vapor pressure differences experienced by leaves. Empirically derived sensitivities of stomatal conductance and photosynthesis to VPD are likely overestimated when the VPD of the air is used as a proxy for the vapor pressure difference experienced by plants. These biases can obscure our species-level understanding of how gas exchange responds to VPD and become especially problematic when observed sensitivities are compared with theoretical expectations or implemented in models that do not account for VPD gradients. We will conclude by discussing some strategies to limit these biases in field settings. 

How to cite: Novick, K., Barnes, M., and Gentine, P.: Large and problematic gradients in temperature and VPD in field research settings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10235, https://doi.org/10.5194/egusphere-egu24-10235, 2024.

EGU24-10542 | ECS | Orals | BG3.25

Using high penetration airborne LiDAR scanning to characterise the micro-environment of dense tropical forest. 

Vincyane Badouard, Philippe Verley, and Grégoire Vincent

Environmental heterogeneity occurring at small-spatial scale strongly influences the structure, composition, and functioning of tropical rainforests. Environmental filters particularly influence the establishment and survival of young individuals. The relative importance of different micro-environmental variables in shaping tree species distributions through their habitat preference and their regeneration niche however remains poorly known, due in particular to methodological limitations in the characterisation of the small-scale abiotic environment. In this study, we propose to address this knowledge gap and methodological limitation by using the latest LiDAR technology. LiDAR has already proven its ability to describe the 3D forest structure and topography on a fine scale. Forest structure and topography already allowed the prediction of important micro-climatic components for trees and notably light and associated air temperature and moisture as well as local drainage regime. LiDAR technology may also contribute to the prediction of other conditions essential to plant life: soil temperature, water and nutrient access. The LiDAR acquisition methods currently used to map forest structure have some limitations. Standard airborne laser scanning fails to describe the lower canopy in sufficient detail due to occlusion by the upper canopy. Here we explore the potential of low altitude high power laser with enhanced penetration to describe the structure of the forest understorey. We use the recorded laser pulse extinction to build a 3D model of light transmission through the canopy. We evaluate the capacity of the light transmission model to predict microclimatic variables which were monitored in the understorey for 10mo. We also derive a fine resolution digital terrain model from the airborne laser data and explore how soil characteristics covary with topographic features extracted from the DTM.

How to cite: Badouard, V., Verley, P., and Vincent, G.: Using high penetration airborne LiDAR scanning to characterise the micro-environment of dense tropical forest., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10542, https://doi.org/10.5194/egusphere-egu24-10542, 2024.

EGU24-10808 | ECS | Orals | BG3.25

The impact of forest canopy structure on the understory microclimate: a physics-based approach and sensitivity analysis 

Klara Bouwen, Jean-Christophe Domec, Marie Charru, and Jérôme Ogée

Forest canopies can buffer or amplify macroclimate temperature extremes in their understory depending on structural and ecological parameters such as canopy height, canopy openness, and species composition. Forest management practices that alter these parameters have a strong impact on understory temperature extremes, with potential repercussions on forest resilience to climate change.

Physics-based microclimate models offer a means to explore the effects of forest canopy structure on understory temperatures. Compared to empirical models, they allow to extrapolate results outside the range of canopy structure and climatic conditions that have been observed so far. Although physics-based models may differ in their representation of soil-vegetation-atmosphere interactions, they all rely on a priori knowledge of meteorological data above the forest (also called climate forcing), including air temperature, relative humidity and wind speed timeseries. This raises challenges when conducting sensitivity analyses on structural parameters because canopy structure influences the microclimate not only inside and below the forest canopy but also above it. Employing the same climate forcing for all scenarios of canopy structure is thus deemed inappropriate and adjustments of climate forcing must be accounted for.

In this study, we propose a new physics-based modelling approach to perform sensitivity analyses of canopy structure on understorey microclimate that incorporates the feedback of a change in canopy structure on the climatic conditions above it. This approach relies on existing theories on the similarity of turbulent flux-gradient relationships within the atmospheric surface boundary layer between different scalars (e.g. air temperature and humidity) and wind speed, adapted to rough surfaces such as forest canopies. This approach is tested against datasets collected in various forest ecosystems across Europe and applied to explore the impact of canopy structure, in particular canopy density and clumping, on understory microclimate. Our approach will advance our understanding of the intricate relationships between canopy structure, boundary layer dynamics and microclimate, offering insights for more effective forest management strategies.

How to cite: Bouwen, K., Domec, J.-C., Charru, M., and Ogée, J.: The impact of forest canopy structure on the understory microclimate: a physics-based approach and sensitivity analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10808, https://doi.org/10.5194/egusphere-egu24-10808, 2024.

The influences of forests on the large-scale macroclimate are now established. Through albedo, evapotranspiration, surface roughness, and aerosols, forests influence the climate at large spatial scales. Forest influences on the local microclimate are also being recognized, and forests provide microclimatic refugia to buffer organisms against planetary warming. However, the scientific tools used to study forest influences on climate fail to account for forest microclimates. Earth system models are an important tool to inform land-use policy to mitigate planetary warming. With their big-leaf parameterization of plant canopies, however, the models are not vertically-resolved and do not simulate forest understories. Remotely sensed land surface temperature, another primary research tool to distinguish forest influences from other land cover, differs from the air temperature above and within forests. Multilayer canopy models have received renewed interest over the past several years and are a means to both improve the surface flux parameterizations and simulate vertical profiles within and above plant canopies. We present results of a comparison between the Community Land Model (CLM) multilayer canopy model and observations of air temperature, specific humidity, wind speed, and fluxes (net radiation, sensible heat, latent heat, momentum) taken at multiple heights in a walnut orchard during the Canopy Horizontal Array Turbulence Study (CHATS) from mid-March to mid-June 2007. The dataset provides a benchmark standard with which to test multilayer canopy models. Our model-data comparison highlights the potential of multilayer models to simulate the complex micrometeorology of forest canopies and also points to further research needs.

How to cite: Bonan, G., Burns, S., and Patton, E.: Modeling forest microclimates in the Earth system: a test case using the Canopy Horizontal Array Turbulence Study (CHATS) walnut orchard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13191, https://doi.org/10.5194/egusphere-egu24-13191, 2024.

Significant mismatches between macro- and microclimates challenge our ability to accurately estimate the climatic conditions experienced by organisms and thus to predict responses to climate change. This study aims to evaluate the relationship between macro- and microclimate for small-scale plants such as bryophytes, which are highly dependent on local environmental conditions.

To achieve this, we established a Europe-wide collaborative network of bryologists (the BryoMicroClim project), to measure the microclimate experienced by a bryophyte species. The moss Hedwigia striata, evaluated as near-threatened in Europe (Hodgetts et al., 2019), was selected as the target species. This species grows mainly in forests or rocky areas. We selected 15 sampling sites across Europe, spanning a wide range of climate conditions (Portugal, Spain, France, Belgium, Wales, Scotland, and Sweden). In each site, mostly continuous forested areas, we measured air temperature and humidity using three dataloggers (Envloggers, Environmental loggers) installed near H. striata populations. In the Iberian Peninsula, we also installed other dataloggers (BtMs, Bryolichen Temperature Moisture), specifically designed to measure ambient temperature, humidity, and water content of nonvascular cryptogams.

We used the slope and equilibrium approach (Grill et al., 2022) to infer if the microclimate temperature and relative humidity variability (as measured by the in-situ dataloggers) is buffered or amplified in relation to the macroclimate variability (from ERA5-Land and ERA5 data). We observed that microclimate temperatures were buffered or amplified depending on site conditions. As hypothesized, microclimate temperatures had a buffered variability in dense forest sites. Our results suggest that collecting bryophyte-relevant microclimate data at fine spatial resolutions and long time scales will be critical to better understand the potential vulnerability of bryophytes to climate change.

How to cite: Hespanhol, H. and the BryoMicroClim: BryoMicroClim: Collecting bryophyte-relevant microclimate data to assess the gap between macro- and microclimate , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13257, https://doi.org/10.5194/egusphere-egu24-13257, 2024.

EGU24-17152 | ECS | Orals | BG3.25

First steps towards modelling the intra-canopy microclimate in the ORCHIDEE Land Surface Model 

Julien Alléon, Catherine Ottlé, Nicolas Vuichard, Sebastiaan Luyssaert, Klara Bouwen, Jérôme Ogée, and Philippe Peylin

Intra-canopy microclimate and regional climate are two highly related components of the Earth system. On one side, intra-canopy microclimate influences strongly the ecosystem itself by regulating the vegetation/atmosphere exchanges which further influence plant dynamics, carbon sequestration and soil water dynamics. It also influences the biodiversity below the canopy by offering microhabitats or temperature buffering, and the regional climate directly by regulating the water and energy exchanges with the lowest levels of the atmosphere. On the other side, regional climate has a strong impact on intra-canopy microclimate, especially in the context of climate change, by reducing temperature gradients or by controlling the vegetation phenology. Despite this apparent strong imbrication, intra-canopy microclimates are very poorly represented in Land Surface Models (LSMs) and climate models in general, making it complicated to study their impact on climate change mitigation or the impact of climate change on the forests and their microclimates. Because of their time computing requirements, LSMs usually prefer simple models such as the “Big-Leaf” representation. However, in front of the urgent need to represent complex ecosystems and microclimates in Earth system models, first steps in this direction can be made, especially to improve the energy and water fluxes in the soil-vegetation-atmosphere continuum. This study presents recent developments made in the ORCHIDEE LSM. Two models have been implemented in ORCHIDEE in order to move from the current big leaf approach at the grid-cell scale to a representation of vertical gradients associated to the microclimate. To do so, firstly, a representation of the water flow in the soil-plant-atmosphere continuum through a hydraulic architecture model has been introduced. Secondly, a previous multi-layer energy budget representation, including turbulent vertical exchanges within the canopy, has been updated to make it operational with the current trunk of ORCHIDEE. Those two models enable a better representation of the intra-canopy leaf-atmosphere exchanges at the Plant Functional Type (PFT) level. Lastly, a representation of the sub-grid heterogeneity is also being implemented enabling a global representation of each PFT intra-canopy microclimates. This presentation will mainly focus on the multi-layer energy budget representation and its applications for different ecosystems at larger scale. Firstly, a comparison between ORCHIDEE and the forest model MuSICA (Ogée et al. (2003)) was performed over several forest sites highlighting the potential benefits as well as the difficulties of modelling the vertical gradients of temperature, wind and humidity within the canopy. Secondly, a first large scale representation of intra-canopy microclimate and its impact on ORCHIDEE energy and water budgets will be presented. Finally, opening perspectives induced by those developments in the ORCHIDEE LSM will be drawn. 

How to cite: Alléon, J., Ottlé, C., Vuichard, N., Luyssaert, S., Bouwen, K., Ogée, J., and Peylin, P.: First steps towards modelling the intra-canopy microclimate in the ORCHIDEE Land Surface Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17152, https://doi.org/10.5194/egusphere-egu24-17152, 2024.

EGU24-17695 | ECS | Posters on site | BG3.25

Combining LiDAR and Sentinel-2 Data to Improve Leaf Area Index Assessment in Forest and Refine Understory Microclimate Models 

Nathan Corroyez, Sylvie Durrieu, Jean-Baptiste Féret, and Jérôme Ogée

Refined modeling of the links between microclimate and canopy properties is needed to identify more resilient forest management practices addressing challenges raised by climate change. These practices should foster the temperature-buffering role of forest canopies, with a positive impact on multiple ecosystem services linked to biodiversity, biogeochemical cycles, and recreational services, among others.


Leaf area index (LAI) is an important input variable for state-of-the-art microclimate models. However, accurately measuring this biophysical variable in the field is challenging due to both technical and logistical difficulties. Relying on Earth observation data and processing techniques currently available appears as a promising solution to extend LAI assessment over space and time.


Standalone methods can be used to assess LAI from data acquired with different types of remote sensing sensors with advantages and limitations identified for each sensor in an operational perspective. Airborne Light Detection And Ranging (LiDAR) technology captures detailed information about forest structures at a very high spatial resolution. However, the high cost of acquisitions limits its use for monitoring LAI dynamics over extended areas. Multispectral satellite imagery provides information on vegetation properties over extended areas, with frequent revisit and fine spatial resolution. However, the signal is known to saturate with high LAI values, which prevents accurate assessment of the LAI in dense canopies. Multi-sensor approaches have the potential to help reduce the uncertainty associated with estimates of the canopy properties and alleviate the limitations of individual sensors.


Intending to improve input data for microclimate models, we developed a framework to better understand the differences between LAI estimated from either Sentinel-2 multispectral imagery or LiDAR data and further introduced a method to improve LAI assessment based on the combination of both data types. The study site is the French National Forest of Mormal, a lowland broadleaved forest located in northern France.


First, forest Plant Area Density (PAD) profiles were derived from data from a single leaf-on airborne LiDAR survey over the forest. From the profiles, Plant Area Indexes (PAI) corresponding to vegetation layers of different depths are assessed. Then we parameterized physical model inversion based on the PROSAIL model to assess LAI from Sentinel-2 canopy reflectance and optimize the correlation with LiDAR-derived PAI. Multiple strategies are currently explored to optimize this parameterization. The several sets of PAI are compared and the potential sources of discrepancies (e.g., height, cover heterogeneity) are analyzed.


In the next step, a deep learning model fusing LiDAR and Sentinel-2 data (including reflectance and higher-level products) will be developed. A domain-specific network architecture will be implemented for each data source, followed by the fusion of each network to assess the LAI. Results will be validated using digital hemispherical photographs (DHPs).


This study is part of the ANR MaCCMic project, which aims to develop new tools to help managers increase the resilience of forests and promote the ecological, recreational, and climatic services they offer.

How to cite: Corroyez, N., Durrieu, S., Féret, J.-B., and Ogée, J.: Combining LiDAR and Sentinel-2 Data to Improve Leaf Area Index Assessment in Forest and Refine Understory Microclimate Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17695, https://doi.org/10.5194/egusphere-egu24-17695, 2024.

EGU24-19177 | ECS | Posters on site | BG3.25

Lianas buffer tropical forest understories 

Kasper Coppieters, Hans Verbeeck, Marco Visser, Stefan Schnitzer, and Félicien Meunier

Lianas are an iconic and important feature of tropical forests. On average, they represent about 24 percent of the woody stems and they contributie significantly to the total leaf area. Their abundance increases with increasing seasonality, and they are able to keep their leaves for a longer period in the dry season. Their abundance in the neotropics has been increasing in the last decades. Lianas have a negative impact on the carbon storage of forests by reducing individual tree growth and increasing tree mortality and turnover. However, their impact on the energy balance of the forest, and the forest understory microclimate in particular, is poorly understood. To fill this gap, we installed two experimental setups in a 12-year, ongoing liana removal experiment on Gigante, Panamá. We installed 180 TOMST TMS-4 microclimate sensors in 8 removal and 8 control plots to monitor the microclimate temperature and soil moisture. Next to that, we installed  ~24 pyranometers and photosynthetic actieve radiation (PAR) sensors in a subset of two removal and two control plots, both horizontally, at 1 meter above the soil, and vertically in the canopy. Our findings revealed that lianas buffer the forest microclimate more than trees, leading to an average midday temperature reduction of 0.2°C at the soil surface (measured 15 cm above the soil). The effect increased at higher temperatures during the dry season (temperature reduction up to 0.35°C on the maximum temperature in the forest). For half of the plots, we were able to account for the impact of forest density and structure on the microclimate using simultaneously collected TLS (terrestrial laser scanning) and ALS (aerial laser scanning) data. Lianas likely reduce soil understory temperatures by reducing the amount of solar radiation that penetrates the forest canopy or by reflecting more light back into the atmosphere.

How to cite: Coppieters, K., Verbeeck, H., Visser, M., Schnitzer, S., and Meunier, F.: Lianas buffer tropical forest understories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19177, https://doi.org/10.5194/egusphere-egu24-19177, 2024.

EGU24-1844 | ECS | Orals | BG3.26

Tracking shifts of mountain forest ecotones in aerial imagery with deep learning 

Michael Maroschek, Rupert Seidl, Cornelius Senf, and Werner Rammer

Forest ecosystems are sensitive to global change; especially at the ecotones we expect high sensitivity to changes in climate, disturbance regimes or land use. For instance, the treeline ecotone is expected to move upward in elevation with global warming. The advent of machine learning, specifically computer vision, provides powerful tools for monitoring ecotones across large spatial scales using remote sensing data. In this study, we focused on the spatiotemporal development of ecotones bracketing the subalpine forest belt (i.e., the upper boundary, formed by the treeline, and the ecotone to montane forests as the lower boundary) in a protected forest landscape in the European Alps. Our objectives were threefold: First, we aimed to identify trees and shrubs on historic and recent orthophotos using deep learning, with special attention to integrating multiple sensor types into one computer vision framework. Second, based on the computer vision inference, we sought to map the a) treeline and b) montane-subalpine ecotone. Third, we aimed to describe the spatiotemporal changes occurring in both ecotones.

We based our analysis on historic and recent aerial images of Berchtesgaden National Park in the Northern Alps, covering roughly 210 km² in nine time steps from 1953 to 2020. The images were captured through both analog (panchromatic and color infrared) and digital (color infrared, RGB) sensors. To generate training data for deep learning, we manually interpreted randomly distributed 0.5 ha segments across all time steps, resulting in over 110,000 annotations of coniferous and broadleaved trees, shrubs, and standing dead trees. We tested different instance segmentation frameworks and selected the best performing model architecture to create wall-to-wall tree maps for each time step. Using structure and composition of the tree maps, we spatially delineated the ecotones and tracked their changes over time.

We did not find a spatially consistent pattern of ecotones shifting upwards, however we were able to identify areas of change and stability linked to climate, topography, disturbances and land use. We observed remarkable local upward shifts in ecotones, particularly of the montane-subalpine ecotone, which shifted up to five times faster than the treeline. In general, we found that subalpine forests, situated between the two ecotones, decreased in area because of an upward shift of its lower boundary, and exhibited an increase in crown cover over time.

Changes in these ecotones and related vegetation zones pose challenges to conservation, restoration and management. Our approach can help to address these challenges, e.g., in the combination with habitat modelling.

How to cite: Maroschek, M., Seidl, R., Senf, C., and Rammer, W.: Tracking shifts of mountain forest ecotones in aerial imagery with deep learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1844, https://doi.org/10.5194/egusphere-egu24-1844, 2024.

Green alder (Alnus alnobetula (Ehrh.) K. Koch = Alnus viridis (Chaix) DC), a tall multi-stemmed deciduous shrub, is widespread at high elevations in the Central European Alps especially within avalanche slide path, screes and steep, north-facing slopes with high water availability. The ascending growth of stems frequently leads to eccentric growth, discontinuous rings and elliptical shape of annual rings making development of representative ring-width time series, necessary to determine climate forcing of radial growth and long-term growth trends, a challenge. Therefore, the focus of this study was to assess growth variability among radii of one shoot (n=4 radii), among shoots belonging to one stock (n=20 shoots per stock) and among stocks exposed to different site conditions (n=3 sites). Stem discs were sampled within the treeline ecotone (c. 2150 m asl) on Mt. Patscherkofel (Tyrol, Austria), and annual increments were measured along 188 radii. Variability in inter-annual agreement among ring-width series was evaluated by applying dendrochronological techniques, i.e., the parameters (i) percentage of parallel variation (“Gleichläufigkeit”, Glk) and (ii) the correlation coefficient r, adjusted for the amount of overlap (tBP-score) were determined. Variation in intra-annual dynamics of radial growth among shoots belonging to different stocks was evaluated by mounting diameter dendrometers (n=6). Results revealed a high agreement in ring-width variation among radii of one shoot (Glk: P<0.001; tBP-score>5), among shoots of one stock (Glk: P<0.05; tBP-score>4) and among stocks from different sites (Glk: P<0.05; mean tBP-score=4.5). Dendrometer records gathered from shoots belonging to different stocks also revealed a high agreement in intra-annual radial growth dynamics, which started in 2023 at the end of June and already terminated in early August. In contrast to this, a high variability in both absolute growth rates and long-term growth trends was found at selected study sites. We attribute our findings to the pronounced limitation of radial stem growth in Alnus alnobetula by climate factors (mainly summer temperature and winter precipitation) leading to a high agreement among ring width series developed from different radii, shoots and individuals. On the other hand, differences in compressive and tensile forces and variation in microsite conditions determine absolute growth rates and long-term growth trends.

This research was funded by the Austrian Science Fund (FWF), P34706-B.

How to cite: Oberhuber, W., Gruber, A., and Wieser, G.: Climate factors control inter-annual variability of radial growth, while microsite conditions affect absolute growth and long-term growth trend in the multi-stemmed shrub Alnus alnobetula at the alpine treeline, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2339, https://doi.org/10.5194/egusphere-egu24-2339, 2024.

EGU24-4049 | ECS | Orals | BG3.26

Patterns of Treeline Rise with Climate Change Across Western North America from the 1980s to Present 

Joanna Corimanya, Daniel Jimenez-Garcia, and A. Townsend Peterson

Previous research has shown that (1) treelines are shifting upward in elevation on high mountain peaks worldwide, and (2) the rate of the upward shift appears to have increased markedly in recent decades. Because treeline shift is a process manifested over broad scales of space and time, a particular challenge has been that of obtaining a broad-enough view of patterns of treeline shift to permit inferences about geographic and environmental patterns. What is more, intensive studies of treelines have been concentrated in North Temperate regions, such that little information is available about treeline shift patterns in the Tropics. We have attempted to broaden this viewpoint by means of analysis of long  time series of vegetation indices derived from Landsat imagery obtained and analyzed via Google Earth Engine for the 1980s to present. We sampled vegetation indices at points spaced every 100 m along 100 km transects radiating out from 120 high peaks across western North America (Canada to Central America); considerable data preparation was necessary, including ending transects <2 km into closed forest, identifying current treelines via reference to Google Earth imagery, and consideration only of up to <1 km above treeline. Patterns that emerged were—as is well known—that treelines are generally higher at lower latitudes, but also that magnitude of treeline shifts is nonrandomly distributed with respect to latitude, location with respect to coastlines, and size of the mountain mass within which the peak is located. Although analyses are continuing at the time of preparation of this abstract, this analysis offers a broadscale view of treeline shifts over a period of almost 40 years, and over a geographic span of more than 40° of latitude.

How to cite: Corimanya, J., Jimenez-Garcia, D., and Peterson, A. T.: Patterns of Treeline Rise with Climate Change Across Western North America from the 1980s to Present, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4049, https://doi.org/10.5194/egusphere-egu24-4049, 2024.

EGU24-5709 | Posters on site | BG3.26

Dynamics of alpine treeline in the High Tatra Mts., Slovakia 

Svetlana Varsova, Veronika Lukasova, Milan Onderka, and Dusan Bilcik

Global warming affects the climatic conditions in the mountain environments. The climate of the alpine treeline ecotone (ATE) in the High Tatra Mts. is represented by unique conventional long-term climatological series from Skalnaté Pleso Observatory (49°11'21.9” N; 20°14'02.7” E). When considering the two last normal periods (1961-1990 and 1991-2020), the average air temperature in ATE increased by  1.1 °C. In this work, we analysed the altitudinal shift of the boundary 6°C isotherm, which represents the minimum temperature requirements for the growth and reproduction of tree vegetation. To determine the altitude of the cold treeline limit, i.e. upper limit of ATE, we used climate data from Skalnaté Pleso Observatory (1,778 m a.s.l.) and the near top meteorological station Lomnicky štít (2,634 m a.s.l.).  We found that over the analysed period 1951-2020, the limiting isotherm moved upwards from the level of 1,950 m a.s.l. to 2,200 m a.s.l.. Preliminary field monitoring and mapping indicated the colonisation of the dominant subalpine vascular species Pinus mugo Tura (mountain pine) into alpine summits. We identified young individuals or small groups of mountain pine at altitudes between 2,000-2,200 m a.s.l., which is consistent with the assumption of vertical extension of low tree vegetation due to positive changes in ambient thermal conditions. The warming of the alpine tree line ecotone may lead to a gradual reduction and eventual disappearance of montane species due to their strict ecological specialisation. The replacement of the populations of cold-adapted alpine species by those profiting from the warmer climate may cause a decline in the ecosystem's biodiversity. Therefore, further research will be focused on verification of the climate-related shift of the boundary line for the growth of mountain pine at the ATE zone in the highest mountain range of the central-eastern region of Europe.

How to cite: Varsova, S., Lukasova, V., Onderka, M., and Bilcik, D.: Dynamics of alpine treeline in the High Tatra Mts., Slovakia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5709, https://doi.org/10.5194/egusphere-egu24-5709, 2024.

EGU24-9480 | ECS | Orals | BG3.26

Linking deep learning-based forest cover maps to treeline spatio-temporal patterns 

Thiên-Anh Nguyen, Marc Rußwurm, Gaston Lenczner, and Devis Tuia

Over the last decades, the position of the upper treeline in the Swiss Alps has been highly affected by drivers such as climate change and land use change interacting at various spatial and temporal scales. To better understand these interactions, it is necessary to quantify treeline dynamics over large areas at high spatial resolution and over long time scales. This can be decomposed into three tasks: mapping forest cover, delineating the treeline, and comparing the treeline position through time.

We leverage archives of optical aerial imagery acquired over the Swiss Alps to map forest cover. These images constitute a large dataset of time series of 12 to 20 ortho-rectified aerial images at 1 m spatial resolution acquired throughout the time period 1946-2020. We have developed a deep learning-based method to automatically extract multi-temporal forest masks from these aerial images (under review).

We then explore how treeline dynamics can be characterized using these forest cover maps. More specifically, we look at designing a spatio-temporal processing pipeline that implements widely used definitions of the treeline and treeline displacement, while being robust to potential errors in our deep learning-generated maps, such as noise caused by differing sensors and imaging conditions. We find that through a series of pixel-based processing steps, based solely on the generated forest cover maps and a Digital Elevation Model, we manage to 1. delineate the treeline at a chosen spatial scale and 2. measure the elevational treeline shift between two dates. The flexible choice of the spatial scale enables multi-scale analysis and comparison with existing treeline shift measurements derived from different data sources and methods.

We hope that this automatic and flexible spatial analysis pipeline can link deep learning-based forest cover maps to ecologically relevant variables in a way that can foster the understanding of treeline dynamics.

How to cite: Nguyen, T.-A., Rußwurm, M., Lenczner, G., and Tuia, D.: Linking deep learning-based forest cover maps to treeline spatio-temporal patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9480, https://doi.org/10.5194/egusphere-egu24-9480, 2024.

EGU24-10161 | Orals | BG3.26

Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion 

Eryuan Liang, Xiaoxia Li, J. Julio Camarero, Sergio Rossi, Jingtian Zhang, Haifeng Zhu, Yongshuo H. Fu, Jian Sun, Tao Wang, Shilong Piao, and Josep Peñuelas

 Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of + 1°C, xylem resumption advances by 2–4 days in trees, but delays by 3–8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.

How to cite: Liang, E., Li, X., Camarero, J. J., Rossi, S., Zhang, J., Zhu, H., Fu, Y. H., Sun, J., Wang, T., Piao, S., and Peñuelas, J.: Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10161, https://doi.org/10.5194/egusphere-egu24-10161, 2024.

EGU24-10168 | ECS | Posters on site | BG3.26

Assessing vegetation dynamics in global high-mountain ecotones 

Linqing Zou, Gabriela Schaepman-Strub, Feng Tian, and Tianchen Liang

As the climate warms, vegetation within treeline ecotones is responding. The high-mountain ecotones, which are less affected by anthropogenic disturbances, present an optimal environment for investigating the effects of climate change on terrestrial ecosystems. Accurately delineating the trends of vegetation in high-mountain ecotones is pivotal for a comprehensive understanding how climate change affects these ecosystems. Remote sensing technology has a significant potential in detecting and quantifying vegetation variation. While previous studies have identified greening trends within certain mountainous regions, there remain a gap in global-scale analysis concerning vegetation dynamics in high-mountain ecotones.

In this study, we utilize long time-series Landsat imagery to monitor and analyze vegetation dynamics in high-mountain ecotones. Our approach includes assessing changes in the physiological properties of the vegetation and analyzing temporal patterns in spatial distribution changes. The results reveal a consistent trend of increased vegetation density and enhanced greening of vegetation in global high-mountain ecotones under the influence of climate change.

How to cite: Zou, L., Schaepman-Strub, G., Tian, F., and Liang, T.: Assessing vegetation dynamics in global high-mountain ecotones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10168, https://doi.org/10.5194/egusphere-egu24-10168, 2024.

EGU24-10296 | ECS | Orals | BG3.26

Characterizing Spatial Patterns of the Alpine Treeline Ecotone Across the European Alps 

Jana-Sophie Kruse, Werner Rammer, Lisa Mandl, Rupert Seidl, and Michael Maroschek

Ecotones – transition zones between ecosystems – are sentinels of global change, as they are sensitive to changes in environmental conditions and land use. The alpine treeline ecotone - where the continuous, subalpine forest transitions into the treeless alpine zone – is a characteristic feature of many mountain ecosystems. The transition at the ecotone can be characterized by distinct treeline patterns. Treeline patterns can be simple, such as sharp transitions from forest to alpine vegetation, or complex, e.g., islands of trees and krummholz in a matrix of alpine vegetation. This variation can mediate the impact of global change at the alpine treeline ecotone. However, large-scale attribution, e.g., for an entire mountain range, and spatiotemporal quantification of treeline patterns remain challenging. Automated methods, such as deep learning-based computer vision systems, can help to overcome these challenges. Building on existing definitions of treeline patterns, we aim to characterize the alpine treeline ecotone for the entire mountain range of the European Alps. Our particular objectives are:

  • To characterize the patterns of a representative sample of the alpine treeline ecotone of the European Alps based on remote sensing information as training data for deep learning.
  • To quantify treeline patterns across the Alps and identify spatial differences in the prevalence of patterns.

In an alpine treeline ecotone, we considered the transition between three vegetation classes: trees (i.e., upright woody plants with a minimum height of 3m), krummholz (i.e., stunted trees and woody shrubs), and treeless alpine vegetation. Three spatial patterns were considered for trees and krummholz describing their state: closed, islands, or isolated individuals. The transitions between these states across elevation, a total of 24 combinations, were used to quantitatively characterize treeline patterns. We selected 1,000 randomly distributed elevational transects between 1,100 and 2,800 m.a.s.l. that include the alpine treeline ecotone across the European Alps. For each transect, we classified treeline patterns for areas of 90m×90m using satellite and orthophoto images. Based on this dataset, we quantified differences in treeline patterns and their distribution in elevation across the European Alps: While in the Prealps, the alpine treeline ecotone is located in lower elevations and treeline patterns tend to be more complex, the ecotone is higher in elevation and less complex in the Central Alps.

The quantification of treeline patterns and their distribution can serve as a basis for further investigations of the alpine treeline ecotone and its spatiotemporal development. We provide an outlook for a deep learning approach that uses the presented dataset combined with a time series of spectrally unmixed satellite data, i.e., fractional abundances of land cover per pixel, as training data. Utilizing satellite data of the past 35 years in annual resolution, we will be able to automatically classify and analyze treeline patterns and their changes across the entire European Alps.

How to cite: Kruse, J.-S., Rammer, W., Mandl, L., Seidl, R., and Maroschek, M.: Characterizing Spatial Patterns of the Alpine Treeline Ecotone Across the European Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10296, https://doi.org/10.5194/egusphere-egu24-10296, 2024.

EGU24-11942 | ECS | Orals | BG3.26 | Highlight

Treeline spatial patterns for biodiversity monitoring detected by spectral and 3D information from UAV‐based aerial imagery 

Erik Carrieri, Fabio Meloni, Carlo Urbinati, Emanuele Lingua, Raffaella Marzano, and Donato Morresi

Treeline ecotones spatial patterns and dynamics are influenced by factors acting at regional, landscape, and local scales. It is widely accepted that treelines change in complex ways depending on their diverse structural features and environmental conditions.
The high variability of environmental conditions and ecological drivers hampers the creation of a general pattern from case studies. A multi-scale approach applied at numerous locations is needed to discriminate between natural and anthropogenic factors that are driving treeline dynamics. Remote sensing techniques are today fundamental tools for a comprehensive assessment of the spatial heterogeneity of treeline patterns and their changes over space and time. Continuous improvements in remote sensing platforms, sensors, and methodologies have considerably increased the quality and reliability of spatial information, such as forest maps, which are essential for monitoring ecotonal dynamics.
In this study, we aimed to comprehensively map individual tree canopies at the treeline ecotone in 10  different sites distributed across the Italian Alps by integrating field and UAV-based data. We first mapped the position of the forestline using the 2018 pan-European Tree Cover Density layer provided by the Copernicus Land Monitoring service. In particular, we considered the pixel line where the tree canopy cover was less than 10% as the forestline. Field data consisted of position, height, and species of 100 trees taller than 50 cm scattered over a 9-hectare area. Each site was also flown over by a multirotor drone to produce an RGB orthomosaic, a digital surface model, and a canopy height model. A total of 1016 individual canopies of different coniferous species were manually classified on the orthomosaics with the aid of semi-automatic annotation software. These data were used to train a deep learning model based on the Mask R-CNN algorithm for object detection and segmentation. The classification masks were lastly combined with a canopy height model providing 3-dimensional information allowing to measure tree height. Preliminary results evidenced that remotely sensed data collected with low-cost equipment such as commercial drones with RGB cameras, coupled with the proposed canopy detection method can be used to produce highly accurate and reliable maps of treeline ecotones. These maps will serve as a starting point to study and monitor the spatio-temporal dynamics of treeline ecotones at the local scale and how they affect biodiversity in high-altitude environments.

How to cite: Carrieri, E., Meloni, F., Urbinati, C., Lingua, E., Marzano, R., and Morresi, D.: Treeline spatial patterns for biodiversity monitoring detected by spectral and 3D information from UAV‐based aerial imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11942, https://doi.org/10.5194/egusphere-egu24-11942, 2024.

Treeline elevation is expected to shift upward in response to climate warming. However, over half of alpine treelines worldwide appear to be lagging, possibly due to moisture limitations. Seedling niches tend to have narrower climate envelopes than those of mature, established trees, and regeneration requirements can vary substantially among species. We examined the density and species composition of recruitment at alpine treeline sites west and east of the Continental Divide, Central Rocky Mountains.  In the arid Colorado Front Range, the Divide results in a rain shadow on the east side due to orographic uplift. We stratified our sampling effort by proximity to subalpine limber pine (Pinus flexilis), a generalist, drought-tolerant conifer with a patchy metapopulation distribution in the Front Range. We expected to find higher abundance of limber pine regeneration than that of drought-averse Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in two regeneration height categories (≤ 100 cm and ≤ 20 cm). Regeneration occurred at low densities on both sides of the Continental Divide and did not differ significantly between sites east and west of the Divide. Regeneration density also did not differ significantly between communities dominated by limber pine and communities dominated by Engelmann spruce and subalpine fir. However, the quadrats with highest regeneration densities were east of the Divide where limber pine was the dominant conifer. These sites were also in the rain shadow and associated with higher climate water deficit and lower growing season precipitation. Limber pine also comprised the majority of this regeneration. The site with the highest observed regeneration rates also had high rates of viable limber pine seed production at treeline. We observed a significantly higher proportional abundance of limber pine in the 100 cm regeneration class (relative to established trees) in quadrats east of the Divide, corresponding to establishment roughly in the last 30-70 years. The greater proportional abundance in limber pine regeneration at these treeline study sites occurred despite increasing temperatures, reduced growing season precipitation, and increased climate water deficit over the past 30 years. Drought-tolerant limber pine may therefore be the best-suited conifer in this region to persist and to migrate to higher elevations as temperatures continue to increase. Our findings underscore the importance of considering differences in seedling tolerances (niches) among different species in alpine treeline systems when aiming to predict landscape-scale treeline responses to climate warming.

How to cite: Sindewald, L. and Tomback, D.: Recruitment at treeline in the Central Rocky Mountains shifts in favor of a drought-tolerant species as climate water deficit increases, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14114, https://doi.org/10.5194/egusphere-egu24-14114, 2024.

Whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis), related five-needled white pines (Pinus subgenus Strobus, section Quinquefoliae, subsection Strobus), are distributed throughout the mountains of the western United States and Canada. Whitebark pine ranges from about  36° to 56 ° N latitude, and limber pine ranges from about 34° to 52° N latitude.  Both pines are tolerant of harsh sites, including poor soils and arid conditions, but whitebark pine inhabits colder sites and is restricted to high elevations, and limber pine occupies a broader elevational range and has more drought-resistance. The seeds of both pines are dispersed primarily by Clark’s nutcrackers (Nucifraga columbiana), which often cache seeds at treeline and in tundra.  In the Rocky Mountains, both pines are components of treeline communities but differ in growth form and foliage density and thus potential capacity to serve a facilitation function. Our previous studies identified different ecological functions or roles assumed by trees in Rocky Mountain treeline communities: isolated solitary tree, most windward tree of a tree island (potential tree island “initiator”), satellite tree (sheltered by a tree island), or tree island component (leeward of windward tree).  We examined whether whitebark and limber pine differ in ecological functions in treeline communities.  Whitebark and limber pine primarily co-occur with Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) at treeline, and both pines have higher abundance at treeline east of the Continental Divide. In treeline communities broadly sampled from 42° to 53° N latitude, whitebark pine was the majority solitary conifer in 9 out of 10 treeline study sites and had the highest representation within tree islands at 8 of 10 study sites.  Whitebark pine was the most frequently occurring windward conifer in tree islands at half of the study sites, and its proportional abundance as a solitary tree predicted its proportional abundance as a windward conifer.  Limber pine, in contrast, was rare at treeline at northern latitudes but more common in the arid southern Rocky Mountains.  We studied treeline communities in Rocky Mountain National Park, both east and west of the Continental Divide in 19 study sites.  Limber pine was found only east of the Divide and varied in prevalence from 0% to 97.6% of trees within a study site. It most frequently occurred as a satellite or solitary tree and less frequently as a windward tree than expected by its representation as a solitary tree.  We found a relationship between the proportion of limber pine at our treeline sites and the distance to a subalpine limber pine seed source, likely resulting from seed dispersal by nutcrackers against prevailing winds.  In sum, tolerance of harsh, windy conditions by both pines, coupled by avian seed dispersal, leads to their prevalence as solitary trees in treeline communities east of the Continental Divide.  Whitebark pine’s denser morphology likely facilitates establishment of conifers to its lee. Limber pine’s drought tolerance enables it to survive well on windswept ridges and slopes—which have earlier snowmelt dates—and may lead to increasing prevalence with climate change.

How to cite: Tomback, D. and Sindewald, L.: Differences in functional ecology of two western North American ‘five-needle’ white pines in treeline communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14685, https://doi.org/10.5194/egusphere-egu24-14685, 2024.

EGU24-15287 | ECS | Orals | BG3.26 | Highlight

Is anthropogenic pressure limiting the climate-induced upward shift of the subalpine forest line in the French Northern Alps? 

Noémie Delpouve, Cyrille Rathgeber, Laurent Bergès, Jean-Luc Dupouey, Sandrine Chauchard, and Nathalie Leroy

The forest line is a key feature of mountain landscapes around the world. Currently, most forest lines in the Northern Hemisphere are rising due to the combined effects of land-use and climate changes. This upward shift has led to major changes in the functions and services provided by the adjacent socio-ecosystems (e.g. carbon sequestration, biodiversity hosting, services to people…). However, it has not been elucidated how the recent forest-line upward shift fits into the longer context of land abandonment (occurring since the beginning of the 19th century in France), and how it is currently responding to the accelerating global warming. To answer this question, we assessed the elevation change of the forest line over the French northern Alps since the forest minimum (mid-19th century in France) using old and current land cover maps.

Three digitalised maps: the État-Major map, BD Forêt® v1.0 and BD Forêt® v2.0 were used to display forest cover at three dates: 1859, 1994 and 2007, respectively. These maps were standardized and combined with a digital elevation model to estimate the average elevation of the subalpine forest lines for 178 municipalities across the French departments of the Northern Alps: Haute-Savoie, Savoie and Isère. We compared forest-line elevations between dates and municipalities to explore temporal and spatial patterns.

The forest line in the French Northern Alps has risen by an average of 152 ± 18 m from its ancient position (1879 ± 21 m a.s.l. in 1859) to its current position (2032 ± 12 m in 1994).  However, no general upward shift was observed during the most recent period from 1994 to 2007, as the forest-line position was 2013 ± 13 m in 2007. In the Haute-Savoie department, a downward shift of 69 ± 12 m was even observed, while forest lines in Isère and Savoie were stable. Forest-lines upward shift in the French Northern Alps has been driven by agricultural abandonment, mountain land restoration and global warming since the period of the forest minimum (around 1860). However, it is noteworthy that forest line dynamics are no longer influenced by these factors nowadays and do not follow the acceleration of temperature increase. The current recession of the forest lines may be attributed to anthropogenic pressure related to the tourism activity. This new anthropogenic pressure corresponds to the development of alpine ski resorts and the increase in the human population in Haute-Savoie since 1925, and later in the other departments.

This large-scale spatial and temporal study shows how global and regional factors interact in the long-term to shape mountain landscapes, in particular the ecotone between subalpine forest and alpine grassland. Today, the dynamics of this ecotone is still linked to the contradictory tensions that divide our societies (conservation vs. exploitation). This is why we advocate the cautious management of alpine forest line ecotones, which could contribute to carbon sequestration and biodiversity conservation, provided they are not subjected to excessive human pressure (tourism and grazing).

How to cite: Delpouve, N., Rathgeber, C., Bergès, L., Dupouey, J.-L., Chauchard, S., and Leroy, N.: Is anthropogenic pressure limiting the climate-induced upward shift of the subalpine forest line in the French Northern Alps?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15287, https://doi.org/10.5194/egusphere-egu24-15287, 2024.

EGU24-15620 | ECS | Orals | BG3.26

Forestline detection and treeline ecotone dynamics in the Italian Alps and Apennines by satellite remote sensing 

Lorena Baglioni, Donato Morresi, Enrico Tonelli, Emanuele Lingua, Raffaella Marzano, and Carlo Urbinati

Treelines are dynamic ecotones largely influenced by climate and land use changes. The increasing development of remote sensing techniques and the interest on the ecological effects of global warming on forest vegetation have raised the number of treeline studies.

The aims of this study were: i) to define an automatic approach for mapping the current position of the upper forestlines in the Italian Alps and Apennines and ii) to locate hotspots of long-term vegetation dynamics using Landsat-based spectral trend analysis. Hotspots will serve us to analyse the ecological drivers of vegetation change and to predict future vegetation dynamics.

We used the Tree Cover Density (TCD) dataset (Copernicus Land Monitoring Service) and a nationwide digital elevation model to define the polylines representing the forestlines for the reference year 2018. We used the main Italian mountain peaks, extracted from the Global Mountain Biodiversity Assessment (GMBA) dataset polygons, as reference points to detect only the upper forest ecotones based on the elevation difference between peaks and forest pixels. We defined our study areas by applying a positive and negative buffer around the forestlines and we calculated several spectral vegetation indices (e.g. NDVI, EVI, Tasseled Cap Angle) from Landsat timeseries of the last 40 years. In this way, we inferred inter-annual vegetation dynamics, discriminating two sub-areas of interest: the closed forest (below the current forestline) and the upper treeline ecotone (above the current forestline). It should be noted that on the Alps, treelines mainly host conifer species, whereas on the Apennines, broadleaf species (mostly European beach) prevail. We tested the significance of long-term spectral trends through a Mann-Kendall test for monotonicity that accounted for autocorrelation in space and time.

An important outcome of the study was to set up a replicable and unsupervised method to enhance the study of vegetation dynamics at treeline ecotones. This approach will allow the delimitation of the forestlines on a global scale and an ecologically sound comparison between different treeline ecotones. This study is the first step in a nationwide project and will provide the basis for future local-scale investigations of treeline ecotones.

How to cite: Baglioni, L., Morresi, D., Tonelli, E., Lingua, E., Marzano, R., and Urbinati, C.: Forestline detection and treeline ecotone dynamics in the Italian Alps and Apennines by satellite remote sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15620, https://doi.org/10.5194/egusphere-egu24-15620, 2024.

EGU24-20484 | Orals | BG3.26

Treeline resposes to 2K warming in the Alps in half a century 

Christian Körner

Since climatic treelines track the elevational position of isotherms across the globe, it is not the question if, but when and how they will arrive at a novel steady-state position. After briefly recalling the essential difference between the edge of the realized and fundamental niche of the life form tree (not to be confused with species’ range limits), I will present data on recent climatic trends in the Alps based on long term meteorological records. Two years of in-situ temperature records from Pinus cembra trees growing right at the current upper edge of tree size individuals in Eastern Tyrol (supplemented with data from the Swiss Engadin region), make it obvious that the current high elevation record positions around 2500 m elevation are lagging substantially behind the upslope shift of the isotherm. This explains, why these trees grew so exceptionally rapid over the past 10 years, partly growing a meter in height in only 6-8 years. The locations with rapid tree radiation are all under nutcracker control. These data permit projections on forthcoming treeline shifts. For the Austrian Alps, the current uppermost trees represent all-time elevation records, and will soon out-range the uppermost fossil elevation records of trees that date back to the warmest period of the Holocene. Suggested reading: Körner C, Hoch G (2023) Not every high-elevation or high-latitude forest edge is a treeline. J Biogeography, open access.

How to cite: Körner, C.: Treeline resposes to 2K warming in the Alps in half a century, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20484, https://doi.org/10.5194/egusphere-egu24-20484, 2024.

EGU24-21283 | ECS | Posters on site | BG3.26

Young trees climate sensitivity above the forestline: the case study of Pinus nigra upward shift in Central Apennines (Italy)  

Enrico Tonelli, Alessandro Vitali, Alma Piermattei, and Carlo Urbinati

In the context of ecological research, tree-ring analysis often deals with short time series (< 30 years). Their crossdating and averaging can be difficult but crucial to use such data for ecological modelling, multivariate statistics, and climate-growth analysis. Several studies were conducted in the Central Apennines (Italy) on recent encroachment of European black pine (Pinus nigra J.F. Arnold) on treeless areas above the current forestline. Growth of young trees is mainly controlled by endogenous or microclimatic factors making usual dendrochronology methods less applicable and crossdating very difficult or even impossible. The potential ecological information deriving from tree-ring growth in short series is therefore limited by this methodological bias. The aim of this study is to test suitable methods for optimizing the use of short ring series for further analytical use. A dataset of 734 tree-ring series of young European black pines (mean cambial age 15 years) growing at high altitude in 8 sites was used in this analysis. At each site tree-ring series were divided in two groups based on inter-series correlation: the crossdated or selected series (SEL), and non-crossdated or rejected ones (REJ). The following dendrochronological parameters were calculated for SEL and REJ series: mean tree-ring width, mean sensitivity, Gini coefficient, first order autocorrelation, inter-series correlation, and Gleichläufigkeit (GLK). Two methods of pointer years analysis were tested in order to detect years with synchronous growth: i) Normalization in a moving Window (NW) and ii) the RElative growth change method (RE). The two methods were applied to the raw series varying the standard thresholds, in order to detect synchronous growth-years in SEL and REJ group. A sensitivity analysis was included to assess how the threshold choice in the analysis could affect the results obtained. The term “common” was used to indicate years with similar tree growth response. Differences in the detected number of common years within SEL and REJ were obtained using different time windows with the RE and NW methods. The 47 % of all series were classified as SEL, showing more common years than the REJ series. However, a similar result occurred considering all the series together without SEL/REJ discrimination. In general, a significant occurrence of common years could be a tool to select series to be averaged for a site mean chronology. These are preliminary but encouraging results contributing to a more efficient use of the ecological information provided by short time series from young trees.

How to cite: Tonelli, E., Vitali, A., Piermattei, A., and Urbinati, C.: Young trees climate sensitivity above the forestline: the case study of Pinus nigra upward shift in Central Apennines (Italy) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21283, https://doi.org/10.5194/egusphere-egu24-21283, 2024.

EGU24-21593 | ECS | Posters on site | BG3.26

Spatio-temporal dynamics of four pine species recolonization in Southern Europe human-disturbed forestlines 

Alessandro Vitali, Matteo Garbarino, J. Julio Camarero, Elvin Toromani, Velibor Spalevic, Milić Čurović, and Carlo Urbinati

In this study we compared the encroachment patterns of four pine species across anthropogenic forestlines in Southern Europe. Using a synchronic approach, we studied structure and recent spatio-temporal patterns of pine recruitment at upper forestline ecotones in Albania, Italy, Montenegro and Spain. Within altitudinal transects we mapped and sampled 964 living individuals of Pinus heldreichii, Pinus peuce, Pinus sylvestris and Pinus uncinata growing above the current forest line. We measured their basal diameter, total height, and counted the number of seed cones. We differentiated seedlings (height < 0.5 m) from saplings (0.5m≤height < 2 m) and trees (height≥2 m). From individuals with basal stem diameter>4 cm we extracted one increment core for cambial age determination and tree-ring width measurements. On smaller specimens, we estimated the age by counting annual internodes (terminal bud scars) along the whole stem. We compared the ground cover around each pine, applied point pattern analyses, modelled the probability of seed cone production and estimated the average distance of seed dispersal. The four pine species exhibited heterogeneous density values and the overall averaged means ranged 2–7 cm for basal diameter, 54–106 cm for total height and 9–20 years for cambial age, suggesting a recent encroachment process. None of these structural variables decreased with increasing relative altitude and distribution patterns exhibited a few higher density spots but not cohort spatial structure. Ground cover differed between species and more significantly between size classes. Grass was the most frequent type at all sites except for P. sylvestris where shrubs prevailed. Basal area increments increased from 1990 and stabilized in recent years at all species except for P. peuce. Height and basal diameter predicted cones production better than cambial age. P. heldreichii and P. peuce dispersed seeds at longer distances than P. uncinata and P. sylvestris, suggesting different potential for further encroaching. Pine recruitment above the forestlines is quite synchronic at all sites (last 30 years), but in some cases it appeared as a high altitude tree densification process, whereas in others as a starting forestline advance.

How to cite: Vitali, A., Garbarino, M., Camarero, J. J., Toromani, E., Spalevic, V., Čurović, M., and Urbinati, C.: Spatio-temporal dynamics of four pine species recolonization in Southern Europe human-disturbed forestlines, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21593, https://doi.org/10.5194/egusphere-egu24-21593, 2024.

EGU24-21595 | Posters on site | BG3.26

Linking ecological processes and spatial patterns: the promise of remote sensing in treeline ecology 

Matteo Garbarino, Donato Morresi, Peter Weisberg, and Nicolò Anselmetto

Treelines are ecotones with a strong spatial nature. Remote sensing (RS) tools provide spatially explicit wall-to-wall maps in time. Nevertheless, despite the potential of RS to inform treeline ecologists on spatial patterns and underlying processes, its application is still scarce and heterogeneous. We performed a systematic review and meta-analysis of published literature with the aim to provide a question-oriented discussion of RS in treeline ecology. The main focus of the review was the role of RS as a tool for measuring spatial patterns and dynamics of treeline globally. We assessed the geographic distribution, scale of analysis, and relationships between RS techniques and ecological metrics through cooccurrence mapping and multivariate statistics. Only 10% of treeline studies applied RS. We observed four main types of applications; long-term aerial, long-term oblique, satellite timeseries, and high-resolution mapping. Long-term research and monitoring adopted coarser spatial resolution over long temporal extent, either with oblique or aerial photographs to measure treeline position and shift. Shorter temporal extents (i.e., up to 40 years) were investigated through satellite time-series, especially when dealing with coarse dynamics such as changes in climate. High-resolution imagery derived from UAV recently emerged as promising tools to measure tree height, canopy cover, and spatial patterns at a very fine spatial resolution (i.e., centimetres to metres). A multiscale and multi-sensor spatial approach was implemented in just 19% of papers. We advocate for an increasing interaction between classic treeline ecology based on field surveys and RS techniques. Also, the multi-dimensional structural complexity of treeline ecotones calls for a multiscale and multi-sensor approach, with high-resolution and low cost UAV acting as a powerful tool to fill the gap between local-scale ecological patterns and coarse-resolution satellite sensors.

How to cite: Garbarino, M., Morresi, D., Weisberg, P., and Anselmetto, N.: Linking ecological processes and spatial patterns: the promise of remote sensing in treeline ecology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21595, https://doi.org/10.5194/egusphere-egu24-21595, 2024.

EGU24-21677 | ECS | Posters on site | BG3.26

Exploring alpine seedling dynamics: microsite preferences and physiological performance in the French treeline ecotone 

Lirey A. Ramirez, Hannah Loranger, Lukas Flinspach, Nada Nikolic, Johanna Toivonen, Hanna Wenzel, Gerhard Zotz, and Maaike Y. Bader

Seedling establishment is a major bottleneck in plant community dynamics and is particularly critical for tree advance in the treeline ecotone. However, the characteristics and availability of safe sites for tree regeneration in alpine ecosystems remain unclear, while the criteria for safe sites may differ between tree species. Tree seedlings in the treeline ecotone are exposed to multiple environmental stressors that may differ from those affecting adult trees. Understanding the response of seedlings to different combinations of abiotic and biotic constraints is essential for predicting future treeline shifts. We therefore aimed to: 1) evaluate differences in microsite preferences of the conifers Larix decidua, Pinus uncinata, and P. cembra at treeline sites with two different types of bedrock chemistry, and 2) study the response of these species plus two further treeline-forming tree species, Picea abies and Sorbus aucuparia, to microclimatic manipulation. We evaluated microsite preferences at four sites in the upper treeline ecotone in the French Alps, two with calcareous and two with siliceous bedrock, and compared, at each site, the microsite characteristics of 50 tree species individuals with 50 random microsites, describing the substrate, ground cover, macro- and microtopography, and nearest shelter of each microsite. In a field experiment, also in the French Alps, seedlings were planted in 40 plots arranged in five blocks with the following treatments: Day warming, Day warming + watering, Night warming, Night warming + shade, Shade, Control, Watering, and Vegetation cover. We evaluated survival, growth, and biochemistry (chlorophyll fluorescence and nonstructural carbohydrates) of two seedling cohorts (planted in two consecutive years). We found that microsites were similar, and mostly sheltered, in both bedrock types, and the occupied microsites were a good representation of the available microsites in the respective areas, suggesting that safe-site availability does not limit the establishment of these species in the treeline ecotone. In the experiment, the two seedling cohorts responded differently to the treatments, but in general the vegetation treatment had the strongest effect on seedling performance in all the species studied. Our results imply that, contrary to our expectations, seed availability, rather than safe site availability, is a primary constraint for tree establishment in these alpine-treeline ecotones. Furthermore, in our experiment, the presence of vegetation affected seedling performance more than shading or warming, but given the differences between cohorts, this result must be carefully considered.

How to cite: Ramirez, L. A., Loranger, H., Flinspach, L., Nikolic, N., Toivonen, J., Wenzel, H., Zotz, G., and Bader, M. Y.: Exploring alpine seedling dynamics: microsite preferences and physiological performance in the French treeline ecotone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21677, https://doi.org/10.5194/egusphere-egu24-21677, 2024.

EGU24-22195 | Posters on site | BG3.26

The Spatial Treeline-Ecotone Model (STEM) as a tool for understanding pattern-process relationships in alpine-treeline ecotones 

Maaike Bader, Lukas Flinspach, Bradley Case, Julio Camarero, and Thorsten Wiegand

Spatial patterns in alpine-treeline ecotones reflect the ecological processes that have shaped and probably continue to shape these transition zones. Understanding these processes is essential for predicting treeline responses to global-change factors. To connect treeline-ecotone patterns and processes, we developed a spatially-explicit individual-based model. The first version of this Spatial Treeline Ecotone Model (STEM 1.0) represents the growth, mortality and dieback (biomass loss leading to stunted trees or krummholz) of all individual trees within a treeline transect, and uses variation in these demographic rates, imposed along elevation gradients or emerging as a result of neighbor interactions, to create treeline ecotones with different spatial patterns. The model could reproduce many of the expected treeline types, but some types required very particular parameter combinations. These results helped to identify missing elements in the model and thus to sharpen our conceptual model of treeline-forming processes. The next mayor development step for the model is to let demographic rates emerge from the interaction of environmental influences, modified by plant-plant interactions, rather than being imposed. However, this first version is a very important first step to formalizing and developing our conceptual model of pattern-process relationships in alpine-treeline ecotones.

How to cite: Bader, M., Flinspach, L., Case, B., Camarero, J., and Wiegand, T.: The Spatial Treeline-Ecotone Model (STEM) as a tool for understanding pattern-process relationships in alpine-treeline ecotones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22195, https://doi.org/10.5194/egusphere-egu24-22195, 2024.

Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD) and soil droughts. Heat and VPD have been identified as increasingly important drivers of plant functioning in terrestrial biomes and are significant contributors to recent drought-induced tree mortality. Despite this, few studies have isolated the physiological response of plants to high VPD, heat, and soil drought, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. I will present diverse experimental approaches to disentangle atmospheric and soil drivers of plan functions across scales in this presentation. I will further discuss recent findings suggesting that high temperature and VPD can lead to a cascade of impacts, including reduced photosynthesis, foliar overheating, and higher risks of hydraulic failure, independently of soil moisture changes. Moreover, I will highlight how species interactions can modulate the adverse impacts of soil and atmospheric droughts.

How to cite: Grossiord, C.: Impact of rising temperature and drought on forest ecosystems across scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3085, https://doi.org/10.5194/egusphere-egu24-3085, 2024.

Sun-induced chlorophyll fluorescence (SIF) measurements have shown unique potential for quantifying both plant physiological and structural stress under compound drought and heatwave events. However, there is a lack of understanding and well explore of the differences in the sensitivity of vegetation physiological and structural information based on solar-induced chlorophyll fluorescence (SIF) to compound drought and heatwave stresses and the driving mechanisms behind it. The aim of this study was to assess whether SIF-derived physiological information (eΦF) and structural information (NIRvP) could improves the quantification of physiological and structural aspects of vegetation sensitivity to compound drought and heatwave stress at the mid-high latitudes of northern hemisphere by using contiguous sun-induced fluorescence (CSIF) data, respectively. We found that, compared to the vegetation sturctural information (NIRvP), the relative importance of vegetation physiological information (eΦF) to eCSIF variability increases 6.5% to14.8% under compound drought a heatwave stresses in all regions, which confirms the contribution of physiological variation to eSIF. We further demonstrated that vegetation physiological information (eΦF) can better detect compound drought and heatwave stress in humid regions and forest ecosystems, which is mainly driven by physiological (LCC and VCmax) and environmental (VPD and SR) factors; whereas vegetation physiological information (eΦF) and structural information (NIRvP) have similar ability to capture compound drought and heatwave stresses. The lines of evidence suggested that utilizing eΦF for physiological investigations and NIRvP for structural information will contribute to improve our comprehensive understanding of vegetation physiological and structural responses to simultaneous high-temperature and high-drought stresses.

How to cite: Diao, C., Wu, X., Li, Y., and Zhao, L.: Sensitivity of vegetation structural and physiological information to compound drought and heatwave stress based on Solar-induced chlorophyll fluorescence (SIF), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3248, https://doi.org/10.5194/egusphere-egu24-3248, 2024.

EGU24-3758 | Posters on site | BG3.28

Methane concentration in the discharge water and ambient air near the outlet of Glaciers, Alaska Range, 2022-2023 

Keiko Konya, Go Iwahana, Tomoaki Morishita, Jun Uetake, Masahide Wakita, Yota Sato, Kazuhiro Ayukawa, Yasuhide Mikami, and Tetsuo Sueyoshi

Methane release is considered to be from human activities, Arctic Ocean, and the terrestrial regions such as wetland, lakes, geological seeps in the Arctic although glaciers have not been considered a source of methane emissions. A large amount of methane has been observed at the terminus of large glaciers and ice sheet, associated with methane-saturated meltwater runoff. We observed several glaciers in Alaska and found methane emissions from the runoff water of the small mountain glaciers.

The observation periods, which was the beginning of the ablation season for the glacier, were June 12-14, 2022, and June 3-9, 2023. We measured methane and CO2 concentrations in ambient air over the water with a portable gas analyzer G4301 (Picarro, Inc.). Dissolved methane concentrations in runoff water were measured using the method of Morishita et al. (2015).

The maximum methane concentration in the ambient air near the runoff water was higher than the background level, and the concentration decreased as the gas analyzer moved away from the tunnel. The dissolved methane concentration in runoff water was saturated. These results suggest that the high concentration methane observed in the ambient air near the glacier terminus was released from the runoff water saturated by methane underneath of the glaciers. This study was supported by ArCSII project (JPMXD1420318865).

How to cite: Konya, K., Iwahana, G., Morishita, T., Uetake, J., Wakita, M., Sato, Y., Ayukawa, K., Mikami, Y., and Sueyoshi, T.: Methane concentration in the discharge water and ambient air near the outlet of Glaciers, Alaska Range, 2022-2023, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3758, https://doi.org/10.5194/egusphere-egu24-3758, 2024.

EGU24-4740 | Orals | BG3.28

Targeted Climate Modification on land – A matter of scale 

Stefan C. Dekker, Hugo J. de Boer, Gerbrand B. Koren, Arie Staal, Jolanda J.E. Theeuwen, and Femke M. van Woesik

Geoengineering strategies can be classified into two primary categories: i) Solar Radiation Management (SRM), which aims to mitigate the absorption of sunlight by the Earth, and ii) Carbon Dioxide Removal (CDR), involving the active extraction of carbon from the atmosphere for storage in terrestrial or marine environments. The ongoing discourse on geoengineering, particularly SRM on a global scale, is marked by polarization, primarily due to the challenging nature of predicting remote consequences.

This presentation endeavors to demonstrate two key points. Firstly, it will present a range of evidence indicating that local mitigation and adaptation, employing ecohydrological processes in regional models, yield more pronounced effects on regional temperatures and moisture compared to studies that use global climate models. Secondly, it will highlight that various bottom-up interventions in the energy-carbon-water nexus significantly impact maximum temperatures and moisture availability. For instance, a recent review (van Woesik et al., 2024) identifies over 50 of such interventions for East Africa.

While advocating for the efficacy of local solutions, this presentation acknowledges that such interventions, including reforestation and afforestation (e.g. Staal et al. 2024), can lead to remote consequences due to the interconnected energy-carbon-water dynamics, affecting for instance shifts in local precipitation patterns (e.g. van Theeuwen et al. 2024). Consequently, local-scale CDR solutions influence both local and remote energy balances, blurring the distinction from SRM. This challenges the applicability of conventional IPCC terminologies for climate mitigation and adaptation at the local scale. The prevalent global focus of IPCC research, derived from global models, has impeded the analysis of local ecohydrological interventions.

The central proposition of our research is that Targeted Climate Modification should be approached and analyzed from a bottom-up perspective rather than a top-down one. Therefore, we propose terminology shifts from mitigation and adaptation to Targeted Climate Modification. We hypothesize that such locally targeted interventions can benefit humanity and biodiversity by inducing cooling, enhancing agricultural productivity, and mitigating extremes in droughts and floods.

However, our research also calls for ethical and governance discussions. Acknowledging that local Targeted Climate Modification may yield negative remote consequences and substantial impacts on biodiversity loss, it advocates for the development of a new framework to analyze ethical, social, and environmental issues associated with Targeted Climate Modification.

 

References:

Staal A, Theeuwen JJE, Wang-Erlandsson L, Wunderling N, Dekker  SC (in press) Targeted rainfall enhancement as an objective of forestation. 2024. Global Change Biology.

Theeuwen JJE, Dekker SC, Hamelers BVM, Staal A,  Ecohydrological variables dominate local moisture recycling in Mediterranean-type climates, 2024, submitted to JGR-Biogeosciences

van Woesik FM, Dekker SC, van Steenbergen F, de Boer HJ. A review of Local Climate measures to increase Resilience of East African Agroecological Systems. To be submitted to Journal of Environmental Management

 

How to cite: Dekker, S. C., de Boer, H. J., Koren, G. B., Staal, A., Theeuwen, J. J. E., and van Woesik, F. M.: Targeted Climate Modification on land – A matter of scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4740, https://doi.org/10.5194/egusphere-egu24-4740, 2024.

Ecological studies place great importance on understanding the profound significance of plant diversity in maintaining the functioning of grassland ecosystems. However, despite decades of research, ecologists have faced persistent challenges in fully comprehending the intricate relationships between biodiversity and ecosystem functioning, as well as the influence of dominant plant functional groups on overall ecosystem function. To investigate two key aspects, namely the association between species richness and above- and below-ground biomass (AGB and BGB), as well as the relative contributions of functional groups in maintaining ecosystem function, we investigated the grassland biomass productivity in meadow steppe and alpine meadow ecosystems in the Qinghai-Tibet Plateau (QTP) for the period 2015-2019. 

The pristine grassland sites belonging to the alpine meadow and meadow steppe were maintained for data collection over 5 years. Shoot biomass was harvested during the peak growing season (mid-late September) by clipping vegetation samples from 3 typical 0.25 × 0.25 m2 quadrats within the central 4 m2 (2 × 2 m2)of the plot (5 × 5 m2) at the respective site of the total 36 sites. Root biomass was sampled using soil cores at depths of 0-40 cm (0-10, 10-20, 20-30, and 30-40 cm) in 3 typical 0.25 × 0.25 m2 quadrats over the 5 years. Before harvesting the biomass, the number of species and functional groups in the selected quadrat was counted. We used multiple tests including Mann-Kendall, Generalized Linear Model, Kruskal-Wallis, and Wilcoxon texts for analyzing the data.

The AGB of both grasslands exhibited an increasing trend over 5 years, while the BGB remained stable. This rise in AGB was attributed to the upward trajectory observed in AGB for forbs and grasses, which are the dominant functional groups in the QTP. These results underscore the crucial role of dominant species and functional groups in maintaining ecosystem functioning. Higher species richness plays a crucial role in ecosystem stability, as evidenced by the significantly positive relationships between biodiversity and AGB, and the stable relationships between biodiversity and BGB. In both grasslands, the top soil layer (0-10 cm) exhibited a dominant contribution to the observed BGB. This can be attributed to the abundance of nutrients present in the topsoil layer, which creates favorable conditions for root proliferation. Within the meadow steppe, there was an isometric allocation pattern observed in biomass, indicating that the BGB increased proportionally with the AGB.

The findings of this study demonstrate the influence of species richness on ecosystem functioning, with forbs and grasses playing a dominant role in biomass productivity. Notably, the top soil layer was responsible for three-quarters of the BGB. These empirical results provide valuable evidence that higher species richness enhances ecosystem functioning, serving as a scientific basis for informing policymaking regarding ecosystem stability.

How to cite: Hossain, M. L. and Li, J.: Increasing aboveground biomass and stable belowground biomass are controlled by greater species richness and dominant functional groups in Qinghai-Tibet Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5532, https://doi.org/10.5194/egusphere-egu24-5532, 2024.

EGU24-7766 | ECS | Orals | BG3.28

Disentangling the impact of air temperature, vapor pressure deficit, and soil drought on photosynthesis, transpiration, and embolism 

Philipp Schuler, Margaux Didion-Gency, Kate Johnson, Günter Hoch, Ansgar Kahmen, and Charlotte Grossiord

Heatwaves are becoming more frequent, with higher temperatures, drier air and reduced soil water availability. However, as increasing temperature, increasing VPD and soil drought are often coupled in nature, especially during heat waves, their isolated effects on tree physiology and, ultimately, mortality are not fully understood.

To disentangle the effects of these factors, we conducted a climate chamber experiment on nine tree species from different biogeographical backgrounds (three conifer species: Pinus sylvestris L., Pinus halepensis Mill. and Cupressus sempervirens L.; three temperate broadleaved species: Alnus cordata (Loisel.) Duby, Acer platanoides L. and Phillyrea angustifolia L.; three tropical broadleaved species: Terminalia microcarpa Decne., Syzygium jambos L. (Alston) and Trema orientale (L.) Blume). We exposed the trees to three different treatments which were imposed for two-day periods for a total of twelve days; (1) increasing temperature (20 to 40°C) with constant VPD (1.2 kPa), (2) constant temperature (35°C) with increasing VPD (1.2 to 4.7 kPa), and (3) increasing temperature (20 to 40°C) and VPD (1.2 to 6 kPa) but with constant vapor pressure (1.2 kPa). Each treatment was also divided into two groups: well-watered to field capacity (~35% soil moisture) and soil drought (~10% soil moisture). On the second day of each step, total water consumption, gas exchange (Amax, gs, E), leaf temperature, and the maximum photochemical efficiency (Fv/Fm) were measured, and leaves were sampled for abscisic acid (ABA) analysis. The occurrence of stem and leaf embolism for conifer and broadleaf trees, respectively, was continuously monitored with the optical vulnerability method. Gmin and P50 were measured for all the tree species.

With this data set, we can study the isolated and combined effects of high temperature and VPD on plant gas exchange and xylem embolism, and how this response varies in plants with different biogeographic backgrounds and environmental adaptions. These findings help us better understand the underlying physiological drivers of globally rising tree mortality and improve models to better predict tree responses in a hotter and drier world.

How to cite: Schuler, P., Didion-Gency, M., Johnson, K., Hoch, G., Kahmen, A., and Grossiord, C.: Disentangling the impact of air temperature, vapor pressure deficit, and soil drought on photosynthesis, transpiration, and embolism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7766, https://doi.org/10.5194/egusphere-egu24-7766, 2024.

Temperate mixed forest ecosystems consist of diverse plant functional types (PFTs) that exhibit variations in phenology and physiological responses to climate change. Consequently, the traditional big-leaf assumptions in carbon modeling have been criticized for oversimplifying these ecosystems, for they overlook the variability in PFT composition and their sensitivity to climate within these ecosystems. However, incorporating PFT composition into carbon and climate sensitivity simulations in heterogeneous mixed forest ecosystems presents two major challenges: (1) accurate fine-scale PFT composition mapping across large forest landscapes remains lacking, which further leads to (2) incomplete assessments of these fine-scale PFT contributions in interpreting ecosystem-scale carbon dynamics and climate sensitivity response. The recent increase in high-resolution satellite and ground observation data offers an unprecedented opportunity to resolve these challenges.

To address the first challenge, we developed a novel approach integrating Fisher-transformation-based unmixing analysis with time-series spectral and radar data. We examined this approach in three representative temperate mixed landscapes in the northeastern United States, using time-series Sentinel-1 and -2 data for calibration and local airborne-derived PFT fraction maps for validation. Our results demonstrate that (1) the synergy of spectral and radar time-series features significantly improves accuracy compared to spectral time-series models; (2) optimized features based on the Fisher-transformation approach minimize within-PFT variability and maximize between-PFT variability, enhancing model generalizability across landscapes. Integration of this approach with Google Earth Engine enables accurate ecoregion-wise PFT fractional mapping. 

To address the second challenge, we integrate different levels of PFT-related characteristics (e.g., PFT fraction map, PFT-specific physiology approximated by satellite vegetation index) with a machine learning-based carbon modeling scheme, examining how these PFT-related characteristics and climate variables separately and jointly determined the net ecosystem carbon exchange (NEE) in real mixed forest ecosystems. Specifically, we used the CHEESEHEAD19 dataset, which includes the world's most densely distributed eddy-covariance (EC) flux towers (13+ towers) within a 10 km × 10 km domain in the mixed forest ecoregion of Wisconsin, US, providing half-hourly flux records. Daily, 3-meter resolution, gap-free maps of vegetation index (NIRv) were calculated using the PlanetScope surface reflectance product. Our results demonstrated that PFT-related characteristics play a significant role (˜50%) in interpreting half-hourly NEE dynamics, with PFT-specific NIRv playing a dominant role (~30%), followed by PFT-fraction (~20%). Furthermore, by partitioning PFT-related effects, our results reveal distinct NEE sensitivity responses to specific environmental variability within and between PFTs in the 10 km × 10 km forest landscapes. 

Collectively this work advances the mapping of PFT composition and highlights the importance of integrating these fine-scale forest compositions into carbon modelling and climate sensitivity assessments, particularly in heterogeneous temperate mixed ecosystems.

How to cite: Lin, Z. and Wu, J.: Assessing Plant Functional Type Contributions to Carbon Modeling in Mixed Forest Ecosystems Using High-Resolution Satellite Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8411, https://doi.org/10.5194/egusphere-egu24-8411, 2024.

EGU24-9246 | Posters on site | BG3.28

A general model for the seasonal to decadal dynamics of leaf area 

Boya Zhou, Wenjia Cai, Ziqi Zhu, Han Wang, and I.Colin Prentice

Seasonal changes in leaf display, indicated by variations in leaf area index (LAI), play a crucial role in influencing the exchange of CO2 and energy between terrestrial ecosystems and the atmosphere. Accurate simulation of leaf phenology is essential for both land surface models (LSMs) and dynamic global vegetation models (DGVMs). But there is no agreement on how leaf phenology should be modelled. A common approach invokes specific physiological triggers for budburst and senescence, but the domain of application of such models is restricted to specific plant types and/or climatic zones. Recent theoretical advances suggest the existence of a more general relationship between gross primary production (GPP) and the seasonal variation of ‘steady-state LAI’ (i.e., the LAI that would be supported if environmental conditions were held constant). The dynamics of LAI can then be predicted from the time course of potential GPP, given their interdependence through Beer's law and the necessity for GPP to support LAI development. We have developed a model based on this principle in two steps. First, the principle was implemented using the P model, a universal first-principles light use efficiency (LUE) model for GPP. Second, we used a simple moving average method to represent the time lag between leaf allocation and steady-state LAI. The model requires a prediction of annual peak LAI, which we simulate based on the energy and water requirements of GPP. The model captures satellite-derived LAI dynamics across biomes at both site and global levels, except for some remaining problems in arid biomes. The model outperforms 15 DGVMs participating in the TRENDY project. This study thus provides a prognostic vegetation leaf phenology model that can be used to forecast the seasonal dynamics of LAI under climate change in LSMs and DGVMs. 

How to cite: Zhou, B., Cai, W., Zhu, Z., Wang, H., and Prentice, I. C.: A general model for the seasonal to decadal dynamics of leaf area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9246, https://doi.org/10.5194/egusphere-egu24-9246, 2024.

EGU24-10378 | ECS | Orals | BG3.28

Bridging Carbon and Water Dynamics: Insights from Process-Based Modeling in Agricultural Ecosystems Under Global Change Drivers 

Lucas Kanagarajah, Thomas Reitz, Martin Schädler, Franziska Taubert, Hans-Jörg Vogel, Ulrich Weller, and Sara König

Global change drivers, such as climate change and land-use intensification, pose imminent threats to the functioning of agricultural ecosystems, by disrupting vital ecosystem processes. In this context, understanding the interplay between carbon cycling and ecohydrological processes becomes important for the development of adaptive strategies that enhance the resilience of agricultural ecosystems in response to the dynamic challenges imposed by global change drivers. Process-based simulation models are a powerful tool to disentangle the complex interactions of microbiota-plant-soil interactions and provide a basis for long-term predictions and scenario simulations.

Our study focuses on the "Global Change Experimental Facility (GCEF)" (https://www.ufz.de/index.php?en=42385), where comprehensive data on plant physiology, soil nutrients, soil microbes, fauna, soil structure and moisture were collected across various agricultural land-use types. These include conventional and organic cropping systems, intensively and extensively farmed meadows, and extensively grazed sheep pastures, all under ambient and simulated future-climate conditions.

Here we present an extended version of the process-based soil model BODIUM, which captures the dynamics of soil functions, responding to soil management or changes in climatic conditions. The model was parametrized for different land-use types on the GCEF. First simulation results, compared with measured data for validation, reveal promising agreement in carbon data for cropland systems. However, an overestimation of water content within the soil profile after the vegetation phase needs further investigation. Additional simulations, alongside experimental findings are employed to discuss the impact of climate-change and land-use types on carbon and water dynamics and their potential interactions. The successful validation of the model across varied treatments provides the foundation for a potential application of the model to other boundary conditions that are not covered by the GCEF experiment.

How to cite: Kanagarajah, L., Reitz, T., Schädler, M., Taubert, F., Vogel, H.-J., Weller, U., and König, S.: Bridging Carbon and Water Dynamics: Insights from Process-Based Modeling in Agricultural Ecosystems Under Global Change Drivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10378, https://doi.org/10.5194/egusphere-egu24-10378, 2024.

EGU24-10395 | Orals | BG3.28 | Highlight

Do we need to care about water loss through bark and bark photosynthesis in trees under changing climate? 

Anna Lintunen, Kristiina Koivu, Paulina Dukat, and Teemu Hölttä

In non-stressed conditions, majority of water loss from plants occurs through stomata in leaves. During drought, plants close their stomata or even drop leaves to prevent massive embolism formation that disconnects leaves and above-ground parts hydraulically from roots and can ultimately lead to hydraulic failure. However, plants loose water also through leaf cuticle and bark. While water loss from leaves after stomatal closure has received increasing attention in recent years, water loss through bark has been largely ignored although bark covers 30 to 50% of whole tree surface area. The outer bark layers are practically impermeable to gases and water, but they are pierced by lenticels that provide channel for exchange of water and gas with ambient air to allow oxygen intake for the metabolic processes of the stem. In contrast to active stomatal control in leaves, gas exchange through bark cannot be actively regulated by plants and therefore water loss through bark continues after stomatal closure (together with water loss through leaf cuticle).

Stomatal closure in leaves also reduces photosynthesis; thus, drought can cause both hydraulic failure and carbon starvation and these processes are strongly linked. When leaf photosynthesis is minimized, bark photosynthesis can locally compensate the decreasing leaf photosynthesis. This helps to avoid carbon starvation, because bark photosynthesis utilizes recycled CO2 released from internal respiration resulting in more efficient carbon fixation in terms of water use. Bark thus plays a role in tree water and carbon balance, and it is crucial to understand the bark water and carbon dynamics in trees under changing climate.

We will show results and discuss three different aspects of bark gas exchange: 1) Drivers and seasonality of water loss and CO2 exchange through bark. These results are based on continuous stem chamber measurements of Pinus sylvestris in boreal environment. We successfully partitioned stem CO2 exchange into bark photosynthesis driven by light, respiration driven by temperature, and transport of CO2 dissolved in xylem sap; 2) Species-specific differences in water loss rate through bark and bark photosynthesis. These results are based on sampling branches from 11 coniferous and 4 broadleaved species grown in a boreal arboretum and comparing their bark characteristics regarding water loss and photosynthesis; 3) The role of water loss through bark in the whole tree water loss in dry conditions. These published results show that water loss rate per bark area was typically ~76% of the shoot transpiration rate (on projected needle area basis) in Pinus halepensis growing in semi-arid conditions but could even surpass the shoot transpiration rate during the highest evaporative demand. Irrigation of trees did not affect bark water loss rate, whereas shoot transpiration was greatly increased due to stomatal control.

The role of bark in tree water and carbon balance is often neglected in research, because its share of the whole tree water and carbon balance is negligible in good growing conditions, but when trees get stressed and stomata in leaves are closed, the role of bark may become dominant.

How to cite: Lintunen, A., Koivu, K., Dukat, P., and Hölttä, T.: Do we need to care about water loss through bark and bark photosynthesis in trees under changing climate?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10395, https://doi.org/10.5194/egusphere-egu24-10395, 2024.

This study aims to investigate the interplay of various biotic and abiotic factors on Gross Primary Productivity (GPP). Meteorological and flux observations from 71 global sites (1991-2014) obtained from FLUXNET, along with corresponding remotely sensed Fraction of Absorbed Photosynthetically Active Radiation (FPAR) data, were analyzed. The data encompassed 11 vegetation types based on the IGBP classification, including evergreen needleleaf forests, evergreen broadleaf forests, and deciduous broadleaf forests.

Using the Mann-Kendall trend analysis method, trends in various parameters were extracted. Among the 71 sites, 66 sites showed significant trends in GPP, and 36 sites exhibited significant increases in GPP, accompanied by mostly increasing trends in Light Use Efficiency (LUE), except for one grassland site with a declining LUE. The trends in GPP and LUE were significantly related with a correlation coefficient of approximately 0.44. FPAR increased in some sites but decreased in 40% of the cases, while only one evergreen needleleaf forest site showed a decreasing trend in CO2 concentration. 

GPP and LUE were insignificantly correlated with meteorological factors (such as Air temperature (Ta), vapor pressure deficit (VPD), precipitation, and soil moisture (SM)), indicating that these environmental factors are not the main drivers. FPAR exhibited minimal changes, and the insignificant correlation between GPP and FPAR trends suggested that the increase in GPP is not solely driven by Leaf Area Index (LAI). The strong negative correlation between LUE and FPAR trends (R2 ≈ 0.31) implies that increasing LAI may decrease LUE. Additionally, a significant positive correlation between the trends of CO2 and LUE (R2 ≈ 0.19) suggests that the fertilization effect of CO2 promotes LUE, thereby promoting the increase in GPP. However, the trend in GPP shows a negative correlation with the trend in CO2 concentration, indicating that higher CO2 levels may limit the extent of GPP increase, possibly due to changes in the allocation of photosynthetic products.

Further analysis is needed to understand the driving factors, especially for sites where GPP and LUE are decreasing without clear correlations with FPAR, CO2 concentration, and other meteorological factors.

How to cite: Zhang, Q. and He, M.: Long-term trends of Gross Primary Productivity (GPP) and its drivers: A Comprehensive Analysis Based on Flux Measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10631, https://doi.org/10.5194/egusphere-egu24-10631, 2024.

EGU24-10768 | ECS | Posters on site | BG3.28

Improving seasonal carbon dynamics in contrasting Mediterranean and Alpine grasslands 

Josua Seitz, Jinyan Yang, Yu Zhu, Fabrice Lacroix, Sönke Zaehle, Yunpeng Luo, Andreas Schaumberger, Michael Bahn, Lumnesh Swaroop Kumar Joseph, and Silvia Caldararu

Grasslands cover a substantial part of the global land area (~40%) and store about one third of the terrestrial carbon stock. These ecosystems and their significant carbon stocks are very susceptible to climate change and are often extensively managed for human use. Nevertheless, land surface models consistently fail to predict carbon fluxes in grasslands accurately, which is probably due to the lack of a good phenology module. Grassland vulnerability to climate change in combination with their large carbon stocks calls for an improved representation of grasslands in land surface models (LSMs) to accurately predict their fate under a changing climate. 

Here, we use data from two ecosystem manipulation experiments (MaNiP, Nitrogen and Phosphorus fertilisation in a Mediterranean tree-grass ecosystem and ClimGrass, drought, warming and elevated CO2 in a montane grassland) to improve the representation of carbon dynamics in  the LSM QUINCY. We built a novel turnover and growth model representation for both vegetative and reproductive plant pools in QUINCY based on ecologically realistic temperature and moisture controls as well as plant life history strategies. We show that the modified model can capture seasonality of productivity both in the seasonally cold and seasonally dry systems, under ambient and experimental conditions. This generalised model built upon manipulative experiments will improve global grassland productivity predictions.

How to cite: Seitz, J., Yang, J., Zhu, Y., Lacroix, F., Zaehle, S., Luo, Y., Schaumberger, A., Bahn, M., Joseph, L. S. K., and Caldararu, S.: Improving seasonal carbon dynamics in contrasting Mediterranean and Alpine grasslands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10768, https://doi.org/10.5194/egusphere-egu24-10768, 2024.

EGU24-11108 | Posters on site | BG3.28

Climatic effects on trade-offs between carbon and water cycle on the Yangtze River Basin, China 

Yanying Quan, Ronald W.A. Hutjes, Hester Biemans, Xinping Chen, and Xuanjing Chen

It is widely believed that forest plays a vital role in mitigating and adapting climate changes. By adopting afforestation and reforestation, the atmospheric carbon can be captured and stored (sequestered) within plants and soil. Thus, tree expansions are witnessed over the whole world. However, large-scale forestation often requires a high amount of water resources, which may bring up pressures on the local water cycle. In this case, trade-offs between carbon sequestration and ecohydrology remain under discussion yet.

China has launched several forestation projects since the last century. These projects spread over the country in both water-sufficient and water-limited areas. However, the changing climate conditions may alter local ecosystems and influence the survival of newly grown vegetations and the potential of carbon sequestration. Therefore, understanding the influences of climate change on carbon sequestration and hydrological response is of importance in national forestation management.

In this study, we selected a Dynamic Global Vegetation Model (DGVM), the Lund–Potsdam–Jena Managed Land (LPJmL4), to study climatic influences on the carbon cycle and water cycle in the Yangtze River Basin, China. The model was implemented on a regional scale with increased resolution from 30mins to 5mins. Meanwhile, considering the complex terrain of the Yangtze River Basin, we classified the basin with a climatic zonation scheme to furtherly analyse the influence of climate.

Our initial findings indicated that climate effects dominated the variations in the carbon and water cycle. Meanwhile, the future focus of ecological restoration, including forestation and protection, might need to shift from subtropical regions like the Yunnan-Guizhou plateau to western temperate alpine regions. This work can serve as recommendations for guiding national ecological restoration management.

How to cite: Quan, Y., Hutjes, R. W. A., Biemans, H., Chen, X., and Chen, X.: Climatic effects on trade-offs between carbon and water cycle on the Yangtze River Basin, China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11108, https://doi.org/10.5194/egusphere-egu24-11108, 2024.

EGU24-12445 | ECS | Posters on site | BG3.28

The Ant and the Grasshopper: contrasting responses and behaviors to water stress of riparian trees along a hydroclimatic gradient 

Pierre Lochin, Pauline Malherbe, Baptiste Marteau, Julien Godfroy, Michael Bliss Singer, John Stella, Hervé Piégay, and Antoine Vernay

The increasing threat of forest decline and mortality associated with more severe and frequent droughts calls for a better understanding of the tree response mechanisms to water stress. Among forest ecosystems, riparian forests, despite their privileged location in lowlands, are particularly vulnerable to drought because they are highly dependent on soil water availability for survival. At the scale of a large river and along a hydroclimatic gradient, riparian tree species may respond differently to water stress and, therefore, may not be equally vulnerable to drought events outside their normal range. To analyze the responses of white poplar (Populus alba) to seasonal changes in drought along a hydroclimatic gradient, we conducted a multi-tool analysis combining multispectral and thermal infrared remote sensing with in-situ ecophysiological measurements at different temporal scales.

Using this approach, we demonstrated that white poplars along the Rhône River (France) exhibit contrasting responses and behaviors during drought. We found that white poplars located downstream of the hydroclimatic gradient in a Mediterranean climate rapidly close their stomata during drought to reduce water loss and maintain high levels of minimum water potential (Ψm), but at the expense of leaf density and greenness. Conversely, white poplars located upstream in a temperate climate show high levels of transpiration and stable greenness, but lower Ψm and water content. These results demonstrate that white poplars along an aridity gradient can have two opposing responses to drought, with isohydric regulation on the one hand and anisohydric regulation on the other. These results indicate that trees located upstream in an area unaccustomed to drought are at a high risk of hydraulic failure during more intense and prolonged droughts.

The combined use of different tools and metrics at different spatial and temporal scales is therefore essential to consider the full range of tree responses to drought. These two distinct behaviors remind us of Aesop's fable, where upstream trees behave like the grasshopper, not paying attention to their water consumption and jeopardizing their long-term survival. In contrast, downstream white poplars respond quickly to drought and show greater long-term resilience, just like the ant. These results are important in light of future climate conditions because they show that the same species can have different levels of resilience to drought, but they also raise the question of the ability of trees to switch from grasshopper to ant to adapt to these future conditions.

How to cite: Lochin, P., Malherbe, P., Marteau, B., Godfroy, J., Bliss Singer, M., Stella, J., Piégay, H., and Vernay, A.: The Ant and the Grasshopper: contrasting responses and behaviors to water stress of riparian trees along a hydroclimatic gradient, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12445, https://doi.org/10.5194/egusphere-egu24-12445, 2024.

EGU24-12775 | Orals | BG3.28 | Highlight

Ecohydrological Responses of Different Functional Groups Driving Ecosystem Carbon Cycling under Experimental Climate Change Drought 

Christiane Werner, Laura Meredith, and Nemiah Ladd and the B2WALD

Carbon and water cycling are tightly linked in forest ecosystems but severe droughts bare the potential to disrupt the sensitive balance and ecohydrological interactions between different species in forest ecosystems. To unravel complex ecosystem carbon-water dynamics we imposed a 9.5-week drought on the Biosphere 2 tropical rainforest, a thirty-year old enclosed forest. We traced ecosystem scale interactions through a whole-ecosystem 13C and 2H-labelling approach in the Biosphere 2 Tropical Rainforest, the B2 Water, Atmosphere, and Life Dynamics (B2WALD) experiment. We analysed total ecosystem exchange, soil and leaf fluxes of H2O, CO2 and BVOCs, and their stable isotopes over five months. To trace changes in soil-plant-atmosphere interactions we labelled the ecosystem with a 13CO2-isotope and investigated the importance of deep water sources under drought by 2H-labelling at the end of the drought. The tropical rainforest exhibited highly dynamic, non-linear responses during both dry-down and rewetting phases.

Drought sequentially propagated through the vertical forest strata, with a rapid increase in vapor pressure deficit, the driving force of tree water loss, in the top canopy layer and early dry-down of the upper soil layer but delayed depletion of deep soil moisture. This induced a two-phase response of ecosystem fluxes: gross primary production (GPP), ecosystem respiration (Reco), and evapotranspiration (ET) declined rapidly during early drought and moderately under severe drought.

Ecosystem 13CO2-pulse-labeling showed that drought enhanced the mean residence times of freshly assimilated carbon- indicating down-regulation of carbon cycling velocity and delayed transport form leaves to trunk and roots. Ecosystem carbon and water fluxes were determined by different ecohydrological responses of the dominant plant functional groups: while drought sensitive canopy trees dominated total ecosystem water fluxes under well-watered conditions, they showed the largest decline in response to top-soil moisture decline. Drought tolerant canopy trees exhibited lower fluxes but also higher resistance to soil water decline. Interestingly, all dominant canopy trees had access to deep water reserves, serving as a crucial water source during drought but not sustaining high transpiration rates.

Recovery of ecosystem carbon and water fluxes was slow after drought release, which reflected the by long water transit times within the soil-plant-atmosphere system. Thus, we found highly diverse responses of carbon and water fluxes, driven by the interplay of hydraulic regulation of different vegetation compounds and ecohydrological feedbacks in the forest. This study highlights the importance of ecohydrological responses for overall ecosystem resilience and carbon sequestration potential, providing valuable insights into the complex interplay between climate change, water availability, and carbon cycling in terrestrial ecosystems. We need to develop a comprehensive understanding of the multifaceted ecohydrological factors shaping ecosystem responses to climate change, with implications for sustainable ecosystem management and carbon mitigation strategies.

Werner et al. 2021, Science 374, 1514 (2021), DOI: 10.1126/science.abj6789

How to cite: Werner, C., Meredith, L., and Ladd, N. and the B2WALD: Ecohydrological Responses of Different Functional Groups Driving Ecosystem Carbon Cycling under Experimental Climate Change Drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12775, https://doi.org/10.5194/egusphere-egu24-12775, 2024.

EGU24-14706 | ECS | Posters on site | BG3.28

Quantifying drought legacy effects in a Mediterranean oak forest using eddy covariance, sap flow, and stem growth data 

Sarah Heinrich, Xin Yu, Ana Bastos, Anne Hoek van Dijke, Jean-Marc Limousin, Christiane Werner, and René Orth

The frequency and intensity of droughts is expected to increase with climate change. Droughts can affect vegetation through e.g. hydraulic failure, depletion of carbon reserves and reduced growth, which in turn can influence ecosystem functioning beyond the duration of the drought. Previous studies have provided examples of drought legacy effects for example by reduced gross primary productivity (e.g. in Yu et al. 2022). It remains unclear whether legacy effects occur in drought-resistant mediterranean oak forests and to what extent those effects can be detected across water- and carbon-related vegetation variables.

This study investigates legacy effects on gross primary productivity (GPP), sap flow and stem growth of holm oak (Quercus ilex L.) using measurements from an evergreen Mediterranean forest in southern France during the time period 2000 to 2015. We jointly analyze sap flow and growth measurements from several trees located within the footprint of the eddy covariance GPP measurements. In order to isolate the legacy effects, we follow the approach of Yu et al. (2022) using a random forest regression model to predict potential sap flow or gross primary productivity based on concurrent hydro-meteorological conditions and compare potential and actual values. The same approach was applied to stem growth data, but using a linear regression model due to the fewer observations available.

Our study shows that a drought in 2006 caused comparable drought legacy signals across all considered vegetation variables. A slight positive effect, i.e. higher measured values than predicted, was diagnosed in the first post-drought year and no legacy effects were detected in the second post-drought year. The results suggest that Q. ilex shows a fast and complete recovery after the first post-drought year, which can be expected as it is a drought-adapted species. We also observe a large variability in legacy effects across individual trees, which suggests that individual tree properties and local soil characteristics might affect their drought sensitivity and resilience. 

Jointly analyzing drought legacy effects across different scales and variables opens the possibility of a holistic understanding and thus helps to improve the representation of drought effects in predictions of the future land carbon sink. 

Reference: Yu, X., Orth, R., Reichstein, M., Bahn, M., Klosterhalfen, A., Knohl, A., Koebsch, F., Migliavacca, M., Mund, M., Nelson, J. A., Stocker, B. D., Walther, S., & Bastos, A. (2022). Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest. Biogeosciences, 19(17), 4315–4329. https://doi.org/10.5194/bg-19-4315-2022

How to cite: Heinrich, S., Yu, X., Bastos, A., Hoek van Dijke, A., Limousin, J.-M., Werner, C., and Orth, R.: Quantifying drought legacy effects in a Mediterranean oak forest using eddy covariance, sap flow, and stem growth data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14706, https://doi.org/10.5194/egusphere-egu24-14706, 2024.

EGU24-14835 | ECS | Posters on site | BG3.28

Three years of eddy covariance measurements of a tropical forest in the Congo Basin. 

Roxanne Daelman, Marijn Bauters, Thomas Sibret, Lodewijk Lefevre, José Mbifo, Hans Verbeeck, and Pascal Boeckx

The CongoFlux climate site in the Yangambi UNESCO biosphere reserve (0°48’52.0"N, 24°30’08.9"E) hosts the first Eddy Covariance (EC) flux tower in the central Congo Basin. The site, recently labeled as an ICOS associated ecosystem station, was built in 2020 to address the lack of observations of the tropical forest ecosystems in Central Africa. We aim to quantify the net ecosystem exchange (NEE) and the water use efficiency (WUE) of the tropical forest in the footprint of the tower. A set of meteorological and hydrological data is also recorded, including several climatic factors that could explain the seasonal patterns of NEE and WUE. However, processing EC data still remains a challenge in the tropics. Tall vegetation and frequent low turbulent conditions call for attention to the storage correction term. Multiple set ups on the site were used to study the best way to handle the nighttime buildup of CO2 in the canopy. The threshold for the friction velocity to differentiate low from wel mixed turbulent conditions, needs to be selected with care to minimize the influence of the frequent low turbulent conditions, while at the same time minimizing the amount of data that needs to be filtered out. Power cuts and data filtering result in many and sometimes large data gaps, which increase the importance of accurate gap filling techniques. An uncertainty assessment that looks into the influence of corrections and filtering steps and takes the effect of the gap filling procedure into account, is important to interpret the resulting NEE budget and to correctly use a final data set of half hourly NEE values. We here present three years of processed EC data together with the challenges of an EC station in the tropical forest of the Congo basin.

How to cite: Daelman, R., Bauters, M., Sibret, T., Lefevre, L., Mbifo, J., Verbeeck, H., and Boeckx, P.: Three years of eddy covariance measurements of a tropical forest in the Congo Basin., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14835, https://doi.org/10.5194/egusphere-egu24-14835, 2024.

EGU24-14990 | ECS | Posters on site | BG3.28

Cattle grazing potentially benefits a key organic carbon producer in a water limited ecosystem 

Dor Pinchevsky, Omri hasson, Yagil Osem, Yael Mandelik, and José M. Grünzweig

Cattle grazing serves as a principal land management tool in drylands worldwide, substantially affecting major soil properties and processes, such as soil organic carbon, soil moisture, and biotic components. The mechanisms of many of these effects remain elusive, although they hold particular significance, as they play a vital role in determining carbon-, water- and nutrient-related habitat conditions, ultimately affecting the aboveground environment. In addition, trees in drylands serve as ecosystem engineers that can modify soil functionality to a large degree. To examine the combined effects of grazing and trees on soil properties and functioning, a field experiment was carried out in the at the dry edge of the distribution of Quercus calliprinos, a dominant woody species in the eastern Mediterranean region. Large exclosures were installed around Q. calliprinos trees in 2013, preventing cattle from grazing in their vicinity. After eight years (2021), we sampled soil from two habitat types, under the oak canopy and in adjacent herbaceous-dominated space. We found that cattle trampling under the tree canopy accelerated the incorporation of the soil organic and litter layers into the mineral soil, leading to increased soil moisture, microbial activity and nutrient availability. Additionally, beneath the oak canopy, the soil had more soil organic carbon, higher soil moisture, higher availability of some of the nutrients, and the soil detritivore community exhibited an elevated trophic level. Our study showed that cattle grazing has the potential to create fertile soil hotspots under Q. calliprinos, thereby profiting the trees. The study further promotes the idea of Q. calliprinos as a keystone species at the edge of the desert which has a profound impact on the carbon and water relations of the ecosystem.

How to cite: Pinchevsky, D., hasson, O., Osem, Y., Mandelik, Y., and Grünzweig, J. M.: Cattle grazing potentially benefits a key organic carbon producer in a water limited ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14990, https://doi.org/10.5194/egusphere-egu24-14990, 2024.

EGU24-15964 | Posters on site | BG3.28

Invasive Prosopis trees in the hyperarid environment of the Dead Sea region 

José Grünzweig, Alon Levinzon, and Ilya Gelfand

Invasive species cause enormous damage to ecosystems and are considered one of the main biotic factors contributing to the loss of global biodiversity. One of the most common exoctic plants in drylands is of the genus Prosopis, which has invaded natural ecosystems in many parts of the world. Despite the increasing presence of Prosopis spp. in natural areas, our knowledge of their function and impact in hyperarid regions is sparse. The goals of this study were to assess the state of the distribution of Prosopis trees in the hyperarid environment of the Dead Sea area, to characterize the habitats in which they established themselves, and the ways of dispersal in the area. Moreover, the study aimed to compare the functioning of invasive Prosopis and local trees, and to assess the impact that Prosopis has on native species. An extensive field survey showed that the seed sources of the invasive individuals are those Prosopis trees that were planted in populated areas. A combination of seed source availability, adaptation to a variety of substrates, and efficient dispersal vectors allowed this nitrogen fixer to invade natural hyperarid environments. Prosopis was shown to be more resistant to strong radiation, intense heat and high evaporative demand and showed a higher level of anisohydricity compared to the native Acacia tortilis. Higher nitrogen-to-phosphorus (N:P) ratios in Prosopis than in Acacia leaves indicated that Prosopis can accumulate higher amounts of N per unit of P than Acacia, which may be advantageous under these dry conditions where P availability is considered to be low. In addition, Prosopis exerted a negative impact on native Ziziphus spina-christi trees, the latter of which had a significantly lower water potential when growing in the vicinity of Prosopis trees than when growing near conspecific trees. The results of this research suggest that Prosopis may become a significant invasive species in the hyperarid environment of the Dead Sea region. A further rise in heat and drought as expected under climate change could increase the competitiveness of Prosopis spp. relative to the native tree species in the region, thus decimating their populations. To reduce the threat stemming from this invasive species, it is recommended to halt the spreading of Prosopis trees by eliminating the existing seed sources and banning livestock, a very potent dispersal vector.

How to cite: Grünzweig, J., Levinzon, A., and Gelfand, I.: Invasive Prosopis trees in the hyperarid environment of the Dead Sea region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15964, https://doi.org/10.5194/egusphere-egu24-15964, 2024.

EGU24-16237 | ECS | Posters on site | BG3.28

Linking Quercus robur tree-water usage to soil-water dynamics within a forest FACE experiment. 

Susan Elizabeth Quick, Stefan Krause, and Angus Rob MacKenzie

Monitoring soil-water dynamics adjacent to mature trees within high forest provides a water balance dataset enabling derivation of ecosystem water cycles and microclimatic effects. Compartmentalising this data to determine gross inputs and outputs is relatively easy, whereas separating the internal components of the complex dynamic matrix presents multiple challenges. Soil-water contributors and users include for example: surface vegetation (through evapotranspiration (ET)), trees (via root water uptake and exudation) differentiated by species and soil microbes. The soil-water balance is affected by both soil and air moisture parameters (i.e. volumetric soil-water content (VWC), vapour pressure deficit (VPD)), by temperature, abiotic soil characteristics (e.g. soil texture) and is fed by infiltration of canopy throughfall (gross precipitation minus interception) providing challenges to attempted partitioning. Here we report results from concurrent measurements of VWC measured at multiple depths down to 1 metre at positions adjacent to mature dominant oak (Quercus robur L.) at the Birmingham Institute of Forest Research (BIFoR) Free-Air CO2 Enrichment (FACE) experimental site in Staffordshire UK. We calculate relative extractable soil-water (REW) and look for short-timescale correlation with previously reported daylight whole tree water usages derived from sap flow probesets in 18 mature oak (Quercus robur L.) stems. The study was conducted in nine experimental arrays in three-replicate groups (3 arrays with elevated CO2 infrastructure (eCO2); 3 with infrastructure but ambient-control CO2 (aCO2) and 3 no-infrastructure ambient-control arrays (Ghosts)). Here we present leaf-on season (May to October) differences between trees’ daily soil-water usage under the three experimental CO2 conditions and consider relative rates of VWC decrease. We derived the VWC values for field capacity (maxima) across autumn and winter (no-leaf season) and permanent wilting point results from VWC minima within the summer treatment season. Environmental measurements were sampled at 30-minute intervals enabling determination of these seasonal maxima and minima. Thus we compile simple models of relative soil-water usage by mature trees under current and future elevated CO2 levels, which complement concurrent ongoing studies of soil-water-respiration, tree-root-water and nutrient dynamics at BIFoR FACE. The study aims to fill gaps in data deficiency within global vegetation models and to clarify tree-water versus soil-water interactions.

How to cite: Quick, S. E., Krause, S., and MacKenzie, A. R.: Linking Quercus robur tree-water usage to soil-water dynamics within a forest FACE experiment., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16237, https://doi.org/10.5194/egusphere-egu24-16237, 2024.

EGU24-16543 | ECS | Orals | BG3.28

Photosynthetic optical signals studying biogenic volatile organic compound emissions in Scots pine and English oak saplings under drought or warming 

Chao Zhang, Iiro Miettinen, Albert Porcar-Castel, Jon Atherton, Kaisa Rissanen, Juho Aalto, Toni Tykkä, Heidi Hellén, Marina López-Pozo, Beatriz Fernández-Marín, José Ignacio García-Plazaola, Lukas Kohl, and Jaana Bäck

Biogenic volatile organic compounds (BVOCs), primarily emitted into the atmosphere by terrestrial vegetation through biochemical processes, have key ecological functions in protecting vegetation from biotic or abiotic stresses. However, accurately quantifying and predicting changes in BVOC emissions in response to long-term environmental changes large spatial scales remain challenging. The appropriate tools for observing the BVOC emissions at large scales are still missing. Remote sensing of optical signals is a promising solution to fill spatial knowledge gap. We hypothesize that the carotenoid-related vegetation index, such photochemical reflectance index (PRI), is a promising method to investigate BVOCs emitted by plants based on their functional links with carotenoids and photosynthetic activity.

We conducted a leaf-level experiment in greenhouse during the summer of 2022 to investigate how the relationships between PRI and BVOC emissions change in response to drought or heat stresses in Scots pine and English oak saplings during the peak of growing season. We aim to address the following questions: (1) What factors control the relationships between PRI and BVOC emissions in response to mild/extreme drought or heat; (2) Will these controlling factors differ between vegetation species or BVOC emission types (e.g., isoprene and monoterpenes)? (3) Can PRI or other carotenoid-related vegetation indices capture the changes of BVOC emissions in response to drought or heat stresses?

We will present our preliminary results. The expected outcomes will give new insight into leaf-level mechanistic links between PRI and BVOC emissions for plants in response to climate drought or warming.

How to cite: Zhang, C., Miettinen, I., Porcar-Castel, A., Atherton, J., Rissanen, K., Aalto, J., Tykkä, T., Hellén, H., López-Pozo, M., Fernández-Marín, B., García-Plazaola, J. I., Kohl, L., and Bäck, J.: Photosynthetic optical signals studying biogenic volatile organic compound emissions in Scots pine and English oak saplings under drought or warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16543, https://doi.org/10.5194/egusphere-egu24-16543, 2024.

EGU24-16544 | ECS | Orals | BG3.28

Dynamics in radial sap flow and stem water reserves under varying environmental conditions 

Stefanie Dumberger, Laura Kinzinger, Simon Haberstroh, and Christiane Werner

Knowledge of hydraulic strategies is essential to understand the response of forest ecosystems to changing environmental conditions. Species-specific regulation mechanisms of water fluxes and water storage in the xylem are important drivers of drought tolerance in trees. Differences in the regulation may also occur along the radial profile of the xylem leading to a differential drought response of water fluxes within the tree xylem. To this end, we investigated sap flow and stem water content in two xylem depths, variations in stem radius and water potentials of Abies alba, Fagus sylvatica, Picea abies and Quercus petraea in a mature forest stand in SW-Germany during three years with varying environmental conditions.

Generally, hydraulic strategies varied between the four investigated species: A. alba was generally the most water-saving species, while drought tolerance was highest in Q. petraea and lowest in P. abies. Under moist conditions F. sylvatica was the most water-spending species, whereas sap flow was strongly reduced under drought. Overall, sap flow of all four species responded more pronounced to high vapor pressure deficits (VPD) than to decreasing soil moisture. We found a varying contribution of stem water storage to daily sap flow between the four species, which might be a crucial trait explaining drought tolerance.

A dynamic radial shift of sap flow in ring-porous Q. petraea was observed, which was tightly linked to corresponding stem water content: under high VPD sap flow in the inner xylem (10 mm beneath the cambium) exceeded sap flow in the outer xylem (20 mm beneath the cambium), while the inverse was observed under low VPD. Such a differential response within different xylem depths might enhance drought tolerance of ring-porous Q. petraea.

Moreover, the relationship between declining stem water reserves (expressed as tree water deficit) and water potentials was analyzed by a generalized additive model incorporating VPD and soil moisture. The model was trained with measured water potentials and subsequently used to predict water potentials from tree water deficits. Model predictions represented well measured values, if environmental variables were considered, and thus our modelling approach might be a useful tool in the future to predict water potentials on a high temporal scale without excessive measurement intensities.

In summary, our study demonstrated that availability of stored stem water influences species-specific response of sap flow to drought conditions and that regulation mechanisms may vary along the radial profile. Further investigations are needed to determine if differential responses in different xylem depths are species-specific or part of a general protection mechanism, e.g. to preserve hydraulically more important xylem vessels from cavitation. Furthermore, predicting water potentials from tree water deficits might be a useful and cost-efficient approach to gain insights into stomatal regulation processes without the need to reach the tree canopy.

How to cite: Dumberger, S., Kinzinger, L., Haberstroh, S., and Werner, C.: Dynamics in radial sap flow and stem water reserves under varying environmental conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16544, https://doi.org/10.5194/egusphere-egu24-16544, 2024.

EGU24-16967 | ECS | Orals | BG3.28

Pine root exudation increased under drought and even more under eCO2 and drought 

Sophie Obersteiner, Yaara Oppenheimer - Shaanan, and Tamir Klein

Tree processes belowground are highly complex and strongly affect the soil carbon. Trees assimilate carbon and allocate up to 20% of the carbon to the rhizosphere as root exudates. Rhizosphere processes in the forest soil might have a significant global effect. Abiotic factors such as intensified drought and elevated atmospheric CO2 (eCO2) will influence tree carbon fluxes as predicted under climate change. As trees play a vital role in maintaining Earth’s carbon balance, ecological studies on trees are crucial, especially in light of climate change.

The effect of the predicted elevation of atmospheric CO2 and drought on the rhizosphere was studied on 2-years-old pine saplings in climate-controlled growth rooms. The results showed up to a twofold increase in assimilation, increasing shoot biomass, while root exudation rate remained unchanged in eCO2 compared to ambient CO2. Root exudation increased under drought, despite reduced assimilation. Under combined drought and eCO2 treatment, exudation rate increased even more by 56%, suggesting assimilated surplus carbon might have been stored in the roots under eCO2. In addition, we found an increase of soluble sugars in the stem under combined drought and eCO2 treatment, specifically glucose and fructose, indicating that indeed surplus carbon is stored during well-watered times under eCO2.

Our results are unique because they show for the first time that pines were able to increase their root exudation under drought due to eCO2, potentially enhancing their resilience during drought recovery.

How to cite: Obersteiner, S., Oppenheimer - Shaanan, Y., and Klein, T.: Pine root exudation increased under drought and even more under eCO2 and drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16967, https://doi.org/10.5194/egusphere-egu24-16967, 2024.

EGU24-17222 | ECS | Orals | BG3.28 | Highlight

Climate change, disturbance legacy and abrupt shifts in ecosystem functioning: what makes arid African savannas more resilient? 

Liezl Mari Vermeulen, Bruno Verbist, Koenraad Van Meerbeek, Jasper Slingsby, Paulo Negri Bernardino, and Ben Somers

The accelerating pace of climate change has led to unprecedented shifts in surface temperature and precipitation patterns worldwide. Regions particularly susceptible to these changes include African savannas. With increased climate anomalies and human impacts, comes increased disturbance events in the form of fires, overgrazing from elephants, invasive species etc. Consequently, there is a continual, large-scale transformation in vegetation patterns. Long-term ecosystem characteristics, such as soil traits, topography, and species composition, also contribute to the susceptibility of ecosystems to these climate and disturbance pressures. Understanding the complex interaction between climatic pressures, local disturbance drivers and underlying ecosystem traits, and their impact on ecosystem functioning and stability, is thus crucial.


This research pursued a dual objective: firstly, detecting shifts in ecosystem functioning within the African savanna biome and analysing their spatial and temporal patterns; secondly, exploring the interplay between climate legacy, disturbance legacy, and underlying ecosystem characteristics, and how these factors influence savanna ecosystem resilience at regional and local scales in the context of global change. Remote sensing time series analysis and breakpoint detection algorithms were employed to identify change hotspots in the South African savanna biome. Combining this ethodwith survival analysis, a novel approach, also helped uncover large-scale climatic drivers and underlying ecosystem traits facilitating these changes. Bayesian hierarchical modeling, coupled with field data collected in the Kruger National Park of South Africa, was then utilised to delve into the complex interactions between disturbance legacy (e.g., drought legacy, history of extreme rainfall events, increased fire frequency, and elephant activity) and the resistance and resilience of the savanna landscape at a local scale. The outcomes of this research contribute to prioritising conservation efforts and enhancing our understanding of the future of savannas in the face of global change.

How to cite: Vermeulen, L. M., Verbist, B., Van Meerbeek, K., Slingsby, J., Negri Bernardino, P., and Somers, B.: Climate change, disturbance legacy and abrupt shifts in ecosystem functioning: what makes arid African savannas more resilient?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17222, https://doi.org/10.5194/egusphere-egu24-17222, 2024.

EGU24-17333 | ECS | Posters on site | BG3.28

Assessing the Physiological Responses of Regional Indian Forest Ecosystems to Climate Stressors using Quantile Regression 

Devosmita Sen, Joy Monteiro, and Deepak Barua

Vegetation plays a crucial role in the exchange of energy and moisture between land and atmosphere, acting as a link between the soil, water, and atmosphere continuum. Amid a changing global climate, the increasing frequency and spatial extent of droughts and heat-related extremes pose imminent threats to ecosystems. As compared to commonly measured air temperature, the surface temperature (Tsurf) of vegetation is a better indicator of physiological stress. Remote sensing of vegetation surface temperatures allows for a unique perspective on temperature effects on ecosystem function, thus presenting as a vital tool for monitoring ecological responses during periods of environmental stress, particularly at the canopy, regional, and continental scales.

Our analysis focuses on regional forest ecosystem health within the Western Ghats and Eastern Ghats regions, known for their unique biodiversity and consisting of tropical wet and semiarid eco-climate zones. Using gridded climate data and remote sensing datasets, we examine the impact of climate stressors on ecosystem-level vegetation response, specifically focusing on surface temperature. The investigation is organized around dominant vegetation types, outlining their distinctive reactions to specific climate stressors, including hot/dry conditions and their combinations. This approach involves not only examining mean/median changes but also assessing extreme quantiles, as these are likely to have the highest impact on vegetation responses. By examining the proximity of quantiles to physiologically relevant thresholds, specifically T50—the thermal threshold of photosynthetic decline, we establish a framework that connects the proximity of these thresholds to the diverse vegetation responses. This linkage is crucial for gauging the severity of the impact on vegetation health.

The results show that vegetation response to environmental stress differs among land cover classes, which can be related to different coping strategies. Particularly in semiarid regions, a strong relationship exists between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) anomalies in deciduous forests. However, upon closer investigation, a notable observation emerges: even during periods of below-average temperatures, NDVI anomalies persist. This occurrence is attributed to significant soil moisture deficits, indicating that water availability, or the lack thereof, strongly contributes to and drives vegetation anomalies in these regions. Additionally, we noted that under the influence of climate stressors, there were multiple instances where vegetation surface temperatures had reached critical temperature levels and were operating close to their physiological thermal tolerance thresholds. Such exposure to thermal stress often induces leaf senescence and can prove to be harmful, potentially accelerating mortality rates.

Our study contributes to understanding ecosystem-level vegetation response when exposed to critical environmental stress by providing a framework that underscores the relevance of physiological thresholds and goes beyond conventional mean-centric analyses.

 

How to cite: Sen, D., Monteiro, J., and Barua, D.: Assessing the Physiological Responses of Regional Indian Forest Ecosystems to Climate Stressors using Quantile Regression, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17333, https://doi.org/10.5194/egusphere-egu24-17333, 2024.

EGU24-17348 | ECS | Orals | BG3.28

Soil Texture Controls the Relative Importance of Vapor Pressure Deficit and Soil Moisture for Ecosystem Water Limitation Globally 

Fabian J. P. Wankmüller, Louis Delval, Peter Lehmann, Martin J. Baur, Sebastian Wolf, Dani Or, Mathieu Javaux, and Andrea Carminati

Terrestrial vegetation plays a crucial role for water-energy-carbon interactions between the land and the atmosphere but is experiencing above-average temperature increases due to climate change. This contributes to widespread increases in vapor pressure deficit (VPD). High VPD and low soil moisture are considered the two main drivers of plant water stress, triggering the downregulation of vegetation-atmosphere fluxes, such as transpiration and photosynthesis. While ecosystems are initially driven by energy availability, soil drying below a critical soil moisture threshold (θcrit) shifts them to a water-limited regime. However, the relative importance of VPD versus soil moisture limitation and the relative role of soil versus plant hydraulic conductance are highly debated. Understanding the key mechanisms controlling these relative roles is therefore crucial to predict vegetation-atmosphere exchanges under changing environmental conditions. Here, by analysing global observations of θcrit, we demonstrate the central role of soil texture in shaping the importance of VPD versus soil moisture limitation by mediating the magnitude of soil hydraulic conductance relative to that of the plant. On average, we find that loss in soil rather than plant hydraulic conductance determines the onset of water limitation across climates and biomes globally. This implies that ecosystems in fine textured soils are more sensitive to VPD than ecosystems in coarse textured soils, while ecosystems in coarse soils are more sensitive to soil drying than in fine soils. This is a consequence of the steeper decline in soil hydraulic conductivity in coarse soils, resulting in the dominant control of soil hydraulics in these soils. Our analysis explains the emergent control of soil texture on ecosystem water limitation and unifies long-standing controversies about the relative importance of VPD versus soil moisture and soil versus plant hydraulic limitation. We demonstrate the global relevance of soil texture for land-atmosphere exchanges and open new paths to understanding the impacts of climate change on terrestrial ecosystems.

How to cite: Wankmüller, F. J. P., Delval, L., Lehmann, P., Baur, M. J., Wolf, S., Or, D., Javaux, M., and Carminati, A.: Soil Texture Controls the Relative Importance of Vapor Pressure Deficit and Soil Moisture for Ecosystem Water Limitation Globally, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17348, https://doi.org/10.5194/egusphere-egu24-17348, 2024.

EGU24-17690 | Orals | BG3.28

Impacts of climate change and LUCC on eco-hydrological processes in semi-arid and semi-humid regions of China   

Xingguo Mo, Shi Hu, Jiawen Sang, Licheng Huang, and Suxia Liu

The semi-arid and semi-humid region of China occupies an area of more than 200 million km2. Since years of ecological restoration implementation, land use cover changes (LUCC) significantly with the vegetation continually recovered in the recent decades. During this period, climate change is significant in the region with air warming and precipitation extremes intensification. How climate change and LUCC play different roles in the land surface – atmosphere exchanges and catchment hydrological processes is still not clear.  Based on VIP (Vegetation Interface Processes) distributed eco-hydrological model, the eco-hydrological changes are predicted integrated with remotely sensed vegetation information. Fourteen catchments in the study region are selected to explore the diversified responses and feedbacks of the vegetation recovery to climate change. It is found that evapotranspiration (ET) and vegetation gross primary productivities (GPP) are increasing steadily in the study period from 2000 to 2020, in which ET and GPP from the forest and cropland are more distinguished with each other. However, terrestrial water storage is decreasing in the southern catchment, especially those over the Loess Plateau. Although the water consumption from vegetation is increased, water availability  is still increasing in most of the study area due to enhanced precipitation, which implicated the intensification of the hydrological cycle with climate change and global greening. The complex interactions and feedback between re-vegetation and climate change in the water limited region posed challenges to the water resources management and ecosystem stability, in need of paying much more special attention.

How to cite: Mo, X., Hu, S., Sang, J., Huang, L., and Liu, S.: Impacts of climate change and LUCC on eco-hydrological processes in semi-arid and semi-humid regions of China  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17690, https://doi.org/10.5194/egusphere-egu24-17690, 2024.

EGU24-19903 | ECS | Posters on site | BG3.28

Anthropogenic and environmental controls on particulateorganic carbon fluxes and sources in the Kasai Basin, DRCongo 

Lissie de Groot, Matti Barthel, Jordon D. Hemingway, Kristof Van Oost, Antoine de Clippele, Negar Haghipour, José Nlandu Wabakhangazi, Michelle Engelhardt, Johan Six, and Travis W. Drake

Erosion of upland soils represents a potentially large but relatively unconstrained flux of sediment and organic carbon (OC) to river systems. This flux is particularly important in the African tropics, where population growth, accelerating agricultural land use, and climate change lead to substantial erosion rates. However, few studies to date have investigated how climatic or anthropogenic factors impact sediment yields and OC signatures in tropical Africa. The Kasai Basin, DR Congo, is the largest source of sediment to the Congo River and exhibits a clear gradient in climatic (biomes, and rainfall) and anthropogenic (agricultural land-use change) parameters; it is therefore an ideal study area to explore how these factors influence sediment yields, POC yields and sources of POC. To provide new insight, we quantified total suspended sediment (TSS) yields, particulate OC (POC) yields, and stable and radiocarbon isotopic signatures of POC from 32 rivers within the Kasai Basin that span a range of both climate and land-use gradients. These sampled during the wet and dry season. From initial results, we observe that rivers draining predominantly forested ecosystems yielded 3.0±0.2 kg TSS km -2 y -1 while the savannah regions yielded an average of 26.7 ± 41.2 kg TSS km -2 y -1 . Preliminary POC data showed that rivers draining the woodland mosaics ecosystems yielded an average of 0.7±0.5 kg POC km -2 y -1 with an average fraction modern of 0.9274±0.04. In contrast, the average fraction modern of POC in rivers draining savannah ecosystems was 0.889±0.09. From this preliminary data, we show that the yield of TSS and the age of POC is lower in tropical rainforest-draining rivers) compared to savannah draining rivers, indicating the slower erosion of topsoil compared to faster erosion of deeper mineral soils. Older POC was found in rivers draining areas with high anthropogenic activity carbon likely due to soil disturbance and erosion of subsoil. We conclude that the type of biome and the extent of anthropogenic impact influences the quantity and composition of POC. With this preliminary data, this study provides better understanding of how climate and land-use influences C export to tropical rivers.

How to cite: de Groot, L., Barthel, M., Hemingway, J. D., Van Oost, K., de Clippele, A., Haghipour, N., Nlandu Wabakhangazi, J., Engelhardt, M., Six, J., and Drake, T. W.: Anthropogenic and environmental controls on particulateorganic carbon fluxes and sources in the Kasai Basin, DRCongo, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19903, https://doi.org/10.5194/egusphere-egu24-19903, 2024.

EGU24-20805 | ECS | Posters on site | BG3.28

Evaluating Forest Resilience in Europe with Deep Learning Persistence Analysis 

Tristan Williams, Francesco Martinuzzi, Gustau Camps-Valls, and Miguel D. Mahecha

Persistence is a crucial trait of many complex Earth systems. Although connecting this statistical concept to ecosystem physical properties is challenging, it reflects how long the system remains at a certain state before changing [1]. Characterising persistence in the terrestrial biosphere is important to understanding intrinsic system properties, including legacy effects of extreme climate events [2]. Such memory effects are often highly non-linear and, therefore, challenging to detect in observational records and poorly represented in Earth system models. This study estimates non-linear persistence in remote sensing products over European forests and the corresponding hydro-meteorological data using state-of-the-art machine learning methods. Characterising persistence in this way allows us to make inferences on the interaction between forest dynamics, drought-heat events, and ecosystem resilience [3]. 

Classical statistical methods struggle with non-linear interactions and high-dimensional problems when characterising persistence [1].  While state-of-the-art deep learning techniques have been used to indirectly measure persistence in forests [4], such models have limited potential memory due to gradient instability during backpropagation. Echo state networks (ESNs) provide a different perspective, keeping the weights fixed and training only the network's last layer using linear regression. This strategy circumvents classical training pitfalls such as gradient instability and allows them to maintain a memory of the input system [5]. We exploit these networks to estimate non-linear persistence using the technique suggested in [6], where intuitively, the persistence of the system can be estimated by the model's response when the input fades abruptly. We apply this method to a 30-year archive of satellite derived greenness to generate maps of persistence across Europe and assess the forests' response to changing hydro-climatic conditions. Furthermore, we explore memory changes surrounding extreme events, focusing on recent drought-heat events in Europe. Thus providing an estimate of engineering resilience, an important metric to inform forest management strategies. Furthermore, this work provides insights into the ability of different models to capture ecological memory and, therefore give more reliable predictions.

 

References 

[1]  Salcedo-Sanz, S., et al. “Persistence in complex systems”. Physics Reports 957, 1-73, (2022).

[2] Bastos, Ana, et al. “Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity." Science Advances 6.24 (2020)

[3] Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

[4] Besnard S, Carvalhais N, Arain MA, Black A, Brede B, Buchmann N, et al. (2019) Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE 14(2): e0211510. 

[5] Hart, Allen, James Hook, and Jonathan Dawes. "Embedding and approximation theorems for echo state networks." Neural Networks 128 (2020): 234-247.

[6] Barredo Arrieta, A., Gil-Lopez, S., Laña, I. et al. On the post-hoc explainability of deep echo state networks for time series forecasting, image and video classification. Neural Comput & Applic 34, 10257–10277 (2022).

How to cite: Williams, T., Martinuzzi, F., Camps-Valls, G., and D. Mahecha, M.: Evaluating Forest Resilience in Europe with Deep Learning Persistence Analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20805, https://doi.org/10.5194/egusphere-egu24-20805, 2024.

EGU24-21375 | Posters on site | BG3.28

The spatio-temporally varying relationship between water yield and carbon storage services of larch plantation in the Liupan Mountains of northwest China 

Yanhui Wang, Ao Tian, Pengtao Yu, Yangfan Wang, Xiaocha Wei, Xiao Wang, and Zebin Liu

The water-carbon relationship in forests is complex and plays a crucial role in the provision of important ecosystem services, such as water yield and carbon storage. Understanding this intricate relationship is imperative for effectively managing the multiple services of forests. Therefore, a study was conducted to investigate the spatio-temporal variation of water yield and carbon storage as well as their relationship in larch plantations located in the semi-humid Liupan Mountains of northwestern China. The water yield data during growing season were calculated using the water budget principle, which involved subtracting evapotranspiration determined through long-term monitoring of hydrological processes from precipitation. Carbon density data were obtained by summing up vegetation carbon, humus carbon, and soil organic carbon (SOC) of 0-100 cm. These datasets were utilized to develop models that integrated the effects of key factors such as tree density, tree age, and elevation. Subsequently, these models were employed for predicting variations in water yield and carbon density while analyzing their relationship. The results indicate that the water yield initially exhibits a rapid decrease followed by a gradual decrease as tree density increases; additionally, it decreases initially and then increases with rising tree age and elevation. The carbon density shows an initial increase with rising tree density until a threshold, after which it declines; however, the limit of maximum tree density prevents stands with higher tree ages from reaching this threshold on more favorable sites. On other hand, carbon density consistently increases with rising tree age, and exhibits an initial increase followed by a decrease with rising elevation. Consequently, due to the combined effects of carbon density and water yield, their relationship displays a highly complex spatio-temporal variation pattern characterized by three distinct features: 1) A general variation mode exists in which there is a tradeoff relationship between decreasing water yield and increasing carbon density with rising tree density until a threshold, followed by a synergistic relationship where both services decrease; 2) Within this variation mode, the peak carbon density increases with rising tree age and site quality, while the range of water yield variation initially decreases and then increases with rising elevation; 3) However, on stands with higher age and better sites, the peak carbon density associated with the tree density threshold cannot be reached, resulting in only a tradeoff relationship existing. The multifunctional forest management aiming to achieve a balanced supply of dominant service (e.g., water yield in dryland regions) and other important services (e.g., carbon sequestration) should be improved by considering the complex water-carbon relationship.

How to cite: Wang, Y., Tian, A., Yu, P., Wang, Y., Wei, X., Wang, X., and Liu, Z.: The spatio-temporally varying relationship between water yield and carbon storage services of larch plantation in the Liupan Mountains of northwest China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21375, https://doi.org/10.5194/egusphere-egu24-21375, 2024.

EGU24-21790 | Orals | BG3.28

Reduction in soil moisture dominates progressive tree mortality in semiarid areas 

Yanfang Wan, Pengtao Yu, Yanhui Wang, Yushi Bai, Yipeng Yu, and Jiamei Li

Increasing drought stress has triggered various negative impacts on forests worldwide, including growth reduction, defoliation, crown dieback, and even tree mortality, with unavoidable consequences for forest ecosystems. However, how reductions in both precipitation and soil moisture progressively lead to tree mortality remains largely unknown. Here, we define relative soil water (RSW) as the ratio of the actual soil moisture to the field capacity, which can reflect the fraction of water in the root zone, to reveal how soil moisture reduction leads to progressive tree mortality. Based on field measurements of tree behaviors, including transpiration, tree growth, defoliation, crown dieback and other behaviors, before, during and after an extreme drought in the Larix principis-rupprechtti plantations in 2021, we found that the variability in precipitation and soil moisture affect tree behaviors, but soil moisture is the dominant driver of drought stress on progressive tree mortality, with prolonged and severe soil moisture reduction leading to widespread tree mortality. RSW thresholds for different stages of progressive tree mortality and drought stress levels are identified as follows: Level I (RSW > 0.7), no detectable hydraulic limitations; level II (0.7 to 0.45), persistent stem shrinkage and onset of transpiration reduction; level III (0.45 to 0.35), onset of slight discoloration and defoliation; level IV (0.35 to 0.25), onset of crown dieback and tree mortality; and level V (< 0.25), severe defoliation, 20% crown dieback and tree mortality. Our results shed light on predicting tree mortality and distribution in forests under increasing climate warming, particularly in semiarid areas with warming-induced tree mortality.

How to cite: Wan, Y., Yu, P., Wang, Y., Bai, Y., Yu, Y., and Li, J.: Reduction in soil moisture dominates progressive tree mortality in semiarid areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21790, https://doi.org/10.5194/egusphere-egu24-21790, 2024.

With climate change, accelerated increases in potential evapotranspiration (PET) and decreases in relative extractable water (REW) are increasingly affecting stand transpiration (T). However, the responses of T to PET under limited REW are still unclear, especially in forests of dryland region. In the present study, we partitioned the effects of REW and PET on T in oak (Quercus wutaishansea) forest stands in the Liupan Mountains, northwest China. The results showed that the reduction in REW due to drought resulted in a significant decrease in T. When REW was higher, i.e., above 0.5, there was a linear relationship of T with PET but an exponential relationship when REW was lower than 0.5. Moreover, REW in the soil layer of 20-60 cm rather than that in the soil layer of 0-20 cm plays a decisive role in T during drought. More REW, such that at the mid- and downslope sites, would be helpful to mitigate the decline in T under drought to some extent compared with less REW that at the upslope sites. These remind us that the soil moisture in dryland regions should be paid more attention in forest management and vegetation restoration in future.

How to cite: Yu, P., Liu, B., Wan, Y., Wang, Y., and Wu, Y.: Soil moisture shapes the responses of Quercus wutaishansea forest stand transpiration to potential evapotranspiration in the Liupan Mountains, Northwest China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21796, https://doi.org/10.5194/egusphere-egu24-21796, 2024.

Plants play a critical role in the surficial environment, influencing energy transfer, the global carbon (C) and nitrogen (N) cycles, and climate change. Knowledge of botanical and climatic controls on terrestrial C and N-cycling within and across ecosystems is central to understanding plant ecophysiology. In this study, we examined the effects of climate and forest composition on plant C and N, and systematically measured foliar δ13C and δ15N along an altitudinal gradient ranging 1900 to 5200 m, across three transects spanning west to east Himalayas. Total C and N content in plants significantly decreased with altitude, except for TOC in central and western Himalayan gymnosperms. Precipitation and temperature gradients differentiated 76% of the variation in TN and δ15N, and only 2.5% in TOC and δ13C stocks in the Himalayan plants. We report a complex climatic and topographic control on the C and N allocation in montane ecosystems, quantified via isotopic signature and abundance, linking plant ecophysiology with resource availability. C and N being complementary in several foliar biochemical processes, their mutual abundance was realised, examined and inferred in previously unexplored montane ecosystems and climate. In addition, the spatial distribution of foliar-isotope-abundance helped cluster plant responses, eventually leading to the construction of a spatially comprehensive map known as a dual isoscape.

How to cite: Sanyal, P. and Dasgupta, B.: What controls carbon and nitrogen allocation in montane vegetation: A case study from the Himalayas , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-500, https://doi.org/10.5194/egusphere-egu24-500, 2024.

EGU24-513 | ECS | Posters on site | BG3.30

Post-fire forest recovery in Protected Areas of the Amazon: Disentangling natural processes from human disturbances using multi-source remote sensing data and machine learning 

Qianhan Wu, Calvin K.F. Lee, Jonathan A. Wang, Yingyi Zhao, Guangqin Song, Eduardo Eiji Maeda, Yanjun Su, Alfredo Huete, and Jin Wu

Establishing protected areas (PAs) in Amazon forests is crucial for safeguarding tropical forest ecosystem from human land use and mitigating forest degradation. However, PAs across the Amazon basin have increasingly suffered from intensified fires. Understanding post-fire recovery trajectories in these protected forests is essential for assessing the resilience and effectiveness of PAs. However, recovery trajectories under natural conditions remain unclear, as human settlements often disrupt or influence the recovery process, potentially diminishing recovery rates and forest potential. To address this challenge, we investigated 4,036 fire events that occurred from 2001 to 2020 within PAs in the eastern Amazon detected by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Furthermore, we explored the effectiveness of multi-source earth observation data and eXtreme Gradient Boost machine learning model in distinguishing fire areas where recovery of local forests undergoes natural conditions (N-recovery) from those impacted by human activities (H-recovery). We then analyzed temporal trends in fire burn severity (based on the relationship between fire year and Landsat-derived burn severity metrics) and post-fire canopy structure recovery (based on the relationship between GEDI lidar-derived canopy structure metrics and fire age using a space-for-time substitution approach) for both recovery types. Our model accurately differentiated N-recovery (n=2019) from H-recovery (n=2017) with an overall classification accuracy of 87.61%.  Our analysis further reveals a clear increasing trend in fire burn severity for N-recovery from 2001 to 2020, while the trend for H-recovery was relatively stable with no significant change. Moreover, the recovery rates of relative heights (RH), canopy ratio (CR), and plant area index (PAI) in N-recovery areas were significantly higher than those in H-recovery areas over 20 years, highlighting the importance of separating these two recovery types. By focusing on N-recovery areas, we found that forest structural traits related to understory recovery and plant vertical space use (i.e., PAI values across the entire vertical strata) exhibited stronger recovery rates than traits related to height metrics (i.e., RHs), revealing their utility for characterizing more complex ecosystem recovery processes. These findings demonstrate the potential and necessity of using multi-source earth observation data to distinguish between the two types of post-fire forest recovery. This distinction contributes to an improved understanding of ecological recovery rates and processes of post-fire forest successional dynamics under natural conditions, offering new opportunities to further study their biogeographical distribution, recovery rate variabilities, and impacts on carbon sequestration and ecosystem resilience under climate change. 

How to cite: Wu, Q., Lee, C. K. F., Wang, J. A., Zhao, Y., Song, G., Maeda, E. E., Su, Y., Huete, A., and Wu, J.: Post-fire forest recovery in Protected Areas of the Amazon: Disentangling natural processes from human disturbances using multi-source remote sensing data and machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-513, https://doi.org/10.5194/egusphere-egu24-513, 2024.

EGU24-922 | ECS | Orals | BG3.30

Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems 

Estefanía Muñoz, Ingrid Chanca, and Carlos Sierra

The response of terrestrial ecosystems to increased atmospheric CO2 concentrations is controversial and not fully understood, with previous large-scale forest manipulation experiments exhibiting contrasting responses. Although there is consensus that increased CO2 has a relevant effect on instantaneous processes such as photosynthesis and transpiration, there are large uncertainties regarding the fate of extra assimilated carbon in ecosystems. Filling this research gap is challenging because tracing the movement of new carbon across ecosystem compartments involves studying multiple processes occurring over a wide range of timescales, from hours to millennia. We posit that a comprehensive quantification of the effect of increased CO2 must answer two interconnected questions: How much and for how long is newly assimilated carbon stored in ecosystems? Therefore, we propose that the transit time distribution of carbon is the key concept needed to address these questions effectively. Here, we show how the transit time distribution of carbon can be used to assess the fate of newly assimilated carbon and the timescales at which it is cycled in ecosystems. We use as an example a transit time distribution obtained from a tropical forest and show that most of the 60% of fixed carbon is respired in less than 1 year; therefore, we infer that under increased CO2, most of the new carbon would follow a similar fate unless increased CO2 would cause changes in the rates at which carbon is cycled and transferred among ecosystem compartments. We call for a more frequent adoption of the transit time concept in studies seeking to quantify the ecosystem response to increased CO2.

How to cite: Muñoz, E., Chanca, I., and Sierra, C.: Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-922, https://doi.org/10.5194/egusphere-egu24-922, 2024.

EGU24-1113 | ECS | Posters on site | BG3.30

Forest carbon stock in private landholdings in the State of Pará, Brazilian Amazon 

Isadora Haddad, Aline Pontes Lopes, Guilherme Matavelli, Aline Danielle Jacon, Ricardo Dal’Agnol, Nathalia Silva de Carvalho, and Luiz Eduardo O. C. de Aragão

In the Brazilian Amazon, 53% of deforestation from 2012 to 2020 occurred on private landholdings (PL). This highlights the need to protect the primary (PF) and secondary (SF) forests in PLs, which are important carbon stocks and sinks for mitigating climate change. Quantifying carbon stocks in private PRP can help the development of Reducing Emissions from Deforestation and Forest Degradation (REED+) projects, and renvironmental service payments (ESP), promoting landowner access to carbon markets. These mechanisms are novel tools for environmental conservation, besides protection actions to safeguard the compliance of environmental legislation.

We aimed to understand the role of PRP in the Brazilian state of Pará, (PA) which concentrated 39% of the deforestation in the Brazilian Amazon from 2012 to 2020, in protecting carbon stocks and sinks, by using multi-satellite data products, including: a) Primary forest cover in 2020 from PRODES/INPE; b) SF age maps from the MapBiomas project (1985-2020); c) Aboveground Carbon map for 2020  from European Space Agency CCi project (2020); and d) Rural proprieties boundaries in 2018 from the Radiography of the Forest Code Project.

PL covers about 26.1% of PA. Large rural properties account for 59% of the total (32.2 Mha) and this class alone retains 8 million ha (Mha) of PF. In terms of carbon stocks, all PRP size classes (small, medium, and large) concentrate 1.44 PgC, of which 71.5% (1.03 PgC) is found on large properties. Small and medium-sized properties stock only 28.5% of the total. When evaluating vegetation surplus in legal reserves (LRs), a kind of mandatory protected area for every PL under Brazilian law, large properties also accumulate the largest areas (1.8 Mha vs. 741 thousand ha in mediun and smallholding), representing a carbon stock of ~794.2 TgC that could be emitted under legal deforestation requests. When evaluating the vegetation deficit in PA, large properties accumulate 1.5 Mha (57%), medium and small-sized properties accumulate 872 thousand ha (34%) and 268 thousand ha (9%), respectively.

Of PA's total SF areas (6.6Mha), 2.8 Mha are under PL, representing a removal potential of about 5.18 TgC year-1. Large properties host 1.4 Mha of SF (50.5%), while small and medium-sized properties account for 1.38 Mha (49.5%). Restoring SF on PL could meet 50% of the state's restoration target for 2030 but only 21% if considering the rules of current PA State Policy on Climate Change (SF > 10 years old).

We conclude that large rural properties hold significant carbon stocks in PF and SF, being important targets of environmental regularization under the Brazilian law, which could also assist PA with meeting the environmental goals of its climate agenda. We indicate that areas with forest surpluses must be protected to reduce environmental liabilities, through the institution of LR quotas, and incentives to forest restoration and ESP projects.

How to cite: Haddad, I., Pontes Lopes, A., Matavelli, G., Jacon, A. D., Dal’Agnol, R., Silva de Carvalho, N., and O. C. de Aragão, L. E.: Forest carbon stock in private landholdings in the State of Pará, Brazilian Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1113, https://doi.org/10.5194/egusphere-egu24-1113, 2024.

EGU24-1124 | ECS | Orals | BG3.30

Summer aridity decouples growth from carbon assimilation in temperate oaks 

Mukund Palat Rao, Arturo Pacheco-Solana, Johanna E. Jensen, Rong Li, Kevin L Griffin, Neil Pederson, Luke M McCormack, Joseph Verfaillie, Xi Yang, Dennis Baldocchi, Laia Andreu-Hayles, Bar Oryan, Jeremy Hise, Milagros Rodriguez-Catón, Alex Turner, Jan Eitel, Todd M Scanlon, Zoe Pierrat, Josep Penuelas, and Troy Magney

Forest biomass resulting from tree radial growth can remain on the landscape over decadal to centennial timescales and plays a critical role in forest carbon cycling. However, visually green vegetation may not be a good proxy for carbon allocation to growth as the phenology and environmental sensitivity of photosynthesis may be different from radial growth. Here we investigate the decoupling between photosynthesis and tree radial growth across intra to interannual timescales for seven North American oak species (Quercus spp.) at four sites (Lamont Sanctuary, NY; Morton Arboretum, IL; Pace Forest, VA; & Tonzi Vaira, CA, USA). Using point dendrometers and wood anatomy, we find that oak trees generally commenced radial growth (cell division and expansion) one month prior to full canopy development and peak carbon assimilation estimated using eddy covariance, satellite and in-situ remote sensing, and leaf-level chlorophyll fluorescence. Further, radial growth was essentially completed by early summer, two to three months prior to the early autumn end of the photosynthetic activity, and before the annual peak in temperature and vapour pressure deficit (VPD) and lowest soil moisture. This suggests that high summer aridity limits carbon allocation to growth more strongly than assimilation. Tree-ring width chronologies for these species across North America further supports that results that earlywood growth depends on prior season climate and assimilated carbon while latewood growth ends by early-summer and responds primarily to current year climate variability. In summary, temporal decoupling between radial growth and photosynthesis and the stronger constraint of summer aridity on growth than photosynthesis appears to be widespread among multiple North American temperate oak species. As summers continue to warm and dry under climate change, this source-sink (or photosynthesis-growth) decoupling needs to be better resolved to constrain forest carbon cycling, as increasing aridity will likely influence the ability of trees to allocate carbon to long-term storage as woody biomass.

How to cite: Rao, M. P., Pacheco-Solana, A., Jensen, J. E., Li, R., Griffin, K. L., Pederson, N., McCormack, L. M., Verfaillie, J., Yang, X., Baldocchi, D., Andreu-Hayles, L., Oryan, B., Hise, J., Rodriguez-Catón, M., Turner, A., Eitel, J., Scanlon, T. M., Pierrat, Z., Penuelas, J., and Magney, T.: Summer aridity decouples growth from carbon assimilation in temperate oaks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1124, https://doi.org/10.5194/egusphere-egu24-1124, 2024.

EGU24-1368 | Orals | BG3.30

Optimal elevation for biomass carbon accumulation in tropical planted and secondary forests  

Xiuzhi Chen, Yongxian Su, and Xueyan Li

Restoring tropical forest can provide a large additional carbon sink, yet knowledge of the optimal locations for reforestation programs remains uncertain. By evaluating multiple pantropical forest biomass carbon and height datasets, we find that tropical plantations and regrowth forests (TPFs) situated at elevations 300 m accumulate 1.5-fold more carbon per year in biomass than their lowland counterparts (elevations < 300 m) prior to reaching maturity. Notably, the biomass carbon accumulation rates increase significantly (P<0.001) between 300 m and 1000 m, subsequently declining at higher elevations. The main cause is the greater sensitivity of ecosystem production than respiration to elevational gradients in air temperature and vapor pressure deficit. Our analysis also shows that TPFs at mid-elevation (300 to 1000 m) grow most rapidly before ~20 to 25 years of age, while for those in the lowlands (< 300 m), maximum growth rates are attained at up to 30 years old or more. Our findings underscore the importance of accounting for elevation when executing reforestation in the tropics.

How to cite: Chen, X., Su, Y., and Li, X.: Optimal elevation for biomass carbon accumulation in tropical planted and secondary forests , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1368, https://doi.org/10.5194/egusphere-egu24-1368, 2024.

EGU24-2461 | Orals | BG3.30 | Highlight

Who cares about tree carbon allocation? 

tamir klein

Most biological C resides in trees. Humans have been increasing atmospheric levels of CO2, exerting feedbacks on both humans and trees. Now humanity seeks for ways to increase C sequestration, and hence understanding tree C allocation is pivotal to all life on Earth. In 2015 we presented the first full description of tree C allocation dynamics that accounts for all C fluxes and pools in a tree. In the years that passed, we have been applying the mass balance and isotopic 13C labeling approaches to study tree C allocation in the field and greenhouse, at levels spanning from ecological to molecular. We have been advancing knowledge on tree C allocation to (I) more tree species, representing more functional groups. (II) more growing conditions, including heat, drought, and elevated CO2. (III) research focused on belowground allocation: root growth, exudation, transfer to mycorrhizal fungi and beyond. (IV) research focused on molecular mechanisms of C storage and carbohydrate management in specific tree tissues.

Among the many recent findings, we showed that (1) about half of all assimilated C is respired back to the atmosphere, but variations between tree species are large. (2) in the Mediterranean, conifers allocate more C belowground than evergreen broadleaf species. (3) under drought, while C sequestration (source) decreases significantly, C sinks remain the same, but partition less to respiration and more belowground. (4) under drought and heat, C sinks rely on decomposition of C reserves such as starch. (5) under elevated CO2, C sequestration increases in proportion to CO2 level, but not tree growth. C allocation patterns change in a species-specific manner. (6) CO2 responses continue up until other minerals run out. (7) a lot of uncertainty revolves around belowground C allocation. Root growth dynamics measured in the field are distinctive from stem or leaf growth. (8) root exudation accounts for 10% of all assimilated C but is decoupled from assimilation dynamics. (9) C transfer to mycorrhizal fungi is more rapid and diverse than previously thought. (10) part of the mycorrhizal C finds its way to neighboring trees through the mycorrhizal network. (11) at the molecular level, daily starch metabolism gene expression is different from the stress-mode starch metabolism pattern, operating unique beta amylases and starch synthases. (12) many other gene families are involved in C allocation, e.g., vacuole hexose transports, which regulate glucose levels in leaf and stem cells. (13) overexpressing one of these transporter genes produced fast-growing mutant poplar trees.

Taken together, these findings are crucial to all life on Earth, and particularly to us humans, at any level: scientists; stakeholders; and the wide public. Who cares about tree carbon allocation? Everybody!

How to cite: klein, T.: Who cares about tree carbon allocation?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2461, https://doi.org/10.5194/egusphere-egu24-2461, 2024.

EGU24-3710 | ECS | Orals | BG3.30

Nitrogen concentrations and contents in boreal and temperate tree tissues – Controls, spatial distribution and impact on plant respiration, net primary production and carbon use efficiency 

Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler

The rate at which forests take up atmospheric CO2 is critical because of their potential to mitigate climate change and their value for wood production. The allocation of carbon fixed through photosynthesis into biomass can be quantified through the tree carbon (C) use efficiency (CUE), which is determined by gross primary production (GPP) and plant respiration (Ra) via the relation CUE=(GPP-Ra)/GPP. The effect of future climate on CUE is unclear due to the highly uncertain response of plant respiration to the expected increases in temperature and possible changes in tissue nitrogen (N) concentrations that also affect GPP and Ra.

We aim to develop novel data-driven estimates of plant respiration, net primary production (NPP=GPP-Ra) and tree CUE covering the northern hemisphere boreal and temperate forests. These will be based on recent satellite-driven maps of tree living biomass, databases of N concentration measurements in tree compartments (leaves, branches, stem sapwood, roots) and the relationships between respiration rates and tissue N concentrations and temperature. Such estimates will enable the detection of spatial relationships between CUE and environmental conditions and facilitate the parameterization of dynamic global vegetation models to predict the change in Ra, NPP and CUE in response to future climate and forest management.

Here we compile an unprecedented database of N concentration measurements in tree stems, branches and roots covering all common boreal and temperate tree genera together with data available mainly for leaves from databases like TRY. We apply this database to test different hypotheses on the controls of tree tissue N concentration and allocation. We find that the variation in tree tissue N concentrations of boreal and temperate trees is controlled by their leaf type (broadleaf deciduous, needleleaf deciduous, needleleaf evergreen), growth rate (fast- vs. slow-growing), tree age/size and climate conditions. These relationships have important implications on the coupling of the C and N cycles in the vegetation, since tissue N concentrations determine photosynthesis, growth and plant respiration. Thus, by altering tissue N concentrations, changes in the distribution of tree species, in tree age/size or in climate, induced by climate change, forest management or disturbances, can affect the C sequestration potential of boreal and temperate forests.

Subsequently, we use machine learning approaches to explain the variation in tree tissue N concentrations. We combine the derived tree-level relationships between tissue N concentrations and the above-mentioned underlying drivers, tree species distribution maps, and tree tissue biomass products based on satellite remote sensing. In this way, we derive novel estimates of the spatial distribution of tissue N concentrations and contents in northern boreal and temperate forests. These will be the basis for spatial estimates of Ra, NPP and CUE in these ecosystems. Finally, we aim to identify their climate change mitigation potential by determining which tree species allocate the highest share of N to their leaves and which species exhibit the highest CUE under different climatic conditions.

How to cite: Thurner, M., Yu, K., Manzoni, S., Prokushkin, A., Thurner, M. A., Wang, Z., and Hickler, T.: Nitrogen concentrations and contents in boreal and temperate tree tissues – Controls, spatial distribution and impact on plant respiration, net primary production and carbon use efficiency, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3710, https://doi.org/10.5194/egusphere-egu24-3710, 2024.

Terrestrial ecosystems annually fix about 120 ± 7 Pg of carbon through photosynthesis, with forests being responsible for a large portion of this flux. 
After photosynthesis, this new carbon has different fates depending on allocation to plant parts and transfers to forest floor and soils. The time it takes carbon to pass through an ecosystem, since photosynthetic fixation until its final release as CO2, is defined as the transit time of carbon. The transit time of carbon can be characterized by continuous probability distributions that indicate where carbon is allocated to, for how long it stays in a certain ecosystem compartment, to what other compartments it is transferred to, and for how long carbon is stored in organic forms before its return back to the atmosphere. 
In this presentation, I will show why the transit time distribution of carbon is an appropriate metric to answer the question of where does the carbon go? I will present estimates of the transit time distribution of carbon for two tropical forests and for the entire terrestrial biosphere, which indicate that on average carbon only stays stored in ecosystems for about one decade, and with about half of the fixed carbon respired in half a year. I will show a new approach to quantify the mean transit time of carbon based on measurements of radiocarbon in plant parts, soils, and respired CO2; and will show results from a global carbon model that suggests that the transit time of carbon of the terrestrial biosphere is becoming younger, with faster dynamics in tropical and temperate forests, and emissions of older carbon from boreal and arctic regions.  

How to cite: Sierra, C.: The fate of carbon after photosynthesis and its transit time in forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3848, https://doi.org/10.5194/egusphere-egu24-3848, 2024.

EGU24-4072 | ECS | Posters on site | BG3.30

Root Dynamics Under Elevated CO2 in a Free Air Carbon Enrichment (FACE) Experiment 

Grace Handy, Rob Mackenzie, Adriane Esquivel-Mulebert, Marie Arnaud, Angeliki Kourmouli, Imogen Carter, Matthew Wilikinson, and Carolina Mayoral

Evidence supporting a carbon fertilisation effect, where increasing levels of carbon dioxide (CO2) in the atmosphere lead to photosynthetic enhancement in trees, suggests that forests can sequester more carbon under elevated CO2 (eCO2). However, it remains largely unclear where and for how long this carbon is stored within the forest ecosystem. To sustain photosynthetic enhancement under eCO2 concentrations, trees are likely to require higher intake of nutrients from the soil, which should stimulate root growth. This ongoing study (2022-2026) investigates the hypothesis that fine root biomass and turnover rates will increase, and proliferation will be higher at greater depths, because of eCO2. It is vital that the consequences of increased atmospheric CO2 on plant carbon allocation are understood to improve the accuracy of models projecting the future of forests as global carbon sinks.

This study is carried out at the Birmingham Institute of Forest Research Free Air Carbon Enrichment (BIFoR FACE) experiment, the only FACE experiment in a mature, temperate forest simulating atmospheric CO2 concentrations to those predicted to be the mid-century planetary norm. For ambient and elevated CO2 treatments, dry biomass of fine roots, specific root length (SRL) and depth distribution were assessed. 1m soil cores, deeper than the standard 30cm, were used to investigate changes in fine root depth distribution. Changes in fine root growth rates are calculated from minirhizotron images taken at monthly intervals over a 2-year period, with 15 replicates per treatment.

Average fine root biomass was >30% higher under eCO2 in all depths down to 70cm. As expected, fine root biomass declined approximately exponentially with depth under both elevated and ambient CO2 conditions, but this slope of decline was lower under eCO2. Other than in the O horizon, average SRL was also higher under eCO2 with depth, meaning roots were on average longer per unit biomass. This implies that trees adapt root proliferation and morphology to increase the volume of soil exploited under eCO2, particularly at greater depths.

How to cite: Handy, G., Mackenzie, R., Esquivel-Mulebert, A., Arnaud, M., Kourmouli, A., Carter, I., Wilikinson, M., and Mayoral, C.: Root Dynamics Under Elevated CO2 in a Free Air Carbon Enrichment (FACE) Experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4072, https://doi.org/10.5194/egusphere-egu24-4072, 2024.

EGU24-4992 | Posters on site | BG3.30

Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development 

Ding Ming Zheng, Xuming Wang, Guillaume Tcherkez, and Xiao Ying Gong

In the context of global warming, temperature responses of leaf respiration (R) in light and darkness (RL and RDk) are essential to models of global carbon dynamics. Many models rely on constant thermal sensitivity (characterized by Q10) of leaf respiration. However, it remains unclear whether Q10 is similar for RL and RDk, given the differences in the rate and pathways of respiration between light and dark. Warm season growth causes thermal acclimation of R, and leaf development stage also affects R. It is uncertain if these factors influence the temperature response of R, which hinders the development of respiration models.

Uncertainty in temperature responses of RL can also be associated with methodology. Recently, the Kok method has been improved by combining chlorophyll fluorescence and gas exchange to estimate RL. These advances have improved the accuracy of RL estimates.

In this study, we developed a new method, the Kok-iterCc method. Using three methods (the Kok, Yin and Kok-iterCc methods), we measured the temperature response of RL and RDk in leaves of different leaf development stages (immature and mature) of two evergreen tree species (Castanopsis carlesii and Ormosia henryi) in two seasons (winter and summer). Q10 and basal respiration rate (R25) were then calculated.

We found that, 1) When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and light inhibition of R. RL/RDk was not influenced by leaf temperature. 2) Acclimation of R in summer was associated with a decrease in R25 but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. 3) Leaf development significantly affected R25 and Q10. Importantly, Q10 of RL and RDk was 40% higher in mature leaves than in immature leaves. The difference in contributions of growth and maintenance components of respiration are likely the main reason for the lower Q10 of growing leaves compared with mature leaves. Our results suggest that similar Q10 can be used to model RL and RDk, while leaf development related changes in Q10 require special consideration in future respiration models.

 

How to cite: Zheng, D. M., Wang, X., Tcherkez, G., and Gong, X. Y.: Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4992, https://doi.org/10.5194/egusphere-egu24-4992, 2024.

EGU24-5098 | Posters on site | BG3.30

Phloem transport of tall tree and its diurnal variations 

Masako Dannoura, Satoru Takanashi, Mai Kamakura, Shitephen Wang, Tomoko Tanabe, Rei Fujii, Takumi Mochidome, Sumonta Kumar Paul, Holger Schaefer, Yoshiko Kosugi, and Daniel Epron

To understand diurnal variations in phloem transport in tall trees, 13C-CO2 pulse labelling experiments were conducted on a 20.4 m tall Chamaecyparis obtusa tree. 13C-CO2 labelling were carried out in the morning and afternoon at close dates in autumn of 2020 and 2022, and in the isotope composition of stem respired CO2 was measured at four heights (17.0, 13.5, 6.23, 1.85 m) along the stem using a carbon stable isotope ratio analyzer (Picarro G2131-i). Small bark samples were taken to observe the anatomy of the phloem and measure the sieve tube radius on the labelled tree.

The rate of phloem transport at different positions along the stem differed from day to day. The phloem transport rate was inferred to be low or zero in sunny condition and high (0.15-0.24 m h-1) in cloudy weather and at night. This is consistent with the fact that the sink-source hydrostatic pressure difference (driving force) was higher at night than on sunny days. Daytime and nighttime turgor was calculated using data on midday and predawn water potential, osmotic potential, and gravity potential from similarly sized trees from same site. Using the anatomy data, the maximum phloem velocity in the night was calculated as 0.28 (m h-1).

Both approaches revealed that phloem transport of carbohydrates in tall cypress trees took five or six days to reach the roots after they were produced by leaf photosynthesis, and that the rate of phloem transport increased and decreased overtime during transportation depending on weather conditions and day-night alternation.

How to cite: Dannoura, M., Takanashi, S., Kamakura, M., Wang, S., Tanabe, T., Fujii, R., Mochidome, T., Paul, S. K., Schaefer, H., Kosugi, Y., and Epron, D.: Phloem transport of tall tree and its diurnal variations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5098, https://doi.org/10.5194/egusphere-egu24-5098, 2024.

EGU24-5515 | ECS | Orals | BG3.30

Predicting biomass partitioning and maximum tree height based on optimality principles 

Ruijie Ding, Rodolfo Nóbrega, and Iain Colin Prentice

Carbon (C) allocation is the process by which photosynthate is partitioned to different functional pools, including leaves, woody tissues and fine roots. A long-standing, qualitative theory explains patterns of C allocation as maximizing growth subject to the availability of different resources. Here we outline a quantitative model based on this theory. We define net carbon profit (NCP) as the total C taken up by photosynthesis, minus the costs of constructing and maintaining leaves and the below-ground C investments required to supply them with water and nutrients. We hypothesize that leaf area index (LAI) tends to the value that maximizes gross primary production; this leads to an explicit prediction of maximum (energy-limited) LAI. We assume that the demands of leaf and root production are satisfied with highest priority, and that excess C is allocated to stems in such a way as to maximize height growth and therefore competitive success. High NCP is predicted not only in tropical and subtropical forests, but also in the Pacific Northwest of the USA and in SE Australia, where the tallest trees are found. Moreover, wood density can be related to woody biomass turnover time, τ (estimated from biomass data and net primary production) – trees with denser wood have longer lifespans. In highly productive ecosystems τ tends to be small, e.g. tropical forests; τ can be larger in temperate and boreal forests. We combine predicted τ with biomass-density relationships and mechanical constraints to predict maximum tree heights, testing our predictions using the global Forest Carbon database (ForC) and observations of maximum vegetation height.

How to cite: Ding, R., Nóbrega, R., and Prentice, I. C.: Predicting biomass partitioning and maximum tree height based on optimality principles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5515, https://doi.org/10.5194/egusphere-egu24-5515, 2024.

EGU24-5745 | ECS | Orals | BG3.30

Interplay of photosynthesis and biophysical potential to model tree growth 

Antoine Cabon, Aitor Ameztegui, William R L Anderegg, Jordi Martínez-Vilalta, and Miquel De Cáceres

Tree growth is a key uncertainty in projections of forest productivity and the global carbon cycle. While global vegetation models commonly represent tree growth as a carbon assimilation (source)-driven process, accumulating evidence points toward widespread non-photosynthetic (sink) limitations. Notably, growth biophysical potential, defined as the upper-limit to tree growth imposed by temperature and turgor constraints on cell division, has been suggested to be a potent driver of observed decoupling between tree growth and photosynthesis. Understanding the interplay between biophysical potential and photosynthesis and how to accommodate it parsimoniously in models remains a challenge.

Here, we use a soil-plant-atmosphere continuum model together with a regional network of forest structure and annual, radial tree growth observations extending over three decades to simulate tree photosynthesis and biophysical potential along an aridity gradient and across five tree species in NE Spain. We then apply a linear modelling framework to quantify the relative importance of photosynthesis, biophysical potential and their interactions to predict annual tree growth along the aridity gradient.

Overall similar relative importance of photosynthesis and biophysical potential was underlain by strong variations with climate, photosynthesis being more relevant at wet sites and biophysical potential at dry sites. Observed spatial and temporal trends further suggested that tree growth is primarily limited by biophysical potential under dry conditions and that disregarding it could lead to underestimating tree growth decline with increased aridity under climate change.

Our results support the idea that biophysical potential is an important component of sink limitations to tree radial growth. Its representation in vegetation models could accommodate spatially and temporally dynamic source-sink limitations on tree growth.

How to cite: Cabon, A., Ameztegui, A., Anderegg, W. R. L., Martínez-Vilalta, J., and De Cáceres, M.: Interplay of photosynthesis and biophysical potential to model tree growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5745, https://doi.org/10.5194/egusphere-egu24-5745, 2024.

EGU24-5755 | ECS | Orals | BG3.30

Do beech and spruce change their carbon allocation under future environmental conditions? Lessons learned from a three-year growth chamber experiment.  

Qiao-Lin Gu, Manuela Baumgarten, Balint Jakli, Anja Rammig, Thorsten Grams, and Benjamin Hesse

Plant carbon (C) allocation describes the distribution of carbon among different organs and processes and is sensitive to environmental conditions. As climate change proceeds, it will introduce additional uncertainties to the forest’s function as a crucial terrestrial carbon sink. Previous studies have explored the effect of single environmental variables on plant carbon allocation. Still, they cannot provide insights into the combined effects of changing environment in the future. To understand how European tree species will alter their C allocation after acclimating to the future environment, beech and spruce seedlings were grown in controlled environment facilities (CEFs) of different scenarios for three years. The scenarios represent the present condition of 1987 to 2016 (PC) and, in accordance with the IPCC scenarios, a mitigation scenario (RCP2.6) and a worst-case scenario (RCP8.5) of 2017 to 2100. This implies an increase in air temperature by approximately 1°C (RCP2.6) and 3°C (RCP8.5), an increase in CO2 concentration by approximately 30 ppm (RCP2.6) and 500 ppm (RCP8.5), and changes in other variables over the three years, including the irradiance, the relative humidity, and the O3 concentration. After three years of treatment, the plants were labeled with 13C-enriched CO2 for three days to understand the allocation and turnover of new photoassimilates. Both beech and spruce had greater biomass under RCP8.5 compared to RCP2.6 and PC, accompanied by enhanced allocation to belowground biomass. The concentration of non-structural carbohydrates (NSC) showed no significant difference across the scenarios, neither in leaves nor fine roots. Yet, the mean residence time of carbon (MRT) of the soil respiratory pool had shortened in the RCP scenarios in both species. Specifically for beech, a compartmental model showed an increased pool size of mobile carbon and confirmed the shortened MRT of the mobile carbon pool under RCP8.5. The unchanged NSC concentration in the sink organ with the shortened MRT has indicated a more rapid carbon turnover under both RCP scenarios accompanied by more substantial C allocation to the immediate respiration. Additionally, the fixed C was substantially invested in biomass growth, i.e., structural carbon, only under RCP8.5, which indicates that the doubled CO2 concentration has alleviated the environmental stress. In contrast, the minor increase in CO2 concentration under RCP2.6 had no such effect. We thus recommend that the relationship between C fixation and biomass growth should be interpreted more cautiously under changing environmental conditions in the future.  

How to cite: Gu, Q.-L., Baumgarten, M., Jakli, B., Rammig, A., Grams, T., and Hesse, B.: Do beech and spruce change their carbon allocation under future environmental conditions? Lessons learned from a three-year growth chamber experiment. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5755, https://doi.org/10.5194/egusphere-egu24-5755, 2024.

EGU24-7478 | ECS | Posters on site | BG3.30

Seasonal changes in photosynthesis, respiration and NEE of a reclaimed post-mining site at the early stage of succession 

Aysan Badraghi, Jiří Kučera, and Jan Frouz

No investigations have addressed the CO2 fluxes, including NEE (Net Ecosystem Exchange), GEE (Gross Ecosystem Exchange), and ER (Ecosystem Respiration), in extremely disturbed areas like post-mining sites. Despite its importance, there is a big gap in the existing research literature regarding these specific ecosystems. Therefore, to determine the carbon sequestration and emission potential of a restored early post-mining stage, this study was conducted in the northwestern Czech Republic during 2023.

To achieve this objective, continuous measurement of NEE was conducted using an Eddy Covariance (EC) tower from January to October 2023. The site was leveled in 2019 and planted with 1-yr-old alder (Alnus glutinosa) seedlings at a density of 10000 seedlings/ha-1. The high-frequency raw data (10 Hz) was processed using Eddypro software (LICOR, Lincoln, NE, USA) to calculate 30-minute average fluxes of CO2. More processing on the 30-minute data involved quality checks, despiking, u* filtering, gap filling, estimation of uncertainty in the gap-filled half-hourly data, and the partitioning of NEE into GEE and ER.

Four years after reclamation, ER (1.10 kg C m-2) exceeded carbon assimilation (GEE = -0.85 kg C m-2), however, the resulted NEE was near zero (0.25 kg C m-2) for the entire 10-month period. The greatest losses of CO2 into the atmosphere occurred during the summer (July – October), with an average daily value of 4.37 ± 1.19 g C m-2. Meanwhile, spring with the highest rate of assimilation (April – June; average daily value of GEE -4.35 ± 0.39 g C m-2), acted as a net sink of CO2, with an average daily value of -0.24 ± 1.16 g C m-2. This finding implies a high assimilation capacity of the restored post-mining site at the early stage of succession. Overall, based on our analysis, temperature and vapour pressure deficit (VPD) were identified as the main driving factor for NEE and ER, while global radiation (Rg) and temperature were found to be the most important factors for GEE.

How to cite: Badraghi, A., Kučera, J., and Frouz, J.: Seasonal changes in photosynthesis, respiration and NEE of a reclaimed post-mining site at the early stage of succession, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7478, https://doi.org/10.5194/egusphere-egu24-7478, 2024.

EGU24-8241 | ECS | Posters on site | BG3.30

Understanding the carbon sequestration in the mountain dry forest (MDF) situated in the southern part of Ecuador inferred from eddy-covariance measurements 

Charuta Murkute, Mostafa Sayeed, Franz Pucha Cofrep, Volker Raffelsbauer, Rezwan Ahmed, Sebastian Scholz, Oliver Limberger, Galo Carillo-Rojas, Jörg Bendix, and Katja Trachte

Forests are vital carbon sinks, absorbing and storing large amounts of carbon dioxide (CO2) through photosynthesis. Thus, forest ecosystems strongly contribute to climate change mitigation inducing a carbon sink function. Whether a forest is acting as a source or sink is highly dependent on the microclimatological conditions of the region in terms of the heat and water budget. Our study area is the mountain dry forest (MDF) on the western flank of the Andes Mountains in southern Ecuador, i.e. the Tumbesian dry forest of the Laipuna Reserve. The climate of the region is characterized by a strong seasonality influenced by the interhemispheric shift of the ITCZ, which result in a distinct dry (June - December) and wet (January - May) season. However, this seasonality can render these ecosystems susceptible to fluctuations in precipitation and temperature patterns, including prolonged drought periods that adversely impact tree regrowth. Consequently, the MDF becomes vulnerable to the effects of climate change. In contrast, the trees in the MDF also exhibit adaptations that enable them to withstand drought conditions, which may feature a higher resilience against climate change.

To understand the driving processes of carbon and water exchanges over the MDF and response to climate change, an eddy covariance flux tower has been installed over the canopy. The tower is equipped with an open-path Irgason system (Campbell Sci. Inc.) to obtain net-ecosystem exchange (NEE) and evapotranspiration (ET) as well as additional meteorological sensors to measure precipitation, net-radiation and soil conditions. Additionally, soil CO2 efflux measurements are used to estimate the below-ground carbon exchange and its contribution to the total above-canopy signal.

Our main focus is on the quantification of the carbon storage capacity and its variations according to the clearly pronounced seasonality. Further, since water scarcity and heat stress impact the carbon sequestration, we also aim to analyze climate stress situations and its effect on the carbon exchange. For this, NEE is partitioned into GPP (Gross Primary Productivity) and Reco (Ecosystem Respiration) to get insight into carbon uptake by photosynthesis and carbon release by respiration. The preliminary results of the study show that during the wet season the ecosystem generally acts as a carbon sink (GPP = 188 gCm-2month-1, Reco = 155 gCm-2month-1), while during the dry season it oscillates around neutrality. However, considering the transition periods, a stronger dependency to the climate conditions can be observed, which creates alternating patterns of carbon sink and sources. 

How to cite: Murkute, C., Sayeed, M., Pucha Cofrep, F., Raffelsbauer, V., Ahmed, R., Scholz, S., Limberger, O., Carillo-Rojas, G., Bendix, J., and Trachte, K.: Understanding the carbon sequestration in the mountain dry forest (MDF) situated in the southern part of Ecuador inferred from eddy-covariance measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8241, https://doi.org/10.5194/egusphere-egu24-8241, 2024.

EGU24-8782 | ECS | Orals | BG3.30

Connecting gas exchange, carbohydrate storage, and growth dynamics during variable drought stress and recovery in Douglas fir 

Franklin Alongi, Timo Knüver, Yanick Ziegler, and Nadine Ruehr

Tree mortality from increasing drought events have been reported worldwide, with the potential to threaten both forest health and services such as timber production. Tree species’ resilience to drought events is dependent on a range of inter-connected mechanisms, such as gas exchange and hydraulic regulation, which further affect processes such as non-structural carbohydrate (NSC) storage, growth, and stress signaling. The effect of drought on these numerous plant processes have been well studied, however knowledge gaps remain regarding how these processes respond in concert to different drought intensities, as well as the recovery ability following stress release. In a greenhouse setting, we investigated how variable drought intensities (control, mild, severe) affected photosynthetic assimilation (Anet), NSC storage, and growth at multiple timepoints throughout a five-week drought and five-week recovery period in two-year-old Douglas fir (Pseudotsuga menziesii). Here, we show how system-wide physiological stress tracks drought intensity, with severe drought leading to an earlier cessation of Anet, greater utilization of starch to increase soluble sugars, and reduced growth as compared to the mild and control treatments. This study offers a holistic view of plant-physiological responses to drought stress intensity, and underscores how physiological damage sustained during severe drought events can have long-lasting impacts on forest health.

How to cite: Alongi, F., Knüver, T., Ziegler, Y., and Ruehr, N.: Connecting gas exchange, carbohydrate storage, and growth dynamics during variable drought stress and recovery in Douglas fir, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8782, https://doi.org/10.5194/egusphere-egu24-8782, 2024.

EGU24-9134 | ECS | Orals | BG3.30

Radiocarbon isotopic disequilibrium shows little incorporation of carbon in soils and fast cycling in a boreal forest ecosystem 

Andres Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Estefania Muñoz, Ingrid Chanca, Matthias Peichl, Paul Smith, and Carlos Sierra

Boreal forests, as critical components of the global carbon (C) cycle, fix annually substantial amounts of atmospheric C. However, the timescales at which this C is cycled through the various ecosystem compartments are yet not well understood. To elucidate the temporal dynamics between photosynthesis, allocation and respiration of C, we assessed the radiocarbon (14C) to understand the fate of C in a boreal forest ecosystem. Samples from a boreal forest stand at the ICOS station Svartberget (SVB) in northern Sweden were collected, including vegetation, soil cores, atmospheric CO2 and the 14CO2 values from incubated topsoil were used to interpret D in different ecosystem pools. Additionally, we conducted comprehensive analyses of Δ14CO2 released from forest floor soil respiration (FFSR) over a 24-hour cycle and calculated the Δ14C signature of the total ecosystem respiration following the Miller-Tans approach. We show that vegetation pools presented a positive D indicated by the enrichment with bomb 14C (produced mostly between 1950 and 1964), suggesting a fast-cycling rate (in the order of months to years) for living biomass and intermediate for dead biomass (years to decades). In contrast, soils showed a negative D, indicating minimal incorporation of bomb 14C. FFSR showed diurnal Δ14C variability with an average value close to the atmosphere (-2.33‰ in summer 2022 at SVB), suggesting that the output flux is dominated by autotrophic respiration of recently fixed and post-bomb labile C. Calculations for Δ14C in ecosystem respiration (166 ± 66.2‰), which is enriched in comparison to FFSR, in ecosystem respiration. Although the boreal forest stores significant amounts of C in the soil, , where it is cycled relatively fast. Only minimal amounts of recent C are incorporated and stabilised over long time scales. The potential of the boreal forest to mitigate climate change has to be further studied emphasizing the critical role of soil organic carbon persistence, where the ecosystem-atmosphere 14C disequilibrium may provide powerful insights.

How to cite: Tangarife-Escobar, A., Guggenberger, G., Feng, X., Muñoz, E., Chanca, I., Peichl, M., Smith, P., and Sierra, C.: Radiocarbon isotopic disequilibrium shows little incorporation of carbon in soils and fast cycling in a boreal forest ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9134, https://doi.org/10.5194/egusphere-egu24-9134, 2024.

EGU24-9317 | ECS | Posters on site | BG3.30

Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year 

Ido Rog, Boaz Hilman, Hagar Fox, David Yalin, Rafat Qubaja, and Tamir Klein

Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests, requires observations at the individual tree-level. We measured a complete set of C pools and fluxes at the tree-level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year, followed by an above-average wet year, offering an opportunity to test the effect of water-availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (~60%), while root exudation (~10%) and reproduction (~2%) were those which increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.

How to cite: Rog, I., Hilman, B., Fox, H., Yalin, D., Qubaja, R., and Klein, T.: Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9317, https://doi.org/10.5194/egusphere-egu24-9317, 2024.

EGU24-9455 | Posters on site | BG3.30

Spontaneous tree growth and carbon dynamics during the first decade after removal of a coniferous monoculture at a humid temperate forest site 

Alexander Graf, Anna Hofer, Laura Müller, Marius Schmidt, Michael Leuchner, Gunnar Ketzler, Patrizia Ney, Clemens Drüe, Thomas Pütz, and Harry Vereecken

In September 2013, 8.6 hectares of a 70-year old Norway spruce (picea abies) monoculture were cleared in the newly founded national park Eifel (Germany) and left to spontaneous regrowth of the expected deciduous forest matching the site’s climate and soil conditions. The site is part of the 38.5 hectare experimental catchment “Wüstebach” (50° 30’N, 6° 19’E, 595 to 630 m a.s.l.), one of the core investigation sites of TERENO (TERrestrial ENvironmental Observatories, https://www.tereno.net). Most of the rest of the catchment is still covered by the original spruce monoculture. Its energy and matter exchange with the atmosphere, most notably of CO2, is monitored by an ICOS associated eddy-covariance station (DE-RuW) since 2010. In 2013 after the partial deforestation, a second flux station was installed near the centre of the clearcut. Due to an overpressure of game (boar and deer) in the area, 2 hectares of the central clearcut area are protected against grazing by a fence. CO2 budget and albedo results from the first four growing periods after the clearcut were presented by Ney et al. in 2019 (https://doi.org/10.1016/j.agrformet.2019.04.009). Here, we will give an update covering the first ten growing periods after deforestation (2014-2023). Most notably, regrowing vegetation on the initially almost bare clearcut turned it from a source back into a sink of atmospheric CO2 eight years after the deforestation. We will give an overview on how flux components (soil) respiration and gross primary productivity, season length and peak fluxes contributed to the difference between the spruce forest and the early and recent stages of the regrowing forest. For the last eight years, we recorded the species, height and partly the diameter of all spontaneous regrowing trees in the deforested area in a 10 m corridor both inside and outside the fence. Regrowth was strongly dominated by rowan (sorbus aucuparia, >1200 trees), a pioneer species propagated through their berries by birds that was present with at least one adult tree already before the deforestation beside further trees in distant surroundings. The next two important species were spruce and birch (betula pendula), whose seeds are propagated by wind. Rowan and birch grew in height approximately twice as fast as spruce. The presence of the protective fence affected all species, especially rowan, which grew more than twice as fast on the inside of the fence.

How to cite: Graf, A., Hofer, A., Müller, L., Schmidt, M., Leuchner, M., Ketzler, G., Ney, P., Drüe, C., Pütz, T., and Vereecken, H.: Spontaneous tree growth and carbon dynamics during the first decade after removal of a coniferous monoculture at a humid temperate forest site, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9455, https://doi.org/10.5194/egusphere-egu24-9455, 2024.

EGU24-10746 | Posters on site | BG3.30

Growth is not just about wood : investigating the link between ecosystem carbon uptake and net primary productivity in three European forests 

Nicolas Delpierre, Jean-Marc Limousin, Daniel Berveiller, Alexandre Morfin, Gaëlle Vincent, Jean Kempf, Jean-Marc Ourcival, Matthias Cuntz, Emilie Joetzjer, Pascal Courtois, and Maxime Cailleret

A body of work published over the past two decades shows that there is a partial decoupling between the fixation of carbon by photosynthesis and the formation of wood in forests. Years of high photosynthesis are not necessarily accompanied by large wood production. In this contribution, we explore the link between photosynthesis, estimated using eddy covariance fluxes and the productivity of the various forest compartments (leaves, wood, fruit, roots) measured over 12 to 21 years on three forest sites in France belonging to the European ICOS network (two temperate sites, one oak forest and one beech forest, and one Mediterranean oak forest). Annual wood productivity was not significantly correlated with carbon fixation, neither GPP nor NEP, at any of the three sites. On the other hand, annual above-ground net primary productivity was significantly correlated with GPP at all sites and with NEP at two of the three sites, i.e. the Mediterranean and the temperate oak forests. In these oak forests, years of high productivity are masting years, supporting the hypothesis that reproduction is limited by the availability of recent photo-assimilates. These results remind us that wood growth is not necessarily representative of tree productivity, and invites us to investigate the causes of the inter-annual variability of carbon allocation to the different organs and tissues of trees.

How to cite: Delpierre, N., Limousin, J.-M., Berveiller, D., Morfin, A., Vincent, G., Kempf, J., Ourcival, J.-M., Cuntz, M., Joetzjer, E., Courtois, P., and Cailleret, M.: Growth is not just about wood : investigating the link between ecosystem carbon uptake and net primary productivity in three European forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10746, https://doi.org/10.5194/egusphere-egu24-10746, 2024.

EGU24-11207 | ECS | Orals | BG3.30

From tree to plot: investigating stem respiration and its drivers along a logging gradient in Sabah, Malaysian Borneo 

Maria Barbara Mills, Sabine Both, Palasiah Jotan, Walter Huaraca Huasco, Rudi Cruz, Milenka M Pillco, David F. R. P Burslem, Colin Maycock, Yadvinder Malhi, Robert M Ewers, Juan Carlos Berrio, Jörg Kaduk, Susan Page, Rolando Robert, Yit A Teh, and Terhi Riutta

Respiration by trees stems constitutes a substantial proportion of autotrophic respiration in forested ecosystems and has been estimated to contribute 12 – 25 % of total ecosystem respiration, yet little is known about its associated drivers at different spatial scales. Stems are the largest contributor to forest biomass and so the respiratory consumption of stems has the potential to considerably affect carbon budgets in forest communities. As logged and degraded forests are fast becoming the most dominant land-use type throughout the tropics, it is also important to contextualise stem respiration over land use gradients. In this study we quantified stem respiration at individual tree and plot scales in nine 1-ha plots over a gradient of heavily logged to old-growth forest in Malaysian Borneo. We investigated how logging intensity, forest structure, plant functional traits, and soil chemistry influence stem respiration in logged and old-growth forest plots at both scales. We found that, at individual tree level, stem respiration rate per unit stem area was significantly higher in logged than old-growth plots, and this was consistent within most diameter classes. At the 1-ha plot scale, however, total stem respiration did not differ between forest types: the higher stem respiration rate in logged plots was offset by the higher stem area in old-growth plots. At plot level, stem respiration was driven by forest structure and soil chemistry. We found that basal area was a strong predictor of stem respiration within both forest types at plot scale; for a similar basal area, logged plots exhibited a higher stem respiration rate. Partitioning stem respiration into its growth and maintenance components at plot scale highlighted how logged plots prioritise growth in response to intense light competition, as logged plots had significantly higher allocation to growth respiration, whereas old-growth plots prioritised maintenance and cell structure. Our analysis at individual tree scale reinforced these differing priorities, as stem respiration in logged plots was driven by plant traits associated with growth and wood anatomy, as opposed to within old-growth plots where stem respiration was driven by traits associated cell structure and maintenance. These results reflect the different strategies of resource allocation for trees growing in logged and old-growth plots and adds to the growing body of research on autotrophic respiration, the least studied component of forest carbon dynamics within a very understudied yet expanding land use.

How to cite: Mills, M. B., Both, S., Jotan, P., Huaraca Huasco, W., Cruz, R., Pillco, M. M., Burslem, D. F. R. P., Maycock, C., Malhi, Y., Ewers, R. M., Berrio, J. C., Kaduk, J., Page, S., Robert, R., Teh, Y. A., and Riutta, T.: From tree to plot: investigating stem respiration and its drivers along a logging gradient in Sabah, Malaysian Borneo, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11207, https://doi.org/10.5194/egusphere-egu24-11207, 2024.

EGU24-12065 | ECS | Orals | BG3.30

Cations in Crisis: Limitation and Vulnerability of Secondary Forest Regrowth in dynamic Tropical Landscapes 

Marijn Bauters, Viktor Van de Velde, Travis W. Drake, Pascal Boeckx, Corneille Ewango, Sebastian Doetterl, and Isaac Makelele

Secondary forests will increasingly dominate tropical forest landscapes in the decades to come. Understanding how local biogeochemistry impacts regrowth trajectories is paramount, especially if this biogeochemistry is impacted by land-use change. In this study, we employ three lines of evidence from central African secondary forest succession sequences that suggest that cations might be a limiting and vulnerable resource to sustain secondary forest regrowth in the tropics.

First – along succussion, our analysis reveals that atmospheric phosphorus supply exceeds demand during forest succession, while plant base cation demands are met predominantly through depletion of soil stocks. As such, soil nutrient metrics indicate an increase in available phosphorus along the succession, contrasting with a decrease in available cations.  Coincidentally, fine root, foliar, and litter stoichiometry collectively demonstrate a decline in tissue calcium concentrations relative to nitrogen and phosphorus during succession. These findings collectively suggest that calcium becomes a progressively scarce resource in central African forests during secondary succession.

Second – also along succession, we show a substantial shift in ecosystem cation storage from soil to woody biomass over succession, while not for nitrogen or phosphorus,  rendering it a vulnerable nutrient in the context of land-use change scenarios involving woody biomass export. From independent data, we also show that with increasing repeated clearing, the total soil cation stocks are depleted, while we see no such consistent effect for nitrogen or phosphorus. Coincidentally, at a catchment scale, we see that cation losses increase as catchments get increasingly impacted by land-use change.

Third – based on a pot experiment, tree growth seems limited first and foremost by cations, and then by nitrogen. This again reiterates that cations might be an important and overlooked limiting element for sustaining plant growth in highly depleted tropical soils.

Collectively, this work calls for an expanded perspective on nutrient dynamics and highlights the vulnerability of cations in the face of changing land-use scenarios, with potentially important sustainability issues in the long-term – especially if the secondary regrowth potential is lowered.

How to cite: Bauters, M., Van de Velde, V., W. Drake, T., Boeckx, P., Ewango, C., Doetterl, S., and Makelele, I.: Cations in Crisis: Limitation and Vulnerability of Secondary Forest Regrowth in dynamic Tropical Landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12065, https://doi.org/10.5194/egusphere-egu24-12065, 2024.

EGU24-12463 | Orals | BG3.30

Drought suppresses rhizosphere carbon inputs and losses with cascading effects on soil microbial communities in a pine forest 

Claudia Guidi, Beat Frey, Konstantin Gavazov, Xingguo Han, Martina Peter, Mathias Mayer, Yueqi Zhang, Beat Stierli, Ivano Brunner, and Frank Hagedorn

Severe drought impacts soil organic carbon (SOC) cycling. Yet, there is limited understanding of drought effects on rhizosphere C allocation and its fate in the soil, since belowground C contributes to new SOC formation while fueling soil microbial communities and SOC mineralization. Here, we quantified rhizosphere C inputs and losses in a 17-year long irrigation experiment in a dry Scots pine forest using 13C-enriched soil ingrowth bags with different mesh sizes. Fungal and bacterial communities inside the ingrowth bags and in adjacent soils were analyzed by Illumina MiSeq sequencing.

After two years, net new SOC accumulation was 5 times greater in root-accessible vs root-exclusion bags (1000- vs 20-μm mesh). Irrigation stimulated new SOC formation in the first year as compared to natural drought both in root-accessible (+26%) and root-exclusion bags (+47%). Losses of “old” 13C-enriched SOC increased under irrigation in root-accessible (+88%) and root-exclusion bags (+32%), resulting in an overall balanced effect of irrigation on SOC. After two years, irrigation showed a limited effect on net new SOC formation both in root-accessible and root-exclusion bags despite a 70% greater root ingrowth under irrigation. We attribute the lacking irrigation effect on rhizosphere-derived SOC to higher respiratory losses of new soil C, which is in line with +55% old C losses by irrigation in root-accessible bags after two years. These findings indicate a faster C cycling in the rhizosphere under irrigation with enhanced C inputs, which were however rapidly mineralized, resulting in negligible net effects. The increased belowground C allocation and increased C turnover in the rhizosphere under irrigation were paralleled by shifts in fungal and bacterial communities in ingrowth bags as well as in adjacent soils. Fungal and bacterial community structures were also shaped by the presence of roots in the bags.

Overall, our results in this long-term irrigation experiment imply that naturally dry conditions slow SOC cycling, suppressing both rhizosphere C inputs and losses. The reduced supply of belowground C leads to cascading effects on soil microbial community composition under drought.

How to cite: Guidi, C., Frey, B., Gavazov, K., Han, X., Peter, M., Mayer, M., Zhang, Y., Stierli, B., Brunner, I., and Hagedorn, F.: Drought suppresses rhizosphere carbon inputs and losses with cascading effects on soil microbial communities in a pine forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12463, https://doi.org/10.5194/egusphere-egu24-12463, 2024.

EGU24-15187 | Orals | BG3.30

Combining satellite images with national forest inventory measurements for monitoring post-disturbance forest height growth 

Agnès Pellissier-Tanon, Philippe Ciais, Martin Schwartz, Ibrahim Fayad, Yidi Xu, François Ritter, Aurélien de Truchis, Cédric Véga, and Jean-Michel Leban

The understanding of forest growth is crucial for the preservation of forests in the future. Factors such as tree species, age, forest management and environmental conditions influence this growth.

Tree height and age data can be combined to describe forest growth and infer known environmental effects. In this study, we constructed height-age growth curves for 14 monospecific and mixed-species stands using ground measurements and satellite data in northern France. A random forest height model was constructed using tree species and age, area of disturbance, and 125 environmental parameters (climate, altitude, soil composition, geology, stand ownership, and proximity to road and urban areas). Through feature elimination and SHAP analysis, six key features were identified that explain forest growth and their effect on height was investigated.

The agreement between satellite and ground data justifies their simultaneous exploitation. Age and tree species emerged as the primary predictors of tree height, accounting for 49% and 10% of the variation, respectively. Post-disturbance growth is influenced by the disturbed patch area, which reveals the regeneration method, accounting for 19% of the variation. Soil pH, altitude, and summer climatic water budget have varying effects on tree height depending on age and tree species.

The agreement between satellite and ground data justifies their simultaneous exploitation. Age and tree species are the primary predictors of tree height, accounting for 49% and 10% of the variation, respectively. Post-disturbance growth is influenced by the disturbed patch area, which reveals the regeneration method, accounting for 19% of the variation. Soil pH, altitude, and summer climatic water budget have varying effects on tree height depending on age and tree species.

 

The integration of satellite and field data shows potential for analyzing future forest evolution.

How to cite: Pellissier-Tanon, A., Ciais, P., Schwartz, M., Fayad, I., Xu, Y., Ritter, F., de Truchis, A., Véga, C., and Leban, J.-M.: Combining satellite images with national forest inventory measurements for monitoring post-disturbance forest height growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15187, https://doi.org/10.5194/egusphere-egu24-15187, 2024.

Tropical forests play an essential role in the carbon cycle. However, climate change threatens their ability to store carbon. Specifically, understanding the perturbation of climatic regimes on carbon uptake mechanisms is crucial. However, our knowledge concerning the spatial and temporal carbon distribution over trees and forests is limited, especially in the context of tropical forests of Central Africa. The TREE4FLUX project aims to fill these gaps for the first time in the forests of Congo Basin forests, by focusing research at different scales around the CongoFlux tower in the Yangambi Biosphere Reserve (DRC). On the forest ecosystem scale, carbon uptake can be monitored by measurements of CO2 exchanges between the atmosphere and the vegetation using the Eddy Covariance approach. Carbon assessments are also possible through tree-growth measurements within a network of permanent inventory plots. However, refining the carbon cycle at the tree scale requires a detailed study of the numerous inextricable metabolic processes that underlie tree growth, e.g. photosynthesis, wood formation, or respiration. Because they are largely controlled by various climatic drivers, climate-growth relationships over time remain hard to establish. The chronology of carbon uptake and attribution to the different mechanisms remain elusive preventing a grasp of the intra-annual variations of these periodic processes and their articulation over time. This is the case of xylogenesis or wood formation in which each phase is differently involved in the carbon cycle and sensitive to various climatic drivers. To understand the sensitivity of tree growth to climate, we need to untangle the cambium’s role in wood formation. For that purpose, monitoring cambial phenology helps characterize the distribution, allocation, and short- and long-term carbon storage in woody material. While tree growth uptakes carbon, respiration releases carbon into the atmosphere at various levels. Heterotrophic and autotrophic respirations have a decisive role in the carbon cycle at the forest scale but face significant misunderstandings in this regard. To upscale our understanding from individual tree to forest scale, we imperatively need respiration monitoring in both living and decayed trees. This requires unravelling the metabolic processes driving both autotrophic and heterotrophic respiration, i.e. the tree growth and decayed process, respectively. Characterization of carbon fluxes according to an integrative approach over climatic variations is required to understand how environmental changes affect ecosystem dynamics and their ability to provide ecosystem services

How to cite: Hicter, P., Hubau, W., and Beeckman, H.: Unravelling the carbon cycle at the tree and forest scale: a TREE4FLUX initiative in Central African Tropical Forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15315, https://doi.org/10.5194/egusphere-egu24-15315, 2024.

Nonstructural carbohydrates (NSC) management in response to drought stress is vital to understanding drought acclimation in trees. However, the molecular mechanisms underlying such processes remain unclear for most forest trees. Poplars are considered a model species for studying woody plants' molecular mechanisms. They are known to deploy a passive, symplastic sugar loading strategy, relying on sugars' concentration gradient through the plasmodesmata rather than on active sugar transport. Under drought conditions, tight regulation is needed to sustain long periods of stress and maintain water content. This study subjected young poplar trees (P. alba) to drought stress, following a combined analysis of sugar content and gene expression profile (RNAseq). We analyzed the expression of 29 gene families related to NSC signaling, translocation, and metabolism along three tree compartments (leaves, shoots, and roots). Starch depletion was evident in all organs, while soluble sugars accumulated only in the leaves, with an overall whole-tree decrease of ~30% in total sugar content. Our findings highlight relevant genes that specialize in triggering drought metabolism, starch depletion, sugar immobility, and osmotic adjustment. Broadly up-regulated genes are highlighted, as well as tissue-specific ones. This research provides a broad overview of the molecular process underlining NSC dynamics under drought in poplar trees.

How to cite: Fox, H., Ben-Dor, S., Doron-Faigenboim, A., Goldsmith, M., Klein, T., and David-Schwartz, R.: Carbohydrate dynamics in Populus trees under drought: an expression atlas of genes Carbohydrate dynamics in Populus trees under drought: an expression atlas of differentially expressed genes across leaf, stem, and root, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15757, https://doi.org/10.5194/egusphere-egu24-15757, 2024.

EGU24-16624 | ECS | Posters on site | BG3.30

Integrating carbon fluxes and wood anatomical traits to unravel carbon pool partitioning using eddy covariance data, tree rings and modeling 

Paulina Puchi, Daniela Dalmonech, and Alessio Collalti

Boreal forest sinks one third of terrestrial carbon (C), playing a crucial role in mitigating climate change. However, our understanding of the relationship between carbon assimilation and its allocation into woody biomass production remains limited. To address this gap, we propose a novel approach that combines eddy covariance (EC), wood anatomy in tree rings, and the 3D-CMCC-FEM forest model. This integrated method aims to elucidate the pathways of C pools over short and long-time scales. The study was conducted in a boreal site of Pinus banksiana (Lamb.) in Canada, spanning from 1999 to 2019.

Our results revealed notably high correlations between model-predicted and measured Gross Primary Productivity (GPP) ranging from 0.88, 0.95, 0.60 for daily, monthly, and annual scales, respectively. We observed comparable inter-annual variability between measured ring wall area (proxy of total woody biomass) and stem carbon accumulated and predicted by the model. Additionally, consistent values of carbon use efficiency (CUE = 0.41, net vs. gross primary productivity) were found when comparing modeled and estimated data in the nearby evergreen Picea mariana stand to our study site.

This study represents a significant step toward enhancing our understanding of both inter-and intra-annual variability of carbon fluxes, providing insights into the pathways of C in forest —an essential challenge in estimating and projecting future carbon sink capacities of forests.

How to cite: Puchi, P., Dalmonech, D., and Collalti, A.: Integrating carbon fluxes and wood anatomical traits to unravel carbon pool partitioning using eddy covariance data, tree rings and modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16624, https://doi.org/10.5194/egusphere-egu24-16624, 2024.

EGU24-16858 | ECS | Posters on site | BG3.30

Soil carbon inputs from grain legumes based cropping systems with cover crops 

Zhi Liang, Juliana Martins, Kirsten Enggrob, and Jim Rasmussen

A greener agricultural sector calls for a diet shift from meat to plant protein sources. The inclusion of grain legumes (GLs) such as faba bean (Vicia faba) and pea (Pisum sativum), and further cover crops in crop rotations likely helps the transition towards more sustainable food systems, for example in Denmark where only 3.6% of the organic agricultural land cultivated with GLs. Thus, most GLs in Denmark for human consumption are imported dry grains with only a small local production of green peas. Yet, early harvested GLs may offer environmental and economic benefits by facilitating the establishment and growth of cover crops, which can improve carbon (C) inputs to soils and also opening new possibilities for biorefining of green residues. However, there is no empirical data of C inputs, including phyllo- and rhizodeposition (ClvPR), in GLs-based cropping systems under Danish conditions. Here we performed a field experiment with multiple pulse labelling of 13CO2, to quantify C yields of GLs based cropping systems (faba bean, pea, and the mixture of pea and spring barley) to 1-m soil depth, in comparison to a cereal (spring barley, Hordeum vulgare) based system. The multiple pulse labellingwas conducted with both main crops (faba bean, pea, spring barley, and the mixture) as well as the subsequent cover crops, to obtain an estimation of total C yields over a full growing season. The results showed that the total C yields of the main crops was similar among different GLs (4.4, 4.6, and 4.9 Mg C ha-1 for faba bean, pea, and the mixture, respectively), which was slightly lower than that of spring barley (6.5 Mg C ha-1). The same pattern was seen for ClvPR of main crops. Further, the preceding main crops had little effect on the total C yield of subsequent cover crops (2.9, 2.4, 2.3, 2.5 Mg C ha-1 for cover crops following fababean, pea, the mixture, and spring barley, respectively). Thus, no complementary effect of mixed pea and spring barley was found to increase the C yield. However, GLs based cropping systems received no nitrogen (N) fertilizer as opposed to spring barley, which was fertilized with 100 N ha-1 (in slurry). This reduces the reliance on external inputs, and might minimize negative environmental impacts including greenhouse gases emissions, which needs future studies.

How to cite: Liang, Z., Martins, J., Enggrob, K., and Rasmussen, J.: Soil carbon inputs from grain legumes based cropping systems with cover crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16858, https://doi.org/10.5194/egusphere-egu24-16858, 2024.

EGU24-17755 | Orals | BG3.30

Belowground C allocation of tropical rainforests under drought: an ecosystem 13CO2 labeling experiment 

Michaela A. Dippold, Xuejuan Bai, Lingling Shi, Pratiksha Acharya, Niklas Schmuecker, Johannes Ingrisch, Kathiravan Meeran, Erik Daber, Jane Fudyma, Gina Hildebrand, Linnea K. Honeker, Kathrin Kühnhammer, Juliana Gil-Loaiza, Jianbei Huang, Xuechen Zhang, Malak M. Tfaily, Nemiah Ladd, Laura K. Meredith, and Christiane Werner

Pulse labeling experiments remain an invaluable tool for tracing element allocation dynamics following environmental changes, ecological disturbance or extreme events. They are primarily used on the small scale, from single organisms to maximally the plot scale. Thus, upscaling of their outcomes is frequently challenging because of a lack of spatial representativeness and potentially missed interactions due to excluded ecosystem components. As we tackle a black box when studying belowground processes, the uncertainties of upscaling from small-scale labeling studies increase further. Therefore, we conducted a complete ecosystem pulse labeling drought stress experiment to explore the impact of extreme droughts on tropical rainforest’s belowground C allocation using the “ecosystem in a box model” of Biosphere 2 in Arizona.

The atmosphere of the tropical forest was exposed to a 13CO2 pulse for several hours under ambient and drought conditions. Besides continuous monitoring (leaf, stem and soil 13CO2 respiration), we performed regular post-pulse soil sampling campaigns to trace ecosystem belowground C allocations and monitor C partitioning at the soil–microbe-root interface. We aimed to identify key drought-adaptation strategies such as i) increased C allocation into subsoil layers which were expected to have higher moisture than dried-out topsoils and ii) increased relative C investment into specific rhizodeposits and mycorrhizal fungi that both may foster plant nutrition even from dry soil.

We observed a high allocation of assimilated 13C tracer into topsoil roots under drought, but this C allocation did not contribute to a higher root biomass. This suggests that tropical plants might modify their root composition by forming osmolytes or increasing lignin content to resist the high topsoil drought stress. The rhizodeposition (allocation of assimilated C into rhizospheres soil) increased mainly in the subsoil under drought, suggesting that trees aim to keep rhizo-microbial activity high in subsoils, where moisture was still available throughout the drought period. Whereas under ambient conditions the Gram-negative microorganisms - the most abundant rhizosphere inhabitants - profited most from the 13C allocated to the rhizosphere microbiome, we observed under drought conditions a high 13C allocation into the 18:2w6,9 biomarker representative for saprotroph and ectomycorrhizal fungi. This suggests trees invest C into their mycorrhizal partners most likely hoping for improved nutrient uptake via the small, drought-resistant fungi able to exploit not yet dried-out microhabitats in soils. Generally, we found pronounced plot- and thus plant-specific differences in belowground C allocation, suggesting species- or functional plant type specific drought response strategies belowground.

In summary, quantification of ecosystem C belowground allocation patterns at the plant-microbe-soil interface enables us to disentangle distinct belowground drought response strategies of tropical rainforests. This is essential to support those ecosystem traits that increase tropical rainforest’s resistance and resilience to climate change.

How to cite: Dippold, M. A., Bai, X., Shi, L., Acharya, P., Schmuecker, N., Ingrisch, J., Meeran, K., Daber, E., Fudyma, J., Hildebrand, G., Honeker, L. K., Kühnhammer, K., Gil-Loaiza, J., Huang, J., Zhang, X., Tfaily, M. M., Ladd, N., Meredith, L. K., and Werner, C.: Belowground C allocation of tropical rainforests under drought: an ecosystem 13CO2 labeling experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17755, https://doi.org/10.5194/egusphere-egu24-17755, 2024.

EGU24-17932 | ECS | Posters on site | BG3.30

Oxygen flux simulation as a new tracer for the carbon and nitrogen cycles in a temperate forest ecosystem 

Yuan Yan, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Jan Muhr, Andrew C. Manning, and Alexander Knohl

The O2:CO2 exchange ratio (ER) between terrestrial ecosystems and the atmosphere is a key parameter for partitioning global ocean and land carbon fluxes. The long-term terrestrial ER is considered to be close to 1.10 mol of O2 consumed per mole of CO2 produced. Due to the technical challenges in measuring directly the ER of entire terrestrial ecosystems (EReco), little is known about variations in ER at hourly and seasonal scales, as well as how different ecosystem and flux components (e.g., vegetation and soil, assimilation and respiration) contribute to EReco. In this modeling study, we explored the variability in and drivers of EReco and evaluated the hypothetical uncertainty in determining ecosystem O2 fluxes based on current instrument precision used in micrometeorological methods such as the flux-gradient approach. We updated the one-dimensional, multilayer atmosphere–biosphere gas exchange model “CANVEG” by 1) implementing ER for various ecosystem components in the model; 2) implementing the control of triose phosphate utilization (TPU) and Medlyn’s stomatal conductance equation to CO2 assimilation; and 3) linking photosynthetic O2 emission to nitrogen (N) assimilation sources. The model study was conducted at the Leinefelde FLUXNET site, a temperate beech forest in Germany, where eddy covariance, profile, and gas exchange chamber measurements were available.

We found that when assuming fixed ER for CO2 assimilation and respiration, the hourly EReco showed strong variations over diel and seasonal cycles and within the vertical canopy profile, indicating the potential to partition eddy-covariance derived CO2 fluxes with corresponding O2 flux measurements. The O2 and CO2 mole fraction ratio of canopy air (ERconc) showed different values and mechanisms from EReco. The model showed more robust performances in future CO2, temperature and air humidity conditions when taking into account TPU limitation and Medlyn’s stomatal conductance algorithm in CO2 assimilation processes. The predicted net carbon sink under elevated atmospheric CO2 mole fraction increased less with TPU limitation than without. The most significant impacts on photosynthetic O2 emission and hence the ER of CO2 assimilation resulted from variation in nitrogen assimilation sources. The ER of net assimilation measured with branch-level gas exchange chambers showed little variation from 1.0 mol mol-1, indicating ammonia as the main N assimilation source. The model indicated that the O2 emission would increase by up to 23% if nitrate was used as N assimilation source.

Our study successfully coupled oxygen with carbon fluxes within a multilayer atmosphere–biosphere gas exchange model. The modeling study yielded that the application of the flux-gradient measurement approach is feasible to derive ecosystem O2 fluxes. To achieve better model behavior, it is necessary to incorporate TPU limitation in the assimilation model and to properly consider N assimilation during photosynthesis.

How to cite: Yan, Y., Klosterhalfen, A., Moyano, F., Cuntz, M., Muhr, J., Manning, A. C., and Knohl, A.: Oxygen flux simulation as a new tracer for the carbon and nitrogen cycles in a temperate forest ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17932, https://doi.org/10.5194/egusphere-egu24-17932, 2024.

EGU24-19348 | Orals | BG3.30 | Highlight

The complexity of carbon flow of the terrestrial biosphere: challenging questions and new scale of observations 

Riccardo Valentini, Issam Boukhris, Luca Buonocore, Jim Yates, and Maria Vincenza Chiriaco

In recent years, we have increased dramatically our knowledge of the carbon cycle and its flow throughout the terrestrial ecosystems. During the 1990-2021 period terrestrial biosphere provided a net sink of about 21% of carbon dioxide emitted by fossil fuel burning with the major part occurring in forests. The notion of an active carbon sink of the terrestrial biosphere is driving the current debate of climate mitigation and its contribution to achieve carbon neutrality by 2050 to limit global warming within 2°C as set out in the Paris Agreement. Current knowledge is based on an outstanding wealth of systematic observations from the atmospheric gaseous exchanges, space and aircraft observation of tropospheric CO2 concentration down to flux towers and soil and leaves respiratory and photosynthesis measurements. However, achieving a solid scientific background about the real effectiveness of terrestrial carbon to support policy targets require an in depth analysis of the capacity of the biosphere to sustain long term carbon sequestration throughout the century. Main challenges affecting flows of carbon are to what extent climate extremes in both space and time domain may pulse carbon emissions to become dominant compared to mean carbon uptake by the terrestrial biosphere, the role of disturbances by biotic events that are occurring at increasing temporal frequency and the role of forest management to substantially regulate the flow of carbon through the long living wood products and their fate (nature based solutions, material substitutions and renewable energy).

The classic definitions of GPP, NPP, RE (ecosystem respiration) should be expanded to include the stochastic nature of abiotic and biotic disturbance and the human role on forest management to be able to provide a complete picture on the potential role of terrestrial ecosystems in supporting carbon neutrality targets. The presentation will address the complexity of carbon flows through the comprehensive chain, analyse research gaps and emerging monitoring technologies needed to better monitor the terrestrial biosphere.

 

 

How to cite: Valentini, R., Boukhris, I., Buonocore, L., Yates, J., and Chiriaco, M. V.: The complexity of carbon flow of the terrestrial biosphere: challenging questions and new scale of observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19348, https://doi.org/10.5194/egusphere-egu24-19348, 2024.

EGU24-20279 | ECS | Posters on site | BG3.30

Individual and interactive effects of warming and nitrogen supply on CO2 fluxes and carbon allocation in subarctic grassland 

Kathiravan Meeran, Niel Verbrigghe, Johannes Ingrisch, Lucia Fuchslueger, Lena Müller, Páll Sigurðsson, Bjarni D. Sigurdsson, Herbert Wachter, Margarete Watzka, Jennifer L. Soong, Sara Vicca, Ivan A. Janssens, and Michael Bahn

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.

How to cite: Meeran, K., Verbrigghe, N., Ingrisch, J., Fuchslueger, L., Müller, L., Sigurðsson, P., Sigurdsson, B. D., Wachter, H., Watzka, M., Soong, J. L., Vicca, S., Janssens, I. A., and Bahn, M.: Individual and interactive effects of warming and nitrogen supply on CO2 fluxes and carbon allocation in subarctic grassland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20279, https://doi.org/10.5194/egusphere-egu24-20279, 2024.

As an essential nutrient, Nitrogen (N) availability is fundamental in monitoring forest productivity, and as such, understanding the effects of changing atmospheric N inputs in forest ecosystems is of high significance. While most field experiments have been employing ground fertilization to simulate Nitrogen deposition, two experimental forest sites in Italy have adopted the more advanced canopy N application approach.
Here we present findings from a case study of wood core analyses of predominantly pure, even aged, Sessile Oak (Quercus petraea L.) and European Beech (Fagus sylvatica L.) forest stands, under two treatments of below and above canopy Nitrogen application, comparing between the two methods. The potential effect of elevated N availability on total ring width, mean ring density, and their corresponding earlywood and latewood fractions are examined.
Our results indicate inconclusive effects of the treatments on the ring widths of either Q. petraea or F. sylvatica, although basal area increment patterns appeared to be affected divergently between the species and treatments. Mean and earlywood, but not latewood, densities exhibited a decrease in certain years of treatment in Q. petraea following the above canopy N application only, whereas F. sylvatica wood density showed no clear response to any of the treatments.
Thus, we describe distinct responses of these broadleaved species to the different treatment approaches, discussing potential growth patterns under increased N availability, and emphasizing the importance of considering wood density in tree biomass accumulation and Carbon storage capacity assessments.

How to cite: Minikaev, D.: Experimental Canopy Nitrogen Deposition Effects in Temperate Forests: The case of Quercus petraea L. and Fagus sylvatica L. Ring Width and Wood Density, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21519, https://doi.org/10.5194/egusphere-egu24-21519, 2024.

EGU24-21532 | Posters on site | BG3.30

Net Ecosystem Productivity of a mature temperate deciduous oak forest: reconciling fluxand biometric estimates 

Daniel Berveiller, Alexandre Morfin, Gaëlle Vincent, Laure Barthes, Stéphane Bazot, Timothé Guillot, Kamel Soudani, Christophe François, and Nicolas Delpierre

The eddy covariance (EC) technique measures the turbulent exchanges of gasses between a
target ecosystem and the atmosphere. Provided conditions for the applicability of the EC
technique are met (i.e. turbulent enough atmosphere, flat terrain etc.), the time integration of
turbulent exchanges of CO2 estimates the net ecosystem productivity (NEP, in terms of carbon,
neglecting small losses of CH4, VOC and DOC). Since its inception, questions have emerged
regarding the ability of EC to measure NEP, and independent measurements of NEP through
biometric methods have frequently shown discrepancies between estimates. Here we compare
NEP estimates of a mature, 150-yr old temperate oak forest (Fontainebleau-Barbeau, ICOS FRFon),
established over the past 19 years. The NEP_EC of this 150-yr old forest is of 504 +/- 72 gC
m-2 yr-1, which places it in the high range of data for mature temperate deciduous forests.
Measurements of soil respiration and below-canopy EC fluxes suggest that respiration fluxes are
underestimated at FR-Fon, probably in relation to its location at the edge of a plateau
overlooking a river 50-m below. However the integration of NEP_EC over time compares well to
the one obtained from biometric estimates (combination of wood increment, litterfall, root
productivity and variations of the soil carbon stocks), yielding 562 gC m-2 yr-1. Interestingly,
we estimate that 80% of NEP was stored as an increment of the standing wood biomass, while
20% ended in the accretion of the soil organic carbon stock, yielding a 10 per mil increase of the
SOC stock per year, coherent with trends reported for forest soils in France, Germany and
Finland.

How to cite: Berveiller, D., Morfin, A., Vincent, G., Barthes, L., Bazot, S., Guillot, T., Soudani, K., François, C., and Delpierre, N.: Net Ecosystem Productivity of a mature temperate deciduous oak forest: reconciling fluxand biometric estimates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21532, https://doi.org/10.5194/egusphere-egu24-21532, 2024.

Tibetan Plateau is one of the sentinels of climate warming, with complex vegetation types and noticeable regional differences. Tibetan Plateau also has the largest area of permafrost and seasonal frozen soil. With global warming and increasing compound hot-dry events, the ecohydrological processes have been changed substantially. On one hand, high temperatures can promote vegetation gross primary productivity (GPP) and respiration (Re), and also affect them by altering the permafrost freeze-thaw state. On the other hand, drought events can cause water stress and affect vegetation growth. However, the net primary productivity (NPP) of alpine ecosystem in response to compound hot-dry events is unclear. This study incorporates the carbon-nitrogen processes into a high-resolution land-hydrology coupled model, i.e., Conjunctive Surface-Subsurface Process model version 2 (CSSPv2), and conducts long-term simulations to investigate the ecohydrological effect of the changes in compound hot-dry events. Specifically, we find that GPP on the Tibetan Plateau is more sensitive to changes in soil moisture than vapor pressure deficit during flash droughts. However, the sensitivity of GPP to high vapor pressure deficit in the southeastern Tibetan Plateau increased during the hot periods of flash droughts, which have higher temperatures and more intensive radiation. Whether the soil water stress or atmospheric water stress dominates the changes in NPP is also being investigated, by using both high-resolution land-eco-hydrology model simulation and satellite remote sensing.

How to cite: Xi, X. and Yuan, X.: Impacts of compound hot-dry events on vegetation productivity in the Tibetan Plateau under climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-263, https://doi.org/10.5194/egusphere-egu24-263, 2024.

EGU24-615 | ECS | Orals | BG3.31

Influence of Meteorological Variables on Carbon Uptake in Oak and Pine-dominated Ecosystems of Himalaya 

Leena Khadke, Sandipan Mukherjee, and Subimal Ghosh

Micrometeorological variability significantly influences the structures, functions, and dynamics of ecosystems. Despite this, there is a limited understanding of the feedback and causal relationships among micrometeorological drivers in various Himalayan ecosystems. The present study aims to investigate the meteorological controls that govern the variability in net ecosystem exchange (NEE) in Oak (Quercus leucotrichophora) and Pine (Pinus roxburghii)-dominated ecosystems of the Himalayas. We use half-hourly eddy covariance fluxes from Pine and Oak-dominated ecosystems located in Uttarakhand, India. We employ an information theory-based Temporal Information Partitioning Network (TIPNet) approach to generate weekly process networks with a 6-hour lag. The analysis conducted for the monsoon and post-monsoon seasons of 2016 and 2017 reveals that sub-daily scale variations in micrometeorological variables are responsible for fluctuations in NEE in both ecosystems. The Pine ecosystem exhibits greater sensitivity to air temperature, leading to increased carbon uptake compared to the Oak ecosystem throughout the study period. Causal connections indicate that the NEE of the Oak ecosystem is moisture-driven (influenced by precipitation and relative humidity), while that of the Pine ecosystem is heat-dominated (influenced by air temperature and net solar radiation). Precipitation effects on the Pine ecosystem are not immediate due to slower infiltration and lesser fine root production compared to Oak. However, the impact of moisture stress is evident in the network structure of both ecosystems, with more causal links occurring during dry periods compared to normal periods, indicating adaptive responses to resist moisture stress. This research enhances our understanding of micrometeorological influences on carbon dynamics in Himalayan ecosystems, providing valuable insights for ecosystem management and climate change mitigation strategies.

Keywords: Micrometeorology, Process networks, Oak, Pine, Himalayas

How to cite: Khadke, L., Mukherjee, S., and Ghosh, S.: Influence of Meteorological Variables on Carbon Uptake in Oak and Pine-dominated Ecosystems of Himalaya, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-615, https://doi.org/10.5194/egusphere-egu24-615, 2024.

EGU24-1532 | Orals | BG3.31

Cations limit tree growth of a keystone pioneer species in Central Africa 

Viktor Van de Velde, Albert-Jonathan Magala, Joseph Mande, Ali Hassan, Félicien Meunier, Marijn Bauters, and Pascal Boeckx

Tropical forests are increasingly subjected to land-use change with important implications for biodiversity conservation and global carbon-, energy-, and water cycling. Particularly in Central Africa, slash-and-burn agriculture is the main source of forest losses, and the projected increase in the African population is only to exacerbate these dynamics. The imminence of this social-ecological front is already reflected in the decreasing length of fallow periods, combined with an increase in the number of clearing cycles.

Studying regrowth forests in a thorough and comprehensive way entails including not only biodiversity- and carbon stock recovery, but also the recuperation of nutrient cycling. The current paradigm on tropical secondary forest succession states that these forests move from a nitrogen (N) to a phosphorus (P) limitation during ecosystem recovery. However, recent research has shown that cations become scarce and potentially limiting in later successional stages in Central African forests. Additionally, in a context of repeated forest clearing, soil total and available cation stocks have been shown to decrease each clearing cycle, potentially affecting the regrowth of secondary forests.

An essential phase in the recovery of forests on fallows in Central Africa is the establishment of the pioneer tree species Musanga cecropioides R.Br. ex Tedlie, often exhibiting a temporary monodominance on abandoned fallows and creating a microclimate that facilitates the establishment of other tree species. To study the effects of nutrient losses due to land-use intensification on forest regrowth, our team installed a pot experiment with M. cecropioides close to Kisangani in the Democratic Republic of the Congo, with the following nutrient treatments: control, nitrogen (225 kg ha-1 yr-1), phosphorus (75 kg ha-1 yr-1), and a combined cation treatment (calcium, magnesium, and potassium; each 75 kg ha-1 yr-1). These four treatments were then combined in a full factorial setup with 15 replicates. 

Plant diameters and -heights were measured biweekly for one year. Plants that received the combined cation treatment quickly overtook the ones that only received single treatments of N and P, as well as the controls, both in terms of measured diameter and height. The height measurements showed a steep increase when N was combined with cations, however, the addition of P did not show any additional effect. Plant diameter measurements showed a first increase when cations were added solely and a second increase when the cation addition was combined with nitrogen. Again, the additional provision with P did not add to the observed diameter increase, emphasizing the importance of cations as potentially limiting nutrients for forest regrowth.

A final complete harvest of the plants will allow for total biomass quantification per tissue, as well as destructive sampling for chemical analysis. Analysis of tissue concentrations and stoichiometries of C, N, P, and cations will importantly supplement the growth rates by providing more insight into the relative effects of the added nutrients and will help to disentangle the effects of the separate cations that were combined in the aggregated ‘cation’ treatment. 

How to cite: Van de Velde, V., Magala, A.-J., Mande, J., Hassan, A., Meunier, F., Bauters, M., and Boeckx, P.: Cations limit tree growth of a keystone pioneer species in Central Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1532, https://doi.org/10.5194/egusphere-egu24-1532, 2024.

EGU24-2338 | ECS | Orals | BG3.31

Mapping the global distribution of C4 vegetation using observations and optimality theory 

Xiangzhong Luo, Haoran Zhou, Tin Satriawan, Jiaqi Tian, Ruiying Zhao, Trevor Keenan, Dan Griffith, Stephen Sitch, Nick Smith, and Christopher Still

Plants with the C4 photosynthesis pathway typically respond to climate change differently than more common C3-type plants, due to their distinct anatomical and biochemical characteristics. The different responses are expected to drive changes in global C4 and C3 distributions. However, current C4 distribution models may not predict this response as they do not capture multiple interacting factors and in many cases lack observational constraints. Here, we used a global database of plant photosynthetic pathways, satellite observations, and photosynthetic optimality theory to produce a new observation-constrained global estimate of C4 distribution. We found that global C4 coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019, as a net effect of C4 natural grass decreases due to elevated CO2 favoring C3-type photosynthesis, and C4 crop increases, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4 contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18-23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%). By improving the understanding of recent global C4 cover and productivity dynamics, our study sheds insight on the critical and underappreciated role of C4 plants in the contemporary global carbon cycle.

How to cite: Luo, X., Zhou, H., Satriawan, T., Tian, J., Zhao, R., Keenan, T., Griffith, D., Sitch, S., Smith, N., and Still, C.: Mapping the global distribution of C4 vegetation using observations and optimality theory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2338, https://doi.org/10.5194/egusphere-egu24-2338, 2024.

EGU24-2528 | ECS | Orals | BG3.31 | Highlight

Impacts of global change drivers on terrestrial methane emission and uptake 

Tingting Zhu, Yanlian Zhou, Weimin Ju, Ran Yan, Rui Xie, and Yu Mao

 Methane (CH4) is the second largest greenhouse gas and affects global climate change. In turn, global changes strongly affect CH4 fluxes from the terrestrial biosphere to the atmosphere. However, it is unclear how CH4 fluxes are affected by warming (W), precipitation patterns (P), elevated carbon dioxide (eCO2), and nitrogen (N) addition. Here, we synthesized terrestrial CH4 fluxes data from 1,165 observations performed under changes in W, P, eCO2, and N across different vegetation types over the globe. Results showed N addition significantly reduced CH4 emission and uptake across upland ecosystems (-31% and -14%, P<0.05), but stimulated CH4 emission in rice paddies (3%, P>0.05) and wetlands (24%, P<0.05). CH4 emission and uptake significantly increased by 42% and 11% under W, respectively. An increase in CO2 concentration did not affect CH4  emission in wetlands while enhanced CH4 emission in rice paddies (39%, P<0.05). Increased precipitation inhibited CH4 uptake (-21%, P<0.05), whereas decreased precipitation had a significantly positive effect on CH4 uptake (26%, P<0.05) in uplands. The overall effects of four global change drivers were -9% for CH4 uptake and 13% for CH4 emission averaged across different ecosystem types. The interactive effect of multiple factors on CH4 fluxes generally was antagonistic. In addition, the responses of CH4 emission to global change drivers significantly shifted from negative to positive with the increases in wetness indices, soil clay content, and effects of global change drivers on belowground biomass (BGB) and methanogenic bacteria (mcrA) (P<0.05). In contrast, the effects of global change drivers on CH4 emission switched from positive to negative with the increases in the responses of grain yield and aboveground biomass, respectively (P<0.05). CH4 uptake increased with the increases of BGB, inorganic nitrogen, the ratio of carbon to nitrogen, and mcrA induced by global change drivers but decreased with the increase of NO3- (P<0.05). The responses of CH4 fluxes to N addition, W, and precipitation changes exhibited considerable variations in sensitivities and magnitudes. This synthesis showed an urgent need to consider the effects of changing multiple global change drivers on CH4 fluxes for better understanding the methane-climate feedback.

How to cite: Zhu, T., Zhou, Y., Ju, W., Yan, R., Xie, R., and Mao, Y.: Impacts of global change drivers on terrestrial methane emission and uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2528, https://doi.org/10.5194/egusphere-egu24-2528, 2024.

EGU24-3495 | ECS | Orals | BG3.31

Nutrient limitation in soils regulate the effects of elevated CO2 on soil N cycling at BIFoR-FACE (UK) and Euc-FACE (Australia) 

Manon Rumeau, Yolima Carrillo, Fotis Sgouridis, Rob Mackenzie, Michaela Reay, and Sami Ullah

Increasing atmospheric CO2 concentrations due to human activities, is projected to enhance photosynthesis and carbon storage of forest ecosystem. However, it is unclear how nutrient limitation will constrain the projected CO2 fertilization effect. Therefore, it is essential to evaluate how nutrient limitation will affect the response of forests to rising CO2 concentration and how it will feedback on nutrient availabilities and more especially nitrogen (N) which can become limiting with time.

The purpose of this research is to evaluate the response of N cycling processes to elevated CO2 enrichment in a N-limited northern deciduous temperate forest in the UK and a phosphorus (P)-limited Eucalyptus dominated forest in Australia. The research was conducted in two Free Air Carbon Dioxide Enrichment (FACE) facilities: BIFOR FACE located near Birmingham, UK and EucFACE in New South Wales, Australia. Furthermore, EucFACE (P-limited forest) received partial phosphorus fertilization to study its effect on N cycling.

We employed a 15N pool dilution method to assess gross protein depolymerization and gross mineralization at both study sites, along with the measurement of nitrous oxide emissions, extracellular soil enzyme activities and nutrient pools.

Results from the N-limited forest (BIFOR FACE) indicate that elevated CO2 increased belowground carbon allocation, resulting in higher root biomass, dissolved organic carbon, microbial biomass and soil respiration. The additional carbon belowground stimulated net mineralization (+ 30%) (p<0.05) over a year of monthly measurement. Gross mineralization and ammonium immobilization were only enhanced in summer (+ 47%), whilst gross nitrification was overall downregulated (- 47%) and N2O production was un-affected by elevated CO2. This suggests that root exudates selectively influence microbial communities promoting SOM decomposition to enhance ammonium availability (+15%) (p<0.05) for trees. In the phosphorus-limited forest, carbon pools, nitrogen depolymerization and mineralization were unaffected by elevated CO2. But elevated CO2 increased soil nitrate pool (+ 37%) (p<0.05) and decreased soil moisture (-13%) indicating a potential reduction in denitrification activity.

Taken together, results from this research outline how nutrient limitation drives the response of a forest ecosystem to elevated CO2. Although at EucFACE, P limitation was alleviated in the initial phase of the experiment (Hasegawa et al., 2016), it quickly truncated plant growth and carbon feedback in soils. While, at BIFOR FACE, N limitation has been alleviated via enhanced soil N mineralization and N supply to sustain plant growth enhancement for seven years. However, how long the N supply will be maintained in the face of declining nitrogen deposition in future climates remains uncertain. Results from this research aim at improving our understanding of forest response to future climate by unveiling the role of nutrient limitation in future C uptake.

Hasegawa, S., Macdonald, C.A., Power, S.A., 2016. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob. Change Biol. 22, 1628–1643. https://doi.org/10.1111/gcb.13147

How to cite: Rumeau, M., Carrillo, Y., Sgouridis, F., Mackenzie, R., Reay, M., and Ullah, S.: Nutrient limitation in soils regulate the effects of elevated CO2 on soil N cycling at BIFoR-FACE (UK) and Euc-FACE (Australia), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3495, https://doi.org/10.5194/egusphere-egu24-3495, 2024.

EGU24-4053 | ECS | Orals | BG3.31

Nitrogen deposition effect on tree growth depends on climate, tree size, and leaf habit 

Helena Vallicrosa Pou and Charlotte Grossiord

The increase of nitrogen (N) deposition is a human-induced process associated with industry and agriculture that disrupts the nitrogen biogeochemical cycle. N deposition has been associated with environmental impacts such as land carbon sink increase, loss of biodiversity, and risk of eutrophication and acidity but further understanding of how N deposition affects trees of different environmental conditions, size, and leaf habit is missing. In this study, we use the ICP forest inventory data and the EMEP N deposition data to track how N deposition affects tree growth in interaction with temperature and precipitation, tree size classes, or leaf habits in Europe since 1990. We use linear mixed models to describe the interaction between mean annual temperature (MAT) mean annual precipitation (MAP) and N deposition in tree growth. In addition, we use gam models to track the different saturation points. We found contrasting interactions between N deposition and temperature in conifers and broadleaves. Conifers living in colder environments have a more positive response to N deposition than conifers living in warmer environments. On the other hand, broadleaves living in warmer environments had the most positive response to high N deposition levels. Interestingly, broadleaves showed lower saturation points than conifers, being around 25 kg ha yr and 30 kg ha yr respectively. Nonetheless, factors such as tree size and species can modulate such relations, being especially relevant for secondary forests or restoration processes. In conclusion, our findings point out climate, tree size, and leaf habit as strong modulators of N deposition impacts in tree growth that should be considered in future assessments and policy-making, especially in Europe. Further research is needed to certify these relations in other regions of the world.

How to cite: Vallicrosa Pou, H. and Grossiord, C.: Nitrogen deposition effect on tree growth depends on climate, tree size, and leaf habit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4053, https://doi.org/10.5194/egusphere-egu24-4053, 2024.

EGU24-4469 | ECS | Orals | BG3.31

Blind spots hinder understanding of the tropical nitrogen cycle 

Kate Nelson and the Powell Group

Our current understanding of the tropical terrestrial nitrogen (N) cycle has been shaped by decades of field-based research, predominately at a small subset of sites across the globe. These field data inform hypotheses on how N cycling is mediated by biotic and abiotic drivers, and inform the paradigm that tropical wet forests are characterized by high rates of N inputs and outputs compared with other systems, driven by high inorganic N availability. However, recent findings that do not seem to conform to this paradigm call into question how well the bulk of our underlying data represents the diversity of the tropics as a whole. We propose that there may be blind spots in our understanding of N cycling created by a paucity of sampling from areas where environmental factor combinations differ from those often studied. Identifying these blind spots may help to resolve which drivers can be generalized across the tropics as a whole, versus which sustain system heterogeneity. We conducted a pan-tropical synthesis of field sampling sites for N fixation and denitrification (two key processes that influence system N inputs and outputs, as a proxy for general understanding of N cycling) and sampling intensity between 1950 and 2022. As a metric of geographic biases in general understanding, we tallied citations counts for each study over time. We also collated globally gridded data for a range of factors hypothesized to control N cycling rates, including soil and climatic variables, productivity, topography, vegetation type, biogeographic region, and disturbance. With these data, we: 1) mapped major axes of variation in tropical environmental conditions using principal components, 2) determined the distribution of environmental variables within sampled sites versus the tropics as a whole, and 3) identified regions where unique combinations of conditions are under sampled.

Preliminary results show a relative over-representation of evergreen broadleaf forests, and under-representation of grasslands and savannas. This corresponded to a proportional oversampling of sites with higher soil fertility (soil N and P), high net primary productivity, high rainfall, and low rainfall seasonality. To quantify system-level biases we also explored intra-biome sampling variability for factors such as fertility and elevation (e.g., tropical montane versus lowland forests). Denitrification and N fixation tended to follow similar patterns in site characteristics, suggesting that these metrics are a good proxy for overall N cycling understanding.

Overall, our study identifies regions of the global tropics where environmental drivers are similar to those dictating existing knowledge, as well as understudied regions that should be targeted to explore system heterogeneity. Future work can leverage this information to design cross-system comparisons to explicitly test current hypothesized mechanisms to advance our understanding of the N cycle. Constraining nutrient availability and cycling in tropical ecosystems is especially important in the context of global change, where shifting environmental conditions may alter how forests cycle and retain N and, therefore, how nutrient limitation will constrain productivity responses to rising carbon dioxide.

How to cite: Nelson, K. and the Powell Group: Blind spots hinder understanding of the tropical nitrogen cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4469, https://doi.org/10.5194/egusphere-egu24-4469, 2024.

EGU24-4516 | ECS | Orals | BG3.31

Divergent responses of vegetation dynamics to a changing climate through different VOD products in China 

Mingzhu He, Yonghong Yi, Xiaojun Li, Jean-Pierre Wigneron, John Kimball, Rolf Reichle, Lei Fan, Hans Chen, and Qian Zhang

Vegetation optical depth (VOD), has been widely assessed for monitoring vegetation carbon and water status under different conditions. However, their abilities to reflect the integrated dynamics in vegetation status under a changing climate are rarely investigated, especially in China. To fill this gap, this study examines seven VOD products for their capabilities to monitor the changes in vegetation status under a varying climate from 2015 to 2021 in China, including X-, C- and L-band VOD products from AMSR-E, AMSR2, SMOS and SMAP. The results indicate that most VOD products generally show consistent responses to temperature (Ta), vapor pressure deficit (VPD) and soil moisture (SM) variations for the ecosystems with simple canopy structure, such as temperate grassland and shrublands, which are also water-limited ecosystems. Moreover, these VOD products also exhibit similar responses to a varying climate for Ta-constrained temperate forests, independent of retrieval frequencies and algorithms. For other ecosystems, however, the links between VOD and climate variables are sensitive to retrieval frequencies and algorithms. Specifically, due to the relatively high frequency, X-band VOD products can capture vegetation responses to Ta, VPD and SM stresses as the vegetation canopies respond rapidly to climate variations, especially for ecosystems located in the dry and warm regions. Furthermore, all seven VOD products, and especially X-band VOD, show high sensitivity to SM carry-over effects on vegetation dynamics, especially for temperate non-forests ecosystems. These findings help clarify the capability of different VOD products to mirror vegetation responses to a changing climate across different ecosystems in China, highlighting the importance of choosing the most appropriate VOD product as vegetation proxies in global and regional studies.

How to cite: He, M., Yi, Y., Li, X., Wigneron, J.-P., Kimball, J., Reichle, R., Fan, L., Chen, H., and Zhang, Q.: Divergent responses of vegetation dynamics to a changing climate through different VOD products in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4516, https://doi.org/10.5194/egusphere-egu24-4516, 2024.

Liebig’s Law of the Minimum underscores the need for balanced nutrition for optimal plant growth; any deficiency in essential nutrients can influence plant growth and subsequent biomass accumulation. Anthropogenic nitrogen (N) deposition can alleviate the prevailing N limitation and stimulate plant growth in many terrestrial ecosystems, thereby helping to mitigate climate change. However, the N stimulation effects may diminish under conditions where plant growth is limited by soil cation availability that is susceptible to N-induced soil acidification. How variation in soil cations influences N stimulation of plant growth is unresolved. Here, we synthesized data from 282 field experiments and found that in agreement with the optimal allocation theory, N addition asymmetrically increased plant biomass aboveground (42.5 ± 7.4%) and belowground (20.8 ± 10.1%). The increment in aboveground biomass was soil pH dependent, shifting from neutral in low pH (pH ≤ 4.5) to positive in medium (4.5 < pH ≤ 7.5) and high pH (pH > 7.5) soils. In contrast, changes in belowground biomass were independent of soil pH. The variations in biomass increments across different soil pH ranges were mediated by the levels of foliar magnesium (Mg) and calcium (Ca), with the responses exhibiting a shift from negative in low pH soils to neutral in medium and high pH soils. These findings suggest that reduction in foliar Mg and Ca levels diminishes the N stimulation of plant biomass despite the enhancement of root growth in low pH soils. Given the widespread stimulation of plant biomass through N addition, the extent of this effect is soil pH dependent and mediated by the foliar cation status of plants.

How to cite: Xu, X.: Nitrogen Stimulation of Plant Biomass Growth Mediated by Foliar Magnesium and Calcium Worldwide , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4852, https://doi.org/10.5194/egusphere-egu24-4852, 2024.

EGU24-4879 | Posters on site | BG3.31

Reconciling carbon isotope discrimination between leaf biomass and tree-ring to estimate water-use efficiency of global forests 

Xiao Ying Gong, Yong Zhi Yu, Wei Ting Ma, Xuming Wang, and Hans Schnyder

The response of intrinsic water-use efficiency (iWUE) to climate change is of uncertain magnitude owing to difficulties in accounting for physiological acclimation of plants. In particular, estimations based on controlled experiments, flux towers, and isotope data had significant differences in the historical trends of iWUE. Carbon isotope discrimination (∆) in leaf biomass (∆BL) and tree rings (∆TR) are vital indicators of how plants adjust water-carbon relations. The theory of photosynthetic 12C/13C discrimination is well-established. However, isotope fractionation downstream of photosynthesis, known as post-photosynthetic fractionation (∆post), also affects the 13C signature of plant tissues. The influence of ∆post on iWUE estimation remain uncertain, limiting quantitative study of iWUE using carbon isotopes.

In this study, we derived a comprehensive, ∆ based iWUE model (iWUEcom) which explicitly incorporates mesophyll conductance, photorespiratory fractionation and ∆post. We characterized the ∆post based on the observations of ∆BL and online carbon isotope discrimination (∆online). The iWUEcom model was further validated with independent datasets of ∆BL, ∆TR, and leaf-level gas exchange data paired by species, years, and locations across the globe.

BL was consistently larger than ∆online. Furthermore, the paired data of ∆BL and ∆TR showed a near constant offset, indicating that ∆post was different between leaf biomass and tree rings. Applying the material-specific ∆post values, iWUE estimated from ∆BL aligned well with that estimated from ∆TR and gas exchange. ∆BL and ∆TR showed a consistent iWUE trend with an average CO2 sensitivity of 0.15 ppm ppm-1 during 1975-2015, pointing out the overestimation of the historical iWUE response by the conventional model.

A process-based framework has been suggested to predict iWUE of global forest based on isotope records in leaf biomass and tree rings, providing an ultimate tool to infer changes in carbon and water cycles under historical and future climate. 

How to cite: Gong, X. Y., Yu, Y. Z., Ma, W. T., Wang, X., and Schnyder, H.: Reconciling carbon isotope discrimination between leaf biomass and tree-ring to estimate water-use efficiency of global forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4879, https://doi.org/10.5194/egusphere-egu24-4879, 2024.

EGU24-5169 | ECS | Orals | BG3.31

Slowdown of the rise in the optimum temperature of photosynthetic productivity under future global warming 

Chongyang Xu, Hongyan Liu, Dan Yakir, Boyi Liang, Xinrong Zhu, Siwen Feng, and José Grünzweig

The optimum air temperature for photosynthetic ecosystem productivity (Topt) determines the annual maximum of terrestrial carbon uptake. Previous studies have quantified Topt and explored its acclimation in response to climatic warming. However, there remains uncertainty regarding the extent to which Topt has changed globally in recent decades and how it might evolve in the future. Our analysis, using both satellite- and ground-based datasets, reveals a slight increase in Topt over the past two decades (+0.14°C, 2000-2019), contrasting with a significant 0.46°C rise in maximum global growing-season temperature (Tmax). The lack of change in Topt was attributed to an insignificant trend of Tmax in cold areas and to drought inhibiting thermal acclimation of photosynthesis in temperate and arid regions. If global surface temperatures exceeded pre-industrial levels by 2°C, the mean Tmax over the globe was predicted to increase slightly more than Topt (1.5 vs. 1.2°C), with the gap widening under a 4°C temperature increase (4.1 vs. 3.4°C). In the +4°C scenario, soil drought dominated the widespread decline in photosynthetic acclimation across tropical and temperate vegetation, slowing the rate of Topt increase at the end of the century (+0.04°C, 2080-2099). Conversely, increasing atmospheric CO2 concentrations failed to have significant effects on Topt and its acclimation. These findings imply that the absorption of atmospheric CO2 by terrestrial vegetation, and subsequent carbon sequestration, may be further hampered by the limited acclimation capacity of Topt to rising global temperatures.

How to cite: Xu, C., Liu, H., Yakir, D., Liang, B., Zhu, X., Feng, S., and Grünzweig, J.: Slowdown of the rise in the optimum temperature of photosynthetic productivity under future global warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5169, https://doi.org/10.5194/egusphere-egu24-5169, 2024.

EGU24-5547 | Posters on site | BG3.31

Relation between water-use efficiency and nutrient availability in European semi-natural ecosystems  

Ladislav Šigut and Filip Oulehle and the ICOS ecosystem site PIs

The CO2 and H2O exchange between plant ecosystem and the atmosphere is commonly interpreted in the terms of plant performance in response to micrometeorological conditions. Though changing light and weather conditions play a primary role in determining yearly ecosystem CO2 uptake and water loss, CO2 and H2O budgets are further modulated by nutrient availability (NA) and air deposition (AD). The influence of changes in NA and AD is observable only over longer time periods, thus when evaluating the time series of eddy covariance fluxes it is more practical to compare across different sites with contrasting levels of NA and AD. Water-use efficiency (WUE) proved to be a useful indicator of ecosystem performance and fitness and allows to evaluate changes in ecosystem functioning since it reflects the degree of stomatal regulation of carbon assimilation and water loss.

In this contribution we will focus on the evaluation of NA of nitrogen, phosphorus, and calcium ions on WUE. For this purpose, we take advantage of the existing NA survey performed yearly within ecosystem stations belonging to the Integrated Carbon Observation System (ICOS) network. Nutrient concentrations are obtained from the leaf samples cut from sun-exposed part of the vegetation canopy. Though nutrient content in the soil is not available, leaf samples are expected to be a better measure as they should reflect both soil NA and nutrient accessibility to the plant. The wide selection of semi-natural ecosystems across Europe will allow to evaluate the capability of ICOS network to capture the impact of NA on WUE. Furthermore, we will evaluate how leaf NA relates with AD, especially in the case of nitrogen depositions. For this purpose, EMEP MSC-W modelled air deposition results will be used.

How to cite: Šigut, L. and Oulehle, F. and the ICOS ecosystem site PIs: Relation between water-use efficiency and nutrient availability in European semi-natural ecosystems , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5547, https://doi.org/10.5194/egusphere-egu24-5547, 2024.

Afforestation and reforestation have emerged as optimal nature-based solutions for global climate mitigation, providing critical ecosystem services and biodiversity benefits. However, the long-term impacts of two restoration modes on multiple ecosystem functions (that is, multifunctionality) at a global scale have long been recognized. Here, we compiled data from 1247 reforestation and afforestation sites worldwide, which encompass a forestation history of up to a hundred years, to explore the long-term effects of forest recovery on ecosystem multifunctionality, including plant productivity, soil carbon accumulation, nutrient cycling, decomposition metabolism, and microbial habitats. Our findings reveal that afforested ecosystems consistently exhibit an upward trend in multifunctionality over this hundred-year span, while reforested ecosystems tend to stabilize in multifunctionality after approximately 30 years. A comprehensive analysis of biotic and abiotic factors revealed that bacterial diversity is a primary driver of increased multifunctionality in afforested ecosystems, while fungal diversity plays a critical role in the initial increase and subsequent stabilization of multifunctionality in reforested ecosystems. Additionally, changes in the soil microenvironment, such as increased soil moisture and improved soil compaction, were identified as key regulators of microbial diversity, thereby impacting ecosystem multifunctionality. Overall, our study demonstrates the substantial ecological restoration potential of both reforestation and afforestation but attention should be paid to microbial diversity in future ecological restoration efforts considering the crucial role in enhancing global ecosystem function restoration and sustainability.

How to cite: Meng, Z. and Wu, Y.: Microbial diversity drives divergent multifunctionality in global afforestation and reforestation ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6697, https://doi.org/10.5194/egusphere-egu24-6697, 2024.

EGU24-7241 | ECS | Orals | BG3.31 | Highlight

Complexity of nutrient enrichment on subarctic peatland soil CO2 and CH4 production  

Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Saraswati, Stephanie Wright, William L. Quinton, Kara Webster, and Philippe Van Cappellen

Wildfires are increasing across northern high latitudes. Besides the immediate carbon pool losses from directly disturbed areas, recent studies have reported high porewater nitrogen (N) and phosphorus (P) concentrations in burned areas and downstream waters for a few months to several years after fire occurrence. Increasing nutrient deposition and soil fertilizer use have been widely investigated for water quality and carbon loss in agricultural soils, but not for remote subarctic peatlands. In this study, we sampled soil cores (0-25 cm) from a bog and a fen peatland in the Scotty Creek watershed in the Northwest Territories and conducted an incubation experiment for the effects of added nutrients in porewater. Aliquots of the peatlands were divided into separate containers and artificial porewater was added, either amended with dissolved inorganic N (NH4 + NO3), P (PO4), both N and P, or unamended. The production rates of gaseous CO2, CH4 and N2O were measured at 1, 5, 15, and 25°C. We further analyzed the initial and final soil physical properties, porewater chemistry, and microbial biomass C:N:P ratios. The fen incubations yielded overall greater CO2 and CH4 production rates than the bog incubations, which we attributed to differences in soil properties and initial microbial biomass. The N addition to the bog samples increased CO2 production, while the P addition to the fen samples increased CO2 production. The addition of both N and P reduced CO2 production but elevated that of CH4 for both peatland soils. After a month, the pore water C, N, and P stochiometric ratios approached the initial soil microbial biomass ratios, suggesting microbial nutrient recycling in an inherently nutrient-poor soil environment. These preliminary results imply a complex response of carbon turnover in peatland soils to nutrient enrichment.

How to cite: Byun, E., Rezanezhad, F., Slowinski, S., Lam, C., Saraswati, S., Wright, S., Quinton, W. L., Webster, K., and Van Cappellen, P.: Complexity of nutrient enrichment on subarctic peatland soil CO2 and CH4 production , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7241, https://doi.org/10.5194/egusphere-egu24-7241, 2024.

EGU24-8022 | ECS | Posters on site | BG3.31

The effects of environmental factors on stability of forest carbon sink exceeded biotic factors 

Xiaoyun Wu, Hang Xu, Jianzhuang Pang, and Zhiqiang Zhang

The stability of forest carbon sinks is pivotal for mitigating carbon-climate feedbacks and achieving climate objectives. Emerging evidence suggested that this stability was diminished by climate change and extreme weather events, thus jeopardizing the carbon sequestration capacity and enhancing forest vulnerability. Yet, how biotic factors react to the effects of environmental change on it remains unknown. Here, we integrate long-term (7-29 years) flux and micrometeorological observations of 48 forest sites from ecosystem observation networks (FLUXNET2015, AmeriFlux and ICOS) with interpretable machine learning algorithm (SHAP values) to show how biotic factors and environmental factors impacts stability of forest carbon sink, quantified by critical slowing down indicators (i.e., temporal autocorrelation, TAC), and comparatively analyzed the differences between high- and low-stability forests. Our analysis revealed that environmental factors (i.e., mean annual temperature MAT; mean annual temperature, MAP; carbon dioxide concentration, Ca; incoming shortwave radiation, SW; vapor Pressure Deficit, VPD; soil water availability, the Priestley-Taylor coefficient, α) held a substantially greater impact (the cumulative mean SHAP values) on TAC than biotic factors (i.e., marginal water cost of carbon gain, G1; canopy photosynthetic capacity, Amax; reference canopy conductance, Gcref; carbon sink capacity, NEP), with most of this influence ascribed to MAT, MAP, Ca, G1, and NEP. High-stability forests more intensively presented in conditions with relatively warm and humid long-term climate, coupled with moderately conservative water-use strategies and carbon sink capacity. Although CO2 fertilization effects increased the positive effects of moderate G1 to carbon sink stability, however, higher Ca markedly diminished its stability. Our findings underscore the necessity for caution regarding the detrimental impacts of sustained rise in Ca, gradual warming and drying of the long-term climate, and extreme atmospheric and soil drought events on the stability of forest carbon sinks, given the current limitations of vegetation's biotic factors to adapt to these changes.

How to cite: Wu, X., Xu, H., Pang, J., and Zhang, Z.: The effects of environmental factors on stability of forest carbon sink exceeded biotic factors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8022, https://doi.org/10.5194/egusphere-egu24-8022, 2024.

EGU24-8382 | ECS | Orals | BG3.31 | Highlight

Leaf chlorophyll: a global study employing a process-based model and remote sensing observations 

Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Sönke Zaehle, Silvia Caldararu, and Tea Thum

Slowing down climate change calls for a strengthening of natural carbon sinks. Estimating current carbon stocks and the carbon storage potential of natural ecosystems necessitates a good understanding of carbon and nitrogen cycles. As the increase of land carbon sink is likely to be nitrogen-limited in temperate and boreal ecosystems, it is important to constrain the uncertainties related to the carbon and nitrogen processes in the ecosystems. Leaf chlorophyll (chlleaf) and leaf nitrogen allocated to photosynthetic fractions are closely related, as plants optimise their nitrogen resources between light harvesting and the reactions of the Calvin cycle. chlleaf is consequently one of the key factors in determining leaf photosynthetic rates and a strong proxy for photosynthetic capacity. The recent advances in remote sensing (RS) provide a novel opportunity for benchmarking the modelled terrestrial nitrogen cycle through leaf chlorophyll content.

In this study, we utilize a terrestrial biosphere model, QUINCY, for simulating the chlleaf content for different ecosystems in a global scale. QUINCY includes a comprehensive representation of coupled carbon and nitrogen cycles, and also diagnostics for chlleaf. We use a satellite-based leaf chlorophyll RS product for evaluating how well QUINCY captures spatial and temporal patterns of chlleaf. The evaluation is conducted for a selection of 400 locations distributed world-wide to represent all major global biomes. In addition, we analyse the accuracy of chlorophyll and productivity (GPP) simulation at 169 sites of the FLUXNET eddy covariance.

Our initial results reveal that on global scale, QUINCY chlleaf matches well with the RS chlleaf observations. However, the QUINCY chlleaf values seem to be constrained to a more narrow numerical range than the RS observations, indicating that not all factors contributing to the observed variation are considered in the modeling framework. For instance, the modeled grassland chlleaf shows much smaller variation between different locations when compared to RS observations at different sites. For the FLUXNET sites, the mean annual GPP values from QUINCY are slightly underestimated (on average, ~-260 gC m-2 yr-1) when compared to flux observations. Nevertheless, the QUINCY mean annual GPP for different sites correlates with the ground station data reasonably well (r=0.67). 

Our study paves way for more versatile use of satellite observations within terrestrial biosphere models. Harnessing satellite products to model evaluation helps to improve model parametrizations related to carbon and nitrogen cycles, which in turn would allow more precise modeling of the terrestrial carbon budget.

How to cite: Miinalainen, T., Ojasalo, A., Croft, H., Zaehle, S., Caldararu, S., and Thum, T.: Leaf chlorophyll: a global study employing a process-based model and remote sensing observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8382, https://doi.org/10.5194/egusphere-egu24-8382, 2024.

EGU24-8421 | ECS | Posters on site | BG3.31

Leaf conductance, isohydric strategy, and Ѱ50 shape drought responses of European tree species in a dynamic vegetation model 

Benjamin F. Meyer, João Darela-Filho, Qiaolin Gu, Konstantin Gregor, Andreas Krause, Phillip Papastefanou, Allan Buras, Benjamin Hesse, Sijeh Agbor Asuk, Daijun Liu, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig

Increasingly frequent and intense drought events can jeopardize the current and future productivity and health of forests. Consequently, the ability of dynamic vegetation models (DVMs) to simulate drought impacts is paramount to improving their representation of the carbon cycle. To capture the physiological damage inflicted by drought, many state-of-the-art DVMs have implemented representations of plant hydraulic architecture in recent years. Although the understanding of the underlying processes governing hydrodynamic behavior in plants has steadily increased, the parameterization of hydraulic traits for different plant functional types (PFTs) remains a source of uncertainty in model output – in part due to limited data availability. 

 

Here, we use LPJ-GUESS-HYD, an extension of LPJ-GUESS with new parameters and processes to simulate plant hydraulic architecture, isohydrodynamic water-potential regulation, and hydraulic failure mortality. Using latin hypercube sampling we create 6000 sets of hydraulic parameter combinations based on values found in the literature. Based on these parameter sets, we conduct a comprehensive variance-based sensitivity analysis for a set of 12 common European tree species across 37 sites from the FLUXNET 2020 warm winter dataset, encompassing a wide range of European ecosystems. Subsequently, we determine which parameters and parameter interactions contribute the most to variations in model outputs. 

 

Our results indicate that of the seven parameters used in the hydraulic architecture model of LPJ-GUESS-HYD, only a few have a significant effect on the model outcomes. More specifically, Ѱ50, the water potential at which 50 percent of conductance is lost, and maximum specific leaf conductance had the largest impact on simulated processes. Parameters related with the isohydric strategy of plants, had a lesser but still substantial role in shaping the model output. 

 

These results suggest that certain hydraulic parameters – and combinations thereof –  play a disproportionate role in modulating simulated forest fluxes and states in LPJ-GUESS-HYD. Specific parameterization choices can drastically alter model performance, including whether PFTs can survive in a given climate or not. Aside from encouraging careful consideration of the available trait data when parameterizing new PFTs, our results may guide future experiments in choosing which hydraulic traits to focus on.

How to cite: Meyer, B. F., Darela-Filho, J., Gu, Q., Gregor, K., Krause, A., Papastefanou, P., Buras, A., Hesse, B., Asuk, S. A., Liu, D., Grams, T. E. E., Zang, C. S., and Rammig, A.: Leaf conductance, isohydric strategy, and Ѱ50 shape drought responses of European tree species in a dynamic vegetation model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8421, https://doi.org/10.5194/egusphere-egu24-8421, 2024.

Anticipating and preparing for life on a warming planet requires a predictive understanding of how increasing drought and heat stress will affect terrestrial plants and the many services they provide. The water potential of soils and plants – which can be imagined as the blood pressure of the natural world – is a fundamental driver of ecosystem water flows, and directly controls many aspects of plant functioning during drought. However, and especially when compared to the rich information contained in flux tower networks like AmeriFlux and FLUXNET, observations of water potential are relatively sparse, undiscoverable, and plagued by methodological disparities that constrain the synthetic research necessary to improve conceptual understanding and predictive models of plant drought responses. A new network – PSInet – will confront this water potential information gap by creating an open and accessible global water potential database that is harmonized with the structure of other established and related networks (e.g. flux tower networks, SAPFLUXNET). The database creation will be complemented by efforts to develop community-crafted protocols, best-practices, and analytical tools for soil and plant water potential observation and interpretation, with a particular emphasis on emerging techniques for continuous observation of water potential in-situ. Finally, the network will build a diverse “Community of Practice” to elevate the measurement, synthesis, and application of plant and soil water potential through early career training programs, community workshops, and novel teaching and outreach tools. In this talk, I’ll describe how these activities could provide the data, collaborative platforms, and training necessary to improve our predictive understanding of ecosystem water status and flows.

How to cite: Novick, K. and Guo, J.: PSInet – a global water potential network to improve understanding of ecosystems water status and flows, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10166, https://doi.org/10.5194/egusphere-egu24-10166, 2024.

There is evidence of large differences in the spatial and temporal variations between soil heterotrophic respiration and autotrophic respiration in terrestrial ecosystems. This study was designed to test the hypothesis that there were differences in the seasonal and inter-annual variations between heterotrophic respiration and autotrophic respiration in subtropical forestlands. Here, we applied calibrated heterotrophic respiration and autotrophic respiration models to estimate soil respiration over 2002-2022 at three forest sites in subtropical China. Our results showed smaller seasonality and inter-annual variability in heterotrophic respiration than in autotrophic respiration. The inter-annual variation was strongest in winter for both heterotrophic respiration and autotrophic respiration. The main driving factor responsible for temporal variations was soil temperature for heterotrophic respiration, but fine root biomass for autotrophic respiration. There was a significant increasing trend only in autotrophic respiration over 2002-2022, which corresponded to the significant increasing trend in fine root biomass. Divergent inter-annual changes in these two respiration components led to the significant increasing trend in autotrophic respiration’ contribution, as well as total soil respiration. Due to the decreasing seasonality of soil temperature and fine root biomass, there was a declining seasonality in both heterotrophic respiration and autotrophic respiration. Our results highlight the importance of separately modeling and estimating soil heterotrophic respiration and autotrophic respiration in subtropical forestlands.

How to cite: Yan, Y., Wang, X., and Wohlfahrt, G.: The differences of seasonal and inter-annual variations  between soil heterotrophic respiration and autotrophic respiration in the subtropical forests of China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10418, https://doi.org/10.5194/egusphere-egu24-10418, 2024.

EGU24-11553 | ECS | Posters on site | BG3.31

Detecting Multiscale Carbon Controls in a Mediterranean Tree-Grass Ecosystem with Different Fertilization Treatments 

Laura Nadolski, Tarek El Madany, Arnaud Carrara, Jacob Nelson, Anke Hildebrandt, Markus Reichstein, and Sung-Ching Lee

Semi-arid ecosystems significantly impact the variability of the global terrestrial carbon sink and are influenced by a changing climate as well as anthropogenic nitrogen deposition. To understand how different nutrient availability impacts the drivers of net ecosystem exchange (NEE) in these ecosystems across temporal scales, we analyze a long-term dataset of biometeorological, soil and flux data from 2016 to 2022 from three Eddy Covariance (EC) measurement stations in Western Spain. The site (Majadas de Tiétar) is a Mediterranean tree-grass ecosystem home to a large-scale fertilization experiment. One station area received nitrogen treatment, another one both nitrogen and phosphorus treatments, and the third one serves as control. We apply Singular Spectrum Analysis to identify the variability of the different variables on multiple timescales (daily, multiday, seasonal). We then utilize metrics of mutual information to identify the main drivers of NEE across these timescales.

Preliminary findings show an increase in NEE dynamics in the fertilized areas both at ecosystem scale and at the grass-layer only. The dominant factors driving the dynamics of NEE vary depending on the timescale. On the daily scale, NEE is closely coupled to radiation, whereas on the seasonal scale water availability gains importance in predicting NEE. We find that the importance of vegetation greenness at the tree layer increases with longer timescales, and that also soil temperatures affect NEE at seasonal timescale. The relationships are further modified by different nutrient availability. While on the daily scale the differences between the three fertilization treatments are marginal, they intensify at the seasonal scale. Our comprehensive analysis facilitates a detailed understanding of the complex interactions between NEE and its controls under different environmental conditions and can help to improve the accuracy of terrestrial ecosystem models.

How to cite: Nadolski, L., El Madany, T., Carrara, A., Nelson, J., Hildebrandt, A., Reichstein, M., and Lee, S.-C.: Detecting Multiscale Carbon Controls in a Mediterranean Tree-Grass Ecosystem with Different Fertilization Treatments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11553, https://doi.org/10.5194/egusphere-egu24-11553, 2024.

EGU24-12018 | ECS | Orals | BG3.31

Unveiling the springtime phenological strategies in permafrost vegetation 

Yu Zhu, Fabrice Lacroix, Lei Liu, Dongsheng Zhao, and Sönke Zaehle

The springtime phenology in permafrost regions of the Northern Hemisphere is exhibiting an extensive advance in response to climate change that is considered to be primarily driven by the rising temperature that vastly exceeds the average rate of global warming. This phenological trend emerges as the result of spatial variability in temperature and the response of vegetation to temperature (referred to here as the temperature sensitivity (ST) of phenology, change in phenological timing per unit change in temperature). In contrast to the more well-defined pattern of temperature variability, far less is known about the temperature sensitivity of vegetation phenology. Further, the above-average and highly heterogeneous warming in permafrost regions leads to changes in chilling exposure, frost risk, and other key controllers of temperature sensitivity, potentially allowing plants to adapt their phenological strategies. However, these phenological strategies  have not been investigated yet at the pan-Arctic scale in models or observations.

Here, we seek to combine remote sensing-based and process model-based approaches to reveal the spatiotemporal pattern and strategic mechanisms regarding the ST of springtime phenology. To obtain generalisable dependencies, remote sensing retrieved phenology, climate data and soil physical property data are used to explore the linkages between ST and temperature and permafrost drivers, providing insights on vegetation phenological strategies. The novel QUINCY model is then adopted at site levels to validate the plausibility of possible strategies. Sets of model experiments with respect to varying biological and environmental factors are applied to elucidate the major controllers. Results shed light on the importance of environmental variability, and provide a more elaborate explanation for the ST variability of spring-time phenology.

How to cite: Zhu, Y., Lacroix, F., Liu, L., Zhao, D., and Zaehle, S.: Unveiling the springtime phenological strategies in permafrost vegetation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12018, https://doi.org/10.5194/egusphere-egu24-12018, 2024.

EGU24-12300 | ECS | Orals | BG3.31

 Carbon sink strength and allocation dynamics of a rich fen peatland in the warming Arctic 

Sandeep Thayamkottu, Thomas Smallman, Mathew Williams, Jaan Pärn, and Ülo Mander

Arctic peatlands harbour enormous stocks of carbon (C) owing to the imbalance between photosynthesis and respiration rates. This carbon has been exposed to a changing climate, in particular warming, during the last century. The Arctic has warmed by on an average ~0.75°C (Post et al; 2019), which is almost double the rate of global average. There is a wide range of studies on Arctic peatland C cycle, but critical knowledge gaps remain. In particular, plant C traits such as allocation rates, residence time of C in foliage, structural, fine root and labile pools and their response to warming climate are rarely explored. In order to investigate these traits, we trained an intermediate complexity terrestrial ecosystem model (DALEC), which represents these key unknowns, with available in-situ data in order to generate a data constrained analysis of ecosystem function. DALEC is calibrated with a Bayesian model-data fusion framework (CARDAMOM) which retrieves a probabilistic estimate of DALEC’s parameters based on the combination of observations and their uncertainties. CARDAMOM’s analysis directly provides an estimate of our uncertainty. We used 7 years (2014–2020) of data from the Bonanza Creek rich fen peatland in Alaska using a weekly timestep. CARDAMOM used eddy covariance information, earth observation, and in-situ biophysical observations to calibrate DALEC. We found a switch from a C source to sink, which is forced by increase in photosynthesis and leaf area index . Gross and net primary production (GPP and NPP) almost doubled from 2014 to 2017, transforming the peatland from a C source to a sink. Our analysis also suggests that NPP allocation is directed primarily towards foliage over the fine root and structural C pools.

How to cite: Thayamkottu, S., Smallman, T., Williams, M., Pärn, J., and Mander, Ü.:  Carbon sink strength and allocation dynamics of a rich fen peatland in the warming Arctic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12300, https://doi.org/10.5194/egusphere-egu24-12300, 2024.

EGU24-12358 | Orals | BG3.31

 Just semantics?: CO2 fertilization is a disturbance leading to degradation of tropical forests 

David Lapola, Carolina Blanco, Barbara Cardeli, João Martinelli, Carlos Quesada, Bianca Rius, and Celso Silva-Junior

The effect of CO2 fertilization is listed as the main cause of the observed increase in net primary productivity and biomass stocks in “undisturbed” tropical forests. This is generally considered to provide greater resilience to tropical forests against disturbances that cause forest degradation such as extreme droughts and logging. Here, we discuss how this may be conceptually short-sighted, given that these forests are being pushed more quickly to their growth limits compared to a situation if atmospheric CO2 concentration was not rising. Once this growth limit is reached, this shift — from a phase dominated by the CO2 fertilization effect to a subsequent state marked by progressive saturation or a decrease in carbon sinks — will potentially render these forests more vulnerable to changing climate and other disturbances. In this presentation we will discuss that, in the long term, CO2 fertilization is a disturbance that leads to forest degradation, falling within the very definition of degradation, as it is human-caused and leads to transient or long-term deleterious change in forest condition (e.g. carbon storage, forest composition). Such a recognition of the CO2 fertilization affect as a disturbance causing degradation is politically and scientifically relevant in light of climate policies, such that the responsibility for protecting these forests from climate change and other human interventions is shared with countries other than just those that host these forests.

How to cite: Lapola, D., Blanco, C., Cardeli, B., Martinelli, J., Quesada, C., Rius, B., and Silva-Junior, C.:  Just semantics?: CO2 fertilization is a disturbance leading to degradation of tropical forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12358, https://doi.org/10.5194/egusphere-egu24-12358, 2024.

Extreme drought and land-use intensification pose significant threats to ecosystem stability. However, existing studies that assess ecosystem stability primarily focus on above-ground net primary productivity (ANPP) stability and overlook the importance of below-ground net primary productivity (BNPP) stability. Here, by manipulating five levels of precipitation treatment (1/12 P, 1/4P, 1/2P, 3/4P, and P) and clipping (unclipped vs. clipped) over 7 years (2016-2022) in an alpine meadow, we examined the response patterns and drivers of ANPP stability and BNPP stability to drought and clipping. The results showed that extreme drought decreased ANPP stability but moderate drought increased BNPP stability, which challenges the traditional view that extreme drought could destabilize ecosystem stability based solely on results from aboveground processes. Besides, clipping had no impacts on ANPP stability but reduced BNPP stability, and clipping differentially regulated the stability of above- and below-ground productivity in response to extreme drought in our study.  Furthermore, ANPP stability was primarily driven by species asynchrony rather than species richness, whereas dominant species stability contributed strongly to the variations in BNPP stability of this alpine meadow confronted with drought and clipping. This study provides compelling experimental evidence for the decoupling in responses of ANPP stability and BNPP stability to extreme drought and clipping. Our findings indicate that aboveground responses should not be a sole predictor of the whole ecosystem-scale consequences of extreme drought and clipping on ecological stability, and lay stress on the necessity of evaluating ecosystem stability from a whole ecosystem perspective.

How to cite: Ma, F.: Decoupled responses of above- and belowground productivity stability to drought and clipping in an alpine meadow, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14789, https://doi.org/10.5194/egusphere-egu24-14789, 2024.

EGU24-14921 | Posters on site | BG3.31

Evaluating CLM5-FATES performance with different complexities of vegetation dynamics across European forested sites 

Bibi S. Naz, Christian Poppe, Harrie-Jan Hendricks Franssen, Rosie Fisher, Juan Baca Cabrera, and Harry Vereecken

Land surface models (LSMs), when coupled with vegetation dynamic models, serve as useful tools to understand how ecosystem changes impact carbon and water cycling and interact with the climate. However, simplified vegetation parameterization schemes within LSMs makes it challenging to capture the full dynamics of vegetation processes, leading to significant uncertainties in the simulated ecosystem variables. To assess these uncertainties stemming from different model complexities in vegetation representations, we conducted model simulations employing different vegetation parameterization schemes: (1) using static vegetation distribution and prescribed leaf area index (LAI), (2) simulating full carbon cycle with static vegetation, and (3) explicitly simulating fully dynamic carbon and vegetation distribution.

Here, we use a vegetation demographic model, the Functionally Assembled Terrestrial Simulator (FATES) coupled with the Community Land Model (CLM5) to evaluate the representation of vegetation dynamics and related surface fluxes across multiple forested sites in Europe selected from the Integrated Carbon Observation System (ICOS) station network. Comparison with observations showed that the CLM5-FATES model, with the full vegetation dynamics implementation, exhibited better model performance in simulating gross primary production (GPP) than the runs with prescribed leaf-area climatology. However, the model showed an underestimation of LAI with low interannual variations compared to satellite-based MODIS data, particularly for sites with evergreen forests. Additionally, the model's performance in simulating hydrological fluxes (such as soil moisture (SM) and evapotranspiration (ET)) remained consistent across all sites, irrespective of model complexity. Future work will explore uncertainties in simulated vegetation structure and distributions and parameter optimization to improve model performance in simulating forest growth and composition.

How to cite: Naz, B. S., Poppe, C., Franssen, H.-J. H., Fisher, R., Cabrera, J. B., and Vereecken, H.: Evaluating CLM5-FATES performance with different complexities of vegetation dynamics across European forested sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14921, https://doi.org/10.5194/egusphere-egu24-14921, 2024.

EGU24-17295 | Posters on site | BG3.31

DRYTIP – understanding drought-induced changes in ecosystem functioning across Europe 

Christin Abel, Yan Cheng, Guy Schurgers, and Stephanie Horion

Terrestrial ecosystems are increasingly confronted with environmental changes such as climate change, natural disasters, or anthropogenic disturbances. Prolonged droughts, heat waves and increasing aridity are generally considered major consequences of ongoing global climate change and are expected to produce widespread changes in key ecosystem attributes, functions, and dynamics. Europe has been heavily affected by consecutive and increasingly severe droughts in the past decades, leading to large-scale vegetation die-offs and land degradation. This enhanced frequency in the past, combined with potential impacts of future climate change, makes it important to understand how these droughts affect ecosystem stability functioning and induce changes in ecosystem functioning, which is the aim of the DRYTIP project.  
As carbon gain in terrestrial ecosystems is a compromise between photosynthesis and transpiration, a ratio that is also known as water-use-efficiency (WUE), assessing changes in WUE plays a key role in assessing changes in terrestrial ecosystem functioning. We used a remote sensing-based approach to describe changes in ecosystem functioning (similar to the approach suggested in Horion et al. (2019)) across Europe between 2000 and 2023.  
We investigate how the severity and duration of droughts relates to the intensity of the change in ecosystem functioning, as well as what are the characteristics of ecosystems where abrupt changes in WUE were observed as a result of drought. We expect to find regional differences in the WUE response scenarios to drought and we will explore the underlying ecosystem conditions in exemplary cases. We finally hypothesise that these differences in ecosystem response to drought can be linked to ecosystem resilience.  
We are looking forward to presenting and discussing preliminary results at the General Assembly.  

How to cite: Abel, C., Cheng, Y., Schurgers, G., and Horion, S.: DRYTIP – understanding drought-induced changes in ecosystem functioning across Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17295, https://doi.org/10.5194/egusphere-egu24-17295, 2024.

EGU24-17558 | Orals | BG3.31

Scots pine (Pinus Sylvestris) seedlings BVOC emissions composition under basal,  heat and drought conditions 

Simone M. Pieber, Ugo Molteni, Arun Bose, Celia Faiola, Jonas Gisler, Shan Gu, Stefan Hunziker, Markus Kalberer, Na Luo, Tatiana Nazarova, and Arthur Gessler

Climate models project a further increase in the average global temperature for the following decades, with Alpine regions (and their ecosystems) expected to be over-proportionally more affected. Biogenic volatile organic compounds (BVOCs) comprise the largest, most highly complex, and diverse fraction of the volatile organic compounds (VOCs) emitted into the atmosphere (1). By emitting BVOCs, plants communicate, fight herbivores, and attract pollinators (2). It is well known that biotic stressors (e.g., insects feeding on plants) lead to changes in plants' BVOC emissions: certain compounds can be promoted, and others reduced. Atmospheric oxidation of BVOCs affects the concentration of methane, carbon monoxide, and tropospheric ozone, leading to the formation of Secondary Organic Aerosol (SOA). Atmospheric aerosol load is crucial in defining the radiative balance and negatively impacts air-quality standards (3). Stress-induced changes in plant emissions may thus lead to changes in atmospheric chemistry and SOA properties (e.g., ref. 4). The impact of prolonged changes in abiotic factors and abiotic stress (e.g., heat and drought) on plants' BVOC composition and emissions quantities, and how this may impact atmospheric chemistry and SOA properties, need to be better understood. 

Within the experimental project "Acclimation and environmental memory” (AccliMemo), we study BVOC composition and quantities at basal conditions and under prolonged heat and drought. To this purpose, Scots pine (Pinus Sylvestris) seedlings were grown from seeds collected from selected mother trees from the long-term irrigation experiment Pfynwald. Those mother trees experienced different long-term water availability. This also allows us to examine the consequence of transgenerational memory on BVOC emissions (5). 

Our conference contribution will give insight into our findings from plant chamber experiments and address i) gas-phase BVOC samples collected on sorbent tubes and analyzed by Thermal Desorption GC-MS and ii) gas-phase BVOC measurements collected in-situ using a PTR-ToF-MS. These data provide a well-resolved picture of terpene compositions and diurnal trends in emission levels. The BVOC analysis in the gas phase is complemented by a detailed analysis of the secondary metabolites in needle samples. Secondary metabolites are extracted in organic solvents and analyzed by liquid injection GC-FID/MS. 

Bibliography 

(1) Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmospheric Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.

(2) Niinemets, Ü. and Monson, R. K. (Eds.): Biology, Controls and Models of Tree Volatile Organic Compound Emissions, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-6606-8, 2013.

(3) Seinfeld, John H. and Pandis, Spyros N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition., Wiley, 1152 pp., 2016.

(4) Smith, N. R., et al.: Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA, Environ. Sci. Atmospheres, 1, 140–153, https://doi.org/10.1039/D0EA00020E, 2021.

(5) Bose, A. K., et al.: Memory of environmental conditions across generations affects the acclimation potential of scots pine, Plant Cell Environ., 43, 1288–1299, https://doi.org/10.1111/pce.13729, 2020.

Funding: Swiss National Science Foundation, Project Numbers 189109, 199317, and, 194390.

How to cite: Pieber, S. M., Molteni, U., Bose, A., Faiola, C., Gisler, J., Gu, S., Hunziker, S., Kalberer, M., Luo, N., Nazarova, T., and Gessler, A.: Scots pine (Pinus Sylvestris) seedlings BVOC emissions composition under basal,  heat and drought conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17558, https://doi.org/10.5194/egusphere-egu24-17558, 2024.

EGU24-18343 | Posters on site | BG3.31

Evaluation of the Biome-BGCMuSo model across agricultural and forest sites in Central Europe 

Milan Fischer, Zoltán Barcza, Roland Hollós, Ladislav Šigut, Petra Dížková, Tomáš Ghisi, Matěj Orság, Markéta Poděbradská, Lenka Bartošová, Marian Pavelka, Emil Cienciala, and Miroslav Trnka

Ecosystem models provide a valuable tool to quantitatively describe the complex interlinked processes at the soil-plant-atmosphere interface. When combined with measurements, the well-structured process-based models allow to integrate the observed data in a framework where the individual variables gain higher interpretability and can better contribute to understanding of the complex ecosystem responses to a wide range of environmental conditions. Moreover, the models can be then applied to upscale the observed data to larger spatial scales, can be used for simulation under different (e.g. future) climatic conditions and atmospheric composition, or can be used for testing the impacts of changes in management, land use change, disturbances, etc. Biome-BGCMuSo is a widely used, popular biogeochemical model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems. In this contribution, Biome-BGCMuSo will be evaluated at several sites representing agricultural and forest ecosystems in the Czech Republic and Austria. These sites are equipped with eddy-covariance measurements of CO2, water and energy fluxes including other ancillary measurements. The main emphasis will be put on evaluation of gross and net primary productivity, net ecosystem exchange, transpiration, evaporation and soil water content dynamics. The robustness of the phenological submodule parameterization will be further examined using remotely sensed leaf area index data along the altitudinal gradient. The evaluation and model parameterization provides a first step in the wider effort in which the Biome-BGCMuSo will be integrated together with measurements of CO2 and other greenhouse gases concentrations within an atmospheric inversion system aiming to understand the spatial distribution of the greenhouse gases fluxes (i.e., sources and sinks) and their temporal dynamics. This knowledge is crucial for enhancing climate change mitigation strategies.

 

Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (grant AdAgriF - Advanced methods of greenhouse gases emission reduction and sequestration in agriculture and forest landscape for climate change mitigation (CZ.02.01.01/00/22_008/0004635).

How to cite: Fischer, M., Barcza, Z., Hollós, R., Šigut, L., Dížková, P., Ghisi, T., Orság, M., Poděbradská, M., Bartošová, L., Pavelka, M., Cienciala, E., and Trnka, M.: Evaluation of the Biome-BGCMuSo model across agricultural and forest sites in Central Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18343, https://doi.org/10.5194/egusphere-egu24-18343, 2024.

EGU24-18543 | ECS | Posters on site | BG3.31 | Highlight

Elevated CO2 effects on Zn and Fe nutrition in vegetables: A meta-analysis 

Xiaolin Wang, Shengmin Zhang, Haichao Li, Monica Odlare, and Jan Skvaril

The atmospheric carbon dioxide (CO2) concentration has been progressively increasing since the onset of the Industrial Revolution and has already reached at around 420 μmol mol⁻¹ nowadays. It is well recognized that elevated CO2 concentration stimulates the yield for C3 crops, but it also simultaneously changes the essential nutrients. However, compared with the main crops, far less attention has been devoted to the effects of elevated CO2 concentration on vegetable growth and quality. Vegetables are highly recommended in daily diets due to their diverse range of beneficial compounds, such as vitamins, antioxidants, minerals, and dietary fiber.  In controlled greenhouse vegetable cultivation, elevated CO2 has been widely adopted as an agricultural practice for enhancing plant growth. Thus, understanding both vegetable growth and nutrient status is crucial to assess the potential impacts of elevated CO2 on future food security in both natural and controlled environments. However, much more attention has been paid to biomass enhancement, and elevated CO2 effects on nutrient quality are less recognized. Among the nutrients, Zinc (Zn) and Iron (Fe) are essential elements in humans. Previous studies have demonstrated a decreasing trend of Zn and Fe in main crops such as wheat and rice with increased CO2, while less is known about whether this alleviation effect on Zn and Fe can apply to vegetables. Therefore, a meta-analysis was conducted in this study to evaluate the influence of elevated CO2 concentration in the atmosphere on vegetable Fe and Zn status, and quantify the potential impact of future climate on nutrition security.

 

 

 

How to cite: Wang, X., Zhang, S., Li, H., Odlare, M., and Skvaril, J.: Elevated CO2 effects on Zn and Fe nutrition in vegetables: A meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18543, https://doi.org/10.5194/egusphere-egu24-18543, 2024.

EGU24-19270 | Orals | BG3.31

Modelling crop traits and fluxes under multiple abiotic stressors 

Holly Croft, Robert Caine, and Muhammad Khan

Agriculture is the largest consumer of freshwater, accounting for approximately 70% of the total global usage. As the human population continues to grow, demand for water will be exacerbated by a changing climate and shifting temperature and precipitation regimes. Dynamically modelling crop physiological function will be crucial to optimising crop management strategies. In this study we synergise hyperspectral and thermal remotely-sensed data to model plant traits and water fluxes in spring wheat (Triticum aestivum) in growth chambers within a controlled environment experiment under water and/or nitrogen stress conditions. Results showed that plants which had first received nitrogen fertiliser and were subsequently droughted presented the lowest water fluxes, and the lowest leaf chlorophyll content and photosynthetic capacity (Vcmax) values. Partial least squares regression (PLSR) analysis of hyperspectral reflectance data revealed key wavelengths sensitive to six different plant traits and fluxes (including relative water content, leaf nitrogen, stomatal conductance), with strong correlations between measured and modelled values (R2 = 0.84; p<0.001, 0.60; p<0.001, and 0.65; p<0.001, respectively). By incorporating optical reflectance data into a modified surface energy-balance model to incorporate the changing optical properties of the leaves under stress, we increased the accuracy of modelled water fluxes against leaf porometry measurements during abiotic stress (R2 = 0.46; p<0.01 and R2 = 0.61; p<0.001, for the original and improved transpiration model respectively). This work points to the importance of considering the influence of stressors on crop fluxes and traits both in isolation and combined. The novel integration of optical and thermal remote sensing techniques paves the way for the improved dynamic modelling of crop physiological function.

How to cite: Croft, H., Caine, R., and Khan, M.: Modelling crop traits and fluxes under multiple abiotic stressors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19270, https://doi.org/10.5194/egusphere-egu24-19270, 2024.

Urban green spaces (UGS) are increasingly recognized as a solution to mitigate urban challenges by providing essential ecosystem services, supported by soil microbiomes crucial for biogeochemical processes. Previous studies comparing microbial diversity between UGS and natural ecosystems have shown inconsistent results, potentially due to overlooking the time elapsed since UGS construction, a significant factor influencing soil properties. To investigate this, 30 UGS across Seoul, South Korea were selected based on their age, along with 7 natural ecosystem sites outside Seoul for comparison. The study focused on exploring the relationship between UGS age and changes in soil chemical and microbial properties. The findings reveal a notable correlation between the elapsed time since UGS construction and various soil characteristics, including chemical properties, microbial community structure, diversity, and functional properties. As UGS mature, these properties gradually resemble those found in natural ecosystems, which was further confirmed through global meta-analysis. This indicates that as UGS age, soil chemical properties, especially soil organic matter, increase, thereby enhancing microbial diversity and shifting functional profiles to align more closely with natural ecosystems. This insight implies that current UGS management practices positively influence soil health and ecosystem functions. This study not only enhances our understanding of soil microbial ecology in UGS but also offers valuable guidance for managing UGS to promote sustainable urban ecosystems.

How to cite: Yang, Y. and Kang, H.: Age-associated increase in soil organic matter enhances soil microbial diversity in urban green spaces, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20138, https://doi.org/10.5194/egusphere-egu24-20138, 2024.

EGU24-22125 | ECS | Orals | BG3.31

Evaluation of leaf-atmosphere water fluxes and physiological characterization of plants subjected to an in situ elevated CO2 experiment in Central Amazon 

Gabriel Banstarck Marandola, Martin G. De Kauwe, Sabrina Garcia, Tomas Ferreira Domingues, and David Montenegro Lapola

The Amazon Rainforest vegetation responses to climate change are still far from being fully understood, especially when the focus is not on the forest canopy stratum. Concerning the changes in water use related to rising atmospheric CO2 levels, the distinct responses between forest strata of the Amazon are still uncertain. The project presented here consists in exploring data from an experimental study coupled with a mathematical modeling approach, with the goal to elucidate, in relation to rising CO2 levels, the transpiration responses of Central Amazon understorey plants, which may influence the entire region due to forest-atmosphere water flux disturbances. More specifically, we artificially increase the CO2 atmospheric concentration inside open-top chambers installed in the understory, providing a way to evaluate the response of the plants inside the chamber to the increased CO2 levels. With the estimation of carbon assimilation and stomatal conductance processes parameters defined by mathematical models, it is possible to characterize physiologically the response of the individuals in the experiment and compare the differences between control and treatment groups. Then, the impact of these changes in the understory transpiration is estimated by measuring the leaf area index of the understory and combining the obtained stomatal conductance parameters with another mathematical model, which makes it possible to compare the impact of the experimental treatment in the amount of water that travels from the understorey plants to the atmosphere through stomata. The results and methodology from this study, in addition to the importance to accomplishing the main goal mentioned above, are also relevant for the use of Dynamic Global Vegetation Models (DGVM), as the mathematical equations employed are also frequently used in DGVM studies. Finally, the experimental site being studied is also where the first Free-Air CO2 Enrichment experiment in the Amazon, known as AmazonFACE, will be conducted, so the open-top chambers data can be considered a source of basal knowledge for the large scale project that is being implemented at the same location.

How to cite: Banstarck Marandola, G., De Kauwe, M. G., Garcia, S., Ferreira Domingues, T., and Montenegro Lapola, D.: Evaluation of leaf-atmosphere water fluxes and physiological characterization of plants subjected to an in situ elevated CO2 experiment in Central Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22125, https://doi.org/10.5194/egusphere-egu24-22125, 2024.

EGU24-1443 | ECS | Orals | BG3.32

Nitrous oxide (N2O) emissions from a forested closed landfill site 

Alice Fraser-McDonald, Carl Boardman, Toni Gladding, Stephen Burnley, and Vincent Gauci

Many national governments, organisations and environmental groups have pledged to plant trees in an effort to increase carbon sequestration and mitigate climate change. Tree planting is commonly used as a restoration strategy for former landfill sites, and it is likely that many urban and urban-fringe areas, including closed landfills, will continue to be prioritised for tree planting in the coming years. Trees growing in natural and managed environments have the capacity to act as conduits for the transport of methane (CH4) produced belowground to the atmosphere. This process has also been observed in natural ecosystems for nitrous oxide (N2O) and we examined whether trees growing on closed landfills also mediate N2O emissions to the atmosphere. We investigated whether trees on a closed UK landfill site emitted more N2O than those on a comparable natural site. Measurements were made from stem and soil surfaces over a four-month period using flux chambers and Gas Chromatography. Results were then scaled up and the contributions of N2O stem fluxes to the total surface fluxes in different environments were compared. Analyses showed that stem and soil N2O fluxes from landfill were larger than from trees on the comparable non-landfill site. Tree stem N2O emissions on the former landfill also showed seasonal patterns and decreased with higher sampling positions above ground level. Findings indicated that tree stem N2O emissions accounted for less than 1% of the estimated total landfill surface flux, which was comparable to findings from a mesocosm study, but lower than estimates of the total N2O ecosystem flux in dry and flooded boreal forests (8% and 18%, respectively). Overall, this investigation suggested that trees planted on closed landfill sites may result in additional N2O emissions to the atmosphere, although the tree stem contribution to the total surface flux on the former landfill was a lower magnitude than that of fluxes previously reported from natural forested ecosystems.

How to cite: Fraser-McDonald, A., Boardman, C., Gladding, T., Burnley, S., and Gauci, V.: Nitrous oxide (N2O) emissions from a forested closed landfill site, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1443, https://doi.org/10.5194/egusphere-egu24-1443, 2024.

EGU24-3135 | Posters on site | BG3.32

Long-term nitrogen deposition does not affect nitrous oxide, methane and carbon dioxide exchange of mature beech tree stems 

Katerina Machacova, Thomas Schindler, Hannes Warlo, and Rossella Guerrieri

European beech (Fagus sylvatica L.) is a native and widely grown tree species typical for upland forests of Central and Southeast Europe. The soils of beech forests are regarded as predominant sources of nitrous oxide (N2O), sinks of methane (CH4) and sources of carbon dioxide (CO2), while the contribution of beech trees themselves to the ecosystem greenhouse gas (GHG) exchange varies by gas species and site. Moreover, forest nitrogen (N) and carbon cycling, and thus N2O, CH4 and CO2 turnover processes are affected by N deposition, yet, the long-term effect of N deposition on GHG exchange of soil and mature trees is far from being understood.

We aimed to investigate whether an increase in N deposition can alter forest GHG emissions. In September 2023, we measured N2O, CH4 and CO2 exchange of beech stems and adjacent soil, and various environmental parameters in a mature pre-alpine beech forest in Northeastern Italy, where a N manipulation experiment (4 treatments each replicated in 3 plots) has been carried out since 2015. Four experimental plots were selected: control (N0, only ambient deposition), canopy N addition (N30A, +30 kg ha-1 yr-1 sprayed over tree canopies) and soil N additions with two different doses (N30 and N60, +30 and +60 kg ha-1 yr-1, respectively).

The stems of mature beech trees were net sinks of CH4 (-11.9 ± 3.6 mg ha-1 ground area h-1, median ± 95% confidence interval) and sources of CO2 (639 ± 137 g ha-1 h-1), their N2O exchange potential (3.36 ± 3.82 mg ha-1 h-1) was rather low. The stem fluxes of all three GHGs were not affected by nine years of N treatment.

The long-term N deposition did not alter the soil CO2 emission (3015 ± 193 g ha-1 h-1). However, the N addition to the soil tended to increase the soil CH4 uptake (-642 ± 61 versus -901 ± 69 mg ha-1 h-1, N0+N30A versus N30+N60 plots). The soil N2O emissions were highest at the control plot (82.4 ± 33.9 mg ha-1 h-1), whereas the plots N30A and N60 showed significantly lower fluxes (1.56 ± 12.41 mg ha-1 h-1).

Our preliminary results detected high spatial variability in stem and soil GHG fluxes, which might be rather connected to the variable site topography than to the long-term N deposition effect. Future detailed soil GHG flux measurements across all experimental plots replicates will help to understand this variability and the effect of N deposition on the GHG fluxes.

 

Acknowledgement

This research was supported by the Ministry of Education, Youth and Sports of CR within the programs CzeCOS (grant number LM2023048) and LU - INTER-EXCELLENCE II (grant number LUC23162). We thank Federico Magnani and Alessandra Teglia from the University of Bologna and Reparto Carabinieri Biodiversità in Pian del Cansiglio for scientific and logistic support, respectively.

How to cite: Machacova, K., Schindler, T., Warlo, H., and Guerrieri, R.: Long-term nitrogen deposition does not affect nitrous oxide, methane and carbon dioxide exchange of mature beech tree stems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3135, https://doi.org/10.5194/egusphere-egu24-3135, 2024.

EGU24-3653 | Orals | BG3.32 | Highlight

Hot spots and hot moments of methane and nitrous oxide fluxes in forests: from soil to ecosystem 

Ülo Mander, Reti Ranniku, Thomas Schindler, Mikk Espenberg, Jordi Escuer-Gatius, Katerina Machacova, Jaan Pärn, Mohit Masta, Fahad Ali Kazmi, Lulie Melling, Lizardo Manuel Fachin Malaverri, Mari Pihlatie, Laura Kuusemets, Kuno Kasak, and Kaido Soosaar

Forests cover about 4 billion ha globally. They are important regulators of carbon dioxide (CO2) fluxes, whereas the comprehensive understanding of their overall greenhouse gas (GHG) budgets, especially for methane (CH4) and nitrous oxide (N2O), are still largely unknown.

Wetland forest soils are commonly recognized as emitters of CH4, whereas upland forest soils tend to consume CH4. However, several studies demonstrate that trees can emit a large amount of CH4 especially from tree stems and substantial amounts also from canopies through poorly studied and partly unidentified aerobic processes. Moreover, tree stems can have substantial concentrations of CH4 inside, which can originate from soil or be produced by methanogens within the wood, while canopy CH4 emissions are mostly abiotic and driven by light and temperature. Thus, forest vegetation can be a significant CH4 source.

Various soil microbiological, chemical and physical properties influence N2O fluxes in forests. In general, N2O emissions from tropical wetland forest soils are significantly higher than those from tropical upland forests, temperate and boreal forests. High nitrogen (N) availability, coupled with high moisture content, makes tropical peatland soils especially likely to emit N2O. Similarly, forests on drained N-rich peatland soils in temperate and boreal areas can be significant N2O sources. In temperate zone, a considerable part of such emissions appears in winter.

Understanding spatial and temporal dynamics of GHG emissions is crucial for adequate modelling and mitigation of emissions in forests. In comparison with CO2 fluxes, which are clearly temperature dependent, temporal and spatial variation of soil, tree stem and canopy CH4 and N2O emissions is more complex and poorly studied. Soil N2O emissions in wetland and upland forests are mainly determined by soil moisture (soil oxygen concentration), and N2O shows bell-shaped (unimodal) dependence on soil water content. In the wet periods, stem flux of CH4 can be the main source for ecosystem exchange, whereas in the dry periods, emission from canopy adds to the total fluxes from soil and stems. N2O fluxes from the soil and stems are normally low during the dry periods and peak during the wet periods and the freeze-thaw cycles.

Only a few examples are available on ecosystem-level CH4 and N2O budgets (fluxes from the soil, tree stems and shoots + eddy covariance (EC) measurements above the canopy). Nevertheless, estimation of the GHG balance in different forest ecosystems under various environmental conditions is essential for understanding their impact on the Earth’s climate.

In this presentation, we will bring results from ecosystem-level CH4 and N2O flux studies in forests growing on both organic and mineral soils in temperate and tropical zones.

How to cite: Mander, Ü., Ranniku, R., Schindler, T., Espenberg, M., Escuer-Gatius, J., Machacova, K., Pärn, J., Masta, M., Kazmi, F. A., Melling, L., Fachin Malaverri, L. M., Pihlatie, M., Kuusemets, L., Kasak, K., and Soosaar, K.: Hot spots and hot moments of methane and nitrous oxide fluxes in forests: from soil to ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3653, https://doi.org/10.5194/egusphere-egu24-3653, 2024.

EGU24-3743 | Orals | BG3.32

Fertilization turns a rubber plantation from sink to methane source 

Daniel Epron, Rawiwan Chotiphan, Ornuma Duangngam, Zixiao Wang, Makoto Shibata, Sumonta Kumar Paul, Poonpipope Kasemsap, and Kannika Sajjaphan

Soils, particularly in upland forests, are the largest biological sink for atmospheric methane (CH4), providing a valuable ecosystem service. Rubber plantations have continually expanded in Southeast Asia, and it is known that converting forests to rubber plantations reduces soil CH4 uptake. However, the effect of management practices, and in particular fertilization, on the methane balance of a rubber plantation has not yet been studied. Rubber plantations cover almost 10% of the country's surface area and almost all rubber plantations are fertilized, two thirds of them intensively or very intensively.

We measured net soil CH4 fluxes over more than a year in a 9-ha experimental rubber plantation with four levels of fertilizer application. We observed a strong and significant reduction of net soil CH4 uptake with increasing fertilisation, which was not explained by differences in CH4 diffusion related to soil water content. Fertilisation not only decreased the methanotrophic activity but also stimulated methanogenic activities probably related to an increase in the availability of nitrogen and labile carbon substrates.

Our results show that intensive fertilization turned soil from methane sink to source, particularly during the rainy season. Given the areas cultivated with rubber trees in Thailand and more widely in South-East Asia, a transition towards rational fertilization of plantations would have a significant positive effect on national reporting greenhouse gas inventories.

How to cite: Epron, D., Chotiphan, R., Duangngam, O., Wang, Z., Shibata, M., Paul, S. K., Kasemsap, P., and Sajjaphan, K.: Fertilization turns a rubber plantation from sink to methane source, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3743, https://doi.org/10.5194/egusphere-egu24-3743, 2024.

EGU24-5902 | ECS | Posters on site | BG3.32

Stem and soil methane fluxes of different ecosystems in Central Amazon 

Hellen F. V. Cunha, Sam P. Jones, Hella Van Asperen, Santiago Botía, Shujiro Komiya, Lívia Rosalem, Jochen Schöngart, Maria Teresa Fernandez Piedade, Daniel Magnabosco Marra, Florian Wittmann, and Susan Trumbore

Trees can significantly influence the net exchange of methane between forests and the atmosphere but what controls this behaviour in hyper-diverse ecosystems of the Central Amazon is not well defined. Variations in topography and rainfall cause predictable, but poorly documented, changes to the balance between methanotrophy and metanogenesis in soils and sediments across the landscape and between seasons. Trees can act as conduits for methane produced below-ground, however, the rate of such transport is mediated by inter and intra-species traits that need to be understood.

To better understand the relationships among methane exchange, topographic position, seasonal rainfall and tree species in forests of the Central Amazon, we are conducting two related studies within the Uatumã Sustainable Development Reserve and Amazon Tall Tower Observatory, Amazonas, Brazil. The first is measuring soil and stem fluxes in six plots (6 trees / plot) along a topographic transition from a well-drained plateau, through slopes to a waterlogged valley. The second study is focusing on stem fluxes from six different species (5 trees / species), with differences in wood density and phenology, growing at a similar elevation in an Igapó forest of the adjacent Uatumã river. These observations, starting in September 2023, are being made every 2-3 months to capture the influence of seasonal rainfall and inundation.

During the dry season (September, 2023), soils in the plateau (-1.4 ± 0.27 nmol m-2 s-1) and slope (-1.66 ± 0.11 to -1.20 ± 0.29 nmol m-2 s-1) plots acted as a sink for methane, whilst, those in the valley plot where a source (11.40 ± 2.56 nmol m-2 s-1 ). Reflecting this pattern, stem emissions were mostly observed in the valley (10.7 ± 4.71 nmol m-2 s-1) and in particular from the palm Mauritia flexuosa. Stem fluxes in the plateau and slope plots were marginal (0.0028 ± 0.0039 to 0.224 ± 0.0554 nmol m-2 s-1). In the Igapó (November, 2023), the exposed soil behaved as a sink for methane. Differences were observed among the species studied, with the largest emissions from Nectandra amazonum – low wood density group (0.64 ± 0.14 nmol m-2 s-1 ) and Inga sp. – high wood density group (0.39 ± 0.049 nmol m-2 s-1), while the other 4 species had lower emissions (0.0023 ± 0.01 to 0.10 ± 0.01 nmol m-2 s-1). Together these results support methane produced below-ground as the main source of tree emissions across this landscape and highlight the need to take species composition into account when considering the net exchange of methane from these ecosystems.

How to cite: F. V. Cunha, H., P. Jones, S., Van Asperen, H., Botía, S., Komiya, S., Rosalem, L., Schöngart, J., Fernandez Piedade, M. T., Magnabosco Marra, D., Wittmann, F., and Trumbore, S.: Stem and soil methane fluxes of different ecosystems in Central Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5902, https://doi.org/10.5194/egusphere-egu24-5902, 2024.

EGU24-6221 | Orals | BG3.32

Tree stem-atmosphere greenhouse gas fluxes in a boreal riparian forest 

Marcus Klaus, Mats Öquist, and Kateřina Macháčová

The cycling of greenhouse gases in forest ecosystems is significantly influenced by tree stems. Yet, little is known about the variability and drivers of stem-atmosphere greenhouse gas fluxes, especially in managed boreal riparian ecosystems where environmental conditions vary substantially at small spatial scales and throughout the year. Here, we report magnitudes and drivers of tree stem-atmosphere fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in a riparian buffer zone of a Swedish boreal forest that has been subject to recent forest clearcutting and historic ditching. For two full years, we conducted CO2 and CH4 flux chamber measurements on a monthly basis in 14 spruce trees (Picea abies) and 14 birch trees (Betula pendula) that grew between one and fifteen meters from a headwater stream. We also performed N2O flux measurements during three occasions. All trees were net emitters of CO2 and CH4 over the majority of the year, while N2O fluxes were close to zero. CO2 fluxes correlated strongly and positively with air temperature and followed distinct seasonal cycles peaking in summer. CH4 fluxes correlated modestly with air temperature and solar radiation and peaked in late winter and summer. Trees with larger stem diameter released more CO2 and less CH4, and trees that were nearer the stream released more CO2 and CH4. The CO2 and CH4 fluxes did not differ between spruce and birch in general, but correlations of CO2 fluxes with stem diameter and distance to stream differed between the tree species. The absence of distinct vertical trends in the CO2 and CH4 fluxes along the stems and their lack of correlation with groundwater levels and groundwater greenhouse gas concentrations point to tree internal production as the primary source of the tree stem gas emissions. Upscaled to the ecosystem, the tree stem CO2, CH4 and N2O emissions represented 52% of the forest floor CO2 emissions and 2.5% and 11.3% of the forest floor CHand N2O uptake, respectively, during the snow-free season. The snow cover season contributed 15% and 35% to annual tree stem CO2 and CH4 emissions, respectively. In contrast to other riparian zone studies, the stem gas fluxes in our study generally exhibited characteristics of an upland rather than a wetland ecosystem, likely because of historical ditching and subsequent groundwater level declines.

How to cite: Klaus, M., Öquist, M., and Macháčová, K.: Tree stem-atmosphere greenhouse gas fluxes in a boreal riparian forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6221, https://doi.org/10.5194/egusphere-egu24-6221, 2024.

EGU24-7519 | Orals | BG3.32

Ecosystem-scale floodplain forest methane exchange 

Natalia Kowalska, Georg Jocher, Adam Bednařík, Hannes Warlo, Kaido Soosaar, and Katerina Macháčová

Floodplain forests play an important role in the exchange of methane (CH4) with the 
atmosphere. However, due to climate change and anthropogenic activities, main factors driving 
this exchange, such as ground water table and soil temperature, are constantly changing. The 
studied floodplain forest in Lanžhot, Czech Republic, represents nowadays relatively dry 
conditions.
The main aims of our study were to quantify the CH4 emission on the floodplain forest 
ecosystem level using the eddy covariance (EC) method, with special emphasis on 
environmental conditions, turbulence development and footprint, as well as to probe all 
potential CH4 sinks and sources within the studied ecosystem for arriving at a complete CH4
budget. The ecosystem-scale CH4 fluxes were analysed with regards to the CH4 emissions of 
water bodies within the EC footprint. CH4 fluxes from a stream located within the footprint of 
the EC tower were measured using floating chambers and bubble traps. Studies were 
complemented by the analysis of the contribution of trees to the CH4 exchange. For this 
purpose, stem chambers measured CH4 fluxes on hornbeam trees, one of the main tree species 
at the study site and in Central Europe. Additionally, CH4 fluxes from the soil were included in 
the analysis to capture all potential CH4 sources and sinks within the studied ecosystem.
We initially hypothesized that ecosystem-scale CH4 exchange will be negligible. Our results
showed, however, that the whole ecosystem is a small but constant CH4 source as we observed 
an average emission flux of 11.7 mg CH4 m-2
day-1 over the period June to December 2021. In addition, we observed variability of the CH4 fluxes in relation to the wind direction and to u*
(friction velocity, indicator for turbulence development). Further analysis shall answer on the 
question if more water bodies within a particular wind sectors means higher fluxes above the 
canopy and if higher turbulence is correlated with higher CH4 fluxes above canopy as hotspot 
emissions are better mixed up. The probed stream was a substantial source of CH4 with average
CH4 fluxes of 260 ± 107 mg CH4 m-2 day-1, respectively, over the period from April to 
December 2021. Ebullition was the dominant pathway of CH4 release throughout the whole 
monitored time period. Results from the stem and soil CH4 flux measurements identified 
hornbeam stems and soil as net sinks for CH4 (-0.025 and -0.999 mg CH4 m-2
day-1, respectively). Finally, after putting all pieces together we will arrive at a holistic view of CH4
dynamics within the studied floodplain forest ecosystem with the potential of transfer of 
knowledge to ecosystem of similar kind elsewhere.

How to cite: Kowalska, N., Jocher, G., Bednařík, A., Warlo, H., Soosaar, K., and Macháčová, K.: Ecosystem-scale floodplain forest methane exchange, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7519, https://doi.org/10.5194/egusphere-egu24-7519, 2024.

EGU24-9235 | Posters on site | BG3.32

Seasonal variation in ecosystem and soil methane and nitrous oxide fluxes in a tropical rainforest 

Laëtitia Brechet, Mercedes Ibáñez, Benoît Burban, Jean-Yves Goret, Clément Stahl, Damien Bonal, Rob Jackson, and Ivan Janssens

Tropical forests play a key role in the global carbon balance and in natural climate change mitigation, as they account for 68% of global forest carbon stocks and represent up to 30% of global soil carbon stocks. However, major uncertainties remain regarding the long-term sustainability of their carbon sink capacity when considering the full greenhouse gas exchange, including methane (CH4) and nitrous oxide (N2O) fluxes, and accurately identifying and quantifying all sources and sinks.

In this line, we present here original continuous high-frequency ecosystem (eddy covariance) and soil (automated chamber) CH4 and N2O flux data from a 2.5-year study in a seasonally wet tropical forest at the Guyaflux experimental site, French Guiana. The main objective of our study was to assess the seasonal patterns of CH4 and N2O exchange at the ecosystem and soil levels, and to identify the environmental drivers. Seasonal variations in ecosystem and soil CH4 and N2O fluxes were tremendous, with generally higher CH4 and N2O emissions in the wettest than in the driest season. Global radiation, soil water content and soil temperature were the main drivers of seasonal variation in ecosystem and soil CH4 and N2O fluxes. Furthermore, based on eddy covariance measurements of all greenhouse gases, i.e. CH4, N2O and CO2, the forest was overall a significant carbon sink (-1,875 ± 813 kgC ha-1 y-1, i.e. cumulative net ecosystem exchange), although the ecosystem shifted from a small sink to a small source of CH4 during the wettest season, and remained a more or less small but constant source of N2O. In contrast, soil fluxes in the upper part of the forest within the tower footprint were consistently a CH4 sink, while soil N2O fluxes shifted depending on the season, from a small N2O sink in the driest season to a small source in the wettest season.

Our study shows that the carbon sink potential of the Guyaflux forest is not yet compromised by CH4 and N2O emissions. However, under the more frequent extreme conditions of contrasting soil water content and global radiation expected in the future, CH4 and N2O emissions may increase and thus reduce the forest carbon sink.

How to cite: Brechet, L., Ibáñez, M., Burban, B., Goret, J.-Y., Stahl, C., Bonal, D., Jackson, R., and Janssens, I.: Seasonal variation in ecosystem and soil methane and nitrous oxide fluxes in a tropical rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9235, https://doi.org/10.5194/egusphere-egu24-9235, 2024.

EGU24-9718 | ECS | Posters on site | BG3.32

The role of tree species and microbes for the development of net greenhouse gas fluxes from soils after afforestation of agricultural lands 

Karelle Rheault, Jesper Riis Christiansen, and Klaus Steenberg Larsen

Greenhouse gas (GHG) emissions, in the form of CO2, CH4 and N2O, from land use change and agriculture are responsible for up to 20% of anthropogenic emissions, mainly due to deforestation, livestock production and crop fertilization. Afforestation is proposed as an effective means to sequester atmospheric carbon in biomass and soils. However, there is a lack of knowledge about the resultant soil GHG fluxes from temperate afforested ecosystems, how they develop in the field and over many years. Furthermore, tree species choice (deciduous/conifers) may impact the soil biogeochemistry differently through the soil physicochemical properties and the soil microbiome with a currently uncertain outcome in relation to GHG fluxes and the climate mitigation potential.

In this study, we investigate the development of soil GHG fluxes, soil physicochemistry, and the soil microbiome on arable land using a well-established forest chronosequence (Vestskoven, Denmark), which is a former cropland area afforested over the last 50 years with Norway spruce (Picea abies), oak (Quercus robur) and beech (Fagus sylvatica). The total of 19 selected sites in Vestskoven includes 6 to 7 stand ages per tree species. We measured CH4 and CO2 fluxes in situ, and sampled soil for physicochemical and microbial analyses.

We present data on how net soil CH4 uptake and soil CO2 efflux develop with time since planting and how the net soil CH4 uptake correlates with the relative abundance of methanotrophic and methanogenic soil communities. We expect these relationships to be dependent of tree species due to differences in how soil physicochemical properties impact the microbial communities responsible for soil CH4 cycling.

Preliminary results show that afforestation increases net soil CH4 uptake, since all tree species had higher net soil CH4 uptake rates compared to cropland, but the effect of plantation age was only visible in oak stands after 50 years. This indicates tree species-specific regulation of the net CH4 flux and its development over time. There was no clear trend for a development of the soil CO2 efflux after planting for either tree species. We will further present analyses of structural equation modelling elucidating the interactions between gas fluxes, soil physicochemical environment and microbial communities. 

How to cite: Rheault, K., Riis Christiansen, J., and Steenberg Larsen, K.: The role of tree species and microbes for the development of net greenhouse gas fluxes from soils after afforestation of agricultural lands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9718, https://doi.org/10.5194/egusphere-egu24-9718, 2024.

EGU24-11317 | ECS | Posters on site | BG3.32

Long-term observations of CH4 and N2O fluxes in a subalpine Norway spruce forest using chamber and eddy covariance methods 

Luana Krebs, Mana Gharun, Susanne Burri, Iris Feigenwinter, Philip Meier, Liliana Scapucci, and Nina Buchmann

Methane (CH4) and nitrous oxide (N2O) substantially contribute to global greenhouse gas (GHG) emissions together with carbon dioxide (CO2). To understand their impact on future climate change, prioritizing the study of CH4 and N2O fluxes becomes critical. Forest ecosystems, primarily investigated for CO2 exchange, are less explored concerning their exchange of CH4 and N2O. Forests are known to be sinks for CH4, while their role in N2O fluxes varies, acting as either sources or sinks. However, comprehensive studies that concurrently examine CH4 and N2O fluxes in forests, particularly over extended periods and at high elevation, remain scarce. At high altitudes, measuring GHG fluxes with chambers during snowy periods is challenging, leading to a lack of winter flux data which are crucial for understanding flux dynamics related to freeze-thaw cycles and snow patterns. This study addresses this gap by investigating long-term CH4 and N2O fluxes in a subalpine Norway spruce forest (Davos, CH-Dav, ICOS Class 1 Ecosystem station, Switzerland), encompassing both soil and canopy interactions with the atmosphere.

Over five years (2017, 2020-2023 for CH4; 2017, 2020 for N2O), we employed automatic chambers to measure forest-floor fluxes, complemented by below-canopy eddy covariance CH4 flux measurements starting from May 2023, as well as static chamber measurements in 2023. Our research objectives were to 1) characterize the magnitude and seasonal dynamics of CH4 and N2O forest-floor fluxes, and 2) compare CH4 fluxes using chamber and eddy covariance techniques to better understand the interaction of soil and vegetation with the atmosphere.

We hypothesized that the forest floor primarily acts as a net sink for CH4, with soil temperature and snow dynamics being important drivers due to their impact on microbial activity and diffusion rates between soil and atmosphere. Given the low nitrogen availability at the study site, we anticipated very low N2O emissions. Additionally, we hypothesized that comparing CH4 fluxes from chambers and eddy covariance would reveal small differences in their magnitudes, attributable to the distinct measurement scales and scopes of these two techniques. Our results confirmed the forest floor as a consistent CH4 sink, exhibiting substantial short-term fluctuations driven predominantly by air temperature and snow cover. N2O fluxes were negligible over the two-year observation period. Our study contributes to a deeper understanding of how environmental drivers and seasonal dynamics influence CH4 and N2O fluxes in high-elevation forests.

How to cite: Krebs, L., Gharun, M., Burri, S., Feigenwinter, I., Meier, P., Scapucci, L., and Buchmann, N.: Long-term observations of CH4 and N2O fluxes in a subalpine Norway spruce forest using chamber and eddy covariance methods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11317, https://doi.org/10.5194/egusphere-egu24-11317, 2024.

EGU24-11673 | ECS | Posters on site | BG3.32

Foliar Methane and Nitrous Oxide Fluxes: A Comprehensive Study in Tropical Forest Ecosystems 

Khandaker Mohammed Rezaul Karim, Md Abdul Halim, and Sean Thomas

Comprising 45% of global forest cover, tropical forests are pivotal in the GHG budgets. Emerging research highlights the significance of tropical trees as CH4 sources, yet tree-foliage emissions have been minimally investigated. Moreover, the N2O fluxes from tropical tree foliage remain almost completely unexamined.

Objectives: This study presents a comprehensive survey of foliar CH4 and N2O fluxes across tropical forest tree species using integrated output spectroscopy and a purpose-built cuvette system for accurate in-situ flux rate measurements. It tests two key hypotheses: (1) broadleaf trees in well-drained soils of tropical forests exhibit foliar CH4 oxidation; (2) foliar CH4 and N2O flux patterns vary systematically among ecological and phylogenetic groups.

Methods: We measured foliar fluxes from 120 trees across 40 species within Lawachara National Park, Bangladesh, an upland mixed-tropical-evergreen forest, prioritizing diverse shade-tolerant canopy trees. We utilized a dynamic leaf chamber (CS-LC7000) with continuous gas flow and portable CH4 (LGR 915-001) and N2O (LI-7820) analyzers, alongside concurrent measurements of CO2 and H2O flux. In addition to gas flux data, our study incorporated leaf trait measurements (of leaf mass per area and leaf N content).

Results: Across all samples, the mean CH4 flux of 0.016 nmol m-2 s-1 did not display a significant deviation from zero (t = 19.44, df = 827, p > 0.05). In contrast, the mean N2O flux 0.54 nmol m-2 s-1, exhibited a significant elevation above zero (t = 19.42, df = 827, p < 0.001), indicating notable N2O emissions on average. Methane flux varied among species and various ecological successional groups, namely pioneer, mid-successional, and late successional species (F = 5.99, df = 2, p < 0.01). Pioneer species, which were sources of CH­4, demonstrated significantly higher CH4 flux compared to both mid (p < 0.01) and late successional (p < 0.05) species, which both acted as weak CH4 sinks. All ecological groups were sources of N2O, with significant variations among the ecological successional groups (F = 12.97, df = 2, p < 0.01). Pioneer species were identified as the highest emitters of N2O, followed by mid and late-successional species.

A comparative CH4 flux analysis among the 28 families revealed significant variability (F = 47.7, df = 27, p < 0.01), with certain species acting as sources and others as sinks of CH4. Notably, 11 families were classified as CH4 sources, while the remainder functioned as sinks. Meliaceae emerged as having the highest average CH4 emissions, and Thymeliaceae the greatest CH4 consumption. Similarly, a distinct variation in N2O flux was observed among families (F = 6.57, df = 27, p < 0.01), with Sapindaceae showing the highest, and Rubiaceae and Euphorbiaceae the lowest N2O emissions.

Conclusions: This study on foliar CH4 and N2O fluxes in tropical forests reveals trees' crucial role in greenhouse gas emissions. Pioneer species emerge as major emitters of both CH4 and N2O, suggesting that foliar emissions of these GHGs may be pronounced in secondary forests, and hence the importance of conserving intact forests dominated by later-successional species.

How to cite: Karim, K. M. R., Halim, M. A., and Thomas, S.: Foliar Methane and Nitrous Oxide Fluxes: A Comprehensive Study in Tropical Forest Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11673, https://doi.org/10.5194/egusphere-egu24-11673, 2024.

EGU24-14034 | Orals | BG3.32

Wetland trees are a potential methane sink during dry soil conditions 

Carla Gomez, Sunitha Pangala, David Gowing, Karen Olsson-Francis, Susan Page, and Vincent Gauci

The contribution of trees to the wetland methane (CH4) budget remains highly uncertain. The water table level is an essential driver for stem CH4 emissions, which vary across seasons and soil hydrological conditions. Exceptionally dry conditions are increasingly affecting forests because of climate change, and wetland trees can potentially switch from CH4 sources to sinks. CH4 production and oxidation potentially occur in the oxic/anoxic microsites within wetland tree stems, as in soil, balancing the net stem CH4 emissions to the atmosphere. Yet, the microbial ecology behind these processes is still vastly unexplored, and understanding the role of microbial ecology is essential to predict stem CH4 emission patterns.

Our study focused on characterising stem CH4 fluxes using semi-rigid static chambers and assessing CH4 oxidation and production activities through gas-enriched incubations in two forested wetland ecosystems: a temperate wetland in Flitwick Moor (UK) and tropical peat swamp forests in the Sebangau Forest (Kalimantan, Indonesia), both experiencing lower water table levels than previous years during the same period. Targeted tree species were measured at multiple height intervals and were Alnus glutinosa and Betula pubescens in Flitwick Moor and Shorea balangeran and Xylopia fusca in the Sebangau Forest, the same tree species that were investigated in earlier studies at these sites. DNA analysis from bark, wood, and soil involved two-step PCR and sequencing targeting the 16S rRNA gene, complemented by whole shotgun metagenomics (WGS) to explore the microbial composition and CH4-cycling microorganisms.

Results from Flitwick Moor and the Sebangau Forest showed significantly reduced stem CH4 emissions (<50 µg m-2 hr-1) compared to earlier studies, with trees adopting an upland-like behaviour, displaying heterogenous fluxes with no clear axial pattern or relation to wood properties, as well as CH4 uptake. There was evidence of CH4 oxidation in trees of both ecosystems in the range of 7-47 µg m-3 hr-1. The aerobic and facultative anaerobic bacteria population dominated in tree tissues, and the same number of methanotrophic genera were present in soil and trees, suggesting that microbial groups were recruited from the soil. In A. glutinosa tree tissues a significant positive relation existed between the CH4 oxidising bacteria relative abundance and the oxidation activity. The methanotrophic fraction represented up to 5% of the bacteria in wood, confirming the hypothesis that methanotrophs are ubiquitous in trees of different ecosystems.

CH4-cycling microorganisms are likely to adapt to a soilborne-CH4 gradient up the tree stems; the reduced stem CH4 fluxes in this study resulted from dry soil conditions and potentially from microbial oxidation inside the stem. Conversely, the small proportion of CH4-cycling microorganisms compared to other microbial groups likely reflected the reduced stem CH4 fluxes along the soil-tree continuum. The ratio of CH4-cycling microorganisms might vary across seasons and different hydrological conditions; further long-term studies in forested wetlands will help elucidate the interplay between CH4-cycling microorganisms and stem CH4 fluxes and the importance of trees in balancing CH4 emissions in potentially drier future scenarios.

How to cite: Gomez, C., Pangala, S., Gowing, D., Olsson-Francis, K., Page, S., and Gauci, V.: Wetland trees are a potential methane sink during dry soil conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14034, https://doi.org/10.5194/egusphere-egu24-14034, 2024.

EGU24-14065 | ECS | Orals | BG3.32

Methane fluxes from soil and tree stem surfaces in flooded and non-flooded forests in the Central Amazon basin. 

Jhon del Aguila Pasquel, Jose Mauro Sousa Moura, Miércio Ferreira Junior, Keven dos Santos Lima, Raphael Tapajos, Laetitia M Brechet, Joost L M van Haren, and Scott R Saleska

Methane (CH4) is a greenhouse gas with 35 times the warming potential of carbon dioxide. In the last 15 years, the concentration of atmospheric CH4 has sharply increased and the signature of carbon stable isotope in CH4 has become more negative suggesting biotic sources, such as tropical wetlands, might be partly responsible of the current atmospheric methane budget. Floodplains in the Brazilian Amazon have been found to release vast amounts of CH4 but the methane dynamics in upland forests are not very well studied. We assessed the magnitude of CH4 fluxes from soil and tree stem surfaces across dry and wet seasons in two contrasting ecosystems in the Central Amazon basin: the seasonally flooded varzea and the upland terra firme forest. Likewise, some potential drivers of such fluxes were assessed: tree diameter, stem height of measurement, tree species, water table depth, and air temperature. Methane fluxes were measured using chamber-based techniques in the period 2022-2023. Overall, greater fluxes were released from the trees stems of the varzea forest during the first half of the wet season (June-August). On the other hand, the stem surface of upland trees emitted very low CH4 fluxes (< 1 mg m-2 h-1). Methane fluxes of most trees from the flooded forests decreased with stem height, a pattern not shown by tree fluxes in the upland forest. The fluxes from tree stem emissions varied by tree species in both forest types: Munguba tree (Pachira aquatica) and Jarana tree emitted more CH4 fluxes than other species in varzea and upland forests, respectively. The next step of our research will be the assessment of the microbial role in the methane cycle of both forest types using a combination of isotopic and -omic techniques.

How to cite: del Aguila Pasquel, J., Sousa Moura, J. M., Junior, M. F., dos Santos Lima, K., Tapajos, R., Brechet, L. M., van Haren, J. L. M., and Saleska, S. R.: Methane fluxes from soil and tree stem surfaces in flooded and non-flooded forests in the Central Amazon basin., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14065, https://doi.org/10.5194/egusphere-egu24-14065, 2024.

EGU24-14147 | ECS | Orals | BG3.32

Greenhouse gas fluxes from Downy Birch stems during the spring sap-run period and their dependence on dissolved gas concentrations in xylem sap 

Reti Ranniku, Joosep Truupõld, Mikk Espenberg, Jordi Escuer-Gatius, Fahad Ali Kazmi, Ülo Mander, and Kaido Soosaar

Tree stems are known to emit greenhouse gases CH4, CO2 and N2O to the atmosphere but the processes and drivers behind these fluxes are still contested. Soil water is taken up by tree roots and moves up the xylem due to a negative pressure gradient caused by transpiration through the leaves. Consequently, dissolved gases in the soil water move up the stem and are potentially diffused to the atmosphere through the bark. Periods of soil freeze-thaw in the spring are crucial hot-moments of GHG release from the soil, as well as stems. As birch trees go through a sap running period between the thawing of the soil and bud break, they provide an opportunity to study stem GHG fluxes during the peak time of emissions, together with the concentrations of dissolved gases in the birch sap.

We quantified the fluxes of CH4, CO2 and N2O from Downy birch (Betula pubescens), as well as Norway spruce (Picea abies) for comparison, in a temperate nutrient-rich drained peatland forest in April and May 2023. In addition, we studied the relationship between birch stem fluxes and dissolved gas concentrations inside the xylem sap. Stem fluxes were determined using static chambers attached to the tree stems and automatic LI-COR gas analysers. Dissolved gas samples were extracted from the collected birch sap and soil water after water-atmosphere equilibration, and were analysed in the lab using gas-chromatography. In addition, we analysed the relationships between the chemical and microbiological composition of the soil and soil and stem GHG fluxes.

Birch stem CH4, CO2 and N2O fluxes peaked in the end of April, following the the temporal trend of soil and air temperature, with higher fluxes during warmer days, likely related to increased microbial activity in the soil. Dissolved CH4 concentrations in the birch sap peaked with a delay in relation to peak stem emissions, indicating that xylem sap flow rate needs to be studied to comprehend the water dynamics inside the stem. Relationships between stem fluxes and dissolved gas concentrations were strongest at the bottom part of the tree. A more detailed analysis together with examination of the underlying soil chemistry and microbiology will be presented to further explain the processes behind soil and tree stem GHG flux dynamics.

How to cite: Ranniku, R., Truupõld, J., Espenberg, M., Escuer-Gatius, J., Ali Kazmi, F., Mander, Ü., and Soosaar, K.: Greenhouse gas fluxes from Downy Birch stems during the spring sap-run period and their dependence on dissolved gas concentrations in xylem sap, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14147, https://doi.org/10.5194/egusphere-egu24-14147, 2024.

EGU24-14220 | ECS | Posters on site | BG3.32

How remote sensing contributes to flux upscaling in natural bog ecosystems – a case study in Estonia 

Thomas Schindler, Olga Brovkina, Katerina Machacova, Ülo Mander, and Kaido Soosaar

The research potential to investigate and monitor a peatland site is often limited by difficult accessibility to the site, and a heterogeneous surface with diverse topography, hydrological features, and vegetation. Satellite remote sensing (RS) methods offer the advantage of past-to-present repeating cover research areas compared to field studies. Our case study examined the potential usability of applied satellite RS methods to determine greenhouse gas (GHG) fluxes in natural peatlands. Specifically, we tested several landscape indices on their correlation to GHG fluxes and basic environmental parameters.
The field campaign was carried out from 13.7.2018 to 24.7.2019 in a natural raised bog covered with young pine trees in central Estonia, measuring carbon dioxide (CO2) and methane (CH4) fluxes with manual static chambers, soil temperature, soil moisture, and the water table. The measured air temperature was provided by the nearest meteorological station.  

Land surface temperature (LST) was calculated from satellite Landsat-8 data using open-source code in Google Earth Engine cloud-based service. Normalized Difference Vegetation Index (NDVI), Water Index (NDWI), and Snow Index (NDSI) were calculated from Sentinel-2 data. The relationships between LST and indices with field-measured parameters were explored. Peatland site land covers were mapped using Sentinel-2 data supervised classification into dense trees, sphagnum mosses and grasses, and open water classes. The dynamics of open water locations were estimated based on the distribution of land covers for each month of study period. 

Our correlation analysis reflected different in-situ GHG dynamics throughout the investigated period and the micro-spatial heterogeneity of the land surface, with naturally wetter and dryer spots. The preliminary results show a close relationship between the in-situ measured CO2 fluxes and LST. The CO2 fluxes were further correlated with CH4 fluxes. Distribution of land covers from RS can significantly improve the GHG flux upscaling process. Thus, the obtained results can further help to identify locations in peatlands with the highest risks and priorities to provide detailed in situ monitoring.

Acknowledgements:

This work was supported by the Ministry of Education, Youth and Sports of CR within the CzeCOS program (grant number LM2023048) and project AdAgriF - Advanced methods of greenhouse gases emission reduction and sequestration in agriculture and forest landscape for climate change mitigation (CZ.02.01.01/00/22_008/0004635).

How to cite: Schindler, T., Brovkina, O., Machacova, K., Mander, Ü., and Soosaar, K.: How remote sensing contributes to flux upscaling in natural bog ecosystems – a case study in Estonia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14220, https://doi.org/10.5194/egusphere-egu24-14220, 2024.

EGU24-16677 | ECS | Posters on site | BG3.32

Effect of chamber closure time on soil CH4 and CO2 flux estimation by linear and non-linear model application 

Carl-Fredrik Johannesson, Klaus Steenberg Larsen, Hanna Silvennoinen, Holger Lange, and Jenni Nordén

Soils are key components of the global carbon cycle, releasing CO2 due to plant respiration and microbial decomposition processes and consuming or releasing CH4 depending on the dominance of methanotrophic or methanogenic activity. Gas flux measurements have been, and still are, widely employed to improve our understanding of greenhouse gas budgets as well as the processes and mechanisms regulating them. Thus, accurate estimation of flux rates and dynamics is important.

While there’s a multitude of techniques available for greenhouse gas flux measurements, non-steady state chambers are commonly used. They are however, like other chambers and flux measurement techniques in general, prone to measurement artefacts and biases. When a non-steady state chamber is deployed on top of bare soil, the concentration gradient between the soil and the atmosphere inside the chamber is artificially altered, leading to non-linear gas concentration increases (CO2 and CH4) or decreases (CH4) inside the chamber, even when chamber closure times are short. Whether the true flux rate can still be approximated using linear regression by keeping the chamber closure time short has been discussed for decades and non-linear models rooted in diffusion theory have been developed to account for the non-linearity of the concentration change (e.g., the Hutchinson-Mosier model and the non-steady state diffusive flux estimator (NDFE)). Nonetheless, only few studies have empirically evaluated the effect of chamber closure time on soil flux estimation by linear and non-linear model application, especially using high frequency data.

Using >3 000 forest soil CO2 and CH4 flux measurements collected with a high frequency and precision trace gas concentration analyzer (LI-7810 from LI-COR®), we evaluated the effect of sequentially increasing the time period used for linear and non-linear (Hutchinson-Mosier, (1981)) model fitting, up to a total of 300 seconds. Initial results show that using less time for non-linear model fitting results in higher release estimates for CO2 and higher consumption estimates for CH4 compared to when using the full 300 seconds. We also found that flux estimates from linear and non-linear models converged when decreasing the time period used for the linear fit and increasing the time period used for nonlinear fit, indicating that linear models can provide accurate flux estimates when the time period used for the linear fit is kept short. Our results have implications not only for robust estimation of flux rates, but also for field work and flux measurement logistics and planning.

How to cite: Johannesson, C.-F., Larsen, K. S., Silvennoinen, H., Lange, H., and Nordén, J.: Effect of chamber closure time on soil CH4 and CO2 flux estimation by linear and non-linear model application, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16677, https://doi.org/10.5194/egusphere-egu24-16677, 2024.

EGU24-17619 | ECS | Orals | BG3.32

Variability of tree methane emissions across regions of the Amazon rainforest 

Holly Blincow, Niall McNaramara, Alison Hoyt, Carla Gomez, Dafydd Elias, Jack Lamb, Rodrigo De Sousa, Darlene Gris, Leonardo Pequeno Reis, and Sunitha Pangala

Trees are recently understood to emit large quantities of CH4 through their stems, particularly in tropical wetland environments. There are still large uncertainties of the processes driving tree CH4 emissions, however, the primary mechanism is thought to be through transfer of CH4 produced in soil into tree biomass and then to the atmosphere. Another possible mechanism is via anaerobic decomposition of rotting tree biomass in stems. In the Brazilian Amazon, very little is known about sources and variability of tree CH4 emissions and how they may vary across different flooded regions.

Across regions of the Amazon we aim to understand the variation of CH4 emissions from trees. These regions are characterised as white water flooded forest (Várzea region) and black water flooded forest (Igapo region). Using two tree species of similar ages across two regions, we measured tree CH4 emissions and surrounding porewater CH4 concentrations for two flooded seasons. Across all study locations and tree species we found large but variable net CH4 emissions ranging from 0.01 to 84 mg m-2 hr-1. These variations in emissions are significantly influenced by the tree species. Furthermore, we measured significantly different fluxes when measuring the same tree species across two regions, suggesting there could be vast alterations in flux when attempting to measure emissions across the Amazon region.

Our work also revealed that CH4 emission was highest at the base of trees (30 cm) compared to measurements made higher up the stem (70 cm). This is consistent with radial diffusion of soil derived CH4 up the stem and also stongly suggests the source of CH4 is soil derived. Porewater concentrations of CH4 throughout the soil column further supports tree CH4 emission deriving from soil.

Furthermore, we analysed the stable isotopic carbon values of emitted CH4 and demonstrate that this vertical reduction in emitted CH4 is also in part a product of biological oxidation of CH4 by methanotrophic bacteria located in woody material. The isotopic profile varied between two tree species and at the base of the tree compared with higher up the stem. We also noted individual tree species had isotopic variability across the two sites.

These results show significant CH4 emissions from trees to atmosphere in the Amazon. By using common tree species of similar ages we demonstrate that the strength and variability of these emissions are strongly influenced by site specific variables that require further investigation.

How to cite: Blincow, H., McNaramara, N., Hoyt, A., Gomez, C., Elias, D., Lamb, J., De Sousa, R., Gris, D., Pequeno Reis, L., and Pangala, S.: Variability of tree methane emissions across regions of the Amazon rainforest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17619, https://doi.org/10.5194/egusphere-egu24-17619, 2024.

Trees can emit methane to the atmosphere through the stems. These fluxes might represent a large (and still unaccounted for) source of methane from forests to the atmosphere, but the uncertainties related with the spatial variability are still too large for properly estimating their contribution to the regional CH4 budgets. The general understanding is that these emissions are microbial–produced (either originated in soils or in the heartwood of trees), and thus, they are assumed to be temperature-and-water dependent. However, this assumption has not been tested yet at large scales, from different and contrasted ecosystems and with multiple species. In this study, we measured stem CH4 fluxes on more than 400 trees from 28 different species, spanning temperate, Mediterranean and tropical ecosystems. Our main goal was to distinguish between site-specific, species-specific, and environmental effects on controlling stem CH4 fluxes. Preliminary results showed that species identity regulates stem CH4 fluxes independently of environmental conditions, which might be due to wood properties providing a range of internal stem microhabitats for methanogenic communities or controlling gas diffusivity through the wood.  

How to cite: Barba, J. and Gauci, V.: Environmentally-uncoupled tree stem methane fluxes from temperate, Mediterranean and tropical upland ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20545, https://doi.org/10.5194/egusphere-egu24-20545, 2024.

EGU24-22027 | Orals | BG3.32

Resolving the aerobic methane emissions from Scots pine shoots 

Mari Pihlatie, Salla Tenhovirta, Lukas Kohl, and Markuu Koskinen

Release of CH4 from shoots remains the least understood and most enigmatic process of tree-mediated CH4 fluxes. While stem emissions of trees derive from transported or local, biotic pathways, CH4 emissions from shoots likely originate dominantly from abiotic, aerobic production within the canopies. The estimates of the global source strength of aerobic CH4 emissions suffer from large uncertainties, due to insufficient understanding of the source processes.

In this contribution, we show the environmental drivers, temporal patterns, and physiological determinants of the aerobic CH4 emissions from the shoots of Scots pines and discuss the contribution of aerobic canopy emissions to the boreal forest CH4 cycles. We present shoot-level CH4 fluxes from saplings and mature Scots pine trees, measured in various settings, outdoors and in the greenhouse. We used chamber enclosure methods with online greenhouse gas analysers in both manual and automated measurement settings. For the automated measurements we built a custom measurement system that allowed continuous measurements of greenhouse gas fluxes.

The results from CH4 flux measurements under different light sources indicate that aerobic CH4 emissions are to the most part determined by the intensity and spectral composition of light, and that the emissions are most prominent under direct solar radiation. Hence, the diurnal variations exhibited by these emissions are associated with the diurnal cycle of sunlight, but also vary depending on the cloud conditions. By exposing Scots pine saplings to drought, we further distinguished that the light-driven CH4 emissions from shoots are not a byproduct of photosynthesis-related biochemical reactions. Rather, these emissions result from abiotic thermal and photodegradation of plant compounds.

In ambient conditions, we show median aerobic CH4 emissions of 5.41 ng CH4 g-1 DW h-1under direct sunlight and 2.52 ng CH4 g-1 DW h-1 during variable cloudiness. These emissions are 1-2 % of the emission factor used in most of the global upscale estimates of aerobic CH4 emissions from vegetation. Therefore, Scots pine canopies in boreal climates are likely a CH4 source of only minor importance on a global scale. These emissions may, however, decrease the sink strength of the boreal upland forest soils: our conservative estimate is that the canopy emissions of CH4 may decrease this soil sink strength by 2.1 – 4.6 %. This estimate may yet underestimate the significance of canopy fluxes on the ecosystem scale due to the high spatiotemporal variation of both the canopy CH4 emissions and the CH4 uptake rates of boreal upland soils. To further refine the estimates of the source strength of aerobic CH4 emissions of tree canopies it is, therefore, important to gain more data of shoot-level CH4 fluxes from field measurements.

How to cite: Pihlatie, M., Tenhovirta, S., Kohl, L., and Koskinen, M.: Resolving the aerobic methane emissions from Scots pine shoots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22027, https://doi.org/10.5194/egusphere-egu24-22027, 2024.

EGU24-357 | ECS | Posters on site | BG3.33

Role of large-scale climate teleconnections in modulating vegetation productivity over India 

Nivedita Dubey, Vittal Hari, and Subimal Ghosh

As climate and terrestrial ecosystems are closely coupled, climate variability can significantly impact the vegetation dynamics. Large-scale circulation patterns, such as El Niño-Southern Oscillation (ESNO), impact the spatial distribution of rainfall and temperature, and their extremes, which further affect vegetation productivity. ENSO is one of the primary drivers of Indian summer monsoon rainfall (ISMR), accounting for about 40% of its interannual variability. Some of India's most severe summer monsoon droughts are associated with the El Niño events. Pacific meridional mode (PMM), tropical Atlantic Niño and the surface temperature/pressure over the Middle East are also gaining attention as potential drivers of Indian summer monsoon rainfall and climate extremes over India. However, the control of ENSO and other teleconnections-induced climate variability on terrestrial ecosystem productivity is poorly understood, especially in terms of the spatial extent, strength, and underlying mechanisms. Here, we examine the relationship of Indian vegetation productivity with large-scale teleconnections such as ENSO and PMM. We use frequency decomposition and principal component analysis (PCA) to reveal the dominant timescales of variability in vegetation productivity and quantify its association with the large-scale features of climate variability. We find that while ENSO is the most significant driver of the vegetation productivity which causes ecological droughts over core monsoon region, PMM also has a significant control primarily on low frequency variability of Indian vegetation. Our findings quantify the primary climatic controls of variability in Indian vegetation and reveal PMM as a significant modulator of low frequency variability.

How to cite: Dubey, N., Hari, V., and Ghosh, S.: Role of large-scale climate teleconnections in modulating vegetation productivity over India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-357, https://doi.org/10.5194/egusphere-egu24-357, 2024.

EGU24-1761 | ECS | Orals | BG3.33

Decreased water availability reduces the CO2 sink of a semi-arid savanna in Sahel based on a thirteen-year eddy covariance measurement   

Aleksander Wieckowski, Torbern Tagesson, Jonas Ardö, Patrik Vestin, and Ousmane Diatta

The Sahel is a semi-arid savanna region located as a transition zone between the dry Sahara Desert in the north and the humid Sudanian savanna in the south. It is one of the poorest and most understudied regions in the world and highly affected by climate change. Remote sensing studies found that the majority of Sahel is greening in the 21st century, with some areas experiencing browning, which is closely linked to the annual rainfall. Yet, there is a scarcity of in-situ data of the responses of ecosystem to the ongoing changes, which makes it hard to validate Earth Observation findings. In this study, we have quantified Net Ecosystem Exchange (NEE) and its components - Gross Primary Production (GPP) and Ecosystem Respiration (Reco) using 13-year long time series of Eddy Covariance data from Dahra, Senegal. We have found decreasing trends in the carbon sink over the period 2010-2022 and a link to the decreasing water availability. 

How to cite: Wieckowski, A., Tagesson, T., Ardö, J., Vestin, P., and Diatta, O.: Decreased water availability reduces the CO2 sink of a semi-arid savanna in Sahel based on a thirteen-year eddy covariance measurement  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1761, https://doi.org/10.5194/egusphere-egu24-1761, 2024.

This research tackles the constraints inherent in current global carbon flux datasets and introduces a groundbreaking new dataset, the Global Carbon Fluxes Dataset (GCFD), which integrates cutting-edge deep learning methodologies alongside in situ measurements. GCFD delivers unprecedented high-resolution spatial and temporal data on Gross Primary Productivity (GPP), Terrestrial Ecosystem Respiration (RECO), and Net Ecosystem Exchange (NEE). The Convolutional Neural Network (CNN) model employed in this study surpasses conventional machine learning techniques, demonstrating robust performance in modeling GPP, RECO, and NEE.

The precision and spatial granularity of GCFD outshine those of alternative global carbon flux datasets, like FLUXCOM, and it exhibits strong coherence with remote sensing vegetation condition data. Serving as a reliable reference for both meteorological and ecological investigations, GCFD is particularly valuable when high-resolution carbon flux mapping is essential. Its reliability has been rigorously tested by comparative analysis against existing data products, revealing insightful details about the global spatial and temporal patterns of carbon fluxes, especially within tropical and dry climate zones where notable trends have emerged.

This study significantly advances our comprehension of worldwide carbon flux dynamics and underscores the untapped potential of deep learning technologies to enhance the quality of carbon flux datasets. Accessible at https://dx.doi.org/DOI:10.11888/Terre.tpdc.300009, GCFD offers data resolutions ranging from 1 km to 9 km.

How to cite: Shangguan, W., Xiong, Z., and Huang, F.: Enhancing Carbon Cycle Understanding through Deep Learning: Development and Validation of the Global Carbon Fluxes Dataset (GCFD), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2662, https://doi.org/10.5194/egusphere-egu24-2662, 2024.

EGU24-2713 | Posters on site | BG3.33

Long-term Carbon Flux Dynamics in Central Taiwan's Cloud Forests: Influence of Biological Disturbances 

Yen-Jen Lai, Jui-Chu Yu, Falk Maneke-Fiegenbaum, Klemm Otto, Po-Hsiung Lin, Cheng-Ying Yang, and Taro Nakai

In the context of mounting concerns surrounding human-induced climate change and its repercussions, the study delves into the critical role of forests, particularly their ability to absorb and store carbon dioxide. Our focus is on the Xitou Flux Site, situated in the cloud forest of central Taiwan, where micro-meteorological and carbon sequestration observations have been conducted since 2010, employing the eddy covariance method.

Noteworthy is the resolution of nighttime drainage issues in 2018, achieved through the implementation of the Lloyd and Taylor model, ensuring the accuracy of the recorded data. A comprehensive analysis spanning the years 2010 to 2022 paints a concerning picture: a substantial decline in the carbon sequestration capacity of the forest, particularly pronounced since 2017.

This study investigates the multifaceted factors contributing to this decline, with a special emphasis on the intricate interplay between carbon sequestration and changes in land cover. A significant revelation is the widespread damage inflicted upon the planted Cryptomeria japonica (Sugi) by squirrels through debarking and girdling. This phenomenon emerges as a major driver behind the observed reduction in the forest's carbon sink efficiency.

Regrettably, the current state of carbon sequestration in this plantation has reached a precarious equilibrium, characterized by a carbon-neutral status. This underscores the pressing need for immediate and targeted conservation efforts to preserve the ecological balance and enhance the resilience of this vital carbon sink.

How to cite: Lai, Y.-J., Yu, J.-C., Maneke-Fiegenbaum, F., Otto, K., Lin, P.-H., Yang, C.-Y., and Nakai, T.: Long-term Carbon Flux Dynamics in Central Taiwan's Cloud Forests: Influence of Biological Disturbances, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2713, https://doi.org/10.5194/egusphere-egu24-2713, 2024.

EGU24-3237 | Orals | BG3.33

Response of carbon, water and energy fluxes to drought and flood at a forest ICOS station in Norway 

Holger Lange, Junbin Zhao, and Helge Meissner

Hurdal (NO-Hur) is a recently labelled ICOS class 2 station in Southeast Norway. It represents a typical southern boreal forest of medium productivity, dominated by old Norway spruce (average tree height: 25 m, ages: up to 100 years) with some pine and broadleaved trees. The eddy covariance technique is used to measure CO2 fluxes on a 42 m tower since 2021 . The measurements have an average footprint area of approximately 63 ha.

In 2023, the region experienced an unusual dry spring and then an extraordinary flood in August. Both events showed significant impact on the Net Ecosystem Exchange (NEE) and heat fluxes. The station is also equipped with automatic dendrometers and sap flow devices on the dominant spruce trees, allowing us to investigate the impact of these events at the individual tree scale. We will present tree growth and transpiration flux at different temporal scales (from sub-daily to seasonal), and relate these single tree observations with environmental variables, ecosystem-level NEE and evapotranspiration using phase synchronization analysis. These observational data will yield insights into carbon and water processes of a boreal forest at different scales in response to multiple disturbances.

How to cite: Lange, H., Zhao, J., and Meissner, H.: Response of carbon, water and energy fluxes to drought and flood at a forest ICOS station in Norway, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3237, https://doi.org/10.5194/egusphere-egu24-3237, 2024.

EGU24-3296 | Posters virtual | BG3.33

Climate uncertainty begets overestimation of Chinese natural carbon sinks 

Yue Cheng, Peng Luo, and Hao Yang

Changes in terrestrial carbon (C) balance under climate change continue to pose significant uncertainties in regional C budgets, leading to a lack of consensus on C balance and challenges in benchmarking. Here we investigate the spatiotemporal patterns and the potential drivers of China’s terrestrial C cycle and its covariation with climate from 1979 to 2014 using three atmospheric forcings and by an ecosystem model and a machine learning model. We estimate Gross Primary Productivity (GPP) over China ranging from 6.52 to 7.89 PgC yr-1, with a clear gradient from southeast to northwest. China is a weak C sink (0.01±0.01 PgC yr-1), indicating a previously overestimated natural carbon sink in China. The total carbon pool in China is estimated to be within the range of 86.30–90.00 PgC, with 84.1% stored in soil and 15.9% (10.17–14.04 PgC) in vegetation. Vegetation C sequestration  is estimated to offset 37%–50% of China’s anthropogenic emissions over that period. Forests, shrublands, grasslands, and croplands contribute significantly to this sequestration, with carbon storage values of 30.83–38.41 Pg C, 2.47–3.07 Pg C, 25.67–44.32 Pg C, and 2.52–3.5 Pg C, respectively. Our findings underscore the dominant influence of climatic factors in shaping the land C cycle, surpassing the impact of land use. The findings emphasize the need for China to prioritize industrial emission reductions for global carbon management and climate change strategies, emphasizing the pivotal role of its terrestrial C sinks.

How to cite: Cheng, Y., Luo, P., and Yang, H.: Climate uncertainty begets overestimation of Chinese natural carbon sinks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3296, https://doi.org/10.5194/egusphere-egu24-3296, 2024.

Photosynthesis rate is the key element in the carbon cycle process. Accurate photosynthesis rate estimate hinges on the maximum carboxylation rate (V25cmax). The high uncertainty in deriving V25cmax has long hampered efforts toward the performance of the photosynthesis models from leaf to global scales. Recently studies suggest a strong relationship between spectral reflectance and V25 cmax,0. We proposed the spectrum-driven V25cmax simulator using deep learning methods and built the hybrid modelling framework for photosynthesis rate estimation by integrating the data-driven V25cmax simulator in the process-based model. The performance of hybrid photosynthesis models was evaluated at leaf, field and global scales. At the leaf scale, we developed a novel deep learning architecture, which incorporated spatial attention and prior knowledge of spectral indices calculation modules, to extract the V25cmax from leaf hyperspectral images. At field scale, we combined the high-resolution unmanned aerial vehicle (UAV) multispectral imagery and convolutional neural networks (CNN) to estimate V25cmax at the paddy field. At a global scale, we utilized a fully connected deep neural network (DNN) to construct the satellite multispectral-driven V25cmax model based on the FLUXNET2015 dataset. Our result showed that spectrum information can accurately estimate V25cmax. The hybrid framework fully extracts the information of all available spectral bands using deep learning to reduce parameter uncertainty while maintains the description of the photosynthetic process to ensure its physical reasonability. We also highlighted the significance of spatial heterogeneity for V25cmax estimation. This study provides new insight into monitoring photosynthesis rate across different spatial scales.

How to cite: Hu, X., Shi, L., and Deng, X.: Hybrid modelling framework for photosynthesis rate estimation from leaf to global scales: integrating the spectrum-based V25cmax simulator into the process-based model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4285, https://doi.org/10.5194/egusphere-egu24-4285, 2024.

EGU24-4993 | Posters on site | BG3.33

δ13C of bulk leaf matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves 

Yong Zhi Yu, Rudi Schäufele, Guillaume Tcherkez, Hans Schnyder, and Xiao Ying Gong

The 13C isotope composition (δ13C) of leaf dry matter is widely employed as an index of physiological characteristics. δ13C of leaf carries integrated signatures of 12C/13C discrimination occurring during and after photosynthesis. The former is well-understood, and models have been developed to infer physiological processes and key parameters in C3 and C4 photosynthesis. However, much less is known about the downstream post-photosynthetic fractionation (∆post) processes. Several mechanisms have been hypothesized, such as isotope fractionation during respiration and the export of photosynthetic products. ∆post could cause the isotopic difference between newly fixed carbon and leaf biomass and thus complicates the interpretation of physiological responses based on isotopic records.

We investigated the effects of ∆post on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. We measured the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2DM) and that of cellulose (Δcel) along leaf age category. With the increase of leaf age classes, ΔDM increased while Δcel was almost constant. Also, ΔDM of young leaves and Δcel had similar responses to vapour pressure deficit and nitrogen treatments. The divergence between ΔDM and Δcelincreased with leaf age classes with a maximum value of 1.6‰, indicating the accumulation post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with respiration of –0.7 to –1.1‰ and carbon export of –0.5 to –1.0‰. Furthermore, different 12C/13C fractionation among leaves, pseudostems, daughter tillers and roots indicate that ∆post happens at the whole-plant level.

In summary, our study confirmed that leaf became increasingly 13C-depleted during ontogeny and respiration and carbon export are the driving mechanisms. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the smaller sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.

How to cite: Yu, Y. Z., Schäufele, R., Tcherkez, G., Schnyder, H., and Gong, X. Y.: δ13C of bulk leaf matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4993, https://doi.org/10.5194/egusphere-egu24-4993, 2024.

Rice is distributed worldwide; thus, quantitative analyses of water and heat fluxes between the land and air in paddy fields are vital for understanding basin-scale water cycles. In this study, eddy covariance and meteorological gradient systems on a 20-meter flux tower in the Jianghan Plain, Yangtze River Basin, China, were used to measure turbulent and meteorological parameters in paddy fields in 2021. Three micrometeorological methods, namely the eddy covariance (EC), Bowen Ratio-Energy Balance (BREB), and aerodynamic (AERO) methods, were used to calculate the latent heat flux (LE) and sensible heat flux (H); BREB and AERO are collectively referred to as gradient methods. The effects of measurement heights, growth stage, and weather conditions on the consistency among them were analyzed. The difference in meteorological measurement heights affected the results of gradient methods. Among the five height combinations, the error in the 2 and 4 m combination was the smallest, and the coefficients of determination of LEEC–LEBREB/AERO and HEC–HBREB/AERO reached 0.96 and 0.84, respectively. The stratification of the near-surface layer was formed due to the heterogeneous underlying surface of the experimental area, and the instrument needed to be installed within the range between roughness layer and new equilibrium layer. The height difference of gradient methods can be amplified within this range to avoid the influence of instrument resolution. The difference among methods was affected by growth stage, and weather conditions (sunny, cloudy, rainy days and different wind speed class). Both factors influenced atmospheric stability, and the error was the maximum in neutral stratification. This study provides a reference for the selection of flux calculation methods and error analyses for paddy fields in humid areas.

Keywords: Paddy fields, Eddy covariance, Bowen Ratio-Energy Balance, Aerodynamics, Latent heat flux, Sensible heat flux

How to cite: Zhao, Y. and Wu, J.: Comparing the eddy covariance and gradient methods for measuring water and heat fluxes in paddy fields, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5035, https://doi.org/10.5194/egusphere-egu24-5035, 2024.

EGU24-6128 | Orals | BG3.33

Projected runoff declines from plant physiological effects on precipitation 

Corey Lesk, Jonathan Winter, and Justin Mankin

The impact of plants on runoff under high atmospheric CO2 is a major uncertainty for the future of global water resources. An emerging consensus based on theory and Earth System Models (ESMs) suggests that stricter plant stomatal regulation under high CO2 will reduce transpiration, potentially boosting runoff. Yet, across a 12-member ensemble of idealized ESM simulations that isolate plant responses to CO2, we show that lower transpiration robustly enhances runoff over only 5% of global land area. Instead, we find that precipitation changes are five times more important than transpiration changes in driving runoff responses when only plants respond to CO2, and are a significant signal of CO2 physiological forcing over31-57% of land areas across models. Crucially, the models largely disagree on where physiologically forced precipitation changes occur, but agree that plant responses in most locations are as likely to reduce runoff as increase it, absent any effects from radiative warming. These results imply that large model uncertainties in precipitation responses, rather than transpiration responses, explain why ESMs disagree on plant physiologically driven runoff changes over most of the globe. Together, our findings implicate land-atmosphere rather than land-hydrologic responses as the key mechanistic source of uncertainty in runoff responses under CO2 physiological forcing. They further emphasize that any interpretation of plant-driven runoff responses must consider how precipitation itself will respond to CO2 physiological forcing.

How to cite: Lesk, C., Winter, J., and Mankin, J.: Projected runoff declines from plant physiological effects on precipitation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6128, https://doi.org/10.5194/egusphere-egu24-6128, 2024.

EGU24-6394 | ECS | Orals | BG3.33

Calibration of a Land Surface Model to adjust the carbon balance using History Matching. 

Simon Beylat, Nina Raoult, Vladislav Bastrikov, Frédéric Hourdin, Frédéric Chevallier, Cédric Bacour, Catherine Ottlé, and Philippe Peylin

Land exchanges carbon with the atmosphere through numerous processes, such as photosynthesis and vegetation respiration. As land carbon uptake is greater than land carbon emissions, land surface represents nowadays a carbon sink, absorbing around a third of total anthropogenic carbon emissions every year. Land surface models, used in global climate models, model these processes and provide estimates of net carbon fluxes between the atmosphere and land surfaces. However, simulations of these models still contain significant uncertainties. Other methods, known as Atmospheric CO2 Inversion, exist to estimate these fluxes, and are not consistent with estimates given by land surface models which usually provide a stronger carbon sink in the tropics than Atmospheric CO2 Inversions. These methods cannot provide simulations of the future that are needed for future projections of Climate Models. For that reason, it is important to understand and improve key processes controlling ecosystem carbon budgets, and to embed this understanding in predictive models. Land surface models typically use many free parameters to describe vegetation, which need to be rigorously calibrated or tuned. Here, we aim at calibrating ORCHIDEE, the land surface model used by the IPSL Earth system model, on the atmospheric inversion fluxes (taken as data-driven constraints) in order to study ORCHIDEE's ability to reconcile with Atmospheric CO2 Inversion by finding physically acceptable parameter sets, or detect models’ inability to recover the same spatio-temporal distribution of carbon fluxes. Calibration usually requires many model simulations, which are very costly. Emulators, and especially Gaussian processes, can replace the computationally time-consuming model and help us to run a large number of simulations to fill the parameter space and rule out parameter subspace that give inconsistent simulation. This method, called History Matching, is emerging in the climate community and has shown many advantages. We show the capacity of History Matching to calibrate ORCHIDEE on global simulations using different targets: Known, using twin experiments, which leads to a very rich source of information on parameter sensitivity, uncertainty, equifinality and global and specific knowledge of the model. Unknown, using fluxes from atmospheric CO2 inversion which could also be combined with vegetation activity data (i.e, such as vegetation fluorescence) to add a physical constraint to parameter calibration. This calibration can provide parameter sets that reconcile to a certain extent bottom-up and top-down approaches, or key information on missing processes in ORCHIDEE that need to be added or modified. In both cases, this is highly instructive and leads to a better understanding of the model and processes being modeled and highlights the potential of current land surface models to simulate carbon flux distribution compatible with existing atmospheric CO2 observation (in situ or from satellite).

How to cite: Beylat, S., Raoult, N., Bastrikov, V., Hourdin, F., Chevallier, F., Bacour, C., Ottlé, C., and Peylin, P.: Calibration of a Land Surface Model to adjust the carbon balance using History Matching., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6394, https://doi.org/10.5194/egusphere-egu24-6394, 2024.

EGU24-9200 | Orals | BG3.33

An effective machine learning approach for predicting near real-time ecosystem carbon cycle 

Félicien Meunier, Stephen Sitch, Michael Dietze, Pascal Boeckx, and Hans Verbeeck

Tropical forests store about half of the world’s above ground carbon and act as critical climate regulators as they absorbed one third of the global CO2 emissions over the past decades. These estimates of the present-day (and future) land carbon sinks are primarily obtained from land surface models (LSM) which are mechanistic tools that simulate the processes occurring at the interface between the atmosphere, the biosphere and the pedosphere. LSM are hence critical tools for understanding and predicting the dynamics of the land surface, its role in a changing Earth, and the impact of future climate and disturbances on its functioning. However, LSM have become increasingly complex and slow machinery that require heavy expert knowledge and computational tools to run. In this study, we tested whether data-driven (black box) models could efficiently reproduce process-based (mechanistic) models. To do so, we trained machine learning algorithms (gradient-boosted decision trees) with the model outputs of TrENDYv11 that were initially generated to estimate the global land carbon sink. Data-driven models performed extremely well in reproducing the long-term trends and the seasonality of the carbon sink over the Tropics, with an average accuracy of 91% and could further be used to make predictions, including near real-time forecasting of the carbon cycle of forests. We illustrate the latter by quantifying the impacts of last-year El-Niño on tropical ecosystem productivity, with a specific focus on the severe drought in the Amazon. While the simulations of the process-based models will only emerge in a year or so when the different teams will have run their own models, our tool could simulate in near real-time that the 2023 drought was for the largest reduction of Amazon GPP in recent history.

How to cite: Meunier, F., Sitch, S., Dietze, M., Boeckx, P., and Verbeeck, H.: An effective machine learning approach for predicting near real-time ecosystem carbon cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9200, https://doi.org/10.5194/egusphere-egu24-9200, 2024.

EGU24-9384 | Posters on site | BG3.33

Water-carbon exchange at the leaf scale of rice in response to elevated temperature 

Jingwei Wu and Yanchao Zhao

Global warming with climate change may affect the process of water consumption and carbon uptake of rice. However, the specific impact of elevated air temperature on the water-carbon exchange at the leaf scale of rice remains unclear currently. In this study, a three-year warming experiment was conducted in Jianghan Plain, China, and three treatments were set within natural supplemental light climate chambers in the field, mimicking ambient air temperature (ET0), an increase of 2°C (ET2), and an increase of 5°C (ET5), respectively. The objective was to investigate the direct effects of increasing air temperature on transpiration, photosynthesis, stomatal behavior, and leaf growth status of rice plants throughout the whole growth stage, while clarifying the indirect effects of variations in leaf growth status on carbon uptake and water consumption of rice. In this experimental area, the results indicated that treatments ET2 and ET5 during the vegetative growth phase led to an increase in transpiration rate (Tr) but a decrease in the net photosynthetic rate (An) compared to ET0, consequently lowering water use efficiency (WUE). Stomatal conductance (Gs) decreased initially and then increased with air temperature, showing a critical point at 35°C, while leaf area index (LAI) and leaf weight (LW) decreased due to increasing air temperature. However, during the reproductive growth phase, chlorophyll content (CCI), LAI and LW in treatments ET2 and ET5 were higher compared to ET0 due to a deceleration in the decline rate, enhancing leaf photosynthetic capacity and resulting in increased An. Consequently, the WUE also increased. The results showed that both elevated temperature and the leaf growth status differences caused by long-term high temperature had significant effects on leaf water-carbon exchange processes of rice.

Key words: elevated temperature, transpiration, photosynthesis, stomatal conductance, water use efficiency

How to cite: Wu, J. and Zhao, Y.: Water-carbon exchange at the leaf scale of rice in response to elevated temperature, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9384, https://doi.org/10.5194/egusphere-egu24-9384, 2024.

EGU24-10498 | ECS | Orals | BG3.33

Water potential dynamics in a precipitation pulse experiment: comparing direct and remote sensing metrics at the leaf scale 

Jessica Guo, William Smith, Russell Scott, and Joel Biederman

Plant water potential is a dynamic and fundamental driver of carbon and water fluxes, yet observations over time remain sparse. In a Sonoran Desert grassland, we utilized a precipitation manipulation experiment to a) evaluate the temporal trajectory of plant water potential following different precipitation pulse sizes and b) relate plant water potential to remote sensing proxies at the leaf scale. Beginning in 2020, natural summer rainfall was excluded and replaced with consistent irrigation divided among three watering treatments, which received identical seasonal totals delivered in return intervals of 3.5, 7, and 21 days (P3.5, P7, and P21, respectively), with correspondingly varied event magnitudes, between July and September. In 2023, we measured predawn and midday leaf water potential (ΨPD and ΨMD) as well as leaf-level hyperspectral on Digitaria californica, a native perennial bunchgrass, characterizing pulse events on Aug 14 (all treatments) and Aug 21 (second pulses for P3.5 & P7 only). Two spectra per leaf were measured, corrected for known breakpoints, and averaged prior to calculating NDVI, NDWI, and PRI.

Prior to the Aug 14 pulse irrigation, ΨPD was above -2 MPa in P7 while P3.5 and P21 both exhibited ΨPD around -2.5 MPa. While ΨPD peaked on day 1 following irrigation in all treatments, the amount of time spent in the well-watered range differed greatly. ΨPD dropped after day 1 in P3.5, after day 2 in P7, and after day 12 in P21, consistent with the varying pulse magnitudes. Uniquely in P21, pulse irrigation increased soil water content at 25 cm, indicating the availability of deeper soil moisture to D. californica with fewer/larger precipitation events. When comparing the replicated pulse events in the frequent/smaller treatments, the water potential response to Aug 14 and Aug 21 pulses differed greatly in P3.5 but not in P7. While soil water contents were similar across pulses, ΨPD in P3.5 started above -1 MPa during the Aug 21 pulse and did not exhibit a peaked response, coinciding with lower cumulative VPD. Reduced atmospheric demand may significantly moderate water potential responses to small precipitation events. Finally, across treatments and time-of-day, leaf water potential was most closely correlated with greenness indices of NDVI and PRI (R2 = 0.166 and 0.183, respectively), while only loosely correlated with the water content index NDWI (R2 = 0.018). Next, we intend to develop our own indices that can better capture the temporal response of leaf water potential to precipitation dynamics. 

How to cite: Guo, J., Smith, W., Scott, R., and Biederman, J.: Water potential dynamics in a precipitation pulse experiment: comparing direct and remote sensing metrics at the leaf scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10498, https://doi.org/10.5194/egusphere-egu24-10498, 2024.

EGU24-10902 | ECS | Posters on site | BG3.33

Improved modelled crop water-use and crop productivity using thermal and optical remote sensing data  

Muhammad Sarfraz Khan, Robert S. Caine, Ross Morrison, and Holly L. Croft

Accurately monitoring crop water use and crop photosynthesis is essential for predicting crop yield and optimising management strategies, in order to sustainably enhance crop productivity and maintain future food security. The synthesis of  thermal and multi-spectral remote sensing dataset is a promising approach for improving estimates of crop water and carbon fluxes at scales from the individual plant to regional extents. This study uses remotely-sensed data collected from ground-based, drone and satellite sensors to model evapotranspiration (ET) and crop productivity in wheat (Triticum aestivum) across a growing season at a flux tower site in northern England. A ground-based FLIR thermal camera (T530) was utilized to measure the diurnal variations in temperature every 30 minutes between 10AM till 2PM. A Parrot Analfi thermal drone and DJI Matrice 200 Series V2 paired with the Micasense Rededge MX multispectral sensor were flown at an altitude of 20 m, 7 times across the growing season, along with satellite-based Landsat-8 TIRS (100 m) and Sentinel-2 (60 m) multi-spectral data. Crop water and carbon fluxes were modelled using the Biosphere-atmosphere Exchange Process Simulator (BEPS), where Vcmax was dynamically constrained in BEPS through its relationship with leaf chlorophyll content from drone and Sentinel-2 data using a radiative-transfer based approach (PROSAIL). BEPS-modelled ET estimates compared results from a physical-based Surface Energy Balance System (SEBS), 3T, modified 3T, and simplified model which bypasses the requirement of input net radiation by incorporating a dry reference surface. Modelled photosynthesis and ET results were compared with in-situ eddy-covariance flux tower observations. For three out of 7 days of simulated results, temporal variations in modelled ET compared with flux tower observations at half hourly scale demonstrated index of agreement values of 0.74, 0.80, and 0.68, and Pearson’s Correlation values of 0.72, 0.65, and 0.64, respectively, for the 3T, modified 3T, and simplified ET model. Our results demonstrate the potential of synergizing drone, ground-based, and satellite platforms for providing accurate prediction of crop water use and productivity for a sustainable crop yield.

How to cite: Khan, M. S., Caine, R. S., Morrison, R., and Croft, H. L.: Improved modelled crop water-use and crop productivity using thermal and optical remote sensing data , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10902, https://doi.org/10.5194/egusphere-egu24-10902, 2024.

EGU24-11776 | Orals | BG3.33

Sensing and modeling plant ecohydrology for understanding tree and ecosystem responses to water stress 

Ashley M. Matheny, Ana Maria Restrepo Acevedo, Maria Ulatowski, Suvan Cabraal, and Justine Missik

Vegetation provides a critical nexus between the subsurface, biosphere, and atmosphere through the mediation of the exchange of water, carbon, and energy. Plants respond dynamically to local microclimates at both short and long timescales via mechanisms ranging from physiological behaviors, such as stomatal closure, to acclimation and adaptation. These responses influence land-atmosphere fluxes directly and are therefore crucial to understanding and predicting Earth system responses to a changing climate. As our community progresses towards increasingly physically-realistic models of vegetation responses to the environment, we face several new challenges such as understanding how whole-plant hydraulic strategies can best be represented using limited parameters, connecting non-linearly related observations such as water content and water potential within different organs, and representing responses to simultaneous stressor such as high temperatures and low water supply or high salinities and high evaporative demands. We use vignettes from two long-term tree and ecosystem level studies to demonstrate both progress and pitfalls towards overcoming each of these hurdles in terms of observational understanding of plant function and individual tree-based simulations of new observational data and the accompanying uncertainties. As we progress towards further incorporation of such vegetation ecohydrology modules within climate and weather models, it is becoming increasingly critical to represent well, and with limited parameters the manners in which plants manifest stress responses across time scales in order to better predict the complex feedbacks to carbon, water, and energy fluxes that subsequently develop.

How to cite: Matheny, A. M., Restrepo Acevedo, A. M., Ulatowski, M., Cabraal, S., and Missik, J.: Sensing and modeling plant ecohydrology for understanding tree and ecosystem responses to water stress, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11776, https://doi.org/10.5194/egusphere-egu24-11776, 2024.

EGU24-12656 | Orals | BG3.33

Increased leaf temperature reduces photosynthetic capacity of top-of-canopy leaves in the wet tropical forest of Costa Rica 

Milagros Rodriguez-Caton, Ulrike Seibt, Jochen Stutz, Nicholas Parazoo, Christopher YS Wong, Diego Dierick, Mukund Palat Rao, Iolanda Filella, Julia Bigwood, Sol Cooperdock, Josep Penuelas, and Troy Magney

Warming temperatures, high vapor pressure deficit (VPD), and excess light during the middle of the day can reduce CO2 assimilation and cause stomatal closure, a phenomenon known as midday depression of photosynthesis. However, the role of light, temperature and VPD in driving the diurnal cycle of photosynthesis remain poorly studied in tropical biomes. Here we use quantum efficiency of photosystem II in the light (ϕPSII) as indicator of photosynthetic efficiency for top-of-canopy leaves for six tree species with distinct leaf morphology, across eight sampling campaigns over two years. We find midday decreases in ϕPSII when temperature, solar radiation and VPD were higher than normal. Interestingly, the difference between leaf temperature and air temperature is the most important factor driving changes in ϕPSII, while light is less prominent. We also estimated canopy temperature using outgoing longwave irradiance and found that canopy temperature deviates from air temperature at air temperatures of around 27-28 °C, likely indicating a thermal threshold for photochemistry at the canopy level. These measurements can be combined with state-of-the-art satellite remote sensing (e.g. solar-induced chlorophyll fluorescence and land surface temperatures) to better understand temperature thresholds to photosynthesis and transpiration across scales.

How to cite: Rodriguez-Caton, M., Seibt, U., Stutz, J., Parazoo, N., Wong, C. Y., Dierick, D., Rao, M. P., Filella, I., Bigwood, J., Cooperdock, S., Penuelas, J., and Magney, T.: Increased leaf temperature reduces photosynthetic capacity of top-of-canopy leaves in the wet tropical forest of Costa Rica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12656, https://doi.org/10.5194/egusphere-egu24-12656, 2024.

EGU24-13079 | ECS | Orals | BG3.33

Low-latency forecasting framework for assessing ENSO impacts on terrestrial carbon cycle 

Colin Quinn, Thomas Colligan, Leonardo Calle, and Benjamin Poulter

Increasing wetland CH4 emissions are projected to have significant implications for keeping global warming below 2 °C. However, to better understand the future dynamics of wetland CH4 emissions, improved deployment of observational systems (e.g., aircraft and flux towers) is required. One avenue to allow targeted field observations is to improve subseasonal-to-seasonal (S2S) CH4 forecasting. Here, we present a workflow that enables low-latency (<4-week lag) ecosystem model carbon cycle products associated with the United States of America Interagency Greenhouse Gas (GHG) Center. The workflow increases accessibility to the LPJwsl v2.0 dynamic global vegetation model by providing near-real-time CH4, CO2, and other carbon cycle products to science users, allowing interaction with the codebase from a user-friendly website front-end integrated with Amazon Web Services computing resources. In the immediate future, with this increase in accessibility and decreased latency in carbon cycle products, analyses related to the onset of the 2023 El Niño mode of ENSO can be rapidly implemented to improve our understanding of carbon cycle dynamics. To demonstrate the utility of the near-real-time carbon cycle products, we couple 9-month GMAO GEOS climate forecast data with MERRA2 S2S reanalysis data to forecast LPJ carbon products until the end of the 2024 calendar year. LPJ S2S carbon forecasts are verified against historic ENSO anomalies for skillfulness. We highlight regions and periods forecasted to have anomalously higher or lower CH4 emissions during the late 2023 and early 2024 strong El Niño cycle. S2S CH4 forecasts enable the pre-positioning of in situ measurement networks to improve the coverage of CH4 observations. By migrating institutional, high-performance computing processes to a cloud-ecosystem framework, we provide increased access to carbon cycle products on a near-real-time basis.

How to cite: Quinn, C., Colligan, T., Calle, L., and Poulter, B.: Low-latency forecasting framework for assessing ENSO impacts on terrestrial carbon cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13079, https://doi.org/10.5194/egusphere-egu24-13079, 2024.

EGU24-14512 | Posters virtual | BG3.33

Strengthening of carbon and water cycle connection in response to rising aridity in India 

Rahul Kashyap and Jayanarayanan Kuttippurath

Abstract

Climate change, anthropogenic activities and frequent extreme events have caused significant changes in vegetation cover, photosynthetic activity, and productivity around the world in recent decades. At the same time, in the global warming scenario around 40% of land is experiencing moisture stress. India, is the second largest contributor to global greening, has an agrarian economy and lies in tropical region with higher carbon uptake potential. Henceforth, it is it is critical to investigate recent changes in carbon-water cycle interactions in India. However, the scarcity of data, the extensive computational requirements, and the complex biosphere-atmosphere-hydrosphere interactions make accurate monitoring difficult, particularly in India. We use remote sensing data, a suite of advanced statistical techniques, including machine learning algorithms like random forest and causal analysis, to determine recent changes in carbon-water cycle in India. Soil moisture (SM) has direct causal links with carbon use efficiency (CUE) and its drivers. SM also has the strongest control on the changes in photosynthetic activity, CUE and water use efficiency (WUE) in India during recent decades. However, there is rising aridity in terms of SM, Climatic Water Deficit (CWD) and Vapour Pressure Deficit (VPD) in India. There is a decline in photosynthetic activity (browning), decline in CUE and increase in WUE in response to rising aridity in regions of higher CUE (> 0.6) and WUE (> 1.2), like northeast, lower Indo-Gangetic Plain and South India. The efficient carbon sinks in India are weakening due to rising aridity, deforestation and extreme events in recent decades.  Our study reveals that the carbon-water cycle connection in India is strengthened in recent decades as a response to climate change and anthropogenic intrusions.

Keywords

Vegetation Dynamics; Carbon Use Efficiency (CUE); Water Use Efficiency (WUE); Aridity; Remote Sensing Big Data; Machine Learning

 

How to cite: Kashyap, R. and Kuttippurath, J.: Strengthening of carbon and water cycle connection in response to rising aridity in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14512, https://doi.org/10.5194/egusphere-egu24-14512, 2024.

The Indian subcontinent exhibits a strong seasonal pattern of monsoonal rainfall from June to September and remains drier for the remaining eight months. This strong seasonal rainfall drives vegetation patterns by regulating vegetation growth and productivity. However, it is critical to understand how vegetation maintains land-atmosphere interactions during this drier period by maintaining vegetation productivity with optimal water loss through evapotranspiration. Also, this region comprises most of the agricultural land, which is significantly dependent on irrigation systems, and such local processes may affect and perturb the hydrological cycle via evapotranspiration. It is essential to examine the factors responsible for maintaining the terrestrial ecosystem's carbon-water cycle during drier periods, which may be related to irrigation systems. Such features are not yet explored. We examined satellite-based products and found that the terrestrial carbon-water cycle during drier periods is maintained by the moisture stored during monsoonal rainfall and sustained during drier periods. To understand the ecosystem-specific response, we explored natural forests and human-controlled croplands, which have unique roles through soil-vegetation dynamics to maintain vegetation productivity during drier periods. Soil Moisture-Evapotranspiration coupling is observed over the above ecosystems, and their disparities have led to insights into the uniqueness of land-atmosphere coupling.

How to cite: Khandare, A. and Ghosh, S.: Role of soil-vegetation in influencing terrestrial water cycle through natural-human induced processes over the Indian region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14875, https://doi.org/10.5194/egusphere-egu24-14875, 2024.

EGU24-15170 | Orals | BG3.33

Partitioning NEE from peatland vegetation into autotrophic and heterotrophic components 

Bart Kruijt, Jan Biermann, Daniel van der Craats, Wietse Franssen, Wilma Jans, Marsha Rovers, Laurent Bataille, Tom Nijman, Alexander Buzacott, Quint van Giersbergen, Reinder Nauta, and Ronald Hutjes

In ecosystems on organic soils such as peatlands and managed grasslands on peat, understanding the dynamics and controls of peat decomposition in drained soils or accumulation in wetlands is currently a topic of great interest because of their potential contribution to large CO2 emissions or sustained carbon storage. Net ecosystem carbon exchange fluxes (NEE) measured in such ecosystems are a combination of autotrophic processes, photosynthesis and respiration, in living plant material and heterotrophic respiration from all other organisms including those feeding on decomposing peat. Direct flux measurements from eddy covariance or chambers, however, are unable to distinguish the two co-occurring respiration components.

In this study we assess two approaches to partition measured NEE of peatland ecosystems into respiration components and estimate peat decomposition rates. The traditional approach is to use the assumption that annual heterotrophic respiration equals the difference between NEE and NPP. In managed grasslands on peat soils this implies that annual NEE corrected for harvest removal and manure application represents the annual peat oxidation. The alternative proposed here is based on data at shorter time scales, making use of the information contained in day-to-day variability in fluxes and vegetation activity. We explore the use of correlations between night-time NEE and daily GPP as well as observed changes in NEE following abrupt vegetation changes and management events.

Using multiple site-years of daily NEE measured over a range of managed and natural peatlands in The Netherlands we show that information contained in intra-annual variability carries sufficient information to derive a signal that comes close to heterotrophic respiration and peat decomposition-related carbon loss. The proposed partitioning could be used to understand in more detail the processes responsible for peat decomposition and apply such understanding in emission mitigation management.

How to cite: Kruijt, B., Biermann, J., van der Craats, D., Franssen, W., Jans, W., Rovers, M., Bataille, L., Nijman, T., Buzacott, A., van Giersbergen, Q., Nauta, R., and Hutjes, R.: Partitioning NEE from peatland vegetation into autotrophic and heterotrophic components, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15170, https://doi.org/10.5194/egusphere-egu24-15170, 2024.

EGU24-16219 | ECS | Posters on site | BG3.33

EXCITED: an open machine learning workflow for estimating terrestrial carbon exchange 

Claire Donnelly, Bart Schilperoort, Stefan Verhoeven, Yang Liu, Peter Kalverla, and Gerbrand Koren

Despite its importance to the global carbon budget, the exchange of carbon dioxide between atmosphere and vegetation is currently not accurately quantified. To model the global biospheric CO2 exchange, data-based (machine learning) models have been developed using training data from eddy-covariance measurement sites [1, 2]. While these models are widely used and can successfully predict carbon fluxes on short timescales, they can severely overestimate the annual carbon uptake by many ecosystems. 

In the EXCITED project, we aim to better constrain the CO2 exchange by terrestrial ecosystems on longer timescales using estimates from inverse models (i.e., CarbonTracker) as additional input data. The workflow consists of first training two models: one on the site-based data, and one on the CarbonTracker data. While the site-based model can produce fluxes on small temporal and spatial scales, the CarbonTracker-based model will be more accurate on long time scales. From the machine learning models we can then produce (global) datasets. Finally, these datasets can be merged to produce a dataset which has the best of both worlds. 

Aside from the produced datasets, we will make the trained machine learning models available, as well as the full workflow that generates the model and data. The workflow consists of the (Python) code, Jupyter notebooks, along with documentation to guide new users. Having the code and documentation openly available makes it easier for others to adapt it to their needs or to further extend it. With the open workflow we aim to build a community around these tools for modeling and forecasting terrestrial carbon exchange. 

The (in-progress) workflow is available on GitHub at https://github.com/EXCITED-CO2/excited-workflow  

[1] Bodesheim et al. (2018), Upscaled diurnal cycles of land–atmosphere fluxes: A new global half-hourly data product, Earth System Science Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-201  

[2] Jung et al. (2020), Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, https://doi.org/10.5194/bg-17-1343-2020  

How to cite: Donnelly, C., Schilperoort, B., Verhoeven, S., Liu, Y., Kalverla, P., and Koren, G.: EXCITED: an open machine learning workflow for estimating terrestrial carbon exchange, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16219, https://doi.org/10.5194/egusphere-egu24-16219, 2024.

EGU24-16457 | ECS | Orals | BG3.33

Water consumption of mature European beech and Douglas fir trees growing in pure and mixed stands 

Sharath Paligi, Heinz Coners, Christina Hackmann, and Christoph Leuschner

In recent decades, the frequency and intensity of hotter droughts have increased, posing a serious threat to our forests. During hot droughts, increasing evapotranspiration depletes soil moisture reserves and thus exposes the trees’ xylem to critical water potentials. Several of Central Europe’s major timber species have been found to be especially susceptible to repeated summer droughts. Therefore, the forestry sector is increasingly considering the establishment of mixed stands and the inclusion of putatively more drought-resistant non-native tree species. However, silvicultural decisions about increasing the cultivation of non-native species and planting them in mixture requires empirical data on species-specific water consumption in pure and mixed culture in order to assess climate risks and to avoid potential negative competition effects.

To address these questions, we installed 32 dual-method-approach type sap-flow sensors capable of measuring the entire range of sap flow rates in pure European beech and Douglas fir stands as well as in a nearby mixed beech-Douglas fir stand on deep sandy soil in northern Germany. Additionally, heat-field-deformation type sap-flow sensors were used for measuring the radial sap flow profile in the xylem of each individual tree. The trees equipped with sensors covered a broad DBH range which allowed extrapolating to stand-level water consumption. Sap flow, soil moisture, soil matric potential and weather conditions were monitored over the wet year 2021 and the dry year 2022. We further applied time-dependent probe misalignment correction to account for measurement errors related to sensor installation and to changes in stem water content over the growing season.

Sapwood depth increased with the increasing DBH of a tree and ranged for beech from 6.5 to 15.5 cm and for Douglas fir from 7.5 cm to 14.5 cm. In general, both beech and Douglas fir in mixture had deeper sap flow profiles compared to their pure stands. Stand-level water consumption was higher in the pure beech than in the Douglas fir stand; the mixed stand consumed even more water than the two pure stands. Further, tree-level water use was related to tree size and the radial sap flow profile. Total tree water consumption was markedly higher in the dry year 2022 than in the moist year 2021 due to a higher evaporative demand.

The findings of this study are crucial for supporting foresters in silvicultural decision making and for better understanding the water cycle dynamics in forest ecosystems in the face of climate change.

How to cite: Paligi, S., Coners, H., Hackmann, C., and Leuschner, C.: Water consumption of mature European beech and Douglas fir trees growing in pure and mixed stands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16457, https://doi.org/10.5194/egusphere-egu24-16457, 2024.

EGU24-16573 | ECS | Orals | BG3.33

Terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X 

Jacob A. Nelson, Sophia Walther, Basil Kraft, Fabian Gans, Gregory Duveiller, Ulrich Weber, Zayd Mahmoud Hamdi, Weijie Zhang, and Martin Jung and the FLUXCOM Contributors

Mapping in-situ eddy covariance measurements of terrestrial carbon and water fluxes to the globe is a key method for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from a newly implemented up-scaling framework, FLUXCOM-X. The X-BASE products comprise of estimates of CO2 net ecosystem exchange (NEE), gross primary productivity (GPP) as well as evapotranspiration (ET) and, for the first time, a novel fully data-driven global transpiration product (ETT), at high spatial (0.05°) and temporal (hourly) resolution for the period 2001-2020.

One key improvement of the new products is the much more realistic estimates of global carbon uptake (NEE) at  -5.75 PgC yr-1, which is a marked improvement compared to previous FLUXCOM versions as well as reconciles the bottom-up global eddy-covariance-based NEE and estimates from top-down atmospheric inversions. The improvement of global NEE was likely only possible thanks to the international effort to improve the precision and consistency of eddy covariance collection and processing pipelines, as well as to the extension of the measurements to more site-years resulting in a wider coverage of bio-climatic conditions. However, X-BASE global net ecosystem exchange shows a very low inter-annual variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge.

With 125 PgC yr-1, X-BASE GPP is slightly higher than previous FLUXCOM estimates, mostly in temperate and boreal areas and shows a good agreement with TROPOMI based SIF. X-BASE evapotranspiration amounts to 74.7x10³ km3 yr-1 globally, but exceeds precipitation in many dry areas likely indicating overestimation in these regions. On average 57% of evapotranspiration are estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many land surface models.

Despite considerable improvements to the previous up-scaling products, many further opportunities for development exist. Pathways of exploration include methodological choices in the selection and processing of eddy-covariance and satellite observations, their ingestion into the framework, and the configuration of machine learning methods. Here we will outline how the new FLUXCOM-X framework provides the necessary flexibility to experiment, diagnose, and converge to more accurate global flux estimates.

 

 

 

How to cite: Nelson, J. A., Walther, S., Kraft, B., Gans, F., Duveiller, G., Weber, U., Hamdi, Z. M., Zhang, W., and Jung, M. and the FLUXCOM Contributors: Terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16573, https://doi.org/10.5194/egusphere-egu24-16573, 2024.

EGU24-16946 | ECS | Orals | BG3.33

A Vegetation Photosynthesis and Respiration Model (VPRM) for the post-MODIS era 

Theo Glauch and Julia Marshall

The data-driven VPRM model is a simple light-use-efficiency model, driven by satellite-derived indices of Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) to extract information at high spatial resolution. High temporal resolution is provided through meteorological driving data, namely 2-m temperature and shortwave radiation at the surface. Two parameters per vegetation type are fit using flux tower measurements from the region for previous years. This well-established model has been widely used to model carbon exchange fluxes (gross primary productivity and respiration) between the land biosphere and the atmosphere. A common application is as a background (prior) model for estimating carbon fluxes through inversion techniques at regional scales, given the high temporal and spatial resolution of the fluxes compared to complex process models.

Historically, the VPRM preprocessor relied on data from the 500-m-resolution MODIS satellite and a static 1-km land cover classification map. As MODIS approaches discontinuation, this presentation introduces an updated VPRM software framework - pyVPRM - capable of handling satellite data from MODIS, VIIRS, and Sentinel-2, as well as high-resolution land cover products from ESA WorldCover and the Copernicus Global Land Service. The extremely high spatial resolution of the Sentinel-2 reflectances and updated land cover maps now allow vegetated area within cities to be resolved. In addition, the framework naturally provides an interface to generate VPRM inputs for use in online mesoscale models, such as the greenhouse gas module of the Weather Research and Forecasting Model (part of the WRF-Chem distribution). In our presentation we provide an overview of the model, present fit parameters for all cases using data from European eddy-covariance towers, and present exemplary applications ranging from city to continental scales.

How to cite: Glauch, T. and Marshall, J.: A Vegetation Photosynthesis and Respiration Model (VPRM) for the post-MODIS era, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16946, https://doi.org/10.5194/egusphere-egu24-16946, 2024.

EGU24-17732 | Orals | BG3.33

Using large, automated, light and dark chamber systems to directly measure rates of ecosystem gross primary productivity (GPP) and respiration (Reco) 

Klaus Steenberg Larsen, Johannes Wilhelmus Maria Pullens, Jesper Riis Christiansen, Azeem Tariq, Sander Bruun, Poul Erik Lærke, Poul Larsen, and Preben Jørgensen

The biological processes of carbon (C) uptake via plant photosynthesis (gross primary productivity, GPP) and carbon loss by autotrophic and heterotrophic respiration (ecosystem respiration, Reco) each constitute a C flux of approx. 130 Gt C per year, equal to 1/7 of the atmospheric C pool. Still, because the biological processes driving GPP and Reco are both active during daytime, they are intrinsically difficult to measure directly. The eddy covariance technique, which is effectively the gold standard for measuring net ecosystem exchange (NEE), relies on partitioning models of NEE to estimate GPP and Reco, but these methods remain debated because other processes, such as inhibition of leaf-level respiration during daytime, are not accounted for.  

In ecosystems with short-stature vegetation like grasslands, shrublands, tundra, and many agricultural systems, light and dark closed chamber measurements at the ecosystem scale enable direct daytime measurements of NEE (under light conditions) and Reco (under dark conditions) while GPP can be directly estimated as NEE - Reco. Long-term data series of automated light and dark chamber measurements are, however, very rare.

Here, we present data of > 50,000 measurements over six years from a novel, automated light and dark gas exchange measurement chamber that was tested in heathland, wetland, and agricultural vegetation types. In the heathland, we applied standard eddy covariance gap-filling methods to estimate annual NEE across the six years of observations. The results show annual NEE rates ranging from -96 (net uptake) to 21 (net release) g C m-2y-1 over the different years. We further applied standard eddy covariance nighttime and daytime methods to partition the observed NEE measurements into GPP and Reco. Using the nighttime method, GPP ranged from 966 to 1355 g C m-2y-1 while Reco ranged from 867 to 1372 g C m-2y-1. On average, this was only 0-4% higher than observed rates from the chamber measurements. In comparison, the daytime method yielded GPP and Reco rates that were approximately 11-30% higher than observed rates. The slightly to moderately lower direct measurements with the automatic light and dark chamber could indicate that the chamber observations are able to account at least partially for the daytime leaf-level inhibition of respiration and thus may provide a sound method for measuring the actual rates of GPP and Reco. While potential biases cannot be ruled out and will be discussed, our results indicate that automated light and dark chambers may provide an additional and highly useful tool for estimating rates of GPP and Reco in short-stature vegetation and may further serve to help constrain methods for partitioning NEE fluxes observed with other techniques, such as the eddy covariance methodology.

How to cite: Larsen, K. S., Pullens, J. W. M., Christiansen, J. R., Tariq, A., Bruun, S., Lærke, P. E., Larsen, P., and Jørgensen, P.: Using large, automated, light and dark chamber systems to directly measure rates of ecosystem gross primary productivity (GPP) and respiration (Reco), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17732, https://doi.org/10.5194/egusphere-egu24-17732, 2024.

EGU24-17864 | Orals | BG3.33

Vegetation and climate: Exploring feedbacks across scales 

Diego G. Miralles

Vegetation plays a fundamental role in shaping Earth's climate by controlling the energy, water, and carbon cycles across terrestrial landscapes. It exerts influence by altering surface roughness, consuming significant water resources through transpiration and interception, regulating atmospheric CO2 concentration, and controlling net radiation and its partitioning. This influence propagates through the atmosphere, from microclimate scales to the atmospheric boundary layer, subsequently impacting large-scale circulation and the global transport of heat and moisture. Understanding the feedbacks between vegetation and atmosphere across multiple scales is crucial for predicting the influence of land use and cover changes and for accurately representing these processes in climate models. 

This presentation aims to review the mechanisms through which vegetation modulates climate across scales. Particularly, I will evaluate the vegetation impact on circulation patterns, precipitation and temperature during extreme events, such as droughts and heatwaves. Key questions regarding the influence of vegetation feedbacks during these events will be explored: What is the impact of extreme meteorological conditions on ecosystem transpiration? How does vegetation regulate the atmospheric boundary layer and affect the potential intensification and propagation of droughts and heatwaves? Furthermore, I will review the climatic consequences of land use/cover changes, with specific emphasis on extreme events. The goal of this presentation is not to provide a convincing answer to these questions, but rather to highlight the state of science and review recent studies that may help advance our collective understanding of vegetation feedbacks and the role they play in climate.

How to cite: Miralles, D. G.: Vegetation and climate: Exploring feedbacks across scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17864, https://doi.org/10.5194/egusphere-egu24-17864, 2024.

EGU24-17878 | ECS | Orals | BG3.33

High frequency isotopic composition measurements to classify cloud induced turbulent patterns above the amazon rain forest 

Robbert Moonen, Getachew Adnew, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, David Bonell Fontas, and Thomas Röckmann

During the 2022 CloudRoots-Amazonia field campaign high-frequency measurements of state variables and atmospheric composition were taken at the Amazon Tall Tower Observatory (ATTO) in Brazil. Specifically, we measured wind fields, radiation, H2O and CO2 mole fractions, and H2O and CO2 isotopic compositions at 4Hz or faster at 57m height. A main objective was to use these high-frequency measurements to investigate how the coherent canopy-atmosphere turbulent structures are influenced by the non-stationary passage of clouds. Novel in our investigation is the use of quadrant analysis in combination with high frequency isotopic composition measurements, as well as our approach to finding lag between cloud passages and turbulent variables.

Using quadrant analysis to distinguish sweeping and ejection motions, we find that the passage of clouds influences the transport of scalars and energy. Preceding the passage of well-developed cumulus clouds, we see that the gust front forcefully ejects this subcanopy air into the atmospheric mixed layer. It seems that this is an effective upward transport mechanism for CO2 and other scalars emitted by the soil, plant roots, and understory. The understory separation was based on the qCO2’ > 0, qH2O’ > 0 quadrant. Keeling plots of this quadrant, made using the dD isotope of H2O, indicate strong midday depletion of understory water vapour (-20 ‰). This effect can only be explained by a major downwards moisture flux from the atmosphere into the soils through the process of condensation, even - or especially – when the air temperatures are highest. Finally, we show what the responses of the major fluxes (H, LE, FCO2) and their respective isotopologues are to the passage of clouds, including their lag times. Our study contributes to an improved quantification and understanding of the canopy-atmosphere fluxes influenced by the perpetual presence of clouds.

How to cite: Moonen, R., Adnew, G., Hartogensis, O., Vilà-Guerau de Arellano, J., Bonell Fontas, D., and Röckmann, T.: High frequency isotopic composition measurements to classify cloud induced turbulent patterns above the amazon rain forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17878, https://doi.org/10.5194/egusphere-egu24-17878, 2024.

EGU24-18212 | Posters on site | BG3.33

Anthropogenic Water Withdrawals Impact Dissolved Inorganic Carbon Fluxes on Local and Continental Scales  

Elizabeth Flint, Matthew Ascott, Daren Gooddy, Mason Stahl, and Ben Surridge

Quantifying inorganic carbon fluxes to and from fresh waters is essential as part of understanding ecosystem functioning, potable water quality, and the amount of carbon exported to both the atmosphere and the oceans. Despite this, evidence of how anthropogenic withdrawals of fresh water perturb both land-fresh water-ocean and fresh water-atmosphere carbon fluxes is limited. Using the United States (US) as an exemplar, here we quantify for the first time the impact that both fresh surface water and fresh groundwater withdrawals by major water use sectors can have on land-fresh water-ocean and fresh water-atmosphere inorganic carbon fluxes. Fresh surface water withdrawals across the US during 2015 resulted in an estimated median gross dissolved inorganic carbon (DIC) retention flux of 8.5 (interquartile range: 6.5-11.3) Tg C yr-1, equivalent to 29% of the total export of DIC to the oceans from US rivers. The median gross retention flux due to fresh groundwater withdrawals was estimated to be 6.5 (interquartile range: 4.9-8.7) Tg C yr-1, over eight times the magnitude of the DIC flux to the oceans by subterranean groundwater discharging from the US. The median emission of CO2 from fresh waters to the atmosphere due to degassing of CO2 supersaturated groundwater following withdrawal was estimated to be 2.2 Tg CO2 yr-1 (interquartile range 1.2-4.3), 30% larger than previous estimates. Irrigation and public supply water use sectors contributed 70% and 19% of this total CO2 emission, respectively. County-level CO2 emissions from degassing groundwater following withdrawal exceeded the total county-level CO2 emissions from major emitting facilities across 1,391 counties, many of which were within Western and Midwestern states. This highlighted importance of freshwater withdrawals for DIC fluxes and CO2 emissions has implications for the accurate development of carbon budgets both across the United States, and for other regions around the world that are associated with significant freshwater withdrawals.

How to cite: Flint, E., Ascott, M., Gooddy, D., Stahl, M., and Surridge, B.: Anthropogenic Water Withdrawals Impact Dissolved Inorganic Carbon Fluxes on Local and Continental Scales , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18212, https://doi.org/10.5194/egusphere-egu24-18212, 2024.

EGU24-18884 | ECS | Orals | BG3.33

Introducing AustroSIF: A compilation of combined passive and active fluorescence data at flux tower sites across Europe; dataset overview and potential applications 

David Martini, Karolina Sakowska, Mirco Migliavacca, Tommaso Julitta, Albin Hammerle, Michaela Schwarz, Katharina Scholz, Marta Galvagno, Gregory Duveiller, Javier Pacheco-Labrador, and Georg Wohlfahrt

Remote sensing of sun-induced fluorescence (SIF) provides a valuable tool to assess vegetation state and productivity at large spatial scales and in an unintrusive way. SIF is the absorbed light re-emitted by chlorophyll pigments in the red to infrared range (650-850 nm). It represents one of the three main mechanisms that plants use to dissipate the absorbed light energy, the other two being photochemistry and thermal dissipation (non-photochemical quenching, NPQ). Because both photosynthesis and SIF emission occur at the chloroplast level and share the same excitation energy, SIF can be related to photosynthesis. SIF has been successfully used to predict GPP and the absorbed photosynthetic active radiation (APAR), and in recent years, it has been implemented in state-of-the-art radiative transfer models and several TBMs. Still, the development of SIF-based methods for the prediction of GPP is hindered by the lack of data, especially in regard to coupled GPP-SIF-NPQ estimates. The NPQ mechanism has proven to be the dominant energy dissipation pathway, especially during extreme heat events, and it is the key missing element to correctly relate SIF to GPP. However, so far, SIF has mostly been linked to GPP in a simplistic way, without properly considering the effect of NPQ and with no explicit calculation of the allocation of excitation energy.

The present work aims at presenting a novel dataset from the AustroSIF project. In this project, we collected time series of ground-based active and passive chlorophyll fluorescence and hyperspectral reflectance from 7 eddy-covariance flux tower sites in Europe. The dataset includes sites from Austria, Italy, Poland, Germany and Spain. Key variables present in the dataset include GPP from eddy-covariance, SIF and reflectance-based indices from tower-mounted hyperspectral spectrometers, as well as NPQ, photochemical quenching (PQ), and electron transport rate (ETR) from a continuous pulse amplitude modulation (PAM) instrument. These data have been obtained for periods varying from 3 to 9 months per site between 2018-2022. In this contribution, we will present the dataset and highlight potential applications for model development and improved mechanistic understanding of the SIF-GPP-NPQ interplay. Prospective applications include improved NPQ characterizations in models such as SCOPE (a radiative transfer and energy balance model) and ORCHIDEE (a terrestrial biosphere model capable of ingesting SIF).

How to cite: Martini, D., Sakowska, K., Migliavacca, M., Julitta, T., Hammerle, A., Schwarz, M., Scholz, K., Galvagno, M., Duveiller, G., Pacheco-Labrador, J., and Wohlfahrt, G.: Introducing AustroSIF: A compilation of combined passive and active fluorescence data at flux tower sites across Europe; dataset overview and potential applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18884, https://doi.org/10.5194/egusphere-egu24-18884, 2024.

EGU24-21892 | Posters on site | BG3.33

Plant physiological control of tropospheric ozone dry deposition over a maize agricultural field 

Anam Khan, Reem Hannun, Lun Gao, Carl Bernacchi, Kaiyu Guan, Taylor Pederson, and Paul Stoy

Tropospheric ozone is a phytotoxic air pollutant that reduces photosynthesis and vegetation biomass of major tree species and agricultural crops. Ozone induced damages can result in cascading impacts on the global carbon and water cycle. The stomatal uptake of ozone often correlates tightly with ozone induced losses in net photosynthesis and biomass. Furthermore, stomatal uptake represents a significant portion of ozone dry deposition and can directly impact the tropospheric ozone budget. The dual significance of stomatal ozone flux as directly impacting the global carbon cycle and as a tropospheric ozone loss pathway warrants continued monitoring of ecosystem ozone fluxes. However, measuring ozone fluxes has largely utilized chemiluminescence-based instruments that are difficult to operate and maintain in the field. The NASA Rapid Ozone Experiment (ROZE) is a recent advancement in ultraviolet (UV) absorption-based instruments and can achieve high sensitivity and sampling frequency making it possible to measure ozone fluxes without the use of chemiluminescence. Here, we analyze the influence of stomatal conductance on ozone dry deposition over the growing season in a maize (Zea mays) agricultural field in central Illinois, United States. We monitored ozone fluxes using the eddy covariance technique with 10 Hz measurements of wind velocity and ROZE ozone concentrations and partitioned the total ozone flux into stomatal and non-stomatal components. The stomatal component was estimated using the observed latent heat exchange with an inversion of the Penman-Monteith equation along with a stomatal optimization-based model using the gross primary productivity flux. We find that total ozone fluxes are highly coupled with gross primary productivity and evapotranspiration at this maize field. Furthermore, the observed deposition velocity of ozone is coupled with stomatal conductance throughout the growing season. These findings suggest that carbon and water fluxes from productive agricultural fields can be coupled with fluxes of phytotoxic air pollutants like ozone through stomatal regulation. Eddy covariance ozone fluxes monitored across tower networks can lead to an improved understanding of the control of natural ecosystems and agricultural fields on concentrations of air pollutants. Co-located carbon, water, and ozone flux observations will be valuable in testing and improving Earth system model representation of ozone dry deposition to predict how the impacts of global change on plant function will impact ozone dry deposition.

How to cite: Khan, A., Hannun, R., Gao, L., Bernacchi, C., Guan, K., Pederson, T., and Stoy, P.: Plant physiological control of tropospheric ozone dry deposition over a maize agricultural field, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21892, https://doi.org/10.5194/egusphere-egu24-21892, 2024.

EGU24-22006 | Posters on site | BG3.33

Interpretable Machine Learning to Understand Multi-Scale Meteorological Impacts on Ecosystem Carbon Uptake 

David Hafezi Rachti, Christian Reimers, and Alexander J. Winkler
Terrestrial carbon uptake constitutes the main driver of interannual variations in atmospheric CO2 and thus one of the least understood parts of the global carbon cycle. Meteorological factors, such as variations in weather patterns and extreme climate events, are the main drivers of interannual variations in the land carbon uptake. Assessing these impacts of meteorological events on the annual carbon balance, in terms of their timing and duration and their interaction with ecosystems, remains a challenging problem.
 
Here we propose a data-driven approach to shed light on the meteorological drivers of terrestrial carbon variability. We use a convolutional neural network to predict carbon and water fluxes in forest ecosystems, which is trained on wavelet-transformed key meteorological variables to explicitly represent a wide spectrum of time-scales in the input. We curate a dataset conflating eddy covariance data from 15 deciduous broadleaf forest sites from the FLUXNET network, meteorological measurements gap-filled with reanalysis data and a random walk variable for validation. The application of an explanatory machine learning technique provides insights into the importance of the different meteorological events in terms of their length and timing in controlling anomalies in the annual terrestrial carbon balance. Additionally, we test our approach trained on carbon and water fluxes output from a comprehensive land-surface model to evaluate the validity of the observation-driven model.
 
The model shows that water availability is the dominant factor of local variations in the carbon balance. In particular, vapour pressure deficit events lasting 20-40 days in summer are one of the most important drivers for the model to predict a lower annual carbon uptake. Furthermore, we compare these quantitative results and results of a case study of the 2003 heatwave with the model setup trained on land-surface model output. Such studies are important to demonstrate the potential of interpretable machine learning methods to improve our understanding of land-atmosphere interactions, and crucially, to learn the complex responses of ecosystems to meteorological variability from data.

How to cite: Hafezi Rachti, D., Reimers, C., and Winkler, A. J.: Interpretable Machine Learning to Understand Multi-Scale Meteorological Impacts on Ecosystem Carbon Uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22006, https://doi.org/10.5194/egusphere-egu24-22006, 2024.

EGU24-1586 | ECS | Orals | BG3.35

Assessing Nitrous Oxide Emissions from Agricultural Soil: A Comparison of Two Grass-clover Proportions 

Meng Kong, Søren O. Petersen, Jørgen Eriksen, and Christian Dold

The inclusion of grass-clover (GC) leys in crop rotations on dairy farms may contribute to climate change mitigation by facilitating carbon sequestration in soils. A long-term experiment in Denmark found that soil organic carbon (SOC) and soil total nitrogen (STN) increased with the proportion of GC (i.e., 2 and 4 years of GC in a six-year rotation) from 2006 to 2020. However, the incorporation of GC residues may potentially increase nitrous oxide (N2O) emissions due to the increased SOC and STN stocks. Yet, limited information exists regarding N2O emissions with different proportions of GC. We hypothesized that N2O emission will increase with more GC years in the rotation. This study aimed to quantify the emissions of N2O in two long-term crop rotations with different proportions of GC years (1/3 or 2/3), and all crops present each year. A one-year experiment is currently conducted including the rotation year preceding, and the year following GC cultivation where spring barley is cultivated, in both crop rotations (n=2, total: 8 plots). Emissions of N2O were quantified starting from April 2023 (day of year, DOY 111). Surface N2O fluxes were measured with the LI-7820 N2O/H2O trace gas analyzer connected to the 8200-01S Smart Chamber (LI-COR Biosciences, Lincoln, NE, USA). Linear mixed models were used to analyze N2O with crop rotation (1/3 or 2/3 GC) and rotation year (pre- or post-GC) as fixed effects and sampling date and block as random effects. Preliminary results showed elevated N2O fluxes (up to 443 ug N2O-N m-2 h-1) with a longer high-flux period in post-GC rotation years (DOY 111-151), than pre-GC years (DOY 111-139). The highest cumulative emission was 420 mg N2O-N m-2 in the post-GC year of DOY 320 in 1/3 GC. For pre-GC in 1/3 GC, pre-GC and post-GC in 2/3 GC, emissions were 249, 341 and 252 mg N2O-N m-2, respectively. For both N2O fluxes and cumulative emissions, the 1/3 GC rotation was significantly higher (p<0.01) than the 2/3 rotation. In addition, the N2O fluxes and cumulative emissions in the post-GC year were significantly (p<0.01) higher than the pre-GC year in the 1/3 GC crop rotation, while the years pre- and post-GC showed no difference in rotation with 2/3 GC. In contrast to our initial hypothesis, the preliminary results did not show higher N2O emissions with increased GC years. This currently suggests that the 2/3 GC inclusion in crop rotations has a greater potential for climate mitigation as compared to 1/3 GC. Further investigations will focus on the drivers of N2O emissions and the climate mitigation potential, considering both C sequestration in soil and N2O emissions in the long term.

How to cite: Kong, M., Petersen, S. O., Eriksen, J., and Dold, C.: Assessing Nitrous Oxide Emissions from Agricultural Soil: A Comparison of Two Grass-clover Proportions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1586, https://doi.org/10.5194/egusphere-egu24-1586, 2024.

EGU24-3488 | ECS | Posters on site | BG3.35

Positive mitigation effects of glacial rock flour (GRF) addition on ecosystem CO2, CH4 and N2O fluxes – first results from a gradient experiment 

Qiaoyan Li, Klaus Steenberg Larsen, and Christiana Amalie Dietzen

The application of ground silicate minerals to agricultural ecosystems has recently gained popularity as a mechanism for CO2 removal via enhanced mineral weathering that also has the potential to provide valuable co-benefits, including improved crop yields and reduced emissions of other greenhouse gasses. In Greenland, finely grained glacial rock flour (GRF) is naturally generated in vast amounts by glacier movement causing bedrock erosion and deposition. The natural production of GRF means that less energy is needed for grinding the rock material prior to field application. To quantify the influence of GRF on ecosystem carbon balance and greenhouse gas emissions, we applied 10 to 50 t GRF ha-1 yr-1 to an agricultural field in Denmark in a gradient setup with 5 levels plus combinations with fertilizers. Preliminary results of the CO2 fluxes measured by a combination of automated and manual chamber measurements, show that gross primary productivity (GPP, carbon uptake) and ecosystem respiration (Reco, carbon release) both increased gradually with the increased addition of GRF leading to a slightly increased net ecosystem uptake of CO2. In contrast, CH4 and N2O emissions showed a negative response trend with the increasing addition of GRF. The annual quantifications of ecosystem carbon balance and greenhouse gas emissions need further observations including effects during the non-growing season to be finalized. However, our initial results support the hypothesis that silicate mineral amendment overall may enhance CO2 removal in agricultural settings and reduce greenhouse gas emissions, and therefore may be a useful tool for improving the capacity of farmlands to serve as a greenhouse gas sink.

How to cite: Li, Q., Larsen, K. S., and Dietzen, C. A.: Positive mitigation effects of glacial rock flour (GRF) addition on ecosystem CO2, CH4 and N2O fluxes – first results from a gradient experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3488, https://doi.org/10.5194/egusphere-egu24-3488, 2024.

EGU24-5275 | Posters on site | BG3.35

Impact of management and boreal climate on GHG exchange from Finnish grasslands on mineral and peat soils 

Narasinha Shurpali, Olli Peltola, Tulasi Thentu, and Perttu Virkajärvi

Grasslands are a key component of boreal agriculture and can play a significant role in soil carbon sequestration and mitigation. Grasslands have the potential to store substantial amounts of carbon in their roots and soil, making them important for soil carbon sequestration. Finland, located in the boreal climate zone, is known for its milk production with one of the highest per cow milk yields in Europe. Milk production in Finland relies heavily on grassland management. The growing season is short and varies from 105 days in the north to 185 days in the south. Finnish grasslands are managed on two types of soils: mineral soils and organic soils. Mineral soils are typically well-drained and have a low organic matter content, whereas organic soils are characterized by high organic matter content and high-water retention capacity. Therefore, we have initiated a long-term GHG monitoring framework for a sustainable grassland management and agriculture at the Natural Resources Institute Finland (Luke) across several agricultural research sites in Finland. The results presented in this study will shed light on the variability of GHG-fluxes from grasslands on different soil types and on the key drivers of the temporal and site variability of GHG-fluxes in a comparative way.

How to cite: Shurpali, N., Peltola, O., Thentu, T., and Virkajärvi, P.: Impact of management and boreal climate on GHG exchange from Finnish grasslands on mineral and peat soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5275, https://doi.org/10.5194/egusphere-egu24-5275, 2024.

EGU24-6572 | ECS | Posters virtual | BG3.35

Soybean growth and nitrous oxide emissions in response to tillage and crop rotation 

Folahanmi Adeyemi

Global climate change is forcing different sectors including agriculture to come up with mitigation strategies. Nitrous oxide is the most potent greenhouse gas that contributes to global warming and is mainly produced from agricultural soil management. Two mitigation strategies to potentially reduce nitrous oxide emissions while maintaining cash crop yields are (i) shifting from conventional tillage to no-till and (ii) incorporating winter rye (Secale cereale L.) into corn (Zea mays L.)-soybean (Glycine max L.) rotation as a typical production system in the Midwest, USA. We harnessed a long-term trial to evaluate soil N dynamics, moisture and temperature, soybean production, and nitrous oxide emissions during 2020 and 2022 growing seasons. Treatments were two tillage factors (no-till and conventional chisel-disk) and two cover crops (winter rye and a no-cover crop control) arranged in factorial design with three replications. Results indicated that in 2020, no-till-no-cover crop had less nitrous oxide fluxes than the winter rye treatments, however it had higher N2O-N losses than 2022.  A combination of winter rye-no-till provided similar soybean morphology, shoot biomass and grain yield compared to a tillage-based system with no cover crop but promoted soybean root biomass leading to greater carbon inputs. These results indicate the tradeoffs in benefits of winter rye in soybean cropping systems.

How to cite: Adeyemi, F.: Soybean growth and nitrous oxide emissions in response to tillage and crop rotation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6572, https://doi.org/10.5194/egusphere-egu24-6572, 2024.

EGU24-7225 | ECS | Posters on site | BG3.35

Environmental Footprint of Reactive Nitrogen in Indian Agricultural Sector: An Extended Input-Output Analysis   

Deepakshi Babbar, Shilpi Kumari, and Srinidhi Balasubramanian

Food, feed, and fuel production are vital for human well-being. Yet current agricultural practices have resulted in extensive multi-media damages, primarily due to reactive nitrogen (Nr) emissions (NH3, N2O, NOx). Managing Nr sustainably to alleviate food and feed insecurity has been identified as a Grand Engineering Challenge. Systematically analysing source contributions, flows, and impacts of Nr is crucial for an agro-dominant country like India that faces the dual challenge of food and environmental security for 1.6 billion people by 2050. Here, we construct an Environmentally Extended Input-Output model for Nr in the Indian agriculture sector (cropland + livestock) for 2000–2020. Our findings indicate an increase in total N input to cropland from 23 Tg-N to 33 Tg-N (2000–2020), largely attributed to synthetic fertilizers (62%), biological N fixation (17%), atmospheric nitrogen deposition (11%), and livestock manure use (7%). Despite these increases, nitrogen use efficiency has only improved marginally (45% in 2000 to 57% in 2020). Nr losses to hyrosphere constitute 55%-60% of total N, with atmospheric emissions accounting for 40%-45% of total N. Key pollutants include nitrites/nitrates lost through runoff (40%), NH3 emissions (34%), and NO3 leakage to groundwater (20%). Noteworthy are NH3 emissions from fertilizer (55%) and manure (28%) application, and nitrogen deposition (12%).

Flows from the cropland sector serves as an input to the livestock sector, e.g., the production of grain and straw as feed to turn plant protein into animal protein, with efficiency varying from 4% to 10%. The type of animal and manure management systems and practices influences the N flow outputs from the livestock sector. Nitrogen within the remaining fraction (90–96%) is found in urine and dung, leading to potential nitrogen losses, i.e., 13.7TgN in the year 2020 due to the volatilization, leaching, and runoff as a result of application on cropland and manure management system of manure. Bovine animals have the largest share in manure N production, i.e., non-dairy cattle (37%), dairy (20%), and buffalo (26%), which constitute 83% of the total manure N production. Of the total produced manure (17Tg-N), 80% is produced in agriculture, and 20% is in pastoral areas. Of the agriculturally produced region, 30% undergo manure management system for treatment, i.e., 4TgN, while 70% are used for fuel combustion. Manure subjected to treatment is reintegrated into cropland at a rate of 52%, with approximately half being environmentally lost. Of this loss, 27% is attributed to atmospheric dissemination, comprising 22% as NH3 resulting from volatilization and 5% through direct emissions of N2O. Furthermore, 22% of the nitrogen is lost to the hydrosphere, distributed as 19% through runoff (0.8TgN) and 3% (0.1TgN) via NO3- leaching.   Opportunities to alleviate N losses and boost feed conversion efficiency involve refining animal feed composition and the herd's genetic potential. However, a challenge remains in upgrading manure management practices. Our study constraints national-scale inputs, accumulation, and flows of Nr in Indian agriculture to enable a holistic approach to co-develop agriculture and environmental policies while identifying levers to enable greener agricultural production practices.

How to cite: Babbar, D., Kumari, S., and Balasubramanian, S.: Environmental Footprint of Reactive Nitrogen in Indian Agricultural Sector: An Extended Input-Output Analysis  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7225, https://doi.org/10.5194/egusphere-egu24-7225, 2024.

Global warming, mainly caused by greenhouse gas (GHG) emissions, is one of the major concerns of the current society. Accurate estimation of GHG emissions in various fields can help governments and international organizations to formulate emission reduction strategies.The main objectives of this study were to estimate CH4 and N2O emissions from rice-wheat crop fields using IPCC2006 Tier2 approach and DNDC model, and to compare the performance of the two methods; and to evaluate the accuracy of GHG emissions of the DNDC model with rotational and non-rotational simulation scenarios. In this study, we conducted a rice-wheat rotational field experiment from 2015 to 2018 to determine CH4 and N2O fluxes periodically using static chamber-gas chromatography measurement and analysis system. On this basis, combined with field management and meteorological data, we simulated GHG emissions from rotational and non-rotational crop scenarios using the IPCC2006 Tier2 approach and the DNDC model. The results show that (1) the DNDC model can simulate the time series of paddy CH4 and N2O emission fluxes and winter wheat N2O emission fluxes with estimation errors of -4.8%, -11.6%, and -10.8%, respectively, and the modeling accuracy is better than that of the IPCC2006 Tier2 approach; (2) the accuracy of the DNDC model for simulating the GWP under the rotational cropping scenarios was higher than that of the IPCC2006 Tier2 approach, the relative errors of GWP simulation in the DNDC model were -5.9% and -21.7% for rice and wheat fields, respectively; (3) the relative errors of winter wheat cumulative CH4 emissions in the rotational cropping scenario in the DNDC model were higher than those in the non-rotational cropping scenario, and the relative errors of cumulative emissions of other GHGs in the rotational cropping scenario were lower than those in the non-rotational cropping scenario.This study provides some references for estimating regional agricultural GHG emissions and formulating emission reduction targets and policies.

Keywords: Rice-wheat rotation; DNDC; IPCC2006 Tier2; Greenhouse gases

How to cite: Yuming, Y.: Study on the difference of rice-wheat rotation system greenhouse gas estimation by different simulation methods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7554, https://doi.org/10.5194/egusphere-egu24-7554, 2024.

EGU24-7588 | ECS | Orals | BG3.35

Modelling CO2 and N2O emissions from a tropical semi-arid parkland cultivated with groundnut and millet 

Yélognissè Agbohessou, Seydina Ba, Fabien Ferchaud, Joël Léonard, Sidy Sow, Fredéric Bouvery, Maxime Duthoit, Claire Delon, Rémi Vezy, Gatien N. Falconnier, Eric Mougin, Daouda Ngom, Simon Taugourdeau, and Olivier Roupsard

Agriculture contributes to climate changes through land use changes and greenhouse gas emissions. Models can provide crucial insights into the extent of this contribution; however, their effectiveness relies on proper evaluation within the application context. Moreover, crop models that can simulate greenhouse gas emissions have not been extensively tested for the semi-arid tropics. We calibrated and used the STICS soil-crop model to explore the skills of the model to reproduce observed variations in greenhouse gas emissions for a millet-groundnut rotation in an agro-silvo-pastoral parkland dominated by Faidherbia albida trees located in central Senegal. Model simulations were compared with observations of soil temperature, soil water content, N2O and CO2 emissions, aboveground and belowground biomass of millet and groundnut, collected between 2018 and 2022. CO2 emissions were simulated with a two-step approach. Initially, STICS simulated crop leaf area index and biomass (aboveground and belowground), and soil heterotrophic respiration. These variables were then integrated into an independent autotrophic respiration module, and summed with STICS simulated' heterotrophic respiration. In general, the STICS model tends to underestimate the observed minimum soil water content (wilting point) during the dry season and overestimate the observed soil water content after the wet season. However, the temporal dynamics of the soil temperature in the upper layer (0-30 cm) are generally well-represented by the model throughout the simulation period. Simulated N2O emissions were generally consistent in terms of magnitude compared to on-site measurements, although the model currently does not account for N2O absorption by the soil (i.e. negative fluxes). For instance, the simulated peak reached 0.041 kg N ha-1 d-1, while the observed peak was 0.048 kg N ha-1 d-1. The simulated average annual N2O emissions for the period 2018 to 2022 amounted to 0.368 kg N ha-1 yr-1. Simulated CO2 emissions were also comparable to on-site measurements (2021: EF = 0.63, BIAS = -0.75 kg C ha-1 d-1, and RMSE = 15.01 kg C ha-1 d-1; 2022: EF = 0.56, BIAS = -3.25 kg C ha-1 d-1, and RMSE = 5.01 kg C ha-1 d-1). These results indicate that the STICS model can be used to explore the impact of land use and crop management changes on greenhouse gas emissions in a tropical semi-arid context.

How to cite: Agbohessou, Y., Ba, S., Ferchaud, F., Léonard, J., Sow, S., Bouvery, F., Duthoit, M., Delon, C., Vezy, R., Falconnier, G. N., Mougin, E., Ngom, D., Taugourdeau, S., and Roupsard, O.: Modelling CO2 and N2O emissions from a tropical semi-arid parkland cultivated with groundnut and millet, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7588, https://doi.org/10.5194/egusphere-egu24-7588, 2024.

EGU24-8547 | ECS | Orals | BG3.35

Greenhouse gas emissions under nanomaterial co-application with reduced fertiliser input 

Jessica Chadwick, Iseult Lynch, and Sami Ullah

With the advent of synthetic nitrogen fertiliser, the proportion of reactive nitrogen (Nr) in terrestrial ecosystems has doubled. While this has enabled high crop productivity, it has also triggered mass environmental effects, with almost half of the applied fertiliser lost into air (in the form of N2O or NH3) as well as nutrient runoff and leaching of nitrates into water bodies. Nanomaterials present an opportunity to improve nutrient use efficiency of crops and minimise agricultural pollution via reducing losses. This study screened engineered nanomaterials, including zeolites and metal oxides, to assess their impact on greenhouse gas (CH4, N2O and CO2) emissions when co-applied with NPK (nitrogen, phosphorus and potassium) fertiliser to grow lettuce (Lactuca sativa). The findings show that there are highly differential emissions from soils with nanomaterial co-application with reduced fertiliser application rates. One of the zeolites used, ZSM-5-15, when co-applied with a reduced dose (50% of RB209 nutrient management guide recommendation) of NPK fertiliser, increased N2O emissions relative to reduced NPK fertiliser alone and negative controls. Another zeolite, BEA-19, had limited effect on either NH3 or N2O volatilization, but did reduce the concentration of ammonium in the leachate. Nitrate leaching gradually rose over the course of the 8-week experiment for full NPK fertiliser dose application, reduced NPK dose and negative control. This pattern was altered by BEA-19, triggering elevated nitrate leaching earlier in the experiment, peaking in week 1 compared to week 4 for other treatments. While nanomaterial treatment was able to increase lettuce biomass accumulation compared to full NPK and negative fertiliser treatments, understanding the impact of nanomaterials on N cycling has proven more complex. The mechanism for N loss from soils triggered by ZSM-5-15 application is unknown, potentially through impact on denitrifying enzymes. My work posits that the earlier release of nitrate from BEA-19 application is due to selective binding of the NPK to the nanomaterial surface. More data on nanomaterial endpoints is pending and may help elucidate the nature of this binding and nutrient release mechanisms.

How to cite: Chadwick, J., Lynch, I., and Ullah, S.: Greenhouse gas emissions under nanomaterial co-application with reduced fertiliser input, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8547, https://doi.org/10.5194/egusphere-egu24-8547, 2024.

EGU24-9530 | Orals | BG3.35

Effect of a salinity gradient on methane emissions in paddy rice: a mesocosm experiment 

Maite Martínez-Eixarch, Sruthi Padinhariyil, Yolanda Lucas, Míriam Guivernau, Carles Alcaraz, Lluís Jornet, Julie Garnier, Adrien Fernández, Joan Noguerol, and Marc Viñas

Rice is a crucial crop for food security, but it is also a significant source of anthropogenic greenhouse gas emissions, particularly methane (CH4). Projected sea level rise caused by climate change will impact on rice yield through increased salinity. On the other hand, increased salinity potentially mitigates CH4 emissions by inhibiting methanogenesis mediated by the dominance of sulphate-reducing bacteria. To investigate this dual effect, we conducted a mesocosm experiment creating a water salinity gradient with four levels: 2 ppm (control), 4 ppm, 6 ppm and 35 ppm (seawater). CH4 emissions, abundance and gene expression of microbial populations and grain yield were assessed.

The experiment took place in year 2022 at IRTA facilities (Spain) using a variety of japonica rice (Oryza sativa L.). Rice was grown following the standard practices, notably permanent flooding, and crop residue incorporation into the soil after the harvest. CH4 emissions were weekly assessed throughout the rice growing season (May to September) and the post-harvest (October to December). Gas samples were collected using gas chambers and analysed through gas chromatography. Yield and aboveground biomass were measured at harvest. Thereafter, crop residues in each mesocosm, where present, were incorporated into the soil. Soil samples for microbial analyses were taken twice during post-harvest:  6 days before the harvest and 28 days after straw incorporation.  The microbial community diversity was assessed based on 16S/ITS-metataxonomy of total (DNA) and metabolically active (cDNA) bacteria, archaea, and fungi, as well as the quantification of total bacteria (16S rRNA gene), methanogenic archaea (mcrA gene ), and sulphate-reducing bacteria (aprA gene) by qPCR.  The activity of methanogenic archaea and sulphate reducing populations were assessed by quantifying gene transcripts of mcrA and aprA by RT-qPCR.

Rice grain yield decreased by 30% with increasing salinity from 2 ppm to 4 ppm, while there was no yield above 6 ppm. The biomass of straw produced and then added into the soil declined along the salinity gradient: 72.9 ± 12.4 g and 49.8 ± 6.1 g at 2 ppm and 4 ppm treatments, respectively, and zero in the remainder. The results confirmed that salinity significantly reduces CH4 emissions, but the sensitivity of this response differed between the growing and post-harvest seasons. During the growing season, CH4 declined with increasing salinity, ranging from 8.0 ± 1.7 to 0.05 ± 0.02 mg CH4 m-2 h-1. However, in the post-harvest, no CH4 emissions were detected at water salinities above 4 ppm, in contrast to 14.8 ± 0.75 mg CH4 m-2 h-1 found at 2 ppm. In regard to the microbial processes, the abundance of methanogenic archaea declined with increased salinity and the gene expression was highly inhibited at salinities larger than 6 ppm. By contrast, the abundance of sulphate-reducing bacteria was preserved over the salinity gradient while gene expression remained active, though slightly reduced from 6 ppm, probably due to the lower availability of organic carbon at the highest salinities.

Acknowledgments: The study has been carried out within the framework of the MIC-RICE project PID2019-111572RB-I00 funded by AEI/10.13039/501100011033

How to cite: Martínez-Eixarch, M., Padinhariyil, S., Lucas, Y., Guivernau, M., Alcaraz, C., Jornet, L., Garnier, J., Fernández, A., Noguerol, J., and Viñas, M.: Effect of a salinity gradient on methane emissions in paddy rice: a mesocosm experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9530, https://doi.org/10.5194/egusphere-egu24-9530, 2024.

EGU24-10130 | ECS | Posters on site | BG3.35

Understanding the influence of soil compaction on greenhouse gas emissions 

Elysia Lewis, Matteo Longo, Sebastiano Rocco, Nicola Dal Ferro, Miguel Cabrera, Barbara Lazzaro, and Francesco Morari

Soil structure plays a crucial role in determining greenhouse gas (GHG) emissions from agricultural activities. Changes in soil structure, such as compaction, can alter the factors that govern GHG fluxes, leading to an increased potential for emissions. The extent to which soil compaction explains GHG emissions is still under investigation. To address this knowledge gap, a two-year experiment was conducted in Northeast Italy to examine the influence of soil compaction on GHG emissions. The experimental site comprised of 20 lysimeters representing five different cultivation systems, each with four replicates: bare soil (BS), conventional (CV), conventional + with cover crop (CC), conservation with shallow compaction (0-25 cm, CA1), and conservation with deep soil compaction (25-45 cm, CA2). Maize was cultivated as the main crop in 2022, followed by grain sorghum in 2023, with solid digestate (300 kg N ha-1) originated from mixed agricultural waste used for fertilization. Winter wheat served as a cover crop where necessary. Continuous automatic measurements of CO2, N2O, and CH4 emissions were collected using a non-steady state through-flow chamber system and an FTIR gas analyzer, enabling the capture of up to seven fluxes per day for each replicate. Additionally, water-filled pore space (WFPS) and soil temperature were continuously monitored in the 0-30 cm soil profile using Time Domain Reflectometry (TDR) sensors and thermocouples. Cumulative CO2 reached its peak under CV, followed by CC. Notably, observable N2O emissions were predominantly detected in the two weeks following fertilization with peaks reaching 0.8 kg N-N2O ha-1d-1 under CC, while CA1 and CA2 exhibited lower emissions. Conversely, CH4 emissions were negligible, and the soil primarily acted as a sink. The study provides crucial insights for sustainable agriculture by highlighting the impact of soil compaction on GHG.

How to cite: Lewis, E., Longo, M., Rocco, S., Dal Ferro, N., Cabrera, M., Lazzaro, B., and Morari, F.: Understanding the influence of soil compaction on greenhouse gas emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10130, https://doi.org/10.5194/egusphere-egu24-10130, 2024.

EGU24-10183 | Orals | BG3.35

Online pesticide concentration and fluxes measurements over crops with a PTRMS shows unexpected volatilisation rates 

Benjamin Loubet, Florence Lafouge, Sandy Bsaibes, Carole Bedos, Céline Decuq, Baptiste Esnault, Raluca Ciuraru, Julien Kammer, Raffaella Vuolo, and Valérie Gros

Pesticide usage has been expanding since the 1950s. Their use has been known to harm human and environmental health for decades. Pesticide volatilisation to the atmosphere is a known process which is however not well documented, especially for periods beyond a few days after pesticide application. This is partly due to the difficulty to measure gaseous pesticides concentration in the atmosphere continuously for long time periods. Indeed, current state-of-the-art measurements is made by thermo-desorption gaseous chromatography involving semi-manual sampling with cartridges.

In this study, we report first monthly outdoor online measurement of concentrations and volatilisation of one fungicide and two herbicides by proton transfer reaction, quadrupole injection, time of flight, mass spectrometry (PTR-QI-TOF-MS). The fungicide Chlorothalonil was measured over a wheat field in spring, while the herbicides Prosulfocarb and Pendimethalin were measured over a bare soil in autumn. Comparison with state-of-the-art TD-GC-MS and calibration by a home-made permeation system proved the PTRMS to be adapted for pesticides measurements.

Maximum measured concentrations ranged from 12 ppt for Chlorothalonil to 600 ppt Prosulfocarfb. Maximum daily volatilisation fluxes ranged from 35 ng m-2 s-1 for Chlorothalonil to 350 ng m-2 s-1 for Prosulfocarb. We found that volatilisation of Chlorothalonil lasted more than three weeks, leading to up to 50% of the applied quantity volatilised, a duration and an amount much larger that what has been reported before.

Volatilisation of pesticides may contribute much more significantly than expected to atmospheric burden, and be wet and dry deposited over larger areas. Further PTRMS pesticides measurements should be done to gain insight into pesticide transfer to the environment, and better characterize human exposure to these harmful compounds.

How to cite: Loubet, B., Lafouge, F., Bsaibes, S., Bedos, C., Decuq, C., Esnault, B., Ciuraru, R., Kammer, J., Vuolo, R., and Gros, V.: Online pesticide concentration and fluxes measurements over crops with a PTRMS shows unexpected volatilisation rates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10183, https://doi.org/10.5194/egusphere-egu24-10183, 2024.

EGU24-10933 | ECS | Orals | BG3.35

Optimizing Ammonia Volatilization Simulation in Agricultural Soils: Advancements of the EPIC Model 

Andrea Gozio, Matteo Longo, Miguel L. Cabrera, Roberto César Izaurralde, David E. Kissel, Barbara Lazzaro, Nicola Dal Ferro, and Francesco Morari

Agriculture is responsible for about 94% of UE ammonia (NH3) emissions, notably from livestock, manure management and soil fertilization. NH3 volatilization is a significant cause of reactive nitrogen (N) loss, leading to lower fertilizer efficiency as well as environmental and health concerns. Loss predictions can be estimated using process-based biogeochemical models, but many of them lack precise estimations of NH3 volatilization. In this work, we modified the Environmental Policy Integrated Climate (EPIC) model incorporating a mechanistic sub-model to simulate NH3 volatilization following the application of N fertilizers in agricultural fields. The newly added algorithm in EPIC functions on an hourly time step and describes the ammonium (NH4+) adsorption by clay and organic matter and estimates the partitioning of total ammoniacal N into NH3 and NH4+ based on the pH of the soil solution. The sub-model then determines the NH3 concentration in the gas phase using Henry’s law and estimates NH3 emission using a mass transfer coefficient that considers the resistance in the turbulent and laminar layers. Additionally, the sub-model uses the soil’s pH buffering capacity to recalculate pH following hydrogen ion consumption by urea hydrolysis and hydrogen ion release by NH3 volatilization. The sub-model further integrates a reduction factor for volatilization to account for the effects of soil layer depth and the depth of fertilizer application. The new EPIC sub-model was validated using datasets from Veneto, NE Italy, and Georgia, USA. In Italy, NH3 volatilization was measured in four experiments, testing cattle slurry, farmyard manure, and mixed silage maize and animal slurry digestate. Whereas in Georgia, NH3 volatilization was examined following surface application of urea and poultry manure to grasslands. The new sub-model improved NH3 loss prediction, yielding reasonable hourly NH3 fluxes and cumulative volatilization estimates. As a result, the EPIC model exhibited lower prediction errors for soil mineral N (e.g. NH4+and NO3-) dynamics. While the new sub-model marks a notable advancement in accurately modeling N cycling, additional enhancements should prioritize certain modeling aspects, including slurry infiltration rates, NH3 fluxes within the soil profile, and the mitigation effects resulting from urease inhibitor application.

How to cite: Gozio, A., Longo, M., Cabrera, M. L., Izaurralde, R. C., Kissel, D. E., Lazzaro, B., Dal Ferro, N., and Morari, F.: Optimizing Ammonia Volatilization Simulation in Agricultural Soils: Advancements of the EPIC Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10933, https://doi.org/10.5194/egusphere-egu24-10933, 2024.

EGU24-11524 | ECS | Posters on site | BG3.35

Understanding soil health across greenhouse gas emissions and soil characteristics 

Susanne Wiesner, Shabda Gajbhiye, Shourya Mehta, Paul Stoy, and Alison Duff

Decades of intensive agricultural production, consisting of monoculture crops like corn (Zea mays), has led to a drastic decline in soil health, indicated by a reduction in soil carbon, nutrient holding and water holding capacity. Shifting management from monoculture crops to perennial crops could improve these soil characteristics and boost the resilience of agricultural systems to climate change. Furthermore, dairy livestock production systems are major greenhouse gas (GHG) emitters. GHGs from crop-livestock systems originate from enteric fermentation, manure storage, soils, and farm energy use. Nevertheless, US dairy herd sizes have not changed significantly in recent decades, suggesting that annual enteric fermentation emissions remained constant, while manure and soil emissions (i.e., CO2, N2O, CH4) increased from the intensive management, including tillage and the application of agricultural chemicals. However, soil emissions such as CO2 efflux (efflux) also consists of natural biogenic emissions from plant and microbial activity. Hence, an efflux may indicate greater soil health, suggesting root activity and high soil microbial abundance. Similarly, less variability in soil moisture and temperature could indicate high compaction and inferior soil structure. Understanding the multiple responses of soils to agricultural management is critical for developing strategies to improve soil health.

Here we established a nested treatment experiment with four block replications and three replicated plots per block (30 by 30 feet) using six different cropping systems (corn, corn with cover crop, corn intercropped alfalfa (Medicago sativa), alfalfa, intermediate wheatgrass (IWG, Thinopyrum intermedium), and a five species mixture of pasture grasses and forbs), to understand the system tradeoffs among soil health, forage quality and milk production in a dairy agricultural system. To quantify changes in soil health, structure, and soil GHG emissions, we planted corn on all plots in year 1 (2020) before planting other treatments in year 2 (2021). We collected data on soil nutrients and carbon content, soil microbial abundance and diversity, soil CO2 efflux, soil moisture and temperature, as well as forage samples and multispectral drone flights to assess forage quality.

Corn plots (monocultures and intercropped) had lower variability in environmental characteristics like soil moisture and temperature, while their magnitudes were elevated, indicating a more compacted and less aerated soil compared to plots with greater root density and lower bulk density (i.e., pasture plots). Similarly, corn plots respired significantly less CO2, both in years 1 and 2, compared to perennial crop plots, conforming with soil microbial data, which indicated lower microbial diversity in corn plots compared to pasture plots. While corn biomass was greater at the time of harvest compared to other crops, pasture and alfalfa plots accumulated half of the corn biomass throughout three harvest cycles and showed to have lower variability in yield, while also having higher nutritious value compared to corn silage, with implications for milk quality. Our findings suggest that efforts to make dairy operations more resilient to climate change and weather extremes should focus on more variables than just GHG emissions and soil carbon storage, to sustain agricultural production, human nutrition, and biogenic nutrient recycling into the future.

How to cite: Wiesner, S., Gajbhiye, S., Mehta, S., Stoy, P., and Duff, A.: Understanding soil health across greenhouse gas emissions and soil characteristics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11524, https://doi.org/10.5194/egusphere-egu24-11524, 2024.

EGU24-15750 | ECS | Orals | BG3.35

Assessing different IPCC Tier Approaches for estimating Methane Emissions in Vietnamese Rice Agriculture 

Chien Nguyen, Thi Bach Thuong Vo, Phuong Loan Bui, Van Trinh Mai, Tanh Nguyen, Klaus Butterbach-Bahl, Bjoern Ole Sander, Reiner Wassmann, Ralf Kiese, and David Kraus

The IPCC provides three distinct protocols (Tier 1-3) that can be used for reporting on greenhouse gas (GHG) emissions under the UNFCCC. While Tier 1 and 2 use relatively straightforward methods based on global and region-specific emission factors, Tier 3 is more complex and uses process models for emission estimation. Although Tier 3 is considered to have higher accuracy potential, its complexity requires expert knowledge and extensive input data, which is often not available, hindering widespread adoption.

This study critically evaluates all three Tier approaches for CH4 emissions from rice production in Vietnam, using the ecosystem process model LandscapeDNDC for the Tier 3 approach. As a first step, we evaluate all three approaches based on a comprehensive dataset covering 73 cropping seasons from 36 sites across Vietnam. On this basis, we show the extent to which Tier 3 performs better when considering commonly available information, and which information is most important to outperform simpler methods. As a second step, we present national CH4 emission inventories for each approach and show under which circumstances the approaches differ the most. We also present a web-based tool that improves the accessibility of Tier 3 applications for users who are not familiar with the application of a particular complex process model.

Our findings aim to provide valuable insights into the effectiveness of UNFCCC reporting approaches, particularly the under-researched Tier 3.

How to cite: Nguyen, C., Vo, T. B. T., Bui, P. L., Mai, V. T., Nguyen, T., Butterbach-Bahl, K., Sander, B. O., Wassmann, R., Kiese, R., and Kraus, D.: Assessing different IPCC Tier Approaches for estimating Methane Emissions in Vietnamese Rice Agriculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15750, https://doi.org/10.5194/egusphere-egu24-15750, 2024.

EGU24-16270 | ECS | Posters on site | BG3.35

Impacts of biochar on nitrous oxide emissions and ammonia volatilisation in wheat and maize cropping systems 

Ferdinand Hartmann, Heide Spiegel, Eugenio Diaz-Pines, and Rebecca Hood-Nowotny

Agriculture and other land use practices are major contributors to greenhouse gas emissions. To meet the needs of an increasing global food demand while mitigating climate change, sustainable agricultural practices are necessary. Biochar seems to be a promising tool to support this transition to sustainability in agriculture. The application of nitrogen fertilizers increases N2O emissions and NH3 volatilisation. Nitrous oxide (N2O) is a highly potent greenhouse gas and ammonia (NH3) can re-react with soil and forms N2O or can lead to other environmental issues in the surrounding. Besides its carbon sequestration potential, it is known that biochar can positively influence soil properties like water holding capacity, nutrient leaching and mitigation of nitrous oxide emissions and ammonia volatilisation. However, these effects depend on pedoclimatic conditions, the properties of the applied biochar, and other agricultural practises. Therefore, it is necessary to expand the knowledge of these effects, especially under field conditions, to generate valid estimates on biochar’s mitigation potential for N2O and NH3 emissions. A good and extensive data basis is essential for recommendations and a large-scale application in agriculture. In a two-year field experiment in Grabenegg (Lower Austria) we cultivated silage maize (Zea mays) in 2022 and spring wheat (Triticum aestivum) in 2023 with different organic (external organic matter, EOM) and inorganic (NPK) fertilisers. For the biochar treatments we applied 7 t/ha hardwood biochar additionally. The original soil was loamy, low in organic carbon and slightly acidic. We found substantial reductions with 36% (NPK) and 53% (compost) for N2O and 56% (NPK) and 40% (compost) for NH3 emissions. There are several factors discussed in literature how biochar mitigates N2O and NH3 emissions. We suggest that the immobilisation effect of biochar on NH4+ and NO3- (which was observed in the soil), and possibly an increased dinitrogen monoxide reductase activity are responsible for this reduction. Our data support that biochar can be a suitable amendment for highly productive agroecosystems where high amounts of fertiliser are needed and often applied at one timepoint. Still, further investigations on the long-term effect on emission mitigation of biochar and the mechanisms behind are necessary.

How to cite: Hartmann, F., Spiegel, H., Diaz-Pines, E., and Hood-Nowotny, R.: Impacts of biochar on nitrous oxide emissions and ammonia volatilisation in wheat and maize cropping systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16270, https://doi.org/10.5194/egusphere-egu24-16270, 2024.

EGU24-16666 | Posters on site | BG3.35

Modeling N2O, NH3 fluxes, and Nmin concentrations in agricultural soils treated with biogas digestate using a modified DNDC model 

Balázs Grosz, Jörg Michael Greef, Linda Tendler, Mahboube Jarrah, and Rene Dechow

The positive and negative effects of animal manure application to agricultural soils on soil inorganic nitrogen content, crop yield, ammonia (NH3), and nitrous oxide (N2O) emissions are well known and integrated into biogeochemical models. However, it is unclear if the effects of using digestate from biogas plants as fertilizer can be described by biogeochemical process models too. Since in Germany, the number of biogas plants increased drastically in the last two decades, there is a need for an evaluation and calibration of biogeochemical models for the application of digestate on arable land. For this purpose, we used data from a field experiment consisting of a control without fertilization, 3 treatments with mineral fertilizer, and 3 treatments with biogas digestate application (each with 60%, 80%, and 100% of maximum required N) on two cereal/maize crop rotations. Digestate was applied using trailing hoses. Results from experiments are used to calibrate and improve the biogeochemical model DNDCv.Can. Starting from a simplified description of O2 transport, a new sub-module quantifies O2 concentration by coupling decomposition with a 1-dimensional diffusion approach. Since the size of the anaerobic balloon calculated by the model influences many processes occurring in the soil, such as nitrification and denitrification, we hypothesize that a more realistic description of O2 concentration, together with a model calibration addressing the decomposition kinetics of digestate, will lead to a more precise process description and, thus, to a better estimation of N2O and, indirectly, NH3 gas fluxes, and to more reliable estimation of NO3- and NH4+ contents in the topsoil.

How to cite: Grosz, B., Greef, J. M., Tendler, L., Jarrah, M., and Dechow, R.: Modeling N2O, NH3 fluxes, and Nmin concentrations in agricultural soils treated with biogas digestate using a modified DNDC model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16666, https://doi.org/10.5194/egusphere-egu24-16666, 2024.

EGU24-17542 | ECS | Posters on site | BG3.35

Spatial and temporal variability of soil GHG fluxes of urban greens 

Xiao Bai, Lars Andreassen, Gülnur Dogan, and Klaus Butterbach-Bahl

Global urbanization has significantly affected land use, with former agricultural or forested land being used for human settlements and urban green spaces. How this urbanization may have affected the spatial and temporal patterns of soil greenhouse gas (GHG) fluxes, especially those of nitrous oxide (N2O), remains largely unexplored, although a recent study indicated that urbanization accelerates GHG fluxes from soils.

In this study, we investigated soil GHG fluxes at Aarhus University Park (AU Park), a public park located in a hilly landscape with different use intensities. Soil GHG fluxes were measured 2-3 times per week over a period of 7 months using a fast chamber approach at about 55 sampling points with different management, vegetation, and landscape position (uphill, slope, foothill, ponds). Specifically, we focused on the identification of GHG flux hot and cold spots, and thereby investigated the temporal persistence of such spatial emission patterns.

Our results show that GHG fluxes were highly variable over the observation period, but that major GHG flux hotspots, such as those near a pond, were hotspots at all observation times. In addition, we were able to relate the spatio-temporal variations in soil GHG fluxes to landscape parameters such as slope and exposition, and to soil parameters such as soil organic carbon concentration, pH, and texture.

Our measurements show that there are significant spatio-temporal variations in GHG fluxes in urban parks and that these variations are strongly influenced by environmental and landscape parameters. This observation may allow a better scaling of GHG fluxes of urban green spaces and thus a better assessment of how urbanization changes landscape fluxes.

How to cite: Bai, X., Andreassen, L., Dogan, G., and Butterbach-Bahl, K.: Spatial and temporal variability of soil GHG fluxes of urban greens, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17542, https://doi.org/10.5194/egusphere-egu24-17542, 2024.

EGU24-17763 | Orals | BG3.35

SmartField – Accounting and mitigation of N2O emissions and N budgets of agricultural soils in Denmark 

Klaus Butterbach-Bahl and Ann-Britt Ann Britt Værge

In Denmark, the agricultural sector contributes almost 1/3 of total GHG emissions, second only to the energy sector. As significant GHG emission reductions have been achieved for the energy sector, there is increasing pressure on the agricultural sector to achieve GHG reductions of about 55-65% in the coming years.

While the current GHG emission inventory for the agricultural sector at national level in Denmark is based on a combination of Tier 1 and Tier 2 methodology following the standard IPCC methodology, the vision is to report national soil N2O emissions to the UNFCCC at either Tier 2 or Tier 3 level, the latter being the preferred level for the authorities as they plan to incentivize farmers to reduce emissions based on predictive yield and N2O emission models.

Against this background, the Danish SmartField initiative aims to establish an innovative field-scale platform for testing and validating solutions to reduce N2O emissions from agricultural fields. The data obtained will be used to further develop modeling tools for scaling, design and targeting of incentives to be included in regulatory frameworks to encourage adoption of knowledge and solutions by farmers and to ensure that these measures are accurately reflected in national inventories.

The core activities of SmartField are to establish: 1) a field measurement infrastructure to provide state-of-the-art benchmark datasets of N2O fluxes and other N loss and turnover pathways (NH3 volatilization and deposition, NOx fluxes, NO3 leaching, harvest N, soil N stock changes) for the most prominent field management practices in Denmark, including testing of classical and novel mitigation measures, 2) a data assimilation and modeling hub with a consolidated framework to provide evidence-based models for N2O emission quantification and to test N2O mitigation measures at large scale in scenario studies, and 3) a science-policy-practice interface (SPPI) to exchange knowledge and information and to build a smooth interaction with agricultural decision and policy models.

This will ensure that SmartField develops and delivers an improved methodology for accounting N2O emissions at field and farm scale, upon which policy incentives can be developed for farmers to adopt technologies and management measures with verified emission reductions.

SmartField is led by the Danish Technological Institute (DTI) in collaboration with Aarhus University (AU), the University of Copenhagen (UCPH), Colorado State University (CSU), SEGES Innovation (SEGES) and the Danish Ministry of Food, Agriculture and Fisheries (MFAF).

 

Note, that final funding decision for SmartField is pending approval

How to cite: Butterbach-Bahl, K. and Ann Britt Værge, A.-B.: SmartField – Accounting and mitigation of N2O emissions and N budgets of agricultural soils in Denmark, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17763, https://doi.org/10.5194/egusphere-egu24-17763, 2024.

EGU24-18307 | ECS | Posters on site | BG3.35

Measuring ammonia losses from winter wheat with eddy covariance: a comparative analysis with the integrated horizontal flux method 

Sina Kukowski, Björn Kemmann, Pascal Wintjen, Jeremy Rüffer, Jens-Kristian Jüdt, Hannah Götze, Melanie Saul, Andreas Pacholski, Heinz Flessa, and Christian Brümmer

Primary sources of ammonia (NH3) emissions originate from agriculture, impacting the environment, climate, and human health, thereby concomitantly reducing fertilizer nitrogen use efficiency. Accurate measurements under field conditions are required to provide a basis process understanding and for recommendations to policymakers and farmers. However, uncertainties remain regarding the accuracy and reliability of different low-cost NH3 measurement methods and new application of the eddy covariance method for emissions from low-intensity sources, such as synthetic fertilizers.

In this study we focused on the quantification of NH3 concentrations and fluxes determined by a quantum cascade laser spectrometer (QCL) with passivated inlet line within an eddy covariance setup and the comparison to low-cost passive diffusion samplers (ALPHA sampler) used for emission estimations with the integrated horizontal flux (IHF) method. Measurements were carried out in Central Germany during the vegetation periods in 2021 - 2023 in a winter wheat crop field, which received three urea fertilizer applications (to a total of 170 kg N ha-1) per year. The atmospheric NH3 concentrations measured by the QCL and the ALPHA samplers were compared. Then, the cumulative losses of NH3 over the measurement periods (March - July) in the different years (2021 - 2023) were calculated and compared between the two approaches (QCL-eddy covariance and ALPHA-IHF).

The NH3 concentration measurements showed that the ALPHA samplers generally yielded lower concentration values compared to the time-integrated QCL values. While the relative mismatch decreased with higher concentrations (>20 ppb), significant deviations were observed in the lower concentration regime. When ALPHA concentrations were corrected for measurement height to precisely align with QCL sampling height, a systematic underestimation was found. Reasons for the differences are currently under investigation and may be explained by the vertical and horizontal sampler separation from the main eddy flux tower and possibly due to varying environmental conditions.  

First results of NH3 eddy covariance fluxes (kg N ha-1 period-1) showed clear diurnal courses and emission peaks around noon on the days after each urea application throughout all years. High-frequency losses using a co-spectral method in the process of eddy flux calculation were estimated to be in the range of 25 to 30 %.

The performance of both methods (ALPHA-IHF and QCL-eddy covariance) in estimating NH3 losses from field-scale fertilizer applications is discussed, along with the sensitivity of input concentrations on NH3 emission estimates.

Our study is a step towards better comparability and integration of different NH3 measurement techniques and is expected to provide useful tools for robust estimation of NH3 emission factors for synthetic fertilizer applications.

How to cite: Kukowski, S., Kemmann, B., Wintjen, P., Rüffer, J., Jüdt, J.-K., Götze, H., Saul, M., Pacholski, A., Flessa, H., and Brümmer, C.: Measuring ammonia losses from winter wheat with eddy covariance: a comparative analysis with the integrated horizontal flux method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18307, https://doi.org/10.5194/egusphere-egu24-18307, 2024.

EGU24-18441 | Posters on site | BG3.35

Potential limitations of ammonia flux data beyond 72h after field application of slurries  

Albrecht Neftel, Christoph Häni, Thomas Kupper, Alex Valach, and Sasha Hafner

Ammonia volatilization from animal slurry applied to fields is a major source of air pollution in Europe. The ALFAM2 model  was developed for estimating ammonia emission from such sources and is used in research, as well as  for inventory calculations. Until now, the focus has been on emissions up to 72 hours after application (ALFAM2 model version 1.2), as it was generally assumed that over 90% of total emissions from the applied nitrogen occur during this period. The recently updated ALFAM2 model (version 2.3) now includes emission data up to 168 h after application, which has led the model to indicate substantial emissions between 72 and 168 h leading to a significant increase (<40 %) in total emissions.

However, ammonia fluxes from field applied slurry beyond 72 h after application are small and difficult to quantify accurately. A reassessment of the model input data for this period is required to determine whether the measured fluxes can still be causally attributed to the applied slurry and whether they differ significantly from the detection limit. We have examined the values included in the ALFAM2 database with regard to these questions, which has revealed patterns that lead to potential biases of the ALFAM-2 model results.

How to cite: Neftel, A., Häni, C., Kupper, T., Valach, A., and Hafner, S.: Potential limitations of ammonia flux data beyond 72h after field application of slurries , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18441, https://doi.org/10.5194/egusphere-egu24-18441, 2024.

EGU24-18445 | ECS | Orals | BG3.35

Greenhouse gas emissions from valley-bottom wetlands in an agricultural tropical highland system, Taita Hills, East Africa 

Sharon Gubamwoyo, Gretchen Maria Gettel, Damaris Guranya Kisha, Sonja Leitner, Gabriele Weigelhofer, and Thomas Hein

Globally, agriculture is one of the main drivers of wetland loss, leading to reduced soil carbon (C) and changes in greenhouse gas (GHG) emissions. In recent decades, wetland loss in Africa appears to be faster than the global losses, at about 43% compared to 35% globally. Valley-bottom wetlands in African highland regions support the livelihoods of >65% of the people who live there, but the effect of agricultural conversion on soil C and GHG emissions is understudied. This study compares GHG emissions between 1 intact, 12 agricultural (converted), and 10 recovered valley-bottom wetlands in Taita Hills, Kenya. Using the static gas chamber method, CO2, CH4, and N2O emissions were measured monthly from April 2023 to date along with soil NO3-N, NH4-N, soil C, and soil moisture. The results indicate that CO2 emissions from the converted wetlands is similar to recovered wetlands (mean = 183 ± 11 SE mg CO2-C m-2 h-1 and mean = 174 ± 13 SE mg CO2-C m-2 h-1 respectively; p > 0.05). This is in contrast with both CH4 and N2O emissions, which showed strong differences (p<0.005). The average CH4 emission in agricultural versus intact wetlands was mean = 0.31 ± 9 SE mg CO2-C m-2 h-1 and mean = 10 ± 1 SE mg CO2-C m-2 h-1, respectively, and the N2O mean emission was mean = 41 ± 0.2 µg N m-2 h-1 vs. 9 ± 3 µg N m-2 h-1, respectively. Addition of organic and inorganic fertilizer to the agricultural wetlands showed an increase in NO3-N in the soil and a high correlation with N2O.  High soil moisture levels and organic matter in the intact wetlands was a major contributing factor for the high CH4 emissions while low soil moisture in the converted wetlands led to low CH4 emissions. The soil organic carbon in the recovered wetlands was higher (Mean = 11 ± 0.1 SE Kg C m-2) compared to the converted wetlands (Mean= 8 ± 0.2 SE Kg C m-2) indicating higher carbon storage in the recovered wetlands. Overall, recovered wetlands contribute more to Global Warming Potential GWP (0.84 CO2-equivalents), but these estimates do not take into account losses in soil C storage, which amount to 1043 Kg C m-2 year-1. On-going data analysis and field work will use seasonal variation and take into account historical losses in C storage to refine annual emission estimates.


Presentation preference: Oral, On-site
Billing address: Sharon Gubamwoyo
Gregor-Mendel-Straße 33/ DG34 
Institute of Hydrobiology
1180 Vienna, Austria

How to cite: Gubamwoyo, S., Gettel, G. M., Kisha, D. G., Leitner, S., Weigelhofer, G., and Hein, T.: Greenhouse gas emissions from valley-bottom wetlands in an agricultural tropical highland system, Taita Hills, East Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18445, https://doi.org/10.5194/egusphere-egu24-18445, 2024.

EGU24-19113 | ECS | Posters on site | BG3.35

Reducing Excess Nitrogen Through Sustainable Farming Systems in Danish Agricultural Catchments 

Meshach Ojo Aderele, Jaber Rahimi, and Klaus Butterbach-bahl

Nitrogen pollution from livestock manure has emerged as an escalating global concern. Therefore, it is imperative to evaluate the cropping system that will facilitate the optimal utilization of livestock manure while minimizing the environmental impact. In the quest for sustainable agricultural practices, the incorporation of crop residues into soils and intercropping with catch crops, has been identified as promising strategies. Crop residue incorporation is a carbon farming practice that can have significant implications for both soil organic carbon (SOC) and nitrous oxide (N2O) emissions, while catch crops have been an essential tool for reducing nitrogen leaching.

This study uses the process-based biogeochemical model LandscapeDNDC to assess the environmental performance of different cropping systems in six representative Danish agricultural catchments (LOOPs). Generally, two fertilization strategies were distinguished: 1) fields receiving only a mixture of pig and cattle slurry (O-fields), and 2) fields (C-fields) receiving mineral fertilizer.

We tested eight scenarios of organic or conventional fertilized fields with or without crop residue incorporation and with or without catch crop (C/O ± CR ± CC)

The results revealed that organic fields demonstrated not only lower yield-scaled total emissions compared to conventional fields but also shows benefits in terms of net carbon balance. It therefore indicates that organic farming, especially when combined with crop residue and catch crop may lead to reduced nitrogen-related environmental impact while increasing yield.

How to cite: Aderele, M. O., Rahimi, J., and Butterbach-bahl, K.: Reducing Excess Nitrogen Through Sustainable Farming Systems in Danish Agricultural Catchments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19113, https://doi.org/10.5194/egusphere-egu24-19113, 2024.

EGU24-19925 | ECS | Posters on site | BG3.35

Photoacoustic spectroscopy based nitrous oxide measurement for field applications 

Csilla Gombi, Anna Szabó, Csaba Király, Vineet Srivastava, László Horváth, Edit Mikó, Gábor Szabó, and Zoltán Bozóki

The efficiency of fertilisers used worldwide is around 50%. It is a global environmental and economic problem, and intensive research is being conducted to find a solution. Nitrous oxide (N2O) is one of the nitrogen compounds released from fertilised soils. N2O is also emitted during the storage, treatment, and application of animal manure, in addition to fertilisers.

To reduce emissions, gas concentration and emission monitoring is important for accurate estimation of agricultural losses and to establish regulations for mitigation purposes. Laser spectroscopy-based methods provide in-situ, highly selective measurements with minimal maintenance, therefore they are promising techniques for monitoring N2O. A photoacoustic system based on a quantum cascade laser emitting around 7.72 μm was developed for N2O concentration measurement. Selectivity of the system was tested for water vapour (H2O), carbon dioxide (CO2) and methane (CH4). No cross sensitivity was found for H2O and CO2, nevertheless for CH4 it is not negligible, therefore a two-wavelength method is applied to correct for CH4. The system has a minimum detectable concentration of 8.5 ppb with an averaging time of 10 seconds. The system was calibrated from 0.05 ppm to 10 ppm, the response was found to be highly linear over the calibrated range (R2 = 0.9989).

A feasibility study was performed in a naturally ventilated free-stall dairy barn. Measurements were taken at a total of six measurement points, two of which were outside the barn and four inside the barn where spatial and temporal variations of N2O concentration were measured. Measurements taken outside the barn were considered to be close to the background (333 ppb). There, the measured concentration was 388 ppb ± 11 ppb. The measured mean N2O concentration inside the barn was 499 ppb ± 191 ppb during a three-hour period, and it varied between the near background concentration and 1 ppm. The system has a signal stability allowing for field applications; however, further tests are required to prove its applicability for quantifying biosphere-atmosphere exchanges of N2O. In the future our measuring system will be applicable to monitor N2O emission flux above crop fields and at livestock farms as well.

How to cite: Gombi, C., Szabó, A., Király, C., Srivastava, V., Horváth, L., Mikó, E., Szabó, G., and Bozóki, Z.: Photoacoustic spectroscopy based nitrous oxide measurement for field applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19925, https://doi.org/10.5194/egusphere-egu24-19925, 2024.

EGU24-20143 | ECS | Orals | BG3.35

Biological amendments reduce soil N2O and CH4 emissions from slurry application under field conditions. 

Priya Pariyar, Mary Harty, and Magdalena Necpalova

Managed grasslands influence global warming by the exchange of the greenhouse gases (GHG) like carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Application of animal waste, such as slurry, rich in inorganic nitrogen (N), may escalate soil processes and thus soil GHG emissions, particularly in organic systems that rely on input of animal manures without chemical inputs.

The objective of this study was to evaluate GHG mitigation potential of biological amendments that might be relevant to organic systems and their effects on soil N and N leaching over a 2-month period. To achieve this a plot-scale field experiment on a grassland site in Rosemount (Dublin, Ireland) was conducted over a period from May to July 2023. Closed static chamber technique was used to measure soil emissions of N2O, CH4 and CO2 with an increased sampling frequency after the slurry application. The dynamics of soil ammonium, nitrate and dissolved organic N were evaluated weekly in soil surface samples from 0-15 cm and in a 10-day interval in the leachate collected at a 50 cm depth. The grass yield was assessed twice during the course of the experiment. The plots were equally irrigated to stimulate soil processes during the dry periods. The treatments assigned to the plots in a randomised complete block design with 5 replicates included control (CON), cattle slurry (SLU) and slurry mixed with biochar (BIO; added at 2 kg/m2), neem oil high with slurry (NEEM H; added at 100% of N applied) and neem oil low with slurry (NEEM L; added at 20% of N applied). The slurry was applied at 50 kg N ha-1 to all plots apart from CON.

The application of neem oil at both levels of input consistently reduced soil N2O and CH4 daily emissions (p<0.001), while NEEM H at the same time increased soil CO2 daily emissions (p<0.001), compared to the SLU treatment. Biochar reduced soil CH4 daily emissions (p<0.001), but did not influence soil N2O and CO2 daily emissions relative to the SLU treatment.  

These results might be highly relevant for the climate-change policies relevant to organic farming systems and achievements of the national and international climate goals.

How to cite: Pariyar, P., Harty, M., and Necpalova, M.: Biological amendments reduce soil N2O and CH4 emissions from slurry application under field conditions., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20143, https://doi.org/10.5194/egusphere-egu24-20143, 2024.

EGU24-1763 | ECS | Orals | BG3.38 | Highlight

How quickly are canopy temperatures approaching their critical limit in the tropics? 

Gaston Lenczner, Nina van Tiel, Devis Tuia, and Charlotte Grossiord

Tropical forests host Earth’s highest biodiversity and act as global climate regulators more than any other biome. In a world where heat waves become increasingly severe and recurrent, especially in the Amazon, it becomes crucial to know how close tropical species are getting to their critical temperatures. Indeed, while plant leaves operate within a broad range of air temperatures, they must stay under a species-specific critical temperature (Tcrit) to sustain their function. In this context, we study how quickly the canopy temperature (Tc) approaches the critical temperature of tree species in the tropics.

We specifically focus on the evolution of the thermal safety margin (Δ = Tc − Tcrit) during the period 2001- 2020 across tropical forest biomes in South America, Southeast Asia, and Central Africa. Data analysis (~ 1km resolution) was conducted by combining (1) tree species distribution maps, (2) Tcrit databases, (3) MODIS-derived maximal Land Surface Temperature per month, and (4) a dense vegetation map to obtain the Tc maps. Given that the exposure time to Tcrit required to cause the leaves to die is short, we focus on the heatwaves and select the warmest month per year to study the Δ evolution. We fit a linear regression at each geographic coordinate to obtain trend maps based on their coefficients.

Our results indicate a consistent trend wherein Tc progressively approaches critical thresholds. On average over the three studied regions, the median increase in Tc is around 0.11 °C per year, with a median Δ of 9.5 °C in 2020.

More sensitive locations exhibiting initial proximity to Tcrit show an accelerated rate of gap closure. For instance, in South America, while the median increase per year in Tc is about 0.1 °C, the 90th percentile is about 0.19 °C: in 2001, 10% of the locations were 4.5 °C away from the critical temperature of their most sensitive species, dropping to 0.3 °C in 2020. Central Africa has a less severe but still concerning trend, with the hottest 10% experiencing a 0.16 °C increase per year and a thermal safety margin of 2.5 °C in 2020.

Our findings suggest that, although most areas in the tropical biomes still have a rather large safety margin before reaching the Tcrit associated with their species, sensitive areas are getting dangerously close to these critical thresholds, suggesting enhanced vulnerability to global warming.

How to cite: Lenczner, G., van Tiel, N., Tuia, D., and Grossiord, C.: How quickly are canopy temperatures approaching their critical limit in the tropics?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1763, https://doi.org/10.5194/egusphere-egu24-1763, 2024.

Characterizing plant response to water stresses is among the keys to understanding ecosystem functions. Despite increasing recognition of plant hydraulic and stomatal dynamics not captured by isohydricity, defined as the sensitivity of leaf water potential Ψl to soil water potential, it remains unclear which plant traits are critical to improved representation of plant hydraulic and stomatal dynamics beyond isohydricity, especially in dryland ecosystems. Here, we examine eco-physiological responses of two typical desert riparian species, Populus euphratica and Tamarix ramosissima, to hydro-meteorological variations. Based on measured hydraulic traits, variations of Ψl, leaf gas exchange, groundwater table, and soil moisture across vertical profiles, we investigated how subsurface hydraulic conditions control plant hydraulic sensitivity and stomatal regulation. We found both species exhibited anisohydric behaviors, which, however, were attributed to drying soil at different depths because of root distributions. The similar anisohydric behaviors also led to distinct stomatal regulation, due to the impact of atmospheric dryness decoupled from soil moisture and different sensitivities of stomatal conductance (gs) to Ψl. The latter was found to be dynamic throughout the growing season, which dominated the seasonal variation of gs and thus should not be neglected. The results suggest similar anisohydric behaviors could imply diverging hydraulic behaviors as the evaporate demand and flow regime change. Root morphological trait and stomatal sensitivity to Ψl are identified as keys to characterize responses to water stresses in desert riparian ecosystems. Our findings highlight that improved measurements and representations of these traits could contribute to better assessments of dryland ecosystem functions.

How to cite: Bai, Y.: Hydraulic sensitivity and stomatal regulation of two desert riparian species, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2271, https://doi.org/10.5194/egusphere-egu24-2271, 2024.

EGU24-2626 | ECS | Orals | BG3.38

Identifying crop heat stress with MODIS and FLUXNET data 

Peiyu Lai, Michael Marshall, Roshanak Darvishzadeh, Kevin Tu, and Andrew Nelson

Stress caused by high temperatures is a critical limiting factor of crop growth and development. Accurately identifying heat stress is crucial to assess and mitigate the negative impact of high temperatures on crop growth. However, isolating the independent effects of heat stress from other factors, such as moisture stress, poses a challenge in field conditions. This study developed an innovative approach to distinguish crop heat stress periods from normal growth conditions, disentangling them from moisture stress and light limitation in croplands. Utilizing FLUXNET data, including air temperature, gross primary productivity, soil water content, and shortwave radiation observations, we identified 78 heat periods and corresponding normal growth conditions. The identified heat and normal periods were further related with remote sensing to extend the identification process to a large scale. Single bands and spectral vegetation indices (VIs) derived from MODIS were employed to evaluate the capability of multispectral data in detecting heat stressed crops from healthy crops. The analysis revealed a significant increase in the reflectance of red band during heat stress. VIs, in general, enhanced the visibility of heat-induced spectral variations and exhibited sufficient capability in distinguishing crops at heat and normal conditions. Visible bands-based indices (EVRI, GLI, and NGRDI) exhibited the highest distinguishability (p-value < 0.01 in the Mann–Whitney U test). These findings underscore the significance of visible bands, especially the red band, in advancing large-scale crop heat stress detection, agricultural monitoring, and crop modeling considering heat stress.

How to cite: Lai, P., Marshall, M., Darvishzadeh, R., Tu, K., and Nelson, A.: Identifying crop heat stress with MODIS and FLUXNET data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2626, https://doi.org/10.5194/egusphere-egu24-2626, 2024.

EGU24-2634 | Posters on site | BG3.38 | Highlight

Global convergence in the response of terrestrial gross primary production to atmospheric vapour pressure deficit 

Chao Huang, Jingfeng Huang, Jingfeng Xiao, Xing Li, and Fusheng Chen

  With climate warming, atmospheric vapor pressure deficit (VPD) shows an increasing trend, which may restrict plant growth. However, there is still uncertainty regarding the response mechanisms of plant transpiration and photosynthesis to VPD, soil moisture, and their interactions. This uncertainty leads to significant discrepancies among different Earth system models when simulating the impact of atmospheric drought on terrestrial ecosystem productivity, and it constitutes a crucial source of uncertainty in predicting the global carbon balance of land ecosystems in the future. In this study, through analyzing field measurements, satellite-derived data, and Earth system model (ESM) simulations, we reveal a similar threshold response pattern of GPP to VPD for most ecosystem types, where GPP initially increases and then decreases with increasing VPD. When VPD exceeds these thresholds, increased soil moisture loss and atmospheric drought stress lead to reduced stomatal conductance and lowered light saturation point in plant leaves, decreasing terrestrial ecosystems' productivity. Existing Earth system models emphasize the influence of CO2 fertilization on land ecosystem productivity and predict a continuous increase in global terrestrial GPP throughout the 21st century. However, these models also indicate a significant reduction in GPP of low-latitude land ecosystems when VPD exceeds the threshold. This finding highlights the impact of climate warming on VPD and implies potential limitations on future land ecosystem productivity due to increased atmospheric water demand. This study suggests incorporating the interactions among VPD, soil moisture, and canopy conductance into Earth system models to enhance the predictive capacity for the response of land ecosystems to climate change.

How to cite: Huang, C., Huang, J., Xiao, J., Li, X., and Chen, F.: Global convergence in the response of terrestrial gross primary production to atmospheric vapour pressure deficit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2634, https://doi.org/10.5194/egusphere-egu24-2634, 2024.

Recently, the European Commission's Joint Research Centre published the European Drought Risk Atlas (Rossi et al. 2023, https://doi.org/10.2760/608737 ). It illustrates the spatial drought risk distribution for several economical sectors. For agriculture, observed yield losses of five crops (wheat, barley, maize, potatoes, and rice) were connected to numerous drought indices ranging from meteorology to river runoff. Temperature was however deliberately excluded from the analyzed drought factors.

A statistical crop yield model developed by the author, ABSOLUT (Conradt 2022, https://doi.org/10.1007/s00484-022-02356-5 ), showed that large parts of inter-annual crop yield variations can be explained by three meteorological factors only: monthly values of temperature, precipitation, and solar radiation. The model works in spatially disaggregated regions, e.g. for the approximately 400 German districts or for Austria split into 25-km tiles. For each sub-region and crop, the most relevant time aggregates of the meteorological factors and their individual importance for the yield estimation are automatically determined. For instance, in Central Europe a positive influence of solar radiation is regularly observed for spring barley; for winter wheat, negative effects of high temperatures towards the end of the growing season are the rule. However, in the colder climate of Northern Europe (Estonia) higher temperatures are generally associated with higher yields.

In addition or even instead of meteorological variables, ABSOLUT can also be trained on drought indices. Including drought information in addition to meteorological data will probably improve the yield estimations (cf. Eini et al. 2023, https://doi.org/10.1016/j.agwat.2022.108107 ). Dropping either temperature or drought information from the input will show the importance of each factor causing yield losses. In this contribution, I will show the results of respective experiments with ABSOLUT for winter wheat and silage maize in Central Europe in an attempt to answer the question in the title.

How to cite: Conradt, T.: Drought or high temperatures: which is the main threat to agricultural yields in Central Europe?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2913, https://doi.org/10.5194/egusphere-egu24-2913, 2024.

EGU24-3522 | ECS | Posters on site | BG3.38

Detecting tree stress fingerprints using sub-daily sapflow data 

Anna Schackow, Jean-Marc Limousin, Susan Steele-Dunne, and Ana Bastos

Plants are subject to stress conditions at multiple time-scales, from minutes and hours (e.g., radiation stress) to years or decades (e.g., prolonged drought). The processes controlling how plants respond to such stressors are also time-scale dependent, from rapid physiologic and structural responses such as stomatal regulation or leaf movement, to slow responses such as pigment changes or adjustments of growth and allocation. How these different processes evolve and interact under diverse stressors influences tree health and long-term functioning and, depending on plants ability to recover, might lead to tree health decline and mortality.

Observations of tree stress from space typically rely on reflectance indices, which are associated with changes or declines in leaf pigment content, leaf area, and/or fractional of vegetation cover. These changes are driven by slow or delayed reactions to environmental stress (leaf discoloration, defoliation, reduced growth, mortality and compositional changes). Microwave measurements, on the contrary, allow to more directly track vegetation water content, but they are typically available at coarse spatiotemporal scales. Signs of plant health decline or onset of mortality trajectories can, thus, take a long time to detect based on currently available remote-sensing information, limiting our ability for early detection of stress hotspots (e.g., stands at risk of drought-induced mortality).

Here, we aim to explore the potential to use sub-daily microwave observations for early detection of plant stress, in the context of SLAINTE, a mission idea recently submitted in response to ESA’s 12th call for Earth Explorers. To do this, we analyze sapflow measurements covering over a decade in an evergreen broadleaf forest at the Puéchabon study site (FRA-Pue, southern France) to evaluate how sub-daily information of vegetation water fluxes might be used to identify onset and development of plant stress. We define a set of sub-daily metrics (timing of peak sapflow, sensitivity to meteorological drivers, hysteretic behaviour) and evaluate how these vary within the growing season, across years and during extreme events for multiple trees. These derived metrics could, in principle, be derived from sub-daily satellite-based observations, facilitating therefore timely assessments of plant health declines.

How to cite: Schackow, A., Limousin, J.-M., Steele-Dunne, S., and Bastos, A.: Detecting tree stress fingerprints using sub-daily sapflow data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3522, https://doi.org/10.5194/egusphere-egu24-3522, 2024.

EGU24-4771 | ECS | Orals | BG3.38

Shifts in plant water use patterns during increasing VPD across 122 years of breeding in U.S. Midwest spring wheat (Triticum aestivum L.) genotypes 

Tina Köhler, Emma Ossola, James Anderson, Andrea Carminati, and Walid Sadok

Spring wheat (Triticum aestivum L.) yields in continental cropping systems of the U.S. Midwest have shown a consistent upward trajectory over the past century due to successful breeding efforts and improvements in crop management. However, the looming threat of increasingly extreme temperature trends and the rising evaporative demand (vapor pressure deficit, VPD) during the cropping season in that region may require adaptive water use strategies to maintain or further increase wheat yield potential. Therefore, our objective was to investigate whether the observed increase in yield over the last 122 years coincides with a shift in plant water use strategies, i.e., the transpiration rate (TR) sensitivity to rising VPD.

In this study, we selected 15 spring wheat genotypes from Minnesota with a year of release (YOR) spanning from 1898 to 2020 to capture the genetic yield gains achieved during that period by the local breeding program. We tested plant transpiration rate in response to rising VPD ranging from 0.5 to 2.8 kPa in a climate chamber in wet soil and potted conditions. Additionally, we measured several traits that capture plant hydraulic properties, including stomatal conductance, plant hydraulic conductance, leaf area, above- and belowground biomass, and stomatal morphological properties.

Our investigation revealed that at a critical VPD beyond 1.83 ± 0.17 kPa, a significant portion of the tested genotypes expressed a limited increase in TR with increasing VPD, indicating a decline in stomatal conductance. No discernible correlation was observed between parameters characterizing plant water use strategies or the plant hydraulic system and YOR over the whole 122-year window. However, a moving window analysis unveiled that post the green revolution (around 1960 ± 15 years), breeding for yield indirectly favored less hydraulically conductive plants with a reduced leaf area and a linearization of the transpiration rate response to increasing VPD, as evidenced by a decreasing difference in slopes beyond a critical VPD. This resulted in a less pronounced reduction in water use due to a restricted TR response to increasing VPD and, thus, a lower sensitivity to rising VPD. 

Our study indicates that hydraulic traits such as the TR sensitivity to VPD might have been under the control of a cryptic selection mechanism by breeders as they increased wheat yield potential in the region, at least from the 1960s onwards. This points to the promising possibility of using such traits to improve yields under drier climates.

How to cite: Köhler, T., Ossola, E., Anderson, J., Carminati, A., and Sadok, W.: Shifts in plant water use patterns during increasing VPD across 122 years of breeding in U.S. Midwest spring wheat (Triticum aestivum L.) genotypes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4771, https://doi.org/10.5194/egusphere-egu24-4771, 2024.

EGU24-7158 | Orals | BG3.38

Constraining a plant hydraulics-enabled land surface model with microwave radiometry: impact of temporal resolution 

Alexandra Konings, Natan Holtzman, Yujie Wang, Jeffrey Wood, and Christian Frankenberg

Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. A potential solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub-daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high-temporal-resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice-daily sun-synchronous observational patterns that cannot single-handedly capture the two most informative times of the diurnal cycle (i.e. pre-dawn and mid-day). We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun-synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice-daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four-times-daily relative to twice-daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes.

How to cite: Konings, A., Holtzman, N., Wang, Y., Wood, J., and Frankenberg, C.: Constraining a plant hydraulics-enabled land surface model with microwave radiometry: impact of temporal resolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7158, https://doi.org/10.5194/egusphere-egu24-7158, 2024.

EGU24-7683 | ECS | Orals | BG3.38

Disentangling direct effects of temperature and vapour pressure deficit on leaf gas exchange: mechanistic insights from online stable isotope techniques 

Haoyu Diao, Lucas A. Cernusak, Matthias Saurer, Arthur Gessler, Rolf T.W. Siegwolf, and Marco M. Lehmann

Strong covariation between temperature and vapour pressure deficit (VPD) in nature creates challenges for understanding the direct effects of the two on leaf gas exchange. Measurements of stable isotope discrimination in CO2 and H2O provide additional insights into physiological and biochemical processes during leaf gas exchange. We investigated mechanistic causes of variations in net photosynthesis rate (An) and stomatal conductance (gs) with increasing temperature at constant VPD and increasing VPD at constant temperatures.

We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species (Fagus sylvatica, Picea abies, Quercus petraea, and Tilia cordata) (1) across a temperature range of 5–40°C, while maintaining a constant VPD (~0.8 kPa) and (2) across a VPD range of 1–4 kPa, while maintaining a constant temperature (~30°C). The experiments were conducted without soil water limitation. The whole plant along with the whole instrumental setup were heated to prevent condensation when the dew point temperature within the leaf cuvette was higher than the room temperature.

Above the optimum temperature for photosynthesis (~30°C), we observed a decoupling of gs and An across all tested species, with gs increasing but An decreasing. Measurements of carbon and oxygen isotope discrimination indicated that during this decoupling, mesophyll conductance to the chloroplast decreased consistently and significantly among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface or the chloroplast stroma. Both gs and An decreased, while the transpiration rate increased with increasing VPD. The relative humidity inside the leaf, derived from the oxygen isotope discrimination measurements, decreased from 100% to around 70% with increasing VPD, suggesting a progressive unsaturation of vapour pressure in the substomatal cavity. Accounting for the unsaturation, we found decreased CO2 concentration in the intercellular air spaces and at the chloroplast stroma with increasing VPD; however, mesophyll conductance and CO2 concentration at the chloroplast surface remained relatively stable.

We conclude that the effects of temperature and VPD on leaf gas exchange are distinctly different. The reduction in An at higher temperatures, unlike that at higher VPD, was not associated with stomatal closure and thus a restricted supply of CO2 to the chloroplasts. Instead, it was more likely caused by Rubisco deactivation and/or a reduction of the electron transport rate. The unsaturation of vapour pressure inside leaves must not be ignored at VPD higher than 1 kPa, as it is vital for accurate estimations of gs and the CO2 concentration in the internal air spaces of leaves. Under non limiting soil water supply, the increases in leaf water loss due to increased leaf transpiration at higher temperature and VPD are important for plants to strategically cope with severe heat and dry conditions.

How to cite: Diao, H., Cernusak, L. A., Saurer, M., Gessler, A., Siegwolf, R. T. W., and Lehmann, M. M.: Disentangling direct effects of temperature and vapour pressure deficit on leaf gas exchange: mechanistic insights from online stable isotope techniques, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7683, https://doi.org/10.5194/egusphere-egu24-7683, 2024.

EGU24-8365 | Orals | BG3.38 | Highlight

Applicability of optimal stomatal conductance models during a simulated heat wave in grapevine 

Dolores Asensio, Albin Hammerle, Georg Niedrist, Walaa Shtai, Amy Kadison, Michaela Schwarz, Barbara Raifer, Carlo Andreotti, Damiano Zanotelli, Florian Haas, Massimo Tagliavini, and Georg Wohlfahrt

Optimization models of stomatal conductance (gs) provide a conceptual framework to understand stomatal responses to environmental changes in terms of tradeoffs between the benefits and costs of stomatal opening. Theoretically, stomata maximize the benefits (carbon gain, A) and minimize the costs (water loss through transpiration, E). However, during heat waves, there can be conflicts between the need to maintain a high E to control leaf temperature via evaporative cooling and avoid heat damage, and the decrease in gs in response to increased VPD and reduced soil water availability. Under these conditions, the balance between the gains and the associated costs remains unclear. We measured leaf gas exchange (A, E and gs) in potted grapevines, cv Sauvignon Blanc, before, during and after a simulated six-day heat wave (Tmax = 40 °C), in the morning (10 to 12) and the afternoon (15 to 17), using heated well-watered (HW), heated drought-stressed (HD), non-heated well-watered (CW) and non-heated dry (CD) vines. We also measured plant transpiration (Elys) and leaf temperature (Tleaf) continuously during the heat wave using lysimeters and infrared cameras. We test the hypothesis that under combined stress, in addition to the stomatal limitation to A, there is an additional non-stomatal cost for A caused by the heat damage in the photosystem. We explore whether this potential additional cost is captured by two gs optimization models that include soil-to-leaf hydraulic conductance (model 2) or not (model 1). We also hypothesize that gs in HW vines may not follow the optimal predictions because these models do not include stress-related risks such as heat damage due to higher-than-optimal Tleaf resulting from stomal closure and reduced E. There were no significant differences in gs in HD and CD vines, during the morning or the afternoon measurements. Consequently, there were no differences in measured E and A between HD and CD vines during the peak of the heat wave. This was probably due to the stronger effect of water stress (soil water potential from -400 to -800 kPa) than high VDP (5 kPa) on gs during the peak of the heat wave. Under well-watered conditions, measured gs, E and A in the morning were much higher in HW than in CW vines and the values decreased from the morning to the afternoon. Preliminary results suggest that optimal models including dynamic responses to soil water potential can correctly integrate plant responses to heat and drought stress. The incorporation of stress-related risks (such as heat damage to the photosystem) into these models will be discussed.

How to cite: Asensio, D., Hammerle, A., Niedrist, G., Shtai, W., Kadison, A., Schwarz, M., Raifer, B., Andreotti, C., Zanotelli, D., Haas, F., Tagliavini, M., and Wohlfahrt, G.: Applicability of optimal stomatal conductance models during a simulated heat wave in grapevine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8365, https://doi.org/10.5194/egusphere-egu24-8365, 2024.

EGU24-8545 | ECS | Orals | BG3.38 | Highlight

Tree-species-specific response of canopy greenness to the extreme droughts of 2018 and 2022 

Yixuan Wang, Anja Rammig, Lukas Blickensdörfer, Yuanyuan Wang, Xiaoxiang Zhu, and Allan Buras

In recent decades, forests have faced increasingly severe droughts due to rising temperatures and longer dry spells. These conditions intensify atmospheric and soil drought, putting forest ecosystems under considerable stress. The extreme drought years in Germany, particularly in 2018 and 2022, have had a profound impact on forests and thus offer the potential to gain important insights into the responses of different tree species to hotter droughts. Given the pivotal role of forests in mitigating climate change and the long rotation periods of managed forests, understanding species-specific drought responses is crucial for developing effective strategies to adapt to evolving climate scenarios.

Currently, our understanding of species-specific drought responses relies heavily on dendroecological analysis and plot-based ecophysiological monitoring networks. While these methods provide insights into tree growth and physiology, their spatial constraints limit widespread replication. To address these limitations and quantify drought responses of specific tree species at a larger scale, our study integrated tree-species maps from the Thünen Institute with remotely sensed canopy greenness and environmental variables, including soil moisture (PAWC), atmospheric vapor pressure deficit (VPD), and climatic water balance (SPEI). Specifically, we focused on four dominant species: two with more anisohydric characteristics (beech and oak, which keep their stomata largely open under drought) and two with more isohydric strategies (pine and spruce, which close their stomata already under less extreme drought). Using statistical methods such as linear regression and machine learning within a gradient-boosting framework, we aimed to explore the factors influencing changes in canopy greenness for different species from 2018 to 2022.

We found that nearly all trees of these species had lower PAWC in 2022 than in 2018, while only one-third of beech, oak, and pine trees and more than 70% of spruce trees had higher VPD in 2022. More isohydric species showed a greater decline in canopy greenness over this period compared to more anisohydric species, despite similar soil moisture conditions. Our models suggest that more isohydric species were primarily affected by extremely low soil moisture, whereas more anisohydric species were primarily affected by atmospheric moisture deficit. Our statistical analysis showed that oak is the only species with significantly higher canopy greenness in 2022 compared to 2018. Linear regression models showed very low importance of PAWC for oak canopy greenness but much higher importance of VPD. However, we hypothesize that all species are still susceptible to carry-over effects from previous drought years or secondary factors related to biotic pathogens.

Our study provides critical insights into the diverse responses of different tree species to changing environmental conditions over large spatial scales. It elucidates the complex interactions between soil moisture, climate variables, and canopy greenness. These findings contribute significantly to our understanding of the resilience of forest ecosystems to climate variability and provide invaluable guidance for informed forest management and conservation strategies.

How to cite: Wang, Y., Rammig, A., Blickensdörfer, L., Wang, Y., Zhu, X., and Buras, A.: Tree-species-specific response of canopy greenness to the extreme droughts of 2018 and 2022, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8545, https://doi.org/10.5194/egusphere-egu24-8545, 2024.

EGU24-9694 | ECS | Posters on site | BG3.38

Continuous Monitoring of Stem Water Potential in Deciduous Forests: Assessing a Novel Microtensiometer for Ecosystem Hydraulics Research 

Ruth-Kristina Magh, Anna-Lena Günther, Anne Klosterhalfen, Sharath Paligi, Clara Rohde, Maren Dubbert, Gökben Demir, and Anke Hildebrandt

Water potential serves as the primary driver of fluxes within natural ecosystems, representing the energy of water and dictating the direction of flow. As climate change intensifies and summer droughts become more prevalent, comprehending the impact on plant hydraulics becomes imperative. The measurement of water potential in both soil and plants provides insight into the prevailing flow direction, and when coupled with soil moisture and sap flow data, facilitates the quantification of flux sizes.

Traditionally, the measurement of plant water potentials has been conducted destructively and intermittently, often employing techniques such as the pressure chamber. Therefore, datapoints were usually scarce and information unsuitable to capture faster-acting hydrodynamic processes like stomatal responses to atmospheric changes or changes in plant water pools over the diurnal cycle.

In this study, we evaluated the efficacy of a novel microtensiometer for continuous monitoring of stem water potential. Two Florapulse sensors were installed in a beech (Fagus sylvatica) and a hornbeam (Carpinus betulus) tree, respectively. Stem and leaf water potentials were concurrently measured using a pressure chamber over three consecutive days to validate the functionality of the sensors in these specific species. Notably, the continuously logging microtensiometer demonstrated strong agreement with hourly pressure chamber values (R2 = 0.8 and 0.72 for beech and hornbeam, respectively).

Subsequently, eight microtensiometers were deployed in a natural mixed-species forest in mid-Germany, complemented by continuous measurements of sap flow, soil moisture, and soil matrix potential. This comprehensive monitoring effort spanned the entire summer of 2023. Analysis of the gathered data enabled the determination of water flow direction and fluxes throughout the monitored period, revealing minimal to negligible water stress in the ecosystem, likely attributable to the wet summer conditions in the region.

This research showcases the potential of the microtensiometer for advancing our understanding of plant hydraulics in changing climates, providing a valuable tool for continuous and non-destructive monitoring of water potential dynamics in forest ecosystems.

How to cite: Magh, R.-K., Günther, A.-L., Klosterhalfen, A., Paligi, S., Rohde, C., Dubbert, M., Demir, G., and Hildebrandt, A.: Continuous Monitoring of Stem Water Potential in Deciduous Forests: Assessing a Novel Microtensiometer for Ecosystem Hydraulics Research, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9694, https://doi.org/10.5194/egusphere-egu24-9694, 2024.

EGU24-9978 | ECS | Posters on site | BG3.38

Assessing the sensitivity of satellite-derived gross primary productivity to combined atmospheric dryness and soil moisture deficit 

Xiaorong Wang, Zhengfei Guo, Kun Zhang, Zheng Fu, Calvin K. F. Lee, Dedi Yang, Detto Matteo, Ryu Youngryel, Yongguang Zhang, and Jin Wu

Water stress, characterized by atmospheric dryness (vapor pressure deficit, VPD) and soil moisture (SM) deficit, has a significant impact on terrestrial gross primary productivity (GPP), necessitating accurate modeling of the relative effects of VPD and SM deficit. Satellite remote sensing (RS) GPP estimations offer valuable tools for studying large-scale terrestrial GPP under water stress. However, it remains unclear how accurately they capture these relative effects compared to ground-based eddy covariance (EC) measurements. To address this gap, we quantified GPP sensitivity to VPD and SM deficit using ten widely used RS GPP products and EC measurements. By comparing GPP sensitivity patterns derived from RS and EC data across all ecosystems and within three ecosystem types (forest, grassland, and cropland), our results demonstrate that: (1) the mean of all ten RS GPP products (RSmean) captures the general directional response of GPP to VPD (i.e., mainly negative) and SM deficit (i.e., mixed positive and negative) across different VPD-SM gradients, but fails to reproduce the absolute value of GPP changes compared to EC measurements. This discrepancy could be attributed to RS products primarily capturing changes in canopy structure under water stress rather than accurately reflecting short-term plant physiological responses, while EC-derived GPP anomalies under water stress encompass both changes in canopy structure and plant physiological activities. (2) RSmean generally tracks the directional sensitivities of GPP to VPD and SM deficit within various ecosystem types, but significant magnitude differences are observed compared to EC measurements, with larger biases in forest ecosystems compared to grassland and cropland ecosystems, likely due to the lower sensitivity of deep-rooted forest ecosystems to water stress. (3) Despite the presence of biases, certain models (e.g., GOSIFGPP and BESSGPP) outperform others in terms of both GPP-VPD and GPP-SM sensitivities across all ecosystems and within different ecosystem types. Collectively, this study comprehensively assesses the ability of RS GPP estimations to capture vegetation responses to VPD and SM deficit and suggests methods for refining water stress effects in RS GPP models to enhance large-scale GPP impact assessments under water stress.

How to cite: Wang, X., Guo, Z., Zhang, K., Fu, Z., Lee, C. K. F., Yang, D., Matteo, D., Youngryel, R., Zhang, Y., and Wu, J.: Assessing the sensitivity of satellite-derived gross primary productivity to combined atmospheric dryness and soil moisture deficit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9978, https://doi.org/10.5194/egusphere-egu24-9978, 2024.

EGU24-10789 | Orals | BG3.38

Pre-dawn water potential determines stomatal sensitivity to vapor pressure deficit in trees 

Richard L. Peters, Matthias Arend, Cedric Zahnd, Günter Hoch, and Ansgar Kahmen

The balance between terrestrial carbon assimilation and water loss is optimized by stomatal control in leaves. The response of stomatal conductance to increasing vapor pressure deficit (VPD) is critical in the context of climatic change and highly variable between tree species and environments. Why this variability in VPD sensitivity exists is still largely unknown. Yet, as the regulatory cues initiating closure remain unclear, current simulations of forest water use face significant uncertainty.

To address this knowledge gap for most of the common European tree species, we present data measured regularly in the crowns of mature trees growing in a natural forest at the Swiss Canopy Crane II (SCCII) site (Basel, Switzerland). We used three years of repeated stomatal conductance measurements across the growing season performed at the leaf level (over 1000 measurements), in combination with concurrent diel leaf water potential measurements and VPD monitoring of over 80 individuals.

We show that pre-dawn, rather than the expected midday, tree water status is more critical in adjusting the stomatal closure responses to increasing VPD. A striking reduction can be found in this VPD sensitivity when pre-dawn leaf water potential approaches -1.2 MPa, independent of the species. Only above this threshold, i.e., when trees were well-hydrated, did the species show variance in midday stomatal sensitivity to VPD. This aligns with the commonly adopted hydraulic safety-efficiency theorem for explaining species-specific variance.

We argue that daytime canopy conductance does not solely optimize assimilation against the risk of cavitation, which commonly happens during high midday VPD. Rather, our novel finding suggests that mature trees might adjust their water-use strategy to sustain high nighttime turgor pressure (as required for sugar transport and growth), although the regulating mechanisms are yet unknown. The discovery of this uniform pre-dawn threshold across species is particularly critical for reducing uncertainty when modeling forest water use responses to VPD.

How to cite: Peters, R. L., Arend, M., Zahnd, C., Hoch, G., and Kahmen, A.: Pre-dawn water potential determines stomatal sensitivity to vapor pressure deficit in trees, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10789, https://doi.org/10.5194/egusphere-egu24-10789, 2024.

EGU24-11210 | ECS | Posters on site | BG3.38

Interannual variation of stomatal traits in tree crops and its impact on environmental resilience 

Francesca Zuffa, Michaela Jung, Steven Yates, Carles Quesada-Traver, Andrea Patocchi, Bruno Studer, and Graham Dow

Climate change is driving an increased demand for freshwater in agriculture and this highlights an important need to enhance crop water-use efficiency. Making these improvements in perennial crops, such as fruit trees, can be particularly challenging because of long generation cycles and difficulties in genetic transformation. Nonetheless, tree crops play critical roles in global food security and strategies for climate adaptation are strongly needed. Stomata are fundamental gatekeepers of plant-water relations and represent promising targets for crop improvement. Here, we investigated stomatal density (SD) and function in four consecutive years from 2019 to 2022 in a genetically diverse population of 269 apple accessions from across the globe (Malus × domestica Borkh.). Apples are the third most valuable fruit crop worldwide and physiologically representative of many temperate tree crops. SD exhibited a normal distribution within the population, showing significant differences among accessions that remained consistent across 2019, 2020, and 2021. From this population, we identified two subsets of 20 accessions with contrasting SD: the highest stomatal density (HSD) ranging from 370 mm-2 to 500 mm-2, and the lowest stomatal density (LSD) ranging from 192 mm-2 to 316 mm-2. These SD groups were used to compare stomatal function, leaf physiology, and crop productivity across two seasons in 2021 and 2022. While SD defined consistent differences in stomatal conductance (gs) and instantaneous water-use efficiency (iWUE) between groups, seasonal conditions defined the operational values. LSD had lower gs and greater iWUE in both years. However, in 2022, characterized by hotter conditions and a nearly double VPD compared to the previous year, LSD reduced gs to rates that constrained photosynthesis and ultimately reduced fruit yield compared with 2021. HSD experienced an equivalent gs decline in 2022, but photosynthesis and fruit yield were unaffected compared with 2021. Our results demonstrate a clear trade-off between water savings (LSD) and tree productivity (HSD) as driven by stomatal traits. Moreover, the consistency of SD across years makes it a reliable functional trait for predicting plant performance amidst environmental responses. Finally, in contrast to the prevailing literature that suggests LSD would be the preferred ideotype for climate adaptation in crops, HSD plants may actually provide greater resilience to climate variability in managed orchards and other agricultural systems.

How to cite: Zuffa, F., Jung, M., Yates, S., Quesada-Traver, C., Patocchi, A., Studer, B., and Dow, G.: Interannual variation of stomatal traits in tree crops and its impact on environmental resilience, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11210, https://doi.org/10.5194/egusphere-egu24-11210, 2024.

EGU24-11735 | ECS | Posters on site | BG3.38

Testing sensors for validating microwave products of forest water status 

Paul Vermunt, Roelof Rietbroek, Christiaan Van der Tol, Yijian Zeng, and Zhongbo Su

European forests are experiencing a significant increase in mortality as a result of plagues and wildfires, often enhanced by droughts. Understanding, managing, and adapting our forests to future changes requires large-scale spatiotemporal monitoring of forest water status. Microwave remote sensing products, such as Vegetation Optical Depth (VOD), are a valuable addition to optical metrices due to their direct relationship to vegetation water content (VWC) and consistent time series. These products are increasingly used for studying drought-stressed vegetation. However, unlike soil moisture, there is little continuous ground-based data to validate VWC estimates from microwave instruments. To accelerate the development of VWC products, we need continuous ground-based measurements for various locations. In a Dutch coniferous forest, we have tested state-of-the-art sensors and approaches to measure water content and potential continuously (i.e. using frequency- and time domain reflectometers, GNSS receivers, microtensiometers, dielectric leaf wetness sensors, sap flow sensors, dendrometers). The objectives are (I) to perform long-term continuous measurements, (II) to use our insights to scale up the measurements to other locations. After multiple months of measuring, we here present our first results.

How to cite: Vermunt, P., Rietbroek, R., Van der Tol, C., Zeng, Y., and Su, Z.: Testing sensors for validating microwave products of forest water status, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11735, https://doi.org/10.5194/egusphere-egu24-11735, 2024.

EGU24-12052 | Orals | BG3.38 | Highlight

Ecosystem water relations 

Oliver Binks

‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal conductance, hydraulic conductance, and mortality thresholds; yet this cannot be directly related to fluxes of water at plot- to landscape-scale without understanding its relationship with ‘water content’.  The relationship between water content and water potential has long been of interest to plant and soil scientists and is typically determined at small scale on excised plant parts or soil samples.  But how can water potential be scaled from leaf to canopy, branch to stem, tree to forest?  How does water content vary throughout a plant, and across individuals and species?

In this talk I will outline some practical considerations for deriving representative values for ecosystem water potential and content: the ecosystem pressure-volume curve.  I will discuss how ecosystem water status is influenced by the boundaries we apply to the system, which differ depending on whether we are interested in interpreting remote sensing data, models, or field measurements.  And I will describe the concept of the ‘state-based’ model which relates to steady-state vegetation types that emerge predictably in response to a given climate or hydraulic environment.

To support this discussion, I will present ecosystem pressure-volume curves from nine sites including tropical rainforest, savanna, temperate forest, and a long-term Amazonian rainforest drought experiment.  The results from these preliminary analyses show that the relationship between the water stored in biomass consistently scales with biomass across systems, as does the vegetation-level hydraulic capacitance; while the relative measures of water storage and hydraulic capacitance show no trend across ecosystems.  Such cross-biome relationships in water relations hold promise for improving our understanding of vegetation-climate feedbacks over large spatial and temporal scales, and enhancing our capacity to interpret remote sensing data.

How to cite: Binks, O.: Ecosystem water relations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12052, https://doi.org/10.5194/egusphere-egu24-12052, 2024.

EGU24-12595 | ECS | Posters on site | BG3.38

Understanding the plant water status of different forest tree species under drought 

Faisal Hayat, Anupa Silwal, Stefan Seeger, Thomas Fichtner, Stephan Rimmele, and Martin Maier

The water balance is one of the most important factors that regulate growth, yield and quality in trees. Seasonal variations in soil water availability and also climate change play a key role in the water status of plants. Trees developed different physiological strategies in order to cope with environmental stresses. These strategies include the functional relationship between water availability, plant water status, and water consumption, which means the amount of water that is used for transpiration.

In the present study, we aimed to investigate (1) the relations between tree water deficit (TWD), transpiration and stem water potential, which both can be used as parameters describing the plant water status, and (2) the functional relationships between these plant water status parameters and the transpiration rate. To analyze differences between (a) the different tree species (Pinus sylvestris, Tilia cordata, Picea abies, Malus domestica) and (b) differences between sites with the same tree species (Pinus sylvestris), we used data from dry spells of approx. 6 weeks in early summer 2023 at 3 experimental sites and one drought experiment in the greenhouse. We hypothesized that tree water deficit closely correlates with stem water potential in all trees. Yet, that tree species show different functional relationships between transpiration rate and plant water status indicators.

 In each tested species, the data of tree water deficit, stem water potential, and transpiration rate were recorded by automated dendrometer (DRL26D, EMS Brno), Saturas sensor (the StemSenseTM) and sap flow sensor (SFM1, ICT international), in addition to standard climatic data including soil moisture and soil matrix potential. In the preliminary results, it is observed that the functional relationship between tree water deficit, stem water potential and transpiration correlate well with each other but the trend differs between the species. Moreover, it is found that the investigated traits also closely relate to soil and atmospheric variables. However, further research should be conducted to investigate these variables over a longer period by incorporating the wet and dry events under controlled conditions.

How to cite: Hayat, F., Silwal, A., Seeger, S., Fichtner, T., Rimmele, S., and Maier, M.: Understanding the plant water status of different forest tree species under drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12595, https://doi.org/10.5194/egusphere-egu24-12595, 2024.

The intensifying global warming scenario leads to a notable increase in atmospheric evaporative demand, presenting novel threats to plant and ecosystems. Thus, it is crucial to comprehend the intricate relationship among temperature, vapor pressure deficit (VPD), and ecosystem processes to effectively address the challenges presented by climate change. Plants have evolved a myriad of strategies to cope with heat, drought, and high VPD. Thus, the impact of these environmental stressors will strongly depend on species-specific adaptations and prevailing environmental conditions.

This study delves into the intricate dynamics of ecological responses to vapor pressure deficit (VPD), heat, and soil moisture, with a focus on species-specific adaptations, and their consequential effects on carbon and water fluxes in diverse climatic regions. By examining dominant plant responses from field studies in semi-arid, temperate, and tropical forests, examples of species-specific adaptations to VPD, heat and drought and the ecological responses across various spatial and temporal scales will be presented. Utilizing field data, the role of soil moisture in modulating the impacts of VPD and heat on carbon and water fluxes will be explored, considering the seasonal dynamics that influence these interactions.

The findings highlight the importance of species-specific adaptations in influencing ecosystem responses to environmental stressors, emphasizing the need for a nuanced understanding of these adaptations across different climatic zones. A comprehensive understanding of the interplay between VPD, heat, soil moisture, and species-specific adaptations will be important for improved ecosystem management and climate change mitigation strategies tailored to specific regions and vegetation types.

 

How to cite: Werner, C.: Ecological Responses to Vapor Pressure Deficit, Heat, and Soil Moisture: A Species-Specific Perspective across Climatic Regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13085, https://doi.org/10.5194/egusphere-egu24-13085, 2024.

EGU24-13238 | ECS | Orals | BG3.38

Modelling the functionally diverse Caatinga: insights into a unique tropical forest 

Manon Sabot, Rodolfo Nobrega, Magna Moura, Martin De Kauwe, Bartosz Majcher, Luiza Cosme, Raquel Miatto, Tomas Ferreira Domingues, Andy Pitman, Iain Colin Prentice, and Anne Verhoef

From heightened canopy dieback to tree die-off, many forest ecosystems are showing signs of poorly coping with more severe, more frequent, or hotter droughts. Understanding forest resilience to drought has become paramount, and eco‐physiological optimisation approaches that test behavioural hypotheses have been proposed as a means to build this understanding in global terrestrial models. Here, we used a land-surface model that considers competing optimality principles to simulate canopy gas exchange and leaf nitrogen investments into the photosynthetic apparatus, whilst also accounting for sustained hydraulic impairment (Sabot et al., 2022). We applied this model to a pristine observational site of the Caatinga, Brazil’s drought-hardy, seasonally deciduous, and exceptionally diverse dry tropical forest. Six woody species dominate 80% of the study area whilst displaying contrasting functional strategies – for example, their respective P50s (the water potential at which 50% of a plant’s hydraulic conductivity is lost) range between -1 MPa and -5 MPa. Model predictions were assessed against species-specific leaf-level observations of stomatal conductance and photosynthetic uptake, as well as eddy covariance measurements of ecosystem carbon and water fluxes spanning a period with high interannual rainfall variability (and including a severe multi-year regional drought). We found that none of the six species could, in isolation, explain the magnitude and dynamics of the observed surface fluxes. However, taken together and accounting for their relative contribution to total ecosystem fluxes, they did. Further, our analysis emphasises the vital role of phenology in mitigating seasonal and inter-annual hydraulic risks, with foliage reductions triggered by a 10 to 20% loss of hydraulic conductivity in the canopy. On the whole, accounting for diverging species-level responses and their relative influence at the ecosystem-scale appears key to improving model predictions in functional diverse forests.

 

Reference: Sabot, M.E.B., De Kauwe, M.G., Pitman, A.J., Ellsworth, D.S., Medlyn, B.E., Caldararu, S. et al. (2022) Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell & Environment, 45, 27442761.

How to cite: Sabot, M., Nobrega, R., Moura, M., De Kauwe, M., Majcher, B., Cosme, L., Miatto, R., Ferreira Domingues, T., Pitman, A., Prentice, I. C., and Verhoef, A.: Modelling the functionally diverse Caatinga: insights into a unique tropical forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13238, https://doi.org/10.5194/egusphere-egu24-13238, 2024.

EGU24-13272 | Posters on site | BG3.38

Tower-based radar observations of sub-daily water dynamics in boreal forests 

Johan E.S. Fransson, Albert R. Monteith, Henrik J. Persson, and Lars M.H. Ulander

Radar remote sensing observations are predominantly affected by the concentration and spatial distribution of water in natural scenes. This motivates the utilization of high-resolution spaceborne radar observations for monitoring the water status of vegetation and the impacts of climate change on forests globally. While current satellite-based synthetic aperture radar observations are limited to temporal resolutions of days, tower-based radar observations of forests are capable of capturing detailed sub-daily physiological responses to variations in soil water availability and meteorological conditions. Such experiments demonstrate the scientific value of prospective sub-daily space-borne observations in the future.

The BorealScat tower-based radar experiment conducted in southern Sweden from 2017 to 2021 has captured various ecophysiological phenomena in a boreo-nemoral forest, including water stress and degradation induced by spruce bark beetles (Ips typographus). To gain a deeper insight into the sub-daily impacts of forest water dynamics on radar observations, the BorealScat-2 tower-based radar experiment was initiated in a boreal forest, located in northern Sweden in 2022. Along with in-situ sensors characterizing the water status on the tree level and an eddy-covariance flux tower, this initiative aims to compile a comprehensive and open dataset. The goal is to enhance our understanding and modelling of the relationship between traditional ground-based forest information, eddy-covariance flux measurements and radar remote sensing observables.

The data gathered by BorealScat-2 stands out as the most radiometrically precise high-resolution time series ever recorded in forest environments, resolving the subtle water content-induced signatures in radar measurements. Preliminary findings from the 2022 growing season, highlight the detectability of a diurnal radar signature across all conventional radar remote sensing bands (i.e. C-, L- and P-band). Moreover, metrics akin to tree water deficit, as measured by high-resolution point dendrometers, can be derived from interferometric radar observations. The fine temporal resolution of the data also unveils distinct signatures corresponding to intercepted precipitation in time series measurements. These findings underscore the need for sub-daily observations from space-borne satellites to monitor vegetation water status.

How to cite: Fransson, J. E. S., Monteith, A. R., Persson, H. J., and Ulander, L. M. H.: Tower-based radar observations of sub-daily water dynamics in boreal forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13272, https://doi.org/10.5194/egusphere-egu24-13272, 2024.

EGU24-13339 | Orals | BG3.38

Hydrological limits to leaf cooling during a record summer heat wave 

Kevin Hultine, Bradley Posch, Susan Bush, Dan Koepke, Leander Anderegg, Luiza Aparecido, Benjamin Blonder, Jessica Guo, Kelly Kerr, Madeline Moran, and Alexandra Schuessler

Extreme heatwaves, that are increasing in intensity and duration around the globe, are causing many locally adapted plant populations to rapidly become maladapted to climate conditions in ways that are likely to impact forest carbon storage, biogeochemical cycling, and biodiversity. One species that may be of particular risk from excess heat exposure is Populus fremontii (Wats.): a dominant riparian tree species that occupies extremely arid riparian ecosystems in western North America. We used an experimental common garden of two-year old P. fremontii genotypes sourced across a broad climate gradient to evaluate leaf thermal regulation and thermal tolerance of trees exposed to daytime summer temperatures that regularly exceeded 45 °C. Traits were measured to evaluate patterns of hydraulic and thermal safety, including leaf temperature (Tleaf), stomatal conductance, leaf water potentials, leaf turgor loss point, stem xylem cavitation vulnerability and leaf thermal tolerance - defined as the critical temperature that triggers rapid reductions in electron transport capacity of Photosystem II (Tcrit; °C). Three major results emerged. First, Tleaf of genotypes from the warmest locations were 4 to 5 °C cooler than air temperatures, even on days where air temperatures exceeded 48 °C. Second, short-term reductions in soil water availability - even reductions that were largely undetectable from predawn leaf water potentials - disrupted leaf cooling patterns in all genotypes, resulting in periods in which Tleaf exceeded Tcrit. And third, during the warmest period of the summer, a clear tradeoff was detected between leaf thermal safety and hydraulic safety, with warm-adapted genotypes risking hydraulic safety to maximize leaf thermal safety. Results not only improves our understanding of tree thermal limits in the face of episodic heat exposure, but also advances our understanding of how short-term changes in soil moisture availability can alter plant thermal regulation and subsequent exposure to long-term heat stress.

How to cite: Hultine, K., Posch, B., Bush, S., Koepke, D., Anderegg, L., Aparecido, L., Blonder, B., Guo, J., Kerr, K., Moran, M., and Schuessler, A.: Hydrological limits to leaf cooling during a record summer heat wave, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13339, https://doi.org/10.5194/egusphere-egu24-13339, 2024.

EGU24-13545 | ECS | Posters on site | BG3.38

Stomatal conductance modeling: a novel leaf-scale mechanistic approach tailored for large-scale applications  

Amélie Chaput, Simone Fatichi, and Christoforos Pappas

Understanding and predicting plant responses in current and future climates is vital due to tight land-atmosphere interactions from the local to global scales. More specifically, understanding how stomata respond to environmental stressors (e.g., lack of water, increasing CO2, extreme temperatures) is necessary, as they regulate water and carbon exchanges across the soil-plant-atmosphere continuum. Although a wealth of stomatal models exists, they still have limitations emerging, for example, by the underlying empirical assumptions or optimization-based hypotheses. These models are strongly hinged on observations, thus, hampering their scope in different environmental conditions. Indeed, the difficulty of balancing between the complexity of ecophysiological processes and the parsimony required in land surface and earth system models presents a challenge. Here, to address this, a novel mechanistic model is proposed that resolves basic ecophysiological functions while still being parsimonious and agile so it can be seamlessly integrated into larger-scale modelling frameworks. The model resolves guard and epidermal cells turgor, leaf hydraulic paths and gas diffusion through stomata, mesophyll conductance, and carbon assimilation (Farquhar model of photosynthesis) and includes explicitly the roles of both ABA and CO2 in regulating stomatal aperture. Published data on plant responses to different environmental variables, e.g., VPD, water stress, light, CO2, and temperature, were combined to parametrize and test the model capabilities in a range of different conditions. In addition, a global leaf gas exchange database was utilized as a further confirmation of the model skill to represent a wide range of stomatal responses under different environmental conditions.

How to cite: Chaput, A., Fatichi, S., and Pappas, C.: Stomatal conductance modeling: a novel leaf-scale mechanistic approach tailored for large-scale applications , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13545, https://doi.org/10.5194/egusphere-egu24-13545, 2024.

EGU24-14328 | Orals | BG3.38

Photosynthetic responses of Pinus densiflora seedlings are affected by accumulated heat under artificial warming 

Heejae Jo, Gwang-Jung Kim, Jinseo Kim, Gaeun Kim, Minyoung Kwon, Jeong-Min Lee, and Yowhan Son

Photosynthetic responses of Pinus densiflora seedlings to warming in different seasons were investigated. In March 2023, four temperature treatments with five replicates were conducted in an open-field nursery site located in Seoul, South Korea: constant warming (April 15th-October 15th), spring and fall warming (April 15th-May 31st and September 1st-October 15th), summer warming (June 1st-August 31st), and control. In each plot, 108 1-year-old P. densiflora seedlings were planted. The temperature of the warming plots was set to increase by 4°C compared to control plots using infrared heaters. Photosynthetic responses of seedlings were measured on the 10th of each month from May to October and linear mixed-effect models were used to analyze the effect of treatments on photosynthetic responses. Net photosynthetic rate was not affected by any of the treatments until June but decreased by 12.7% under summer warming compared to spring and fall warming in July. In August, both constant warming and summer warming treatments decreased the net photosynthetic rate by 18.0% and 12.3%, respectively, compared to the control. However, in September, following the cessation of the summer warming and the initiation of the fall warming treatment, seedlings only subjected to constant warming exhibited a significant reduction in net photosynthetic rate, with a 33.0% decrease compared to the control. This reduction increased to 41.2% in October, whereas summer warming and spring and fall warming treatments did not affect photosynthesis in the same month. This study indicates that warming might result in losses in plant photosynthesis, and those losses could be higher during summer. In addition, although the spring and fall treatment did not independently affect net photosynthetic rate of seedlings, the accumulated heat during spring and fall appears to have attributed to the photosynthetic reduction under the constant warming treatment.

 

* This research was carried out with the support of the Korea Forest Service Government (KFSG) as [Graduate School specialized in Carbon Sink].

How to cite: Jo, H., Kim, G.-J., Kim, J., Kim, G., Kwon, M., Lee, J.-M., and Son, Y.: Photosynthetic responses of Pinus densiflora seedlings are affected by accumulated heat under artificial warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14328, https://doi.org/10.5194/egusphere-egu24-14328, 2024.

EGU24-15883 | ECS | Orals | BG3.38

Water availability determines heat stress response in temperate broadleaved tree species 

Jana Zeppan, Lisa Huelsmann, and Nadine Ruehr

Heat waves and co-occurring droughts are increasing in frequency and magnitude in Central Europe with major impacts on tree water and carbon dynamics. So far, knowledge on how common temperate broadleaved tree species respond to combined heat and drought remains limited. To understand if tree species might tolerate future climate conditions, knowledge on their ability to regulate canopy temperature, sustain gas exchange and prevent leaf damage is essential. In our study we explored the impacts of increasing temperature and vapour pressure deficit (VPD) combined with a mild soil drought on three broadleaved tree species Fagus sylvatica, Acer platanoides and Quercus robur. Seedlings were subjected to a gradual temperature increase from 25°C to 45°C in a greenhouse, experiencing either well-watered control or mild drought conditions. Using single tree chambers, we assessed changes in leaf temperature, gas exchange and leaf senescence.

We found that with higher temperatures and VPD transpirational cooling of the leaves increased in all species, even though it was lowest for A. platanoides. Under mild drought conditions leaf cooling was strongly limited and leaf temperatures mostly exceeded air temperatures. Drought limitations were also reflected in the gas exchange with overall lower net assimilation, stomatal conductance and transpiration rates.  Still, drought and control trees both exhibited increased transpiration rates with higher temperature and VPD. At the same time stomatal conductance and net assimilation decreased with increased heat. Consequently, water-use efficiency strongly declined under well-watered and drought conditions for all species, emphasizing the crucial role of water during heat stress. For Q. robur these declines in gas exchange only happened at temperatures beyond 38°C under well-watered conditions, indicating higher thermal thresholds. This was also reflected in the leaf senescence as Q. robur avoided visible leaf damage entirely. In contrast, F. sylvatica and A. platanoides demonstrated high leaf senescence particularly in combination with drought.

In summary, our study highlights the importance of water availability for thermal regulation and sustaining positive net carbon uptake. Even though all species showed similar trends in their heat response, sustained net assimilation and avoidance of leaf damage point towards a potentially better heat resistance of Q. robur compared to the other two species.

How to cite: Zeppan, J., Huelsmann, L., and Ruehr, N.: Water availability determines heat stress response in temperate broadleaved tree species, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15883, https://doi.org/10.5194/egusphere-egu24-15883, 2024.

EGU24-16104 | ECS | Orals | BG3.38

Tree water deficit as a drought stress indicator 

Yanick Ziegler, Franklin Alongi, Timo Knüver, Rüdiger Grote, and Nadine Ruehr

The frequency and severity of droughts is expected to increase as climate change develops, which negatively affects forests and their numerous benefits. However, some species may be adapted better to the new conditions than others. Hence, evaluating the stress level of trees under ranges of water-limited conditions is crucial to judge and predict forest health. While water potential measurements are valuable for indicating stress, they are hardly applicable to monitoring continuous developments or investigating large numbers of individuals simultaneously. An alternative attempt is to utilize high-resolution dendrometer measurements of stem shrinkage, which is caused by the reduction of the tree's internal water storage (tree water deficit; TWD) and is thus an indirect indicator of stress. There is first proof of correlations between TWD and water potential under moderate drought stress. However, we still lack observations that relate stem diameter variations to severe drought stress when embolism formation (air bubbles in the xylem preventing water flow) occurs. Also, recovery responses after re-wetting, and the respective linkages to physiological states and processes are fairly unknown.

Here, we present results from a greenhouse experiment on potted tree saplings. Two widespread temperate conifers (Pinus sylvestris, Larix decidua) were exposed either to drought-recovery cycles or to lethal drought until complete dehydration under controlled experimental conditions. We found strong relations between TWD and both midday water potential and gas fluxes across the full range of dehydration, with only minor differences between the two species. Re-wetting after a short drought period had no effect. Conversely, re-wetting after a drought severe enough to cause hydraulic damage significantly affected the correlations due to different recovery times.

Our results indicate the great potential of dendrometers to provide continuous and cost-efficient time series that allow valuable insights into the water status and thus drought stress of trees. While all stages of dehydration can be covered, the dependencies of re-wetting responses after severe droughts are still unclear and more species-specific investigations are required. Nevertheless, applying TWD seems to be a promising way forward to improve our understanding of drought-stress-induced forest decline and drought-recovery dynamics. 

How to cite: Ziegler, Y., Alongi, F., Knüver, T., Grote, R., and Ruehr, N.: Tree water deficit as a drought stress indicator, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16104, https://doi.org/10.5194/egusphere-egu24-16104, 2024.

EGU24-17660 | ECS | Posters on site | BG3.38 | Highlight

Exploring the Functional Persistence of Mycorrhizal Associations in Water Uptake during Soil Drying Conditions  

Alora Kraus, Benjamin D. Hafner, Ruth Adamczewski, and Mohsen Zare

Arbuscular mycorrhizal fungi (AMF) are well-known to enhance plant resilience to water stress by improving water uptake from the soil. Few studies, however, address direct water transport to plant roots through hyphal networks, and it is virtually unknown how this function responds to soil drying. This study investigates AMF involvement in maize root water uptake across different soil water content conditions. Our primary objective is to explore how the direct contribution of AMF to root water uptake changes as soil dries. Zea mays (maize) plants were cultivated in experimental pots (4.1 L) filled with a 70% sand and 30% clay soil mixture. The pots were partitioned into two compartments using 31-μm nylon mesh, creating a 3.5-mm air gap to restrict root growth to the primary plant compartment and ensure exclusive access of mycorrhizal hyphae to a secondary soil compartment. Maize seeds inoculated with Glomus intraradices spores were cultivated for six weeks in the primary compartments under well-watered conditions before being subjected to one of three soil moisture regimes: well-watered (28-31% volumetric soil water content), moderate drought stress (14-17% volumetric soil water content), or severe drought stress (8-11% volumetric soil water content). When plants were eight weeks old, 2H-labelled water was added exclusively to the hyphae-only compartment, allowing for tracking and quantification of AMF-transported water. During and after labelling, plant shoots were enclosed in air-tight plastic bags connected to a stable isotope analyzer, which continuously monitored plant transpiration and 2H concentrations in transpired water vapor over a four-day period. Results from staining techniques demonstrate robust mycorrhizal colonization of roots and successful hyphal penetration across the air gap into the hyphae-only compartment. Results from the 2H labeling experiment indicate an early arrival of 2H in the transpired water of plants subjected to moderate drought stress (two days post-labelling) compared to well-watered conditions and severe drought stress (three days post-labelling). Additionally, plants exposed to drought stress exhibited higher 2H concentrations in their transpired water, suggesting an enhanced contribution of AMF to root water uptake under soil drying conditions. This investigation offers insights into the dynamics of AMF hyphal water transport under distinct soil moisture conditions. The outcomes will advance our understanding of mycorrhizal symbioses’ response to drought stress, potentially guiding strategies to optimize plant water acquisition in agricultural contexts facing escalating water scarcity challenges.

How to cite: Kraus, A., Hafner, B. D., Adamczewski, R., and Zare, M.: Exploring the Functional Persistence of Mycorrhizal Associations in Water Uptake during Soil Drying Conditions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17660, https://doi.org/10.5194/egusphere-egu24-17660, 2024.

EGU24-17872 | ECS | Orals | BG3.38

Inferring geographic and climatic variation in plant hydraulic traits from flux data 

Jaideep Joshi, Josefa Arán Paredes, and Benjamin Stocker

Plant water stress has major implications for vegetation productivity, mortality, and global carbon cycle variations. Yet, its representation in models constitutes a major source of uncertainty. This is related to uncertainties in the representation of water stress exposure due to unknown belowground rooting structure and water storage, and uncertainties in the representation of interactive responses to atmospheric dryness (vapour pressure deficit, VPD) and belowground moisture.

Recent theoretical developments have given rise to several hydraulically explicit models for predicting plant physiological responses to VPD and belowground moisture at the leaf level. The P-hydro model that we have recently developed, accounts for the simultaneous acclimation of stomatal conductance and photosynthetic capacity using an eco-evolutionary optimality approach. Based on three “first principles” (balance of water demanded by transpiration and that supplied from the soil, coordination of the carboxylation-limited and light-limited photosynthesis rates, and maximization of net profit after accounting for the costs of maintaining photosynthetic and hydraulic capacities), it correctly predicts the responses of stomatal conductance, assimilation rates, leaf water potentials, and photosynthetic capacities to changing hydroclimatic environments. However, the hydraulic strategies of plants depend critically on their belowground rooting environments, such as soil properties and rooting depth.

Here, we implement the P-hydro model for modelling ecosystem-level fluxes and couple it with a simple model of soil water balance within the rsofun modelling framework. The water-balance model accounts for variations in root-zone water storage capacity of plants, thus allowing us to characterize both above-ground and belowground hydraulic strategies. We investigate (1) the power of P-hydro in simulating gross primary production and evapotranspiration at globally distributed FLUXNET sites under conditions of simultaneous atmospheric and belowground dryness, benchmarked against a non-hydraulically explicit version of the model (P-model), (2) apply a Bayesian data assimilation approach to infer plant and soil hydraulic traits (plant conductivity and vulnerability, root zone water storage capacity, and cost parameters of the optimality model), (3) assess the environmental dependencies of the inferred traits and the generalisability of the model for global simulations.

The P-hydro model, together with the inferred trait relationships, promises a simple yet robust approach to predicting the global environmental dependencies of ecosystem productivity.

How to cite: Joshi, J., Arán Paredes, J., and Stocker, B.: Inferring geographic and climatic variation in plant hydraulic traits from flux data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17872, https://doi.org/10.5194/egusphere-egu24-17872, 2024.

EGU24-18114 | Orals | BG3.38

Vital role of hydraulic capacity uncovered by mechanistic modelling of extreme drought impacts on European forests 

Phillip Papastefanou, Matthias Arend, Martin De Kauwe, Thorsten Grams, Ansgar Kahmen, Anja Rammig, Manon Sabot, and Sönke Zaehle

Climate extremes like drought are threatening forests worldwide. Record breaking forest mortality has been observed in central Europe in the past five years. Meanwhile, more and more experiments are being set up that enable measurements of  the hydraulic states of dying trees under extreme drought stress. These experimental data can be exploited by mechanistic vegetation models, offering  the possibility to disentangle environmental drought stressors, e.g. atmospheric and soil moisture dryness, and their effects on a plant’s hydraulic system, such as stomatal closure and loss of hydraulic conductivity. 

Here, we show how a next generation plant hydraulic modelling is able to accurately reproduce the water potential dynamics of dying trees. We apply this plant hydraulic model to European drought experimental sites, including the canopy crane experiment II in Basel, Switzerland, and the KROOF experiment in Freising, Germany. We find that soil heterogeneity, rooting depth and stem hydraulic capacity are critical in determining whether a tree survives or succumbs to drought. Furthermore, good knowledge of four parameters is crucial to accurately capture the magnitude and temporal development of observed leaf and stem water potential: (1) stem hydraulic capacitance, (2) P50 (the water potential at which 50% of a plant’s hydraulic conductivity is lost), (3) saturated xylem hydraulic conductivity, and (4) the reference leaf water potential associated with full stomatal closure. Finally, when implemented into the terrestrial biosphere model QUINCY, our hydraulic scheme produces a clear mortality signal associated with recent drought events, giving confidence in our capacity to project the impact of future droughts on European forests

How to cite: Papastefanou, P., Arend, M., De Kauwe, M., Grams, T., Kahmen, A., Rammig, A., Sabot, M., and Zaehle, S.: Vital role of hydraulic capacity uncovered by mechanistic modelling of extreme drought impacts on European forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18114, https://doi.org/10.5194/egusphere-egu24-18114, 2024.

EGU24-18268 | ECS | Orals | BG3.38 | Highlight

Root hairs prevent excessive losses in leaf water potential of field grown maize at high atmospheric vapor pressure deficits even in wet soils 

Florian Stoll, Osman Mustafa, Asegidew Akale, Andrea Carminati, Jan Vanderborght, Matthieu Javaux, and Mutez Ahmed

High atmospheric vapor pressure deficits lead to high transpiration demands which can induce plant water stress because of large dissipation of water potential within plant tissues, but also because the transpiration demand exceeds the possible root water uptake rate from the soil. The latter point might be particularly critical in coarse textured soils which display poor soil-root contact and an unsaturated hydraulic conductivity curve steeply decreasing with matric potential. Root hairs can increase the possible root water uptake rate by increasing the root-soil contact and the effective root radius. Thus, we hypothesize that plants with functional root hairs display (1) less negative leaf water potentials at midday at high transpiration rates in comparison to plants without root hairs; and (2) that this effect is more pronounced in coarse textured soils at low soil matric potentials.

To test these hypotheses, we grew two maize (Zea mays) genotypes (wildtype and its root hairless mutant) in two contrasting soil textures (Sand vs Loam). We measured leaf water potential (leaf Psychrometer), transpiration rate (sap flow), atmospheric vapor pressure deficit, soil water potential and soil water content every ten minutes for 30 consecutive days in summer of 2023.

The root hair bearing wildtype consistently maintained a higher transpiration rate at relatively less negative leaf water potentials when the atmospheric vapor pressure deficit was high. This effect was more pronounced in coarse textured soil (sand) even in relatively wet soils (soil matric potentials > -100 kPa).

We concluded that root hairs enabled plants, in relatively wet soils to maintain high transpiration rates without excessive leaf dehydration. This suggests that at high atmospheric vapor pressure deficit, losses in the hydraulic conductivity of the rhizosphere can already limit transpiration even when the soil would be typically considered wet. Our findings highlight the importance of rhizosphere processes and their relevance for plant water use at the field scale.

How to cite: Stoll, F., Mustafa, O., Akale, A., Carminati, A., Vanderborght, J., Javaux, M., and Ahmed, M.: Root hairs prevent excessive losses in leaf water potential of field grown maize at high atmospheric vapor pressure deficits even in wet soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18268, https://doi.org/10.5194/egusphere-egu24-18268, 2024.

EGU24-1901 | ECS | Orals | BG3.39

Establishing the Photochemical Reflectance Index (PRI) as a reliable proxy for Non-Photochemical Quenching (NPQ) 

Lorenz Hänchen, David Martini, Karolina Sakowska, Mirco Migliavacca, Javier Pacheco-Labrador, Gregory Duveiller, Michaela Schwarz, Albin Hammerle, Katharina Scholz, Marta Galvagno, Tommaso Julitta, Felix Spielmann, Shari Van Wittenberghe, and Georg Wohlfahrt

On a global scale, the scientific community is to date unable to close the CO2 budget, with implications for policymakers in regard to limiting global warming to internationally agreed levels. Recently, remote sensing of Solar-Induced Chlorophyll Fluorescence (SIF) has emerged as a promising proxy for Gross Primary Productivity (GPP). The upcoming Fluorescence Explorer (FLEX) mission by the European Space Agency (ESA) is anticipated to offer unprecedented spatio-temporal and spectral resolution of SIF data, raising high expectations towards assessing GPP on a global scale. However, the relationship between SIF and GPP is intricate, varying with environmental conditions due to the influence of a third process — Nonphotochemical Quenching (NPQ). NPQ critically affects this relationship by utilizing the same energy pool. Hence, NPQ is not unfortunately not directly measurable through remote sensing but previous studies have employed the Photochemical Reflectance Index (PRI) as a proxy for NPQ. Yet, a systematic assessment of the PRI-NPQ relationship is still lacking, as previous works were limited to case studies, confined to the studied ecosystem and the environmental conditions during the study period.

In this contribution, our primary aim is to contribute to enhancing SIF as a remotely sensed proxy for GPP. We present the initial findings of our investigation into the robustness of the PRI-NPQ correlation under diverse environmental conditions. To achieve this goal, we leverage a unique dataset that includes joint measurements of hyperspectral reflectance (Data: Fluorescence BoX, JB Hyperspectral Devices GmbH) and active chlorophyll fluorescence (Data: MONI-TORING-PAM Multi-Channel Chlorophyll Fluorometer, Walz) from seven European ecosystems spanning the years 2018 to 2022.

 

How to cite: Hänchen, L., Martini, D., Sakowska, K., Migliavacca, M., Pacheco-Labrador, J., Duveiller, G., Schwarz, M., Hammerle, A., Scholz, K., Galvagno, M., Julitta, T., Spielmann, F., Van Wittenberghe, S., and Wohlfahrt, G.: Establishing the Photochemical Reflectance Index (PRI) as a reliable proxy for Non-Photochemical Quenching (NPQ), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1901, https://doi.org/10.5194/egusphere-egu24-1901, 2024.

EGU24-2379 | Orals | BG3.39

Carbonyl sulphide uptake by a terra firme forest in the central Amazon. 

Sam P. Jones, Ricardo Acosta, Rosaria R. Ferreira, Iván Mauricio Cely Toro, Cléo Quaresma Dias-Junior, Stefan Wolff, Giordane Martins, Jürgen Kesselmeier, and Susan Trumbore

Carbonyl sulphide has potential as a tracer of gross primary productivity. However, its use at the ecosystem scale requires us to understand something about its atmospheric transport and the distribution of sources and sinks within the environment of interest. Despite the importance of understanding the controls on carbon uptake and release by Amazonian forests, very little is known about the carbonyl sulphide cycle of widespread terra firme ecosystems.

 

Here we report on carbonyl sulphide exchange estimated from concentration measurements of carbonyl sulphide at various heights, atmospheric conditions and net carbon dioxide exchange on an 80 m tower, and from soil flux chambers at the Amazon Tall Tower Observatory. The landscape surrounding the measurement site, 150 km north-east of the Brazilian city of Manaus, is typical of the central Amazon consisting of plateaus and steep valleys. Growing on highly weathered and well-drained Ferralsols, these plateaus are covered by old-growth, terra firme forests reaching 30 to 35 m in height. The region experiences relatively stable temperatures throughout the year, but pronounced seasonality in rainfall with a minimum in August and maximum in March.

 

Atmospheric measurements suggest that the forest within the tower footprint is generally a net sink for carbonyl sulphide. However, fires likely represent a regionally significant source of carbonyl sulphide during the dry season. Net uptake of carbonyl sulphide is greater during the day than the night indicating a strong link to light control of stomatal opening. Estimating gross primary productivity from this uptake is complicated by transport dynamics and soil activity. The tall canopy and diurnal variations in atmospheric mixing, with overnight drawn down followed by entrainment of the upper atmosphere after dawn, means storage has a large influence on net exchange at sub-daily timescales. At longer timescales these exchanges appear to cancel out, simplifying the estimation of average uptake. Similarly, uptake of carbonyl sulphide by the soil represents a significant and variable proportion of the estimated net exchange that needs to be considered when estimating the contribution of photosynthesis.

How to cite: Jones, S. P., Acosta, R., Ferreira, R. R., Cely Toro, I. M., Quaresma Dias-Junior, C., Wolff, S., Martins, G., Kesselmeier, J., and Trumbore, S.: Carbonyl sulphide uptake by a terra firme forest in the central Amazon., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2379, https://doi.org/10.5194/egusphere-egu24-2379, 2024.

Much information of photosynthesis and carbon cycling was embedded in the stable carbon isotope, as plants discriminate against heavier carbon isotope. The process of isotope discrimination has been implemented in most terrestrial biosphere models (TBMs), mainly following the standard equation by Farquhar et al. With National Center for Atmospheric Research (NCAR) Community Land Model (CLM5), we found this standard equation cannot reproduce the historical long-term increase of isotope discrimination as deduced from atmospheric 13C/12C measurements. We attributed such a mismatch to the missed representation of photorespiration and mesophyll diffusion. Updating the discrimination equation by leveraging a mechanistic mesophyll diffusion model developed by Sun et al. (2014), we reproduce the trend towards a larger discrimination under higher CO2 levels: globally the trend is 0.013‰ ppm−1, consistent with atmospheric measurements. Mesophyll effects significantly contribute to this global trend, with the largest contribution in natural ecosystems. Moreover, we found that an explicit consideration of mesophyll conductance can lead to a higher response of historical water use efficiency to climate and environmental changes. Our results have implications for advanced modeling of isotopic discrimination and therefore for a better understanding of the coupled carbon-water cycle under changing climate.

 

References:

Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, (1989).

Sun, Y. et al. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl. Acad. Sci. U. S. A. 111, 15774–15779 (2014).

How to cite: Lai, J. and Sun, Y.: Mesophyll largely contributes to the historical increase in isotope discrimination of C3 plants and implications for water use efficiency, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2946, https://doi.org/10.5194/egusphere-egu24-2946, 2024.

EGU24-3833 | Posters on site | BG3.39

A Two-Stream Observation Operator for Solar Induced Fluorescence in Land Surface Models 

Tristan Quaife, Meg Stretton, Natalie Douglas, and Patrick McGuire

Solar Induced Fluorescence (SIF) has significant potential to constrain the carbon cycle in land surface models. This requires either that the target variables in the model are first retrieved from the SIF data (for example, by estimating Gross Primary Productivity, GPP), or that the SIF is directly predicted from the model itself using a so-called observation operator. In the retrieval problem it is difficult to guarantee that assumptions made in the retrieval scheme are consistent with the assumptions in any given land surface model. Observation operators, on the other hand, offer the potential to enforce that consistency, but this comes with additional complexity. Ideally, observation operators should themselves be consistent with the assumptions inside the land surface model. If that is not the case, mismatches between the modelled and observed SIF can arise purely due to the observation operator, potentially resulting in biases. With a perfectly consistent system, we can be confident that any discrepancies are due to the underlying land model itself, and hence the discrepancies with the observed SIF inform us about land surface model.

This presentation describes an observation operator that is physically consistent with the two-stream radiative transfer scheme of Sellers (1985) commonly used in land surface models to represent the interaction of sunlight with vegetation canopies. We describe the derivation of the new observation operator and how it can be used to predict SIF. The scheme is numerically efficient, and can be easily extended to work with vertically inhomogeneous canopies. We show results from the JULES model (the land surface scheme of the UK’s flagship climate model UKESM) for both GPP and SIF at eddy covariance sites.

How to cite: Quaife, T., Stretton, M., Douglas, N., and McGuire, P.: A Two-Stream Observation Operator for Solar Induced Fluorescence in Land Surface Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3833, https://doi.org/10.5194/egusphere-egu24-3833, 2024.

Changes in the interannual variability (IAV) of vegetation greenness and carbon sequestration are key indicators of the stability and climate sensitivities of terrestrial ecosystems. Recent studies have examined the changes in the vegetation IAV using atmospheric CO2 observations and dynamic global vegetation models (DGVMs), however, reported different and even contradictory trends of IAV. Here, we investigate the changes in the IAV of vegetation greenness, quantified as coefficient of variability (CV), over the past few decades based on six long-term and three short-term satellite remote sensing products. Our results suggested that on half of the global vegetated surface, CV trends were uncertain (i.e., inconsistent CV trends when using different satellite remote sensing products). Meanwhile, we found that 22.20% and 28.20% of the global vegetated surface (i.e., mostly in the non-tropical land surface) show significant positive and negative CV trends (p ≤ 0.1), respectively. Regions with higher air temperature and greater aridity tend to have increasing CV trends, whereas greater vegetation greening trend and higher nitrogen deposition lead to smaller CV trends. Our study provides a remote sensing-based examination of the changes in the IAV of global vegetation greenness, and highlights the potential issues in studying the response of terrestrial ecosystems to climate change.

How to cite: Tian, J. and Luo, X.: Uncertain Changes of Vegetation Greenness Interannual Variability on Half of the Global Vegetated Surface, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4210, https://doi.org/10.5194/egusphere-egu24-4210, 2024.

Direct measurement of gross primary production (GPP) beyond a single leaf is a core challenge that prevents accurate quantification of global GPP and its spatiotemporal dynamics. Recent advancements in satellite Solar-Induced chlorophyll Fluorescence (SIF) retrieval offer promising opportunities, but so far incorporating satellite SIF to estimate GPP across scales is based solely on empirical linear scaling, an assumption that does not always hold at short timescales and stress conditions. In this study, we employ a process-based model, based on the mechanistic light reaction (MLR) model, to establish the link between SIF, electron transport rate (ETR), and GPP at the canopy scale using SIF retrievals from TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5p. Our approach is applied across diverse NEON (National Ecological Observatory Network) ecoregions during the growing seasons of 2018-2021. We compare GPP estimates obtained from the conventional linear scaling approach and our mechanistic MLR-based approach with eddy-covariance (EC) flux tower measurements. Additionally, we analyze cross-biome variability in GPP estimates by incorporating ancillary information from hyperspectral reflectance spectra. Our findings highlight the potential of MLR for enabling satellite SIF for global GPP estimation, and the mechanistic advantage of MLR over the widely-accepted linear SIF-GPP scaling.

How to cite: Luo, Z., Sun, Y., and Wen, J.: Estimating Gross Primary Production (GPP) from satellite Solar-Induced chlorophyll Fluorescence (SIF) with a mechanistic model across NEON Ecoregions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4446, https://doi.org/10.5194/egusphere-egu24-4446, 2024.

EGU24-5665 | ECS | Orals | BG3.39

Revisiting vegetation carbon and water flux representation during drought events in the ORCHIDEE land surface model 

Camille Abadie, Fabienne Maignan, Philippe Peylin, Nicolas Vuichard, Nina Raoult, and Vladislav Bastrikov

Climate change is projected to increase the frequency and intensity of droughts, inducing further water stress on vegetation. These water stress conditions impact both vegetation carbon and water exchanges that are regulated through stomatal diffusion. Land surface models (LSMs) have been developed to simulate the amount of carbon taken up by vegetation through photosynthesis (GPP), and the emission of water into the atmosphere through plant transpiration. However, LSMs struggle to accurately simulate vegetation response to drought, which contributes to the strong uncertainty on GPP and plant transpiration estimates and is critical for future projections. Moreover, LSMs represent different vegetation types by grouping plants with similar characteristics in terms of structure, behavior, and climatic conditions, therefore not accounting for possible differences in vegetation response to drought due to the diversity of environmental conditions within the same biome. In the ORCHIDEE LSM, we used in situ GPP and latent heat flux (LE) estimates at more than 40 sites from the FLUXNET Warm Winter 2020 network, which captures the recent drought years over Europe, to evaluate and refine the simulated vegetation response to soil water stress. We performed multisite data assimilation experiments based on the dominant vegetation type at these sites to optimize the parameters involved in vegetation response to soil water stress using the in situ GPP and LE estimates. We found that the optimized values of the coefficient that determines the speed of vegetation response to soil water stress can be defined as a function of the mean annual vapor pressure deficit (VPD). This new function enables to consider the environmental conditions on site through VPD in vegetation response to soil water stress, instead of having a response that only depends on the vegetation type. During a drought event, this soil water stress function induces vegetation growing under low VPD to close its stomata faster than vegetation acclimated to higher VPD conditions. Finally, regional simulations were performed to evaluate the impact of including this dependency on VPD in vegetation response to water stress over the recent European drought years.  

How to cite: Abadie, C., Maignan, F., Peylin, P., Vuichard, N., Raoult, N., and Bastrikov, V.: Revisiting vegetation carbon and water flux representation during drought events in the ORCHIDEE land surface model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5665, https://doi.org/10.5194/egusphere-egu24-5665, 2024.

EGU24-7135 | ECS | Posters on site | BG3.39

Insights to anomalous positive carbonyl sulfide fluxes in a boreal forest by using eddy covariance flux measurements. 

Abin Thomas, Asta Laasonen, Kukka-Maaria Kohonen, Timo Vesala, Toprak Aslan, Pasi Kolari, Kadmiel Maseyk, Roderick Dewar, and Ivan Mammarella

Vegetation is the major sink of carbonyl sulfide (COS), and for this reason, COS is a valuable proxy for assessing gross primary productivity (GPP). In this study, a comprehensive analysis of three years (2020-2022) of eddy-covariance measurements over a boreal forest in Hyytiälä (Finland) has unravelled intriguing patterns in COS fluxes in response to environmental conditions. The measurements were done following a partial harvest of the forest stand, where 40% of the basal area was removed from the footprint area. An anticipated reduction in uptake was observed in the summer of both 2020 and 2022. However, during the summer of 2021, anomalous positive COS fluxes (emission of COS) were consistently observed. The primary mechanism responsible for the removal of COS in leaves is hydrolysis, facilitated by the enzyme carbonic anhydrase (CA), leading to the production of hydrogen sulfide (H2S) and carbon dioxide (CO2). In the case of the Hyytiälä forest, CA-driven hydrolysis of the canopy acted as the dominant sink for COS. A detailed examination of environmental conditions prevailing during this period revealed a confluence of factors contributing to the unusual COS fluxes. Elevated temperatures, higher vapour pressure deficit, and decreased soil water content during the 2021 summer were identified as potential reasons for the anomalous COS flux responses. These conditions could collectively exert a suppressing effect on both stomatal and non-stomatal uptake of COS by the vegetation and soil. The empirical soil model used in the study also points towards increased abiotic production of COS from the soil due to increased soil temperature. However, the environmental conditions alone cannot explain the positive emissions during the daytime. Examining night-time fluxes shows that the canopy still uptakes COS even at a reduced rate. The analyses point towards the photodegradation production of COS from litter from the forest floor, which is overlooked in the empirical soil models and canopy uptake models. The thinning of the forest stand has led to a more open subcanopy, allowing increased sunlight penetration to the forest floor. The pine needles and residuals from the thinning are speculated to be the source of the photodegradation production of COS. Understanding the possible sources of these anomalous COS fluxes is crucial for refining our interpretation of COS as a proxy for GPP and, consequently, enhancing our ability to model and predict ecosystem productivity in a changing climate. In summary, the discovery of anomalous positive COS fluxes in the Hyytiälä boreal forest during the summer of 2021 represents a unique and significant observation, prompting further research into the complex interplay of environmental variables influencing COS fluxes within the boreal forest ecosystem.

How to cite: Thomas, A., Laasonen, A., Kohonen, K.-M., Vesala, T., Aslan, T., Kolari, P., Maseyk, K., Dewar, R., and Mammarella, I.: Insights to anomalous positive carbonyl sulfide fluxes in a boreal forest by using eddy covariance flux measurements., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7135, https://doi.org/10.5194/egusphere-egu24-7135, 2024.

EGU24-7798 | Posters on site | BG3.39

Modeling Climate Regulating Service Provided by Hong Kong Vegetation and Its Decadal Climatic and Environmental Drivers 

Hayden C. H. Lam, Amos P. K. Tai, David H. Y. Yung, and Joshua T. W. Lo

Terrestrial vegetation regulates climate by photosynthetic uptake of CO2. The extensive coverage of vegetation in Hong Kong (more than 70% of land) highlights the potential for terrestrial carbon sink to play a major role in achieving carbon neutrality in such a metropolitan city. To quantify the potential, local measurements and allometric modeling have estimated the aboveground biomass (AGB) on plot scales in Hong Kong. However, it remains a challenge to illustrate the temporal trends and spatial distribution of carbon uptake by vegetation in the city, and to understand what factors have shaped them. Here, we aim to estimate the net primary productivity (NPP) of Hong Kong vegetation, and identify the key drivers for variability of NPP on a city scale. We use the Terrestrial Ecosystem Model in R-Hong Kong (TEMIR-HK), a localized process-based ecosystem model, to evaluate the changes in NPP trends induced by changing CO2 concentration, temperature, ozone concentration, and changing leaf area index (LAI) shaped by these factors as well as land use. Simulation results show an increasing trend of NPP, with an average NPP of 1.53 Tg C y-1, which is less than 10% of the annual total anthropogenic carbon emission from Hong Kong, suggesting a limited but indispensable potential of urban forestry to achieve city-level carbon neutrality. The factorial simulations show that increasing ambient CO2 concentration is the most dominant driver of increasing NPP among all potential drivers. This suggests that the globally well-mixed CO2 concentration is impacting NPP more than the local climate, environmental and land-use changes in Hong Kong.

How to cite: Lam, H. C. H., Tai, A. P. K., Yung, D. H. Y., and Lo, J. T. W.: Modeling Climate Regulating Service Provided by Hong Kong Vegetation and Its Decadal Climatic and Environmental Drivers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7798, https://doi.org/10.5194/egusphere-egu24-7798, 2024.

Carbonyl sulphide (COS) has been used in earlier studies as a proxy for determining photosynthesis. To this end, the concepts of leaf relative uptake (LRU, ratio of COS and CO2 deposition velocities at leaf scale) and ecosystem relative uptake (ERU, ratio of COS and CO2 deposition velocities at ecosystem scale) are often used. We have constructed a new canopy model that simulates LRU and ERU. This model consists of multiple layers, each having its own air temperature, COS, CO2 and H2O mixing ratio. Sunlit and shaded leaves are modelled separately. We coupled this model to the Chemistry-Land Surface Soil Slab (CLASS) model to simulate the atmospheric mixed layer and surface layer above the canopy. An inverse modelling framework is built around these models, allowing for an optimisation of model parameters. In our presentation we will mostly focus on using this framework to analyse the differences in leaf relative uptake in the model, that together influence the overall ERU. We find large differences in LRU between sunlit and shaded leaves, to a large extent caused by differences in stomatal conductance.

How to cite: Bosman, P. and Krol, M.: Disentangling carbonyl sulphide ecosystem relative uptake using (inverse) canopy modelling , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9059, https://doi.org/10.5194/egusphere-egu24-9059, 2024.

EGU24-9637 | Orals | BG3.39

The isotopic composition of atmospheric water vapor during dry season in a central Amazon rainforest: Insights into local moisture recycling 

Shujiro Komiya, Sam P. Jones, Robbert Moonen, Getachew Agmuas Adnew, Santiago Botia, Hella van Asperen, Cléo Quaresma Dias-Júnior, Iván Mauricio Cely Toro, Fumiyoshi Kondo, and Susan Trumbore

The isotopic composition of water vapor (e.g., δ18O, δ2H) can be a powerful tracer to disentangle water vapor transport, mixing, and phase-changes (e.g., evaporation and condensation) that govern processes of the atmospheric hydrological cycle. The development and improvement of commercial laser-based spectrometers has expanded in situ continuous observations of water vapor isotope composition in a variety of sites worldwide. Nevertheless, until recently, no observations exist from the Amazon basin, a region influenced by the largest tropical rain forest that recycles significant fraction of precipitation as evapotranspiration (ET), thereby influencing regional and global atmospheric water cycling. Continuous water vapor isotope observation combined with meteorological and flux tower measurements in the Amazon rainforest are of high importance to better understand how rainforest ET contributes to regional atmospheric moisture cycles.

We report initial observations of water vapor isotope compositions at the Amazon Tall Tower Observatory (ATTO) site, located in an intact upland forest in the central Amazon, during August-September (dry-season) in 2022. A commercial cavity-ring down (CRDS) analyzer (L2140-i model, Picarro, Inc., USA) continuously measured water vapor concentration and isotope composition at four tower heights (79, 38, 24, and 4 m above ground) in and above the canopy (canopy height ~30 m). We assessed δ18O and δ2H relationships (i.e., local meteoric water line, LMWL) of different water sources (e.g., water vapor, soil water, leaf water) and deuterium excess (D-excess; D-excess = δ2H − 8 × δ18O) to trace processes that contribute to atmospheric moisture variations inside and above the canopy. For assessing the contribution of local ET to the total atmospheric moisture (i.e., local moisture recycling), the Keeling plot and intersection point methods were applied to estimate the isotope signatures of ET and background vapor, respectively.  

The LMWL of water vapor at ATTO site was δ2H = 5.2 × δ18O − 12.6, with a considerably lower slope than the Global Meteoric Water Line (δ2H = 8 × δ18O + 10). This indicates that rainforest ET significantly influences local atmospheric moisture signals. D-excess in water vapor generally increased from the early morning towards the afternoon, and reached maximum values between 12 pm and 4 pm, indicating that local processes in evaporation and transpiration contribute to local atmospheric moisture signals during daytime. In addition, the diel D-excess variation showed the positive logarithmic relationship with VPD, which indicates that VPD is the key factor for regulating diel moisture isotope signals. Based on isotope mixing models, the estimated contribution fraction of rainforest ET to the total atmospheric moisture showed maximum values (c.a., 20 % to 60 %) in the afternoon, indicating the significant contribution of rainforest ET to regional atmospheric moisture. 

How to cite: Komiya, S., Jones, S. P., Moonen, R., Adnew, G. A., Botia, S., Asperen, H. V., Dias-Júnior, C. Q., Cely Toro, I. M., Kondo, F., and Trumbore, S.: The isotopic composition of atmospheric water vapor during dry season in a central Amazon rainforest: Insights into local moisture recycling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9637, https://doi.org/10.5194/egusphere-egu24-9637, 2024.

EGU24-10563 | Orals | BG3.39

Higher global gross primary productivity under future climate with more advanced representations of photosynthesis 

Matthias Cuntz, Jürgen Knauer, Benjamin Smith, Josep G. Canadell, Belinda Medlyn, Alison C Bennet, Silvia Caldararu, and Vanessa Haverd

Gross primary productivity (GPP) is the key determinant of land carbon uptake, but its representation in terrestrial biosphere models (TBMs) does not reflect our latest physiological understanding. We implemented three empirically well supported but often omitted mechanisms into the TBM CABLE-POP: photosynthetic temperature acclimation, explicit mesophyll conductance, and photosynthetic optimization through redistribution of leaf nitrogen. We used the RCP8.5 climate scenario to conduct factorial model simulations characterizing the individual and combined effects of the three mechanisms on projections of GPP. Simulated global GPP increased more strongly (up to 20% by 2070–2099) in more comprehensive representations of photosynthesis compared to the model lacking the three mechanisms. The experiments revealed non-additive interactions among the mechanisms as combined effects were stronger than the sum of the individual effects. The modeled responses are explained by changes in the photosynthetic sensitivity to temperature and CO2 caused by the added mechanisms. Our results suggest that current TBMs underestimate GPP responses to future CO2 and climate conditions.

How to cite: Cuntz, M., Knauer, J., Smith, B., Canadell, J. G., Medlyn, B., Bennet, A. C., Caldararu, S., and Haverd, V.: Higher global gross primary productivity under future climate with more advanced representations of photosynthesis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10563, https://doi.org/10.5194/egusphere-egu24-10563, 2024.

EGU24-11205 | ECS | Posters on site | BG3.39

Can long-term tropical land carbon-climate feedback uncertainties be constrained from interannual variability? 

Laibao Liu, Rosie Fisher, Hervé Douville, Ryan Padrón, Alexis Berg, Jiafu Mao, Andrea Alessandri, Hyungjun Kim, and Sonia Seneviratne

Whether tropical land carbon sink will persist in the future to slow climate change remains elusive in Earth System Model (ESM) projections, largely due to carbon-climate feedback uncertainties. Unraveling drivers of interannual variability (IAV) of the land carbon cycle can inform tropical land carbon-climate feedbacks. Here we utilize two generations of factorial ESM experiments to show that the IAV of the tropical land carbon uptake under both present and future climate is consistently dominated by terrestrial water variations in ESMs. The magnitude of this interannual sensitivity of tropical land carbon uptake to water variations (γIAV,W) under future climate shows a large spread across the latest 16 ESMs (2.3 ± 1.5 PgC/yr/Tt H2O). Based on the identified significant emergent relationship between γIAV,Wunder future climate and present climate, the mean and spread of future γIAV,Ware reduced by about 41% and 44%, respectively (1.3 ± 0.8 PgC/yr/Tt H2O), using observations and the emergent constraint methodology. However, the long-term tropical land carbon-climate feedback uncertainties in the latest 16 ESMs can no longer be directly constrained by land carbon cycle IAV compared with previous generations of ESMs, given that additional important processes such as tree mortality are not well represented in IAV but could determine long-term tropical land carbon storage. This result highlights the importance of recommended out-of-sample testing for validating previously diagnosed emergent constraint. In summary, our results suggest the limited implication of IAV for long-term tropical land carbon-climate feedbacks and help isolate remaining uncertainties with respect to the effects of water limitation on tropical land sink in ESMs.

How to cite: Liu, L., Fisher, R., Douville, H., Padrón, R., Berg, A., Mao, J., Alessandri, A., Kim, H., and Seneviratne, S.: Can long-term tropical land carbon-climate feedback uncertainties be constrained from interannual variability?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11205, https://doi.org/10.5194/egusphere-egu24-11205, 2024.

Ecosystem-scale estimates of net photosynthesis may be derived from eddy covariance measurements of net ecosystem exchange through the application of flux-variance similarity theory. Net photosynthesis, which is defined as carboxylation minus photorespiration and leaf respiration, differs from gross primary production by the leaf respiration term, which has been implicated as a potential source of error for traditional flux partitioning approaches. Here, we focus on seasonal dynamics of net photosynthesis and leaf respiration by deriving relevant variables (e.g. magnitude of dark respiration, light-saturated rate of net photosynthesis, sensitivity of leaf respiration to light intensity) through rectangular hyperbolic fits of net photosynthesis to photosynthetically active radiation (PAR) throughout the growing season. We find that the magnitude of dark leaf respiration decreases throughout the growing season, while the sensitivity of leaf respiration to light intensity and light-saturated net photosynthesis remain relatively stable. The level of PAR required for carboxylation minus photorespiration to exceed leaf respiration increases over the course of the growing season. We examine how environmental variables, specifically air temperature and volumetric soil moisture, influence these aspects of net photosynthesis. Estimates of leaf-level water use efficiency, a key parameter in the flux-variance similarity theory approach, are evaluated through comparisons with co-located measurements of solar induced fluorescence and sap flux.

How to cite: Scanlon, T. and Tatham, E.: Growing season dynamics of net photosynthesis and leaf respiration for a mixed hardwood forest as inferred from flux-variance similarity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13648, https://doi.org/10.5194/egusphere-egu24-13648, 2024.

EGU24-13720 | ECS | Posters on site | BG3.39

COS, CO2 and H2O eddy covariance flux measurements over Agave sisalana  

Kukka-Maaria Kohonen, Mikko Skogberg, Angelika Kübert, Matti Räsänen, Lutz Merbold, Nina Buchmann, Ivan Mammarella, Petri Pellikka, and Timo Vesala

Carbonyl sulfide (COS) has gained attention as a proxy for stomatal conductance and photosynthesis. It is taken up by the plants through their stomata, similar to carbon dioxide (CO2), and destroyed at the chloroplast surface by the enzyme carbonic anhydrase in a hydrolysis reaction. The main limiting factor of COS uptake in the leaves has been found to be the stomatal control. Thus, COS flux measurements have been linked to stomata-controlled carbon and water fluxes. However, existing studies, both in the field and in the laboratory, have predominantly focused on C3 and C4 plants, leaving a gap in understanding COS exchange in crassulacean acid metabolism (CAM) plants.

CAM plants, such as sisal (Agave sisalana), aim to minimize water loss by closing stomata during the day and opening them at night. During nighttime, they take up CO2 but also other gases, including COS, from the atmosphere. CO2 is stored as malic acid until light becomes available during daytime and it can be utilized in photosynthesis. This allows the plants to avoid water loss in harsh environments and reach high water-use efficiencies.

In this study, we measured COS fluxes with the eddy covariance (EC) technique over a sisal plantation for the first time. The measurement period covers three weeks during the rainy season in Kenya in November and December 2019. We show that COS and CO2 fluxes followed a similar diurnal pattern, with uptake observed during nighttime, while water (H2O) fluxes showed an opposite cycle with highest evaporation observed during daytime. We also show that the soil COS fluxes, measured with soil chambers, were positive under radiation (i.e., indicating COS emission) and negative (i.e., indicating COS uptake) in the dark, and soil COS emissions increased with increasing soil temperature. Our aim is to quantify the canopy conductance of Agave sisalana using COS together with H2O and CO2 flux measurements at the ecosystem scale. Our study provides valuable insights into the intricate interplay of COS with water and carbon fluxes in ecosystems dominated by CAM plants. 

How to cite: Kohonen, K.-M., Skogberg, M., Kübert, A., Räsänen, M., Merbold, L., Buchmann, N., Mammarella, I., Pellikka, P., and Vesala, T.: COS, CO2 and H2O eddy covariance flux measurements over Agave sisalana , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13720, https://doi.org/10.5194/egusphere-egu24-13720, 2024.

EGU24-14620 | Orals | BG3.39

Locating the shift in the plant fluorescence role under stress conditions 

Amnon Cochavi, Yaara Sadeh, and Or Emma Shemer

Sun-induced fluorescence (SIF), which serves as a proxy of plant and ecosystem net carbon assimilation (or gross primary production, GPP, at the ecosystem level), has been observed to exhibit sustainability under optimal conditions. The recent evidence demonstrated a break of this relation under stress conditions, and a change in the fluorescence role for excessive energy dissipation.

In this study, our aim was to identify the physiological alterations responsible for the transition. To achieve this, we utilize both natural and induced stress conditions to investigate the changing role of fluorescence. Initially, we examine the impact of sustained drought on the correlation between plant leaf-level gas exchange and Pulse Amplitude Modulation (PAM) parameters, in conjunction with plant Sun-Induced Fluorescence (SIF) and other spectral indices. In the subsequent phase, we use chemical inhibitors to assess the reaction of both susceptible and tolerant plants.

The findings indicated that Sun-Induced Fluorescence (SIF) primarily interacts with the Non-Photochemical Quenching (NPQ) pathway. During the initial phases of rehydration, the SIF signal decreases correspondingly with the decline in photosynthetic activity. Subsequently, as NPQ levels reach saturation, the intensity of the SIF signal begins to rise. The use of photosystem inhibitors reinforces our observations from the drought experiment. The sensitive accession displays a rapid surge in the fluorescence signal, coinciding with a complete cessation of carbon assimilation. Conversely, in the tolerant accession, a simultaneous decrease in the fluorescence signal occurs alongside a partial decline in the rate of carbon assimilation.

The results underscore the dual roles of plant fluorescence within the plant. Distinguishing between these two phases can assist in monitoring both plant and ecosystem responses under stress conditions.

How to cite: Cochavi, A., Sadeh, Y., and Shemer, O. E.: Locating the shift in the plant fluorescence role under stress conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14620, https://doi.org/10.5194/egusphere-egu24-14620, 2024.

EGU24-20509 | ECS | Orals | BG3.39

Diurnal variations of solar-induced fluorescence and photosynthesis in a heterogeneous peatland ecosystem under heatwave and non-heatwave conditions 

Abdallah Yussuf Ali Abdelmajeed, Michal Antala, Mar Albert-Saiz, Marcin Stróżecki, Anshu Rastogi, Patryk Poczta, Tommaso Julitta, Andreas Burkart, Dirk Schuettemeyer, Bogdan Chojnicki, and Radosław Juszczak

Peatlands are pivotal carbon sinks, storing approximately one-third of the terrestrial carbon. Nevertheless, peatland vegetation is vulnerable to environmental stressors, particularly heatwaves. Delving into the diurnal course of photosynthesis and its relationship with solar-induced fluorescence (SIF) unravels valuable insights into peatland vegetation's physiological responses to environmental stress.

The study examines the correlation between SIF and gross primary production (GPP), examining the photosynthetic vigour of peatland vegetation across heatwave and non-heatwave periods in the Rzecin peatland, Poland, from June to October 2019. CO2 fluxes were measured by manual chambers, and GPP was calculated from consecutive net ecosystem exchange and ecosystem respiration measurements. Each campaign's GPP data was modelled with a Michaelis-Menten rectangular hyperbola model. SIF in the O2-A band was retrieved by the improved Fraunhofer Line Depth (iFLD) method from the hyperspectral data measured by the FloX system. The SIF-GPP relationship was further examined based on dates and periods (before noon, noon, and afternoon), with the heatwave and non-heatwave scenarios.

Results showed the differences in correlations dependent on date, period, and heatwave scenarios. Generally, correlations increased under cloudy or partially cloudy conditions, where low light intensity and temperature alleviated plant stress, increasing photosynthetic efficiency. The SIF and GPP exhibit positive correlations in the morning and afternoon, but the relationship is broken during midday, underscoring the impact of factors such as intense light and high temperature on the peatland vegetation physiology.

Diurnal dynamics reveal a robust linear relationship between GPP and SIF O2-A across non-heatwave days, losing coherence during heatwaves. A notable midday depression during heatwaves, characterized by a dip in SIF-GPP correlation at noon, points to changes in energy distribution in photosynthetic apparatus. The findings stress the significance of considering diurnal variations of SIF and GPP under heatwave conditions when assessing photosynthesis-climate interactions.

The findings showed that SIF is a good indicator of changes in plant physiology during midday depression caused by the high intensity of solar radiation and high temperature, mainly during the heatwave periods.

 

The Research was founded by National Science Centre, Poland: 2020/39/O/ST10/00775.

How to cite: Abdelmajeed, A. Y. A., Antala, M., Albert-Saiz, M., Stróżecki, M., Rastogi, A., Poczta, P., Julitta, T., Burkart, A., Schuettemeyer, D., Chojnicki, B., and Juszczak, R.: Diurnal variations of solar-induced fluorescence and photosynthesis in a heterogeneous peatland ecosystem under heatwave and non-heatwave conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20509, https://doi.org/10.5194/egusphere-egu24-20509, 2024.

Drought is a complex and pervasive natural disaster that frequently exerts adverse effects on
vegetation dynamics. Recent advancements in satellite-based solar-induced chlorophyll
fluorescence (SIF) remote sensing offer unprecedented opportunities to monitor and understand
vegetation responses to drought on a large scale. In this study, we utilized high-resolution
TROPOspheric Monitoring Instrument (TROPOMI) SIF data, Bidirectional Reflectance Distribution
Function and Albedo (BRDF/Albedo) Model Parameters dataset (MODIS MCD43C1), MODIS land
cover data, and meteorological information to investigate the physiological responses of crops in
the Huang-Huai-Hai Plain of China during the drought period of 2019. Our results demonstrate
that NIRv, SIF, and BRDF-adjusted SIF/PAR (SIFn) exhibited significant dynamic changes during the
drought period, outperforming traditional vegetation indices such as NDVI in sensitivity.
Furthermore, a high correlation was observed between anomalies in precipitation and SIFn,
elucidating the substantial impact of moisture availability on crop physiology. These findings
provide essential insights into our understanding of plant responses to drought conditions at
large spatial scales and underscore the unique value of high-resolution remote sensing SIF
observations in tracking the physiological responses of vegetation to water stress.

How to cite: Zeng, Y. and Gao, Y.: Vegetation drought monitoring in the Huang-Huai-Hai Plain of China using solar-inducedfluorescence and near-infrared reflectance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21011, https://doi.org/10.5194/egusphere-egu24-21011, 2024.

EGU24-647 | ECS | Orals | HS10.9

Connecting the Carbon and Water Cycles through Vegetation    

Akash Verma and Subimal Ghosh

Socioeconomic growth in India has resulted in a substantial increase in carbon dioxide (CO2) emissions. Despite this, India emerges as the second-largest contributor to global greening, as revealed by remote sensing datasets. These conflicting factors pose a unique challenge in understanding the variability of atmospheric CO2 and its implications for global warming. The present study aims to address this research gap by presenting the first analysis of climate controls on carbon flux variability in India. Our key objectives are (1) to identify the climate drivers influencing the variability of vegetation productivity in agriculture-dominated India and (2) to understand the implications of increased plant growth on water availability by analyzing the CO2 fertilization effect. Unlike previous studies, we have not used simplistic estimates like partial correlation for causality; instead, we employed a recent tool, PCMCI, designed explicitly for detecting causality. In contrast to global studies, we find no causal connection between terrestrial water storage and vegetation productivity. Our results suggest that precipitation plays a significant role in the Indian region rather than deep groundwater, due to its immediate impact on shallow-rooted vegetation. Our findings highlight the significance of land use, land cover, and distinct irrigation practices— aspects often overlooked in current land surface models. Furthermore, we are investigating the response of soil moisture to CO2 fertilization via two pathways: increased leaf area index (LAI) and enhanced water use efficiency (WUE) using state-of-the-art CMIP6 simulations. We are evaluating whether WUE can ameliorate plant water stress, especially when the LAI can counteract its impact by increasing transpiration. The present study adopts a holistic approach to demonstrate the critical interaction and feedback between climate controls, vegetation, and CO2 fertilization, thereby significantly improving our understanding of land-atmosphere interaction.

Keywords: Climate controls, CO2 fertilization, Soil moisture, Vegetation productivity, Causal discovery

How to cite: Verma, A. and Ghosh, S.: Connecting the Carbon and Water Cycles through Vegetation   , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-647, https://doi.org/10.5194/egusphere-egu24-647, 2024.

EGU24-2261 | Orals | HS10.9

Enhanced effects of declining precipitation on the water yield and ecosystem sustainability  

Dan Yakir, Eyal Rotenberg, Fyodor Tatarinov, and Jonathan Muller

Climate change is predicted to change precipitation (P) and evapotranspiration (ET) over most land areas, imposing substantial pressure on water supply in some parts, while increasing flooding in others. Our global dataset shows that ET from ecosystems displays a conservative ‘saturation effect’ at ~460±190 mm across climates with P range of ~4000 mm. This implies that changes in P are preferentially reflected in the residual ecosystem water yield (WY=P-ET). Consequently, changes in WY are greatly enhanced compared with those in P both in observations and in model-based future projections. In drying regions, ecosystems will reach the unsustainable state of WY<0 faster than expected based on predicted changes in P alone, imposing land cover changes, and impacting water availability for ecological and societal needs.

How to cite: Yakir, D., Rotenberg, E., Tatarinov, F., and Muller, J.: Enhanced effects of declining precipitation on the water yield and ecosystem sustainability , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2261, https://doi.org/10.5194/egusphere-egu24-2261, 2024.

EGU24-2670 | Orals | HS10.9

Towards a coupled crop-climate seasonal prediction system for dry-land wheat grain yield in Israel 

Ehud Strobach, Roi Ben-David, Avimanyu ray, and Yotam Menachem

Wheat production accounts for the largest portion of agricultural land in Israel, and it is the 2nd most productive crop worldwide after Maize. Spring wheat which is mostly grown under rain-fed conditions, is highly susceptible to changes in climate conditions. As a result, wheat grain yields (GY) are suffering from high climate-dependent year-to-year variability, particularly under changes in precipitation patterns. This large variability stresses the need for accurate seasonal predictions of wheat yield, which may assist farmers in better agro-system planning, making the right management decisions (crop rotation, sowing dates and application of irrigation), and the right varietal choice. As a widespread crop, wheat also has the potential to impact regional climate conditions through an interactive feedback loop by exchanging heat and water with the land surface and the atmosphere above. Yet, current seasonal crop yield prediction systems do not account for climate-crop feedback, and their prediction skill is lacking.

The current study hypothesizes that using a high-resolution regional climate model (WRF) coupled with a crop model (Noah-MP-Crop) may increase seasonal crop yield prediction skill, providing a practical tool for farmers to increase their revenues and increase food security. To confirm this hypothesis, we have adapted the Noah-MP-Crop model for the spring wheat cultivars grown in Israel and conducted coupled simulations using the updated observed crop model parameters. In this presentation, the in-situ calibration process of the crop model to the spring wheat cultivars grown in Israel will be presented together with several simulated results from the calibrated coupled crop-climate model. A focus will be put on the exchange of heat, water, and carbon between the land surface and the lower atmosphere.

How to cite: Strobach, E., Ben-David, R., ray, A., and Menachem, Y.: Towards a coupled crop-climate seasonal prediction system for dry-land wheat grain yield in Israel, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2670, https://doi.org/10.5194/egusphere-egu24-2670, 2024.

The soil freeze-thaw process has undergone significant changes on the Tibetan Plateau (TP) in the context of global change, resulting in the changes of soil physical and chemical properties, thereby affecting the vegetation phenology and photosynthesis through affecting the utilization capacity of CO2 and light by vegetation. However, little is known about how soil temperature (ST) and soil moisture (SM) affect the gross primary productivity (GPP) on the TP at different seasons and elevations. In this study, the spatiotemporal variation patterns of GPP, ST, and SM were analyzed based on the Community Land Model version 5.0 (CLM5.0) simulations in order to illustrate the impacts of ST and SM in surface (0–10 cm) and root zone soil (0–100 cm) on GPP between 1979 and 2020. The results showed that the CLM5.0-based GPP and ST were in good agreement with in situ observations. ST, SM and GPP increased at the rates of 0.04 ℃ a−1, 2.4 × 10−4 mm3 mm−3 a−1, and 5.36 g C m−2 a−2, respectively. SM dominated the variations of GPP in winter (64.3%), while ST almost was the dominant factor in other periods, especially spring (99.9%) and autumn (94.7%). The explanatory power of ST and SM for GPP increased with elevation, especially for ST. The relative contributions of ST and SM to GPP at different time scales in root zone soil were similar to those in surface soil. This study provided a new understanding of how soil freeze-thaw affected GPP changes on the TP in the context of the intensification of warming and humidification.

How to cite: Jia, B. and Peng, Q.: Increasing gross primary productivity under soil warming and wettingon the Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3306, https://doi.org/10.5194/egusphere-egu24-3306, 2024.

EGU24-3593 | Posters on site | HS10.9

Recent intensification of the negative physiological effect of CO2 on terrestrial evaporation 

Haiyang Qian, Weiguang Wang, Zefeng Chen, Akash Koppa, Guoshuai Liu, and Diego Miralles

The net physiological effect of rising atmospheric carbon dioxide (aCO2) on terrestrial evaporation (ET) is highly uncertain. While increased CO2 fertilization elevates ET through more biomass production, the reduction in stomatal conductance (gs) that it downregulates ET. Here, using satellite-based estimates of ET and dynamic vegetation models, we investigate the physiological influence of aCO2 on ET, and isolate the respective contribution of biomass increase and gs reduction. Our results indicate that the CO2 fertilization had a net negative effect of –4.4±0.3×10–2 mm ppm–1 on ET over 1982–2018. The negative physiological effect tends to intensify with increasing aCO2, particularly in warm and humid forests. The high sensitivity of ET to gs may attenuate the expected water cycle acceleration over land, although the future evolution of these two competing physiological processes remains uncertain.

How to cite: Qian, H., Wang, W., Chen, Z., Koppa, A., Liu, G., and Miralles, D.: Recent intensification of the negative physiological effect of CO2 on terrestrial evaporation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3593, https://doi.org/10.5194/egusphere-egu24-3593, 2024.

EGU24-5887 | ECS | Posters on site | HS10.9

Water use efficiency and carbon use efficiency response differently to greening on the Loess Plateau in China 

Yue Wang, Guangyao Gao, Yanzhang Huang, and Zhuangzhuang Wang

Water use efficiency (WUE) and carbon use efficiency (CUE) in dryland ecosystems are highly sensitive to complex climate and CO2 changes, which may cause imbalance between carbon and water cycles in terrestrial ecosystems. However, the mechanism of the systematic effects of multiple factors on WUE and CUE remains unclear. Here, we examined the trends in WUE and CUE in China’s Loess Plateau during 2001-2020 and assessed the underlying drivers using PML_V2 products and satellite-based data by employing the spatial random forest (SRF) method. Our analysis identified a significantly increasing trend in WUE and a slightly downward trend in CUE. In space, NDVI was the most important factor affecting the spatial variation of WUE and CUE, but WUE had a significant positive response to NDVI, while CUE had a significant negative response to NDVI. Precipitation and CO2 concentration were the most important environmental factors driving spatial variability in WUE and CUE, respectively. However, vapor pressure deficit was the most important factor driving CUE annual variation controlling most areas of the greening region. Our research revealed that despite the improvement in water utilization, the greening of vegetation did not enhance carbon sequestration potential in the Loess Plateau. Furthermore, we demonstrated that vegetation was the most important factor causing WUE spatiotemporal variation and CUE spatial variation, while atmospheric drought inhibiting vegetation growth was the most important factor causing CUE temporal variation, reflecting the interactivity and complexity of the driving factors behind the spatial and temporal variability of WUE and CUE. Our study provides new insights into the driving characteristics of WUE and CUE spatiotemporal variability and enhances the knowledge of how the carbon-water coupling process induced by vegetation greening responds to environmental changes in arid and semi-arid regions in the backdrop of climate change, contributing to ecological restoration practices and sustainable management in the dryland.

How to cite: Wang, Y., Gao, G., Huang, Y., and Wang, Z.: Water use efficiency and carbon use efficiency response differently to greening on the Loess Plateau in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5887, https://doi.org/10.5194/egusphere-egu24-5887, 2024.

Ecological Restoration (ER) measures can achieve considerable carbon benefits and reduce sediment loads, concurrently resulting in unintended hydrological consequences. The Middle Yellow River Basin (MYRB), with intensive large-scale ER implementation during the past decades, serves as an excellent case to investigate the concomitant water-carbon-sediment synergies and trade-offs. This study combined a vegetation dynamics simulation scheme and a distributed hydrological model with explicit ER representation to investigate the water-sediment-carbon changes in response to ER in the MYRB. According to the results, ER promoted synergies between carbon sequestration and sediment control and led to improved water use efficiency (WUE). The actual Leaf Area Index and Gross Primary Productivity (GPP) showed improvements in region-averaged values by +0.56 m2 m-2 yr-1 (+7.4%) and +52 gC m-2 yr-1 (+10.9%) compared to those under natural conditions. In the Toudaoguai-Tongguan section which suffered the most serious soil erosion, ER decreased the sediment loads by 11.3×108 ton yr-1 (71.1% of the natural level). Furthermore, WUE changes indicated higher GPP gain per unit evapotranspiration. Meanwhile, trade-offs were also found when taking account of the water yield reduction. During 1982-2019, ER led to significant increases in actual evapotranspiration (+8.3 mm yr-1; +2.2%) and decreases in runoff (-7.6 mm yr-1; -12.7%). Two indicators evaluating the cost-effectiveness of ER, i.e., carbon sequestration and sediment settlement at the cost of per unit runoff decline, remained positive with the average values of 6.12 kgC m-3H2O yr-1 and 0.22 ton m-3H2O yr-1 during 2000-2019, respectively. Nevertheless, both indicators showed downward trends, indicating decreasing marginal benefits brought by ER measures which could have approached the optimal scale in the MYRB.

How to cite: Yan, Z., Wang, T., and Yang, D.: Water-carbon-sediment synergies and trade-offs: multi-faceted impacts of large-scale ecological restoration in the Middle Yellow River Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6713, https://doi.org/10.5194/egusphere-egu24-6713, 2024.

EGU24-7198 | ECS | Posters on site | HS10.9

Investigating evapotranspiration calculations within conceptual hydrological models: an intercomparison among models.  

Gabrielle Burns, Keirnan Fowler, Clare Stephens, and Murray Peel

Hydrological models, ranging from conceptual frameworks to complex physical representations, play a pivotal role in diverse applications including climate change projections and characterising floods and droughts. One crucial aspect of these models is the incorporation of vegetation dynamics, often achieved through links to evapotranspiration and interception. Our study will delve into the critical role of evapotranspiration in the terrestrial water cycle, and how this intricate relationship is simplified across various hydrological models.

Despite the versatility of hydrological models, a common limitation is the static representation of vegetation over time. This limitation becomes particularly significant under climate change, where the consequences of altered vegetation behaviour might not be accurately reflected in the model results. Our research will address this gap by exploring numerous evapotranspiration equations utilised by conceptual rainfall-runoff models, by employing a novel rainfall-runoff model comparison toolbox (MARRMoT), and integrating flux tower measurements into the calibration processes.

By examining how different evapotranspiration equations are utilised across the models and integrating flux tower measurements into the hydrological modelling processes, we seek to improve the models' adaptability to changing environmental conditions. We will do this by interchanging the numerous evapotranspiration equations, whilst keeping all other aspects of the hydrological model constant to explore potential benefits and differences among methods. Further, we will include in-situ measurements by calibrating the model outputted actual-evapotranspiration to flux tower evapotranspiration data, as well as the traditionally calibrated streamflow data.

This research contributes to advancing the accuracy of hydrological predictions and improving the reliability of models in forecasting catchment responses to future climatic shifts.

How to cite: Burns, G., Fowler, K., Stephens, C., and Peel, M.: Investigating evapotranspiration calculations within conceptual hydrological models: an intercomparison among models. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7198, https://doi.org/10.5194/egusphere-egu24-7198, 2024.

EGU24-9401 | Orals | HS10.9

Quantifying cross-scale hydrodynamic effects of root ecophysiology 

Martin Bouda, Jan Vanderborght, Valentin Couvreur, Václav Šípek, and Mathieu Javaux

Mechanistic representation of soil-root hydrodynamics is necessary to make robust predictions of canopy fluxes (transpiration, photosynthesis) under water limitation. Soil water limitation can arise at a range of characteristic scales down to millimetres but its effects can be felt across entire landscapes. This mismatch between the scales of cause and effect makes representing water limitation a central challenge in Earth System Models (ESM) and a key source of uncertainty in the terrestrial carbon cycle. We aim to unify the description of soil-root water flows across scales to bridge this gap and to demonstrate cross-scale effects of root ecophysiological mechanisms on the water and carbon cycles.

We developed a new model formulation from analytical solutions to the differential equations for flows on root networks. By formulating the integrals in terms of mean water potentials over arbitrary root segments, we obtain a linear system directly without introducing a numerical approximation. Partial Gaussian elimination then yields a system of exact equations for mean water potentials in the absorbing roots at any chosen scale.

The upscaled equations reproduce exact solutions for water potentials and flows on a single plant at any scale under set boundary conditions. Fitted to explicit stand-scale simulations, the model shows non-increasing error with the addition of further plants to the explicit simulation set. Proof-of-concept results show improved agreement with field data during a seasonal drought over previous models. The computational cost of these calculations is lower or equal to methods present in ESM and other upscaling methods. Code for producing the upscaled equations for any root hydraulic architecture is available online for beta testing.

We will use this model formulation to connect observations of plant hydrodynamic functioning across scales. We are currently collecting data on root growth, turnover, and soil-plant hydrodynamics at six instrumented forest sites. We will supplement these observations with lab-based measurements at root and plant scale. By using the model to bridge across the scales of observation, we expect to quantify the cross-scale effects of individual mechanisms, such as the effect of root phenology on the seasonal variation in land-atmosphere hydrodynamics. This will be an important step towards reducing uncertainties in the plant-mediated processes that link the terrestrial carbon and water cycles.

How to cite: Bouda, M., Vanderborght, J., Couvreur, V., Šípek, V., and Javaux, M.: Quantifying cross-scale hydrodynamic effects of root ecophysiology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9401, https://doi.org/10.5194/egusphere-egu24-9401, 2024.

EGU24-10072 | ECS | Posters on site | HS10.9

Coupled simulation of phreatic groundwater and surface fluxes from the terrestrial biosphere in Belgium 

Jan De Pue, Simon Munier, José Miguel Barrios, Alirio Arboleda, Pierre Baguis, Rafiq Hamdi, and Françoise Meulenberghs

Phreatic groundwater hydrology has a well-documented influence on the land water/energy/carbon cycles. To capture the resilience of the biosphere to dry spells in land surface models, it is particularly crucial to incorporate groundwater dynamics. With the ISBA-CTRIP land surface system, it is possible to perform a coupled simulation of the land surface fluxes and groundwater hydrology. Here, we evaluate this model configuration over Belgium, and focus on the quality of the simulated groundwater dynamics, soil moisture and resulting surface fluxes. A network of piezometer and eddy covariance towers is used to validate the model outcomes. Furthermore, the sensitivity of the model parametrization is analyzed (considering different pedotransfer functions), and the impact of groundwater coupling on the surface fluxes is quantified.

How to cite: De Pue, J., Munier, S., Barrios, J. M., Arboleda, A., Baguis, P., Hamdi, R., and Meulenberghs, F.: Coupled simulation of phreatic groundwater and surface fluxes from the terrestrial biosphere in Belgium, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10072, https://doi.org/10.5194/egusphere-egu24-10072, 2024.

EGU24-14210 | ECS | Posters on site | HS10.9

Combining mechanistic modelling and observations to characterize carbon and water fluxes in mainland Southeast Asia 

Jianning Ren, Zhaoyang Luo, Stefano Galelli, and Simone Fatichi

Tropical forests account for approximately one-fourth of the global terrestrial carbon sink, playing an important role in the Earth’s carbon cycle. Importantly, mainland Southeast Asia has the densest vegetation surface but its ecohydrology is historically understudied due to the paucity of field observations and modelling studies. Leveraging on existing flux tower data, remote sensing products, and the mechanistic ecohydrological model T&C, we provide an enhanced understanding of carbon and water exchanges in mainland Southeast Asia. The T&C model is tested to reproduce various ecosystem types of Southeast Asia, including tropical evergreen forests, subtropical deciduous forests, savannas, rubber plantations, and rice fields. The flux tower data including gross primary productivity (GPP) and evapotranspiration (ET) along with remote sensing data of leaf area index and other vegetation indexes, allow us to better refine and constrain model simulations.  With the integration of data and model, we provide a comprehensive picture of spatiotemporal patterns and key drivers of carbon and water fluxes in mainland Southeast Asia. Our findings highlight a strong latitudinal gradient in carbon fluxes and ET associated with seasonality of rainfall as well as an important role of vapour pressure deficit (VPD) and soil moisture content with different responses in wet and dry years. Direct effects of temperature and precipitation are relatively smaller when compared to VPD and soil moisture in driving changes of carbon and water fluxes. These findings, combined with our model framework, pave the road to more accurate predictions of ecohydrological variables in the relatively understudied region of mainland Southeast Asia.

How to cite: Ren, J., Luo, Z., Galelli, S., and Fatichi, S.: Combining mechanistic modelling and observations to characterize carbon and water fluxes in mainland Southeast Asia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14210, https://doi.org/10.5194/egusphere-egu24-14210, 2024.

EGU24-16184 | ECS | Orals | HS10.9

Modelling Water and Biodiversity: Coupling a dynamic eco-evolution trait-based vegetation model with a community water model  

Elisa Stefaniak, Jens de Bruijn, Mikhail Smilovic, Silvia Artuso, Juliette Martin, Tania Maxwell, Jaideep Joshi, and Florian Hofhansl

The recently developed Plant-FATE (Plant Functional Acclimation and Trait Evolution) model is a trait-size-structured eco-evolutionary population model derived from the ‘Plant’ model. It includes a McKendrick-von Foerster partial differential equation (PDE) describing how the size distribution of each species evolves through time. The trait structure allows for modelling functional diversity and adaptations, whereas size structure allows for modelling competition for light. Plant-FATE also includes a new P-hydro model for optimal photosynthesis, the ‘perfect plasticity approximation’ for modelling optimal crown placement, and an extended version of the T-model for biomass allocation. Forced with climatic variables and soil-water availability, Plant-FATE can predict emergent species compositions, size-distributions, and ecosystem services such as leaf area, productivity, evapotranspiration, living biomass, and seed output. 

Plant-FATE currently predicts vegetation properties and associated ecosystem functions of areas under forest cover. To analyse the -water-biodiversity nexus, it is necessary to cover additional aspects of areas under different land-use, such as croplands, plantations, and urban areas. To that end, we have coupled PlantFATE with a Community Water Model (CWatM) that captures ground water discharge and simulates basin-wide water circulation. CWatM is an open-source model to examine how future water demand will evolve in response to socioeconomic change and how water availability will change in response to climate.  

As a case study, we apply this coupled model to the Bhima Basin to examine the feedback between forest management and land-use. This coupling will enable us to better represent nexus issues, such as the feedback between biodiversity and ecosystem functioning that affect vegetation carbon storage and water provisioning under future land-use and projected climate change scenarios.

How to cite: Stefaniak, E., de Bruijn, J., Smilovic, M., Artuso, S., Martin, J., Maxwell, T., Joshi, J., and Hofhansl, F.: Modelling Water and Biodiversity: Coupling a dynamic eco-evolution trait-based vegetation model with a community water model , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16184, https://doi.org/10.5194/egusphere-egu24-16184, 2024.

EGU24-16625 | Posters on site | HS10.9

Detecting forest drought stress from above and from below 

Stan Schymanski, Martin Schlerf, Richard Keim, and Jean François Iffly

Connecting environmental conditions with plant growth and stress is an important part of ecosystem management in the context of a rapidly changing climate. Our understanding of how varying growing conditions (e.g., soil water availability, meteorological conditions) translate into plant stress and recovery continues to be thwarted by technical limitations in the monitoring of environmental conditions at the appropriate spatio-temporal scale and signs of stress and recovery at the plant and ecosystem scale.

One of the most limiting factors to plant growth is water availability and an important stressor is drought. During drought, physiological changes induce a reduction in photosynthesis and thus plant growth. However, intensity and duration of water stress conditions determine the plant’s physiological response. Under mild water stress, plant regulation of water loss and uptake still allows the plant to maintain its water status with little change in photosynthetic efficiency. However, severe water stress leads to effects ranging from inhibition of photosynthesis and growth to xylem embolism, leaf wilting and loss of key pigments and thus irreversible damage to the photosynthetic and water transport machinery.

Several in situ measurements and remote sensing technologies have been developed to quantify plant stress and ecophysiological response to drought, each with their own strengths and limitations. For example, dendrometers can measure very small changes in stem diameter and thus record daily growth rates and water status variations , while sap flux measurements help quantifying the amount of transpired water. While these techniques are useful for quantifying individual tree responses to stress in terms of mass fluxes and plant water status, they are difficult to apply to whole forests or agricultural fields. Quantifying radiation budgets is another approach for measuring plant stress and response to droughts. Thermal infrared (TIR) and hyperspectral (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) approaches (besides sun-induced fluorescence) are widely used remote sensing techniques for the detection of plant water stress. An important advantage of remote sensing is that it can be applied to a broader spatial scale. However, the spatial resolution is often coarse and the interpretation in relation to in-situ processes can be complicated by phenological dynamics.

Here we present results from a European beech stand in Luxembourg, where we analysed continuous in situ measurements of dendrometer, sap flux, TIR canopy temperature, meteorological variables and soil moisture. We compare water stress indices derived from sap flux and dendrometer data with a TIR-based crop water stress index (CWSI) recently developed for crops (Ekinzog et al. 2022). Results are put into context with a leaf and canopy energy balance model and implications of drought stress for short and long-term carbon and water fluxes are discussed.

Literature:

Ekinzog, E. K., Schlerf, M., Kraft, M., Werner, F., Riedel, A., Rock, G., and Mallick, K.: Revisiting crop water stress index based on potato field experiments in Northern Germany, Agricultural Water Management, 269, 107664, https://doi.org/10.1016/j.agwat.2022.107664, 2022.

 

How to cite: Schymanski, S., Schlerf, M., Keim, R., and Iffly, J. F.: Detecting forest drought stress from above and from below, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16625, https://doi.org/10.5194/egusphere-egu24-16625, 2024.

EGU24-18435 | ECS | Posters on site | HS10.9

Using optimality principles to couple terrestrial carbon and water cycles in hydrological models 

Rodolfo Nóbrega, Rodrigo Miranda, David Sandoval, Shen Tan, and Iain Colin Prentice

Hydrology has been guided by establishing empirical relationships between the movement of water through landscapes and the application of the conservation of mass law in catchments. This has resulted in models with complex calibration frameworks that often overlook the physical and biochemical water-related processes linking plants to hydrological cycles. Studies have revealed that some of the empirical relationships in catchments might also reflect a potential ecosystem's coevolution with climate, driving catchments to optimise their supply and demand limits. This agrees with the eco-evolutionary optimality principles used in vegetation modelling that are based on the hypothesis that canopy conductance acclimates to environmental variations by balancing the costs of carbon assimilation and maintenance of transpiration rates. Here, we developed meaningful interfaces between simple models and approaches based on the use of optimality principles in vegetation modelling and hydrology. Our work is based on the application of the P-model to estimate to quantify gross primary productivity and transpiration and the use of a mass-balance approach to quantify the root zone storage. These integrations not only provide a more nuanced understanding of hydrological processes but also pave the way for more accurate and physically-informed models in hydrology. Our findings underscore the potential of using eco-evolutionary principles as a unifying framework in hydrological research, offering new insights for understanding and predicting water movement in catchments under varying climatic and ecological conditions.

How to cite: Nóbrega, R., Miranda, R., Sandoval, D., Tan, S., and Prentice, I. C.: Using optimality principles to couple terrestrial carbon and water cycles in hydrological models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18435, https://doi.org/10.5194/egusphere-egu24-18435, 2024.

EGU24-19078 | Orals | HS10.9

Carbon Sequestration and Water Use Efficiency on almond orchards. Towards a remote sensing-based approach to monitor GPP 

Clara Gabaldón-Leal, Álvaro Sánchez-Virosta, Carolina Doña, José González-Piqueras, Juan Manuel Sánchez, and Ramón López-Urrea

Climate change projections indicate a significant increase in greenhouse gas (GHG) emissions, leading to elevated temperatures, extreme weather events, and water scarcity, particularly in regions like southern Europe. Agriculture, forestry, and other land use activities contribute to 22% of these emissions, but they also offer the potential to act as carbon sinks, supporting the transition to a climate-neutral economy as outlined in the Paris Agreement. The concept of carbon offset involves compensating for emissions by reducing, avoiding, or sequestering an equivalent amount of CO2. Practices such as carbon credits could provide new economic incentives through participation in the voluntary carbon market.

Hence, it is crucial to develop reliable methods to quantify carbon dynamics in terrestrial ecosystems, focusing on the relationship between carbon energy parameters; Net Ecosystem Exchange (NEE), Ecosystem Respiration, and Gross Primary Productivity (GPP). In Spain, the rise in irrigated almond orchards, particularly in the La Mancha region, highlights the need to understand ecosystem Water Use Efficiency (WUE) as a crucial parameter for sustainable crop management. The study employs Eddy Covariance (EC) flux towers to measure NEE, ET, and GPP, providing valuable insights into WUE and contributing to carbon cycle assessments and climate change mitigation strategies.

This study spanned six almond growing seasons (2017-2022) in two different drip-irrigated almond orchards locations in Albacete (SE Spain). These orchards, meeting minimum fetch requirements, exhibited a notable carbon-fixing capacity, comparable to other natural and agroecosystems. Seasonal variability and environmental influences were evident throughout the six-year study. In this study, we also modelled WUE as a function of remote sensing vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and meteorological data.

Seasonal variability, age and density of almond orchards significantly influence on the observed GPP and NEE. Almond orchards captured more CO2 than that released between April and October. The maximum monthly GPP values observed by EC was 263.7 g C m-2. Besides, the combination NDVI and ET proved effective in estimating GPP, with a regression coefficient (R2) of 0.78. Modelled WUE, incorporating 'NDVI, potential evapotranspiration (ETo), and air temperature (Tair),' strikes an optimal balance between explanatory capacity and simplicity. While showing promise with determination coefficients of 0.88 and 0.86, caution is advised due to the limited sample size, necessitating future further validation with larger datasets. Nevertheless, this approach could be a valuable tool for stakeholders addressing efficient water use challenges in agriculture. This study highlights the importance of quantifying carbon uptake and ecosystem water use efficiency by almond orchards as a strategy for mitigating climate change.

How to cite: Gabaldón-Leal, C., Sánchez-Virosta, Á., Doña, C., González-Piqueras, J., Sánchez, J. M., and López-Urrea, R.: Carbon Sequestration and Water Use Efficiency on almond orchards. Towards a remote sensing-based approach to monitor GPP, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19078, https://doi.org/10.5194/egusphere-egu24-19078, 2024.

EGU24-19929 | Orals | HS10.9

Coupled water-carbon modelling at data-limited sites: a new approach to explore current and future agroforestry scenarios in Scotland 

Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Stevenson, Alessandro Gimona, Iris Aalto, Steven Hancock, and Josie Geris

Agroforestry has been suggested as a promising Nature-Based Solution (NBS) due to its potential benefits including soil water regulation and carbon storage, both of which are expected to become increasingly more important under current climate projection scenarios. But it is unclear to what degree these benefits: (i) are likely to be realised individually; and (ii) may interact/counteract with one another. While common in the tropics, agroforestry in the UK and other temperate areas is still limited. Especially given the lack of data, predicting adaptability and optimising environmental benefits of agroforestry systems in temperate regions requires a parsimonious and robust coupled water-carbon modelling approach. Soil carbon models typically tend to use simplistic soil moisture accounting (e.g., rainfall minus PET) and could yield considerably different predictions under more realistic soil moisture representations. However, while large-scale surface and above surface satellite datasets are now readily available, below-ground soil moisture datasets are either not available, not as accurate, or not on the same scale. This is particularly an issue in systems involving trees because they impact soils in general, but soil moisture in particular, at depths much greater than those covered by global satellites. Here, we present a new 1D ecohydrological model that encompasses the main soil-tree-atmospheric interactions while only requiring rainfall, potential evapotranspiration and surface soil moisture information for its calibration, making the model well-suited to be applied in conjunction with limited available datasets (e.g., those from satellites). We first demonstrate the ecohydrological model’s performance in profile soil moisture estimation using only surface information in a data-rich site in Scotland. We then couple this new model with the widely used RothC carbon model for an agroforestry site nearby. Our results show that CO2 emission estimates by RothC change considerably when a more realistic soil moisture accounting is incorporated. Finally, we explore these effects under different agroforestry and future (50-year) climate projection scenarios to inform appropriate agroforestry designs.

How to cite: Goudarzi, S., Soulsby, C., Smith, J., Stevenson, J., Gimona, A., Aalto, I., Hancock, S., and Geris, J.: Coupled water-carbon modelling at data-limited sites: a new approach to explore current and future agroforestry scenarios in Scotland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19929, https://doi.org/10.5194/egusphere-egu24-19929, 2024.

EGU24-20457 | Posters on site | HS10.9

Can time series of plant water potential constrain carbon cycle dynamics using the CARDAMOM model-data fusion framework? 

David Milodowski, Mathew Williams, Luke Smallman, and Susan Steele-Dunne

Vegetation water content varies in response to the shifting balance between transpiration loss and water supply through the soil--plant--atmosphere continuum. These variations are coupled to carbon dynamics by stomatal regulation of gas exchange, linking transpiration and photosynthesis, and through rootzone soil moisture, determined in part by the allocation and turnover of carbon to roots. Microwave sensors have been demonstrated to be sensitive to variations in vegetation water content and related measures of plant hydraulic status, such as plant water potential (PWP). We use synthetic experiments representative of a European deciduous forest to explore whether time series observations of PWP can constrain an intermediate complexity terrestrial ecosystem model (DALEC) with fully coupled carbon and water balances using a Bayesian model-data fusion framework (CARDAMOM). To generate a synthetic truth, we calibrated DALEC using detailed site-specific inventory data from the Hainich ICOS site (DE-Hai), spanning 2006-2011, from which we generated a synthetic time series of average daily mean PWP. The Hainich forest is a temperate forest dominated by beech and established on clay-rich soil. We used the calibrated model as the basis for a series of synthetic data assimilation experiments under conditions of reduced data availability to represent information typically available from satellites and/or global products (e.g. Leaf Area Index, aboveground biomass, soil characteristics) to assess the potential to constrain C cycle dynamics using information on time varying PWP. We compared the diagnostics to a baseline experiment with no assimilated PWP information. Assimilation of PWP reduced the bias in estimates of GPP and ET relative to the synthetic “truth”, with a small reduction in the width of the 90% confidence range, compared to the baseline experiment. PWP observations provided more notable constraints on model parameters that were connected to plant hydraulics and water supply, including root dynamics. The emergent constraint on root dynamics is significant, because below-ground processes are inherently challenging to observe remotely. Assimilating PWP also constrained within-ensemble covariance between certain parameter pairings, and between fluxes, particularly pairings linked to the water balance, and between the water balance and productivity, highlighting the potential for enhanced constraint through the addition of complementary information. Once the signal noise exceeded 0.20 MPa, there was very limited information transfer into either the model parameters retrieved during the inversion, or the resultant fluxes. Our synthetic experiments demonstrate the potential for satellite estimates of PWP (e.g. through microwave VOD) to provide constraints on carbon-water coupling, that these constraints extend to both fast processes (GPP, ET), and slower processes (root dynamics), and that such observations would be highly complementary to C-cycle information from other EO data streams.

How to cite: Milodowski, D., Williams, M., Smallman, L., and Steele-Dunne, S.: Can time series of plant water potential constrain carbon cycle dynamics using the CARDAMOM model-data fusion framework?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20457, https://doi.org/10.5194/egusphere-egu24-20457, 2024.

EGU24-419 | ECS | Posters on site | HS2.1.12

Exploring the landscape heterogeneity and the hydrological diversity in three contrasted observatories of the French critical zone research infrastructure OZCAR 

Julien Ackerer, Sylvain Kuppel, Isabelle Braud, Sylvain Pasquet, Ophélie Fovet, Anne Probst, Marie Claire Pierret, Laurent Ruiz, Tiphaine Tallec, Nolwen Lesparre, Sylvain Weill, Christophe Flechard, Jean Luc Probst, Jean Marçais, Agnes Riviere, Florence Habets, Sandrine Anquetin, and Jerome Gaillardet

The French OZCAR critical zone network offers the opportunity to conduct multi-site studies and to explore the critical zone functioning under contrasted climate, geology, vegetation and land use. In this study, an integrated modeling of the water cycle is performed with the ecohydrological model EcH2O-iso in three long-term observatories: (1) the Naizin watershed characterized by an oceanic climate, a metamorphic bedrock and an intensive agriculture (north-west of France, AgrHyS observatory); (2) the Aurade watershed, a watershed with a warmer semi-continental oceanic climate, a sedimentary geological substratum and a crop cover with a wheat-sunflower rotation (south-west of France, Aurade observatory) and; (3) the Strengbach watershed characterized by a mountain climate, a granitic bedrock, and a beech-spruce forest cover (north-east of France, OHGE observatory).

Modeling robustness is evaluated by taking advantage of the large database for critical zone sciences including stream flow, water level in piezometers, and evapotranspiration fluxes measured from climatological stations and flux-towers located in the watersheds. Our comparative study brings these general outcomes: (1) the long term CZ evolution controlling the regolith thickness strongly impacts the total water storage in watersheds; (2) the Quaternary geomorphological evolution influences the current hydrological partitioning and the separation of hydrologically active and inactive water storage; (3) Both internal watershed characteristics and external forcings, such as current atmospheric forcing and recent land use need to be considered to infer stream persistence and to understand hydrological diversity; and (4) the observed hydrological diversity cannot be fully understood without considering a continuum of time scales in CZ evolution.

 

Overall, this work illustrates the strength of critical zone networks, allowing a new level of multi-site and comparative studies that are crossing several observatories and encompassing a wide diversity of geology and climate.

 

How to cite: Ackerer, J., Kuppel, S., Braud, I., Pasquet, S., Fovet, O., Probst, A., Pierret, M. C., Ruiz, L., Tallec, T., Lesparre, N., Weill, S., Flechard, C., Probst, J. L., Marçais, J., Riviere, A., Habets, F., Anquetin, S., and Gaillardet, J.: Exploring the landscape heterogeneity and the hydrological diversity in three contrasted observatories of the French critical zone research infrastructure OZCAR, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-419, https://doi.org/10.5194/egusphere-egu24-419, 2024.

EGU24-2143 | Posters on site | HS2.1.12

Time matters: photosynthetic vs. weathering-induced C drawdown and the role of dust inputs along a one-million-year soil weathering gradient on the Galápagos Islands 

Franz Zehetner, Martin H. Gerzabek, J. Gregory Shellnutt, Pei-Hao Chen, I Nyoman Candra, Kuo-Fang Huang, and Der-Chuen Lee

The Galápagos archipelago, a chain of islands formed by hotspot volcanism on the Nazca tectonic plate, exhibits a pronounced rock age gradient with distance from the volcanic hotspot from west to east. Here, we investigate chemical weathering along a soil chronosequence (1.5 to 1070 ka) under humid conditions. Our results show considerable loss of base cations already in the early to intermediate phases of weathering (e.g. 95% of Na and 78% of Mg lost from the topsoil after 26 ka) and almost complete loss from the entire profile in soils older than 800 ka. Depletion of Si was less pronounced, with topsoil losses of 24% and 63-68% after 26 ka and >800 ka, respectively. Total weathering flux and associated CO2 consumption rates estimated from profile-scale element losses in this study exceeded catchment-scale estimates reported for other volcanic islands or global averages during the early weathering phase, but were much lower in the intermediate and late phases. Nevertheless, total C drawdown was dominated by soil organic C sequestration (70-90% share) rather than inorganic, weathering-induced CO2 consumption during early pedogenesis (≤4.3 ka), and the relative importance switched in the intermediate and late phases (90-95% share of weathering-induced C drawdown at ≥166 ka). Dust deposition derived from a nearby ocean sediment core was <20% of total basalt mass loss at the young and intermediate-aged sites, but reached 40-60% at the older sites (>800 ka). Our results suggest that (1) young volcanic surfaces are very efficient (inorganic and organic) C sinks, (2) the development of thick soil covers at advanced pedogenic stages effectively shields the underlying rocks from further weathering, and (3) dust inputs become an increasingly important biogeochemical factor in such highly weathered environments.

How to cite: Zehetner, F., Gerzabek, M. H., Shellnutt, J. G., Chen, P.-H., Candra, I. N., Huang, K.-F., and Lee, D.-C.: Time matters: photosynthetic vs. weathering-induced C drawdown and the role of dust inputs along a one-million-year soil weathering gradient on the Galápagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2143, https://doi.org/10.5194/egusphere-egu24-2143, 2024.

EGU24-4999 | Posters on site | HS2.1.12 | Highlight

Lessons learned from 15 years of TERENO: the integrated TERrestrial ENvironmental Observatories in Germany 

Steffen Zacharias, Theresa Blume, Heye Bogena, Ralf Kiese, Erik Borg, Peter Dietrich, Susanne Liebner, Hans Peter Schmid, Martin Schrön, and Harry Vereecken

The need to develop and provide integrated observation systems to better understand and manage global and regional environmental change is one of the major challenges facing Earth system science today. In 2008, the German Helmholtz Association took up this challenge and launched the German research infrastructure TERrestrial ENvironmental Observatories (TERENO). The aim of TERENO is to establish and to maintain a network of observatories as a basis for an interdisciplinary and long-term research programme to investigate the effects of global environmental change on terrestrial ecosystems and their socio-economic consequences. State-of-the-art methods from the field of environmental monitoring, geophysics, and remote sensing are used to record and analyze states and fluxes in different environmental compartments from groundwater through the vadose zone, surface water, and biosphere, up to the lower atmosphere. To date, four observatories are part of the network, and over the past 15 years we have gained collective experience in running a long-term observing network, thereby overcoming unexpected operational and institutional challenges, exceeding expectations and facilitating new research. Today, the TERENO network is a key pillar for environmental modelling and prediction in Germany, an information hub for regional stakeholders, a nucleus for international collaboration, an important anchor for large-scale experiments, and a trigger for methodological innovation and technological progress. We will present the main lessons learned from this 15-year endeavour, and illustrate the need to continue long-term integrated environmental monitoring programmes in the future.

How to cite: Zacharias, S., Blume, T., Bogena, H., Kiese, R., Borg, E., Dietrich, P., Liebner, S., Schmid, H. P., Schrön, M., and Vereecken, H.: Lessons learned from 15 years of TERENO: the integrated TERrestrial ENvironmental Observatories in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4999, https://doi.org/10.5194/egusphere-egu24-4999, 2024.

EGU24-7396 | Posters on site | HS2.1.12

Developing a coupled hydrological model for UK chalk catchments 

Mostaquimur Rahman, Ross Woods, Francesca Pianosi, Fai Fung, and Rafael Rosolem

Chalk forms one of the most important aquifers in the UK. Extending over large parts in the south-west, chalk aquifers account for more than half of the groundwater used for drinking in England and Wales. Groundwater held in these aquifers supports flows in chalk rivers. Hence, chalk aquifers play an important role in sustaining the riverine ecosystem. It is, therefore, important to assess and manage freshwater resources in these catchments. Here we develop and evaluate a distributed numerical model for simulating coupled subsurface and land surface hydrological processes including soil moisture variability, flow, and groundwater dynamics in chalk catchments. The parsimony and computational efficiency of this model make it possible to perform numerous simulations within a reasonable time. This allows for sensitivity analysis, calibration, and multiple scenario analysis that are useful in management decision making.

How to cite: Rahman, M., Woods, R., Pianosi, F., Fung, F., and Rosolem, R.: Developing a coupled hydrological model for UK chalk catchments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7396, https://doi.org/10.5194/egusphere-egu24-7396, 2024.

EGU24-9338 | ECS | Posters on site | HS2.1.12

The importance of in-situ soil moisture observations to evaluate the main drivers of event runoff characteristics in a small-scale catchment 

Adriane Hövel, Christine Stumpp, Heye Bogena, Andreas Lücke, and Michael Stockinger

A catchment’s runoff response to precipitation largely depends on the antecedent soil moisture in the catchment, but also on hydro-meteorological conditions in terms of, e.g., evapotranspiration. Studies investigating the effects of hydro-meteorological conditions on runoff event characteristics at the small catchment scale with daily temporal resolution mostly used surrogate measures for soil moisture, e.g., derived from hydrological models or using the antecedent precipitation index (API). Here, we applied a time-series based pattern search to 11 years of daily in-situ measured soil moisture in three depths (5, 20, 50 cm) at 33 locations in the Rollesbroich catchment (40 ha) in Germany to identify key variables influencing runoff event characteristics under similar wetness patterns. After identifying wetness patterns, we split the corresponding runoff responses into similar and dissimilar ones by means of goodness-of-fit criteria and analyzed their respective hydro-meteorological variables and event runoff coefficients (ERC), i.e., the proportion of rainfall that transforms into runoff during an event. Results showed that for similar soil moisture patterns, mean potential evapotranspiration, and antecedent soil moisture in all three depths had a smaller standard deviation for similar runoff responses than for dissimilar. This indicates a larger influence on the runoff response compared to rainfall-derived variables such as total event rainfall, maximum event rainfall intensity, or API. Furthermore, during runoff events under similar wetness conditions, the Spearman rank correlation coefficient (ρ) indicated a low average correlation between ERC and API (ρ=0.17). In terms of antecedent soil moisture conditions, the highest correlation between ERC and antecedent soil moisture was observed in the topsoil at 5 cm depth (ρ=0.43), while at 20 cm (ρ=0.16) and 50 cm (ρ=0.30) depths, the correlations were comparatively lower. Our study indicates that using the API as a substitute for antecedent wetness conditions may not be able to comprehensively reflect the relation between the runoff response and antecedent soil moisture conditions in the topsoil in the given catchment. Consequently, the results show that topsoil moisture measurements are more suitable than the surrogate API for assessing the impact of hydro-meteorological variables on daily runoff characteristics.

How to cite: Hövel, A., Stumpp, C., Bogena, H., Lücke, A., and Stockinger, M.: The importance of in-situ soil moisture observations to evaluate the main drivers of event runoff characteristics in a small-scale catchment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9338, https://doi.org/10.5194/egusphere-egu24-9338, 2024.

EGU24-9375 | ECS | Posters on site | HS2.1.12

Link between groundwater storage and landscape changes in mountainous areas: the Kahule Khola watershed (Nepal) 

Kapiolani Teagai, John Armitage, Léo Agélas, Christoff Andermann, and Niels Hovius

In many watersheds of various sizes, the role played by groundwater to sustain river flow is still misunderstood. This is the case in mountainous areas where geological features as fractures, altered or unaltered bedrocks and steep slopes notably play an important role for storing groundwater into the subsurface. The groundwater support to low flows was considered for a long time as a minor contribution, due to the steep slopes in those areas. But in Nepal, it is estimated that 2/3 of the volume of rivers comes from the exfiltration of groundwater through resurgences. Though several attempts were made with numerical modelling based on data monitoring and field surveys to quantify river-groundwater exchanged fluxes, some ambiguities remain. Especially regarding the impact of landscape change in a mountainous topography. The aim of this work is to characterize the subsurface infiltration, recharge, and storage mechanisms of a mountainous hydrogeological system in the Himalayas using field investigations and numerical modelling. In the Kahule Khola watershed (Nepal), a steep catchment of 33 km² whose altitudes range between 1000 and 3500 masl, various field experiments were made to identify groundwater pathways into the altered subsurface and to catch the river/groundwater interactions: seismic and electric surveys (ERT), infiltration tests, physical and isotopic measurements of springs/streams and the water tracking on the surface with loggers installed along gullies in the overall watershed. The region is submitted to intense rainfall as monsoon, intercalated by dry periods in which the river flow is still sustained. Moreover, by closing ancient fractures and opening new ones, earthquakes can deviate springs and change the surface water/groundwater pathways. This contributes to reshaping the landscape. However, the spatial and temporal contribution of groundwater to maintain a baseflow in the river is not quantified yet, in space and time. The ERT data from a time-lapse realized before and after monsoon show a deep alteration zone with a shallow humid layer of 10 m thick at least all year long under the slopes. Areas of low resistivity reveal infiltration zones and preferential flow paths. These areas are recharged in the wet season and drained in the dry season. At the surface, we estimate an average hydraulic conductivity at saturation of 3,5.10-5 m.s-1 in 150 cm depth which suggest an infiltration rate higher than the average rainfall rate (~3000 mm.year-1). In order to quantify the groundwater storage into the subsurface, a numerical groundwater model in 2D has been developed (Python) and is able to simulate and quantify the water storage dynamics of a spatial and temporal pre-defined domain. The data measured on the field will be used to define the initial conditions of future scenarios.

How to cite: Teagai, K., Armitage, J., Agélas, L., Andermann, C., and Hovius, N.: Link between groundwater storage and landscape changes in mountainous areas: the Kahule Khola watershed (Nepal), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9375, https://doi.org/10.5194/egusphere-egu24-9375, 2024.

EGU24-13095 | Posters on site | HS2.1.12

Hydrological, biogeochemical, and ecological linkages at the land-sea margin: Insights from a coastal critical zone network 

Holly Michael, Dannielle Pratt, Yu-Ping Chin, Sergio Fagherazzi, Keryn Gedan, Matthew Kirwan, Angelia Seyfferth, Lee Slater, Stephanie Stotts, and Katherine Tully

Ghost forests and abandoned farms are stark indicators of ecological change along world coastlines, caused by sea level rise (SLR). These changes adversely affect terrestrial ecosystems and economies, but expanding coastal marshes resulting from SLR also provide crucial ecosystem services such as carbon sequestration and mediate material fluxes to the ocean. A US-NSF Critical Zone Network project was designed to understand the hydrological, ecological, geomorphological, and biogeochemical processes that are altering the functioning of the marsh-upland transition in the coastal critical zone. We have instrumented six sites in the mid-Atlantic region of the US, along the coastlines of the Atlantic Ocean, Delaware Bay, and Chesapeake Bay where marshes are rapidly encroaching into forests and farmland. Field observations, laboratory experiments, and modeling are revealing the drivers and impacts of coastal change, as well as feedbacks among competing processes that accelerate or reduce rates and magnitude of change. We discuss examples of processes and feedbacks and highlight the importance of interdisciplinary exploration and synthesis in advancing process understanding at the land-sea transition.

How to cite: Michael, H., Pratt, D., Chin, Y.-P., Fagherazzi, S., Gedan, K., Kirwan, M., Seyfferth, A., Slater, L., Stotts, S., and Tully, K.: Hydrological, biogeochemical, and ecological linkages at the land-sea margin: Insights from a coastal critical zone network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13095, https://doi.org/10.5194/egusphere-egu24-13095, 2024.

EGU24-13395 | Posters on site | HS2.1.12

Exploring Earth's Critical Zone Through the U.S. Critical Zone Collaborative Network 

Elizabeth W. Boyer, Bhavna Arora, Emma Aronson, Holly Barnard, Steven Holbrook, Jeffery S. Horsburgh, Lixin Jin, Praveen Kumar, Holly Michael, Jeff Munroe, Julia Perdrial, Claire Welty, and Jordan Read

The Critical Zone Collaborative Network (CZ Net) is a national research initiative in the United States supporting investigations of the Earth's critical zone (CZ) -- the vital near-surface environment extending from the top of the vegetation canopy to the weathered bedrock beneath. CZ Net fosters collaboration, data sharing, and interdisciplinary research to understand complex landscapes. The network comprises nine thematic clusters covering diverse geological, climatic, and land use settings. The thematic clusters explore many areas, including bedrock geology's effects on landscapes and ecosystems, ecosystem responses to climate and land-use disturbances, processes occurring between land and sea affected by sea-level rise, land-water interactions in agricultural regions, water and carbon cycles in arid regions, the impact of mineral dust transported in the atmosphere on ecosystems, water storage's influence on landscape and ecosystem processes, relationships between landscapes and microbial communities, and ecosystem processes in cities. A coordinating hub provides cross-cluster support. In the presentation, we introduce CZ Net and the focal research areas of each thematic cluster. We consider synthesis work addressing environmental challenges faced by the CZ, which is under increasing pressure to meet societal needs while safeguarding the environment for future generations. Further, we discuss opportunities for engagement with the network, reflecting CZ Net's dedication to advancing knowledge and addressing critical environmental issues through collaborative efforts. International coordination through developing a network of networks can foster collaborative research that transcends national boundaries, allowing scientists to combine expertise, data, and resources for a deeper understanding of CZ processes. Such collaboration is imperative for addressing pressing global environmental challenges.

How to cite: Boyer, E. W., Arora, B., Aronson, E., Barnard, H., Holbrook, S., Horsburgh, J. S., Jin, L., Kumar, P., Michael, H., Munroe, J., Perdrial, J., Welty, C., and Read, J.: Exploring Earth's Critical Zone Through the U.S. Critical Zone Collaborative Network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13395, https://doi.org/10.5194/egusphere-egu24-13395, 2024.

EGU24-15452 | ECS | Posters on site | HS2.1.12

Exploring fluvial morphodynamics through scales  

Boris Gailleton, Philippe Steer, Philippe Davy, and Wolfgang Schwanghart

Surface processes control mass transfer efficiency on Earth, responding to tectonic and climatic forcings. These forcings impact landscape dynamics across a wide range of temporal scales, from individual events (e.g., storms) to geological time spans (e.g., Cenozoic climate cooling). Bridging these temporal scales poses a significant challenge for Landscape Evolution Models (LEMs). While LEMs are conventionally employed to study the effects of climate or tectonics on landscape dynamics over geological time, numerical methods simulating short-term processes such as landslides, floods, erosion, and sediment transport struggle to be projected beyond a few hundred years. 

In this contribution, we address this challenge by leveraging a recent model development—graphflood—that enables the computation of hydro-stationary water surfaces and discharge using a simplified shallow water approximation. This new model shows an order-of-magnitude improvement in speed over its predecessors, achieved through the efficiency of algorithms applied to directed acyclic graphs. Through testing induced subgraph dynamic traversals for initial calculations of a stationary state and employing GPU techniques to maintain the state to slower erosion and deposition processes, we demonstrate the potential for an additional order-of-magnitude reduction in computation time for fluvial dynamics. We also investigate how the computation of landslide runout using a shallow water approximation with a friction coefficient modified to account for velocity-weakening can be introduced within the same numerical framework. 

First, we explore various sets of fluvial erosion and deposition laws (e.g., stream power, Meyer Peter Muller) to determine the minimal representation needed for fluvial morphodynamics and projecting them across scales at the lowest computational cost. We then perturb the system with landslides processes and observe the controls on its resilience to external forcings. Lateral dynamics (e.g., lateral erosion, deposition, interaction with valley walls) and the model's ability to capture different river states (e.g., high flow vs low flow, flood) emerge as crucial elements in understanding the complexity of river responses to climato-tectonic perturbations. 

How to cite: Gailleton, B., Steer, P., Davy, P., and Schwanghart, W.: Exploring fluvial morphodynamics through scales , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15452, https://doi.org/10.5194/egusphere-egu24-15452, 2024.

EGU24-15453 | Posters on site | HS2.1.12

High Mountain Plateau Margin Critical Zone Observatory, Kaligandaki River Nepal 

Christoff Andermann, Kristen Cook, Basanta Raj Adhikari, Niels Hovius, and Rajaram Prajapati

Mountains are hotspots for earth surface processes, with very fast erosion rates, mass movements, catastrophic flooding and enhanced geochemical weathering rates. These landscapes respond quickly to external forcing by tectonics and/or climate. As a consequence, the hazard potential in mountains is very high, and mountains produce a wide range of large catastrophes which often have wide-reaching impacts on infrastructure and human lives. Furthermore, mountains can be considered as the water towers of the world, as they are very effective at harvesting water from the atmosphere, storing it, and redistributing it to the adjacent lowlands. The key role of mountain regions can be extended endlessly to other disciplines such as ecology, climatology, social sciences and so forth. Yet, despite their importance, high mountains remain inaccessible and notoriously understudied. High elevation terrains are only lightly covered by monitoring systems, with elevations >2500 m asl. widely underrepresented in global monitoring networks (Shahgedanova et al., 2021). The Himalayan mountains are particularly poorly covered by coordinated monitoring observatories.

In this contribution we present the set up and overview results of the ~last 10 years of integrated critical zone monitoring in the Kaligandaki Catchment in the central Himalayas in Nepal.

Motivated by fundamental research questions on coupled surface process and the high mountain water cycle in the Himalayan mountain range, we began observation in the Kaligandaki Catchment with two major stations for climatological and hydrological monitoring that have operated continuously over the past 10 years. At each location trained personal conducted manual river water sampling for river water geochemistry and suspended sediment monitoring as well as water discharge and bulk meteorological parameters. These observations were complemented by targeted short-term deployments and field sampling campaigns to cover the full spatial extent as well as the seasonal variability. Research question range from organic carbon export, climate and erosion feedback as well as water pathways in high mountains to large mass-movements and intramountain sediment storage and feedbacks with landscape evolution.

Our findings from the past 10 years of monitoring motivate the development of a more substantial observatory in the Kaligandaki catchment, which is particularly suited as a critical zone observatory in the Himalayas. The Kaligandaki is a trans-Himalayan river that connects the Tibetan Plateau through the Himalaya to the low elevation foreland. The river crosses distinct climatological, ecological, tectonic, and geomorphic zones, including the arid high elevation plateau, the rapidly uplifting high Himalaya and monsoon precipitation maxima, and the middle hills. The river corridor is highly prone to flood and landslide hazards, and is experience increasing development and human impact, particularly road construction and hydropower. In addition, the river basin is highly sensitive to changing precipitation patterns, which have brought anomalous rainfall and flooding in recent years, and to changing melting patterns, which affect water resources. Together with local partners and the international research community we are proposing this unique catchment as potential integrated mountain critical zone observatory in order to close the monitoring gap in the highest mountain range on Earth.

Literature:

Shahgedanova, M., et al. 2021, https://doi.org/10.1659/MRD-JOURNAL-D-20-00054.1

How to cite: Andermann, C., Cook, K., Adhikari, B. R., Hovius, N., and Prajapati, R.: High Mountain Plateau Margin Critical Zone Observatory, Kaligandaki River Nepal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15453, https://doi.org/10.5194/egusphere-egu24-15453, 2024.

EGU24-15523 | Posters on site | HS2.1.12

The impact of groundwater dynamics on landsliding and hillslope morphology: insights from typhoon Morakot and landscape evolution modelling 

Philippe Steer, Lucas Pelascini, Laurent Longuevergne, and Min-Hui Lo

Landslides represent a pervasive natural hazard, exerting a significant influence on hillslope morphology in steep regions. Intense rainfall events are well-established as primary triggers for landslides, particularly those characterized by high rainfall intensity, intermediate to long durations, and substantial cumulative precipitation during and before the event. While the evolving roles of soil saturation and mechanical properties are well-identified in shallow landslide occurrences, the influence of groundwater dynamics on the triggering of deep-seated or bedrock landslides remains less understood. Despite this knowledge gap, deep-seated landslides play a dominant role in the volume budget of landslide catalogs and serve as the primary geomorphological process shaping hillslope evolution in steep regions. In this study, we explore the impact of groundwater dynamics on landslide triggering. Our investigation focuses initially on landslides triggered during Typhoon Morakot, examining their relationship with water table fluctuations derived from the HydroModPy 3D hydrogeological model, forced by water recharge data obtained from the Community Land Model CLM 4.0. Analyzing several contrasting catchments, we demonstrate a strong correlation between the locations and depth of deep-seated landslides and the instability predicted by a simple landslide model that integrates pore pressure and water table depth. Notably, these predictions are valid within specific ranges of hydrogeological (i.e., aquifer thickness, porosity, and conductivity) and mechanical (i.e., cohesion and friction angle) parameters, providing valuable insights into the hydrogeological and mechanical properties of the studied catchments. In an exploratory study, we then shift our focus to the longer-term geomorphological impact of rainfall-triggered landslides on hillslope evolution and morphology. Using a coupled 2D model of water table evolution and landsliding, we investigate topographic changes at the hillslope scale, under different scenarios. Our investigation considers the influence of seasonal recharge, intense rainfall events, and hillslope hydrological convergence or divergence perpendicular to the hillslope orientation on resulting hillslope morphology and dynamics. Overall, our results particularly highlight the role of groundwater dynamics on hillslope finite shape.

How to cite: Steer, P., Pelascini, L., Longuevergne, L., and Lo, M.-H.: The impact of groundwater dynamics on landsliding and hillslope morphology: insights from typhoon Morakot and landscape evolution modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15523, https://doi.org/10.5194/egusphere-egu24-15523, 2024.

EGU24-17282 | ECS | Posters on site | HS2.1.12

Assessing the impact of stress–dependent hydraulic properties on hillslope-scale groundwater flow and transport 

Ronny Figueroa, Clément Roques, Ronan Abherve, Landon Halloran, and Benoit Valley

The occurrence of springs and their connectivity within stream networks is typically associated with three key controlling factors: climate, topography and the distribution of hydraulic properties. In crystalline media, this distribution is often related to lithology and the presence of fractures. In addition, tectonic and topographic stresses can modify properties through compressive and extensional forces acting on the rock mass and fractures. However, these controls are rarely considered for hillslope scale applications. The aim of this research is to investigate the effects of stress on bedrock hydraulic properties and their implications for groundwater flow and transport at the hillslope scale. A numerical experiment has been designed that combines linear poroelasticity to simulate the distribution of permeability and porosity, together with groundwater flow and transport simulations. Different slope and stress conditions are examined, providing a comprehensive sensitivity analysis framework.

Our results show that vertical stress leads to a decrease in permeability and porosity at depth, following an exponential-like trend. Increasing the proportion of lateral stresses relative to the total vertical stresses reduces the mean permeability and porosity and increases the variance in the distribution along the hillslope. For high values of lateral stress, a low permeability domain develops downslope at the valley bottom due to the accumulation of compressive stresses, while the extensive regime at the crest provides higher permeabilities. As expected, groundwater flow simulations revealed that the partitioning of flow paths is strongly influenced by such heterogeneous stress-induced permeability and porosity fields. As stress increases, groundwater flow becomes more channelized in the near subsurface, strongly deviating from the classical Dupuit model. We also found that the distribution of normalized groundwater discharge rates shows higher values in the upper part of the seepage zone than in the lower part. By analyzing the results of particle tracking simulations, we found that mean residence times increase with higher external stress due to a decrease in mean permeability. In addition, the shape of the residence time distribution is strongly modified by the channeling of groundwater flow with increasing lateral stress, with the probability of shorter residence times increasing as stress increases. We discuss the implications of these fundamental results for our understanding of the role of stress in groundwater-dependent systems, with important insights into the recharge, storage and discharge mechanisms that may control the resilience of landscapes to the effects of climate change.

How to cite: Figueroa, R., Roques, C., Abherve, R., Halloran, L., and Valley, B.: Assessing the impact of stress–dependent hydraulic properties on hillslope-scale groundwater flow and transport, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17282, https://doi.org/10.5194/egusphere-egu24-17282, 2024.

EGU24-17490 | Posters on site | HS2.1.12 | Highlight

Hydroclimatic versus geochemical controls on silicate weathering rates 

Sylvain Kuppel, Yves Goddéris, Jean Riotte, and Laurent Ruiz

Water is the first order controlling factor of the weathering reactions. In the recent years, efforts have been made towards the building of model cascades able to simulate the water fluxes and the residence time of the water in the various compartments of the critical zone. Those hydrological constrains are then injected into numerical models simulating the water-rock interactions from the surface down to the impervious bedrock. In this contribution, we describe such a model cascade, where the water-rock interaction model WITCH is fed by the process-based ecohydrological model EcH2O-iso. This model cascade, WITCH2O, is designed for the modeling of water fluxes & stores, as well as the weathering reactions and transport of weathering products (including atmospheric CO2 consumption), from the vertical profile to the catchment scale, and from the submonthly to decadal time scales. We deployed WITCH2O along a gneiss-saprolite-ferralsol profile in a small tropical forested catchment in peninsular India. Long-term observations of water and geochemical fluxes are available, allowing for a 2-step model calibration and evaluation (hydrological and geochemical) across the different processes simulated. Using various temporal averages of simulated water fluxes and stores, preliminary results highlight that seasonal hydrological variability (driven by monsoon dynamics and deep root water uptake) is key for capturing groundwater nutrient concentrations, despite highly-buffered water table variations. We also explore how this non-linear dependence of weathering fluxes upon hydrological states is modulated by the propagation of uncertainties regarding i) modeled hydrology and ii) uncertainties in geohydrochemical properties (e.g. reactive surface and mineral abundance).

How to cite: Kuppel, S., Goddéris, Y., Riotte, J., and Ruiz, L.: Hydroclimatic versus geochemical controls on silicate weathering rates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17490, https://doi.org/10.5194/egusphere-egu24-17490, 2024.

EGU24-20178 | Posters on site | HS2.1.12

Coevolution in the critical zone: the key role of fast hydrologic processes 

Patricia Saco, Juan Quijano Baron, Jose Rodriguez, Mariano Moreno de las Heras, and Samira Azadi

Feedback effects between hydrology, vegetation and erosion processes are pervasive across landscapes. These tight interactions lead to the coevolution of landscape patterns that modulate landform shape and regulate many other critical zone processes. We study these feedbacks and interactions using simulations from landform evolution models that account for the effect (and feedbacks) of spatially and temporally varying hydrologic pathways and vegetation over landscapes displaying a variety of vegetation patterns. 

We first present results from a landscape evolution modelling framework, that accounts for a comprehensive representation of hydrology and vegetation, including the effect of various vegetation pools on erosion processes. The model includes interacting modules for hydrology, dynamic vegetation, biomass pools partition, and landform evolution. Our simulations indicate that each of the biomass pools provides a specific erosion protection mechanism at a different time of the year. As rainfall events and the resulting vegetation growth and protection are asynchronous, the maximum values of erosion are associated with runoff at the beginning of the rainy season when vegetation protection is not as its maximum. These results show how rapid hydrological processes affecting vegetation have long term implications for landform development. Results for a Eucalyptus savanna landscape study site in the Northern Territory (Australia) showed that models that do not account for the vegetation dynamics can result in prediction errors of up to 80%.  

We also present simulations of the coevolution of landforms and vegetation patterns in selected sites with patchy Acacia Aneura (Mulga) vegetation.  These sites display a sparse vegetation cover and strong patterns of surface water redistribution, with runoff sources located in the bare areas and sinks in the vegetation patches. This effect triggers high spatial variability of erosion/deposition rates that affects the evolving topography and induces feedbacks that shape the dynamic vegetation patterns. We run simulations using rainfall, vegetation and erosion data, and vegetation parameters previously calibrated for Mulga sites in the Northern territory. We further investigate the effect of alterations in hydrologic connectivity induced by climate change and/or anthropogenic activities, which affect water and sediment redistribution and can be linked to loss of resources leading to degradation. We find that an increase in hydrologic connectivity can trigger changes in vegetation patterns inducing feedbacks with landforms leading to degraded states. These transitions display non-linear behaviour and, in some cases, can lead to thresholds with an abrupt reduction in productivity. Critical implications for management and restoration are discussed.  

How to cite: Saco, P., Quijano Baron, J., Rodriguez, J., Moreno de las Heras, M., and Azadi, S.: Coevolution in the critical zone: the key role of fast hydrologic processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20178, https://doi.org/10.5194/egusphere-egu24-20178, 2024.

Purpose Climate extremes, such as droughts and floods, have become intensified and more frequent due to intensifying climate change. Increased atmospheric carbon dioxide (CO2) and warming-induced water limitation, as well as climate extremes, may alter carbon (C) and nitrogen (N) cycling in forest ecosystems. This provides a brief review of stable nitrogen

isotopic composition (δ15N) in tree ring in relation to climate extremes and bushfires in context of N availability and losses in forest ecosystems.

Material and methods Tree rings were extracted from four Pinus sylvestris and four Larix gmelinii sample trees, located in a boreal plantation forest of Mohe City, Heilongjiang Province, China. Tree rings were measured to obtain mean annual basal area increment (BAI), while tree ring δ15N and total N concentrations were measured on mass spectrometer at 3-year intervals. The tree ring δ15N data were related to possible climate extremes and bushfires. A brief review of the relevant literature was also undertaken to support our preliminary research findings.

Results and discussion Globally, increasing atmospheric CO2 concentration and water limitations have led to a warmer-drier climate. This has also been associated with increases of climate extremes such as drought and floods as well as bushfires. These extremes have been recorded with detrimental effects on plant and soil structures within forest ecosystems and play an important role in regulating N availability and losses in forest ecosystems. Studies of N deposition within forest ecosystems using soil and plant δ15N also showed that N losses under various climate extremes can occur through direct changes in N cycling, such as increasing soil nitrification and denitrification or leaching. It is highlighted that tree rings δ15N has the potential to fingerprint the intensity and frequency of climate extremes and bushfires in the forest ecosystems, but more such tree ring δ15N research needs to be done in diversified forest ecosystems to confirm the potential of using tree ring δ15N for quantifying the frequency and intensity of climate extremes and bushfires at both regional and global scale.

Conclusion The variation and trend of δ15N in the soil–plant-climate systems are closely linked to the N cycling in forest ecosystems, and tree ring δ15N has the great potential to fingerprint both intensity and frequency of climate extremes such as drought and floods as well as bushfires.

How to cite: succarie, A.: On the variation and trends of nitrogen isotope composition in tree rings: the potential for fingerprinting climate extremes and bushfires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2772, https://doi.org/10.5194/egusphere-egu24-2772, 2024.

EGU24-4030 | Orals | CL1.2.2 | Highlight

Natural variability has dominated the movement of High Asia Polar Jet over the past six centuries 

Wenling An, Kerstin Treydte, Chenxi Xu, Qiuzhen Yin, Flurin Babst, Laibao Liu, Qiong Zhang, Raphael Neukom, Zhenqian Wang, and Zhengtang Guo

Recent northward movement of polar jet has been linked with mid-latitude weather and climate anomalies, but distinguishing the natural variability and anthropogenic activity is hindered by a lack of long-term observations. Here we use tree ring oxygen records from the High Asia to reconstruct variability in the movement of the late spring High Asia Polar Jet (HAPJ) over the past six centuries. We find that the HAPJ has shown a gradually northward trend since 1600s, which have resulted in relatively wet conditions in the High Asia and southern west Asia from 1600s to late 1800s and recent decades. Combined with model results, we find the HAPJ is dominated by the phase changes of North Atlantic Oscillation and volcanic eruption at decadal to multi-decadal scales. At multi-decadal to centurial scales, solar activity is the largest contributor to HAPJ movement, while the contribution of increasing greenhouse gas is relatively small. These results highlight the importance of natural variability in HAPJ movements under the context of global warming.

How to cite: An, W., Treydte, K., Xu, C., Yin, Q., Babst, F., Liu, L., Zhang, Q., Neukom, R., Wang, Z., and Guo, Z.: Natural variability has dominated the movement of High Asia Polar Jet over the past six centuries, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4030, https://doi.org/10.5194/egusphere-egu24-4030, 2024.

EGU24-4356 | ECS | Orals | CL1.2.2

Dwarf shrub δ18O from the Top of the World / Everest region record large-scale climate signals 

Jussi Grießinger, Wolfgang Jens-Henrik Meier, Haifeng Zhu, Huang Ru, and Eryuan Liang

Oxygen isotopes (δ18O) derived from tree-rings are an excellent and frequently utilized annually resolved climate proxy. Above the tree-line, woody (dwarf) shrubs can further densify the still fragmentary global paleoclimatic network, which is particularly relevant for the high altitudes of the Himalayan Arc. Still, few studies have investigated the suitability of δ18O from shrubs for climate reconstructions, specifically on the windward southern slopes of the Central Himalayan Arc. In this study, we evaluated the climate imprints on juniper dwarf shrubs located above 4,000 m asl in the Mount Everest region, Nepal. Three gridded climate data sets (CRU TS, ERA-5 and CHELSA) with a spatial resolution between 0.5° and 0.08° were used to evaluate the respective climate-proxy relationships. The strong influence of variations in temperatures and moisture (precipitation, rH, VPD) on our δ18O time series are most evident during the summer monsoon season. Spatial correlation analyses further confirm a strong supra-regional representativity of our proxy across large parts of the Himalaya and northern India. The dependency on large-scale atmospheric circulation is underlined by significant correlations between δ18O, various monsoon indices and more complex and coupled (tropical) ocean-atmospheric oscillation patterns such as the Southern Oscillation Index and the Madden-Julian Oscillation. By analyzing synoptic weather patterns of the Indian Subcontinent we can further demonstrate, that our δ18O series is strongly influenced by climate conditions during the break monsoon periods than to conditions during the active monsoon period. During the breaking periods, two weather patterns are predominantly influencing our δ18O series when i) air masses are increasingly originating from (North)West, leading to a sharp decrease in precipitation and higher temperatures or when ii) a shift of the monsoon trough towards the North results in a decrease of rainfall over the India subcontinent and an increase in precipitation over the Himalayan region.

How to cite: Grießinger, J., Meier, W. J.-H., Zhu, H., Ru, H., and Liang, E.: Dwarf shrub δ18O from the Top of the World / Everest region record large-scale climate signals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4356, https://doi.org/10.5194/egusphere-egu24-4356, 2024.

EGU24-5939 | Posters on site | CL1.2.2

Growth and drought resilience of planted conifers and broadleaves in the semi-arid Northern China. 

Jitang Li, Yuyang Xie, Jesús Julio Camarero, Antonio Gazol, Ester González de Andrés, Lingxiao Ying, and Zehao Shen

Under warmer and drier climate scenarios, the growth and resilience of forests will be critically affected by more frequent and severe droughts. Since the 1970s, China has launched several afforestation programs aimed at regional ecological protection, playing an important role for reaching carbon neutrality by 2060.

This study provided a detailed analysis of the growth suitability of the main planted conifers (Pinus sylvestris var. mongolica, Pinus tabulaeformis) and broadleaves (Populus spp., Robina pseudoacacia) in the semi-arid northern China. We compared the radial growth trends of plantations and their responses to extreme droughts from 1980 to 2018.

Growth of most plantations has significantly increased, but broadleaves showed recent growth reductions in the past decade, which may be related to tree age and reduced soil water content. Nevertheless, under warmer climate scenarios, growth of plantations is forecasted to continue increasing. Broadleaves showed a better post-drought recovery, probably linked to their anisohydric behavior, than conifers, which presented a better resistance to drought. Growth of conifers depended more on warmer temperature and better precipitation conditions during the growing season, whereas broadleaves mainly reacted to warm temperature. Additionally, pre-drought growth levels weakened resilience components, while post-drought precipitation compensated drought-induced growth deficit. Growth and resilience were negatively related to tree age, whilst higher stand density reduced growth. This assessment and projections of growth and drought resilience indicate the sustainability of most plantations in semi-arid regions, but future warmer and drier conditions may lead to an uncertain future regarding forest health and reduce their carbon sink potential.

Keywords: Growth trends; Drought resilience; Tree-ring analysis; Plantations; Three-North Shelter Forests Program.

How to cite: Li, J., Xie, Y., Julio Camarero, J., Gazol, A., González de Andrés, E., Ying, L., and Shen, Z.: Growth and drought resilience of planted conifers and broadleaves in the semi-arid Northern China., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5939, https://doi.org/10.5194/egusphere-egu24-5939, 2024.

EGU24-5970 | ECS | Orals | CL1.2.2

Impacts of recurrent extreme drought events on the dynamics of radial growth, wood anatomy and stable isotopes in beech trees from 2013 to 2022 in northeastern France 

Guangqi Zhang, Nathalie Breda, Nicolas Steil, Pierre-Antoine Gaertner, Julien Ruelle, and Catherine Massonnet

Extreme drought events are responsible for widespread forest dieback and large-scale tree mortality events across the globe, which can have detrimental effects on both short-term forest functioning and long-term ecosystem dynamics. An unprecedented decline of European beech (Fagus sylvatica L.) has been observed in central Europe following the 2018-2020 drought event, and beech trees may have reached a tipping point where many individuals are no longer able to survive. A better understanding of the physiological mechanisms that allow beech trees to resist and to cope with severe water deficits and those that lead to the tree death is essential.

The main objective of this study is to gain insight into the physiological properties involved in the resilience or death trajectories of the beech trees in response to an extreme and prolonged drought episode. We retrospectively analysed multi-proxy traits including tree ring width, a proxy for tree cambial growth, wood anatomical traits, a proxy for the xylem hydraulic performance, and tree ring isotopic composition, a proxy for water use efficiency (WUE).

A total of 60 trees were selected which are distributed in four stands in North-eastern France with different levels of soil water deficit which were quantified retrospectively by the BILJOU© water balance model. Tree cores at 1.3m were taken for radial growth analysis and retrospective xylem anatomical measurements in the last 10 tree rings (rings before, during and after drought). Stable carbon (δ13C) and oxygen (δ18O) isotopes were also measured in these rings to determine, respectively, the annual WUE and the water and carbon constrains on WUE variation. Tree resistance, recovery and resilience to drought were quantified for cambial growth, specific hydraulic conductivity and WUE.

Over the past 10 years, we determined that 2015 and 2018-2020 were drought years by calculating annual soil water deficits at the stand level. Decreased tree growth and increased WUE were observed due to soil water shortage, whereas xylem vessel size and specific hydraulic conductivity did not show obvious changes. Vessel density was negatively correlated with annual ring width and was highly sensitive to drought. In severe drought sites, recurrent drought severely affected resistance of tree growth and the post-drought recovery of hydraulic conductivity and water use efficiency. Furthermore, growth resilience of beech trees could not be explained by vessel-related anatomical traits and isotopic composition. Overall, our study shows that beech xylem structure responds to drought by adjusting the number, rather than the size, of vessels, and highlights the impact of prolonged or recurrent drought on xylem hydraulic and WUE recovery. This work contributes to the understanding of how drought-sensitive trees cope with extreme drought events in terms of their carbon-water relations in the context of climate change.

How to cite: Zhang, G., Breda, N., Steil, N., Gaertner, P.-A., Ruelle, J., and Massonnet, C.: Impacts of recurrent extreme drought events on the dynamics of radial growth, wood anatomy and stable isotopes in beech trees from 2013 to 2022 in northeastern France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5970, https://doi.org/10.5194/egusphere-egu24-5970, 2024.

EGU24-6784 | ECS | Posters on site | CL1.2.2

Shifting potential for high-resolution climate reconstructions under global warming 

Jernej Jevšenak, Allan Buras, and Flurin Babst

Tree-ring based reconstructions of climate in pre-instrumental times render a cornerstone of earth-system science and critically rely on statistical relationships between meteorological observations and natural proxy archives. Recent studies have frequently reported that these relationships are not stable in time (non-stationarity), possibly caused by global change (climate, atmospheric CO2), data resolution and quality, and statistical methods applied. Here, we assess the elusive impacts of these factors on the palaeoclimatological potential across the Northern Hemisphere. Scrutinizing spatiotemporal patterns in widely applied validation metrics derived from 3,781 tree-ring chronologies and 517 published dendroclimatic studies, we show that temperature and precipitation sensitivity have increased in the late 20th century. This increase was consistent with trends derived from our meta-analysis. Projecting our results into climate scenarios for the 2021-2040 period indicated further expansion of areas with strong water limitation (+5±2%), whereas the areas with strong temperature limitation were projected to shrink by 8±3% (tree-ring width proxy) and 3±2% (maximum latewood density proxy). Moreover, under increased atmospheric CO2 concentrations and consequently water-use efficiency, water limitation on tree growth may weaken and so the sensitivity to precipitation with consequences for corresponding reconstructions. These spatiotemporal shifts in the climate response of tree growth indicate that continued climate change over the next decades will substantially alter our capacity to establish a robust historical baseline for climate change research. However, our assessment of 517 published climate reconstructions revealed that scientists have, so far, successfully conserved climate signals in trees through refined statistical approaches. But we deem it unlikely that methodological advances will continue to compensate for projected weakening temperature correlations, which will pose a daunting challenge for future temperature reconstructions based on TRW records. Encouragingly, despite minor decreases in projected climate sensitivity, MXD is expected to remain a strong temperature proxy. High-resolution paleoclimatology will thus need new innovations to ensure its continued support of earth system science. Lastly, a better understanding of tree growth response to environmental changes is crucial for accurately addressing non-stationarity in climate reconstructions.

Jevšenak, J., Buras, A., Babst, F., 2024. Shifting potential for high-resolution climate reconstructions under global warming. Quaternary Science Reviews 325, 108486.

How to cite: Jevšenak, J., Buras, A., and Babst, F.: Shifting potential for high-resolution climate reconstructions under global warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6784, https://doi.org/10.5194/egusphere-egu24-6784, 2024.

EGU24-8541 | ECS | Orals | CL1.2.2

Divergent temporal shifts in climate sensitivity of Norway spruce along an elevational and continentality gradient in the Carpathians 

Andrei Popa, Jernej Jevšenak, Ionel Popa, Ovidiu Badea, and Allan Buras

Climate change is affecting forest ecosystems all around the globe, through warming as well as increased drought frequency and intensity. Across much of Europe, climate change has caused a major dieback of Norway spruce (Picea abies L.), an economically important tree species. However, the southeasternmost fringe of this tree species – the Eastern Carpathians – has not yet suffered large-scale dieback. In recent decades, temporal shifts of climate sensitivity (TSCS) have been observed on a global scale. Thus, studying TSCS over time may elucidate the degree to which Norway spruce may be vulnerable to climate-change induced decline in upcoming decades.

Under this framework, we analyzed a regional tree-ring network comprising more than 3,000 trees, with the aim of quantifying TSCS since 1950. We mathematically defined TSCS as the slope parameter of the regression of climate sensitivity (the correlation coefficient) over time. Given the often-observed contrasting shift of climate sensitivity at low versus high elevations, we were particularly interested in studying potentially divergent TSCS along elevational and spatial gradients. Our results revealed several indications of TSCS for Norway spruce in the Eastern Carpathians. First, at high elevations (>1,100 m a.s.l.), we found that the positive link between summer temperature and spruce growth decreased significantly over the study period. In turn, these trees, over time, featured an increasing positive relationship with late winter temperatures. At low elevations (<800 m a.s.l.), the signal of positive summer Standardised Precipitation-Evapotranspiration Index (SPEI) correlation became more frequent among sites. Our results revealed that TSCS was driven significantly by an elevational climate gradient and a longitudinal continentality gradient. Overall, our findings indicate that Norway spruce is increasingly affected by water limitations under climate change at low elevations, highlighting a potentially rising risk of decline of this species in the Eastern Carpathians.

How to cite: Popa, A., Jevšenak, J., Popa, I., Badea, O., and Buras, A.: Divergent temporal shifts in climate sensitivity of Norway spruce along an elevational and continentality gradient in the Carpathians, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8541, https://doi.org/10.5194/egusphere-egu24-8541, 2024.

EGU24-8585 | Posters on site | CL1.2.2 | Highlight

Legacy of last millennium timber use on plant cover in Central Europe: insights from tree rings and pollen 

Andrea Seim, Emma Antoine, and Laurent Marquer and the dendro-pollen team

Throughout history, humans have relied on wood for constructions, tool production or as an energy source. How and to what extent these human activities have impacted plant abundance and composition over a long-term perspective is, however, not well known. To address this knowledge gap, we combined 44 239 precisely dated tree-ring samples from economically and ecologically important tree species (spruce, fir, pine, oak) from historical buildings, and pollen-based plant cover estimates using the REVEALS model from 169 records for a total of 34 1° x 1° grid cells for Central Europe. Building activity and REVEALS estimates were compared for the entire study region (4–15° E, 46–51°N), and for low (< 500m asl) and mid/ high elevations (≥ 500m asl) in 100-year time windows over the 1150–1850 period. Spruce and oak were more widely used in wooden constructions, amounting to 35% and 32%, respectively, compared to pine and fir. Besides wood properties and species abundance, tree diameters of harvested individuals, being similar for all four species, were found to be the most crucial criterion for timber selection throughout the last millennium. Regarding land use changes, from the 1150-1250’s onwards, the forest cover generally decreased due to deforestation until 1850, especially at lower elevations, resulting in a more heterogeneous landscape. The period 1650‒1750 marks a distinct change in the environmental history of Central Europe; increasing agriculture and intense forest management practices were introduced to meet the high demands of an increasing population and intensifying industrialization, causing a decrease in plant/palynological diversity, in particular at low elevations. Likely the present Central European landscapes originated from that period. Our results further show that land use has impacted vegetation composition and diversity at an increasing speed leading to a general homogenization of landscapes through time, highlighting the limited environmental benefits of even-aged plantation forestry.

How to cite: Seim, A., Antoine, E., and Marquer, L. and the dendro-pollen team: Legacy of last millennium timber use on plant cover in Central Europe: insights from tree rings and pollen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8585, https://doi.org/10.5194/egusphere-egu24-8585, 2024.

EGU24-8957 | Posters on site | CL1.2.2

Drivers of intra‐seasonal δ13C signal in tree‐rings of Pinus sylvestris as indicated by compound‐specific and laser ablation isotope analysis 

Katja Rinne-Garmston, Yu Tang, Elina Sahlstedt, Bartosz Adamczyk, Matthias Saurer, Yann Salmon, Maria del Rosario Domínguez Carrasco, Teemu Hölttä, Marco Lehmann, Lan Mo, and Giles Young

Carbon isotope composition of tree‐ring (δ13CRing) is a commonly used proxy for environmental change and ecophysiology. δ13CRing reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates (δ13CP), such as sucrose. However, δ13CRing is not merely a record of δ13CP. Isotope fractionation processes, which are not yet fully understood, modify δ13CP during sucrose transport. We traced, how the environmental intra‐seasonal δ13CP signal changes from leaves to phloem, tree‐ring and roots, for 7 year old Pinus sylvestris, using δ13C analysis of
individual carbohydrates, δ13CRing laser ablation, leaf gas exchange and enzyme activity measurements. The intra‐seasonal δ13CP dynamics was clearly reflected by δ13CRing, suggesting negligible impact of reserve use on δ13CRing. However, δ13CP became increasingly 13C‐enriched during down‐stem transport, probably due to post‐photosynthetic fractionations such as sink organ catabolism. In contrast, δ13C of water‐soluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as δ13CP, but recorded intra‐seasonal δ13CP variability. The impact of environmental signals on δ13CRing, and the 0.5 and 1.7‰ depletion in photosynthates compared ring organic matter and tree‐ring cellulose, respectively, are useful pieces of information for studies exploiting δ13CRing.

How to cite: Rinne-Garmston, K., Tang, Y., Sahlstedt, E., Adamczyk, B., Saurer, M., Salmon, Y., del Rosario Domínguez Carrasco, M., Hölttä, T., Lehmann, M., Mo, L., and Young, G.: Drivers of intra‐seasonal δ13C signal in tree‐rings of Pinus sylvestris as indicated by compound‐specific and laser ablation isotope analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8957, https://doi.org/10.5194/egusphere-egu24-8957, 2024.

EGU24-9146 | Posters on site | CL1.2.2

Deep Learning-Based semantic segmentation for geomorphic processes signals in tree-ring records 

Joe David Zambrano Suárez, Jorge Pérez Martín, Alberto Muñoz Torrero Machado, and Juan Antonio Ballesteros-Cánovas

Trees encapsulate environmental changes in their growth through the records in the tree rings, but extracting this signal proves challenging and time consuming. These challenges persist in the study of geomorphic processes, requiring meticulous and prolonged efforts by a specialised technician to identify and date growth disturbances (GD). The presence of false annual rings adds another layer of complexity to the task. 

Today, many classical computer vision-based techniques have been developed for the automatic detection of annual rings. However, to the best of our knowledge, these techniques have not been applied to the detection of GD associated with geomorphic events, which are more challenging because they do not present as clear visual patterns as annual rings. Deep learning-based architectures have shown great capacity for automatic localisation of objects in images with complex shapes.

We have applied these systems to the segmentation of evidence of geomorphological processes (i) wounds (ii) callus tissue (iii) latewood (iv) traumatic resin ducts and (v) growth rings. The deep learning (DL) architectures used were Faster R-CNN with ResNet-101-FPN backbone, YOLOv8 and a U-Net architecture. For the application of the system, it is necessary divide the image into smaller patches, and post-processing techniques for the correct unification of the predictions of each image. Training and evaluation of the networks was performed in Google Colaboratory. The algorithm was tested on 150 cores taken ad hoc from a debris flow cone in the Pyrenees (Pineta Valley), where historical debris flows have occurred. The cores were subjected to a sanding process and the images were obtained using a Canon Eos8 camera. 120 were used to train and validate and 30 to test the architectures, comparing the results obtained by a classical approach and by DL. The evaluations were performed at the pixel level using the accuracy, precision and recall metrics. After post-processing the predictions, the pixels were converted into instances and the predictions were compared with the ground truth, and the metrics Intersection over Union (IoU), precision and recall per category were calculated.

Our preliminary results suggest that, with a sufficiently large dataset, deep learning-based models can capture sufficient information to identify the complex patterns to be classified. This implies that it is possible to achieve a model capable of automatically identifying geomorphological event signals, thereby speeding up the process of obtaining evidence. This opens the possibility of having proposals of event signals without subjective bias, obtaining in different studies, evidence datasets made with a homogeneous and systematised criterion.

How to cite: Zambrano Suárez, J. D., Pérez Martín, J., Muñoz Torrero Machado, A., and Ballesteros-Cánovas, J. A.: Deep Learning-Based semantic segmentation for geomorphic processes signals in tree-ring records, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9146, https://doi.org/10.5194/egusphere-egu24-9146, 2024.

EGU24-12747 | Orals | CL1.2.2 | Highlight

Fennoscandian AND Yamalian tree-ring anatomy shows a warmer modern than medieval climate 

Jesper Björklund, Kristina Seftigen, Markus Stoffel, Marina V Fonti, David C Frank, Sven Kottlow, Jan Esper, Patrick Fonti, Hugues Goosse, Håkan Grudd, Björn E Gunnarson, Rashit Hantemirov, Stefan Klesse, Vladimir Kukarskih, Daniel Nievergelt, Elena Pellizzari, Marco Carrer, and Georg von Arx

Earth system models and various climate proxy sources indicate that global warming is unprecedented during at least the Common Era. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950–1250 CE) to be similar, or exceed, those recorded for the past century. This is in contrast to simulation experiments at regional scales. This not only calls into question the reliability of models as well as proxies, but also contributes to uncertainty in future climate projections. Here we show that the current climate of Fennoscandia is substantially warmer than during the medieval period. This indicates a dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling differences between reconstructions and model simulations. These results were obtained using an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees. Now we can confirm these results using new tree-ring anatomy data developed from Larix Sibirica tree-ring samples from the Yamal Peninsula in North-western Siberia over the past millennia. Both these datasets provide exceptional high-fidelity measurements of instrumental temperature variability during the warm season. We call for the construction of more such millennia-long records to continue to improve our understanding and reduce uncertainties around historical and future climate change at increasingly larger scales.

How to cite: Björklund, J., Seftigen, K., Stoffel, M., Fonti, M. V., Frank, D. C., Kottlow, S., Esper, J., Fonti, P., Goosse, H., Grudd, H., Gunnarson, B. E., Hantemirov, R., Klesse, S., Kukarskih, V., Nievergelt, D., Pellizzari, E., Carrer, M., and von Arx, G.: Fennoscandian AND Yamalian tree-ring anatomy shows a warmer modern than medieval climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12747, https://doi.org/10.5194/egusphere-egu24-12747, 2024.

During the past decades, the Arctic has experienced a more rapid and pronounced temperature increase than most other parts of the world. However, to fully understand the mechanisms and consequences of contemporary and future climate change, it is necessary to study past natural changes in climate and the environment. There is a lack of comprehensive and complementary studies about past changes on a scale of hundreds of years, in which climatic conditions can be reconstructed with high-resolution and replication. Greenland, covered by approximately 90 % of the Greenland ice sheet, is particularly vulnerable to climate change. The Greenland temperature proxy reconstructions are mostly based on ice cores or varve sediments. Available early-instrumental observations reach the second half of the 18th century. The aim of our study was to explore the potential of juniper shrubs growing in multiple sites from hitherto unexplored locations in Greenland, to create and extend growth-ring chronologies back in time, and thus further our knowledge of regional climate variations in the past. Around 90 wood samples were collected from three sites in southern Greenland: Narsarsuaq, Kiattuut Sermiat and Qassiarsuk. From each site, both living and dry wood were available. In addition, we analysed 35 historical juniper discs collected during the Danish expeditions to Greenland at the turn of the 19th and 20th centuries. Data processing was extremely difficult due to very narrow growth rings as well as the occurrence of missing and false rings. Thus, we performed double-stained microscopic sections for each specimen. In addition, anomalies in the anatomy of wood were found, such as frost rings and density fluctuations, related to extreme climatic conditions. Most of the analysed juniper specimens were of similar biological age, i.e. 200-280 for living shrubs, up to 310 years for dead wood, and even 350 for historical discs. However, they have been dated to different time periods, enabling the construction of a 487-year-long growth-ring chronology (1536-2023). The combination of this unique dendrochronological material made it possible to develop a chronology of Juniperus communis dating back to the beginning of the Little Ice Age. Up to now, these juniper shrubs are the oldest ones found in Greenland. The possibilities of extending this record in time using archaeological wooden artefacts are being discussed. The newly developed dendrochronological data, as an important element within the Arctic dendrochronological network, will allow a better understanding of environmental changes and human interaction in Greenland.

The research was funded by a Polish National Science Centre project no. UMO-2019/35/D/ST10/03137.

How to cite: Opala-Owczarek, M. and Owczarek, P.: Old juniper shrubs from the area of Norse Greenlandic Settlements: toward a long growth-ring chronology and its climatic implications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13413, https://doi.org/10.5194/egusphere-egu24-13413, 2024.

EGU24-14763 | ECS | Posters on site | CL1.2.2

Rapid detection of elements' radial translocation and mobility in tree rings by iTrax core scanner 

Hsin-Lin Wei, Chuan-Chou Shen, Ludvig Löwemark, Chien-Yi Liao, Shu-Li Chen, and Chun-Kuang Hsieh

Dendrochemistry has been developed as a new environmental indicator in recent decades. Elements, such as Hg, Pb, and Cd, in tree rings were considered as new tracers for industrialization, air pollution, and soil contamination. However, the movement and diffusion of elements across the rings, called radial translocation, intensifies when the sapwood transforms into heartwood, which blurs the elemental records. Detecting the translocation of elements and their mobility in tree rings due to heartwood formation is crucial for the availability and confidence of applying dendrochemistry. We developed methods to evaluate radial translocation. 1. The iTrax core scanner was used to scan tree ring core slices of four conifers in Taiwan to evaluate the feasibility of applying the iTrax core scanner to analyze the elemental trends in tree ring cores and the scanning parameters. 2. The elemental distributions in tree ring cores of different species were measured. 3. The mobilities of elements were evaluated. Forty-second exposure was successful and reproducibly scanned K, Ca, V, Cr, Mn, Fe, Cu, Sr, and Pb contents. Results show that the levels of Ca and K in the tree ring of all four species and the levels of Mn of three species significantly differ between the heartwood and sapwood phases. For the remaining elements, including V, Cr, Fe, Cu, Sr, and Pb, there is no significant difference between phases. After treating with an extraction solution to remove soluble or mobile elements, the different levels of Ca, K, and Mn between phases were not observed, indicating the mobility of these elements. The effect of radial translocation should be considered when applying the three elements as environmental tracers.

How to cite: Wei, H.-L., Shen, C.-C., Löwemark, L., Liao, C.-Y., Chen, S.-L., and Hsieh, C.-K.: Rapid detection of elements' radial translocation and mobility in tree rings by iTrax core scanner, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14763, https://doi.org/10.5194/egusphere-egu24-14763, 2024.

EGU24-15959 | Posters on site | CL1.2.2

Detecting changes in industrial pollution through the analyses of heavy metals concentrations in tree-ring wood from Romanian conifer forests 

Cosmin Cuciurean, Cristian Gheorghe Sidor, J. Julio Camarero, Amelia Buculei, and Ovidiu Badea

The impact of air pollution on forests, especially in urban areas, has been an increasingly discussed topic in recent years. A number of pollutants, including heavy metals, are released into the atmosphere from various sources, such as mining activities, non-ferrous metal processing plants, fossil fuel combustion, and can have adverse effects on tree growth but also on vigor of other species including humans.

We compared the concentrations of several elements in tree-ring wood from two conifer species (Silver fir-Abies alba, and Norway spruce-Picea abies) growing in polluted and unpolluted areas. Two regions (Bicaz and Tarnița) subjected to historical changes in pollution and located in northern Romania were selected. Two methods of chemical analyses were used: inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF).

Silver fir trees from the intensively polluted area in Tarnița region are negatively impacted by industrial pollution according to their Mn concentrations in wood which are, on average, three times higher than in the unpolluted areas (ca. 30 vs. 10 mg·kg-1). This finding is consistent with both ICP-MS and XRF analyses, but this difference was found in Norway spruce only in XRF data which detected 7 times higher Mn concentrations in trees from polluted areas than in those from unpolluted areas (ca. 700 vs. 100 mg·kg-1).

In the Tarnița region, Norway spruce was able to accumulate a higher quantity of heavy metals compared to Silver fir, but the most pronounced differences between polluted and unpolluted were found in Silver fir.

The two analysis methods complemented each other with ICP-MS being a qualitative method with a low detection limit of some elements, and XRF being a more quantitative method with high detection limit and satisfactory accuracy.

How to cite: Cuciurean, C., Sidor, C. G., Camarero, J. J., Buculei, A., and Badea, O.: Detecting changes in industrial pollution through the analyses of heavy metals concentrations in tree-ring wood from Romanian conifer forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15959, https://doi.org/10.5194/egusphere-egu24-15959, 2024.

EGU24-16465 | ECS | Posters on site | CL1.2.2

Forest inventory tree core archive reveals changes in boreal wood traits over seven decades 

Kelley R. Bassett, Lars Östlund, Michael J. Gundale, Jonas Fridman, and Sandra Jämtgård

Boreal forests play an important role in the global carbon cycle (C), and there is increasing interest in understanding how they react to environmental changes, including nitrogen (N) and water limitations, which may influence future forest growth and C storage. Utilizing tree cores archived by the Swedish National Forest Inventory, we measured stemwood traits, including stable N and C isotope composition, which provides information on N availability and water stress, respectively, as well as N and C content, and the C/N ratio over the period 1950–2017 in two central Swedish counties, Jämtland and Västernorrland, covering an area of ca. 55,000 sq. km (n = 1038). We tested the hypothesis that wood traits change over time and that temporal patterns would vary depending on alternative dendrochronological reconstruction methods, i.e. the established standard “single tree method” (STM) or a conceptually stronger “multiple tree method” (MTM). Averaged across all MTMs, our data showed that all five wood traits for Picea abies and Pinus sylvestris changed over time. Wood δ15N declined strongly, indicating progressive nitrogen limitation. The decline in δ13C followed the known atmospheric δ13CO2 signal, indicating there was no change in water stress. In addition, wood N increased significantly, while C and C/N ratios declined over time. Furthermore, wood trait patterns sometimes differed between dendrochronological methods. The most prominent difference was for δ15N, where the slope was much shallower for the STM compared to MTMs for both species, indicating that mobiity of contemporary N is problematic when the STM is used, leading to much less sensitivity to detect historical signals. Our study shows strong temporal changes in boreal wood traits and also indicates that the field of dendroecology should adopt new methods and archival protocols for studying highly mobile element cycles, such as nitrogen, which are critical for understanding environmental change in high latitude ecosystems.

How to cite: Bassett, K. R., Östlund, L., Gundale, M. J., Fridman, J., and Jämtgård, S.: Forest inventory tree core archive reveals changes in boreal wood traits over seven decades, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16465, https://doi.org/10.5194/egusphere-egu24-16465, 2024.

EGU24-16567 | Posters on site | CL1.2.2

804 years drought reconstruction based on oak tree rings for Eastern Europe 

Catalin-Constantin Roibu, Monica Ionita, Andrei Mursa, Alan Crivellaro, Tomasz Wazny, Viorica Nagavciuc, Mihai-Gabriel Cotos, Marian-Ionut Stirbu, Maria-Ecaterina Asandei, and Cosmin-Mihai Andriescu

In this study, we used the Suceava oak tree-ring width chronology to reconstruct the paleo hydroclimatic events in eastern Europe, a region for which high-resolution paleoclimatic evidence is broadly missing. Our regional oak chronology reflects July hydroclimate variability in the form of the twelve months Standardized Precipitation Index over large parts of Romania, Ukraine, and the Republic of Moldova, for which high-resolution paleoclimatic evidence is broadly missing. Most of the reconstructed hydroclimatic extremes back to 1216 CE are confirmed by documentary evidence, and a robust association is found with large-scale atmospheric circulation patterns in the Northern Hemisphere and sea surface temperatures over the North Atlantic. Reconstructed pluvials coincide with a high-pressure system over the North Atlantic Ocean and north-western Europe, and with a low-pressure system over south-western, central, and eastern Europe, whereas historical droughts coincide with a high-pressure system over Europe and a low-pressure system over the central part of the Atlantic Ocean.

How to cite: Roibu, C.-C., Ionita, M., Mursa, A., Crivellaro, A., Wazny, T., Nagavciuc, V., Cotos, M.-G., Stirbu, M.-I., Asandei, M.-E., and Andriescu, C.-M.: 804 years drought reconstruction based on oak tree rings for Eastern Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16567, https://doi.org/10.5194/egusphere-egu24-16567, 2024.

EGU24-17143 | ECS | Posters on site | CL1.2.2

A multiproxy comparison of Scots pine wood in western Norway  

Wendy Hlengiwe Khumalo, Helene Løvstrand Svarva, Marie-Josée Nadeau, Martin Seiler, Bente Philippsen, Matias Kallevik, and Dominik Collet

With the onset of anthropogenic climate change, the ClimateCultures project aims to tackle the question “What happened the last time we encountered rapid climate change?” using evidence from tree rings and historical records to paint a picture of the natural impacts and societal responses in Norway during the Little Ice Age. More specifically, we aim to investigate short-lived extreme cold events in the 1700’s. This calls for a more regional scale to account for complex climate drivers over a mountainous country with regional climatic differences and local communities’ responses. Here we present a case study of Scots pine wood collected in western Norway, a region known for mild temperatures and high precipitation (relative to average Norwegian climate), and compare various tree ring proxies including ring width, Blue Intensity and stable oxygen isotopes. While this record does not extend to the 1700’s, we can consider the merits and limitations of each proxy when compared to the instrumental records. This study will provide a basis for climate reconstructions, particularly focusing on hydroclimate signals in Norwegian chronologies. 

How to cite: Khumalo, W. H., Svarva, H. L., Nadeau, M.-J., Seiler, M., Philippsen, B., Kallevik, M., and Collet, D.: A multiproxy comparison of Scots pine wood in western Norway , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17143, https://doi.org/10.5194/egusphere-egu24-17143, 2024.

EGU24-17581 | ECS | Posters on site | CL1.2.2

Predisposition of European beech to drought-induced die-off along a climate gradient in Northern Bavaria 

Anja Žmegač and Christian S. Zang

Climate change is strongly influencing global shifts in forest ecosystem dynamics. There has been a twofold increase in canopy mortality within the temperate forests of Europe in the past thirty years. The trend has been further intensified by recent drought episodes occurring between 2018 and 2020, leading to increased instances of die-offs and reduced vitality among key tree species.

In central Europe, notably in Germany, European beech (Fagus sylvatica L.) stands out as a tree species with high ecological and economic significance. Recent severe drought conditions led to substantial vitality loss and mortality. Nevertheless, there was considerable diversity in how individual beech trees responded to drought, with some trees in the same location being heavily impacted while others remained seemingly unaffected. Factors influencing this uneven response are still not fully understood.

In this study, we gathered 600 beech tree-ring width series from 13 sites located across Northern Bavaria, along a climatic gradient. We explore the differences in growth between two groups of trees (damaged/vital) using a dendroecological approach. We evaluated loss of vitality through the implementation of mortality and critical slowdown indicators such as long-term growth decline or changes in climate memory, as well as climate/growth relations and growth synchrony indicative of changing growth limitations.

While we did not find significant differences between groups in terms of climate memory and drought sensitivity, our results showed a divergence in the growth patterns of vital and damaged trees following repetitive exposure to drought events. We detected higher growth rates of damaged trees prior to the last three decades, after which their growth rates declined stronger than vital trees. Our results suggest that faster-growing beech trees may be more susceptible to drought-induced mortality, which is in line with findings of higher vulnerability of faster-growing trees to environmental stressors.

How to cite: Žmegač, A. and Zang, C. S.: Predisposition of European beech to drought-induced die-off along a climate gradient in Northern Bavaria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17581, https://doi.org/10.5194/egusphere-egu24-17581, 2024.

EGU24-17582 | Orals | CL1.2.2

Increasing stem dimensions of European temperate tree species between 1990 and 2015 

Vaclav Treml, Jan Tumajer, Jan Altman, Vojtěch Čada, Jiří Doležal, Pavel Janda, Ryszard Kaczka, Jakub Kašpar, Tomáš Kolář, Jiří Mašek, Filip Oulehle, Michal Rybníček, Miloš Rydval, Miroslav Svoboda, Martin Šenfeldr, Pavel Šamonil, Ivana Vašíčková, and Monika Vejpustková

Increasing forest CO2 absorption is ensured by enhanced gross primary production (GPP) which exhibited increasing trends as documented by CO2 flux measurements or by global vegetation models. Considering the simultaneous increase in ecosystem respiration, it is, however, uncertain how the growing GPP imprints in tree stem biomass increase. There is still a certain discrepancy between estimates of forest biomass trends derived from standardized tree-ring series, information acquired from repeated re-measurements of stem biomass at permanent plots, and information derived from vegetation models or flux-tower measurements.  Standardization procedures of tree-ring series related to age/size trend removal make this data source unique for the assessment of climate-growth relationships and for climatic reconstruction, however it also increases uncertainty of this data source for biomass trends assessment. Here, we present an approach mimicking repeated data collection at permanent plots based on an extensive data set of tree-ring sites.  In this way, we connected two strong benefits of above-mentioned data – reliable age-independent estimates of stem biomass by repeated measurements at permanent plots and a dense network of highly replicated data covering wide environmental gradients provided by tree-ring time series. Our tree-ring network captures core parts of distribution ranges of five main European temperate tree species. Density of tree-ring network is roughly 1 site per 25 km2 of forested area in Central Europe namely Czech Republic (area of 78 000 km2) making this tree-ring network probably densest in the world.  We first manipulated original tree-ring data sets by their truncation in 1990 (data set mimicking sample collection in 1990) and then adapt the original data set so that it has similar age structure as the 1990 data set mainly by excluding old age classes (data set 2015) assuring age independency of our data. For both data sets and all sites included, we calculated mean stem diameter at breast height (DBH) of average 100-year old tree based on basal area increments. We then tested for differences in DBH between 1990 and 2015. We found that all species except Pinus sylvestris showed a significant increase in stem dimension as indicated by DBH between 1990 and 2015. The highest DBH increase exhibited Abies alba (+13.5%), followed by Fagus sylvatica (+5.5%), Quercus sp.(+5.2%) and Picea abies (+4.7%).  Differences in DBH between 2015 and 1990 were relatively homogenous across environmental gradients suggesting prevailing influence of large-scale factors independent on local conditions.  Picea abies and Fagus sylvatica exhibited lesser increase in stem dimensions in colder areas. Furthermore, Picea abies and Quercus sp. showed a significant enhancement of growth at productive sites with fast growing individuals. Quercus also significantly enlarged DBH at locations with more positive trends in SPEI, i.e. those experiencing a trend towards wetter climate. Our results corroborate the pervasive growth acceleration in core region of European temperate forests leading to presence of larger canopy-level trees in current forests than in the past. Increasing stem size makes trees more sensitive to disturbances and potentially leads to their shorter life spans as reported in other studies.

How to cite: Treml, V., Tumajer, J., Altman, J., Čada, V., Doležal, J., Janda, P., Kaczka, R., Kašpar, J., Kolář, T., Mašek, J., Oulehle, F., Rybníček, M., Rydval, M., Svoboda, M., Šenfeldr, M., Šamonil, P., Vašíčková, I., and Vejpustková, M.: Increasing stem dimensions of European temperate tree species between 1990 and 2015, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17582, https://doi.org/10.5194/egusphere-egu24-17582, 2024.

EGU24-18975 | Orals | CL1.2.2

Climate signal in Pericopsis elata tree rings d18O series and potential for precipitation reconstructions in the eastern Congo Basin 

Tom De Mil, Daniele Colombaroli, Nestor Luambua, Chadrack Kafuti, Paolo Cherubini, Matthias Saurer, Wannes Hubau, and Hans Beeckman

it is unclear whether pronounced droughts reaching the most remote regions of the Congo Basin are within a historical norm or have occurred only in the last decades. There is a growing evidence that a number of species with anatomically distinct rings can be used for dendroclimatological studies in the Congo Basin, such as Afrormosia (Pericopsis elata) (PEEL). Annual growth increments, i.e. Tree-Ring Width (TRW), are often co-determined by many environmental factors and yield low potential for reconstructions. Earlier work has shown that δ18O measured in PEEL tree rings holds a precipitation amount effect. Here we focus on new P. elata isotope series to estimate the isotope-precipitation relationship at the annual-scale and discuss its potential for reconstructing precipitation variability back to 1850 AD. δ18O values yielded better sensitivity as well as coherence between trees compared to TRW. Lower δ18O values (28-29‰) after 1960 reflect the anomalously wetter conditions between 1950 and 1970 recorded in the Congo Basin and neighbouring areas. Higher δ18O values after 1970 are in agreement with the reduction in precipitation reflected in gauges and satellite data. Further comparisons with instrumental data and other proxies can refine a precipitation reconstruction currently extending to 1850 AD.

How to cite: De Mil, T., Colombaroli, D., Luambua, N., Kafuti, C., Cherubini, P., Saurer, M., Hubau, W., and Beeckman, H.: Climate signal in Pericopsis elata tree rings d18O series and potential for precipitation reconstructions in the eastern Congo Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18975, https://doi.org/10.5194/egusphere-egu24-18975, 2024.

EGU24-20227 | ECS | Posters on site | CL1.2.2

Converging trends and strengthening climatic signal in the radial growth of Abies alba in Austria – between the legacies of “Waldsterben” and the era of climate change? 

Balázs Garamszegi, Michael Grabner, Elisabeth Wächter, Josef Gadermaier, and Klaus Katzensteiner

Silver fir (Abies alba) is a key forest tree species in Central Europe growing most commonly in its mixtures with Fagus sylvatica and Picea abies. It is also an important species to dendrochronology due to its longevity, historic timber utilization, and generally well-synchronized interannual growth series. However, a growing number of dendroecological studies focusing on climate change has left the species relatively underrepresented even compared to its lower abundance as a dominant forest tree species. It is also due to its weaker growth–climate relationship, compared to species growing in more climatically limited (first of all water-limited) environments. In forest sciences, the species has received wide attention during the complex forest decline phase after the late 1970s and during the 1980s, referred to as the “Waldsterben” in the German-speaking countries of Central Europe, highlighting the negative effects of air pollution of that time, particularly in the context of silver fir. In the era of climate change, the species is gaining renewed interest, especially for its further admixing potential to climatically more resilient forest stands.

In our study, we have investigated the long-term trends and the interannual climatic signal in the radial growth chronologies from monospecific stands of silver fir at seven sites representing a broad climatic and elevational gradient along the distribution of the species. The measured chronologies reveal an increasing low-frequency growth synchrony, starting with a periodic growth increase at the investigated sites since the 1980s, regardless of tree and stand age. Preliminary correlation results suggest that the water-balance related climatic signal has been introduced or has significantly increased between the periods 1961–1990 and 1991–2020. This has been partly associated with a shift or even clear change of sign in the temperature signal. Significant relationships, yet with varying sign, have been also found with the atmospheric water vapor content at each site.

The main research questions aim to focus on the pace and term of this change manifested in the climatic signal, namely (i) whether the growing conditions have changed over longer term or were rather influenced by specific years, (ii) if the change was abrupt or more gradual over time. To answer these questions, different climate data-driven models are fitted to the (detrended) growth series, and the error of the model fit is assessed by shorter windows. The temporal patterns of the change, together with the general growth trends identified, are compared to the climatic trends and the frequency of drier periods since the 1980s, with attention to the timescale of the “Waldsterben” phenomena. The interpretation of the results shall reflect a complex interplay of different drivers of forest conditions during the last decades of the 20th century and the inherent uncertainties thereof. Nevertheless, it can contribute to the dendroecological knowledge of an ecologically and silviculturally important species at the crossroads of past legacies, current and predicted challenges.

How to cite: Garamszegi, B., Grabner, M., Wächter, E., Gadermaier, J., and Katzensteiner, K.: Converging trends and strengthening climatic signal in the radial growth of Abies alba in Austria – between the legacies of “Waldsterben” and the era of climate change?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20227, https://doi.org/10.5194/egusphere-egu24-20227, 2024.

EGU24-20751 | ECS | Posters on site | CL1.2.2

Determining influencing factors of climate-growth relationships of European beech across its ecological amplitude 

Christopher Leifsson, Allan Buras, Anja Rammig, and Christian Zang and the Beech Network

The prospect for European beech forests (Fagus sylvatica L.) over the course of the 21st century is uncertain due to climate change. In context, climate sensitivity of growth is a valuable indicator of physiological integrity, but its natural variability is poorly understood in productive, closed canopy forests. Climate sensitivity may not only depend on temporal and spatial differences in climatic conditions, but also on trees’ rank progression in the course of forest maturation.

Here, we determine how the drought sensitivity of secondary growth in beech varies in space and time according to growth trends, growth variability and climatic conditions. The temporal variability of these variables is determined via a moving window approach using a network of tree-ring sites across the species’ geographical and climatological distribution. The moving window derived variables are applied to a linear mixed-effects model allowing for the estimation of linear, non-linear and interactive effects. Furthermore, dry and wet subsets of the data are supplied individually to determine differences between dry and wet site conditions.

Our results indicate considerable variability in climate sensitivity due to complex non-linear and interactive effects of all variables. Generally, drought sensitivity is strongly and positively coupled with growth variability and climatic aridity. The strong non-linear and interactive effects between all variables result in drought sensitivity changing considerably with changes in growth variability and growth trends when climatic conditions are average or wetter than average. However, during dry time-periods, drought sensitivity is consistently high and decoupled from changes in growth trends and growth variability. While these patterns remain relatively similar between dry and wet sites, dry sites show significantly higher drought sensitivity compared to wet sites overall.

In conclusion, we found beech’s drought sensitivity to be significantly affected by growth variability, growth trends and climatic conditions. Furthermore, the influence of each variable on drought sensitivity changes drastically as they interact, indicating all these factors need to be considered when interpreting beech’s climate sensitivity.

How to cite: Leifsson, C., Buras, A., Rammig, A., and Zang, C. and the Beech Network: Determining influencing factors of climate-growth relationships of European beech across its ecological amplitude, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20751, https://doi.org/10.5194/egusphere-egu24-20751, 2024.

EGU24-20980 | Posters on site | CL1.2.2

Contrasting water use strategies to climate warming in white birch and larch in a boreal permafrost region 

Xi Qi, Kerstin Treydte, Matthias Saurer, Keyan Fang, Wenling Ann, Marco Lehmann, Kuyuan Liu, Zhengfang Wu, Hong He, Haibo Du, and Mai-He Li

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency (iWUE) and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C,δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 70 years covering a pre-warming period (1951-1979; base period) and a rapid-warming period (1980-2018; warming period). We found that white birch but not larch significantly increased their radial growth over the warming period. The increased iWUE in both species was mainly driven by elevated Ca but not climate. White birch but not larch showed significant positive correlations between tree-ring δ13C,δ18O and summer maximum temperature as well as vapor pressure deficit in the warming period, suggesting a strong stomatal response in the deciduous birch but not in the conifer larch to climate warming. The climate-warming induced radial growth enhancement in white birch is associated with a more ‘conservative’ (low gs, constant A) water use strategy than in larch (constant gs, high A), suggesting an advantage for the former than the latter in a warming world in the permafrost regions.

How to cite: Qi, X., Treydte, K., Saurer, M., Fang, K., Ann, W., Lehmann, M., Liu, K., Wu, Z., He, H., Du, H., and Li, M.-H.: Contrasting water use strategies to climate warming in white birch and larch in a boreal permafrost region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20980, https://doi.org/10.5194/egusphere-egu24-20980, 2024.

EGU24-22320 | Posters on site | CL1.2.2

Novel provenance approaches for tracing Cedrela timber in Bolivia 

Kathelyn Paredes Villanueva, Akira Kagawa, Hisashi Abe, Miho Kojima, Chunhua Zhang, Shinta Ohashi, Akiko Akita, Kanae Takahashi, Maria Uriarte, and Laia Andreu-Hayles

Illegal logging and its related timber trade is one of the major drivers of forest loss, species diversity and economic and social conflicts. Over the last decades, several international and national regulations have been implemented as an attempt to flight this practice. At the same time, different scientific approaches such as genetics, mass spectrometry, and wood anatomy show great potential for timber identification. Our objective was to assess the potential of Near Infrared Spectrometry (NIRS), chemical elements and stable isotopes as tools to increase accuracy of site of origin identification for Cedrela fissilis. Between 3 to 4 tree cores were collected at breast height from Cedrela trees from three sites in Southeastern Bolivia. For the isotopic analysis, annual tree rings were identified and dated. Cellulose extraction was extracted from the cores following the standard methodology of Jayme-Wise. Wood flakes without previous treatment were complementarily analyzed using a MATRIX-F spectrometer (Bruker Optics) for the NIR measurement and a Niton XL3t XRF Analyzer for the elemental analyses. We then used Principal Component Analyses (PCA) and Random Forest to assess the potential of these methods to discriminate among sampling sites. Random Forest on elemental raw data had a site discrimination accuracy about 84%, with strontium (Sr), copper (Cu) and Cadmium (Cd) as potential tracers. For NIRS spectra, PC1 explained 99% of the variance with mean site discrimination accuracy about 78%. Preliminary results of stable oxygen (δ18O) and carbon (δ13C) isotopes showed distinct patterns across the sites but accuracy is still under evaluation through the analyses of annual measurements. Although discrimination accuracies were similar among timber identification methods, each method has the potential to identify a different site. Our preliminary results suggest that site discrimination performance may be specific to each method and site.

How to cite: Paredes Villanueva, K., Kagawa, A., Abe, H., Kojima, M., Zhang, C., Ohashi, S., Akita, A., Takahashi, K., Uriarte, M., and Andreu-Hayles, L.: Novel provenance approaches for tracing Cedrela timber in Bolivia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22320, https://doi.org/10.5194/egusphere-egu24-22320, 2024.

EGU24-579 | ECS | Posters on site | AS2.4

Meteorological and Soil Moisture Measurements in Mount Kenya Region at Various Scales 

Peter K. Musyimi, Balázs Székely, Hellen W. Kamiri, Tom Ouna, and Tamás Weidinger

The optimal solution for solving many uncertainties associated with weather and climate data is accurate field measurement. This enhances various climate services that can be offered to different sectoral case studies and solve societal weather-related challenges by ensuring the obstacles are overcome amicably, for instance, climate adaptation barriers in the face of climate variability. The main goal of our study was to make long-term meteorological measurements in Mount Kenya region rainforest biome at an elevation of 1998 m above sea level (Karatina University weather station) and 3055 m above sea level (Mount Kenya field station) used at various scales from 2022. We are using Temperature-Moisture-Sensor (TMS) burial (1 m) and TMS Long (45 cm) soil sensors as well as temperature/relative humidity data loggers. These devices provide us with crucial data and reshape field measurement campaigns in data-scarce regions of Kenya. The soil moisture sensors also measure soil temperature, surface, and air temperature. The soil moisture data and temperature at various scales is acquired at an interval of 10 minutes while the data logger records data at an interval of 30 minutes.  Another key goal was to acquire soil moisture data at tropical rainforest biome which is scarce as well as relative humidity and temperature. The objectives of the study are to analyze reference evapotranspiration and estimation of real evapotranspiration in humid Mount Kenya climatic region, Nyeri County; compare climate parameters in two different elevations; to understand microclimatic changes associated with varying elevations and ensure data quality control in analysis by checking uncertainties and sensitivities associated with ERA5 reanalysis, synoptic (GFS/ECMWF) and station datasets. Therefore, to narrow the gap between missing data, uncertainties, and quality control of data, meteorological field measurements cannot be misconstrued.

Keywords: data loggers, field measurement, soil moisture, quality control, Kenya,

How to cite: Musyimi, P. K., Székely, B., Kamiri, H. W., Ouna, T., and Weidinger, T.: Meteorological and Soil Moisture Measurements in Mount Kenya Region at Various Scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-579, https://doi.org/10.5194/egusphere-egu24-579, 2024.

The impact of increasing CO2 on global temperature and strengthening of the greenhouse effect makes the measurements of gas exchange between the Earth’s surface and the atmosphere particularly important. Observational data on greenhouse gases exchange between different types of ecosystem and the atmosphere are crucial in thorough understanding the global climate mechanisms. Fruit tree ecosystems constitute an important kind of land use in Central Europe and apple is very extensively cultivated fruit tree crop in the world. Because intensively used apple orchards have a potential for carbon (C) sequestration and to be an important sink of atmospheric CO2 the continuous measurements of processes of ecosystem-atmosphere exchange are necessary for properly determining of global carbon (C) budget.

This work presents the results of continuous closed-path EC measurements of carbon dioxide (CO2) fluxes in the apple orchard located near Grójec in the Masovian voivodeship on the largest orchard area in Poland. These are the results of the first and the only measurements of the net CO2 fluxes (started in February 2023) carried out in the apple orchard ecosystem in Poland. The main goal of the work is to present variations of CO2 flux at different time scales at different stages of fruit tree growth and during different climatic conditions. The turbulent fluxes of CO2 were calculated on a 30-min basis. The raw data were computed using the EddyPro -7.0.9 software taking into account the necessary corrections and procedures to correct the obtained results. CO2 fluxes were characterized by clear daily variability with negative values during the day (CO2 uptake in the photosynthesis process) and positive at night (CO2 release in plants respiration processes). The most intensive CO2 absorption took place between May and September (phases of flowering and fruit development and ripening) the with a maximum in June. Negative 30 min mean CO2 flux value reached for this month was around 12 µmol ּ m-2 ּ s-1 around noon. In the remaining months the CO2 absorption processes were lower and ranged around a few µmol ּ m-2 ּ s-1

How to cite: Pawlak, I. and Kleniewska, M.: Variability of turbulent carbon dioxide flux netto at different time scales in an apple orchard ecosystem in Central Poland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-592, https://doi.org/10.5194/egusphere-egu24-592, 2024.

EGU24-956 | ECS | Posters on site | AS2.4

Fluxible: an R package to calculate ecosystem gas fluxes in a reproducible and automated workflow. 

Joseph Gaudard, Richard Telford, Vigdis Vandvik, and Aud Helen Halbritter

Measurements of gas fluxes are widely used when assessing the impact of global-change drivers on key aspects of ecosystem dynamics, especially carbon. It shows whether an ecosystem is a source or a sink of atmospheric carbon, and how the storage dynamics could change in the future. Ecosystem gas fluxes are typically calculated from field-measured gas concentrations over time, using a linear or exponential model and manually selecting good quality data. This approach is highly time consuming and prone to potential bias that might be amplified in further steps, as well as having major reproducibility issues. The lack of a reproducible and bias-free approach creates challenges when combining global-change studies to make biome and landscape scale comparisons.

The Fluxible R package aims to fill this critical gap by providing a workflow that removes individual evaluation of each flux, reducing risk of bias, and making it reproducible. Users set specific data quality standards and selection parameters as function arguments that are applied to the entire dataset. The package runs the calculations automatically, without prompting the user to take decisions mid-way, and provides quality flags and graphs at the end of the process for a visual check. This makes it easier to use with large flux datasets and to integrate into a reproducible workflow. Using the Fluxible R package makes the workflow reproducible, increases compatibility across studies, and is more time efficient.

How to cite: Gaudard, J., Telford, R., Vandvik, V., and Halbritter, A. H.: Fluxible: an R package to calculate ecosystem gas fluxes in a reproducible and automated workflow., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-956, https://doi.org/10.5194/egusphere-egu24-956, 2024.

EGU24-1084 | ECS | Orals | AS2.4

Analysis of fog occurrence changes in the Namib Desert across time and space and impacts on natural and artificial fog collection 

Eleonora Forzini, Giulio Castelli, Aida Cuni-Sanchez, and Elena Bresci

In the Namib Desert, along the South-Western African coast, fog represents the main water input for local flora and fauna. During the last years, changes in the timing of fog occurrence and in the quantity of water that can be harvested from it, have been observed in several areas of the world, including the Namib Desert. A deeper insight into fog presence and fog water yield changes can help to understand to what extent Namib Desert’s ecosystem is being and will be affected in future by climate change. This information can also contribute to local environmental protection and carbon dioxide sequestration strategies, as fog water can be used for reforestation and land restoration. An 8-year-long dataset of harvested fog water rates recorded daily in 13 ground stations along the Namib Desert was statistically analysed to inspect advection fog occurrence evolution. The results show a noticeable intra-annual and inter-annual variability in rates and seasonality of harvested fog water. On the other hand, observed trends in collected fog water time series are generally decreasing, but longer time series are required to confirm the trend since El Niño Southern Oscillation (ENSO) phenomenon presence in the analysed period might have had an impact. The main hypothesis is that changes in fog occurrence and its characteristics are due to climate modifications, given that no extensive human activities are present in the area. However, further analyses on fog-related climatic and meteorological factors, possibly including remote sensing or reanalysis datasets aiming to increase the available data timespan, are envisioned to understand to what extent fog collection in the Namib Desert will be affected in future by climate change.

How to cite: Forzini, E., Castelli, G., Cuni-Sanchez, A., and Bresci, E.: Analysis of fog occurrence changes in the Namib Desert across time and space and impacts on natural and artificial fog collection, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1084, https://doi.org/10.5194/egusphere-egu24-1084, 2024.

The observed surface wind speed (SWS) over China has declined in the past four decades, and recently, the trend has reversed, which is known as SWS stilling and recovery. The observed SWS is vulnerable to changes in nonclimatic factors, i.e., inhomogeneity. Unfortunately, most of the existing studies on the long-term trend of SWS were based on raw datasets without homogenization. In this study, by means of geostrophic wind speed and penalized maximal T test, we conduct a systematic homogeneity test and exploration of the homogenization impact for SWS at over 2,000 stations in China from 1970 to 2017. The results show that the inhomogeneity in the observed SWS over China is detectable at 59% of national weather stations. The breakpoint years are mainly concentrated in the late 1970s, mid-1990s and early 2000s. Overall, 18% of breakpoints are caused by station relocations, and the remaining breakpoints are likely related to anemometer replacement and measurement environment changes that occurred during the mid-1990s and early 2000s. After homogenization, the decreasing trend in SWS during 1970-2017 decreased from -0.15 m/s decade-1 to -0.05 m/s decade-1. The homogenized SWS recovery period advanced from the early 21st century to the early 1990s, which is consistent with the SWS variations, excluding the impact of urbanization around weather stations. The phase change in the Western Hemisphere warm pool (WHWP) might be one of the causes of homogenized SWS recovery.

How to cite: Zhang, Z.: Homogenization of observed surface wind speed based on geostrophic wind theory over China from 1970 to 2017, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1358, https://doi.org/10.5194/egusphere-egu24-1358, 2024.

EGU24-2642 | Posters on site | AS2.4

Can dry get wetter even if rainfall declines? 

Nurit Agam and Dilia Kool

Drylands are 57% of the terrestrial area of the world, and are disproportionally affected by climate change. This is particularly pertinent in so-called “climate-change hotspots” such as the Mediterranean, where temperature increases at a rate of up to 0.45 oC/decade and precipitation is expected to decline. Given the sparsity of studies in drylands and the consequent lack of understanding of the unique processes in drylands, the degree to which these projections are accurate for drylands is questionable. The fact that drylands, by definition, are classified according to the aridity index, exposes the inherent assumption that desert hydrology is primarily governed by precipitation and potential evapotranspiration (ET0). There is increasing evidence, however, that non-rainfall water inputs (NRWIs; fog, dew, and water vapor adsorption) are a substantial source of water in multiple desert environments. In arid and hyper-arid drylands, water vapor adsorption is not only the least studied of the three NRWIs, but also likely the most common. In the Negev desert, Israel, the projected decrease in rainfall and increase in temperature, and therefore increase in ET0, is expected to result in drier soils. This potentially will increase the amount of water vapor adsorption. Here we present the actual rate of warming and the corresponding changes in ET0 in the Negev desert. We then elucidate, for the first time, the contribution of water vapor adsorption to desert hydrology and how it might be affected by climate change based on changes observed in the last 20 years.

How to cite: Agam, N. and Kool, D.: Can dry get wetter even if rainfall declines?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2642, https://doi.org/10.5194/egusphere-egu24-2642, 2024.

EGU24-3967 | Orals | AS2.4

Impact of Subsurface Thermal Anomalies on Air Temperatures in Idealized Scenarios Using PALM-4U 

Patricia Glocke, Christopher C. Holst, Basit A. Khan, and Susanne A. Benz

The impact of underground heat (or cold) sources such as man-made infrastructures or geothermal systems have been extensively studied in geosciences. Soil temperatures near underground parking garages may be up to 10 K warmer than their surroundings. However, the coupling between these temperature anomalies in the soil and the atmosphere as a bottom-up scheme has been neglected so far. We investigated how this scenario can be modeled in the turbulence and building resolving large eddy simulation urban climate model PALM-4U and assessed the impact of modified soil temperatures on air temperatures in an idealized domain. Hereby, the soil temperatures at 2-meter depth were increased and decreased by 5 K, respectively. Multiple scenarios were considered, differentiating between cyclic and Dirichlet/radiation boundary conditions along the x-axis. Further, we ran the simulations under summer and winter conditions, day and night, and three land cover types which are bare soil, short grass, and tall grass. After three days of simulation time, cyclic boundary conditions induced air temperature anomalies due to changes in the subsurface temperature. However, Dirichlet/radiation boundary conditions did not show alterations. Analyzing the cyclic scenarios, although the absolute air temperature was significantly influenced by the landcover, the magnitude of the air temperature anomaly shows little variation. Daytime and seasonality exerted a greater influence on the magnitude. The greatest positive near-surface air temperature anomaly when increasing the soil temperature was 0.38 K for all land cover types and develops during winter between 09:00 and 10:00 CET. Smallest influence was found during summer at 09:00 CET, where increased soil temperatures resulted in a 0.02 K rise over short- and tall grass, and 0.18 K over bare soil. Conversely, decreasing soil temperatures showed predominantly inverse patterns.

The findings contribute to the general comprehension of the coupling of soil- and atmospheric temperatures, inferring also insights of simulating idealized but reality-oriented scenarios in PALM-4U.

How to cite: Glocke, P., Holst, C. C., Khan, B. A., and Benz, S. A.: Impact of Subsurface Thermal Anomalies on Air Temperatures in Idealized Scenarios Using PALM-4U, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3967, https://doi.org/10.5194/egusphere-egu24-3967, 2024.

EGU24-5207 | Posters on site | AS2.4

Eddy Covariance (EC) measurements in a restored floodplain area at the Morava River in Austria within the EU funded REWET project 

Anna Lindenberger, Magdalena von der Thannen, and Hans Peter Rauch

Although occupying only 7% of the earth's surface, wetlands store 33% of the world's terrestrial carbon. When these ecosystems are drained to be converted into agricultural, forestry or mining exploitations, they release greenhouse gases contributing to climate change. While bringing together 18 partners from 9 countries, the REWET (REstoration of WETlands to minimise emissions and maximise carbon uptake – a strategy for long term climate mitigation) project focuses on determining how the restoration and management of wetlands can be optimised to maximise their carbon uptake while in balance with type-specific natural processes and biodiversity.

The REWET project draws upon a network of seven Open Labs (OLs) located in different geographical areas of Europe and covers different types of terrestrial wetlands: freshwater wetlands, peatlands and floodplains. The heterogeneity of the Open labs allows the application of different restoration methodologies while following the same monitoring plan to provide replicable knowledge.

This paper presents the measurements and the first result of the OL in Austria within the REWET project. The site is a restored and now protected floodplain area at the Morava River. EC measurements are used to calculate the CO2 and CH4 fluxes and the seasonal as well as annual carbon balance of the ecosystem. Furthermore, the effect of floodplain water levels and grazing in this area is investigated. The EC instruments have been set up on a floating platform to allow measurements also during flood events, when understudied, critical transition of GHG fluxes may occur. The CO2/H2O analyser started collecting the first data in the middle of October 2023 whereas the CH4 analyser was added in end of December 2023. Since the CO2 analyser was put on site first flood events occurred end of December, which is the first data to be processed and analysed. Additional to the results the challenges in setting up an EC tower in a floodplain area will be presented.

 

 

 

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

How to cite: Lindenberger, A., von der Thannen, M., and Rauch, H. P.: Eddy Covariance (EC) measurements in a restored floodplain area at the Morava River in Austria within the EU funded REWET project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5207, https://doi.org/10.5194/egusphere-egu24-5207, 2024.

EGU24-5340 | ECS | Posters on site | AS2.4

Uncertainty of eddy covariance-derived net ecosystem CO2 exchange over a mountain forest reduced by multiple nighttime filtering approaches 

Alexander Platter, Katharina Scholz, Albin Hammerle, Mathias W. Rotach, and Georg Wohlfahrt

The assessment of net ecosystem CO2 exchange often relies on eddy covariance systems. However, this method overlooks CO2 advection, even if it is often non-negligible. This is especially the case under stable, low-turbulence nighttime conditions. Hence, there is a need to filter nighttime eddy covariance data for periods when advection can be expected to be non-negligible. This study evaluates both well-established and novel filtering methods at a mountain forest site in Tyrol, Austria (Forest-Atmosphere-Interaction-Research (FAIR) site, AT-Mmg). Established methods, including friction velocity (u*) filtering, its counterpart using the standard deviation of vertical velocity  fluctuations (σw) and an after-sunset flux maxima approach (commonly referred to as van Gorsel method) are applied. Additionally we use a more recent approach with a physically-derived measure of flow decoupling for filtering. With this method also stability information is taken into account, not only a turbulence scale, as in the commonly used u* filtering. As often seen in literature, the uncorrected CO2 flux underestimates the nighttime respiration, as it appears for all the filtering methods. Despite being based on widely differing assumptions, the various filtering approaches yielded relatively similar carbon budget estimates over 14 months of measurements (-252 to -290 g C/m2). in contrast to the uncorrected budget of -521 g C/m2.

Furthermore, we introduce a novel K-means clustering approach that groups flow situations into clusters based on vertical profiles of temperature, σw and wind speed. These clusters need then to be evaluated to determine whether they represent a flow situation in which CO2 advection is expected to be irrelevant. Such scenarios are often Foehn periods or early-night situations with high turbulence and low stability. This approach is relatively straightforward to implement, works with an unlimited number of input variables and has the advantage that the identified periods are easy to interpret. This method results in a 14-month budget of -232 g C/m2 for our study site. 

The universality of the clustering method allows not only for an unlimited number of input variables, it can be also easily extended for the entire day. There is no a priori reason not to filter eddy covariance data during the daytime when low-turbulence situations with persistent in-canopy flows may lead to non-negligible advection, especially in complex terrain. We made an attempt of daytime filtering in this study with the clustering method, but also with some adapted versions of the benchmark methods. All of these daytime filtering methods suggest that there is an underestimation of the CO2 uptake in the morning for the uncorrected measurements. Filtering for both nighttime and daytime leads to a range of 14-month budgets of -451 to -359 g C/m².

Further analysis, incorporating different established sites, direct advection measurements or numerical simulations, could be used in future to explore the full potential of the novel clustering approach, especially with its application to daytime flux data.

How to cite: Platter, A., Scholz, K., Hammerle, A., Rotach, M. W., and Wohlfahrt, G.: Uncertainty of eddy covariance-derived net ecosystem CO2 exchange over a mountain forest reduced by multiple nighttime filtering approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5340, https://doi.org/10.5194/egusphere-egu24-5340, 2024.

EGU24-5597 | ECS | Orals | AS2.4

Investigating forest management's impact on local climate in Fennoscandia through statistical and dynamical modeling 

Bo Huang, Yan Li, Xia Zhang, Chunping Tan, Xiangping Hu, and Francesco Cherubini

The forest plays a crucial role in the land ecosystem, impacting local climates through various biophysical mechanisms. While numerous observational and modeling studies have explored the distinctions between forested and non-forested areas, the impact of forest management on surface temperature has been relatively understudied. This limited attention is attributed to the inherent challenges associated with adapting climate models to effectively account for the complexities of forest structure parameters. Employing a combination of machine learning-based statistical analysis and a regional climate model, along with high-resolution maps detailing various forest compositions and structures, we explore the connection between specific forest management strategies and local temperature variations. The findings reveal a tendency for more developed forests to contribute to higher land surface temperatures compared to younger or less developed ones. Relative to the present state of Fennoscandian forests, an ideal scenario with fully developed forests is found to an annual mean warming of 0.26 ℃ in statistical models, with a range of 0.03 to 0.69 ℃ (5th to 95th percentile). However, the dynamical model indicates an annual average cooling effect of -0.25 °C, ranging from -0.42 to -0.10 °C (5th to 95th percentiles), attributing this difference to the dynamical model's inability to accurately simulate winter warming. Both models project a cooling effect in summer, with statistical and dynamical models showing -0.03 ± 0.22 ℃ and -0.53 ± 0.20 ℃, respectively. Conversely, scenarios involving undeveloped forests result in an annual average cooling of -0.29 ℃ in statistical models, with a range of -0.61 to -0.01 ℃, a slight summer warming of 0.03 ± 0.16 ℃, and a winter cooling of -0.69 ± 0.47 ℃. The dynamical model, however, predicts an annual average warming of 0.28 ± 0.18 °C, a summer warming of 0.53 ± 0.15 °C (mainly driven by increased sensible heat fluxes), and a winter cooling of -0.29 ± 0.25 °C. This study deepens our understanding of how alterations in vegetation impact climate patterns. While our findings shed light on the intricate connections between forest composition and surface temperatures, there's a clear need to refine how regional climate models capture the intricate biophysical mechanisms within forest dynamics. Enhancements in this representation will be crucial for establishing a comprehensive understanding of how forest management practices specifically influence local climate regulation services.

How to cite: Huang, B., Li, Y., Zhang, X., Tan, C., Hu, X., and Cherubini, F.: Investigating forest management's impact on local climate in Fennoscandia through statistical and dynamical modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5597, https://doi.org/10.5194/egusphere-egu24-5597, 2024.

EGU24-6114 | Orals | AS2.4

Reflect sunlight or use it to store carbon? 

Alexander Graf, Georg Wohlfahrt, Ankur Desai, and the FLUXNET ALBEDO team

In considerations about land management and global climate, biophysical effects like those of albedo are known to modify biochemical effects of greenhouse gas release or uptake. In particular, the cooling effect of afforestation via creation of carbon sinks has been shown to be partly offset by the low albedo and snow-masking effect of tree canopies.

In this presentation, we give a global overview on the relationship between albedo and CO2 uptake (net ecosystem productivity NEP and net biome productivity NBP). We focus on a recent study (Graf et al. 2023, https://doi.org/10.1038/s43247-023-00958-4) and the questions:

(i) Do ecosystems sequestering more CO2 have a lower albedo as a rule?

(ii) How close would such a relation be and how much room does it leave for climate-smart land use?

(iii) Given the different immediacy of albedo and NBP based radiative forcing, are there different mitigation policies to be preferred at different points in time?

To empirically investigate these questions with direct in-situ measurements, we identified 176 FLUXNET stations with sufficient coverage of NEP, incoming and outgoing shortwave radiation and ancillary data. A method to fill gaps in outgoing shortwave radiation and identify snow cover periods was developed and validated against available data and PI-provided snow statistics. 

We found a hyperbola-like decrease in maximum achievable effective (flux-weighted) long-term albedo as NEP increases, and vice versa. Apart from this joint limit, which also applied to non-forest and snow-free sites, the relation scattered strongly, indicating some room for climate-smart land use considering both albedo and carbon sequestration.

A conceptual model based on a paired-site permutation approach showed that maximizing each site’s NEP without considering albedo, leads to albedo-based positive radiative forcing (warming) during the first approximately 20 years, before being offset by an even stronger NBP-based cooling. However, the fact that most sites are currently far below their possible maximum albedo-NEP combination also allows for a balanced scenario in which both parameters are improved simultaneously. It avoids warming on all timescales, but provides less cooling than pure NEP maximization in the long term. We discuss how these timelines would interact with current emission reduction policies, the reasons underlying the relationship and real-world examples of joint NEP and albedo change.

How to cite: Graf, A., Wohlfahrt, G., Desai, A., and team, T. F. A.: Reflect sunlight or use it to store carbon?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6114, https://doi.org/10.5194/egusphere-egu24-6114, 2024.

EGU24-6150 | ECS | Posters on site | AS2.4

Investigation of the Vertical Geometry of Low Level Clouds in the Namib Desert 

Deepanshu Malik, Hendrik Andersen, and Jan Cermak

This study comprehensively investigates the vertical geometry of low-level clouds in the Namib desert. Using ceilometer measurements and meteorological station observations, a precise determination of cloud-base height and the separation of low-level stratus and fog is performed.
The Namib Desert, known for hyper-arid conditions and frequent cloudiness, presents an intriguing environment for the study of low-level clouds and their vertical geometry. Fog (ground-touching low-level clouds), a common atmospheric phenomenon in the Namib Desert, is influenced by the interplay of coastal upwelling and spatial temperature differences. Differentiation of fog from other low-level clouds and understanding cloud dynamics are crucial, as fog impacts the water balance in this arid region. Here, ceilometer measurements of cloud base altitude are analyzed and combined with local station measurements with the aim of developing a statistical model to robustly predict cloud base altitude.
Initial results suggest a robust correlation between the cloud base height and surface relative humidity, as well as other meteorological variables. This finding proves beneficial for utilizing meteorological parameters such as the lifted condensation level as a surrogate for cloud-base height. The outcomes of this study hold significance for modeling of satellite-based fog probability product and ecological studies.

How to cite: Malik, D., Andersen, H., and Cermak, J.: Investigation of the Vertical Geometry of Low Level Clouds in the Namib Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6150, https://doi.org/10.5194/egusphere-egu24-6150, 2024.

EGU24-6590 | ECS | Orals | AS2.4

Continuous, long-term monitoring of soil CO2 concentration and CO2 flux using a novel, low-cost CO2 sensor system 

Thi Thuc Nguyen, Ariel Altman, Nadav Bekin, Nurit Agam, and Elad Levintal

Soil respiration (Fs) datasets often exhibit low temporal-spatial resolution and spatial bias, particularly lacking observations in arid/semi-arid regions. This limitation significantly constrains our understanding of the mechanisms governing soil carbon dynamics and hinders the correct estimation of CO2 emissions at regional to global scales. Challenges in Fs estimation arise mainly from logistical constraints in manual data collection and the high costs of commercial measuring devices. To address this, we developed a low-cost, open-source, autonomous soil CO2 sensor system. The system design emphasized easy adoption and customization for non-engineer end-users, enabling the collection of high-frequency, long-term soil CO2 concentration data, and consequently, Fs estimates. A system including six low-cost CO2 sensors distributed at two soil depths (5 and 10cm) was deployed in the Negev Desert since May 2023. Fs estimates were determined from CO2 concentration gradient using Fick's law (FG) and cross-validated with Fs measured by automated chambers (FC). We found a good agreement between FG and FC both in the short term (i.e., sub-daily fluctuation) and long term (i.e., annual net CO2 emission). Our data also revealed daily and seasonal Fs patterns correlating with environmental factors like temperature and precipitation. The results demonstrate that our system, despite costing less than 10% of automated chamber systems, offers equivalent accuracy in Fs estimates, higher temporal resolution, and potential for enhanced spatial resolution if widely adopted.

How to cite: Nguyen, T. T., Altman, A., Bekin, N., Agam, N., and Levintal, E.: Continuous, long-term monitoring of soil CO2 concentration and CO2 flux using a novel, low-cost CO2 sensor system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6590, https://doi.org/10.5194/egusphere-egu24-6590, 2024.

The eddy covariance (EC) method has been widely used to capture the temporal and spatial patterns of nitrous oxide (N2O) emissions from a wide variety of agricultural ecosystems. Technological advancements in the recent years have brought new tunable infrared laser-based closed-path gas analyzers suitable for EC measurements. To achieve high sensitivity and low measurement noise, these analyzers use multi-pass optical cells with long sensing path. A drawback of these cells is the relatively large internal volume requiring high-flow rate, high-power pumps to attain fast response to changes in gas concentration.  Additionally, these cells are prone to contamination and require in-line filters. In this study we evaluate the frequency response of a novel, low-power, field deployable N2O closed-path EC system consisting of: (1) a gas analyzer with a small volume single-pass optical cell, (2) a 3 m sulfonated tetrafluoroethylene ionomer intake tube acting as water vapor permeable membrane to dry the air sample, (3) a cyclone type, non-barrier inertial particle separator (IPS) to mitigate the effects of particulates contamination of the optical sample cell, and (4) a small, low-power pump module with an automatic pressure and flow control. The performance of the new N2O EC system is evaluated in-situ 3 m above a fertilized agricultural wheat field and compared to a co-located fast-response H2O and CO2 open-path gas analyzer and sonic anemometer (IRGASON). Tube delays, determined by cross-covariance of N2O with vertical wind, were consistent over time and varied between 0.2 and 0.5 s. Spectral and co-spectral analysis of vertical wind, temperature, H2O, CO2 and N2O showed good agreement. Ogive functions demonstrated that the new system has adequate frequency response to capture >90% of the N2O fluxes for a wide range of wind speeds and atmospheric stabilities and is suitable for deployment in remote areas.

How to cite: Bogoev, I.: Frequency Response Evaluation of a Low-power Closed-path Eddy Covariance System for Measuring Nitrous Oxide Fluxes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6604, https://doi.org/10.5194/egusphere-egu24-6604, 2024.

EGU24-7308 | ECS | Posters on site | AS2.4

Role of vegetation and soil-induced effects of microclimate on non-rainfall water inputs 

Jannis Groh, Thomas Pütz, Daniel Beysens, Harry Vereecken, and Wulf Amelung

Precipitation (i.e. rain, snow, hail) is the main form of water input to our ecosystem. However, depending on local climatic conditions, a significant amount of water can also be produced by various fractions of non-rainfall water inputs (NRWIs), namely dew, hoar-frost, rime, fog, and adsorption of water vapour in the soil. Such NRWIs are often neglected because they are typically small compared to daily rainfall. However, these NRWIs provide our ecosystems with additional water, which is important for the survival of the fauna and flora in the ecosystem, especially during drier periods.

Although NRWIs are understood in principle, much remains to be learnt about their precise determination at the ecosystem level, their spatial and temporal distribution, and their ecological function for the ecosystem. We present a conceptual measurement setup that allows us to determine each non-rainfall water component for natural and extensive grasslands as well as for agricultural ecosystems. Our results for the experimental site Selhausen (Germany, TERENO-SOILCan) show that i) the main part of NRWI comes from dew formation, ii) the rate and frequency of dew formation differs significantly between vegetation types under similar atmospheric boundary conditions, and iii) the drivers of dew formation during a dry down period differ between ecosystems (grassland and arable land). A better understanding of these vegetation and soil-dependent effects will help us to better predict dew formation processes in our ecosystems in the future.

How to cite: Groh, J., Pütz, T., Beysens, D., Vereecken, H., and Amelung, W.: Role of vegetation and soil-induced effects of microclimate on non-rainfall water inputs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7308, https://doi.org/10.5194/egusphere-egu24-7308, 2024.

EGU24-7892 | Posters on site | AS2.4

Simultaneous trace gas flux monitoring of 10 greenhouse gases and air pollutants with a single instrument 

Morten Hundt, Marco Brunner, Jonas Bruckhuisen, and Oleg Aseev

Monitoring of trace and greenhouse gas fluxes is key to understand the interaction between atmosphere, plants, and soil and therefore to improving our understanding of the climate system in general.

Complex flux systems, in environments where both biogenic and anthropogenic sources and sinks play a role, require measurement of many different inert and reactive trace gases and greenhouse gases simultaneously to obtain a complete budget.

Until recently, however, the monitoring was usually limited to only a few gases per measurement device making the technique complex and expensive but providing only a limited picture. MIRO Analytical has developed a novel multicompound gas analyzer that can monitor up to 10 air pollutants (CO, NO, NO2, O3, SO2 and NH3), greenhouse gases (CO2, N2O, H2O and CH4) and other atmospheric trace gases such as (OCS, HONO, CH2O) simultaneously at ppb level.

The eddy covariance (eddy flux) technique is often used to measure fluxes of trace gases but requires a high time resolution. Our compact instrument, combing several mid-infrared lasers (QCLs), offers 10 Hz sampling rate, outstanding precision, selectivity and accuracy and an automatic water vapor correction, which makes it ideal for eddy covariance flux measurements.

In our contribution, we will introduce the measurement technique and will demonstrate application examples of this all-in-one atmospheric flux monitor. The system will be compared to alternative devices in parallel measurements and results of long-term observations and shorter campaigns will be presented.

How to cite: Hundt, M., Brunner, M., Bruckhuisen, J., and Aseev, O.: Simultaneous trace gas flux monitoring of 10 greenhouse gases and air pollutants with a single instrument, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7892, https://doi.org/10.5194/egusphere-egu24-7892, 2024.

Atmospheric fluxes near the surface are key metrics for understanding the interactions between the biosphere and the atmosphere. There is an increasing demand for highly accurate flux measurements for species where fast-response analytical techniques are not available. This includes, among others, stable isotopes, oxygen, ammonia, nitrogen compounds, and bio-aerosols.

Here we introduce quantized eddy accumulation with error diffusion, a new easy-to-implement, high-accuracy eddy accumulation method that is compatible with slow-response analytical techniques. Similar to relaxed eddy accumulation, this method involves sampling air at a constant flow rate and directing it into one of two containers, depending on the vertical wind velocity. The flux is then calculated based on accumulated concentration averages over the flux averaging interval. However, unlike relaxed eddy accumulation, the new method is a direct method that does not require the empirical coefficient β. These developments were made possible by developing a new representation of conditional sampling at a constant flow rate as a quantization process of vertical wind velocity. Fluxes estimated with relaxed eddy accumulation were found to be biased due to sub-optimal quantization. To account for these errors, an error diffusion algorithm was developed, which made it possible to minimize the biases inherent in the quantization process, thereby allowing for accurate and direct flux estimates.

Quantized eddy accumulation with error diffusion is shown to achieve direct flux measurements with errors smaller than 0.1% of the reference eddy covariance flux. Additionally, this method enables an increase in the concentration difference in accumulated samples between updrafts and downdrafts without compromising accuracy, making it especially suitable for detecting smaller fluxes. It also provides improved accumulation volume dynamics, flexible accumulation intervals, and is less prone to errors from non-zero vertical wind velocities.

These new developments are especially useful for measuring small fluxes of elusive atmospheric constituents, particularly in the presence of measurement challenges such as instrument drift or frequency attenuation. A notable application is the accurate measurement of water stable isotopes, which enables the tracing of biological processes and the accurate partitioning of measured fluxes.

How to cite: Emad, A.: Quantized eddy accumulation with error diffusion: a new direct micrometeorological technique with minimal requirements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8926, https://doi.org/10.5194/egusphere-egu24-8926, 2024.

Automated Solution for Discrete Gas Sample Analyses with
Picarro G2508 and SAM Autosampler
Jan Woźniak1, Joyeeta Bhattacharya2, Magdalena E. G. Hofmann1, Frank Krijnen3, Guillermo Hernandez
Ramirez4
1Picarro B.V., Eindhoven, The Netherlands, 2Picarro Inc., Santa Clara, USA; 3University of Saskatchewan; 4University of Alberta

Abstract
Greenhouse gas research community has witnessed an ever-increasing need for automated
solutions for measuring greenhouse gas concentrations in small discrete gas samples. However,
traditional solutions like gas chromatographs often incur high initial and maintenance costs or are
complicated to deploy and maintain, and almost impossible to work with in the field. There has
been a rising interest in the SAM autosampler (www.openautosampler.com) which so far has
been utilized mostly for isotopic measurements of greenhouse gases (e.g., isotopic CO2/CH4), in
conjunction with low flow Picarro analyzers (<50 mL/min). In this report, we demonstrate the
compatibility, efficiency, and advantages of the SAM autosampler with Picarro Greenhouse Gas
(GHG) Concentration analyzers like the G2508 multi species gas analyzer, with much higher flow
rates (>200 mL/min). The results of our experiments show excellent precision and accuracy for
discrete CH4, CO2 and N2O gas measurements. Also, we have been able to determine linearity in
dilution factors and characterized memory effects and its variability in different gas species (e.g.,
comparing CO2 vs N2O). This report also provides recommendations on the methods and best
practices for discrete gas sample measurements. In summary, the Picarro G2508 (or other GHG
analyzers) in conjunction with SAM Autosampler offers an attractive, cost-effective, and simpler
alternative to gas chromatograph or similar available solutions

How to cite: Wozniak, J.: Automated Solution for Discrete Gas Sample Analyses withPicarro G2508 and SAM Autosampler, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9193, https://doi.org/10.5194/egusphere-egu24-9193, 2024.

EGU24-9231 | ECS | Orals | AS2.4

Constructing a comprehensive numerical experiment to study biospheric-atmospheric feedbacks driving dry season cloud formation over the Amazon Basin  

Vincent de Feiter, Sebastiaan de Haas, Jordi Vilà-Guerau de Arellano, Raquel González Armas, Daniël Rikkers, Guido Haytzmann, Martin Janssens, Oscar Hartogensis, Imme Benedict, Luiz Machado, and Cléo Quaresma

The Amazonian hydrological and carbon cycle are controlled by a complex, interconnected and interdependent myriad of surface and atmospheric processes. Improving our understanding and numerical representation of these cycles under a changing climate requires a deeper exploration of the biospheric-atmospheric coupling and the processes governing the formation and deepening of shallow cumulus clouds. Utilising a comprehensive set of surface and upper-air atmospheric measurements from the CloudRoots-Amazon22 campaign alongside an integrated hierarchy of models, we construct a numerical experiment to systematically study these processes throughout the dry season of 2022. The model hierarchy consists of a large eddy simulation resolving turbulence and shallow cumulus formation, a coupled rainforest-atmosphere mixed-layer model to map the sensitivity to surface and atmospheric observations and a moisture tracking model to identify and quantify moisture sources, sinks, and long-range transport. Individual days of observations were characterised into representative shallow convective and shallow-to-deep convective regimes. We accurately replicated the evolution of radiation and the asymmetrical exchange fluxes of energy, momentum, moisture, and carbon during the shallow convective regime. By analysing the diurnal variability of the state variables, we can determine how turbulent mixing controls the morning transition, from strong gradients to well-mixed conditions above the forest. Ongoing work involves improving the representation of in-canopy processes and simulating the shallow-to-deep convective regime by introducing thermodynamic forcings, such as moist air intrusion or increased wind sheared conditions, on the shallow convective experiment.  

How to cite: de Feiter, V., de Haas, S., Vilà-Guerau de Arellano, J., González Armas, R., Rikkers, D., Haytzmann, G., Janssens, M., Hartogensis, O., Benedict, I., Machado, L., and Quaresma, C.: Constructing a comprehensive numerical experiment to study biospheric-atmospheric feedbacks driving dry season cloud formation over the Amazon Basin , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9231, https://doi.org/10.5194/egusphere-egu24-9231, 2024.

EGU24-9320 | ECS | Orals | AS2.4

Water and Carbon Dioxide Interactions in the most unlikely places: The hidden dynamics of the Sahara Desert soils 

Nadav Bekin, Dennis Ashilenje, Abdelghani Chehbouni, Lhoussaine Bouchaou, Lamfeddal Kouisni, Dilia Kool, and Nurit Agam

Soil CO2 efflux is primarily attributed to the metabolic activity of soil organisms and is a major component of the global carbon balance. The carbon balance of deserts, such as the Sahara Desert, the largest desert on Earth, is considered neutral as low soil moisture inhibits biological activity and reduces the soil CO2 efflux to its lower limit. Studies in the last decades challenge this paradigm, reporting a mysterious nocturnal CO2 uptake by desert soils, which in some cases leads to a net gain of carbon by the soil. While the factors controlling this phenomenon are still under debate, it is clear that the presence of water is essential. How, then, can nocturnal CO2 uptake occur in the driest soil conditions when no apparent water is available to drive the process? We embarked on a field expedition in the Sahara Desert, southwest Morocco, during the summer of 2022 to explore the dynamics of water and carbon in this presumably “stagnant” ecosystem. We discovered nocturnal water vapor adsorption, driven by atmospheric water vapor transported from the Atlantic Ocean and penetrating hundreds of kilometers inland where the vapor is captured in the soil’s top layer. Changes in soil water content were determined from soil relative humidity (measured using a profile of relative humidity sensors) and soil-specific vapor sorption isotherms (measured using a vapor sorption analyzer). With this novel method, we were able to detect a daily increase of 0.3 mm of water even at a distance of 250 km from the Ocean. Concurrent measurements of CO2 fluxes (measured using manual and automatic flux chamber systems), confirmed that small atmosphere-to-soil CO2 fluxes occurred during the night, coinciding with downward water vapor fluxes. This indicates that the atmosphere provides a consistent water source and may initiate soil CO2 uptake. Simultaneous measurements of water vapor and CO2 fluxes at a second site suggested that the quality of the correlation between the two fluxes depends on soil properties. Overall, the daily CO2 cycle was unbalanced (net uptake of 0.08 g m-2) implying that the soil acted as a carbon sink. This sink is small, but considering its occurrence even in inland desert ecosystems and the fact that arid and hyper-arid regions occupy 26% of Earth’s terrestrial surface, the effect of atmospheric water capture by desert soils on CO2 exchange may play a significantly larger role in the global carbon balance than previously thought. 

How to cite: Bekin, N., Ashilenje, D., Chehbouni, A., Bouchaou, L., Kouisni, L., Kool, D., and Agam, N.: Water and Carbon Dioxide Interactions in the most unlikely places: The hidden dynamics of the Sahara Desert soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9320, https://doi.org/10.5194/egusphere-egu24-9320, 2024.

EGU24-9627 | ECS | Orals | AS2.4

Increased spatial replication above heterogeneous agroforestry improves the representativity of eddy covariance measurements 

José Ángel Callejas Rodelas, Alexander Knohl, Ivan Mammarella, Timo Vesala, Olli Peltola, and Christian Markwitz

Eddy covariance (EC) studies typically involve the use of one or maximum two measuring towers, which leads to a low level of spatial replication, compromising the statistical representativity of EC measurements, especially above highly heterogeneous ecosystems, such as agroforestry systems. Lower-cost eddy covariance setups (LC-EC) represent a potential solution to this problem, since their affordability allows for the installation of multiple EC towers to study heterogeneity at the landscape scale. In the last years, several LC-EC setups have been successfully validated against conventional EC setups (CON-EC), with the main difference being the use of slower gas analyzers. These introduce a higher uncertainty due to the enhanced high-frequency spectral attenuation in the turbulent energy spectrum.

In this study, we analyzed turbulent fluxes of CO2 and H2O and turbulence characteristics measured by three flux towers equipped with LC-EC setups above one agroforestry system located in Wendhausen, Germany. The agroforestry system was a Short Rotation Alley Cropping (SRAC) system, consisting of alternating rows of trees and crops. The three flux towers were installed at different North-South aligned tree stripes. Additionally, we compared the results of the three LC-EC setups above the SRAC with another LC-EC setup installed at an adjacent monocropping (MC) field.

The objectives of the study were: (i) to evaluate the spatial variability of EC fluxes from the three flux towers above the SRAC system; (ii) to compare the variability of fluxes within the SRAC to the variability of fluxes between SRAC and MC; (iii) to quantify whether the use of several LC-EC setups counteracts the higher uncertainty associated to LC-EC, due to the increased statistical robustness of the measurement network compared to the hypothetical use of just one EC station.

The highest spatial variability across the SRAC was measured for CO2 fluxes, followed by latent heat (LE) flux, with coefficients of variation, calculated following Oren et al. (2006) (https://doi.org/10.1111/j.1365-2486.2006.01131.x), of 2.3 and 1.4 (dimensionless), respectively. The spatial variability in CO2 and LE fluxes within the SRAC was similar to the variability between MC and SRAC, and was attributed to the different land cover types around the towers. On the other hand, the spatial variability in sensible heat flux (H), momentum flux and turbulence characteristics (such as friction velocity and variance of vertical wind speed), within the SRAC, was smaller than the variability between SRAC and MC, likely explained by the development of an internal boundary layer (IBL) above the SRAC.

Our results show that the heterogeneity of the SRAC, despite not affecting significantly the turbulence characteristics across the site, leads to a large spatial variation in CO2 and LE fluxes. Therefore, a distributed network of several EC systems is necessary to properly quantify patterns and drivers of CO2 and latent heat fluxes above such heterogeneous land-use systems.

How to cite: Callejas Rodelas, J. Á., Knohl, A., Mammarella, I., Vesala, T., Peltola, O., and Markwitz, C.: Increased spatial replication above heterogeneous agroforestry improves the representativity of eddy covariance measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9627, https://doi.org/10.5194/egusphere-egu24-9627, 2024.

EGU24-9790 | ECS | Posters on site | AS2.4

Turbulence generation by unresolved orography 

Shreyas Deshpande and Cedrick Ansorge

Slope flows, resulting from the interplay between buoyancy and gravitational forces, are well-known to govern a plethora of local weather phenomena. In particular, orographic features and the associated surface roughness can induce turbulent mixing in the planetary boundary layer. While orographic drag models have been proposed to understand the effects of turbulence and waves due to orography, numerical simulations locally rely on closures based on the Monin-Obukhov Similarity Theory. The validity of these models and their interaction regarding turbulence production due to orography at unresolved scales is questionable. We study the turbulence generation by small-scale orography under the influence of stable stratification and weak mixing. To bypass the common complications with surface modeling, we use direct numerical simulation featuring a shallow valley to study the problem at a reduced scale. To imitate the intricate boundary conditions, an Immersed Boundary Method is used that features fully resolved three-dimensional roughness elements in the form of a local valley. However, modeling such flows also poses challenges due to the numerous parameters governing the triggering of turbulence. In this presentation, we introduce a scaling framework orographic for the problem and a viable numerical set-up along with the first results from preliminary studies at intermediate scale separation.

* This work is funded by the ERC Starting Grant ”Turbulence-Resolving Approaches of the Intermittently Turbulent Atmospheric Boundary Layer [trainABL]” of the European Research Council (funding ID 851347).

How to cite: Deshpande, S. and Ansorge, C.: Turbulence generation by unresolved orography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9790, https://doi.org/10.5194/egusphere-egu24-9790, 2024.

Atmospheric flows virtually always occur over rough surfaces, which enhances the drag, mixing and vertical transport of pollutants and moisture in the atmospheric boundary layer (ABL). During nighttime, when the absence of solar radiation leads to surface cooling, a stratified surface layer forms, and turbulence decreases in intensity and spatial extent, giving rise to large-scale intermittency. Roughness is known to counteract the buoyancy-induced reduction of turbulence in the stable regime by an increase of mixing, but the effects are lumped together in surface-layer similarity. To investigate the interaction of surface roughness and stable density stratification in the ABL at the process level, direct numerical simulation (DNS) of rough turbulent Ekman flow at Reynolds numbers well within the turbulent regime and for large domains is performed. Roughness is represented by an array of 56×56 roughness elements with a uniform width and height distribution on the lower wall. This small-scale three-dimensional surface roughness is fully resolved with an immersed boundary method (IBM) and has a packing density of 10%. For neutral stratification, we have obtained data in the transitionally rough regime and at the verge of the fully rough regime. Starting from the roughest neutral case with z0+≈2, stable stratification is gradually increased with a constant-temperature (Dirichlet) boundary condition. The focus of this study is the direct effect of roughness on the stability regime, the rough-wall scaling in the logarithmic layer and the scaling for the roughness parameters z-nought for momentum and temperature, which is crucial for the Monin–Obukhov similarity theory.


* This work is funded by the ERC Starting Grant ”Turbulence-Resolving Approaches of the Intermittently Turbulent Atmospheric Boundary Layer [trainABL]” of the European Research Council (funding ID 851347). Simulations were performed on the resources of the High-Performance Computing Center Stuttgart (HLRS) on the Hawk cluster. The computing time and storage facilities were provided by the project trainABL with the project number 44187.

How to cite: Kostelecky, J. and Ansorge, C.: Simulation and scaling analysis of small-scale roughness in neutrally and stably stratified turbulent Ekman flow, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10016, https://doi.org/10.5194/egusphere-egu24-10016, 2024.

EGU24-10102 | Orals | AS2.4

The Land-Atmosphere Feedback Initiative 

Volker Wulfmeyer and the The LAFI Team

The quality of weather forecasts, seasonal simulations, and climate projections depends critically on the adequate representation of land-atmosphere (L-A) feedbacks. These feedbacks are the result of a highly complex network of processes and variables related to the exchange of momentum, energy, and mass. Significant challenges persist in understanding processes and feedbacks, which this initiative will address.

The Land-Atmosphere Feedback Initiative (LAFI) is an interdisciplinary consortium of researchers from atmospheric, agricultural, and soil sciences as well as from bio-geophysics, hydrology, and neuroinformatics proposing a novel combination of advanced research methods. The overarching goal of LAFI is to understand and quantify L-A feedbacks via unique synergistic observations and model simulations from the micro-gamma (» 2 m) to the meso-gamma (» 2 km) scales across diurnal to seasonal time scales.

LAFI consists of a network of closely intertwined projects addressing six research challenges formulated as objectives and hypotheses on 1) alternative similarity theories, 2) the impact of land-surface heterogeneity, 3) partitioning evapotranspiration, 4) understanding entrainment, 5) synergistic characterization of L-A feedback, and 6) droughts or heatwaves potentially investigated by ad-hoc field observations. Collaboration across the twelve projects will be fostered by three Cross Cutting Working Groups on Deep Learning, Sensor Synergy and Upscaling, as well as the LAFI Multi-model Experiment.

In this presentation, an overview of the LAFI research approach is given with particularly emphasis of the synergy of observations and modeling efforts substantiated by first results from the Land-Atmosphere Feedback Observatory (LAFO) at the University of Hohenheim in Stuttgart, Germany.

How to cite: Wulfmeyer, V. and the The LAFI Team: The Land-Atmosphere Feedback Initiative, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10102, https://doi.org/10.5194/egusphere-egu24-10102, 2024.

EGU24-10295 | ECS | Posters on site | AS2.4

Exploring Nocturnal Canopy Advection in Complex Terrain Through Active Heating Fiber Optics: Unraveling Temperature Dynamics and Airflow Patterns 

Yi Fan Li, Kuo Fong Ma, Chin Jen Lin, Yen Jen Lai, Po Hsiung Lin, and Taro Nakai

Nocturnal advection significantly influences the accurate estimation of net ecosystem exchange (NEE). This phenomenon is prevalent in Taiwan's subtropical montane forests, introducing a potential bias when relying solely on eddy covariance data for carbon budget calculations. From the preliminary analysis, the wind speed can be well estimated through the temperature difference between the heated and unheated fiber optical.The derived five-minute average wind speed exhibits a high coefficient of determination (R^2) of up to 0.94.

In the current study, a fiber observational setup consisting of a 40m vertical section and a 90m horizontal section has been implemented to investigate temperature dynamics and airflow in complex terrain. The wind speed profile can be well reflected from the preliminary data analysis. Insights gained through this approach contribute to a better understanding of the nocturnal canopy advection model, offering valuable corrections to NEE estimates.

How to cite: Li, Y. F., Ma, K. F., Lin, C. J., Lai, Y. J., Lin, P. H., and Nakai, T.: Exploring Nocturnal Canopy Advection in Complex Terrain Through Active Heating Fiber Optics: Unraveling Temperature Dynamics and Airflow Patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10295, https://doi.org/10.5194/egusphere-egu24-10295, 2024.

EGU24-11109 | ECS | Orals | AS2.4

Time-scale turbulent transport extraction and high time resolution flux estimation using wavelet analysis 

Gabriel Destouet, Nikola Besic, Emilie Joetzjer, and Matthias Cuntz

Flux estimation from eddy-covariance flux tower measurements faces the problem of integrating fluxes only in the case of fully developed turbulence and in non-stationary environments with advective components. The standard eddy-covariance method operates on fixed-length signals, requiring the knowledge of a maximum correlation time-length as well as post-processing steps assessing the suitability and quality of the data. Statistical tests are carried out to assess if flux estimates were performed during sufficiently developed turbulence and if they were corrupted by advective components. Tests with friction velocity u* or σw, steady-state tests, and flux variance similarity are now standard during and after flux calculations. More elaborate methods such as ogive optimisation are used to deal with advection. An important disadvantage of all these statistical tests is that they discard the whole time interval such as half an hour if they detect failure.

Time-scale (time-frequency) analyses have been used as an alternative to the standard time-analysis approach to estimate ecosystem fluxes. In particular, wavelet analysis, which is well adapted to the study of non-stationary and scale invariant processes such as turbulence, has been used in previous works. It presents the ability of separating the different components of the flux in time-scale space and as such could be an efficient alternative for flux estimation avoiding the above statistical tests.

To address this problem, we propose a general framework for analysing fluxes in time-scale space, and propose a new method for identifying and extracting turbulent transport that avoids advective components and does not need statistical tests after the flux calculations. The new method is based on the analysis in time-scale domain of the amplitude of the vertical component of the Reynold stress tensor and can be seen as a time-scale transposition of standard tests mentioned above. As a direct consequence, we are able to estimate fluxes at high time resolution over times and scales with sufficiently developed turbulence. We show application of the framework at the beech forest site FR-Hes and demonstrate its relation with standard eddy covariance calculations. Our methodology is implemented in the Julia package TurbulenceFlux.jl and is readily available. The proposed framework and its code implementation is fully differentiable and hints to further investigations, such as the study of flux ecosystem response times, or sensitivity analysis against wavelet and averaging window parameters.

How to cite: Destouet, G., Besic, N., Joetzjer, E., and Cuntz, M.: Time-scale turbulent transport extraction and high time resolution flux estimation using wavelet analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11109, https://doi.org/10.5194/egusphere-egu24-11109, 2024.

EGU24-12298 | Posters on site | AS2.4

The dynamics of water vapor  absorption by soils typical of arid lands 

Pedro Berliner, Mercy Ama Boadi Manu, Dillia Kool, and Nurit Agam

Water vapor adsorption (WVA), a non-rainfall water input, is a poorly documented phenomenon despite its role in regulating water and energy fluxes in soils of coastal deserts. Water vapor movement towards the soil surface and its absorption by the soil occurs whenever the atmospheric water potential is higher than that of the air-filled soil pores. The latter is influenced by soil characteristics, in particular the soil surface area and pore connectivity. Thus, it is expected that under similar atmospheric conditions,  absorption of water vapor will be determined by soil characteristics. We carried out a detailed field trial in which we compared two loamy soils with different salt content.

Water vapor absorption was measured using micro-lysimeters (MLs) instrumented with relative humidity (RH) and temperature sensors at depths 0.5cm, 2cm, 5cm, 10cm, and 45cm in both MLs during the 2022 and 2023 summers. Total absorption was determined as the increase in mass from a minimum (obtained during late afternoon) to a peak observed on the next day before sunrise. Concurrent changes in soil water potential at each depth were computed by applying the Kelvin equation.

Relative humidity in both soils was low during the entire season with the average computed water potential values being lower in the high salt content soil. The total daily water vapor absorption was lower in the low salt content soil, and the rate of absorption was different . The temperature and RH distribution patterns with depth also differed consistently throughout the measuring season for both soils. The effect of salt on water vapor absorption will be highlighted.

How to cite: Berliner, P., Boadi Manu, M. A., Kool, D., and Agam, N.: The dynamics of water vapor  absorption by soils typical of arid lands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12298, https://doi.org/10.5194/egusphere-egu24-12298, 2024.

EGU24-13667 | Orals | AS2.4

Deployment of Doppler lidar within forests: Advancing our understanding of canopy-atmospheric boundary layer processes  

Sonia Wharton, Matteo Puccioni, Holly Oldroyd, Matthew Miksch, Matthias Falk, Stephan de Wekker, Robert Arthur, and Jerome Fast

The atmospheric boundary layer above forest canopies is difficult to measure in practice, and our understanding of its flow physics usually is still limited to tall tower measurements which have limited reach above the canopy, or vertically-profiling remote sensing measurements which are usually taken outside of the canopy. We present a recent 5-month study of wind flow measurements taken above a 50-m tall forest in Washington state, USA, using two Doppler lidars. One vertical-profiling lidar was placed directly on top of the 70-m tall Wind River National Ecological Observatory Network (NEON) tower and took measurements of wind velocity, direction and turbulence up to 220 m above ground level. A scanning lidar was placed in a nearby clearing and programmed to scan the wind field over the forest canopy, including overlapping its scans with the profiling lidar on top of the tower. The scanning lidar also captured terrain induced flows across the surrounding mountain-valley terrain. Both lidars captured wind jets and periods of intermittent turbulence over the forest canopy. How and when these mechanically-forced turbulence events penetrate the high leaf area index (LAI) forest canopy are studied using NEON’s eddy covariance flux exchange measurements and the tower profile measurements of air temperature, pressure, moisture, and wind velocity within the forest.

 

Applications of studying wind flow over the forest canopy are broad and vary from a better characterization of the wind profile for wind energy resource assessment to improving our understanding of vertical exchange processes by studying how “top-down” forced turbulence events influence mass and energy fluxes between the forest canopy and atmosphere. Special consideration of how above canopy processes influence canopy coupling/decoupling, including top-down turbulent sweep events, will be presented for the tall Wind River forest. We will also discuss upcoming experiments including 1) the deployment of 3-d sonic anemometers in the Wind River subcanopy (as part of a larger Integrated Carbon Observation System (ICOS) below-canopy study) to advance our understanding of canopy mixing processes and 2) a new campaign planned for the deciduous Mountain Lake Biological Station NEON tower in the mountains of Virginia, USA. The latter study is designed to observe changes in the above-canopy wind profile and its interactions with below-canopy flows and vertical flux exchanges across a summer-to-winter LAI transition.

 

How to cite: Wharton, S., Puccioni, M., Oldroyd, H., Miksch, M., Falk, M., de Wekker, S., Arthur, R., and Fast, J.: Deployment of Doppler lidar within forests: Advancing our understanding of canopy-atmospheric boundary layer processes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13667, https://doi.org/10.5194/egusphere-egu24-13667, 2024.

EGU24-14868 | Orals | AS2.4

Mapping soil moisture uptake by dry soils across Eddy covariance measurement sites 

Sinikka Paulus, Rene Orth, Sung-Ching Lee, Jacob A. Nelson, Anke Hildebrandt, Ngoc Nguyen, Markus Reichstein, and Mirco Migliavacca

Soils take up water vapor from the atmosphere through processes that involve vapor diffusion and water retention. This can theoretically occur in any ecosystem under the preconditions of a humid atmosphere and dry soil pores. It can play a critical role in dry ecosystems because it can provide a substantial proportion of the total water inputs at the daily timescale. However, it remains insufficiently investigated in many regions, partly due to the absence of continuous, dedicated measurements.

In this study, we use a recently developed algorithm to detect and filter Eddy Covariance (EC) derived negative latent heat flux data collected at semi-arid and arid sites to identify soil water vapor adsorption. In a previous study, we successfully used EC data to detect soil water vapor adsorption for a Mediterranean ecosystem. 

Our findings indicate that these negative latent heat fluxes exhibit a correlation with soil water content and relative humidity at various sites suggesting that a part of the negative latent heat flux is related to soil water vapor adsorption. Building on these findings, we demonstrate that soil water vapor adsorption occurs during the dry season in various ecosystems, including woody savannas, grasslands, shrublands, and even some forests. The flux magnitude reaches values comparable to daily evaporation, which is in line with existing literature on the few previously measured ecosystems.

Furthermore, we analyze the drivers of the occurrence and dynamics of soil water vapor across sites. Thereby we study the influence of e.g. soil texture or vegetation height. This way, our study expands our knowledge of the spatial extent and inter-annual dynamics of soil water vapor adsorption in natural ecosystems and, more generally, sheds light on a mostly overlooked aspect of land-atmosphere interaction.

How to cite: Paulus, S., Orth, R., Lee, S.-C., Nelson, J. A., Hildebrandt, A., Nguyen, N., Reichstein, M., and Migliavacca, M.: Mapping soil moisture uptake by dry soils across Eddy covariance measurement sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14868, https://doi.org/10.5194/egusphere-egu24-14868, 2024.

EGU24-15005 | Posters on site | AS2.4

Climatology of surface parameters for the city of Turin using UTOPIA (Italy) land surface model 

Claudio Cassardo, Valentina Andreoli, Davide Bertoni, Sujeong Lim, Massimiliano Manfrin, and Seon K. Park

While there are several series of daily observations of temperature, precipitation and few other parameters available in many locations in the world, sometimes lasting more than a century, there are much less series of other variables related to the surfae atmospheric layer or underground soil, such as sensible and latent heat fluxes, soil heat flux, soil temperature and moisture in the root layer and below it. This work aims to propose a method to evaluate such parameters at a climatic time scale using a trusted land surface model, taking the variables from the outputs of the simulation and creating a database. In this work, the selected model is the UTOPIA (University of TOrino land surface Process Interaction model in Atmosphere). This technique can be applied in general to each site in which hourly observations of the seven parameters needed for the simulation are available (temperature, humidity, pressure, the two components of the horizontal wind velocity, precipitation and solar radiation or cloudiness). In a preliminary phase, the database will be created on the period 1992-2023, on which we have the availability of hourly measurements carried out at the Department of Physics of the Turin University. In a second phase, we plan to develop a methodology to derive hourly observtions from the existing series of data gathered in the city of Turin, using peculiar methods to interpolate or extrapolate the missing observations of required inputs and to downscale hourly observations from daily observations. This methodology could be tested using the eisting data in the recent climate period.

How to cite: Cassardo, C., Andreoli, V., Bertoni, D., Lim, S., Manfrin, M., and Park, S. K.: Climatology of surface parameters for the city of Turin using UTOPIA (Italy) land surface model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15005, https://doi.org/10.5194/egusphere-egu24-15005, 2024.

EGU24-15582 | ECS | Posters on site | AS2.4

A satellite-based analysis of fog and low stratus life cycle processes in the Po valley, Italy 

Eva Pauli, Jan Cermak, Hendrik Andersen, and Michaela Schütz

A better understanding of fog and low stratus (FLS) life cycle processes can help traffic safety, improve solar power planning and enhance the understanding of ecosystem processes in fog-prone regions. Nevertheless, large-scale analyses of FLS life cycle processes are challenging due to the high spatial variability of FLS and complex interactions between the land surface and the atmosphere.

Here, we use a satellite-based FLS formation and dissipation time data set, as well as reanalysis data to investigate regional variations in the FLS life cycle in the Po valley region in northern Italy. With its large spatial extent, relatively low topographic variability and high FLS occurrence, the Po valley is an ideal area to study FLS life cycle processes in central Europe. In a case study approach, we analyze FLS life cycle processes pertaining to variations in land surface characteristics and atmospheric drivers. First results reveal the importance of the temporal development of temperature, specific humidity and boundary layer height for FLS formation during radiation-driven FLS events. These effects are further modified by the local topography and the synoptic situation.

This analysis provides a basis to set up further process-oriented sensitivity studies using explainable machine learning, which has shown to be an ideal tool to gain a deeper understanding of the effect of non-linear land-atmosphere interactions on the FLS life cycle.

How to cite: Pauli, E., Cermak, J., Andersen, H., and Schütz, M.: A satellite-based analysis of fog and low stratus life cycle processes in the Po valley, Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15582, https://doi.org/10.5194/egusphere-egu24-15582, 2024.

EGU24-16214 | ECS | Orals | AS2.4

Microphysical and Electrical Characteristics of Fog in the United Arab Emirates 

Narendra Reddy Nelli, Diana Francis, Ricardo Fonseca, Olivier Masson, Mamadou Sow, Rachid Abida, and Emmanuel Bosc

Fog is a prevalent weather phenomenon in several arid regions, including the Empty Quarter desert in the United Arab Emirates (UAE), located on the northeastern side of the Arabian Peninsula. Despite being primarily an arid country with desert landscapes dominating its terrain, most events causing visibility to drop below 1 km in the UAE are attributed to condensation processes rather than dust occurrences. We present in-situ measurements of fog microphysics from the Barakah Nuclear Power Plant (BNPP, a coastal site located at 23.968052°N, 52.267309°E) and atmospheric electric field measurements obtained during the Wind-blown Sand Experiment (WISE)-UAE field campaign conducted at Madinat Zayed (23.5761° N, 53.7242° E; elevation: 119 m).

Measurements of fog microphysics were conducted during the winter season of 2021 -2022 at the BNPP, located in the Western coastal region of the United Arab Emirates. Twelve fog events were observed during this period. The primary objective of this study is to detail the microphysical characteristics of these events and refine current visibility parameterization schemes based on in-situ measurements of fog microphysical properties. All observed fog events are found to share a common feature: a bimodal distribution in droplet number concentration (Nc), with modes at 4.5 µm and 23.2 µm . Despite the high proportion of fog smaller droplets associated with the fine mode, the greatest contribution to the liquid water content (LWC) comes essentially from medium to large droplets between 10 µm and 35 µm. The recalibration of existing visibility parameterization schemes revealed that the decrease (increase) in horizontal visibility with increasing (decreasing) LWC (FI, fog index) tends to be more gradual for the studied cases compared to standard visibility parameterization schemes. Additionally, the fog sedimentation velocity, estimated to be at a maximum of 1.85 cm s-1, occurs predominantly in the LWC range of 100 - 200 mg m3, corresponding to a median volume diameter 24.8 µm. Our findings shed new light on the complexity of fog microphysics and its impact on visibility, underscoring their importance in refining weather models for accurate fog forecasting.

For the first time, the changes in the atmospheric electric field (Ez) during foggy conditions is studied in a hyper-arid region; the United Arab Emirates (UAE), using comprehensive measurements during the Wind-blown Sand Experiment (WISE)-UAE. The longer the fog persists, the more variable Ez becomes, primarily due to the fog's ability to absorb and redistribute the charges of the atmospheric small ions. This absorption alters the ion balance, affecting electrical conductivity within the atmosphere, which in turn leads to sustained alterations in Ez. A record high Ez value of 2571 V m-1 was measured during a long-lasting fog event. Ez values returned to normal during the fog dissipation phase. The results of this work can be applied to develop techniques for fog harvesting and to improve fog forecasting by accounting for the effect of the electric field on fog lifetime and characteristics.

How to cite: Nelli, N. R., Francis, D., Fonseca, R., Masson, O., Sow, M., Abida, R., and Bosc, E.: Microphysical and Electrical Characteristics of Fog in the United Arab Emirates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16214, https://doi.org/10.5194/egusphere-egu24-16214, 2024.

EGU24-16368 | ECS | Posters on site | AS2.4

Examining the fog occurrence over the Bucharest Henri Coandă International Airport and its adjacent area 

Alex Vlad, Gabriela Iorga, Nicu Barbu, and Sabina Stefan

Fog forecasting and fog nowcasting events are challenging issues especially when the fog phenomenon appears in the vicinity of airports because the reduced visibility associated with fog represent a high risk for air traffic events. Bucharest Henri Coandă International Airport (OTP, 44.57°N, 26.1°E, 95 m above sea level) is the largest airport in Romania and is located about 16 km north of Bucharest, the capital and most developed city of Romania. Its surroundings are comprised partly of residential and natural protected areas, and partly have agricultural use. Due to its geographic position, the airport is an important air traffic hub on the routes between western and eastern world destinations. In terms of numbers of flights, during the observation period analyzed here, the air traffic at OTP was significantly lowered during the spring of 2020 due to COVID-19 pandemic but soon after the restrictions were lifted and due to redirection of the flights over Ukraine after 2022, the air traffic is significantly increased in present.

Data and analyses reported here cover a period of 2 decades from the beginning of 2003 to the end of 2023. Meteorological data, including fog events, relative humidity, wind speed and direction, were measured by the weather station of Romanian Air Traffic Services Administration ROMATSA R.A. Data about boundary layer and solar radiation was extracted from the public available database from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5.

Present study reports the analysis of the evolution of the frequency of fog events and the relationships between fog events and speed and direction of the wind, and between fog events and the relative humidity. The correlations between the boundary layer height, solar radiation and the fog events were also investigated. Bivariate polar plots revealed fog appears with higher frequency (about 32%) during cold season, from October to March, and during early morning hours. Overview of the entire data set shows in some years mono-modal distributions of the fog frequency of occurrence with respect to the local time with peaks during the night and in the early morning hours and mono-modal flat distributions in other years. We observed the fog events are correlated with dominant wind directions of east-nord-east (ENE) and west-south-west (WSW). Statistical analysis of the data also showed a prevalence of the radiation fog over the advection fog.

Acknowledgement: AV was supported by the University of Bucharest, PhD research grant. AV acknowledges the partial funding from the NO Grants 2014-2021, under Project contract no. 31/2020, EEA-RO-NO-2019-0423 project. Data regarding boundary layer and solar radiation was extracted from the public available database from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. We thank ROMATSA R.A. for access to the database.

How to cite: Vlad, A., Iorga, G., Barbu, N., and Stefan, S.: Examining the fog occurrence over the Bucharest Henri Coandă International Airport and its adjacent area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16368, https://doi.org/10.5194/egusphere-egu24-16368, 2024.

EGU24-16844 | Posters on site | AS2.4

Leaf thermoregulation and fog wetting dynamics of Erica platycodon in a Macaronesian cloud forest 

Carlos M. Regalado, Omar Garcia-Tejera, and Axel Ritter

Interception of fog droplets in cloud forests leads to wetting of the canopy, hampering transpiration and affecting the energy dynamics of the vegetation due to evaporation of the leaf water lamina and the reduction in the incoming solar radiation. We carried out continuous concurrent measurements of the canopy temperature (through infrared thermometers), artificial leaf wetness (LWS) and the micrometeorology of a cloud forest in the Anaga Biosphere Reserve (Tenerife, Canary Islands) during a 4-month period. Fog presence at the site, characterized by visibility measurements (Ω), was coincidental with variations in LWS and a decline in net solar radiation, Rn, i.e. 62.2 W m-2 during foggy conditions (Ω < 1 km) versus 245.0 W m-2 for fog-free conditions (Ω ≥ 1 km). Infrared readings during foggy conditions of one of the representative species of the cloud forest stand, the perennial tree Erica platycodon, showed that differences between canopy and ambient temperatures were primarily driven by Rn. After a fog event, E. platycodon was estimated to remain wet for at least 30 minutes up to 2.25 hours. This study provides information about the consequences of fog in the wetting/drying dynamics of cloud forests of the Canary Islands and their leaf thermoregulation.

How to cite: Regalado, C. M., Garcia-Tejera, O., and Ritter, A.: Leaf thermoregulation and fog wetting dynamics of Erica platycodon in a Macaronesian cloud forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16844, https://doi.org/10.5194/egusphere-egu24-16844, 2024.

EGU24-16949 | ECS | Posters on site | AS2.4

Measuring Greenhouse Gas Exchange from Paddy Field Using Eddy Covariance Method in Mekong Delta, Vietnam 

Khue Vu Hoang Ngoc, Georg Jocher, Vu Le D. A., Son Le T., An Bui T., Bang Ho Q., and Huong Pham Q.

Agriculture is an important economic sector of Vietnam, the most common is wet rice cultivation. Wet rice cultivation is known as the main contributor to national greenhouse gas emissions. To better understand greenhouse gas exchange in wet rice cultivations and to investigate the factors influencing carbon cycling and sequestration in these types of ecosystems, since 2019, the first eddy covariance station has been installed in a paddy field in Long An province, Mekong Delta, Vietnam. The station is equipped with state-of-the-art equipment for CO2 and CH4 gas exchange and meteorological ancillary measurements. Data from the station are processed following the ICOS recommendations (Integrated Carbon Observation System) for CO2. For CH4, data are separately processed and gap-filled using a random forest model from methane-gap fill-ml, a machine learning package, as there is no standard method for CH4 flux gap-filling yet. Finally, the CO2 equivalent (CO2eq) based on CO2 and CH4 fluxes was estimated. The study area implemented a new water management practice called alternate wetting and drying, which helps to save water and reduce methane emissions. This practice resulted in the minor release of 0.8 kg CH4 per hectare in 2020 and 0.67 kg CH4 per hectare in 2021. However, CO2eq from the rice fields was negative, indicating that the rice fields acted as a sink for CO2eq, with -5.54 kg CO2eq per hectare in 2020 and -7.03 kg CO2eq per hectare in 2021. On a provincial level, rice cultivation activities in Long An, with a total area of 498293 ha, resulted in a CO2eq uptake of 2760 and 3503 tons in 2020 and 2021, respectively. This result is in contrast to the initial hypothesis that rice fields are a source of greenhouse gases. However, N2O was not investigated in this study, which is also known as a strong greenhouse gas.

How to cite: Vu Hoang Ngoc, K., Jocher, G., Le D. A., V., Le T., S., Bui T., A., Ho Q., B., and Pham Q., H.: Measuring Greenhouse Gas Exchange from Paddy Field Using Eddy Covariance Method in Mekong Delta, Vietnam, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16949, https://doi.org/10.5194/egusphere-egu24-16949, 2024.

EGU24-17604 | ECS | Orals | AS2.4

The role of forest canopy-wind interactions on experimental fire behavior using coupled atmosphere-fire modeling 

William Antolin, Mélanie Rochoux, and Patrick Le Moigne

 

Session: AS2.4: Air-Land Interactions

 

Abstract:

Experimental fires provide insights into the behavior of wildland fires and their interactions with the atmosphere. They help modelers build simulations capable of accurately describing fire dynamics, and which can help identify the key processes driving fire development. In particular, the FireFlux I case (a tall grass fire covering 30 hectares) was the first experimental fire to provide in situ measurements of atmospheric dynamics near the fire, highlighting the complexity of fire-induced flows and the importance of fire-induced upward vertical motion (Clements et al. 2007). Despite much theoretical work on forest canopy turbulence, its interactions with fire dynamics are still poorly understood, while they could play an important role (Heilman et al. 2021).

One of the difficulties in wildland fire simulations stems from the disparity between scales. Highly detailed models based on computational fluid dynamics (CFD) tend to represent chemical, radiation, and turbulence processes at the cost of reduced domain size. Conversely, meteorological models tend to provide a better representation of ambient wind over a larger domain size, but this is at the expense of parameterization choices. An intermediate modeling scale is needed to represent the geographical and micrometeorological scales involved in a wildland fire, especially in the development of the fire plume and the induced air entrainment. In recent years, we have therefore worked on designing and validating a coupled atmosphere-fire model, Meso-NH/BLAZE (Costes et al. 2021), where BLAZE represents the fire as a propagating flaming front and Meso-NH is run in large-eddy simulation (LES) mode at high resolution (10-100 m). This preliminary work has highlighted the predominant influence of surface wind on fire behavior and thus the critical need to make it more representative.

In this study, we show that accounting for interactions between forest canopy, surface wind and fire can be done by adding a drag term in the Meso-NH momentum and TKE equations (Aumond et al. 2013), and by running coupled atmosphere-fire simulations at very high resolution (10m and finer). We also assess for the FireFlux I case, the impact of the forest canopy on fire spread through several original data analyses, including wavelet transforms, fire-canopy interaction statistics, and sensitivity to atmospheric turbulence.

 

References

Clements, C. B., et al. (2007) Observing the Dynamics of Wildland Grass Fires: FireFlux – A Field Validation Experiment. Bull. Amer. Meteor. Soc., 88, 1369–1382. doi: 10.1175/BAMS-88-9-1369

 E.Heilman WE, et al. (2021) Observations of Sweep–Ejection Dynamics for Heat and Momentum Fluxes during Wildland Fires in Forested and Grassland Environments. Journal of Applied Meteorology and Climatology 60(2), 185–199. doi:10.1175/jamc-d-20-0086.1

Costes, A., et al. (2021) Subgrid-scale fire front reconstruction for ensemble coupled atmosphere-fire simulations of the FireFlux I experiment. Fire Safety Journal, 126, 103475, doi: 10.1016/j.firesaf.2021.103475

Aumond, P., et al. (2013) Including the drag effects of canopies: Real case large-eddy simulation studies. Boundary-Layer Meteorology, 146, 65–80, doi: 10.1007/s10546-012-9758-x

How to cite: Antolin, W., Rochoux, M., and Le Moigne, P.: The role of forest canopy-wind interactions on experimental fire behavior using coupled atmosphere-fire modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17604, https://doi.org/10.5194/egusphere-egu24-17604, 2024.

EGU24-18634 | ECS | Posters on site | AS2.4

Urban Surface Energy Flux Estimations Utilizing a Thermodynamic Analytical Framework 

Mayank Gupta, Ajinkya Khandare, and Subimal Ghosh

At the local scale, energy exchange shapes microclimates and ecosystems crucial for human health and well-being. For urban areas, the effect, such as Urban Heat Island, is directly manifested in these surface energy fluxes with contrasting responses in values between urban and rural areas. Although progress has been achieved in modeling the land surface energy balance, challenges arise from complex, variable parameterizations linked to surface and climate characteristics, introducing uncertainties. In this work, we utilized the thermodynamic theory that considers the land-atmosphere as a radiative-convective system to analytically estimate total turbulent heat flux and land surface heat storage flux for 20 Urban sites and compared them with Eddy covariance observations. The heat fluxes are determined only from four primary parameters: incoming and outgoing longwave and shortwave radiations at the terrestrial surface. Using the monthly averages derived from the total turbulent flux estimates at the eddy covariance sites, we observed root-mean-square error (RMSE) of 29.16 ± 11.3 Wm−2, a mean bias error (MBE) of -7.09 ± 19.6 Wm−2 and R2 value of 0.82 ± 0.16. We further tested the analytical estimates with land use land cover of Urban sites. Our findings illustrate the distribution of land surface heat storage flux estimates following land use land cover characteristics. The analytical estimates of heat fluxes for urban areas offer several advantages, such as ease of implementation and inexpensive computation, facilitating the evaluation of urban land use feedback for informed urban planning.

How to cite: Gupta, M., Khandare, A., and Ghosh, S.: Urban Surface Energy Flux Estimations Utilizing a Thermodynamic Analytical Framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18634, https://doi.org/10.5194/egusphere-egu24-18634, 2024.

EGU24-20860 | ECS | Posters on site | AS2.4

Laboratory analysis on fog harvesting meshes employing durability tests 

Maria Giovanna Di Bitonto, Carol Monticelli, Salvatore Viscuso, and Alessandra Zanelli

Fog harvesting, an ancient water extraction technique, has gained renewed attention in recent years with the introduction of the Fog Water Collector. Comprising a mesh and supporting structure, this collector has proven effective in extracting water from atmospheric moist air. The Raschel mesh, initially designed for agricultural purposes, has become the predominant choice due to its affordability and widespread availability. Current research endeavors aim to enhance fog water yield by optimizing both collector design and mesh properties.

While Raschel mesh coatings have traditionally been explored to improve efficiency, recent findings suggest that alternative meshes may outperform the conventional Raschel mesh. However, challenges persist in understanding the resistance, lifespan, and maintenance requirements of these newer materials.

Our research takes a systematic approach to address this gap by assessing the durability of various fog harvesting meshes under laboratory conditions. A series of standardized tests are conducted to evaluate their efficiency, providing insights into the intricate relationship between cost, water collection efficiency, duration, and environmental impact. The study aims to inform decision-making processes surrounding fog harvesting mesh selection, considering factors such as initial investment, operational efficiency, and long-term sustainability.

By conducting these analyses in a controlled laboratory environment, we aim to provide valuable insights without the logistical challenges associated with field studies. This approach allows for a thorough examination of fog harvesting mesh performance, contributing to the broader understanding of NRWIs and their potential applications at different scales.

How to cite: Di Bitonto, M. G., Monticelli, C., Viscuso, S., and Zanelli, A.: Laboratory analysis on fog harvesting meshes employing durability tests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20860, https://doi.org/10.5194/egusphere-egu24-20860, 2024.

EGU24-22205 | Posters on site | AS2.4

Quantification of storage change at two contrasting eddy covariance sites 

Anastasia Gorlenko, Konstantinos Kissas, Charlotte Scheutz, and Andreas Ibrom

Eddy covariance (EC) flux measurements are relevant for the study of global change biology when integrated over long-term periods (Baldocchi, 2019). This could lead to researchers being reluctant to adopt state-of-the-art correction methods, especially for sites that have collected continuous data and trends for the last 20 years. The storage change (SC) correction has often been overlooked and simplified and is generally under-investigated in the literature. The present study highlights the dynamics of the storage change term in two different landscapes and proposes a simple correction factor that can be applied backwards to historical data in a forested ecosystem.

The first studied site is a mixed deciduous forest in Denmark (DK-Sor), where a sequential vertical profile system (12 heights) has been installed in 2021 to characterize the vertical component of the storage change more accurately. We compare the often-used 1 point method with the results from the profile system for CO2 and H2O. We study the SC component in terms of its diurnal course, its impact on the annual carbon budget, and its relation to atmospheric stability parameters.

The second site is a Danish rural area (DK-Hove), where four different greenhouse gas fluxes are measured with EC sensors installed at 3 heights on a 200 m tall telecommunication tower. The SC profile system here consists of 5 levels and needs to adapt to the dynamic eddy covariance measurement height of the landscape-scale GHG monitoring system. We present 6 months of SC data from the tall tower for CO2, CH4, N2O and CO, their diurnal courses and relation to meteorological variables.

Overall, this work aims at bringing an additional contribution to shed light on the often-neglected SC term.

 

Reference:

Baldocchi, Dennis D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. United Kingdom: N. p., 2019. Web. doi:10.1111/gcb.14807.

How to cite: Gorlenko, A., Kissas, K., Scheutz, C., and Ibrom, A.: Quantification of storage change at two contrasting eddy covariance sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22205, https://doi.org/10.5194/egusphere-egu24-22205, 2024.

EGU24-22211 | Orals | AS2.4

Optimising the sampling strategy in tall tower eddy covariance flux measurements 

Andreas Ibrom, Konstantinos Kissas, Anastasia Gorlenko, and Charlotte Scheutz

Tall tower eddy covariance (EC) measurements can be used to narrow down the gap between the ecosystem and the continental scale observations by capturing greenhouse gas (GHG) fluxes in a landscape scale (>10 km2). Because of the large footprint, tall tower platforms enable monitoring of greenhouse gas net fluxes, integrating over a multitude of diverse GHG sources and sinks within anthropogenic ecosystems. Yet, the temporal variability of atmospheric stability and atmospheric boundary layer affects the size of the flux footprint and the quality of EC flux estimates, respectively, thereby complicating the interpretation of surface flux estimates. The objective of this study is to determine an optimal sampling scheme alternating between different measuring heights (zm) in order to maximise the number of valid flux measurements as well as mitigating the effect of weather fluctuations on the longitudinal position of the footprint.

We used a six months’ data set of continuous turbulence data measured from a recently deployed prototype flux observation station in a rural area close to the Danish Capital of Copenhagen, Zealand. The system is mounted on a 200 m telecommunication tower equipped with 3D ultrasonic anemometers in three different heights (70m, 90m, 115m) and with a TILDAS GHG analyser capable of switching between three sampling lines corresponding to the specified heights.

We define an optimal sampling strategy based on the peak location of the individual, crosswind-integrated footprints from valid samples. As valid, we characterized those flux measurements, when the zm was within the constant flux layer, as estimated from ceilometer measurement. For each of the half hours, we selected the zm with the footprint’s peak location closest to a target position.

In this presentation, we demonstrate the ability to constrain the flux footprint within a target landscape area by establishing a sampling schedule across the three sampling heights. The results showed that designing a sampling strategy that combines multiple heights has the potential to bring the aggregated footprint for the entire period (footprint climatology) closer to the targeted area. A similar outcome can be attained when sampling from a single height and excluding the instances where the footprint significantly deviates from the target area. Nevertheless, this comes with the trade-off of discarding valid data. Moreover, the weather effect on the variability of the crosswind-integrated footprints was reduced by setting an optimal, multi-height strategy in comparison to the aggregated footprints from the individual heights.

How to cite: Ibrom, A., Kissas, K., Gorlenko, A., and Scheutz, C.: Optimising the sampling strategy in tall tower eddy covariance flux measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22211, https://doi.org/10.5194/egusphere-egu24-22211, 2024.

The Kentucky Mesonet is a great asset for the Commonwealth of Kentucky, from realtime storm monitoring to building a detailed climate record. A detailed climate record is essential as causality between observations and extreme weather can be identified. The climate record being developed at the 80+ Kentucky Mesonet observation stations consists of approximately 75 indices. The indices include frequency, extremes, range, duration, and trends of precipitation, droughts, and temperature. For example, calculations of Warm/Dry days (daily mean temperature > 75th percentile of daily mean temperature and daily mean rainfall < 25th percentile of daily precipitation sum where the percentiles are based on a climatology taken from reanalysis between 1961 and 1990) are done for daily, monthly, seasonal, bi-annual, and annual aggregation periods. Particular attention will given to soil moisture - precipitation feedbacks as Kentucky has a karst geology which generates soil moisture gradients. Soil Moisture-precipitation feedbacks, the beginning and ending of land-atmosphere interactions in general, are highly dependent on the wind flow regime and atmospheric stability, so these relationships will elucidated in the presentation.  Tools will be developed based on interactions with policymakers and stakeholders as they will be making decisions today that impact the region’s main economic sectors (e.g. water, energy, transportation, etc.) as infrastructure erected today will likely be in place when the climate is different than at present. Examples will be provided that sample the different climate zones of the state, relative elevations of site locations, as well as different land cover and land uses.

How to cite: Rappin, E.: Land-Atmosphere Interactions as Observed by a Statewide in-situ Surface Observation Network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22465, https://doi.org/10.5194/egusphere-egu24-22465, 2024.

EGU24-1513 | Posters on site | BG3.48

Local and nonlocal biophysical effects of historical land use and land cover changes in CMIP6 models and the intermodel uncertainty 

Xing Luo, Jun Ge, Yipeng Cao, Yu Liu, Limei Yang, Shiyao Wang, and Weidong Guo

Land use and land cover changes (LULCCs) can influence surface temperature through local and nonlocal biophysical processes. However, the local and nonlocal effects of historical LULCCs have rarely been explicitly investigated. In this study, we separate the local and nonlocal effects of historical (1985–2014) human land use activities based on a set of simulations with and without LULCCs from the Coupled Model Intercomparison Project Phase 6. We also attempt to explore the sources of the intermodel difference in the LULCC effects using a variance decomposition method. The results show that the nonlocal effects (-0.06 ℃ at the global scale) dominate the cooling effect of historical LULCCs mainly via decreases in downward longwave radiation and increases in upward shortwave radiation. The local effects are relatively small at the global scale (0.01 ℃) and manifest as warming at low latitudes (driven by weakened sensible and latent heat fluxes) and cooling in the boreal regions (driven by enhanced upward shortwave radiation). There remains a large intermodel uncertainty in the total effects of historical LULCCs, most of which is contributed by the intermodel difference in nonlocal effects. Such intermodel inconsistency in nonlocal effects is mainly attributed to the intermodel difference in changes in downward longwave radiation and surface sensible heat flux. This study highlights the importance of nonlocal effects of historical LULCCs in terms of the magnitude and the contribution to the intermodel uncertainty in the LULCC effects.

How to cite: Luo, X., Ge, J., Cao, Y., Liu, Y., Yang, L., Wang, S., and Guo, W.: Local and nonlocal biophysical effects of historical land use and land cover changes in CMIP6 models and the intermodel uncertainty, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1513, https://doi.org/10.5194/egusphere-egu24-1513, 2024.

EGU24-1906 | ECS | Orals | BG3.48

The effect of land restoration on cloud cover in West Africa 

Jessica Ruijsch, Christopher M. Taylor, Adriaan J. Teuling, and Ronald W.A. Hutjes

Over the past years, many land restoration projects, including natural regeneration and tree planting, have been implemented in West Africa to combat land degradation. In addition, land restoration is often used to increase biodiversity or as a climate change mitigation measure through carbon sequestration. However, as land restoration can also affect the local climate more directly through biogeophysical processes, some projects propose a new use: implement land restoration to alter the water cycle, increase rainfall and water availability, and make regions less vulnerable to climate change.

In general, vegetation can increase cloud cover (and rainfall) through changes in evapotranspiration and moisture availability for cloud formation. At the same time, the albedo and surface roughness can affect the heat fluxes required for convection. Previous research has tried to unravel these general relations between vegetation and cloud cover. Yet, it is currently unknow to what extend land restoration projects, which usually have a limited spatial extend, can affect cloud cover in West Africa.

In this study, we use observational remote sensing data to study the relations between vegetation and cloud cover in the context of land restoration. The Meteosat Second Generation (MSG) satellite provides 20 years of data at a 15 minute temporal resolution. Yet, the spatial resolution of 3 km of the available MSG cloud cover products is relatively coarse to study convective clouds over small vegetated areas. Instead, we apply a statistical algorithm to calculate cloud cover from the MSG High Resolution Visible (HRV) band, in order to obtain cloud cover data on a 1 km resolution. Using this method, we can provide high resolution observational evidence of cloud cover-vegetation relationships across West Africa.

Preliminary results show that in Nigeria and Benin, cloud cover frequency is higher in areas with a high vegetation cover than in surrounding areas with a lower vegetation cover. With this study, we provide insight into whether land restoration projects can be used to increase cloud cover and adapt to the negative consequences of global climate change.

How to cite: Ruijsch, J., Taylor, C. M., Teuling, A. J., and Hutjes, R. W. A.: The effect of land restoration on cloud cover in West Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1906, https://doi.org/10.5194/egusphere-egu24-1906, 2024.

EGU24-3067 | ECS | Orals | BG3.48

Global and Regional Hydrological Impacts of Global-Scale Forest Expansion 

James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail Swann, and Maria Val Martin

Global-scale afforestation, reforestation, and forest restoration have gained significant attention as climate change mitigation strategies due to their significant carbon dioxide removal (CDR) potential. However, there has been limited research into the unintended consequences of increasing global forest cover from a biophysical perspective. Using the Community Earth System Model version 2 (CESM2), we apply a plausible global forestation scenario, which aligns with current net zero proposals and commitments, within a Paris Agreement-compatible warming scenario to investigate the land surface and hydroclimate response. Compared to a control scenario where land use is fixed to present-day levels, the forestation scenario is significantly cooler at low latitudes (0.8°C-3.0°C) by 2100, driven by a 10% increase in evaporative cooling in forested areas. However, shifts from grassland or shrubland to forest (afforestation) lead to a doubling of plant water demand in some regions, causing significant decreases in soil moisture (5% globally) and water availability (10% globally) in regions with increased forest cover. While there are some increases in low cloud and seasonal precipitation over these regions, with lower and in some places negative cloud radiative forcing, the impacts on large-scale precipitation and atmospheric circulation are limited. This contrasts with the response of precipitation to simulated large-scale deforestation reported in previous modelling studies, which significantly decreased low-latitude rainfall. The forestation scenario demonstrates local cooling benefits in low latitudes without major disruption to global hydrodynamics beyond those already projected to result from climate change, in addition to the cooling associated with CDR. However, the water demands of extensive afforestation of non-forest biomes have implications for its viability given uncertainty in future precipitation changes, especially in the tropics.

How to cite: King, J. A., Weber, J., Lawrence, P., Roe, S., Swann, A., and Val Martin, M.: Global and Regional Hydrological Impacts of Global-Scale Forest Expansion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3067, https://doi.org/10.5194/egusphere-egu24-3067, 2024.

EGU24-6466 | ECS | Orals | BG3.48

Interaction between soil type and cropping system on albedo dynamics leads to contrasted impact on climate mitigation 

Souleymane Diop, Rémi Cardinael, Ronny Lauerwald, Morgan Ferlicoq, Christian Thierfelder, Regis Chikowo, Marc Corbeels, and Eric Ceschia

The biogeochemical effects of conservation agriculture (CA), such as soil organic carbon storage and greenhouse gas emissions, have been extensively studied. However, recent research has shown that management practices also have biogeophysical effects on both local and global climates by altering surface albedo and energy partitioning. We assessed the biogeophysical impacts of CA in maize fields during two successive seasons (2021/22-2022/23) at two long-term experimental sites in Zimbabwe with contrasting soil properties: Domboshawa Training Center (DTC) with a light abruptic Lixisol (sandy soil) and the University of Zimbabwe Farm (UZF) with a dark xanthic Ferralsol (clayey soil). We monitored surface albedo, longwave radiation, leaf area index (LAI), and soil moisture/temperature under three treatments: conventional tillage (CT), no-tillage (NT), and no-tillage with mulch (NTM).  Our findings reveal that, across all treatments during the two monitored seasons, the average surface albedo of the xanthic Ferralsol at UZF was consistently lower than that of the abruptic Lixisol at DTC. It results a cooling effect in both NT and NTM treatments compared to CT in the clayey soil at UZF. During the 2021/22 season, the mean annual radiative forcing (RF) of NT and NTM were -0.83 W.m-² and -0.43 W.m-2 respectively, while during the second season (2022/23) the annual mean RF was -1.43 W.m-2  for NT and -1.03 W.m-2 for NTM.On the sandy soil at DTC, a warming effect was observed due to soil darkening induced by mulching. The mean annual RF of NT in this site was -3.34 W.m-2 during the first season and -2.78 W.m-2 during the second. In contrast, NTM showed a warming effect with an RF of 1.2 W.m-2 in 2021/22, and 2.77 W.m-2 during the 2022/23 season. The RF induced by albedo change were converted into CO2-equivalents in order to compare it with biogeochemical effects of CA through changes in soil N2O emissions and SOC storage. The results demonstrated an opposite effect on RF and of the same magnitude between albedo and soil organic carbon (SOC) in the NT and NTM treatments at DTC, suggesting that CA might not bring any mitigation benefit if mulch is applied on light coloured soils.

How to cite: Diop, S., Cardinael, R., Lauerwald, R., Ferlicoq, M., Thierfelder, C., Chikowo, R., Corbeels, M., and Ceschia, E.: Interaction between soil type and cropping system on albedo dynamics leads to contrasted impact on climate mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6466, https://doi.org/10.5194/egusphere-egu24-6466, 2024.

EGU24-6600 | ECS | Posters on site | BG3.48

Irrigation-induced impacts on near-surface climate under future scenarios 

Yi Yao, Yusuke Satoh, Nicole van Maanen, Sabin Taranu, Seppe Lampe, Yoshihide Wada, David Lawrence, Bill Sacks, Will Weider, Jonas Jägermeyr, Carl-Friedrich Schleussner, and Wim Thiery

Irrigation plays an essential role in the Earth system by changing water, energy, and carbon fluxes, and then affecting the climate. Many previous studies have been conducted to explore its impacts on near-surface climate, highlighting its cooling effects on air temperature, especially during hot extremes. However, most studies do the exploration during the historical period and only focus on temperature. Projected greenhouse gas emissions and land use datasets have made it possible to extend the investigation under future scenarios, but there are no datasets about predicted irrigation techniques shares information. To address this issue, we create a dataset containing spatial distribution of drip, sprinkler, and flood irrigation techniques, based on a simple assumption that richer and drier countries will invest more in irrigation system upgrades. Then, the Community Earth System Model version 2 (CESM2) is developed to be able to represent different irrigation techniques for one crop type in one gridcell. Finally, with the newly created dataset and modified CESM2, we detect irrigation's impacts on heat and moist-heat stress under SSP1-2.6 and SSP3-7.0. Simulation outputs indicate that irrigation will experience various changes among regions and scenarios. In irrigation hot spots, irrigation will continue to reduce the probability of high-temperature extremes under both scenarios but cannot reverse the warming signal caused by other forcings. Moreover, irrigation's impacts on apparent temperature are very small, and even increase the hours exposed to wet bulb temperature extremes in some regions. This study reveals that irrigation's cooling impacts will persist in the future, but will not be an effective solution to the global warming issue. As for moist-heat stress, irrigation's effects are much more complicated due to its enhancing impacts on air humidity.

How to cite: Yao, Y., Satoh, Y., van Maanen, N., Taranu, S., Lampe, S., Wada, Y., Lawrence, D., Sacks, B., Weider, W., Jägermeyr, J., Schleussner, C.-F., and Thiery, W.: Irrigation-induced impacts on near-surface climate under future scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6600, https://doi.org/10.5194/egusphere-egu24-6600, 2024.

EGU24-8311 | ECS | Posters virtual | BG3.48

Exploring the Dynamics of Forests and Climate: A Case Study of India 

Jyoti Sharma and Pankaj Kumar

The distribution and composition of forests worldwide are primarily influenced by geographical factors, latitude, and prevailing climatic conditions. These conditions also govern how various types of forests respond to changes in climate. Understanding the feedback loop between vegetation and climate is complex due to regional variations, making it a challenging study area. Previous studies have predominantly focused on the biogeochemical processes, assessing the forest's carbon sequestration potential, while the role of biogeophysical mechanisms- such as evapotranspiration and latent heat flux, apart from albedo- in this relationship remains poorly understood.
The present study aims to comprehensively explore both the biogeochemical and biogeophysical mechanisms operating within Indian forests and their influence on climate by utilizing finer-resolution observational datasets. India, characterized by diverse geographical features, harbors 16 distinct forest types. My initial findings indicate an overall increase in forest cover except in wet evergreen and montane wet temperate forests within India. Additionally, evidence suggests heightened gross primary productivity, suggesting the forests' ability to mitigate warming effects. The study will explore the intricate dynamics of evapotranspiration and other related factors, aiming to unravel their synergistic impact on the regional climate. The findings will contribute to a more comprehensive understanding of the complex dynamics shaping forest-climate interactions, providing valuable information for sustainable forest management and climate change mitigation strategies.

How to cite: Sharma, J. and Kumar, P.: Exploring the Dynamics of Forests and Climate: A Case Study of India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8311, https://doi.org/10.5194/egusphere-egu24-8311, 2024.

EGU24-8873 | ECS | Orals | BG3.48

Local biophysical impacts of idealized land-cover and land management changes on climate extremes in the semi-arid West African Savannas 

Souleymane Sy, Jan Bliefernicht, Joel Arnault, Christiana Olsesegun, Benjamin Fersch, Ines Spangenberg, Samuel Guug, Abdel Nassirou Yahaya Seydou, Francis Oussou, Moussa Waongo, Windmanagda Sawadogo, Thomas Rummler, Frank Neidl, Patrick Laux, Benjamin Quesada, and Harlad Kunstmann

The West African savannas region is currently undergoing extensive agricultural intensification due to rapid population growth. Those anthropogenic land cover changes (LCC) can have significant impacts at regional and seasonal scales but also on extreme weather events to which human, natural and economical systems are highly vulnerable. However, the effects of LCC on extreme events remain either largely unexplored at regional/local scale and/or without consensus. To address this issue, we investigate the biophysical impacts of idealized land use and land management changes (LCLMCs) scenarios on climate extremes in the semi-arid West African Savannas region. This analysis is conducted using high-resolution land-cover change experiments (at 3 km) covering the period from 2011 to 2023. These experiments utilize the fully coupled WRF-Hydro system, which incorporates surface and subsurface lateral flow while describing the vegetation dynamically. The local effects of idealized LCLMCs scenarios are derived through a comparison of multiple land-use and afforestation scenario-based simulations, reflecting a specific LCC transition, occurring over the Sudan Savanna of Burkina Faso and Ghana.

Analyzing 20 extreme weather indices, we find, on average, that LCC robustly lessens regional extreme rainfall by 8% for the number of wet days (R1mm) and by 7% for the heavy rainfall (R10mm) more than mean rainfall conditions (up to 2 times more). LCC can impact regional rainfall extremes 4 times more than temperature extremes on average and intensifies dry days. Afforestation options, such as the conversion of grassland to evergreen broadleaf forest or evergreen needleleaf forest, tend to mitigate the biophysical LCC-induced warming effect and lower the associated occurrence of temperature extreme events. Conversely, opposite effects can be observed under savannas-based afforestation options, likely due to their associated large sensible heat fluxes compared to grassland and cropland. The study investigates the underlying biophysical drivers behind these opposing effects.

We stress here that fully coupled modeling frameworks incorporating all aspects of land-use change and local positive feedback between the terrestrial hydrological system and the overlying atmosphere are needed to better evaluate land-based mitigation and adaptation strategies.

How to cite: Sy, S., Bliefernicht, J., Arnault, J., Olsesegun, C., Fersch, B., Spangenberg, I., Guug, S., Yahaya Seydou, A. N., Oussou, F., Waongo, M., Sawadogo, W., Rummler, T., Neidl, F., Laux, P., Quesada, B., and Kunstmann, H.: Local biophysical impacts of idealized land-cover and land management changes on climate extremes in the semi-arid West African Savannas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8873, https://doi.org/10.5194/egusphere-egu24-8873, 2024.

Forests play an important role in regulating land-atmosphere interactions, e.g., the temperature difference (δT) between land surface and air. However, previous studies have primarily focused on analyzing spatial characteristics of δT at global or regional scales, with limited research on its diurnal variations especially using observational data. In this research, we investigated the diurnal changes of δT, using air temperature from large numbers of meteorological stations and surface temperature data from ERA5-Land, for forested areas in China. Results revealed that the diurnal variations in δT (2.18°C) were greater than the observation across seasons (0.8°C), highlighting the importance of considering diurnal scale in understanding δT dynamics. The hourly δT exhibited strong positive correlations with Bowen ratio albeit with a 2-3 hour time lag. Obvious relations also detected between δT and precipitation at daytime, while nighttime relationships remained uncertain when considering the influence of elevation. Simulations from Community Earth System Model (CESM) agree well with the δT-precipitation relations during the daytime, but it overemphasizes the role of elevation in controlling hydrothermal process. We remain hopeful for further enhancement of relevant physical processes in CESM can improve its ability in simulating such interactions.

How to cite: Xu, R., Li, Y., and Davin, É.: The diurnal variation of the difference between surface skin temperature and in-situ 2 m air temperature of forests in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9576, https://doi.org/10.5194/egusphere-egu24-9576, 2024.

Global CO2 emissions from land use and land cover changes contribute about 10% of anthropogenic carbon emissions annually, while terrestrial ecosystems also remove about 29% of annual emissions through enhanced growth and ecosystem recovery. The conservation and restoration of soils, woody biomass and other carbon pools have therefore emerged as key components of national and corporate net zero strategies. Both compliance and voluntary carbon markets, including bilateral and global carbon trading agreements, have the potential to accelerate emissions reductions and removals at local, national, and global scales. The success of these markets relies on effective policy frameworks, transparency and independent assessments of project integrity. Trust in the voluntary markets was shaken during 2023 following media reports of over crediting, while at COP28 nations failed to agree on standards and frameworks for Article 6 of the Paris agreement (on bilateral and UN-supervised carbon markets). 

 

Carbon ratings agencies provide independent analysis on the effectiveness and claims of carbon projects operating within the voluntary market. These assessments strengthen trust through greater transparency and price discovery, so that funding can be unlocked for the most effective projects. Here we will discuss challenges and opportunities for scaling the carbon markets, based on our assessment of over 130 nature-based carbon projects globally, assessing key risk factors such as project additionality (what would have happened in the absence of carbon finance), carbon accounting, and non-permanence (risk of future reversal). Our methodologies combine novel monitoring tools, including satellite observations and machine learning models, with information about project finances and policy context to assess the efficacy of every credit issued. Lessons learned can help emerging markets scale, and inform future projections and modelling frameworks of terrestrial carbon fluxes.

How to cite: Andela, N.: The role of carbon markets in reducing carbon emissions and strengthening the land sink at scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12591, https://doi.org/10.5194/egusphere-egu24-12591, 2024.

Dryland ecosystems worldwide face substantial degradation due to adverse climatic conditions and unsustainable land practices. This is particularly evident in Africa's Sahel region, where extensive land degradation and desertification pose significant challenges to local livelihoods and socio-economic stability. To address this issue, the Great Green Wall Initiative (GGW) aims to restore over 100 million hectares of degraded land to counter desertification and support rural communities.

Here we assess how land use changes have altered ecosystem services within GGW implementation areas. We analyzed the spatiotemporal characteristics of land use change using the MODIS-Global Land Cover product from 2007 to 2019. Based on remote sensing data and established geospatial models, we evaluated five ecosystem services, namely carbon sequestration, soil conservation, sand fixation, water regulation, and food provision. We explored trends in ecosystem service changes, identified spatial clusters of high and low values, and evaluated synergies and trade-offs among these services by Pearson's coefficient and the bivariate Moran’s I method. The result showed that the level of various ecosystem services in GGW areas is heterogeneous, with a large spatial distribution. High values of ecosystem services are found in Burkina Faso, southern Nigeria and eastern Ethiopia. Synergies between ecosystem services are dominant, with the strongest synergies between carbon sequestration and soil conservation. Carbon sequestration and water regulation were clustered, but there were trade-offs with food provision. We quantified the contribution of land use to the changes in ecosystem services through the calculation of the Ecosystem Service Contribution Index (ESCI). The expansion of farmland and desertification have had significant negative impacts on ecosystem services and grassland conversion. This assessment provides critical insights into the efficacy of restoration efforts and aims to offer guidance for informed decision-making in sustainable management practices for dryland ecosystems.

How to cite: Wang, Y., Dallimer, M., and Scott, C.: Effects of land use change on ecosystem services in Africa's Great Green Wall Initiative (GGW) for dryland restoration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13862, https://doi.org/10.5194/egusphere-egu24-13862, 2024.

EGU24-14276 | Posters on site | BG3.48

Human-Earth feedbacks in E3SM-GCAM successfully simulate the evolution of a combined human-Earth system 

Alan Di Vittorio, Dalei Hao, Timothy Shippert, Balwinder Singh, Eva Sinha, and Ben Bond-Lamberty

Understanding human-environment feedbacks is becoming increasingly important as climate change mitigation and adaptation strategies continue to diversify, target new areas, and grow in extent. Incorporating these feedbacks into models is critical for assessing the effectiveness of such strategies and how they may change in response to a changing climate. For example, projected forest expansion varies with changing climate because climate-driven changes in forest productivity affect the cost-effectiveness of reforestation strategies. Including human-environment feedbacks in models can dramatically change the projected scenario as human systems respond to the changing environment, which in turn affects the Earth system projection.

 

We have incorporated human-Earth feedbacks in a synchronously coupled system comprising the Global Change Analysis Model (GCAM) and the Energy Exascale Earth System Model (E3SM). GCAM is the core model in a new E3SM human component that is at the same level as the Earth model components (land, atmosphere, ocean, etc.) and interacts with them through the shared coupling software. Terrestrial productivity is passed from E3SM to GCAM to make climate-responsive land use and CO2 emission projections for the next five-year period, which are interpolated and passed to E3SM annually. Previous experiments with a similar model have shown that the incorporation of these feedbacks affects land use/cover change, crop prices, terrestrial carbon, local surface temperature, and land carbon-atmosphere feedbacks. Preliminary results indicate that this newly coupled system is robust in relation to the previous experiments. The human scenario is altered by terrestrial feedbacks, which in turn changes the Earth system projections. Regional differences are more pronounced than global differences due to regional shifts in land use. This new coupling addresses inconsistency across models, enables a new type of scenario development, and provides a modeling framework that is more easily updated and expanded.

How to cite: Di Vittorio, A., Hao, D., Shippert, T., Singh, B., Sinha, E., and Bond-Lamberty, B.: Human-Earth feedbacks in E3SM-GCAM successfully simulate the evolution of a combined human-Earth system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14276, https://doi.org/10.5194/egusphere-egu24-14276, 2024.

EGU24-15336 | ECS | Posters on site | BG3.48

Investigating the hydrological co-benefits of soil carbon sequestration using a land surface model 

Inne Vanderkelen, Benjamin D. Stocker, Sean Swenson, David Lawrence, and Edouard L. Davin

Soil carbon sequestration is an important strategy for climate change mitigation. Soil carbon stocks on agricultural lands can be augmented through sustainable land management practices such as organic manures addition, cover cropping, mulching, conservation tillage and agroforestry. Soil carbon sequestration has several co-benefits, of which increased water holding capacity and infiltration are often named. However, a global scale quantification of these hydrological co-benefits for water availability is still lacking.

In this study, we aim to quantify how soil carbon sequestration impacts soil water budget and availability, to identify potential hydrological co-benefits. We use the Community Land Model (CLM) version 5.2 in land-only mode with prescribed phenology to conduct idealized experiments simulating present-day climate conditions with altered soil carbon stocks after 20 years of sequestration. Three scenarios of carbon sequestration are investigated, based on spatially explicit soil organic carbon input maps. These include two scenarios with high and medium sequestration rates focused on cropland. Additionally, an aspirational scenario with a 0.4% annual increase in soil organic carbon stocks is conducted, which follows the "4 per mille" initiative target.

Upon analyzing the simulations at subgrid level for the crop fraction of the grid cell, our findings indicate that, overall, soil carbon sequestration enhances the water holding capacity by increasing the field capacity and reducing the permanent wilting point of the soil. This increase in water holding capacity predominantly arises from augmented porosity, which in turn surpasses the rise in actual water content. Consequently, the saturated fraction of soils across most regions decreases.

Furthermore, CLM simulations consistently demonstrate that elevated carbon stocks reduce the surface runoff and subsurface drainage, and increase soil evaporation. The upper soil layers, corresponding to the layers with elevated soil carbon, exhibit increased water content, whereas lower layers indicate either negligible or slight water content reduction. This is particularly accentuated in arid regions, which leading to an overall decline in water content in these areas. Finally, water stress is found to be decreasing, which indicates improved water retention in carbon-sequestered soil and enhances the soil sponginess. Overall, despite remaining modelling uncertainties, particularly linked to soil hydrological parametrizations and their dependency on soil carbon fractions, these sensitivity experiments reveal the potential of carbon sequestration to increase water availability and counteract water scarcity.

How to cite: Vanderkelen, I., Stocker, B. D., Swenson, S., Lawrence, D., and Davin, E. L.: Investigating the hydrological co-benefits of soil carbon sequestration using a land surface model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15336, https://doi.org/10.5194/egusphere-egu24-15336, 2024.

EGU24-17255 | ECS | Posters virtual | BG3.48

Estimation of local biogeophysical effects of the continuous logging using a dynamic vegetation model forced by C-based wood harvest 

Shijie Shu, Jennifer Holm, Alan Di Vittorio, Charles Koven, Ryan Knox, and Gregory Lemieux

Global continual logging activities have modified the regional landscape and disrupted the energy balance through changing the surface albedo, evapotranspiration and roughness length in both current location (local) and nearby areas through feedback to the atmospheric circulation (non-local). Compared to land use change, less attention has been given to understanding the local biogeophysical effect of the different land use management practices, e.g., wood harvest (logging). Uncertainties from the reconstructed global wood harvest rate forcing data, simplified land heterogeneity and processes representation in the classic big-leaf models largely changed the outcomes. We apply a next generation dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator, FATES), coupled with the land component (ELM) of DOE’s earth system model E3SM to study the local biogeophysical effect and the redistribution of energy after accounting the continuous logging activity on a global scale. In order to account for the uncertainties from forcing data and modeling approaches, we designed 9 parallel experiments with 4 different sets of global wood harvest rates derived from LUH2 reconstructed historical harvest rates combined with 2 different wood harvest methods: area-based harvest and carbon-based harvest. The results highlighted a divergent pattern of the local biogeophysical impact from logging under two dominant stages: regrowth dominant and logging dominant. We found the continuous logging causing up to 5% of the reduction of global canopy coverage and 2% of the increase of albedo. The study also highlighted the uncertainty from the forcing of data sources and modeling approach can lead to a several times difference in the magnitude of local biogeophysical effect.  

How to cite: Shu, S., Holm, J., Di Vittorio, A., Koven, C., Knox, R., and Lemieux, G.: Estimation of local biogeophysical effects of the continuous logging using a dynamic vegetation model forced by C-based wood harvest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17255, https://doi.org/10.5194/egusphere-egu24-17255, 2024.

EGU24-17272 | Posters on site | BG3.48

The effect of forest cover changes on the regional climate conditions in Europe during the period 1986-2015 

Marcus Breil, Vanessa Schneider, and Joaquim Pinto

Afforestation affects the earth’s climate system by changing the biogeochemical and biogeophysical characteristics of the land surface. While the regional effects of afforestation are well understood in the tropics and the high-latitudes, its climate impact on the mid-latitudes is still subject of scientific discussions. The general impact of afforestation on the regional climate conditions in Europe during the last decades is investigated in this study. For this purpose, regional climate simulations are performed with different forest cover fractions over Europe. In a first simulation, afforestation in Europe is considered, while this is not the case for a second simulation.  We focus on the years 1986-2015, a period in which the forest cover in Europe increased comparatively strong, accompanied by a strong general warming over the continent.

Results show that afforestation has both local and non-local effects on the regional climate system in Europe. Due to an increased transport of turbulent heat (latent + sensible) into the atmosphere, afforestation leads to a significant reduction of the mean local surface temperatures in summer. In northern Europe, mean local surface temperatures were reduced about -0.3 K with afforestation, in central Europe about -0.5 K and in southern Europe about -0.8 K. During heat periods, this local cooling effect can reach to -1.9 K. In winter, afforestation results in a slight local warming both in northern and southern Europe, because of the albedo effect of forests. However, this effect is rather small and the mean temperature changes are not significant. In downwind direction, locally increased evapotranspiration rates with afforestation increase the general cloud cover, which results in a slight non-local warming in winter in several regions of Europe, particularly during cold spells. Thus, afforestation had a discernible impact on the climate change signal in Europe during the period 1986-2015, which may have mitigated the general warming trend in Europe, especially on the local scale in summer.

How to cite: Breil, M., Schneider, V., and Pinto, J.: The effect of forest cover changes on the regional climate conditions in Europe during the period 1986-2015, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17272, https://doi.org/10.5194/egusphere-egu24-17272, 2024.

EGU24-17965 | ECS | Posters on site | BG3.48

Refining the Representation of Forest Management Practices in JSBACH4  

Meri Räty, Andrey Lessa Derci Augustynczik, and Julia Pongratz

Fostering sustainable management of forests is pivotal in advancing Europe's climate resilience and achieving its short- and long-term environmental objectives. Any management strategy has multifaceted impacts, influencing carbon cycling and also leading to biogeophysical consequences arising from altered energy partitioning in the forest, for example. Modelling can offer valuable insights into these complexities, making it a beneficial tool aiding the pursuit of science-based solutions to inform policy and decision-making processes. 
 
This work introduces improvements in the representation of wood harvesting and different forest management scenarios in JSBACH4, the current version of the land component of the ICOsahedral Nonhydrostatic Earth System Model (ICON-ESM) framework. The previously established forest age class scheme of JSBACH 4 and the extensive forest parameters and harvesting schemes from the model G4M-X (by the International Institute for Applied Systems Analysis) are utilised in the development.  This combination of a detailed forestry model integrated into decision-making frameworks, coupled with an advanced land surface model intricately linking to the entirety of key climate processes, holds great potential to enhance our understanding for the management of ecosystems. The objective of this effort is to enhance the sophistication of the related forest parameters in JSBACH4, enabling a more comprehensive simulation of various forest management scenarios.  This will allow capturing the nuanced carbon cycling and biogeophysical effects associated with different types of forest management and wood harvesting practices.

How to cite: Räty, M., Lessa Derci Augustynczik, A., and Pongratz, J.: Refining the Representation of Forest Management Practices in JSBACH4 , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17965, https://doi.org/10.5194/egusphere-egu24-17965, 2024.

EGU24-18269 | Posters on site | BG3.48

Agricultural management determines the size of the terrestrial carbon sink 

Jens Heinke and Christoph Müller

Agricultural management can significantly impact biogeochemical cycles. In this study, we estimate the effect of various agricultural management practices such as grazing management, manure application, residue management, tillage, and cover crops on land use change emissions using the LPJmL dynamic vegetation model. We follow the TRENDY protocol to perform model simulations and estimate land use change emissions. Our results show that these practices mitigate a large proportion of emissions from land conversion (such as deforestation) and thus substantially determine the size of the current terrestrial carbon sink. We argue that there is substantial potential to further enhance carbon sequestration by optimizing agricultural management practices. We demonstrate that changes in agricultural management practices typically have smaller effects on albedo, surface roughness, and evapotranspiration compared to dedicated CO2 removal techniques that entail land cover changes (such as afforestation). However, due to limited global data on agricultural management practices, the actual contribution of these practices to emissions and their potential to reduce emissions remain highly uncertain. Our study highlights the need for more research in this area and the importance of considering agricultural management practices in dynamic vegetation models to estimate land use change emissions accurately.

How to cite: Heinke, J. and Müller, C.: Agricultural management determines the size of the terrestrial carbon sink, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18269, https://doi.org/10.5194/egusphere-egu24-18269, 2024.

EGU24-19146 | ECS | Posters on site | BG3.48

Exploring the biogeophysical and biogeochemical impacts of an Arctic poleward expansion of the boreal forest 

Adele Zaini, Sara M. Blichner, Jing Tang, Rosie A. Fisher, Marianne T. Lund, and Terje K. Berntsen

A poleward migration of vegetation is expected in response to rising surface temperatures in the boreal zone and the Arctic regions. This land cover change is proposed to have important impacts on the climate through biogeophysical and biogeochemical feedback mechanisms (Brovkin, 2002; Bonan, 2015; Spracklen et al., 2008). While the benefits of CO2 uptake from forest expansion are better known, further exploration is needed to disentangle the full spectrum of consequences that such a significant land cover change can lead to, including changes in surface albedo, Biogenic Volatile Organic Compounds (BVOC) emissions, evapotranspiration, and turbulent fluxes. These might have an even larger quantitative impact on the climate than carbon sequestration itself at these latitudes (Bonan, 2015).

In this work, we use the Norwegian Earth System Model (NorESM2) to simulate the climatic impacts of both idealized and more realistic (forecast using a Dynamic Global Vegetation Model) patterns of high-latitude vegetation expansion with a specific focus on quantifying the radiative forcing of the albedo and BVOC emissions-related changes affecting aerosols and clouds.

The results show that the expected vegetation migration in the northern latitudes can have a substantial impact on a global scale. In total, the surface albedo changes dominate at these high latitudes (+0.48 W/m2, as average value over 50°N) over the effects from changes in aerosols and clouds related to changes in BVOC emissions, resulting in a total of +0.43 W/m2. Surprising results are found regarding the BVOC emission-related impacts. We expected that the indirect impact on cloud radiative effect from increasing BVOC emissions and subsequent aerosol formation, would lead to a cooling effect. However, the BVOC-related contribution to the total radiative forcing is +0.01 W/m2, and to the forcing related to changes in cloud properties is +0.05 W/m2. This signal is small but positive. This is consistent with the observed decrease in aerosol and cloud droplet number concentrations (respectively -0.18% and -1.00%), which affect the cloud albedo by lowering it. The processes that take place from the increase in BVOC emissions to its impact on the radiative forcing revealed complexity that needs to be further disentangled. A deeper understanding of atmospheric chemistry, aerosol and cloud formation, dynamics, and interactions at these latitudes is necessary to fully understand the role of large-scale ecosystem shifts in the coupled climate system. 

How to cite: Zaini, A., Blichner, S. M., Tang, J., Fisher, R. A., Lund, M. T., and Berntsen, T. K.: Exploring the biogeophysical and biogeochemical impacts of an Arctic poleward expansion of the boreal forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19146, https://doi.org/10.5194/egusphere-egu24-19146, 2024.

EGU24-19668 | Orals | BG3.48 | Highlight

Extreme events and land use changes in the climate crisis 

Sonia Seneviratne, Michael Windisch, Bianca Biess, Felix Jaeger, Lukas Gudmundsson, Mathias Hauser, Laibao Liu, Quilcaille Yann, Schwaab Jonas, and Sieber Petra

Land use and land cover changes are an essential element of climate change scenarios, both in the context of mitigation and adaptation options (IPCC 2018, 2023). Changes in climate extremes, which belong to the most impactful consequences of on-going climate change (Seneviratne et al. 2021), will however substantially constrain these options, an aspect that is insufficiently factored in so far.

In particular, changes in climate extremes, such as droughts, heatwaves, and fire weather, will substantially affect the potential for afforestation, bioenergy with carbon capture and storage (BECCS), and agricultural production, as well as endanger the permanence of terrestrial carbon sinks. In addition, they have substantial impacts on biodiversity and ecosystem resilience, which are not fully assessed so far. On the other hand, land use and land cover changes also affect regional climate extremes through biophysical processes.

This presentation will highlight new results showing the potential impacts of climate extremes for land use projections, including agricultural production potential and nature-based climate mitigation options, as well as feedbacks of the latter on regional climate change. The newest evidence highlights the need for a stronger interaction between the research community working on the physical science basis of human-induced climate change, and those assessing policy options, both for mitigation and adaptation. This has important implications for the development of Integrated Assessment Models and upcoming assessments of the Intergovernmental Panel on Climate Change (IPCC).

 

References:

IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001.

IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001

Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B. Zhou, 2021: Chapter 11: Weather and Climate Extreme Events in a Changing Climate. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513–1766, doi:10.1017/9781009157896.013. (https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf)

How to cite: Seneviratne, S., Windisch, M., Biess, B., Jaeger, F., Gudmundsson, L., Hauser, M., Liu, L., Yann, Q., Jonas, S., and Petra, S.: Extreme events and land use changes in the climate crisis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19668, https://doi.org/10.5194/egusphere-egu24-19668, 2024.

EGU24-21188 | ECS | Orals | BG3.48

Land Use and upland soil erosion dynamics along climatic and human disturbance gradients in the Kasai Basin (DR Congo) 

Gaëlle Wanlin, Nathan Carlier, Johan Six, Travis Drake, Lissie de Groot, Antoine de Clippele, Josepth Zambo Mandea, and Kristof Van Oost

The Kasai basin (DRCongo), southwest part of the Congo Basin, displays a unique array of climatic conditions, mineralogical compositions and land use trajectories. It is currently experiencing an explosive demographic expansion, which leads to drastic land use and land cover changes (LULCC) such as deforestation and cropland expansion. The net terrestrial C exchange from both vegetation and soils accompanying land use change is relatively well constrained. In contrast, C exchange associated with accelerated soil erosion following the degradation of natural habitats is an uncertain component of the carbon budgeta,b,c, particularly in tropical settingsd,e,f.
To remedy this lack of knowledge, we used remote sensing techniques in conjunction with field observations and preexisting datasets describing potential drivers such as Worldpopg, global Human Modificationh, etc. We analyzed the temporal evolution of LULCC and its drivers within the Kasai Basin at high spatial resolutions. Preliminary results show a discernable surge in deforestation rates, varying across the different sub-basins, alongside expansions in cropland cultivation and artisanal mining activities, all recognized as contributors to heightened soil erosion. Using estimated time series of suspended sediment yield derived from in-situ measurements and remote sensing products as an indicator for upland soil erosion, we compared observed changes in sediment yield to LULCC trajectories. We also conducted a robust sampling campaign and collected over 5000 soil samples from 15 hillslopes transects alongside the Kasai River. Multiple soil organic carbon (SOC) analyses were realized to investigate C dynamics in tropical eroding uplands: carbon and nitrogen content and stable isotopes, soil texture, clay mineralogy and fallout radionuclide inventory of a selection of samples, and MIR spectroscopy to have high depth resolution results.
The results of our study will provide insights into the environmental drivers responsible for the heightened soil erosion and lateral carbon fluxes observed within the Kasai Basin. The forthcoming study of these fluxes will improve the knowledge of the tropical C budget in eroding upland soils.

 

REFERENCES
a Stallard, R. F. (1998). Global Biogeochemical Cycles, 12(2), 231–257. https://doi.org/10.1029/98GB00741

b Berhe, A. A. et al. (2007). Bioscience, 57, 337–346, https://doi.org/10.1641/B570408

cVan Oost, K. et al. (2007). Science, 318(5850), 626–629. https://doi.org/10.1126/science.1145724

d Don, A. et al. (2011). Global Change Biology, 17(4), 1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

e Reichenbach, M. et al. (2023). Global Change Biology, 00, 1–17. https://doi.org/10.1111/gcb.16622

f Wilken, F. et al. (2020). Soil, 1–22. https://doi.org/10.5194/SOIL-7-399-2021

g Lloyd, C. T. et al. (2017). Scientific Data, 4(1), 170001. https://doi.org/10.1038/sdata.2017.1

h Kennedy, C.M. et al. (2019). Global Change Biology, 25(3), 811–826. doi:10.1111/gcb.14549

How to cite: Wanlin, G., Carlier, N., Six, J., Drake, T., de Groot, L., de Clippele, A., Zambo Mandea, J., and Van Oost, K.: Land Use and upland soil erosion dynamics along climatic and human disturbance gradients in the Kasai Basin (DR Congo), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21188, https://doi.org/10.5194/egusphere-egu24-21188, 2024.

EGU24-1653 | Orals | SSS4.5

Short-term impact of irrigation on soil microbiome in a Mediterranean maize cropping system 

Carla S. S. Ferreira, Pedro R. Soares, André Pereira, Pedro Mendes-Moreira, and Lyudmyla Symochko

Soil is a complex environment, where microorganisms play a crucial role in the maintenance of soil structure, nutrient cycling and thus soil quality, relevant for croplands productivity. Soil microbial activity, however, is largely determined by water availability, and both are affected by agricultural management. This study aims to investigate the impact of irrigation, i.e. different amount of water and application scheduling, on soil microbial biomass and functional structure of soil microbiome (number of microorganisms in various ecological-trophic groups) in a Mediterranean maize farm. In 2023, six irrigation treatments were applied in a maize farm located in the Mondego Agricultural Valey, centre region of mainland Portugal. The irrigation treatments included three different amounts of water per week applied with drip irrigation: i) 100 mm, the average optimal amount over the last 30 years, based on APSIM crop model), ii) 55 mm, selected to simulate water scarcity conditions, and iii) the amount recommended by the local farmers’ association, based on weekly weather forecast and water balance modelling (ranged between 24 mm and 66 mm over the study period). The water was applied once or split in two applications during the week in different treatments. Each treatment was applied in triplicated plots, each plot covering five maize rows and extending over 10 m length. Nine composite soil samples (0-15 cm depth) per treatment were collected immediately before and after the irrigation period (~ 6 to 17 weeks after sowing). The soil samples were analyzed in sterile conditions using solid growth media: Nutrient Agar, Agar-Agar, Jensens Medium, Soil Agar, and Czapek-Dox Medium. The serial dilutions of the samples were provided until the suspension contained a microorganism titer within the range of 10−3–10−5 CFU/mL. The content of general microbial biomass (Сmic) in the soil was determined using the rehydration method. The results show that after the irrigation period, Cmic increased between 14% to 48%. The number of different nitrogen fixing bacteria and ammonifiers (nitrogen-mineralizing bacteria) increased, whereas the number of micromycetes, spore forming bacteria, oligotrophic, and pedotrophic bacteria groups decreased in all the treatments, which are good indicators about soil quality. Generally, these changes are slightly higher in the treatments where irrigation was applied twice instead of once a week (e.g. 28-31% vs 20-34% increase in nitrogen fixing bacteria, and 33-50% vs 12-36% decrease in oligotrophic bacteria - often associated to nutrient-poor soils). This highlights the relevance of providing a more uniform soil moisture content over the crop season (through smaller amounts of water, applied more often) to support soil microbial communities. Microbial biomass was lowest in plots receiving the less water (55 mm per week), but it was similar between plots receiving 100 mm of water per week and adjusting the amount of water to the recommendations of local farmers’ association. Long term average data would be useful to support decision on the amount of water to apply in areas where technical recommendations are not available. Adequate irrigation management in croplands can support soil biodiversity.

How to cite: Ferreira, C. S. S., Soares, P. R., Pereira, A., Mendes-Moreira, P., and Symochko, L.: Short-term impact of irrigation on soil microbiome in a Mediterranean maize cropping system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1653, https://doi.org/10.5194/egusphere-egu24-1653, 2024.

EGU24-3298 | ECS | Posters on site | SSS4.5

Metagenomic insights into microbial structure and metabolism in alpine permafrost on the Tibetan Plateau 

Luyao Kang, Yutong Song, Rachel Mackelprang, Linwei Wu, and Yuanhe Yang

Permafrost, characterized by its frozen soil, serves as a unique and ecologically significant habitat for diverse microorganisms. Understanding the intricacies of their community structure and functional attributes is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding microbial profiles and their differences across soil strata remains limited. Here we analyze microbial structure and metabolic potential in permafrost deposits based on 16S rRNA and metagenomic data obtained from a ∼1,000 km permafrost transect on the Tibetan Plateau. We find that microbial communities exhibit apparent discrepancy in structure among soil depth, with a decline in alpha diversity and an increase in spatial variation along soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with dispersal limitation being more pronounced in permafrost layer. We also observe that functional genes related to reduction reactions, including nitrate reduction, denitrification, polysulfide reduction, sulfide reduction, tetrathionate reduction, Fe reduction, and methanogenesis, are enriched in the permafrost layer. Taxa involving in redox reactions are more diverse in the permafrost layer and contribute highly to community-level metabolic profiles, reflecting higher redox potential and more complicated trophic strategies for microorganisms in permafrost deposits. These findings provide new insights into the large-scale stratigraphic profiles of microbial community structure and biogeochemical processes and laying the groundwork for future endeavors that elucidate microbial responses to environmental change in permafrost regions.

How to cite: Kang, L., Song, Y., Mackelprang, R., Wu, L., and Yang, Y.: Metagenomic insights into microbial structure and metabolism in alpine permafrost on the Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3298, https://doi.org/10.5194/egusphere-egu24-3298, 2024.

The transition from dry-to-wet soils is often characterized by an acceleration of the nitrogen (N) cycle, representing a period of interest to biogeochemists studying future N cycling responses to global changes. In particular, wetting dry soils can produce large emission pulses of nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas), but the mechanisms governing the N losses remain unresolved. The asynchronous timing of when N becomes bioavailable and when ecosystem N sinks activate (e.g., plant N uptake) post wetting has often been used to explain why N is lost when dry soils wet up. However, other factors directly affecting nitrifying communities may also contribute to the emissions. For instance, ammonia oxidizing bacteria (AOB) may be favored over ammonia oxidizing archaea (AOA) in NH4+-rich environments that are typically observed in dry soils. Because AOB may process N less efficiently than AOA, shifts in nitrifier activity may help promote gaseous N losses.

 

To better understand mechanisms for gaseous N loss, we studied drylands in southern California that can experience >6 months without rain, as well as other drylands where we added or excluded precipitation during the dry summer or wet winter seasons. We also selectively inhibited AOA and AOB communities to measure their contributions to soil N emissions. Excluding precipitation during the winter prior to collecting soils did not affect NO emissions, but either adding or excluding precipitation during the summer did; NO emissions after adding extra rainfall (95 ± 6 µg NO g soil-1; p = 0.01) or excluding rainfall (105 ± 22 µg NO g soil-1; p = 0.006) were significantly higher than the control (41 ± 6 µg NO g soil-1), with over 50% of the emissions controlled by AOB. While most of the effects of manipulating precipitation were observed on NO emissions, N2O increased only when we excluded precipitation in the winter wet season, averaging 0.58 ± 0.40 µg N-N2O g soil-1. Using isotopologues of N2O coupled with chloroform fumigations to slow microbial activity, we found that N retention and loss trade off as dry conditions intensify. Altogether, our measurements suggest that that shifts in precipitation patterns can favor AOB-derived NO emissions when dry soils are wetted at the end of the dry season, suggesting that shifts in nitrifier activity from the legacies of past precipitation can also help explain why N is lost when dry soils are wetted.

How to cite: Homyak, P.: Soil nitrogen cycling in dry lands: Precipitation legacy effects on microbial N loss pathways, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4788, https://doi.org/10.5194/egusphere-egu24-4788, 2024.

EGU24-5211 | ECS | Posters on site | SSS4.5

Temperature regulates microbial carbon use efficiency effects on soil organic carbon storage 

Zhaoyang Luo, Jianning Ren, and Simone Fatichi

Microbial carbon use efficiency (CUE), describing the partitioning of microbe assimilated carbon into microbial growth and respiration, is commonly used in soil carbon models to link microbial activities with the consumption of soil organic carbon (SOC). However, the role of CUE in regulating SOC storage remains debated. Previous studies have reported that a higher CUE could not only favour SOC formation through microbial necromass accumulation, but also trigger SOC losses because an enhancement in enzyme production facilitates SOC decomposition. The former leads to a positive relationship between CUE and SOC, while the latter leads to a negative one. Temperature dependencies introduce additional uncertainties while exploring the SOC-CUE relationship since temperature affects both SOC decomposition and CUE. Based on the meta-analysis and numerical simulations with a mechanistic model (T&C), we examined the relationship between CUE, SOC storage and temperature. Numerical results recover the expected SOC storage decrease with increasing temperature when temperature effects are isolated; however, an increase of SOC storage with decreasing CUE is found once temperature effects are discounted, indicating that SOC storage increase with increasing CUE is likely a by-product of temperature dependencies. In addition, we show that CUE variability plays a more important role in affecting SOC storage at lower temperature. Our study helps refine the understanding of SOC responses in a warming climate.

How to cite: Luo, Z., Ren, J., and Fatichi, S.: Temperature regulates microbial carbon use efficiency effects on soil organic carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5211, https://doi.org/10.5194/egusphere-egu24-5211, 2024.

EGU24-5313 | ECS | Orals | SSS4.5

Context-dependent benefits of ectomycorrhiza on Aleppo pine seedling performance under ecologically relevant settings  

Stav Livne- Luzon, Lior Herol, Tamir Klein, and Hagai Shemesh

Droughts significantly impact forests, with long-term forest existence largely depending on seedling recruitment. However, seedling establishment under natural conditions is often limited by numerous interacting factors such as water availability, competition with herbaceous vegetation, and interaction with ectomycorrhizal fungi (EMF). We performed two greenhouse experiments to examine these factors and their interacting effects on the establishment of Aleppo pine seedlings. In both experiments, Geopora, a genus known to colonize seedlings in dry habitats, predominantly colonized the seedlings' roots, regardless of the EMF inoculum's origin. EMF inoculation enhanced seedling height, biomass, and branch number. However, under combined drought and competition, EMF had no growth impact. When facing competition or consistent water scarcity, EMF's positive effects decreased. Interestingly, during intermittent drought periods (resource pulses), EMF benefits persisted even in severe drought. This discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.

 

How to cite: Livne- Luzon, S., Herol, L., Klein, T., and Shemesh, H.: Context-dependent benefits of ectomycorrhiza on Aleppo pine seedling performance under ecologically relevant settings , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5313, https://doi.org/10.5194/egusphere-egu24-5313, 2024.

EGU24-6731 | Orals | SSS4.5 | Highlight

Comprehensive geospatial assessment of the soil microbiome’s response to temperature and moisture in interior Alaska, USA 

Robyn Barbato, Stacey Doherty, Theodore Letcher, Dragos Vas, and Julie Parno

As global temperatures rise, soil fractions of organic matter are being subjected to microbial degradation, particularly in high latitude regions.  Concurrently, permafrost perched below active layer soils is thawing at unprecedented rates, significantly altering landscapes and ecosystem trajectories by changing subsurface conditions and vegetation characteristics. Our aim was to investigate an Alaskan soil microbiome’s response to changes in temperature and water potential because they are well established factors that influence microbial activity and could be predicted using remote sensing data and weather forecasts.  The extent of microbial change in the seasonally thawed active layer remains poorly understood.  To address this, we studied the physical and microbiological properties of two permafrost-affected surface soils in interior Alaska primarily composed of deciduous forests, coniferous forests, and woody wetlands.  We collected soils for laboratory incubation studies where we measured respiration and microbial taxonomy from replicate microcosms experiencing four temperatures and five matric potentials.  Soil respiration rates from the soils varied according to temperature and moisture, with soils exposed to warmer, wetter conditions exhibiting the highest respiration rates (e.g. 0.23 or 0.70 µg C-CO2 g-1 dry soil h-1) and soils exposed to colder, drier conditions exhibiting lower respiration rates (e.g. 0.03 or 0.1 µg C-CO2 g-1 dry soil h-1).   In the field, we measured soil temperature, moisture, and respiration at the sites where the soils were initially collected.  Surface soil temperatures measured at the sites ranged from -25°C in the winter months to +25°C in the summer months.  These values were compared to geospatial estimates of temperature and soil moisture that were used to calculate soil respiration rates.  The estimated respiration values will be compared to field measurements to determine the efficacy of the model.  Additionally, respiration estimates will be calculated under a future climate scenario.  These findings have important implications for developing accurate forecasts of microbial community assemblages during thaw in that location should be considered as a strong influencing factor. 

How to cite: Barbato, R., Doherty, S., Letcher, T., Vas, D., and Parno, J.: Comprehensive geospatial assessment of the soil microbiome’s response to temperature and moisture in interior Alaska, USA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6731, https://doi.org/10.5194/egusphere-egu24-6731, 2024.

Increasing industrial activity has led to a growing risk of cadmium (Cd) accumulations and biomagnifications in plants and humans. Arbuscular mycorrhizal fungi (AMF) have been extensively studied as a soil amendment technique due to their capability to reduce the accumulation of Cd in plant tissues. However, a quantitative and data-based consensus has yet to be reached on the effect of AMF on host plant growth, Cd uptake, and tolerance. Here, a meta-analysis was conducted to quantitatively evaluate the impact of AMF using 2079 individual observations from 157 articles. The research showed that adding AMF to the plants stopped the accumulation of Cd in the shoots and roots and increased biomass, phosphorus (P), and catalase (CAT) in the leaves compared to the control. Yet these effects varied with different mycorrhizal colonization rates, AMF species, plant families and functional types, and soil Cd contents. Mycorrhizal colonization rates positively correlate with changes in biomass and P content in shoots and roots, and CAT and proline in leaves, while showing no significant correlation with Cd concentration in plant tissues. Plants inoculated with Funneliformis caledonium exhibited greater biomass accumulation, while those inoculated with Rhizophagus irregularis showed higher P uptake. Mycorrhizal Legumes demonstrated the most significant reduction in Cd concentration among the plant families, whereas Compositae exhibited the highest increase in biomass, P content, and CAT. In addition, soils with intermediate and high Cd levels were more favorable for AMF to promote plant biomass accumulation. This study shows that AMF can help plants become more resistant to environments with excessive Cd. It also talks about how to manage and use them as bio-inoculants for farming and environmental restoration.

 

 

Acknowledgments

This research received funding from the National Key Research and Development Program of China (No. 2022YFC3701303) and the National Natural Science Foundation of China (Grant Nos. U2344228).

 

How to cite: Tan, Q., Wei, R., Hu, H., and Guo, Q.: Role of arbuscular mycorrhizal fungi behind the plant ameliorated tolerance against cadmium stress: A global meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6946, https://doi.org/10.5194/egusphere-egu24-6946, 2024.

Drought resulting from extended periods of limited precipitation have a substantial impact on soil pH, microbial biomass, and soil derived nutrients for plant growth. A long-term integrated crop, beef, and soil health research project at the Dickinson Research Extension Center is designed around a no-till diverse multi-crop rotation (spring wheat, cover crop, corn, pea-barley, sunflower). In this crop and animal production system, beef cattle graze the pea-barley, corn, and 13-specie cover crop to document microbial, fungal, and nutrient change over time and space. Precipitation during the first five-year crop rotation was normal to slightly above normal. However, the second five-year rotation was drier than normal resulting in nutrient concentration, reduced microbial biomass, and pH decline. Potential nitrogen mineralization of soil organic matter (SOM) in the crop rotation suggests that 8.4 mg N/kg of soil are mineralized for each 1.0% increase in SOM. The mean SOM content of soils in the study is 3.97%. For rain-fed crops, periods of reduced precipitation inhibit soil nutrient solubilization and translocation that negatively impacts a complex system of soil microbial respiration, fungal activity, plant nutrient supply, crop yield, and animal grazing days. The extent of soil drying in 2017 compared to moist soil in 2019 and somewhat drier soil in the 2020 cropping season will be presented. With drying, soil pH declined as soluble salt became more concentrated resulting in a more acidic condition. Naturally, reduced precipitation contributes to minimized plant and root growth, which contributed to reduced SOM content and nitrogen mineralization. For most of the crops in the diverse crop rotation, the percent of microbial active carbon, organic C : N ratio, and organic N : inorganic N ratio declined. Ward Lab Haney Test results for 24-hour microbial respiration provide measurements of microbial community and organismal diversity. Mean microbial biomass under drought conditions (2017), in the crop rotation, was 1,637 ng/g of soil. With the return to normal precipitation (2019) soil microbial biomass was 4,804 ng/g of soil; a 193.5% increase. While total microbial biomass increased with return to normal precipitation in 2019, arbuscular mycorrhizal fungi (AMF) did not reestablish in sunflower, cover crop, corn, and spring wheat-control, and only slight levels of AMF were measured in the pea-barley and spring wheat-rotation crops. Declining soil pH effects mineral nutrient availability among copper, manganese, zinc, and aluminum. At pH levels less than 5 (strongly acidic), aluminum availability becomes toxic to plants. Drought effected soil pH in this integrated systems research declined 9.5% to a mean crop pH value of 5.95, which at this pH level aluminum is sufficiently hydrated to be non-toxic. Return to normal precipitation (2019) increased the crop rotation pH mean to 6.58.

How to cite: Landblom, D., Senturklu, S., and Cihacek, L.: Effect of Drought and Subsequent Precipitation (2016-2020) on Soil pH, Microbial Biomass, and Plant Nutrient Change in the Semi-Arid Region of Western North Dakota, USA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7094, https://doi.org/10.5194/egusphere-egu24-7094, 2024.

A large amount of research has demonstrated that global warming leads to changes in the structure and function of soil microbial communities. Despite the large number of studies which have identified soil microbes as key drivers of biogeochemical processes, little is known about the trade-offs between soil microbial activities under environmental change and how this will affect soil biogeochemistry.

To this end, we currently develop high throughput methodology to measure growth, respiration, extracellular polymeric substance (EPS), extracellular enzyme activity (EEA) and carbon use efficiency (CUE) in pure cultures of a wide range of bacterial isolates. In response to resource quality (concentration, lability, stoichiometry), temperature and oxygen stress, we will assess trade-offs between key microbial catabolic and anabolic processes. The methodology will finally be applied to soils collected from the Achenkirch forest warming experiment in Austria to examine how complex communities and isolates from long-term warming and control soils express trait trade-offs. Isolates will be selected and checked to cover the most actively growing microbes in control and warmed soils using the qSIP method. The purpose of this study is to gain a deeper understanding of the anabolic and catabolic transitions of soil microbes under the influence of warming and, consequently, to predict the potential biogeochemical impacts of long-term warming on forest soils.

How to cite: Li, Y., Li, T., A. Eichorst, S., A. Anthony, M., and Wanek, W.: Trade-offs between growth, carbon use efficiency, and the production of extracellular polymeric substance and soil enzymes of soil microbes under long-term warming with different resource complexities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7945, https://doi.org/10.5194/egusphere-egu24-7945, 2024.

EGU24-8012 | ECS | Posters on site | SSS4.5

Continental-scale β diversity of bacteria and fungi vary differentially with soil pH in forests 

Changjiang Huang and Xuhui Zhou

Abstract:  The soil microbiota is crucial for regulating biogeochemical cycles, including soil carbon (C) dynamics and nutrient cycling. However, how climate, plants, and soil properties influence the microbiome in forests at a continental scale remains unclear, hampering us from better understanding forest C-climate change feedback. Here, we investigated the spatial patterns of microbial diversity across China’s forests and explored the factors controlling microbial β diversity and network complexity. Our results showed that bacterial and fungal β diversity were strongly influenced by soil pH and climate. To further investigate the environmental preference of the microbial networks, we classified the zero-radius operational taxonomic units (zOTUs) into five groups ranging from acidic to alkaline soils. Co-occurrence network analysis revealed that the topological structure of the bacterial network (e.g., edge and degree) increased with pH and had a negative relationship with β diversity but not with fungal diversity. Soil fungi exhibit greater β diversity with network complexity (i.e., degree and betweenness) than bacteria at pH < 5.1 and vice versa in neutral and alkaline soils (pH > 5.5). Within the pH range of 5.1-5.5, the bacteria-fungi network exhibited the most increased network complexity but the lowest fungal β diversity, with significant positive correlations found between fungal β diversity and soil properties. Furthermore, 46 bacterial core species were identified and shown to be significantly correlated with soil pH. These findings highlight the critical role of soil pH in driving soil microbial β diversity across China’s forests and reveal the effects of pH thresholds on changes in the soil microbial network and core species.

Keywords: Bacterial diversity, fungal diversity, network analysis, forest 

How to cite: Huang, C. and Zhou, X.: Continental-scale β diversity of bacteria and fungi vary differentially with soil pH in forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8012, https://doi.org/10.5194/egusphere-egu24-8012, 2024.

EGU24-15868 | ECS | Orals | SSS4.5 | Highlight

Drought intensity shapes legacy effects on grassland plant and soil microbial communities and their response to a subsequent drought 

Natalie J. Oram, Nadine Praeg, Richard D. Bardgett, Fiona Brennan, Tancredi Caruso, Paul Illmer, Johannes Ingrisch, and Michael Bahn

Drought has long-lasting legacy effects on grassland ecosystem functioning, which can manifest as shifts in soil microbial community structure and function and plant productivity that persist long after a drought passes. Increasing drought intensity causes abrupt shifts in plant productivity, plant-soil carbon and nitrogen dynamics, and soil microbial communities. However, very little is known about the role that drought intensity plays in the formation of drought legacies, and in plant and microbial responses to a subsequent drought. In a two-year experiment, we studied soil legacies associated with drought intensity in two model grassland plant communities with contrasting resource acquisition strategies (i.e., a fast- and a slow-strategy community). In the first year of the experiment, communities experienced a gradient of increasing drought intensity from well-watered to severely drought-stressed. In the second year, we determined soil microbial community composition and function, and plant community above-ground biomass in response to a subsequent drought. We found that the drought in the first year affected soil prokaryote and fungal community composition, microbial network structure, and soil function in the following growing season, and these effects were dependent on the past drought’s intensity. Soil drought legacy effects significantly altered plant community resilience to the subsequent drought: increasing intensity of the initial drought reduced plant community productivity resistance in slow-strategy plant communities, and decreased productivity overshoot seven weeks after re-wetting in fast-strategy plant communities. Our study shows that drought intensity causes distinct legacies in soil microbial community composition and function and alters the resilience of plant productivity to subsequent drought.

How to cite: Oram, N. J., Praeg, N., Bardgett, R. D., Brennan, F., Caruso, T., Illmer, P., Ingrisch, J., and Bahn, M.: Drought intensity shapes legacy effects on grassland plant and soil microbial communities and their response to a subsequent drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15868, https://doi.org/10.5194/egusphere-egu24-15868, 2024.

EGU24-16307 | Orals | SSS4.5 | Highlight

Land use intensity has a stronger effect on the temperature sensitivity of soil microbial carbon cycling processes than long-term climate change. 

Luiz Domeignoz-Horta, Matthew McLaughlin, Marcelo Soares Fontes, David Sebag, Marie-Liesse Aubertin, Eric Verrecchia, Ansgar Kahmen, Daniel Nelson, Anna-Liisa Laine, Pascal Niklaus, Klaus Butterbach-Bahl, and Ralf Kiese

Microbes are responsible for the cycling of carbon (C) in soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms thought to control microbial physiological response to warming. Two mechanisms have been proposed to explain the long-term effects of warming on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. However, studies disentangling these two mechanisms and assessing how land use affects them are lacking. To disentangle the drivers of changes in microbial physiology in response to long-term climate change, we sampled soils from a 10-year old global change and land use intensity experiment at the Pre-Alpine Terrestrial Environmental Observatories (TERENO project). The global change treatment includes a warming of 2oC and a reduction in precipitation of about 450 mm. We took soil samples at different time-points during the spring season and depths. We performed short-term laboratory incubations over a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency with the 18O-H2O method) and we characterized the quantity and quality of soil organic matter with the ramped thermal rock-eval pyrolysis at different depths. In this ongoing project, we did not observe thermal acclimation of microbial respiration, growth or CUE to climate change. However, fertilization had the strongest effect on the temperature sensitivity of microbial respiration. In the next steps of this project, we will determine whether climate change and/or land use intensity has an effect on soil organic carbon fractions with different residence times. Our preliminary results show that land use intensity has an overriding effect on the temperature sensitivity of microbial processes compared to long-term climate change.

How to cite: Domeignoz-Horta, L., McLaughlin, M., Soares Fontes, M., Sebag, D., Aubertin, M.-L., Verrecchia, E., Kahmen, A., Nelson, D., Laine, A.-L., Niklaus, P., Butterbach-Bahl, K., and Kiese, R.: Land use intensity has a stronger effect on the temperature sensitivity of soil microbial carbon cycling processes than long-term climate change., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16307, https://doi.org/10.5194/egusphere-egu24-16307, 2024.

EGU24-18381 | ECS | Orals | SSS4.5

Cropping system modulates the effect of drought on ammonia-oxidizing communities 

Ari Fina Bintarti, Elena Kost, Dominika Kundel, Rafaela Feola Conz, Paul Mäder, Hans-Martin Krause, Jochen Mayer, Martin Hartmann, and Laurent Philippot

The severity of drought is predicted to increase across Europe due to climate change. Droughts can substantially impact terrestrial nitrogen (N) cycling and the corresponding microbial communities. Here, we investigated how ammonia-oxidizing bacteria (AOB), archaea (AOA), and comammox (complete ammonia oxidizers) respond to simulated drought in a rain-out shelter experiment in the DOK long-term field trial comparing different organic and conventional agricultural practices since 1978. This study is part of the MICROSERVICES (BiodivERsA) project aiming to understand and predict the effects of climate change on crop-associated microbiomes and their ecosystem functions. We monitored the diversity, the composition, and the abundance of ammonia-oxidizers for five months by Illumina-based amplicon sequencing and quantitative real-time PCR using the amoA gene as molecular marker.

We found that the effect of drought varied depending on the ammonia-oxidizing community and also on the agricultural practices. The community structures of AOA and comammox were more strongly affected by drought than the AOB community structure. Drought also had a stronger impact on the community structure in the biodynamic (organic) cropping system than in both the mixed and mineral-fertilized conventional systems. The abundance of ammonia oxidizers was also influenced by drought, with comammox clade B exhibiting the strongest sensitivity to drought. The drought effect on the community abundance was more prominent in the biodynamic and mixed-conventional systems than in the mineral-fertilized conventional system. We further found a significant interaction between drought and agricultural practices on the abundance of all groups of ammonia-oxidizers except AOB. Overall, our study showed that the impact of drought on ammonia oxidizers was modulated by agricultural practices and varied with time as well as among members of ammonia-oxidizers. These results underscore the significance of agricultural management practices in influencing the response of nitrogen cycling and the corresponding communities to drought.

How to cite: Bintarti, A. F., Kost, E., Kundel, D., Conz, R. F., Mäder, P., Krause, H.-M., Mayer, J., Hartmann, M., and Philippot, L.: Cropping system modulates the effect of drought on ammonia-oxidizing communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18381, https://doi.org/10.5194/egusphere-egu24-18381, 2024.

EGU24-19061 | ECS | Posters on site | SSS4.5

Effects of elevated CO2 on soil microbial communities in a tropical understory forest in the Central Amazon 

Crisvaldo Souza, Lucia Fuchslueger, Nathielly Pires Martins, Iokanam Sales Pereira, Alacimar Viana Guedes, Bruno Takeshi Tanaka Portela, Maria Pires Martins, Juliane G. Menezes, Joana Séneca, Sabrina Garcia, Amanda Rayane Macambira Damasceno, Alberto Vicentini, David M. Lapola, and Carlos Alberto Quesada

Soil microbial communities are central to understanding interactions between soil and climate change by controlling  major carbon and nutrient fluxes, such as organic matter formation and decomposition. In addition, soil microbial communities respond sensitively to climate change and  can control the magnitude and direction of potential soil feedback to climate.

Tropical forests have a crucial role as carbon sink to reduce elevated atmospheric CO2 (eCO2), but they rely on soil microbial communities to access nutrients from organic matter. However, especially in tropical areas, the effects of increasing atmospheric CO2 on soil microbial community composition are still not fully understood. Studies, primarily conducted in temperate regions, demonstrate that eCO2 concentrations can cause changes in the structure and activity of soil microbial communities responsible for decomposing organic matter. Additionally, the richness of some microorganism species is relatively sensitive and decrease under eCO2, potentially leading to changes in the abundance of specific microbial taxa. Consequently, this could change nutrient mineralization rates, affecting primary production rates, and subsequently plant organic matter quality and inputs to soil.

Here we used an Open-Top Chamber (OTC) experiment to expose the understory vegetation in a tropical lowland forest to eCO2 (+200 ppm above ambient), and tested the impacts of eCO2 on soil microbial (fungal, bacterial, and archaeal) community structure using 16SrRNA amplicon sequencing. Two soil collections were conducted in eight OTCs (four eCO2 and four ambient control OTCs), in September 2019 before the CO2 increase and in September 2021 after two years of CO2 increment. Our results showed a significant decrease in microbial biomass carbon and phosphorus pools in response to eCO2 and a strong tendency of decreased DNA concentrations corroborating a potential decrease in soil microbial biomass. In addition, our data will provide insights in the diversity of microorganisms in Amazonian soil, and allow to better understand soil microbial community responses and feedbacks of tropical forests to eCO2 and consequences for soil carbon and nutrient cycling.

How to cite: Souza, C., Fuchslueger, L., Pires Martins, N., Sales Pereira, I., Viana Guedes, A., Tanaka Portela, B. T., Pires Martins, M., Menezes, J. G., Séneca, J., Garcia, S., Macambira Damasceno, A. R., Vicentini, A., Lapola, D. M., and Quesada, C. A.: Effects of elevated CO2 on soil microbial communities in a tropical understory forest in the Central Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19061, https://doi.org/10.5194/egusphere-egu24-19061, 2024.

EGU24-19132 | ECS | Orals | SSS4.5

Microbial growth in a warming Arctic: Exploring controls and temperature responses in permafrost soils 

Cornelia Rottensteiner, Victoria Martin, Alberto Canarini, Hannes Schmidt, Leila Jensen, Julia Horak, Moritz Mohrlok, Carolina Urbina Malo, Willeke A'Campo, Luca Durstewitz, Julia Wagner, Rachele Lodi, Niek Speetjens, George Tanski, Michael Fritz, Hugues Lantuit, Gustaf Hugelius, and Andreas Richter

Permafrost soils are particularly vulnerable to climate warming. With ~1,500 Gt Carbon (C), they store a significant proportion of global soil C. Organic matter that was frozen and thus unavailable for microbial decomposition for millennia, is now thawing. How much of this permafrost C is decomposed will be determined by microbial activities and the partitioning of assimilated C to microbial growth (potential C stabilization) or microbial respiration (C loss). Our current knowledge on the controls of microbial growth and respiration in permafrost soils is, however, limited.

The objective of this study was to analyze microbial growth and respiration in permafrost soils and to explore soil organic matter composition, microbial community composition and various soil parameters as potential drivers. We collected 81 soil samples from four soil layers (organic, mineral, cryoturbated, permafrost) and three lowland tundra polygon types (low-center, flat-center, high-center) in Arctic Canada. We used pyrolysis-GC-MS fingerprinting to characterize soil organic matter composition and amplicon sequencing (16S, ITS1) to identify archaeal, bacterial, and fungal community composition. Temperature responses (Q10) were analyzed in an 8-week laboratory incubation experiment, subjecting soil aliquots to 4 °C and 14 °C. Microbial growth was determined by 18O-H2O-incorporation into DNA and microbial respiration by gas analysis.

Soil organic matter composition differed between soil layers along a gradient of degradation and C content. Organic matter complexity and diversity decreased with the level of decomposition. We found distinct soil organic matter composition for each polygon type, including all soil layers, suggesting different decomposition pathways, induced by differences in vegetation and soil water regime. Anoxic conditions in low-center polygons resulted in more archaea and distinct fungal communities. Microbial community composition differed among all soil layers, with particularly more fungi in organic soils. Microbial mass-specific growth and respiration differed among polygons and soil layers, and both increased with warming. Overall, temperature responses (Q10) were higher for respiration than for growth, implying that microbes are less efficient in using C for growth. Linear mixed effect models revealed that soil organic matter composition and microbial community composition were good predictors for mass-specific growth at field and warmed conditions. Mass-specific respiration was best explained by microbial community composition. Our predictors, however, did not explain the temperature responses.

Our results indicate that under warming, microbes allocated more C to respiration, leading to increased greenhouse gas emissions per unit of carbon taken up. We found these results while including all soil layers and polygon types, suggesting these responses to be representative for lowland Arctic ecosystems. Moreover, we could show that organic matter composition and microbial community composition are good predictors for microbial growth and respiration, thus deserving more attention in future studies.

This study is part of the EU H2020 project “Nunataryuk”.

How to cite: Rottensteiner, C., Martin, V., Canarini, A., Schmidt, H., Jensen, L., Horak, J., Mohrlok, M., Urbina Malo, C., A'Campo, W., Durstewitz, L., Wagner, J., Lodi, R., Speetjens, N., Tanski, G., Fritz, M., Lantuit, H., Hugelius, G., and Richter, A.: Microbial growth in a warming Arctic: Exploring controls and temperature responses in permafrost soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19132, https://doi.org/10.5194/egusphere-egu24-19132, 2024.

EGU24-19328 | ECS | Posters on site | SSS4.5

Disentangling the impacts of soil management practices on nitrogen mineralization and inorganic nitrogen accumulation during soil drying events 

Eduardo Vázquez, Nikola Teutscherová, and Marta Benito

The biogeochemical cycling of nitrogen (N) in drylands ecosystems depends strongly on the alternance dry-wet cycles caused by seasonal nature of rainfall pulses. While during the dry periods the soil organic matter (SOM) mineralization is limited and inorganic N (Ninorg) is accumulated in soil because the low diffusion of ions and low N uptake by plant and microbes, the rewetting enhances the diffusion of ions and causes a pulse of N transformations and N2O emissions. Therefore, the understanding of the processes involved in the accumulation of Ninorg is crucial. In this study we combined a field and a laboratory study to disentangle the role of soil management practices on N mineralization and Ninorg accumulation in soils under drought conditions in Spain. First, we evaluated the N mineralization and Ninorg accumulation during summer fallow in a full-factorial field experiment comparing the effect of tillage (no-tillage (NT) vs traditional tillage (TT)) and liming. Second, we performed a soil drying experiment under controlled conditions using soil from the same field experiment to distinguish the impacts of management practices via changes in soil biogeochemical properties (mainly soil organic matter (SOM) and pH) and via soil microenvironmental conditions (soil water availability and temperature).

In the field experiment, Ninorg was accumulated in soils along the summer fallow (from May to July) while the evaluated enzymatic activities (β-glucosaminidase, Leucine aminopeptidase, BAA protease, Casein protease, L-glutaminase and Urease) and the abundance of chiA, pepA and apr genes were significantly reduced during the summer fallow. We observed a significant and positive interaction between NT and liming in the accumulation of Ninorg which may suggest higher risk of N losses upon rewetting. The higher Ninorg accumulation is linked to a similar synergistic effect of both practices on the activity of L-Asparaginase, L-glutaminase and Urease. The higher SOM, pH and less extreme microenvironmental conditions observed in soils managed by NT and liming can explain this synergistic effect. No effect of the treatments in the abundance of the evaluated genes was observed. In the soil drying experiment under controlled conditions where the differences caused by the microenvironmental conditions were excluded, we observed a positive effect of NT and liming on Ninorg accumulation along the drying experiment (29 days of drying). However, no interaction between NT and liming on the Ninorg accumulation was observed. This suggest that the synergistic effect observed in the field experiment was caused by the microenvironmental conditions rather than by changes in biogeochemical properties. Similar circumstance was observed in the analyzed enzymatic activities and chiA abundance (positive effect of NT and liming but without synergistic response) confirming the previous observation. In summary, our results suggest that the combination of NT and liming increases synergistically the accumulation of Ninorg in soil during summer fallow because of their positive effect on soil microenvironmental conditions rather than on soil biogeochemical properties

How to cite: Vázquez, E., Teutscherová, N., and Benito, M.: Disentangling the impacts of soil management practices on nitrogen mineralization and inorganic nitrogen accumulation during soil drying events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19328, https://doi.org/10.5194/egusphere-egu24-19328, 2024.

EGU24-20534 | Posters on site | SSS4.5

Cover crop diversification alters microbial life-death cycle and enhances carbon sequestration in agricultural soil 

Alexander König, Christoph Rosinger, Katharina Keiblinger, Sophie Zechmeister-Boltenstern, Anke Herrmann, and Erich Inselsbacher

Sequestering atmospheric CO2 within soil organic matter via shifts in agricultural practices represents a compelling strategy for enhancing soil ecosystem services and mitigating global change. Traditionally, the perception of soil carbon (C) stability is focused on intrinsic characteristics of organic matter inputs, such as lignin content. However, recent studies challenge this perspective, proposing a more effective approach centered on managing how the soil microbiome processes C inputs (Sokol et al., 2019; Poeplau et al., 2019).

This shift prompts an exploration into the intricate connection between aboveground plant communities and belowground diversity of the microbiome, as well as the associated metabolic processes governing C sequestration. Building on this, Lehmann et al. (2020) presented a theoretical framework that interprets the persistence of C in soil as a consequence of interactions between the molecular variability of organic matter input and the spatio-temporal microbial heterogeneities within the soil system. This perspective underscores the need for a comprehensive understanding of the dynamic interplay shaping C sequestration, moving beyond static views of organic matter stability.

Therefore, within the EnergyLink framework various microbial markers were investigated to shed light on potential physiological changes at a microbial level across several European agricultural field sites with different cover crop management types. Specifically, to discern shifts in microbial necromass composition and quantity, we focused on amino sugars (galactosamin, gluctosamine, mannosamine and muramic acid). To evaluate effects on potential growth rates, we quantified 14C incorporation into ergosterol for fungi and 14C-leucine incorporation for bacteria. Comprehending changes in uptake strategies, we examined extracellular enzyme activities for different nutrient classes. Additionally, we determined C:N:P ratio for bulk soil and microbial biomass. Here we present first results and discuss implications of diversified cover crops on soil carbon properties.

How to cite: König, A., Rosinger, C., Keiblinger, K., Zechmeister-Boltenstern, S., Herrmann, A., and Inselsbacher, E.: Cover crop diversification alters microbial life-death cycle and enhances carbon sequestration in agricultural soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20534, https://doi.org/10.5194/egusphere-egu24-20534, 2024.

Soil pore structure, dictated by factors such as porosity, size distribution, and geometry, is crucial for various soil processes and is significantly influenced by soil organic carbon (SOC). As the primary architect of pore geometry within soil aggregates, SOC plays a vital role in determining soil functionality and ecosystem services, yet traditional in-situ analysis methods have fallen short in accurately depicting its intricate distribution. The study employed a two-fold approach to analyze soil structure: a hydrogen peroxide fogging system was used to selectively remove organic carbon from soil aggregates, followed by synchrotron radiation micro-computed tomography (SR-μCT) for in-depth three-dimensional imaging. The results revealed that hydrogen peroxide treatment variably reduced organic carbon in soil aggregates, with Cambisol showing a higher removal efficiency (68-79%) compared to Ultisol (42-47%). The data highlighted the transformation of smaller pores and an increase in larger pore spaces following organic carbon removal, with Cambisol aggregates experiencing the most substantial alterations in pore structures. The impact of organic carbon on the shaping of pore structure within soil aggregates was profound and varied distinctly between the two studied soils—Ultisol and Cambisol. In Ultisol, the organic carbon, initially minimal, played a subtle role in pore structure formation, leading to limited changes post-removal, which suggested a structural resilience possibly due to its inherent mineralogy and physicochemical characteristics. In contrast, Cambisol, with higher initial organic carbon content, showed dramatic alterations in pore structure upon organic carbon removal. This indicated a more critical role of organic carbon in maintaining pore space configurations, with significant increases in larger pore spaces and a decrease in smaller, disconnected pores. These changes highlighted the organic carbon’s crucial function in not only sustaining pore integrity but also in facilitating the complex soil functions such as water retention and root penetration.

How to cite: Liu, J., Tian, Y., and Lu, S.: Investigating the influence of soil organic carbon on pore structure within aggregates a comparative study of Ultisols and Cambisols in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-139, https://doi.org/10.5194/egusphere-egu24-139, 2024.

EGU24-627 | ECS | Posters on site | SSS5.5

The effect of slope on soil organic matter and on microbial communities under different soil management practices. 

Laura Gismero Rodríguez, Inés Aguilar-Romero, José Alfonso Gómez, Ángel Valverde, and Heike Knicker

In Mediterranean regions, olive plantations are commonly located on steep 
slopes, leading to significant erosion. To mitigate soil loss, sustainable management 
practices often involve allowing natural vegetation cover to grow in the inter-tree 
spaces. 

To provide insights into the impact of different management forms on soil quality, we 
collected topsoil samples (0-15 cm) from an olive orchard with an 11% slope located in 
Southern Spain (Benacazón, Seville). Samples were taken along the slope of plots
managed with conventional tillage (CT) and with natural cover (NC). Additionally, soils
from the tree line, treated with herbicide (TL-Herb.), were included. To account for 
seasonality effects, sampling campaigns were conducted in autumn 2022 (following the 
dry season) and spring 2023 (after the rainy season). 

Soil organic matter content will be correlated with the management practices, slope 
location and microorganism abundance, determined through phospholipid fatty acid 
analysis (PLFA). Microbial respiration analysis will be also performed, using MicroResp
to assess microbial activity. The main hypothesis is that plots with vegetation cover will 
have higher SOM and total microbial biomass contents. We also expect an impact of 
slope location not only on the size of the microbial pool but also on the microbial 
biodiversity.

How to cite: Gismero Rodríguez, L., Aguilar-Romero, I., Gómez, J. A., Valverde, Á., and Knicker, H.: The effect of slope on soil organic matter and on microbial communities under different soil management practices., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-627, https://doi.org/10.5194/egusphere-egu24-627, 2024.

Landsliding creates new substrates upon which ecosystems develop. From a recovery perspective, these substrates may limit plant growth due their harsh conditions. Yet, from a soil formation perspective, these substrates may enhance weathering rates due to a combination of abiotic and biotic factors. Central to both is the role that mycorrhiza may play in ecosystem development, including biogeochemical cycles. Given that at mountainscape scales landslide populations are diverse due to variation in underlying climatic and edaphic conditions, we hypothesize that plant-mycorrhizal associations and their functions will mirror this diversity. To test this hypothesis, we focus on the Sierra de Las Minas in Guatemala (SLM), a mountain range that offers contrasting climatic characteristics associated with aspect (south aspect is dry to mesic and north aspect wet) and steep elevation gradients (400 – 2600 m a.s.l.). Leveraging plant and soil inventories conducted in forest and landslide habitats in the SLM we ask 1) How do plant-mycorrhizal associations vary with aspect, elevation, and habitat? 2) What is the contribution of soil chemistry to the observed variation in plant-mycorrhizal associations? And 3) How do plant-mycorrhizal associations and environmental conditions explain variation in weathering rates? To answer these questions, we integrated our plant inventories with a global database on plant-mycorrhizal associations. The former contains species composition and soil elemental analyses that we used to estimate a variety of weathering indices. The latter was used to assign plants from our field inventories to one or more mycorrhizal type.

Plant-mycorrhizal associations were diverse and greatly contributed to the separation of plant communities in multivariate space. Aspect followed by habitat explained a large fraction of the observed variability. Subsets of soil variables correlated with different dimensions derived from principal component analyses suggesting that plant-mycorrhizal associations contribute diverse functions. In general, weathering indexes differed with aspect and habitat. For example, Vogt Residual Index and Chemical Index of Alteration, were higher in landslide than forest and this difference was more pronounced in the wet than dry to mesic aspects. Further analyses will allow us to examine the contribution of plant-mycorrhizal associations to ecosystem development and soil formation in tropical mountainscapes influenced by landslide activity.

How to cite: Restrepo, C. and Ortiz, Y.: Plant-mycorrhizal associations vary with climate and soil in tropical mountainscapes influenced by landslides: Implications for ecosystem development and soil formation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4322, https://doi.org/10.5194/egusphere-egu24-4322, 2024.

EGU24-4570 | ECS | Posters on site | SSS5.5

Seasonal floodplain dynamics control Fe-rich colloid characteristics 

Maya Engel, Vincent Noel, Samuel Pierce, Tristan Babey, Libor Kovarik, Ravi Kukkadapu, Qian Zhao, Rosalie Chu, Kristin Boye, and John Bargar

High concentrations of Fe-rich colloids have been detected in the anoxic zones of our Slate River floodplain field site (CO, USA) since 2018. We speculated that the composition and abundance of the colloids is controlled by the seasonal dynamics and spatial heterogeneities of the subsurface. Therefore, our goals were to 1) decipher the structure and chemical composition of Fe-rich colloids, 2) identify mechanisms of colloid transformation and 3) understand their biogeochemical function.

TEM analysis revealed nano-spheres and nano-assemblages that consist mainly of Fe, O, Si, and C, with lower contributions from Al, S and Ca. Based on this elemental distribution, we hypothesized that the colloids are composed of Fe minerals that are associated with organic matter and Si. This was further confirmed through Mössbauer spectroscopy and Fe-EXAFS that indicated the colloids consist ferrihydrite associated with organic matter and Si. NanoSIMS imaging detected co-localities of Fe, S, Si, and O, as well as C and N, which demonstrate once more that these are ferrihydrite-based colloids that are embedded in an organic matter-Si matrix.

 These findings are intriguing as they demonstrate high abundance of ferrihydrite-based colloids in anoxic depths of our field site. The stability of the colloids is likely attributed to the coating of organic matter and Si that serves as a protective layer against the reducing conditions. Nevertheless, our data also showed that colloids collected during snowmelt (Spring 2021) contained a higher proportion of Fe(II) than colloids collected during baseflow conditions (Summer 2021). XPS analysis measured higher atomic percentages of C and Si compared to Fe and O in baseflow versus snowmelt colloids, indicating a decrease in the organic-Si protective layer under baseflow conditions, allowing for Fe(II) oxidation and an increase in Fe(III)/ferrihydrite content. The fact that there is an occurrence of S species only in the more reduced snowmelt colloids illustrates the dynamic and delicate composition of these environmental colloids during seasonal changes in hydrology and porewater chemistry.

We are also in the process of interpreting our seasonal data that will shed light on the controls over the seasonal dynamics of the colloids. We have already linked Fe(II) colloid abundance to lower vertical porewater velocities and higher organic matter levels, and are working on additional analyses including data acquired from FT-ICR-MS analysis of the organic composition of the colloids.

How to cite: Engel, M., Noel, V., Pierce, S., Babey, T., Kovarik, L., Kukkadapu, R., Zhao, Q., Chu, R., Boye, K., and Bargar, J.: Seasonal floodplain dynamics control Fe-rich colloid characteristics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4570, https://doi.org/10.5194/egusphere-egu24-4570, 2024.

Soil particle size distribution determines the soil water and nutrient availability, but the spatial variance of the soil texture is often unknown in agricultural fields. This knowledge gap limits demand-oriented and ecological nutrient and water management of crops. It also hampers our understanding of the crop resource use in the field as mediated by soil microbes such as the arbuscular mycorrhizal symbioses. To better understand to which soil conditions maize-mycorrhiza associations respond, we used proximal sensing of soil texture to map within-field variation soil particle size in high spatial resolution and related soil texture to the mycorrhization of organic maize.

To obtain the soil texture maps, we used the mobile sensor platform Geophilus electricus [1]. This proximal soil sensing system deploys a multi-sensor approach to discriminate soil properties by simultaneously measuring the electrical resistivity (up to 1.5m depth) via rolling electrodes and the natural gamma activity, whilst a DGPS guarantees the required precision in geo-referencing during mapping [2]. After calibration of the sensor data with soil samples of the selected fields, the final output is a high-resolution map of the mean soil particle diameter (MPD), which was then used as the independent variable in correlations with the mycorrhization of maize.

The soil texture mapping took place for three investigated fields in 2020 at an organic farm in Lower Saxony, Germany, which is dominated by sandy soils and on which a crop rotation with maize was deployed. The plant and soil sampling took place in 2017, 2020 and 2021 at the respective sites with maize. For each field, the sampling of soils and plants occurred equidistantly in 12 parallel transects along the moving lane direction. We analyzed plant and soil C/N, P, K, Mg, soil pH and organic matter and root colonization by native mycorrhizal fungi during the maize culture.

According to our expectations, we found that the MPD and the clay fraction are accurate describers of the soil P, N, Mg and Corg concentrations for the three years and fields in the crop rotation, while soil K was not responding to the soil texture. Interestingly, we also found a conserved correlation between root colonization by arbuscular mycorrhizal fungi and the MPD of the soil surrounding the roots of the sampled plants. Lower MPD (i.e. higher clay contents) gave rise to stronger maize-mycorrhiza root associations. This response pattern was conserved in years markedly different in mean annual temperature and precipitation. However, the lowest rates of root colonization by mycorrhizas were observed in the dry year of 2020.

We discuss that precision farming technologies may have the potential to guide the management of crops for improved and microbe-assisted resource use. 

 

 

[1] Lück, E., & Rühlmann, J. (2013). Resistivity mapping with GEOPHILUS ELECTRICUS—information about lateral and vertical soil heterogeneity. Geoderma, 199, 2–11. [2] Meyer, S. et al. (2019). Creating soil texture maps for precision liming using electrical resistivity and gamma ray mapping. In Stafford, J. V. (Ed.) Precision Agriculture’19 Proceedings of the 12th European Conference on Precision Agriculture Wageningen (pp. 92). Wageningen, The Netherlands: Wageningen Academic Publishers.

How to cite: Bitterlich, M., bönecke, E., and Rühlmann, J.: Mycorrhiza likes clay - High resolution soil texture maps reveal a conserved correlation of maize mycorrhization to soil particle size across years and fields, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4761, https://doi.org/10.5194/egusphere-egu24-4761, 2024.

EGU24-5851 | Posters on site | SSS5.5

Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability 

Nina Siebers, Eva Voggenreiter, Prachi Joshi, Janet Rethemeyer, and Liming Wang

Understanding the formation and stability of soil aggregates is crucial for sustaining soil functions. This study investigates the impact of organic matter (OM), pedogenic Fe (oxyhydr)oxides, and aggregate size on aggregate stability in an arable soil. Samples were collected from the Ap and Bt horizons of a Luvisol after 14 years of bare fallow, and results were compared with a control field under permanent cropping. In the Ap horizon, bare fallow led to a 26% reduction in the median diameter of the 53-250 µm size fraction, indicating decreased stability of larger microaggregates. Simultaneously, the mass of the 20-53 µm size fraction increased by 65%, suggesting reduced stability, particularly of larger soil microaggregates, due to the absence of fresh OM input. The 14carbon (14C) fraction of modern C (F14C) under bare fallow ranged from 0.50 to 0.90, lower than the cropped site (F14C between 0.75 and 1.01). This difference was most pronounced in the smallest size fraction, indicating the presence of older C. Higher stability and reduced C turnover in <20 µm aggregates were attributed to their elevated content of poorly crystalline Fe (oxy)hydroxides, acting as cementing agents. Colloid transport from the Ap to the Bt horizon was observed under bare fallow treatment, highlighting the release of mobile colloids. This transport may initiate elemental fluxes with potential unknown environmental consequences. In conclusion, the absence of OM input decreased microaggregate stability, releasing mobile colloids and initiating colloid transport.

How to cite: Siebers, N., Voggenreiter, E., Joshi, P., Rethemeyer, J., and Wang, L.: Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5851, https://doi.org/10.5194/egusphere-egu24-5851, 2024.

EGU24-6272 | Posters on site | SSS5.5

Long-Term Effects of Silphium perfoliatum on Soil Pore Dynamics and Organic Carbon Accumulation 

Maik Lucas, Lina Rohlmann, and Kathrin Deiglmayr

Perennial bioenergy crops like Silphium perfoliatum (cup plant) are a promising alternative to currently used energy crops such as maize because of their positive feedbacks on various soil properties including carbon sequestration, edaphon activity and erosion control. This study investigates the long-term impact (over 10 years) of the cup plant on soil organic carbon and soil structural parameters in comparisons to a to a nearby ploughed reference site.

We employed tension infiltrometers to measure water infiltration rates at two soil depths (5 and 45 cm). Following this, 100 cm³ aluminum soil cores were extracted for X-ray computed tomography at a resolution of 35 µm. The image analysis, enhanced by machine learning, classified structures including roots, particulate organic matter (POM), biopores, and two types of soil matrix: dense and loose, the latter indicating higher carbon content or more pores slightly below image resolution. The dataset was complimented by the determination of total carbon content and the root length distribution with RhizoVisionExplorer.

The results indicate significant differences in pore structure, primarily in the topsoil, where the cup plant site showed a greater volume of biopores than the reference site. In contrast, the subsoil differences were less marked. Organic carbon content analysis demonstrated a notable increase in the upper soil layer (10-15 cm) at the cup plant site, contributing to a higher soil organic carbon stock than the reference site. However, this effect diminished with depth, becoming negligible at 50-55 cm. In the topsoil, extensive bioturbation/biomixing was observed, as indicated by the darker, more loosely structured soil matrix, which often had the shape of biopores. This bioturbation, which mixed particulate organic matter (POM) into the soil, significantly enhanced soil organic carbon, as evidenced by linear regression analysis.

These findings underscore the substantial impact of the perennial cup plant in enhancing soil structure and carbon content, particularly in the topsoil.

How to cite: Lucas, M., Rohlmann, L., and Deiglmayr, K.: Long-Term Effects of Silphium perfoliatum on Soil Pore Dynamics and Organic Carbon Accumulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6272, https://doi.org/10.5194/egusphere-egu24-6272, 2024.

EGU24-7710 | Orals | SSS5.5

Probing microbe-mineral-organic matter interactions in soils with photothermal infrared spectromicroscopy 

Floriane Jamoteau, Mustafa Kansiz, and Marco Keiluweit

Interactions among microbes, minerals, and organic matter are key controls on carbon, nutrient, and contaminant dynamics in soil and sediments. However, probing these interactions at relevant scales and through time remains an analytical challenge due to both their complex nature and the lack of tools permitting non-destructive time-step analysis. The recent development of optical photothermal infrared (O-PTIR) microscopy has opened the way for non-invasive analysis of these interactions at submicron resolution through time. Here we demonstrate the ability of O-PTIR microscopy to analyze mineral-organic microstructures down to 400 nm, without contact, allowing the time-resolved, non-destructive characterization of both mineral and organic components. Results showed that, while all these mineral-organic microstructures can be analyzed without measurable beam damage using the appropriate laser power, poorly crystalline minerals, and high-molecular-weight compounds are more sensitive to damage than crystalline minerals and low-molecular-weight compounds, respectively. Despite these differences in beam damage sensitivity, we found analytical conditions under which all materials were analyzed without damage and could therefore be analyzed repeatedly over time. With synthetic mineral-organic microstructures, we localized mineral-bound and unbound organic compounds, down to the sub-micron scale. Our results highlight the potential of and provides analytical recommendation for the application of O-PTIR microscopy to resolve microbe-mineral-organic matter interactions in soil and sediments.

How to cite: Jamoteau, F., Kansiz, M., and Keiluweit, M.: Probing microbe-mineral-organic matter interactions in soils with photothermal infrared spectromicroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7710, https://doi.org/10.5194/egusphere-egu24-7710, 2024.

EGU24-8956 | ECS | Posters on site | SSS5.5

Seasonal greenhouse gas flux and microbial community dynamics along a landslide soil chronosequence at the west side of New Zealand's Southern Alps 

Olivia Rasigraf, Anne Riedel, Alexander Bartholomäus, Timothy Clough, Thomas Friedl, and Dirk Wagner

Landslides are an important erosion mechanism in mountainous terrain. They strip large quantities of organic material from ecosystems and expose bedrock to weathering. At the west side of New Zealand’s Southern Alps, super-humid climate and slope instabilities create ideal conditions for frequent landslides, allowing studies of soil formation processes in short-term chronosequences. Here, we investigated soils from three landslides that occurred in 2019 (“young”), 1997 (“intermediate”), and 1965±5y (“old”), respectively. Additionally, reference forest soils located outside of landslide areas were sampled at each location. Closed PVC chambers were installed at different positions on landslide surfaces and reference soils, and gas samples were collected for flux analysis. Soil samples were collected at the same positions from the surface and 20 cm depth and investigated for physico-chemical parameters and microbial community composition.

Net CO2 emissions reached 830 mg h-1m-2 at the “old” site in summer and remained below 356 mg h-1m-2 in winter. Net N2O emissions showed a patchy spatial pattern, reaching rates of 0.2 mg h-1m-2 at the “old” site in summer. At most locations, N2O flux was below the detection limit during winter.

Soils were dominated by bacterial phyla Acidobacteria, Bacteroidota, Chloroflexi, Gemmatimonadota, Planctomycetota, Proteobacteria and Verrucomicrobiota. Dominant archaeal phyla comprised Thermoplasmatota and Crenarchaeota. Beta diversity analysis revealed distinct community composition patterns with the “young” site forming a separate cluster from the older landslides and reference soils. Surface- and depth-associated microbial communities showed high similarity at the “young” site, but they became increasingly distinct at the “intermediate”, “old” and reference soil sites. Community composition at the “old” site showed the least difference to reference sites, indicating that ecosystem development rapidly reached a state similar to older mature forests.

In general, the three landslide sites showed a gradient in the development of soil chemical parameters, microbial community composition and soil respiration rates, with the “old” site being closest to reference sites. Soil respiration rates showed strong seasonal dependence and soil temperature sensitivity.

Our results indicate that respiration rates and microbial community composition of landslide soils reach those of older mature forest soils within a few decades after mass wasting events, if no reactivation occurs and soil development can proceed without disturbance.

How to cite: Rasigraf, O., Riedel, A., Bartholomäus, A., Clough, T., Friedl, T., and Wagner, D.: Seasonal greenhouse gas flux and microbial community dynamics along a landslide soil chronosequence at the west side of New Zealand's Southern Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8956, https://doi.org/10.5194/egusphere-egu24-8956, 2024.

EGU24-9465 | Posters on site | SSS5.5

Mapping redox conditions in a tar-oil contaminated technosol by S K-edge XANES at the micrometer scale 

Karin Eusterhues, Jürgen Thieme, Thomas Ritschel, Pavel Ivanov, and Kai Uwe Totsche

At numerous open pits worldwide, carcinogenic and geno‐toxic tar oil is still exposed to the environment. To understand ongoing tar degradation under different environmental conditions we studied soil structure, water retention, tar composition, and microbial biomass of a technosol under a small tar-oil spill at a former brown coal processing site. We observed that microbial biomass increased with pore volume on our study site: Generally, contaminated layers of the technosol were more porous than uncontaminated control soils and accommodated more microbes. However, the relationship was not linear. We therefore wondered whether the redox regimes within the aggregates of the different layers provide comparable conditions for microbial degradation.

We used the chemical state of S as a proxy for the prevailing redox-conditions and µXANES on thin sections (5 µm spatial resolution) to analyze the S speciation in relation to soil structure. First results show that the tar is not homogeneously composed and that the proportion of reduced S compounds increases with soil depth: Particularly S-rich domains within the tar are often roundish, up to 200 µm in size and composed of varying proportions of inorganic sulfide-S, organic monosulfide-S or thiol-S, sulfoxide-S, and sulfonate-S. The topmost layer (0-5 cm) of the technosol is very porous. Here, the tar matrix is dominated by sulfonate-S. At more than 5 cm depth, the soil also has a high porosity due to large pores > 50 µm but at the same time includes mm-sized, compact aggregates with only few small pores (1-10 µm and 10-50 µm). The tar matrix within these aggregates contains sulfidic S in addition to the sulfonate-rich component. However, adjacent to pore surfaces we observe 5-15 µm thick (oxidized) rims with only sulfonate-S.

Our data show that the tar is not only chemically complex, but also heterogeneous in composition at the µm scale. Below a soil depth of 5 cm, we can assume that microbial tar degradation is slowed down because of the anoxic conditions within the aggregates, although pores > 50 µm are abundant and bacterial cell counts are high.

How to cite: Eusterhues, K., Thieme, J., Ritschel, T., Ivanov, P., and Totsche, K. U.: Mapping redox conditions in a tar-oil contaminated technosol by S K-edge XANES at the micrometer scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9465, https://doi.org/10.5194/egusphere-egu24-9465, 2024.

EGU24-11128 | Orals | SSS5.5

The influence of structural complexity of microbial habitats on soil organic matter decomposition: a theoretical analysis 

Ksenia Guseva, Carlos Arellano, Magdalena Rath, Paul Prinz, Moritz Mohrlok, and Christina Kaiser

The soil pore space constitutes a highly heterogeneous habitat that harbors a rich microbial diversity. Microbial processes within soils are intricately linked to the physical and chemical characteristics of micro-environments of pores where they reside. The dynamics of decomposition of organic matter therefore is shaped by the dispersion dynamics or spatial constraints imposed on microorganisms and their enzymes. Therefore, incorporating the complex soil architecture into computational models at the microscale is a crucial step to improve our predictions of the dynamics of soil organic matter (SOM) turnover.

In this work, we employ theoretical models to elucidate the impact of soil structural complexity and heterogeneity on organic matter decomposition dynamics, and characterize mechanisms that enhance or constrain it. In the first part, we show the impact of compartmentalization of the substrate on enzyme activity, considering a scenario where microbes have no direct physical access to the substrate and only smaller freely diffusing enzymes can reach it. Our findings reveal that, in this context, enzyme lifetime imposes limitations on the turnover rate of the reaction, subsequently affecting the uptake and growth rates of microorganisms. In the second part, we examine the effect of soil architecture on microbial decomposition dynamics. Our results highlight two contrasting aspects necessary for rapid decomposition: on one hand there is a need for refuges/shelters where microbial activity is boosted trough accumulation of enzymes, and on the other there is a need for high connectivity (accessibility) of the pore space for the microbial population to spread. Through our examination, we unveil the intricate interplay between these apparently conflicting conditions and their profound effects on population growth and substrate decomposition rates.

How to cite: Guseva, K., Arellano, C., Rath, M., Prinz, P., Mohrlok, M., and Kaiser, C.: The influence of structural complexity of microbial habitats on soil organic matter decomposition: a theoretical analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11128, https://doi.org/10.5194/egusphere-egu24-11128, 2024.

EGU24-11265 | ECS | Posters on site | SSS5.5

Aged carbon mineralisation from headwater peatland floodplains in the Peak District, UK 

Danielle Alderson, Martin Evans, Mark Garnett, and Fred Worrall

Floodplains are dynamic ecosystems that cycle carbon, which is both delivered from upstream catchment sources and produced in-situ by pedogenesis. These landforms are being progressively acknowledged as important environments of carbon processing, with the capacity for both substantial carbon sequestration in addition to acting as hotspots of carbon mineralisation. The balance between storage and release is dependent on a number of controls including landscape position, environmental conditions and soil characteristics. This study focuses on three headwater floodplains in a single catchment (approximately 10km in length), downstream of a highly eroded blanket bog peatland in the Peak District, UK. Aged organic carbon of peatland origin has been found in floodplains in this area based on prior research, and therefore we aimed to understand whether the allochthonous carbon was being mineralised in this context. We examined sediment cores and analysed the radiocarbon (14C) content of CO2 respired from the floodplain soils using a partitioning approach to scrutinise the depth and age relations of respiration in the individual floodplains and patterns of age distributions downstream. As such, we examined whether soil heterogeneity as a function of distance downstream and within individual floodplain profiles had an impact on age of respired CO2.

Aged organic carbon was released from the upper and mid floodplain sites (14C ages of 682 and 232 years BP, respectively), whereas only modern dates were recorded at the lower site. The sedimentology was in accordance with the radiocarbon dates, suggesting primarily allochthonous deposition at the upper sites, but a dominance of in-situ soil development at the lower site. There was no age-depth relationship within individual floodplains, suggesting that the floodplain sediments were well-mixed and that aged organic matter was being processed both at the surface and at depth in the uppermost sites. An isotope mass balance mixing model indicated the control of two sources of CO2; recently fixed C3 organic matter and CO2 produced by methanogenesis. The results indicate that floodplains in a relatively narrow halo around eroding headwater peatlands could be important sites of aged carbon turnover originally derived from upstream sources, with those further downstream playing a different role. Reworked carbon does not transfer passively through the system and experiences periods of deposition where it can be subject to microbial action. In areas where organic carbon has previously been ‘locked up’ (e.g., permafrost regions) but is now under the threat of release due to climate change, this is an important consideration.

How to cite: Alderson, D., Evans, M., Garnett, M., and Worrall, F.: Aged carbon mineralisation from headwater peatland floodplains in the Peak District, UK, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11265, https://doi.org/10.5194/egusphere-egu24-11265, 2024.

EGU24-11474 | ECS | Posters on site | SSS5.5

Spatiotemporal variations of manganese-mediated litter decompositions across oxic-anoxic transitions in deciduous forest soils 

Nathan Chin, Egon Van Der Loo, Kristen DeAngelis, and Marco Keiluweit

Manganese (Mn) has been demonstrated to be a significant driver of litter decomposition in forest soils, regulating nutrient cycling, CO2 production, and ultimately soil carbon storage across forest systems globally. Recent evidence suggests that Mn-driven litter decomposition is dependent on ubiquitous oxic-anoxic interfaces in soils, which act as potential hotspots for the formation of reactive Mn(III) oxidants. Here we will show how oxic-anoxic interfaces in forest soils, arising from spatiotemporal variations in moisture, affect Mn(III)-driven litter decomposition. To do this, we tested the effect of in-field Mn additions on litter decomposition along a deciduous forest upland-to-wetland transect exhibiting dynamics in oxic-anoxic transitions. Within Mn-amended litterbags incubated across the transect, we monitored spatiotemporal variations in Mn(III) formation and litter decomposition. Over the course of the experiment, increased Mn amendments in litter correlated with both enhanced CO2 production as greater mass loss compared to untreated litter, particularly during periods of greater Mn(II) oxidation. Wet-chemical extractions revealed increasing Mn(II) oxidation over the growing season in elevated Mn treatments, resulting in enhanced Mn(III) formation. Additionally, the greater abundance of Mn(III) phases in Mn treated litter compared to untreated litter was significantly correlated to a greater degree of oxidation in the litter and greater water extractability of litter carbon, demonstrating enhanced litter decomposition in Mn amended litter. Across the forest transect, Mn oxidation and Mn(III) formation were greatest at sites with greater presence of oxic-anoxic transitions, which coincided with the sites exhibiting higher litter decomposition. Therefore, our results show that Mn(III)-mediated litter decomposition occur in hotspots present at oxic-anoxic interfaces across spatiotemporal gradients in forest soils. These findings provide first insights into the spatiotemporal links between Mn and carbon coupled redox cycling in forest ecosystems.

How to cite: Chin, N., Van Der Loo, E., DeAngelis, K., and Keiluweit, M.: Spatiotemporal variations of manganese-mediated litter decompositions across oxic-anoxic transitions in deciduous forest soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11474, https://doi.org/10.5194/egusphere-egu24-11474, 2024.

EGU24-13293 | Orals | SSS5.5

Laboratory for Observing Anoxic Microsites in Soils (LOAMS) 

Vincent Noël, Samuel Webb, and Kristin Boye

Redox reactions essentially underlie several biogeochemical processes and are typically spatiotemporally heterogeneous in soils and sediments. However, redox heterogeneity has yet to be incorporated into mainstream conceptualizations and modeling of soil biogeochemistry. Anoxic microsites, a defining feature of soil redox heterogeneity, are non-majority oxygen depleted zones in otherwise oxic environments. Neglecting to account for anoxic microsites can generate major uncertainties in quantitative assessments of greenhouse gas emissions, C sequestration, as well as nutrient and contaminant cycling at the ecosystem to global scales. However, only a few studies have observed/characterized anoxic microsites in undisturbed soils, primarily, because soil is opaque and microsites require µm-cm scale resolution over cm-m scales. Consequently, our current understanding of microsite characteristics does not support model parameterization.

To resolve this knowledge gap, we simultaneously (i) study impact from anoxic microsites on biogeochemical cycles at the soil scale and (ii) detect, quantify, and characterize anoxic microsites directly from natural cores.

We have examined the influence of anoxic microsites on biogeochemical cycles of nutrients (C, S, and Fe) and contaminants (Zn, Ni, As, U), combining results from experimental columns and natural cm-scale anoxic microsites of floodplain sediments at the upper Colorado River Basin scale. In parallel, we have demonstrated through a proof-of-concept study that X-ray fluorescence (XRF) 2D mapping can reliably detect, quantify, and provide basic redox characterization of anoxic microsites using solid phase “forensic” evidence. Rapid screening of large cores at high spatial and energy resolution, i.e. 1-100 µm resolution over cm-m areas, followed by systematic algorithm-driven data processing, allows for relatively quick identification, quantification, and characterization of actual anoxic microsites. To date, these investigations have revealed direct evidence of anoxic microsites in predominantly oxic soils such as from an oak savanna and toeslope soil of a mountainous watershed, where anaerobicity would typically not be expected. We also revealed preferential spatial distribution of redox microsites inside aggregates from oak savanna soils. We anticipate that this approach will advance our understanding of soil biogeochemistry and help resolve “anomalous” occurrences of reduced products in nominally oxic soils.

How to cite: Noël, V., Webb, S., and Boye, K.: Laboratory for Observing Anoxic Microsites in Soils (LOAMS), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13293, https://doi.org/10.5194/egusphere-egu24-13293, 2024.

EGU24-13732 | Orals | SSS5.5

Exploring subsurface heterogeneity of nitrogen and carbon cycling under a southeastern U.S. cattle grazing pasture  

Joseph Roscioli, Joanne Shorter, Elizabeth Lunny, Scott Herndon, Nuria Gomez-Casanovas, and Peter Byck

Subsurface cycling of nitrogen and carbon is central to our understanding of biosphere-atmosphere exchange and can strongly impact the ability of soil to be a greenhouse gas source or sink.  The underlying processes exhibit strong environmental dependence that can lead to substantial spatiotemporal heterogeneity across scales.  Here we present a study that explores how that variability manifests in subsurface greenhouse gases and their isotopes under a cattle grazing pasture in the southeastern U.S.  We used an automated array of 24 diffusive soil gas probes connected to a tunable infrared laser direct absorption spectrometer (TILDAS) to produce real-time maps of nitrous oxide isotopes, carbon dioxide, and oxygen with high spatial (meters) and temporal (hours) resolution.  We discuss ways to visualize and process the heterogeneity data, including using Lorenz plots and two-dimensional correlation, to reveal the magnitude and persistence of spatial heterogeneity of these gases.  CO2 is found to be much more spatially homogeneous than N2O, indicating a stronger dependence of N processing upon the local environment.  Analysis of N2O isotopic signatures shows that the last step in subsurface N-cycling, N2O reduction, is spatially heterogeneous and related to the magnitude of “hot spots” of N2O production.   

How to cite: Roscioli, J., Shorter, J., Lunny, E., Herndon, S., Gomez-Casanovas, N., and Byck, P.: Exploring subsurface heterogeneity of nitrogen and carbon cycling under a southeastern U.S. cattle grazing pasture , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13732, https://doi.org/10.5194/egusphere-egu24-13732, 2024.

EGU24-14399 | Orals | SSS5.5

The interplay of soil spatial heterogeneity and water in stabilizing and destabilizing soil organic matter 

Claire Chenu, Charlotte Védère, Israel Kpemoua, Naoise Nunan, Valérie Pot, Patricia Garnier, Clémentine Chirol, and Laure Vieublé-Gonod

Soil moisture is a main driver of soil organic matter dynamics of soil organic matter and is an important environmental variable in all models predicting changes in soil carbon stocks from site to global scales. Despite this, the mechanisms determining the response of heterotrophic soil respiration to soil moisture remain poorly quantified, being represented in most current carbon cycle models as simple empirical functions. Soils are extremely complex and heterogeneous environments and many properties observed at the profile or at the plot the scale are, in fact, determined by microscale conditions and processes.

The spatial heterogeneity of soil constituents and assemblages defines a myriad of contrasted micro-habitats, hosting diverse microorganisms, with contrasted moisture related characteristics and presumably contrasted levels of microbial activity. In addition, the respective spatial distributions of organic resources and microbial decomposers and the transfer rates between them, that depend on soil moisture, explain that similar organic compounds may have contrasted residence times in soil, being stabilized or not.

We consider how do soil moisture and soil spatial heterogeneity may explain the stabilisation of organic matter. Different pore size classes exhibit different rates of microbial decomposition, when considering different soils, across published studies and in a single laboratory experiment. Soil moisture affects the dynamics of biogeochemical hotspots, such as the detritusphere.

Regarding destabilization of soil organic matter, priming effect was revealed to be soil moisture dependent, that can be explained by varying access of newly produced enzymes to native soil organic matter. The Birch effect, a well-described flush of mineralization observed after rewetting dry soils, may also be partly explained at the microscale by changes in the local architecture of soils.

Overall, considering the interplay between soil spatial heterogeneity, soil moisture and the activity of microbial decomposers offers insights in understanding the stabilisation and de-stabilisation of soil organic matter. Incorporating this process level understanding into soil organic matter dynamics models is a challenge, as it requires the identification of relevant soil structure descriptors of these processes, at different time scales.

How to cite: Chenu, C., Védère, C., Kpemoua, I., Nunan, N., Pot, V., Garnier, P., Chirol, C., and Vieublé-Gonod, L.: The interplay of soil spatial heterogeneity and water in stabilizing and destabilizing soil organic matter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14399, https://doi.org/10.5194/egusphere-egu24-14399, 2024.

EGU24-14407 | ECS | Posters on site | SSS5.5

The effect of habitat complexity on bacterial competition 

Carlos Arellano-Caicedo, Ara Fadhel, Pelle Ohlsson, and Edith C. Hammer

The way microbes interact in nature can vary widely depending on the spatial characteristics they are located in. This aspect of the microbial environment can determine whether processes such as organic matter turnover, community dynamics, or microbial speciation, among others, occur and their impact on soil functions. Investigating how the geometry of microhabitats influences microbes has been traditionally challenging due to methodological limitations. A major challenge in soil microbial ecology is to reveal the mechanisms that allow a wide diversity of microorganisms to co-exist. This study is directed towards answering the question of how spatial complexity affects bacterial competition, and how this can lead to organic matter turnover.

Using microfluidic chips that mimic the inner soil pore physical geometry, and fluorescence microscopy, we followed the effect of an increasing complexity in the growth and substrate degradation of two soil bacterial strains. The parameters used to define complexity were two: the turning angle and order of pore channels, and the fractal order of pore mazes. When we tested the effect of an increasing in turning angle sharpness on microbial growth, we found that in sharper angles, both species coexisted, but only until certain sharpness where both populations decreased. We also found that substrate degradation was highest in the same sharp angles that permitted the coexistence of both strains. Our next series of experiments, testing the effect of maze fractal complexity showed that both strains could coexist and degrade the most substrate in complex mazes that had dead ends as opposed to mazes that were highly connected. Our results demonstrate the relevance of microhabitat complexity in bacterial competition and substrate degradation, showing that complex habitats allow bacterial strains to coexist and perform functions with higher efficiency than in less complex ones.

How to cite: Arellano-Caicedo, C., Fadhel, A., Ohlsson, P., and Hammer, E. C.: The effect of habitat complexity on bacterial competition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14407, https://doi.org/10.5194/egusphere-egu24-14407, 2024.

EGU24-15015 | ECS | Orals | SSS5.5 | Highlight

On the Microgeography of Soil Bacterial Communities 

Samuel Bickel and Dani Or

The highly fragmented soil physical environment and the dynamic aqueous phase jointly constrain bacterial life by limiting cell dispersion and modulating diffusion and access to patchy nutrients. A modeling framework that integrates soil hydration conditions with soil organic carbon inputs provides systematic estimates of size distributions and interaction distances among soil bacterial populations. The patterns of bacterial community microgeography provide an important building block for interpreting soil ecological functioning. Experiments and mechanistic modelling show that soil bacterial cluster sizes (measured by counting cell numbers within a community) follow an exponentially truncated power law with parameters (e.g., largest community size) that vary with mean soil water content and carbon inputs across biomes. Theory predicts that similar to human settlement size distributions, tree sizes and other systems in which growth rates are defined by the environment independent of the object size, the resulting bacterial community size distributions is likely to obey the so-called Gibrat’s law. Our results support a potential for generalization using positively skewed distributions of soil bacterial community sizes (e.g., log normal and Gamma). We show that soil bacteria reside in many small communities (with over 90% of soil bacterial communities having less than 100 cells), supported by theoretical predictions of log-normal distribution for non-interacting soil bacterial community sizes with scaling parameters that vary with biome characteristics. We will use estimates of the fraction of the largest bacterial communities where anoxic conditions may develop under prevailing conditions to constrain the number of anoxic hotspots per soil volume.

How to cite: Bickel, S. and Or, D.: On the Microgeography of Soil Bacterial Communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15015, https://doi.org/10.5194/egusphere-egu24-15015, 2024.

A large fraction of organic matter in soils is associated with mineral phases. This association is mediated by manifold processes (reactive transport, drying-rewetting cycles, biofilm formation, digestion of mineral particles, etc.) and ultimately leads to a stabilization of organic matter in soil [1]. Adsorption describes the mechanism for this association at the molecular level. Ultrahigh resolution mass spectrometry like FT-ICR-MS has gained interest in the study of adsorption processes because of its high sensitivity, resolving power and mass accuracy which allow to study the complex organic mixtures present in soils, and therefore provides molecular insight [2]. For that, supernatant composition can be compared before and after adsorption, but this indirect approach is often not sensitive enough to detect the sorption of small amounts of organic matter, i.e., during initial adsorption to pristine mineral surfaces. An alternative approach is to use laser desorption ionization (LDI) to directly analyze the adsorbed molecules on the mineral surfaces. The method theoretically allows laser spot size of ~ 20-50 µm and even allows imaging of thin sections; methodological advances could therefore improve our understanding of soil organic matter and its spatial heterogeneity [3].

We applied LDI-FT-ICR-MS to study the ionization of individual molecules with and without the presence of DOM (SRFA and pine/ beech litter extracts), and measured adsorption isotherms of individual molecular formulas in dissolved organic matter on quartz, illite and goethite after 24h of contact. Analog to organic matrices used in matrix-assisted LDI, detectability of model compounds improved by factor 2.5 – 40 when spiked into a DOM matrix. In case of sinapic acid, presence of DOM shifted the ionization towards the monomer ion [M-H]- as compared to a mixture of mono-, di- [2M-H]- and trimer [3M-H]- species when analyzed in pure form. These results suggest that soil organic matter and its soluble analogs act as suitable matrices in LDI experiments that ensure proper ionization of the mixture as a whole. In a next step, ion abundance data from sorption experiments was used to model the adsorption process of individual molecular formulas by a Langmuir isotherm approach. We derived estimates of sorption capacity and sorption affinity for each molecular formula, and identified the molecular properties explaining differences in both estimates, as well as their differences between mineral phases. Our data highlight the benefits of LDI-FT-ICR-MS for the study of sorption phenomena in soils, and opens perspectives for resolution of spatial heterogeneity in soils.

References

[1] Kleber, M., Bourg, I. C., ... & Nunan, N. (2021): Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment 2: 402-421.

[2] Bahureksa, W., Tfaily, M. M., ... & Borch, T. (2021): Soil organic matter characterization by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): A critical review of sample preparation, analysis, and data interpretation. Environmental Science & Technology 55: 9637-9656.

[3] Lohse, M., Haag, R., ... & Lechtenfeld, O. J. (2021). Direct imaging of plant metabolites in the rhizosphere using laser desorption ionization ultra-high resolution mass spectrometry. Frontiers in Plant Science 12: 753812.

How to cite: Simon, C. and Lechtenfeld, O.: Adsorption of dissolved organic matter to mineral phases studied by laser desorption ionization mass spectrometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15127, https://doi.org/10.5194/egusphere-egu24-15127, 2024.

EGU24-15762 | ECS | Orals | SSS5.5

Continuum and particle scale analysis of nutrient gradients in the rhizosphere  

Eva Lippold, Magdalena Landl, Eric Braatz, Steffen Schlüter, Rüdiger Kilian, Carmen Höschen, Gertraud Harrington, Carsten W. Mueller, Andrea Schnepf, Robert Mikutta, Martina I. Gocke, Eva Lehndorff, and Doris Vetterlein

Plant roots create chemical gradients within the soil rhizosphere but little information exists on the effect of root types and ages on the distribution of chemical gradients. Research aim was to develop an imaging workflow and to analyze and model the effects of radial root geometry, root hairs, and ages on nutrient gradients around roots.

The presented correlative imaging workflow is suitable for targeted sampling of roots in their 3D context and assessing the imprint of roots on chemical properties of the root-soil contact zone at µm to mm scale. Maize (Zea mays) was grown in 15N-labelled soil columns and pulse-labelled with 13CO2 to visualize the spatial distribution of carbon inputs and nitrogen uptake together with the redistribution of other elements. Soil columns were scanned by X-ray computed tomography (X-ray CT) at low resolution (45 µm) to enable image-guided subsampling of specific root segments. Resin embedded subsamples were then analysed by X-ray CT at high resolution (10 µm) for their 3D structure and chemical gradients around roots using micro X-ray fluorescence spectroscopy (µXRF), nanoscale secondary ion mass spectrometry (NanoSIMS), and laser-ablation isotope ratio mass spectrometry (LA-IRMS). NanoSIMS and LA-IRMS detected the release of 13C into soil up to a distance of 100 µm from the root surface, whereas 15N accumulated preferentially in the root cells.

Concentration gradients with different spatial extents could be identified by µXRF. The observed concentration gradients were compared to simulated gradients generated by a process-based, radially symmetric 1D rhizosphere model. An accumulation of calcium and sulfur was observed, particularly around old root segments. Our model simulations indicated that this phenomenon originates from the radial structure of the root, leading to enhanced nutrient transport towards the root surface. Gradients of calcium and sulfur could be accurately predicted by the model around a single growing root, when they were mainly caused by sorption.

However, at the pore-scale, phenomena like local precipitation, which could be visualized using our methodology, were inadequately accounted for by the classic model approach. Nonetheless, the observed extension of the gradients was well described by the model. The presented approach combining targeted sampling of the soil-root system and correlative microscopy opens new avenues for unravelling rhizosphere processes in situ.  

 

 

How to cite: Lippold, E., Landl, M., Braatz, E., Schlüter, S., Kilian, R., Höschen, C., Harrington, G., Mueller, C. W., Schnepf, A., Mikutta, R., Gocke, M. I., Lehndorff, E., and Vetterlein, D.: Continuum and particle scale analysis of nutrient gradients in the rhizosphere , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15762, https://doi.org/10.5194/egusphere-egu24-15762, 2024.

EGU24-16443 | Orals | SSS5.5

Embracing the structural framework of soil in microbiological and ecological research 

Hannes Schmidt, Naoise Nunan, Xavier Raynaud, Steffen Schlueter, Vincent Felde, Berit Zeller-Plumhoff, Gaëlle Marmasse, Alberto Canarini, Lucia Fuchslueger, and Andreas Richter

Soil is a complex system with a high degree of physical, chemical, and biological heterogeneity. Soil structure is organized into entangled pore networks that provide an immense surface area and are partially filled with gases and aqueous solutions. This heterogeneous landscape houses a multitude of active and inactive organisms of which soil bacteria and fungi are considered the driving forces of nutrient cycling and biogeochemical processes. Standard analyses such as soil respiration are meaningful measures to estimate processes on a meso- and macroscale while the biological agents whose actions we measure are mainly to be found on the microscale. Yet, our understanding of microbial living conditions in soil and their consequences for activity, growth, and turnover is severely limited. In this presentation I will focus on a microbial perspective and present data from various experiments where soil microbial identity and/or activity were investigated while acknowledging spatial aspects of their microenvironments. I will provide an updated view on spatial distribution of microbial communities within soils, including evidence that suggests that the density of bacteria in soils has likely been underestimated by orders of magnitudes for decades. Microbial density arguably is a major determinant of cell-to-cell interactions, and thus many processes involved in microbial nutrient cycling that we measure on a larger scale. I will further argue to embrace soil heterogeneity rather than minimizing it, for example by using intact soil cores instead of sieved soils for stable isotope labelling experiments. I will present data on in situ bacterial and fungal growth which suggests that preserving soil physical architecture while investigating microbial parameters could bring experimental measurements significantly closer to field conditions, while also opening new avenues to improve our understanding of spatial aspects of soil microbiology.

How to cite: Schmidt, H., Nunan, N., Raynaud, X., Schlueter, S., Felde, V., Zeller-Plumhoff, B., Marmasse, G., Canarini, A., Fuchslueger, L., and Richter, A.: Embracing the structural framework of soil in microbiological and ecological research, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16443, https://doi.org/10.5194/egusphere-egu24-16443, 2024.

EGU24-16904 | ECS | Posters on site | SSS5.5

Two-step unsupervised clustering method on soil nanoscale secondary ion mass spectrometry (NanoSIMS) images to determine the spatial arrangement of minerals and organic matter 

Yahan Hu, Johann Zollner, Martin Werner, Steffen Schweizer, and Carmen Höschen

In the soil, mineral particles, organic matter, and soil organisms are arranged in a complex architecture which can influence organic matter dynamics. Nanoscale secondary ion mass spectrometry (NanoSIMS) provides insights into the microscale arrangement of soil minerals and organic compounds at a resolution of approximately 50 nm. However, current NanoSIMS image processing lacks methods to analyze large datasets automatically and requires manual intervention. We developed a two-step unsupervised clustering method for batch analyses of NanoSIMS images. Our two-step method consists of K-Means clustering as the first step generating around 100 clusters, followed by hierarchical agglomerative clustering (HAC) re-grouping the K clusters into less than 10 cluster groups. The elbow method, HAC linkage method and gap statistics are used to automatically select the optimal clustering numbers. Subsequently, soil minerals and organic matter can be spatially segmented and identified as different species. Further, this method could apply to the spatial arrangement of mineral-dominated and organic matter-dominated parts or different mineral types. Moreover, this method enables the analyses of larger datasets with >100 NanoSIMS images providing insights of organo-mineral interactive hotspots or even micro function domains involved in soil organic matter dynamics.

How to cite: Hu, Y., Zollner, J., Werner, M., Schweizer, S., and Höschen, C.: Two-step unsupervised clustering method on soil nanoscale secondary ion mass spectrometry (NanoSIMS) images to determine the spatial arrangement of minerals and organic matter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16904, https://doi.org/10.5194/egusphere-egu24-16904, 2024.

EGU24-17573 | ECS | Posters on site | SSS5.5

Plant-derived organic exudates in soil: Mobility and aggregation 

Tom Guhra, Jona Schönherr, and Kai Uwe Totsche

Plant derived photosynthates are a component of the biotic organic matter involved in carbon cycling and storage due their mobility and formation of organo-mineral associations and (micro-)aggregates. Such photosynthates are typically found as components of mucilage or generate during the germination of seeds in the soil environments. While the effect of, e.g., mucilage, on soil physical properties has been intensively investigated, their role for carbon transport, adsorption, and aggregation process is rather unclear. Most of the knowledge available originates from studies that used single compounds, e.g., oxalic acid, glucose, polygalacturonic acid or mixtures of those in aqueous solutions. In our study, we utilized hydrogel-freed plant exuded photosynthates (PDE) extracted from four different seed types (Linum usitatissimum, Plantago ovata, Ocimum basilicum and Salvia hispanica) to investigate their interactions with minerals typically for temperate soil. In batch experiments, PDE adsorbed to both illite and goethite minerals with a preference of polysaccharide-rich PDE to goethite. During the adsorption, organo-mineral associations were formed leaving behind a less mineral-affine fraction of PDE prone to transport or degradation. Hence, PDE transport was also studied in column experiments using quartz functionalized with reactive minerals where we measured the breakthrough of PDE exploiting their distinct fluorescence. Furthermore, we followed the gravity-constrained aggregation dynamics of PDE-mineral associations using tensiometric measurements. We showed that low PDE concentrations facilitate aggregation via polymer bridges leading to a rapid sedimentation of aggregates while PDE available in excess prevents aggregation via steric repulsion and thus decelerates sedimentation. These results showed that PDE extracted from seeds might serve as better surrogates of natural plant exudates to study their role for the formation and transport of organo-mineral associations and aggregates in soils.

How to cite: Guhra, T., Schönherr, J., and Totsche, K. U.: Plant-derived organic exudates in soil: Mobility and aggregation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17573, https://doi.org/10.5194/egusphere-egu24-17573, 2024.

EGU24-18568 | Posters on site | SSS5.5

Intrinsic potential and activity of nitrate turnover examined for different hydrogeological aquifer settings 

John Lester Pide, Johann Holdt, Vitor Patricio Cantarella, Adrian Mellage, Olaf Cirpka, Carsten Leven-Pfister, Jan-Peter Duda, Daniel Buchner, and Christian Griebler

Nitrate (NO3-) is one of the most serious contaminants in groundwater, frequently deteriorating water quality and groundwater use as drinking water. Nitrate can, at specific environmental conditions, be removed within the subsurface environment via natural biogeochemical processes, such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Traditionally, research has concentrated on the NO3- attenuation potential and microbial activity in groundwater, largely overlooking an aquifers’ sediment matrix as a reaction contributor. We hypothesize that the sedimentary deposits host the major potential for NO3- reduction, carrying the majority of microorganisms as well as different sources of electron donors. Moreover, diverse hydrogeological settings harbor different sources and varying amounts of electron donors such as reduced iron minerals and organic matter. Therefore, subsurface physicochemical heterogeneity, determined by sedimentology, controls the potential of an aquifer to reduce nitrate. We hypothesize that locations where physicochemical conditions favor NO3- reduction, we may expect microbes involved in these processes to be more abundant and highly active, leading to a fast NO3- removal from groundwater.

Here, we present results from temperature-controlled (12°C) batch incubations and flow-through experiments conducted over several months using fresh sediments from an alluvial, tufaceous unconfined aquifer, with embedded peat layers, in an agricultural landscape in southwest Germany. Batch experiments received an addition of NO3- of 50 mg L–1. Sediment columns were supplied with nitrate-spiked groundwater collected from the site at a maximum inlet concentration of 150 mg L and run in continuous injection mode. Batch experiments showed a gradual decrease in the initially high hydrogen sulfide (H2S) concentration, becoming undetectable after Day 7, compared to an untreated control, which revealed a slow conversion of HS-. These preliminary findings indicate a strong autotrophic denitrification with NO3- reduction coupled to aqueous HS- oxidation. In contrast to nitrate, NH4+ concentrations remained stable in all experiments. In the column experiments, the sediment exhibited a substantial NO3- reduction capacity in the early phase but rapidly declined with time. We hypothesize that a dual contribution to denitrification via easily bioavailable electron donors in the groundwater followed by slower denitrification coupled to organic matter in the sediment matrix is responsible for the observed dynamics. Our ongoing experiments, including groundwater and sediments from other, hydrogeologically different aquifers, will dissect the individual redox processes and key microorganisms involved in turnover of prominent nitrate and carbon species in the context of different hydrogeological settings. 

How to cite: Pide, J. L., Holdt, J., Cantarella, V. P., Mellage, A., Cirpka, O., Leven-Pfister, C., Duda, J.-P., Buchner, D., and Griebler, C.: Intrinsic potential and activity of nitrate turnover examined for different hydrogeological aquifer settings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18568, https://doi.org/10.5194/egusphere-egu24-18568, 2024.

EGU24-18644 | ECS | Posters on site | SSS5.5

Investigating the distribution and residence time of carbon in the rhizosphere by image-based modelling at the pore-scale 

Maximilian Rötzer, Alexander Prechtel, Eva Lehndorff, and Nadja Ray

Mathematical models serve as valuable tools for unraveling the spatial heterogeneity and evolution of soil particles and carbon, particularly on the pore scale, that might be challenging to measure directly. The model we provide facilitates the exploration of interactions in the rhizosphere by the manipulation of different drivers and their parametrization. 

The focus of our study is on the residence time and spatial distribution of carbon originating from particulate organic matter and rhizodeposits. This process of turnover and distribution is influenced by a number of drivers. We provide insights into the role of some of these drivers across different stages of root growth, including carbon occlusion due to aggregation, chemical composition of rhizodeposits, and root morphology. We employ a spatially and temporally explicit mathematical model in which different components such as soil particles, carbon and a dynamic root interact. It is realized within a cellular automaton framework combined with an organic matter turnover model. Through numerical simulations, we track the temporal evolution of mineral soil particles bound by gluing agents. Spatially resolved datasets of soil texture and organic matter distribution are used to implement different soil types comparable with field experiments. Realistic parametrizations are derived from a laboratory experiment conducted in a rhizobox, measuring the carbon-to-nitrogen ratio at distinct temporal states of root growth and varying spatial distances from the biopore.

We compare and quantify the individual impact that soil, root and rhizodeposit characteristics have on the residence time and dispersal of carbon. Using an image-based modeling approach, we gain insight into spatiotemporal patterns and analyze the properties of regions with low turnover, so-called cold spots. 

How to cite: Rötzer, M., Prechtel, A., Lehndorff, E., and Ray, N.: Investigating the distribution and residence time of carbon in the rhizosphere by image-based modelling at the pore-scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18644, https://doi.org/10.5194/egusphere-egu24-18644, 2024.

EGU24-54 | ECS | Orals | SSS5.6

Effects of conservation tillage on soil organic carbon storage, fractions and stability in Black soil 

Yan Zhang, Aizhen Liang, Xiaoping Zhang, Xiujun Li, Edward Gregorich, and Neil McLaughlin

In Northeast China, conventional tillage practices involve removal of crop residue after harvest and prior to moldboard plowing; this has been shown to cause a decline of soil organic carbon (SOC) and degradation of Black soils (Mollisols). Conservation tillage, particularly no tillage (NT), has been suggested to be an effective practice to control soil erosion and increase the SOC content. Hence, we established an experiment (since 2001) to evaluate how a combination of different tillage and cropping systems could improve SOC in black soils. The total SOC storage, SOC fractions (physical and chemical), SOC stability were assessed to evaluate the effects of tillage and cropping system. Our results shows that: 1) different tillage and cropping system combinations had different effects on SOC storage; NT combined with continuous maize had the highest SOC storage among all treatments; 2) The effects of tillage on aggregate size and OC concentration mainly occurred in the surface layer (0–5 cm) while the effect of cropping system on aggregate size and OC concentration mainly occurred at deeper depths; 3) NT increased the recalcitrant carbon pool in surface layer showing the critical need for returning crop residues to maintain long-term SOC storage; 4) SOC mineralization (biological stability) appears to be related to the SOC proportion in the light fraction; 5) More than half of the increase in SOC storage due to NT existed as microbial necromass carbon storage under continuous maize which was higher than maize-soybean rotation. Our study shows that in black soils (Northeast China), NT and appropriate cropping systems can not only halt soil degradation caused by poor management but can induce substantial increases in SOC which is beneficial for SOC long-term sequestration.

How to cite: Zhang, Y., Liang, A., Zhang, X., Li, X., Gregorich, E., and McLaughlin, N.: Effects of conservation tillage on soil organic carbon storage, fractions and stability in Black soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-54, https://doi.org/10.5194/egusphere-egu24-54, 2024.

EGU24-1063 | ECS | Orals | SSS5.6

Investigating the complementarity of thermal and physical soil organic carbon fractions 

Amicie Delahaie and the Freacs team

Evaluating SOC biogeochemical stability is key to better predict the impact of SOC on both climate mitigation and soil health. This evaluation can be conducted using SOC partition schemes that allow us to quantify SOC fractions with different biogeochemical stability. However, most of these schemes are costly or time consuming and cannot be implemented on large sample sets. Two exceptions are  the widely used physical fractionation protocol allowing to separate particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) and the emerging thermal fractionation protocol distinguishing active SOC (Ca; MRT ~30 years) from stable SOC (Cs; stable at a centennial timescale).

Here, we use analyzes conducted on samples from the French soil monitoring network (RMQS) to compare the results of thermal fractionations (Ca/Cs) performed on ca. 2000 samples, and physical fractionations (POC/MAOC) performed on ca. 1000 samples. Our results show that MAOC and Cs from one side and POC and Ca from the other side have different sizes. The most biogeochemically stable fractions (Cs and MAOC) are mostly influenced by soil characteristics whereas land cover and climate influence more substantially POC and Ca. However, the more stable fractions provided by both fractionation schemes (respectively the more labile fractions) do not have the exact same environmental drivers. Our results therefore suggest that both fractionation scheme gives complementary results. The relative contribution of these fractionation schemes to the evaluation of soil functions and OC stock evolution remains to be evaluated on soil monitoring networks and constitutes a promising research avenue.

How to cite: Delahaie, A. and the Freacs team: Investigating the complementarity of thermal and physical soil organic carbon fractions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1063, https://doi.org/10.5194/egusphere-egu24-1063, 2024.

EGU24-1422 | ECS | Orals | SSS5.6 | Highlight

Long-Term Phosphorus Fertilisation: Effects on Nitrogen and Carbon Cycle Dynamics and Greenhouse Gas Fluxes in European Agricultural Soils  

Lea Dannenberg, Christian Eckhardt, Christoph Müller, and Kristina Kleineidam

Phosphorus (P) is a crucial nutrient for plant growth, its limitation reduces plant and microbial biomass, affecting soil organic carbon (SOC) sequestration. Changes in soil P content may influence microbial composition, shaping pathways in the carbon (C) and nitrogen (N) cycles and impacting greenhouse gas emissions. In this lab incubation experiment we investigate the impact of different P fertilisation levels in three European long-term experiments (LTE) on N and C transformation processes and greenhouse gas fluxes in agricultural soils using stable isotope techniques (15N and 13C). The study is part of the EJP SOIL project “ICONICA” (Impact of long-term P additions on C sequestration and N cycling in agricultural soils).

The soil samples derived from Johnstown Castle, JC (grassland soil, Ireland), Lanna Skara, LS (arable soil, Sweden) and Jyndevad, JY (arable soil, Denmark). Two P levels were examined from each LTE: low P (0 kg P/ha and year) and high P additions (different P application rates among LTEs). The soils were mixed with 13C- and 13C15N- labelled maize biomass, respectively, and received ammonium nitrate (NH4NO3) in the 13C treatment as 15NH4NO3 and NH415NO3, respectively, and unlabelled NH4NO3 in the 13C15N treatment. Soil and gas samples were taken 0, 1, 3, 7 and 10 days after addition of NH4NO3 and were analysed for (15)NH4+-N, (15)NO3--N, organic (15)N, organic (13)C contents as well as for nitrous oxide ((15)N2O), carbon dioxide ((13)CO2), and methane (CH4) fluxes.

Preliminary findings display clear differences among the three LTEs as well as the two P levels. Regarding the impact of P fertilisation history: JC soil exhibited elevated CO2 emissions at high P compared to low P level. Significantly, high P levels showed higher CH4 uptake rates in JC and JY soils compared to the respective low P levels. JY had the highest N2O emissions, while JC had the lowest. JC had higher NH4-N values than LS. The highest NO3-N values were measured in JC, and the lowest in JY. In JC, higher NO3-N values were measured in high P compared to low P.

The results so far underscore the complex interactions within the carbon-nitrogen-phosphorus cycles under varying P inputs. Further analyses and interpretations are in progress.

How to cite: Dannenberg, L., Eckhardt, C., Müller, C., and Kleineidam, K.: Long-Term Phosphorus Fertilisation: Effects on Nitrogen and Carbon Cycle Dynamics and Greenhouse Gas Fluxes in European Agricultural Soils , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1422, https://doi.org/10.5194/egusphere-egu24-1422, 2024.

EGU24-1464 | ECS | Posters on site | SSS5.6

Less than 4% of dryland areas will desertify due to climate change.   

Xinyue zhang, Jason Evans, and Arden Burrell

Drylands with low biological productivity are more fragile compared with non-drylands, making many human activities within them sensitive to long-term trends. Any negative trend in dryland condition is considered desertification. The Aridity Index, widely used to define drylands, indicates increasing aridity in the drylands over several decades, which has been linked to increasing occurrence of desertification. Future projections show continued increases in aridity due to climate change, suggesting that drylands will expand. However, satellite observations show a general greening of the drylands. Given the past inconsistency between the Aridity Index changes and observed vegetation changes, future evolution of vegetation productivity within the drylands remains an open question. Here we use a data driven approach to estimate the state of vegetation in the drylands and project their future changes. Results shows most of the global drylands are projected to see an increase in vegetation productivity due to climate change through 2050. The general increases are in-part due to CO2 fertilization effects and are in-line with recent trends and continue the past inconsistency with changes in the Aridity Index. Climate change negates the changes in at most 4% of global drylands to produce desertification. These regions include parts of north-east Brazil, Namibia, western Sahel, Horn of Africa and central Asia.

How to cite: zhang, X., Evans, J., and Burrell, A.: Less than 4% of dryland areas will desertify due to climate change.  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1464, https://doi.org/10.5194/egusphere-egu24-1464, 2024.

EGU24-2093 | ECS | Orals | SSS5.6

Development CNtrace tool 

Anne Jansen-Willems, Kristina Kleineidam, Tim Clough, Lea Dannenberg, and Christoph Müller

The Ntrace tool was developed as a flexible 15N analysis tool to determine gross nitrogen (N) transformations. Since the development of the tool, it has been applied to many ecosystems world-wide as documented in more than 190 peer-reviewed publications. Over time, the tool has evolved to become much more flexible including different pools and determining more transformation rates. Up until now, the focus has been on the N cycle. However, the N and carbon (C) cycle are closely connected. Considering both cycles concomitantly provides a more comprehensive understanding of how elements move through the system. Thus, the next step in the development of the Ntrace tool includes connecting the N and C pools (CNtrace) in order to simultaneously quantify gross N and C transformations based on the observed 15N and 13C dynamics. Data from specifically designed experiments, using either labelled organic matter or C4 plants in a C3 soil, with the addition of differentially 15N labelled mineral fertilizer will be used for the development of the CNtrace tool. The theoretical background and the various development steps will be presented.

How to cite: Jansen-Willems, A., Kleineidam, K., Clough, T., Dannenberg, L., and Müller, C.: Development CNtrace tool, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2093, https://doi.org/10.5194/egusphere-egu24-2093, 2024.

EGU24-2759 | ECS | Orals | SSS5.6

Effects of aridification on soil total carbon pools in China's drylands 

Zhuobing Ren, Changjia Li, Bojie Fu, Shuai Wang, and Lindsay C. Stringer

Drylands are important carbon pools and are highly vulnerable to climate change, particularly in the context of increasing aridity. However, there has been limited research on the effects of aridification on soil total carbon including soil organic carbon and soil inorganic carbon, which hinders comprehensive understanding and projection of soil carbon dynamics in drylands. To determine the response of soil total carbon to aridification, and to understand how aridification drives soil total carbon variation along the aridity gradient through different ecosystem attributes, we measured soil organic carbon, inorganic carbon and total carbon across a ~4000 km aridity gradient in the drylands of northern China. Distribution patterns of organic carbon, inorganic carbon, and total carbon at different sites along the aridity gradient were analyzed. Results showed that soil organic carbon and inorganic carbon had a complementary relationship, that is, an increase in soil inorganic carbon positively compensated for the decrease in organic carbon in semiarid to hyperarid regions. Soil total carbon exhibited a nonlinear change with increasing aridity, and the effect of aridity on total carbon shifted from negative to positive at an aridity level of 0.71. In less arid regions, aridification leads to a decrease in total carbon, mainly through a decrease in organic carbon, whereas in more arid regions, aridification promotes an increase in inorganic carbon and thus an increase in total carbon. Our study highlights the importance of soil inorganic carbon to total carbon and the different effects of aridity on soil carbon pools in drylands. Soil total carbon needs to be considered when developing measures to conserve the terrestrial carbon sink.

How to cite: Ren, Z., Li, C., Fu, B., Wang, S., and Stringer, L. C.: Effects of aridification on soil total carbon pools in China's drylands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2759, https://doi.org/10.5194/egusphere-egu24-2759, 2024.

EGU24-2926 | ECS | Orals | SSS5.6

Inorganic carbon: an overlooked pool in global soil carbon research   

Sajjad Raza, Annie Irshad, Andrew Margenot, Kazem Zamanian, Sami Ullah, Irina Kurganova, Xiaoning Zhao, and Yakov Kuzyakov

Soils are one of the major players in the global carbon (C) cycle and climate change by functioning as a sink or a source of atmospheric carbon dioxide (CO2). The largest terrestrial C reservoir in soils comprises two main pools: organic (SOC) and inorganic C (SIC), each having distinct fates and functions but with a large disparity in global research attention. This study quantified global soil C research trends and the proportional focus on SOC and SIC pools based on a bibliometric analysis. Research on soil C pools started in 1905 and has produced over 42,000 publications (> 1.6 million citations). Although the global C stocks down to 2 m depth are nearly the same for SOC and SIC, the research has dominantly examined SOC (> 96% of publications and citations) with a minimal share on SIC (< 4%). Approximately 39% of the soil C research was focused on climate change. Despite poor coverage and publications, the climate change-related research impact (citations per document) of SIC studies was higher than that of SOC. Machine learning, biochar, soil properties, and climate change were the recent top trend topics for SOC research (2018-2022), whereas soil acidification, organic C, climate change, and Holocene were recent trends for SIC. SOC research was contributed by 150 countries compared to 85 for SIC. As assessed by publications, soil C research was mainly concentrated in a few countries, with only 10 countries accounting for 75% of the research. China and the USA were the major producers (44%), collaborators (36%), and funders of soil C research. SIC is a long-lived soil C pool with a turnover rate of more than 1000 years in natural ecosystems but intensive agricultural practices have accelerated SIC losses, making SIC an important player in global C cycle and climate change. The lack of attention and investment towards SIC research could jeopardize the ongoing efforts to mitigate climate change impacts to meet the 1.5-2.0 oC targets under the Paris Climate Agreement of 2015. This study calls for expanding the research focus on SIC and including SIC fluxes in C budgets and models, without which the representation of the global C cycle is incomplete.

How to cite: Raza, S., Irshad, A., Margenot, A., Zamanian, K., Ullah, S., Kurganova, I., Zhao, X., and Kuzyakov, Y.: Inorganic carbon: an overlooked pool in global soil carbon research  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2926, https://doi.org/10.5194/egusphere-egu24-2926, 2024.

Post mining ecosystems are severally degraded.  This is particularly true for soils which are either excavated or buried and replace by overburden which differ remarkably, from normal soils. Despite these severe degradation, post mining soils of numerals opportunities: they are valuable secondary habitat for rare and endangered species, and soils developing in these areas are able to sequester carbon in much higher rate than soils in surrounding landscape.. Here we compare effect of reclaimed and unreclaimed sites on provisioning ecosystem services in Sokolov (Czech Republic) and on climatic gradient across USA. In suitable substrates, the succession is driven mainly by site topography. In sites which were leveled grassy vegetation develops. In sites where original wave like topography was preserved the ecosystem develops towards shrubs and forest. Reclaimed and unrecaimed forest sites have similar development of canopy cover,   stems number gradually decreased with age in reclaimed sites and increased in succession, in 20 year both reaching the same density.  Tree biomass was higher in young reclaimed sites, in sites 30 years old or older tree biomass in succession sites was comparable or higher than in reclaimed sites.  Initial rate of soil carbon storage in reclaimed sites namely those planted by alder was faster than in succession sites but it decrease with plot age.  In unclaimed sites, the rate of C storage increase and peaked in site 20-30 years old. Amount of C stored in unreclaimed sites c 50 years old is comparable to alder plantations of the same age.  Alder plantation of intermediate age store more water than unreclaimed sites but water budget is similar due to higher water demand of alder.  In leveled sites where grassland establish, reclaimed sites are slightly higher in all studied parameters. In conclusion, development of key ecosystem process is fasted in reclaimed sites but latter on difference disappear. The reasons are, soil   leveling, promote soil compaction, which slows root growth. Focus on achieving a close cannopy often lead to dense three stand which limit a light availability for trees. This is even supported by leveling and homogenous pattern of planting which lead to one layer cannopy, compare to multi-layer cannopy in unreclaimed sites. Also planting N fixers, my contribute, to this slow down, as nitrogen fixing plant often fixed nitrogen even in conditions when nitrogen is already plentiful in soil. This cause additional energy expense for the trees.

Comparison of benefits of reclamation and spontaneous ecosystem development vary depending on climatic conditions and target ecosystem. For example, in dry cold conditions when target is grassy vegetation such as short grass prairie in Wyoming (USA), to reclamation practices show often much better results than unassisted ecosystem development. In contrary in wet warm climate, when broadleaf forest is a target (e.g. in Eastern USA), unassisted ecosystem development often shows better results in many parameters namely in long run.  These results show that we should try to better understood naturel processes of ecosystem development so we can implement them in improvement of reclamation technologies.

 

 

How to cite: Bartuška, M. and Frouz, J.: Natural regeneration as restoration strategy to restore functional soils and ecosystems in post mining sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3229, https://doi.org/10.5194/egusphere-egu24-3229, 2024.

Simple conceptual overview how peculiarities of food production and food supply chain affect land degradation.

Most of the land suitable for agriculture is located in the temperate zone, while the yields of comparable crops in tropical countries (countries of the global south) are almost half compared to developed countries in the temperate zone. In addition to greater soil fertility, the more advanced technological base of economically developed countries. Developed counties the increase their production mainly through its intensification, i.e. greater production on the same area and greater meat, milk or egg production per one livestock specimen. This leads to the concentration of production in suitable conditions, the homogenization of the landscape, reduction of grazing and other extensive form of land use and other negative effects of agricultural intensification on ecosystems. On the other hand, in the countries of the global south, agricultural production is increasing mainly through increasing the production areas, which results in endangering the remnants of the original ecosystems. Number of farmers is decreasing yet they feed larger amount of food consumers. This increasing the efficiency of human work is connected with the transfer of part of the work to the work of animals and later machines which allow one farmer to cultivate larger area of land, and further to the intensification of agricultural production, the use of fertilizers, pesticides, and other substances, so-called additional energy is needed to obtain them. As the intensity of agriculture and the ability of one farmer to feed more people increases, the total amount of energy required to achieve production also increases, not only because total output increases, but also because the amount of additional energy required per unit of output increases. As the amount of additional energy increase recycling of biomass (and energy) inside agriculture system decrease. Along with this, the negative impacts of agricultural production on ecosystems are increasing. These negative impacts are usually greater in the less fertile soils of the global south than in the more fertile soils of developed countries.  Pressure of consumers increase not only due to population increase, but also due to detachment of people from food production, which cause that consumers perceive food mainly by its cost. Food supply chain become driven by retailers, which increase pressure on price, and thus pressure on farmers to optimize production cost often on expense of more intensive soil and land use which may lead to land degradation. Many retailers now use environmental standards which are well suited to control for extensification (such as zero deforestation) but tackling of agriculture intensification is rare.

How to cite: Frouzova, J. and Frouz, J.: Simple conceptual overview how peculiarities of food production and food supply chain affect land degradation., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3233, https://doi.org/10.5194/egusphere-egu24-3233, 2024.

Improved tillage practice plays a positive role in restoring degraded cropland, maintaining crop productivity, and mitigating climate change, which has been proposed as a sustainable agricultural technology. Based on a long-term experiment in black soil area of Northeast China, effects of different tillage practices on soil organic carbon (SOC) and nutrient content were explored, and ecological and economic benefits were also evaluated. Three tillage practices were included: conventional tillage with complete removal of residue (CT), moldboard plowing with residue return (MP) and no-tillage with residue return (NT). As the trial period increased, the SOC content of the CK decreased in the 0-20 cm soil layer, while the total nitrogen (TN) content remained. Residue return treatments (MP and NT) increased SOC and TN content. The SOC and TN were uniformly distributed in the 0-20 cm soil layer of MP, whereas the SOC and TN increased significantly in the 0-5 cm soil layer of NT, especially during the 5-8 years of the experiment. The total phosphorus (TP) and total potassium (TK) contents of all treatments slowly increased over time, and there was no significant difference among treatments. Compared with CT, NT could reduce N2O emissions and absorb more CH4, whereas MP significantly increased CO2 emissions from soil. Moreover, NT led to both the lowest GHG emissions from soil (GWPGHG) and agricultural inputs (AIGHG), thus reduced approximately 40% carbon footprint (CF) compared to CT. However, no significant difference in maize yield and net ecosystem ecological benefit (NEEB) were observed among three tillage practices, although MP and NT showed lower investments during maize production than CK. In conclusion, NT could not only enhance the SOC and nutrient content but also minimize CF while ensuring economic benefit from a long-term perspective. Long-term NT can be implemented in Northeast China and similar agro-eco-regions around the world.

How to cite: Zhang, Y. and Liang, A.: Effects of long-term residue return on nutrient content, ecological and economic benefits of black soil in Northeast China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6534, https://doi.org/10.5194/egusphere-egu24-6534, 2024.

EGU24-6933 | Posters on site | SSS5.6

Application of the Ntrace tool to investigate long-term P fertilizer effects on gross N transformations in a pasture soil 

Tim Clough, Anne Jansen-Willems, Kristina Kleineidam, Lea Dannenberg, and Christoph Müller

The Ntrace tool uses soil 15N analysis of soil N pool dynamics to establish soil gross nitrogen (N) transformations. An understanding of what initiates and controls soil N transformation dynamics is critical when considering the environmental impacts (e.g. nitrate leaching and nitrous oxide emissions) and fate of N in pasture soils. Phosphorus (P) is an essential nutrient required by soil microbes that facilitate both soil N and soil organic matter transformations. A laboratory mesocosm study was performed to examine the effect of long-term superphosphate use on soil gross N and soil organic matter transformations. Sheep grazed pasture soils, undisturbed for 71 years, receiving either nil fertilizer (control) or 188 kg ha-1 year-1 of single superphosphate (17 kg P ha-1 yr-1) were collected at a depth of 0 – 7.5 cm. Soils were sieved (4 mm) and placed in kilner jars, whereupon they received treatments that consisted of: 15NH414NO3 + natural abundance 13C perennial ryegrass (Lolium perenne) root material; 14NH415NO3 + natural abundance 13C perennial ryegrass root material; or 14NH414NO3 + 13C enriched ground perennial ryegrass root material. Over 7 days measurements included soil inorganic-N concentration and 15N enrichments, nitrous oxide emissions, microbial biomass, and soil organic C concentrations. Data and initial conclusions from this experiment will be presented with respect to the long-term P fertilizer effects on soil gross N and soil organic matter transformations.

How to cite: Clough, T., Jansen-Willems, A., Kleineidam, K., Dannenberg, L., and Müller, C.: Application of the Ntrace tool to investigate long-term P fertilizer effects on gross N transformations in a pasture soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6933, https://doi.org/10.5194/egusphere-egu24-6933, 2024.

EGU24-7661 | ECS | Orals | SSS5.6

Soil organic carbon dynamics after land-use change – combining process-based modelling with machine learning 

Daria Seitz, Rene Dechow, David Emde, Florian Schneider, and Axel Don

Land-use changes affect soil organic carbon (SOC) stocks over decades. However, IPCC default for greenhouse gas emissions reporting suggests a simple linear SOC stock change over 20 years only. Using process-based modelling approaches such as RothC to describe SOC dynamics after land-use change requires model validation. However, there are only few long-term field experiments where SOC stocks have been observed long enough to get sufficient data for such a model validation. This lack of data makes validating models for large-scale use challenging.

Based on empirical data from over 3000 sites from the German Agricultural Soil Inventory we selected 204 sites with land-use change history within the last 60 years and created an artificial data-set using a reciprocal modeling approach. This approach utilizes machine learning models trained on sites under permanent land use to predict SOC stocks for similar sites where the land use had been changed. In addition, we extracted further empirical data from over 30 sites with land-use change in the temperate zone from a comprehensive meta-analysis.

These two datasets were used to test the ability of the well-known SOC model RothC to simulate land-use change effects on SOC stocks. In these tests, we use the observed or predicted SOC stocks assumed at equilibrium to model the carbon input under permanent land use and corresponding SOC dynamics after land-use change. These modelled SOC dynamics are then compared with observed SOC stocks after land-use change.

We will discuss opportunities and challenges of using process-based models to describe SOC dynamics after land-use change on regional to national scale.

 

How to cite: Seitz, D., Dechow, R., Emde, D., Schneider, F., and Don, A.: Soil organic carbon dynamics after land-use change – combining process-based modelling with machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7661, https://doi.org/10.5194/egusphere-egu24-7661, 2024.

EGU24-7763 | Orals | SSS5.6

Possible interactions of hazardous elements with pharmaceuticals in soils of a Mediterranean wetland (L’Albufera, Valencia, Spain) 

Vicente Andreu, Eugenia Gimeno-Garcia, Danielle Sadutto, and Yolanda Picó

There is scarce information about toxic effects, environmental dynamics and even toxic levels or regulations, mainly in soils, of several elements widely used in agriculture and industry. These so called elements “of emerging concern” have not been studied, mainly regarding their environmental effects or relationships. By the other hand, tons of pharmaceuticals are liberated by effluents of the wastewater treatment plants to the environment and agricultural fields daily. As study case, we have selected an important area in Spain that is affected by high anthropogenic pressures.

The target area of study the alluvial plain between the rivers Turia and Jucar (Valencia, SPAIN), with an extension of 486 km2, which is characterized by its dense network of channels and ravines for irrigation one of the most productive agricultural areas of Spain. This area includes a wide zone of rice farming and a Natural Park (L’Albufera). In this study area, 33 sampling zones were selected covering the different water sources and agricultural types, to monitor the distribution of the levels of 15 hazardous metals.

Total concentrations of the selected metals (Al, As, B, Be, Bi, Co, Fe, Li, Mo, Se, Rb, Sr, Ti, Tl and V) were determined. Standard analytical methods were used to measure soil physical and chemical properties. Total content of the twelve heavy metals, in soil samples, were extracted by microwave acid digestion and determined by ICP-OES. In the same zones, 32 pharmaceuticals were also studied. soil samples were extracted by pressurized liquid extraction (SPE). and determined by liquid-chromatography tandem mass spectrometry (LC-MS/MS).

Maximum average values were determined for Ti, Sr and Rb with 466.36, 263.16 and 63.62 mg/kg, respectively. Highest values for B, Li and Tl were 76.05, 70.91 and 56.37 mg/kg, respectively. The Northern part of the Albufera lake, devoted to rice farming, concentrated the highest values of almost all the selected elements. From the 32 studied pharmaceuticals, 29 were detected being the most frequents Bisphenol A, Caffeine and Tramadol. Maximum values were observed for Alprazolam (67.28 ng/g), Ibuprofen (76.11 ng/g) and Lorazepam (62.02 ng/g).

The interactions between metals and pharmaceuticals, and from both with soil characteristics and the influence of environmental factors were also studied.

More research is needed to stablish their toxic levels and effects, or even their average concentrations in soils of these elements, very scarcely studied in the majority of them.

Acknowledgements

This work has been supported by the Generalitat Valenciana (Regional Autonomous Government) through the project CIPROM/2021/032.

How to cite: Andreu, V., Gimeno-Garcia, E., Sadutto, D., and Picó, Y.: Possible interactions of hazardous elements with pharmaceuticals in soils of a Mediterranean wetland (L’Albufera, Valencia, Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7763, https://doi.org/10.5194/egusphere-egu24-7763, 2024.

EGU24-7793 | Orals | SSS5.6

Nutrients and carbon losses due to wind erosion in Sahelian Senegal 

Caroline Pierre, Jean Louis Rajot, Pierre-Marie Bonneval, Paul-Alain Raynal, Abdourahmane Tall, Issa Faye, Dioumacor Fall, and Alfred Tine

Land degradation appears today as a major issue for feeding humans, whose population on Earth is still increasing. Such issues are particularly acute in semi-arid regions like the Sahel, where, in addition, soils are already poor in nutrients and carbon. Wind erosion is one of the processes likely to cause soil depletion of nutrients and carbon in this region, thus potentially leading to land degradation. However, there is little scientific literature providing quantitative estimates of soil losses of nutrients and carbon through the windblown sediments, particularly for the Sahel.

We monitored the horizontal flux of windblown sediments (collected every 2 weeks in MWAC sand-traps) for the main land use types of Western Sahel in the Peanut Basin of Senegal: a field (bare, then cropped with groundnut) (2020-2021), 4 fallows (2022/2023), and 4 millet fields (2023/2024) to characterize differences in windblown sediment fluxes due to land management (e.g. management of crop residues, grazing pressure, …). Each plot was about 1 ha, and had 5 masts of 5 MWAC each, from 5 cm to 80 cm above ground level. During these experiments, we also monitored vegetation characteristics (every week) and meteorological variables (at 5-minutes resolution).

We then carried out analyses on the windblown sediments collected in the sand traps for the bare/groundnut field (the amounts of sediments collected in the fallows were too low to perform such analyses, and the erosive period, which extends from January to April in Western Senegal, just started in early 2024 for the millet fields experiment).

Our first results show that the horizontal flux of windblown sediments is much larger for a bare/groundnut field (around 40 t/ha/year) than for fallows (0.03 to 0.80 t/ha/year). The results also suggest that differences in land management among fallows (e.g. age, woody cover) may have an impact on this horizontal flux.

Additionally, the orders of magnitude of the organic C, total N and available (Olsen) P concentrations of the horizontal (saltation) flux from the bare/groundnut field are respectively approximately 0.22%, 0.02%, and 8 ppm, thus larger than the concentrations of the topsoil, that are respectively 0.15 %, 0.01 % and 7 ppm. These values compare well with those existing in the literature (e.g. for Niger), and confirm an enrichment of the horizontal flux (by a factor of 1.1 to 1.8) in soil carbon and nutrients compared to the topsoil. A rough estimate of organic C losses from the monitored field of 1 ha would be about 80 kg/year, and 8 kg/ha and 0.32 kg/ha for N and available P, respectively.

To better characterize the composition of windblown sediments, we also plan to carry out microbiological analyzes to determine the composition of the microbial communities (bacteria and fungi) they contain. Indeed, these microbial communities play a role in the biogeochemical cycle of nutrients and in the storage of carbon in the soil, thus potentially impacting their fertility.

We thank the IMAGO/LAMA analytical laboratory of Dakar for the analyses of the composition of the sediment samples.

How to cite: Pierre, C., Rajot, J. L., Bonneval, P.-M., Raynal, P.-A., Tall, A., Faye, I., Fall, D., and Tine, A.: Nutrients and carbon losses due to wind erosion in Sahelian Senegal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7793, https://doi.org/10.5194/egusphere-egu24-7793, 2024.

We studied the effect of grazing on carbon sequestration in semi-natural grasslands.  The study was conducted on three farms with known history of land use in W Iceland. On each farm, we located an intensively (IG) and an extensively (EG) grazed site, which both had been constantly grazed for centuries, and a parallel site were grazing had been excluded (NG) for over 50 years. We measured net ecosystem exchange (NEE), ecosystem respiration and normalized difference vegetation index (NDVI) on a regular basis over the growing season. Samples were taken from 60 cm deep soil profiles for analysis of soil organic carbon (SOC). The grazed sites showed significantly more negative NEE than the NG sites, indicating more carbon dioxide uptake on the grazed sites compared to the NG sites. NDVI was also significantly higher on the grazed sites. On all farms, the total SOC content was higher in the grazed sites than in the parallel NG sites. The study indicates that cessation of grazing decreases productivity and carbon dioxide uptake in a semi-natural grassland in Iceland, as well as SOC content in the soil. Historically, all the NG sites in the study had the same grazing history as the continuously grazed sites until grazing exclusion. The measured lower SOC on the NG sites seems to indicate that, without grazing, SOC is lost with time and/or grazing is needed to maintain SOC in these grasslands.

How to cite: Thorhallsdottir, A. G. and Gudmundsson, J.: Carbon dioxide fluxes and soil carbon storage in relation to long-term grazing and grazing exclusion in Icelandic semi-natural grasslands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8473, https://doi.org/10.5194/egusphere-egu24-8473, 2024.

EGU24-9123 | Posters on site | SSS5.6

The role of (in)organic carbon removal as a pretreatment in the 13C isotope composition of various soils 

Gergely Jakab, Tibor Filep, Tiphaine Chevallier, Zoltán Szalai, and Dóra Zachary

Soil carbon content is a crucial property in fertility and soil health. Carbon occurs in the soil in organic and inorganic forms. Soil organic carbon enters the soil mainly as plant residues and root extracts from the biosphere, whereas the primary source of inorganic carbon is the parent material. Both organic and inorganic carbon forms are affected by the current environmental and artificial conditions and, consequently, change in space and time. In this dynamic system, biogen or pedogen effects can reform carbonates and change organic matter composition. Both carbon forms are the focus of research in the soil however, the interaction between them is less understood. Inorganic carbon forms play an essential role in soil organic matter stabilization and, therefore, in maintaining soil functions. The present study aimed to investigate the organic-inorganic carbon interaction processes in various soil horizons. As a proxy, the stable isotope δ13C values were measured separately in the organic and inorganic pools and the bulk soil. Altogether, 55 soil samples were taken from top and subsoils under various land uses and texture classes. Beyond the measurement of the bulk soils, one aliquot was heated to 550°C for six hours to eliminate the organic carbon content, whereas another one was treated with HCl to remove the carbonates. All samples were measured using a Thermo Scientific FLASH 2000 HT elemental analyzer mass spectrometer, identifying δ13C composition. The sum of organic and inorganic carbon was higher than the total carbon content (R2=0.94), suggesting that at least one carbon removal pretreatment was incomplete. Some low inorganic carbon content (<0.5%) revealed a deficient δ13C value (-15 – -30 ‰), indicating organic carbon residue presence. However, other slightly carbonated samples parallel with higher inorganic carbon content ones are in the range of pedogenic carbonates (0 – -10 ‰). The reason for the incomplete organic carbon removal is probably related to the organic-mineral complexes; however, further investigations are needed for a more convincing result. This work was supported by the National Research, Development and Innovation Fund of Hungary [project no. 2019-2.14-ERA-NET-2022-00037 and FK 142936]. Project no. 2019-2.14-ERA-NET-2022-00037 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the ERA-NET COFUND/EJP COFUND funding scheme with co-funding from the European Union Horizon 2020 research and innovation programme.

How to cite: Jakab, G., Filep, T., Chevallier, T., Szalai, Z., and Zachary, D.: The role of (in)organic carbon removal as a pretreatment in the 13C isotope composition of various soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9123, https://doi.org/10.5194/egusphere-egu24-9123, 2024.

EGU24-11107 | ECS | Posters on site | SSS5.6

A new machine-learning model to partition soil organic carbon into its centennially stable and active fractions based on Rock-Eval(r) thermal analysis 

Marija Stojanova, Pierre Barré, Hugues Clivot, Lauric Cécillon, François Baudin, Thomas Kätterer, Bent T. Christensen, Claire Chenu, Ines Merbach, Adrián Andriulo, Sabine Houot, and Fabien Ferchaud

The quantification of soil organic carbon (SOC) biogeochemical stability is important for assessing soil health and its capacity to store carbon. Models simulating SOC stock evolution divide SOC into different kinetic pools with contrasting residence times. The initialization of compartment sizes is a major source of uncertainty for SOC simulations. In a previous study, Cécillon et al. (2021) developed a machine-learning model (PARTYsoc v2) that uses Rock-Eval(r) thermal analysis results as input variables to quantify the proportion of centennially stable and active SOC fractions using samples from long term bare fallow sites. The outputs of PARTYsoc v2 have been shown to be particularly effective for initializing the AMG model, enabling very accurate simulations of SOC stock evolutions for a dozen French sites (Kanari et al., 2022). The objective of the present work is to build a new version of PARTYsoc, validated on a larger sample set, and extend the usefulness of the AMG model initialized with PARTYsoc to different parts of the world.

To do so, we have first identified sites with known crop yields and SOC stock evolutions and archived samples available for Rock-Eval(r) characterization. We then determined, for each site, the stable SOC stock value leading to the best simulation accuracy of SOC stock evolution with the AMG model. This optimal stable SOC stock allowed us to quantify the stable SOC proportion for all samples from the selected sites. Finally, we developed PARTYsoc v3 using Rock-Eval(r) measurements as input variables to predict stable SOC proportions sensu AMG model.

PARTYsoc v3 is significantly different from PARTYsoc v2. In the v3, the target variable, i.e., the centennially stable SOC proportion, is determined to be optimal for the AMG model whereas in the v2 it was calculated from SOC declines at bare fallow sites. Moreover, the current v3 model uses Support Vector Machine (SVM) regression coupled with a Beta Regression instead of Random Forest. This combination of machine-learning models allows for a non-linear relationship between the target and the features, and predictions are always bounded in the [0, 1] interval. The data set has also been extended to use a larger number of sites (6 sites in the v2, and 12 sites in the v3), including both bare fallows and other types of long-term experiments.

The features (Rock-Eval(r) features) are selected by first removing highly-correlated features (Spearman correlation > 0.9) and then ranking them based on their predictive importance when randomly permuted. This procedure allows us to decrease the effects of overfitting the training data. The final model uses 7 Rock-Eval(r) features (18 for the v2). We obtain satisfactory performance in both internal validation (R2=0.82, RMSE=0.07), as well as Leave-One-Site-Out (LOSO) validation (R2=0.76, RMSE=0.09).

The proposed model builds upon and significantly improves the work laid out by PARTYsoc v2. Currently, we are working on further extending the data set as well as stabilizing the processes of feature selection and model parameters.

How to cite: Stojanova, M., Barré, P., Clivot, H., Cécillon, L., Baudin, F., Kätterer, T., T. Christensen, B., Chenu, C., Merbach, I., Andriulo, A., Houot, S., and Ferchaud, F.: A new machine-learning model to partition soil organic carbon into its centennially stable and active fractions based on Rock-Eval(r) thermal analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11107, https://doi.org/10.5194/egusphere-egu24-11107, 2024.

EGU24-12395 | Posters on site | SSS5.6 | Highlight

Long-term P fertilizer effects on pasture soil nitrous oxide and carbon dioxide emissions 

Tim Clough, Naomi Wells, Parag Bhople, Karl Richards, and Giulia Bondi

Grazed pasture ecosystems are key contributors to anthropogenic nitrous oxide (N2O) emissions. Within the grazed pasture, it is the deposition of ruminant urine, from the grazing animal, that creates the hot-spot for N2O emissions. Grazed pastures also receive phosphorus (P) fertilizer to sustain plant nutrient needs. This in turn increases the soil microbial biomass pool and promotes dry matter production: this affects soil moisture dynamics and plant N uptake. How long-term P fertilizer affects N2O emissions from pasture soils in situ is poorly understood. To address this an in situ study was performed on the Winchmore long-term fertilizer trial, in New Zealand. This has run for 71 years and the pasture has not been disturbed over this time. The trial consists of replicated (n = 4) field plots (0.09 ha) receiving either 0, 17, 23, or 34 kg P ha-1 yr-1 as single superphosphate. These field plots are rotationally grazed by sheep, with stocking rate adjusted according to feed on offer. Headspace chamber bases were installed in each field plot and synthetic ruminant urine or distilled water (control) were applied. Static chambers were placed on the chamber bases during gas flux measurement. Gas measurements were taken over a 76-day period to determine N2O and CO2 fluxes. Soil inorganic-N concentrations (0 – 7.5 cm) were also followed over time, along with soil sampling for determining soil chemical characteristics. Data from this study and their interpretation will be presented to assess the effect of long-term P fertilizer on grazed pasture N2O and CO2 fluxes.

How to cite: Clough, T., Wells, N., Bhople, P., Richards, K., and Bondi, G.: Long-term P fertilizer effects on pasture soil nitrous oxide and carbon dioxide emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12395, https://doi.org/10.5194/egusphere-egu24-12395, 2024.

EGU24-13467 | Posters on site | SSS5.6

Organic Vineyard Fertilization: Soil Carbon and Nitrogen in Southern Brazil 

Tadeu L. Tiecher, Allan Augusto Kokkonen, Daniéle Gonçalves Papalia, Luana Paula Garlet, Vanessa Ferraz Costa, Samuel Bolívar de Mello Schemer, Arthur Gonçalves Gulartt, Barbara Clasen, and Gustavo Brunetto

In recent years, vineyard areas in organic production system have been increasing significatively, in both develop and developing nations. This trend aligns with the growing concerns of people and governments. They are increasingly worried about health issues and the environmental impact of conventional agriculture and horticulture. In contrast, agroecology and organic fertilization have the potential to offer safe products and promote carbon (C) sequestration in the soil. The latter benefit is also a crucial strategy to mitigate the climate effects of greenhouse gas emissions. This aligns with the UN's guidelines for carbon-neutral production systems However, in vineyard agroecosystems, there is limited technical information about the impact of organic fertilizers and plant CO2 fixation on carbon levels. This is especially true in subtropical climates. Therefore, this research aimed to evaluate how different fertilization systems affect soil organic carbon (SOC) and soil organic nitrogen (SON). An experiment was set up in a commercial organic vineyard with two different cultivars: ‘Isabella’ (Vitis labrusca x V. vinifera) and ‘Chardonnay’ (V. vinifera), in Veranópolis (Cfa climate), in Southern Brazil. The soil in the experiment was classified as Cambisol (WRB). Since 2020, the following fertilization systems have been applied yearly: no fertilization (T), grape pomace vermicompost (GPV), grape pomace compost (GPC), GPV plus mineral fertilizers (GPV+MF), GPC plus mineral fertilizers (GPC+MF), and mineral fertilizers only (MF). The organic fertilizers were applied in the dose of 40 kg of N ha-1, on the surface beneath grapevine canopies. The mineral fertilizers consisted of natural phosphate and potassium sulphate, in the doses of 160 and 100 kg ha-1 of P2O5 and K2O, respectively. In 2023, soil samples were collected from 0 to 5, 5 to 10, 10 to 20 and 20 to 40 cm layers, at bud burst (August), and analyzed for SOC and SON, via combustion followed by gas chromatography. No fertilization system increased SOC or SON in layers up until 20 cm deep after three years of treatment. In 20 to 40 cm layer, there was variability among treatments; however, that is probably main to natural variation. Mean C:N ratio of soil organic matter was 12,0. In light of this, we suggest the evaluation of SOC and SON after a longer period of treatment application, since their low increase in humid subtropical regions, which presents hot and wet summers.

How to cite: Tiecher, T. L., Kokkonen, A. A., Papalia, D. G., Garlet, L. P., Ferraz Costa, V., Bolívar de Mello Schemer, S., Gonçalves Gulartt, A., Clasen, B., and Brunetto, G.: Organic Vineyard Fertilization: Soil Carbon and Nitrogen in Southern Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13467, https://doi.org/10.5194/egusphere-egu24-13467, 2024.

EGU24-15383 | ECS | Orals | SSS5.6

On-farm soil management distinctly influences the stabilization of dissolved organic carbon within soil aggregates 

Orracha Sae-Tun, Christoph Rosinger, Gernot Bodner, Axel Mentler, Herwig Mayer, Sabine Huber, and Katharina Keiblinger

Dissolved organic carbon (DOC) is a highly active carbon pool which can easily be utilized by soil microbes and is thereby a crucial fraction of the soil carbon cycle. Occlusion within soil aggregates is one important stabilization mechanism of DOC in the soil and is affected by various factors including soil management and site-specific conditions. However, details about this mechanism and its regulating factors are still largely unclear. Thus, this study aims to investigate the stabilization mechanism of DOC in soil aggregates under different soil managements across varying soil textures (fine, medium, and coarse). In the study, the soil managements were categorized into three different systems depending on the degree of conservation measures implemented on the farms: state-of-the-art system (standard), conservation systems (pioneer) which were primarily characterized by intensive use of cover cropping together with crop diversification and rotation, and semi-natural grassland (reference). We employed a combination of ultrasonication and online UV-visible spectroscopy to examine the concentration of DOC released from soil aggregates decayed. The experimental setup followed the theory that the duration of low-amplitude ultrasonication energy correlates with higher aggregate stability (resistant to decay), which in return affects the stability of DOC. Influential factors were assessed from relationships with soil physico-chemical and biological characteristics. Based on the observed release pattern, the study deduced that DOC was stabilized within soil aggregates across three different stability levels: low, moderate, and high. 

The results revealed that soil management systems exerted a significant effect on DOC in moderately and highly stable aggregates. Standard systems exhibited the lowest DOC concentration, while reference systems demonstrated the highest concentration. A significant effect of soil texture was found only at the moderate aggregate stability level where coarse soil displayed the lowest DOC concentration. Contrastingly, neither soil management systems nor soil texture had a significant effect on DOC concentration at the low aggregate stability level. The stabilized DOC within moderately stable aggregates, as evidenced by DOC concentration at the moderate level of aggregate stability, exhibited more pronounced correlations with soil microbial variables (i.e., microbial biomass C and ergosterol) than with soil texture as identified through particle size distribution. Therefore, our results suggest that changes induced by soil management, particularly in microbiological attributes, have a more crucial role on the stabilization of DOC in highly stable aggregates than site-specific conditions such as soil texture. Furthermore, the application of low-energy ultrasonication in this study enables the differentiation of soil managements, even within arable systems, in an on-farm setting.

How to cite: Sae-Tun, O., Rosinger, C., Bodner, G., Mentler, A., Mayer, H., Huber, S., and Keiblinger, K.: On-farm soil management distinctly influences the stabilization of dissolved organic carbon within soil aggregates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15383, https://doi.org/10.5194/egusphere-egu24-15383, 2024.

EGU24-17574 | ECS | Posters on site | SSS5.6

Determining factors of soil organic carbon in the sclerophyll ecosystem of central Chile 

Nancy Daniela Mallitasig, Marcelo Miranda, and Eduardo Arellano

The sclerophyllous forest of Central Chile, a Mediterranean-type ecosystem, is facing increasing vulnerability, exacerbated by anthropogenic pressures and drought conditions that have intensified over the past decade.

The objective of this study was to determine, at both regional and local scales, the factors influencing soil organic carbon (SOC), considering the integrated soil-vegetation system. Biophysical conditions such as primary productivity (PP), soil properties (SP), terrain physiography, and climate were considered.

At the regional scale, predictive variables for PP were selected using remote sensing techniques, including the Enhanced Vegetation Index (EVI) and the Normalized Difference Water Index (NDWI) in the spring period. Additionally, climatic variables (maximum, mean, and minimum temperature in spring and annual precipitation between 2001 and 2021) and physiographic variables such as exposure, slope, elevation, and topographic position index (TPI) were included. Statistical analysis was analyzed using a Random Forest model.

At the local scale, a forest inventory has been made, and soil samples were taken at a depth of 20 cm in 45 field plots of 400 m2, located in multi-species shrub vegetation (>4m in height). Concentrations and stocks of SOC were quantified, along with physical properties (texture, field capacity, and macroaggregates), chemical properties (pH, organic matter content, total nitrogen, and C/N ratio), and microbial activity estimated through basal respiration. Biomass, nitrogen content, and C/N ratio of leaf litter also measured. Statistical analysis was performed using a stepwise regression.

Preliminary results indicate that the most significant variables in predicting SOC were EVI, slope, elevation, total nitrogen, DA, LAI, coverage of the tree stratum, and vegetation height at the corresponding spatial scale.

How to cite: Mallitasig, N. D., Miranda, M., and Arellano, E.: Determining factors of soil organic carbon in the sclerophyll ecosystem of central Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17574, https://doi.org/10.5194/egusphere-egu24-17574, 2024.

EGU24-17771 | Posters on site | SSS5.6 | Highlight

Modelling of C stock development for assessing the feasibility and implications of humus build-up in humus-oriented farming  

Susanne Stadler, Lisa Bahlmann, Ursula Noell, Florian Stange, Silke Mollenhauer, Alice Woelk, Andrea Rode, and Christina Aue

Soil and groundwater resources in the North Sea region are under increasing pressure due to climate change and human activities, calling for the need of sound strategies for their sustainable protection. The EU Interreg North Sea Project "Blue Transition" targets at a systemic change that balances activities in urban, agricultural or natural areas. It considers a transition in land-use and fosters political structures and governance, investigating 16 pilot sites in Denmark, The Netherlands, Sweden, Belgium, France and Germany to exchange and develop transnational solutions for water boards, farmers, authorities and society.

Within the project, we conduct scenario-based simulations (some based on strip experiments) regarding humus build-up under climate-induced rising temperatures and leaching from humus decomposition in arable soils in Lower Saxony, comparing conventional and organic farming. The aim of our study is an improvement of soil management in conventional and organic farming – especially regarding humus build-up and N loss reduction from soil. The results will serve as a base for elaborating best practices in management strategies for humus-oriented farming, and for investigating implications on soil water. We show first approaches of the numerical simulations.

How to cite: Stadler, S., Bahlmann, L., Noell, U., Stange, F., Mollenhauer, S., Woelk, A., Rode, A., and Aue, C.: Modelling of C stock development for assessing the feasibility and implications of humus build-up in humus-oriented farming , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17771, https://doi.org/10.5194/egusphere-egu24-17771, 2024.

EGU24-18519 | ECS | Posters on site | SSS5.6

Impacts of long term P availability on Soil Organic Carbon stocks and cycling – insights from the EJP ICONICA project 

Parag Bhople, David Wall, Karl Richards, Fiona Brennan, Gary Lanigan, and Giulia Bondi

The management of agro-ecosystems enhancing soil and subsoil organic carbon (SOC) sequestration could be a potential strategy to mitigate climate change. However, soil quality and organic matter (SOM) transformation is highly regulated by the cycle and interactions with other nutrients such as carbon (C), nitrogen (N) and phosphorus (P). In agricultural management, the addition of P fertilizers and its effect on C and N cycling (CNP stoichiometry) is still largely unknown. Therefore, the ICONICA project intends to provide context-based information on soil nutrients (C & N) and their stocks and cycling in P fertilizer scenarios. To determine the influence that P fertilization has on SOC stabilizations and greenhouse gas (GHG) emissions in agricultural systems, ICONICA employed a unique set of long-term P fertilizer experiments (LTEs) across Europe, including a range of P treatments to establish relationship between long-term P availability and interaction with C and N. In this project soils up to 50 cm depth were collected from six LTEs distributed across Europe. The LTEs feature different soil type/textural classes and land uses. The objective was to quantify C stocks and provide initial reference value of soil C storage for soil depths and link that to the soil stoichiometric ratios (C:N:P) in different management systems. Overall, in grassland sites the average SOC stocks ranged from 54.76±6.65 (tC/ha) in The Netherlands, followed by 43.07±5.71 (tC/ha) in Ireland. The average SOC stocks in arable sites in Sweden were 21.22±1.19 (tC/ha) and the least SOC stocks (18.60±2.35 (tC/ha) occurred in arable site in Denmark. Grassland sites showed a higher SOC stock within the topsoil (0-10 cm) while arable sites contributes most of the C in the subsoil especially at 10-30 cm. The mean soil C/N ratio was higher in the topsoil (0-10 cm) in the arable with respect to the grasslands and ranged from 13.74 to 10.28 with similar trend at soil depth gradients. The variations in C flow and in stocks through the sampled profile of different land uses such as grassland to arable is highly complex and driven by multiple factors indicating the need for further assessment. Nevertheless, the observations indicated the indispensable nature of long-term field experiments to quantify the optimum C:N:P stoichiometry that may enable efficient SOC sequestration as opposed to production in the managed agricultural systems.

How to cite: Bhople, P., Wall, D., Richards, K., Brennan, F., Lanigan, G., and Bondi, G.: Impacts of long term P availability on Soil Organic Carbon stocks and cycling – insights from the EJP ICONICA project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18519, https://doi.org/10.5194/egusphere-egu24-18519, 2024.

EGU24-18694 | ECS | Orals | SSS5.6

Greenhouse gas emissions and nitrate leaching as a result of grassland renovation practices 

Mart Ros, Jordy van 't Hull, and Gerard Velthof

Grasslands are a major sink of organic carbon and for that reason are interesting as a means to achieve national and international climate goals. Grassland renovation (reseeding or conversion to arable land) is a common measure to counteract yield declines in intensively managed agricultural grasslands. The destruction of the sod that accompanies this practice induces a strong increase in mineralization of soil organic carbon and can therefore be a major source of nitrate (NO3) leaching and emissions of carbon dioxide (CO2) and nitrous oxide (N2O).

 

Most farmers prefer reseeding in autumn instead of spring because of better establishment of the sward and low weed infestation. However, limited crop nitrogen (N) demand during autumn increases the risk of NO3 leaching and N2O emissions. Potentially, such N losses could be mitigated by measures such as reducing tillage intensity, reducing fertilizer N application, or applying nitrification inhibitors. In 7 different experiments, we studied the effect of various grassland renovation practices on soil N cycling, greenhouse gas emissions, and nitrate leaching. We hypothesized (i) that conversion to arable land leads to greater CO2 and N2O losses than the reseeding of grassland; (ii) that reseeding in autumn causes enhanced risk of NO3 leaching during winter; and (iii) that these losses can be mitigated by reducing tillage and/or N application rates.

 

Results show that NO3 concentrations in groundwater after harvest were higher for observed after autumn reseeding combined with mitigation strategies than for reseeding in spring. This implies that confining the renewal of grassland to spring season could be a viable strategy to mitigate NO3 leaching. Emissions of N2O varied between experiments and could generally be linked to precipitation events and agricultural management (fertilization and renovation). Grassland renovation led to higher N2O (and CO2) emissions, but the effects of mitigation practices were inconsistent. The results from these experiments will be discussed in more detail. Mitigation strategies for N2O are less straightforward than those for nitrate leaching.

How to cite: Ros, M., van 't Hull, J., and Velthof, G.: Greenhouse gas emissions and nitrate leaching as a result of grassland renovation practices, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18694, https://doi.org/10.5194/egusphere-egu24-18694, 2024.

EGU24-19029 | ECS | Posters on site | SSS5.6 | Highlight

Phosphorus modelling on agricultural fields – trade-offs between applicability and complexity 

Julius Diel, Sara König, Ulrich Weller, and Hans-Jörg Vogel

Besides nitrogen, phosphorus is the second most important nutrient for plants, but has only little natural inputs. If it is not added regularly by fertilizers, be it mineral or organic, the soil gets depleted after a few years. As a consequence, crop growth is impeded as well as the microbial turnover of soil organic matter.  However, many crop growth models do not account for phosphorus dynamics, although it might be a limiting factor.

In a mechanistic soil process model such as BODIUM, crops are growing dynamically adapting to their boundary conditions and affect many other soil functions due to water and nutrient uptake, root exudation and biomass input to the soil. Moreover, microbial metabolism depends on the stoichiometry of soil organic matter and available nutrients, i.e. C/N/P ratios. A phosphorus component shall therefore enhance the nutrient cycle and improve the crop growth prediction, both in regard to yields as well as to feedbacks with other soil processes.

Here, we want to present an extended BODIUM version including the representation of the P cycle and present first simulations with data from the Static Fertilization Experiment in Bad Lauchstädt. Beside stoichiometric considerations for all organic pools, the mineral dynamics are represented with only ‘total’ and ‘available’ P. These can easily be measured by standard procedures and are now mandatory in some countries, although with varying protocols. This is especially relevant for farmers, who are a declared target group of the model.

How to cite: Diel, J., König, S., Weller, U., and Vogel, H.-J.: Phosphorus modelling on agricultural fields – trade-offs between applicability and complexity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19029, https://doi.org/10.5194/egusphere-egu24-19029, 2024.

EGU24-19722 | ECS | Posters on site | SSS5.6 | Highlight

Quantifying baseline soil organic carbon (SOC) stocks to allow establishment of robust carbon accounting framework for sustainable agriculture in Ireland  

Alex Martin Castellon Meyrat, Lilian O'Sullivan, David Wall, Paul Holloway, and Giulia Bondi

The soil organic carbon (SOC) and stocks mediate pivotal ecosystem services such as carbon sequestration, climate regulation by mitigating greenhouse gas emissions, nutrient cycling, provisioning habitats for organisms, water supply, and production of food, fiber and fuel. In agricultural systems, multiple factors including climate, soil types, vegetation, and land management affect the SOC dynamics. However, the coupled impacts among these factors on SOC stocks at farm and regional scale are still unknown. Therefore, it is crucial to expand our understanding of carbon cycle under different scenarios to develop more sustainable agro-ecosystems at national level. To achieve this, Teagasc is leading the Signpost Program a multiannual sampling campaign aiming to build an accurate baseline of SOC stocks across different soil types, land uses and management regimes in Ireland. This will help to understand the carbon dynamics in Irish agricultural soils, revealing the composition and stability of SOC in depth. To build the baseline for longtime soil carbon observatory, SOC data and soil health indicators for 148 soil profiles have been collected to date within 37 farms across the country. The method for site selection was based on combination of geographic information system (GIS) techniques and the catena approach, covering different climatic regions, soil types, and farming systems along the dominant hillslope within each farm. The soil samples were taken at each 15 cm increment up to 60 cm soil depth. The baseline data includes estimation of chemical properties such as potassium (K) and phosphorus (P) obtained by Morgan’s extraction; pH, total nitrogen (N), total carbon (C), and organic carbon (SOC); aluminum (Al), calcium (Ca), Magnesium (Mg), and phosphorus (P). It also includes physical properties such as bulk density based on three replicates per each range of sampling depth and finally clay, silt, and sand content to be assessed by spectroscopy measurements. Finally, SOC stocks across P scenarios, C/N ratio, and C:N:P ratios are estimated to understand the capacity of soils to sequester carbon and the nutrients dynamics under different management regimes and soil types. The Signpost initiative emphasizes soil management practices with long-term benefits for the environment and expand knowledge to contribute to sequestering carbon, improving overall soil health to support progression of sustainable agricultural systems.

How to cite: Castellon Meyrat, A. M., O'Sullivan, L., Wall, D., Holloway, P., and Bondi, G.: Quantifying baseline soil organic carbon (SOC) stocks to allow establishment of robust carbon accounting framework for sustainable agriculture in Ireland , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19722, https://doi.org/10.5194/egusphere-egu24-19722, 2024.

EGU24-20186 | Posters on site | SSS5.6

Trace metals in the soils of the Sanjiang Plain in the Northeast Asia: Land use influence 

Jing Wang, Hongguang Cheng, Kai Yang, and Chunye Lin

The Sanjiang Plain is located in the Northeast Asia, where the large areas of farmland and wetland are distributed. The soil cores of 40 to 100 cm depth were collected at 48 sites in the Sanjiang Plain and sectioned into 3-, 5- or 10-cm slices. In total, 451 soil samples were got and were analyzed for trace, minor, and major elements. The concentration ranges of trace and minor metals (mg kg-1) in the soil were 1.08-65.7 for As, 0.03-0.36 for Cd, 5.26-103.8 for Co, 42.6-102.9 for Cr, 12.4-64.4 for Cu, 0.01 to 0.14 for Hg, 139.3-4184.5 for Mn, 13.4 to 58.2 for Ni, 15.3-106.2 for Pb, 0.25-1.67 for Sb, 7.87-23.6 for Sc, 2525-6265 for Ti, 51.7-283.4 for V, and 42.8-184.6 for Zn. The average contents of Al2O3, Fe2O3, MgO, CaO, Na2O, and K2O in the soil were 9.72%, 5.34%, 1.00%, 0.98%, 1.63, and 2.28%, respectively. The soil pH ranged from 5.03 to 6.97, with an average of 5.84. Land uses had important effects on trace metal concentrations in the soil. The average concentrations of As, Co, Mn, and Pb the soil decreased from forest land, to dry farmland, to paddy field, and to wetland. On the other hand, the average concentrations of Cr, Cu, Ni, Sc, and Ti in the soil of wetland and paddy field were higher than those of dry farmland and forest land. However, the average concentrations of Hg and V in the soil of wetland and forest land were higher than those of paddy field and dry farmland. The difference in the concentrations of trace and minor elements among the four types of land use originate from anthropogenic activity, hydrologic conditions, and pristine soil properties. Atmospheric deposition of V and Hg led to higher Hg and V concentrations in the soil of natural wetland and forest land than in the agricultural land (paddy field and dry farmland). Higher leaching of redox sensitive elements such as As, Co, Mn, and Pb led to lower concentrations of As, Co, Mn, and Pb in wetland and paddy field than in forest land and dry farmland. The difference in the concentrations of Cr, Cu, Ni, Sc, and Ti in the soil among the four kinds of land use should be ascribed to the difference in the pristine soil properties.  

This study was funded by the National Natural Science Foundation of China (42276233). 

How to cite: Wang, J., Cheng, H., Yang, K., and Lin, C.: Trace metals in the soils of the Sanjiang Plain in the Northeast Asia: Land use influence, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20186, https://doi.org/10.5194/egusphere-egu24-20186, 2024.

EGU24-105 | ECS | Orals | SSS4.1

Liming effects on microbial carbon use efficiency and its potential consequences for soil organic carbon stocks 

Julia Schroeder, Claudia Damatirca, Tobias Bölscher, Claire Chenu, Lars Elsgaard, Christoph C. Tebbe, Laura Skadell, and Christopher Poeplau

The allocation of metabolised carbon (C) between soil microbial growth and respiration, i.e. C use efficiency (CUE) is crucial for SOC dynamics. The pH was shown to be a major driver of microbial CUE in agricultural soils and therefore, management practices to control soil pH, such as liming, could serve as a tool to modify microbial physiology. We hypothesised that raising soil pH would alleviate CUE-limiting conditions and that liming could thus increase CUE, thereby supporting SOC accrual. This study investigated whether CUE can be manipulated by liming and how this might contribute to SOC stock changes. The effects of liming on CUE, microbial biomass C, abundance of microbial domains, SOC stocks and OC inputs were assessed for soils from three European long-term field experiments. Field control soils were additionally limed in the laboratory to assess immediate effects, accounting for lime-derived CO2 emissions (δ13C signature). The shift in soil pHH2O from 4.5 to 7.3 with long-term liming reduced CUE by 40%, whereas the shift from 5.5 to 8.6 and from 6.5 to 7.8 was associated with increases in CUE by 16% and 24%, respectively. The overall relationship between CUE and soil pH followed a U-shaped (i.e. quadratic) curve, implying that in agricultural soils CUE may be lowest at pHH2O = 6.4. The immediate CUE response to liming followed the same trends. Interestingly, liming increased microbial biomass C in all cases. Changes in CUE with long-term liming contributed to the net effect of liming on SOC stocks. Our study confirms the value of liming as a management practice for climate-smart agriculture, but demonstrates that it remains difficult to predict the impact on SOC stocks due its complex effects on the C cycle.

How to cite: Schroeder, J., Damatirca, C., Bölscher, T., Chenu, C., Elsgaard, L., Tebbe, C. C., Skadell, L., and Poeplau, C.: Liming effects on microbial carbon use efficiency and its potential consequences for soil organic carbon stocks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-105, https://doi.org/10.5194/egusphere-egu24-105, 2024.

EGU24-1301 | ECS | Posters on site | SSS4.1

Thermodynamic indicators decipher the molecular composition of organic matter in phase transition 

Philipp Maurischat, Michael Seidel, Oliver Donnerhack, Patrick Liebmann, and Georg Guggenberger

With promising methods such as ultrahigh-resolution mass spectrometry (FT ICR MS), soil scientists have more opportunity than ever to gain a comprehensive picture of the composition and transformation of soil organic matter (SOM).  With soils as central mediators for carbon capture and storage this understanding is key when it comes to tackling major challenges, such as climate change and soil health. However, as novel techniques are often imported from other scientific fields, the evaluation and interpretation of data with regard to the heterogeneous pedosphere often remains a major challenge. For FT ICR MS, several commonly used indices were developed from empirical observations of the deep ocean. While these indices seem statistically transferable from ocean DOM to the terrestrial realm, there is legitimate concern that no causality ultimately ensures this applicability. Indices are needed that allow interpretation of the data from a conceptual perspective. Viewing SOM as a thermodynamically driven mediator of energy fluxes in the soil food web provides an opportunity to put a foot on the ground of data analysis with more general applicability. We aim to show that bioenergetic and thermodynamic molecular indices allow a better understanding of soil organic matter transformation by comparing FT ICR MS samples from complex, mixed sources and single source endmembers.

We investigated the molecular composition of stream DOM and soil leachates along a biome gradient between alpine meadow and alpine steppe, including a chronosequence of degradation in the southern Tibetan Nam Co watershed. Our results suggest a certain match of commonly used DOM molecular indices, such as the ‘island of stability‘, the ‘degradation index‘ and the ‘terrestrial index‘, applied to marine settings for terrestrial DOM and SOM. However, when comparing SOM and DOM phase transitions within endmember sources, we noted inconsistencies. In contrast, indicators representing the bioenergetics of organic matter composition, such as the ‘nominal oxidation state of carbon’ and the ‘Gibbs free energy for carbon oxidation’, show good agreement for the key phase transition between SOM and DOM. These results provide reasonable evidence in line with conceptual understanding, such as more oxidised DOM and SOM in degraded areas and generally less oxidised molecular formulae in mainly allochthonous stream DOM compared to extracted SOM. Our data support the notion that bioenergetic and thermodynamic indicators may be a way forward to better understand the complex nature of organic matter transformation in soils with FT ICR MS. These indicators can serve as important building blocks for molecular fingerprinting.

How to cite: Maurischat, P., Seidel, M., Donnerhack, O., Liebmann, P., and Guggenberger, G.: Thermodynamic indicators decipher the molecular composition of organic matter in phase transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1301, https://doi.org/10.5194/egusphere-egu24-1301, 2024.

Chemical quality of plant residues, which are the source of dissolved organic C (DOC), determine the molecular structure, notably functional group polysaccharides in DOC, and the origins of DOC-polysaccharide, which transitioned from plant- to microbial-derived as decomposition progressed. The microbial-derived DOC-polysaccharides contribute to soil organic C (SOC) stabilization, but what factor associated with the residue chemical quality regulates the origin of the DOC-polysaccharides remains unknown. Balanced DOC and dissolved N (DN) (DOC-and-DN) stoichiometry of microbial substrates as indicated by DOC-to-DN ratio enhances microbial C use efficiency (CUE). The CUE indicates the production of microbial-derived DOC compounds. We hypothesized that DOC-and-DN stoichiometry in soils receiving plant residues was a key factor controlling the origin of DOC-polysaccharides. The objectives of this study were to determine 1) DOC-to-DN ratio during decomposition, 2) relationships of DOC-to-DN ratio and microbial metabolic quotient (qCO2 - inverse of CUE), and 3) relationships of qCO2 and DOC-to-DN ratio with DOC-polysaccharides. This study employed data from year 13 of a long-term field experiment on the effect of annual application of varying quality residues on decomposition processes in sandy soils. During the early stage of decomposition (week 0-2), DOC-to-DN ratio of N-rich groundnut stover (GN) residue decreased, in contrast to low-N rice straw (RS), and dipterocarp leaf litter (DP) and medium-N tamarind leaf+petiole litter (TM). During the intermediate stage (week 2-8), GN and RS had increasing ratios, as opposed to DP and TM. Groundnut-treated soil had lower average ratio (6.8±2.6) than TM, RS and DP (10.7±4.4, 12.1±5.4, 14.1±7.2, respectively). Positive influences of the ratio on qCO2 in the three medium-to-low-N soils (R2 = 0.60** - 0.74**) indicated that the ratio had significant control on the CUE. The qCO2, in turn, had significant influence (non-linear relationship) on DOC-polysaccharides (R2 = 0.30*).  In the early stage (high qCO2), it decreased (indicating the increase of CUE) corresponding to the decreases in DOC-polysaccharides indicating that these were plant-derived. The qCO2 decreased further beyond the threshold of 0.00026 mg CO2-C kg-1 microbial biomass C h-1 whichmarked the beginning of the intermediate stage (low qCO2), corresponding to an increase in microbial-derived DOC-polysaccharides.  This increase signified the change in their origin. Negative influence of DOC-to-DN ratio on DOC-polysaccharides (R2 = 0.36*) during the intermediate stage showed that the increased ratios caused the decreases in DOC-polysaccharides. Our results identified DOC-and-DN stoichiometry in residues-treated soils as a prominent factor controlling the origin of the DOC-polysaccharides. Imbalanced DOC-and-DN stoichiometry in low-N residues, i.e., higher DOC-to-DN ratios than microbial biomass C-to-N ratios, brought about the decrease in microbial-derived DOC-polysaccharides during the later stage. Soil management via organic inputs requires careful consideration of changes in DOC-and-DN stoichiometry which can affect SOC accumulation.

How to cite: Poosathit, R. and Vityakon, P.: Stoichiometry of dissolved organic matter controls the origin of polysaccharides in dissolved organic carbon in sandy soils receiving contrasting-quality plant residues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2590, https://doi.org/10.5194/egusphere-egu24-2590, 2024.

Microbial carbon use efficiency (CUE) is a vital physiological parameter in assessing soil carbon turnover. Yet, how microbial communities with distinct trophic strategies regulate soil microbial CUE has remained elusive. Based on the oligotrophic: copiotrophic framework, we here explored the role of microbial taxa with different trophic strategies in mediating microbial CUE (determined by a 13C-labeling approach) along the vegetation primary succession in the Hailuogou glacier retreat area of the southeastern Tibetan Plateau. Soil microbial CUE ranged from 0.54 to 0.72 (averaging 0.62 ± 0.01 across all samples), increasing markedly along the vegetation succession. Microbial assemblies with distinct trophic strategies were crucial regulators of soil microbial CUE. Specifically, microbial CUE increased with microbial oligotroph: copiotroph ratios, with oligotroph-dominated stages having a higher microbial CUE than copiotroph-dominated ones. The prevalence of oligotrophic members would therefore be linked to the high soil microbial CUE at late successional stages. Given that oligotrophs predominate in soils with more recalcitrant carbon and because of their higher microbial CUE, we speculate that oligotrophs are likely to promote carbon sequestration in soils. In addition, the responses of soil microbial CUE to fungal oligotroph: copiotroph ratios were stronger than to bacterial ones. Fungal taxa may play a particularly pronounced role in shaping microbial CUE relative to bacterial members. Overall, our results highlighted close associations between microbial trophic strategies and CUE and provide direct evidence regarding how microbial trophic strategies regulate soil microbial CUE. This study is a significant step forward for elucidating the physiological mechanisms regulating microbial CUE and has significant implications for understanding microbial-mediated carbon cycling processes.

How to cite: Ma, S., Zhu, W., Wang, W., Li, X., Sheng, Z., and Wanek, W.: Microbial assemblies with distinct trophic strategies drive changes in soil microbial carbon use efficiency along vegetation primary succession in a glacier retreat area of the southeastern Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3903, https://doi.org/10.5194/egusphere-egu24-3903, 2024.

EGU24-5128 | ECS | Posters on site | SSS4.1

Identification of plant, bacterial and fungal necro mass markers in soil organic matter via ultrahigh resolution mass spectrometry 

Konstantin Stumpf, Carsten Simon, and Oliver Lechtenfeld

Soil organic matter (SOM) plays a central role in the global carbon cycle, influencing for example soil fertility, biodiversity, and erosion. Recent theories predict that SOM is a blend of plant metabolites and their breakdown products, perpetually undergoing recycling and transformation driven by soil organisms such as fungi and bacteria. However, our understanding of SOM remains incomplete due to its complex chemical composition. Particularly, we lack distinct metabolite information for the majority of these compounds or sources, hampering the analysis of SOM structure, it’s genesis, as well as mechanistic understanding of soil processes. Non-targeted analysis by ultrahigh resolution mass spectrometry, foremost Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), has substantially advanced our understanding of organic matter complexity in soils and allows to gain a representative picture through the use of liquid chromatography (LC). To address the above knowledge gaps, we employed LC-FT-ICR-MS for the investigation of three primary types of necromass (maize litter, bacterial and fungal necromass) extracts, as well as aqueous SOM extracts obtained from arable topsoils (2 – 20 cm depth). Water-soluble SOM fractions can be seen as a transition state between higher molecular weight structures in soils like bio- or necromass and its decomposition end products like carbon dioxide or methane.

We employed an LC methodology capable of separating dissolved organic matter (DOM) across a broad polarity spectrum, including highly polar compounds that are typically lost during commonly employed solid-phase extraction. Our results show significant differences between farmyard manure-amended (FYM) and unamended (UF) soil DOM according to its nominal carbon oxidation state (NOSC), saturation and molecular mass, that are most prominent for the highly polar fraction of SOM. We assigned intricate markers derived from bacterial, fungal or plant necromass that indicated higher potential necromass contribution to FYM than UF soil DOM, in line with higher microbial activity in these soils. We found that necromass markers contribute most to the CHNO formula class in soil DOM, thereby explaining structural differences between FYM and UF samples.

The outcomes of our research represent an initial stride towards the identification of novel molecular markers intrinsic to soil DOM, its thermodynamic properties and N content. In the long term, these techniques will enable not only the detection of shifts in the molecular composition of soil DOM during substrate decomposition but also the recognition of alterations in structural motifs that are associated with specific necromass types. This advancement holds promise for enhancing our understanding of soil DOM dynamics and therefore may hold important implications for soil and ecosystem management.

How to cite: Stumpf, K., Simon, C., and Lechtenfeld, O.: Identification of plant, bacterial and fungal necro mass markers in soil organic matter via ultrahigh resolution mass spectrometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5128, https://doi.org/10.5194/egusphere-egu24-5128, 2024.

EGU24-5432 | ECS | Orals | SSS4.1

Quantifying amino acid and amino sugar biomarkers in a single approach to estimate necromass from soil archaea, bacteria, fungi, and plants 

Erika Salas, Markus Gorfer, Dragana Bandian, Stephanie A. Eichorst, Hannes Schmidt, Julia Horak, Simon K.-M. R. Rittmann, Christa Schleper, Barbara Reischl, Thomas Pribasnig, Jan Jansa, Christina Kaiser, and Wolfgang Wanek

Soil organic matter is the largest carbon (C) pool in terrestrial ecosystems, and it is largely composed of microbial necromass. Microbes contribute to the long-term C storage in soils by incorporating C from plants into their biomass and, consequently, microbial necromass becomes stabilized mostly in mineral associated organic matter. So far, most studies have focused on tracing microbial necromass using amino sugar biomarkers, while plant contributions to soil organic matter are predominantly traced using lignin or long-chain alkanes. Glucosamine and muramic acid are amino sugars commonly used as biomarkers of fungal and bacterial necromass, respectively. Amino acids, such as D-enantiomers and non-proteinogenic amino acids have also been used though rarely as microbial and/or plant necromass tracers. For instance, meso(D,L)-diaminopimelic acid can be found in the peptidoglycan peptide chain of gram-negative bacteria, while hydroxyproline is commonly found in glycoproteins of plant cell walls. Currently, only very few studies have measured amino sugars alongside primary and secondary amino acids as biomarkers of plant and microbial necromass. In this study, we propose a new method that allows the simultaneous exploration of microbial and plant residue biomarkers using a single run via 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization, followed by ultra-high performance liquid chromatography (UHPLC) and Orbitrap high resolution mass spectrometry. For this, we analysed 121 species of archaea, bacteria, fungi and plants. We were able to quantify amino acids and amino sugar biomarkers in the biomass of all taxonomic groups, as well as compare how these biomarker contents varied between broad taxonomic groups. We confirmed the biomarker potential of non-proteinogenic amino acids and amino sugars using indicator species analysis as well as supervised multivariate approaches, such as random forest and partial least squares discriminant analysis (PLS-DA). Our results showed that hydroxyproline is a biomarker specific for plants, while L,L-diaminopimelic acid can be used alongside muramic acid as biomarkers specific for bacteria. Talosaminuronic acid represents a biomarker specific for archaea, while glucosamine was a biomarker indicative of archaea, bacteria and fungi, being absent in plants. Our results showcase an unparalleled approach to trace both plant and microbial contributions to soil organic matter which will help improve our understanding of how different organic matter sources contribute to soil carbon formation and stabilization. This approach also allows the quantitation of plant versus microbial contributions to the continuum from litter decomposition to soil organic matter formation though microbial processing, the contribution of plant, fungal and bacterial organic matter to mineral-associated organic matter (MaOM) versus particulate organic matter (POM), and to soil macro- and microaggregate formation.

How to cite: Salas, E., Gorfer, M., Bandian, D., Eichorst, S. A., Schmidt, H., Horak, J., Rittmann, S. K.-M. R., Schleper, C., Reischl, B., Pribasnig, T., Jansa, J., Kaiser, C., and Wanek, W.: Quantifying amino acid and amino sugar biomarkers in a single approach to estimate necromass from soil archaea, bacteria, fungi, and plants, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5432, https://doi.org/10.5194/egusphere-egu24-5432, 2024.

EGU24-5842 | Posters on site | SSS4.1

Microbial Mechanisms Governing the Reduction of CH4 Emission in Coastal Wetlands under Elevated CO2 Conditions 

Hojeong Kang, Yerang Yang, Genevieve Noyce, and Patrick Megonigal

Elevated levels of CO2 are known to enhance CH4 emissions from wetlands due to the combined effects of increased plant biomass and greater carbon availability for methanogens. However, recent findings have demonstrated a decrease in CH4 emissions under elevated CO2 conditions in coastal wetlands, primarily attributed to the oxygen priming effect. Despite this knowledge, direct evidence elucidating the microbial processes underlying this reduction remains elusive. In this study, we employed mRNA-based analysis to identify the active microorganisms responsible for CH4 dynamics.

Under elevated CO2 conditions, we observed lower methanogen abundances compared to ambient CO2 levels, suggesting that the oxygen priming effect inhibited the activity of methane-producing microbes. Intriguingly, no significant differences were found for methanotrophs, whose impact on wetland sediments may be minimal. Additionally, there was no notable change in the abundance of dsrA genes, indicating that the reduction in CH4 emission was not a result of carbon substrate competition with sulfate reducers. This research contributes valuable insights into the microbial mechanisms governing CH4 emissions in coastal wetlands under elevated CO2 conditions.

How to cite: Kang, H., Yang, Y., Noyce, G., and Megonigal, P.: Microbial Mechanisms Governing the Reduction of CH4 Emission in Coastal Wetlands under Elevated CO2 Conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5842, https://doi.org/10.5194/egusphere-egu24-5842, 2024.

EGU24-6079 | Posters on site | SSS4.1

Spatial modelling of microbial interactions and carbon dynamics in soils 

Xavier Raynaud and Naoise Nunan

Soil hosts a large diversity of microorganisms, that are responsible for the transformation, storage in the soil and release of carbon (C) to the atmosphere. These transformations of C are realized by individual cells that all belong to a metabolic interaction network, i.e. a network of interactions within which cells from different species compete for, transform and exchange resources. Soil C respiration, soil C storage and soil Carbon Use Efficiency are all outcomes of the functioning of this metabolic interaction network. Understand the functioning of metabolic interaction networks is thus essential to understand the cycling of C in soils.

We present a spatially explicit, individual based, model of microbial interactions in which cells are able to take up some resources, transform them into other products, which are released into the environment. Each cell is assumed to have a spatially limited impact on their environment. In this contribution, using different model parametrizations, we explore the interplay between spatial distribution of cells, resource diversity and microbial diversity, and show how the spatial distribution of cells can be a strong modulator of the functioning of metabolic networks in soils.

How to cite: Raynaud, X. and Nunan, N.: Spatial modelling of microbial interactions and carbon dynamics in soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6079, https://doi.org/10.5194/egusphere-egu24-6079, 2024.

EGU24-6520 | Orals | SSS4.1

Expanding Understanding: Investigating the Information Value of Calorespirometric Ratio in Dynamic Processes of Soil Microbial Growth Using Calorimetry 

Thomas Maskow, Shiyue Yang, Eliana Di Lodovico, Alina Rupp, Christian Fricke, Anja Miltner, and Matthias Kästner

The preservation of soil services and functions is sustained by the catalytic activity of microbial communities. These communities use energy and carbon – especially for microbial growth – from the transformation of organic matter (OM).  A fraction of this OM is assimilated as carbon source for growth (anabolism). Another fraction is oxidized and the resulting electrons are transferred to various terminal acceptors to derive the energy for growth (catabolism). The distribution of carbon and energy into anabolism and catabolism determines carbon use efficiency (CUE) and energy use efficiency (EUE). Accurate quantification of the relationships between carbon and energy fluxes relies on key parameters like the metabolic heat (Qm),  calorespirometric ratio (CR), carbon dioxide evolution rate (CER), the apparent specific growth rate (μapp), and the degree of anaerobicity (ηA).

However, determining these parameters faces challenges at technical (sample size and instrument sensitivity) and experimental (thermal disturbance, sample aeration) levels impacting the precise quantification of energy and carbon flux relationships. To address these challenges under controlled conditions, we examined microbial turnover processes in a model arable soil amended with a readily metabolizable substrate (glucose). We utilized three commercial isothermal microcalorimeters (IMC)  with volume-related thermal detection limits (LODV) ranging from 0.05 to 1 mW L-1.

Comparison between three IMCs were conducted to figure out the influence of LODV on measuring accuracy. Calorimetric experiments (half ampoules were closed and half were aerated for 5 minutes on selected days) were compared to explore the effect of oxygen limitation and thermal perturbation on the calorimetric signal. CER was monitored by measuring the additional heat resulting from CO2 absorption in NaOH solution used as CO2 trap. The range of errors associated with calorimetrically derived μapp, Qm, and CR was determined experimentally and compared with the requirements for quantifying CUE and ηA from a theoretical perspective.

Significant differences in Qm and µapp were observed between IMCs which have the lowest and highest LODV. IMC with the lowest LODv provided the most accurate results. Opening ampoules for gas exchange did not significantly impact Qm. However, regular ampoule opening during calorimetrically derived CER measurements led to notable measurement errors for CER due to strong thermal perturbation of the signal. If established models are used to calculate CUE and ηA from CR, unrealistically high values are obtained and the accuracy of CR do not fit to the requirements.

There are two ways to cope with this problem. On the one hand, new thermodynamic balance models need to be developed that dispense with the error-prone CR value. On the other hand, new calorespirometric methods must be developed to determine the CR value more reliably. Initial results for both approaches will be presented. 

How to cite: Maskow, T., Yang, S., Di Lodovico, E., Rupp, A., Fricke, C., Miltner, A., and Kästner, M.: Expanding Understanding: Investigating the Information Value of Calorespirometric Ratio in Dynamic Processes of Soil Microbial Growth Using Calorimetry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6520, https://doi.org/10.5194/egusphere-egu24-6520, 2024.

EGU24-7984 | ECS | Orals | SSS4.1

The potential and challenges of dynamic models for investigating microbial processes in soil using the Calorespirometric Ratio 

Martin-Georg Endress, Fatemeh Dehghani, Evgenia Blagodatskaya, and Sergey Blagodatsky

Soil microbes obtain carbon (C), energy and nutrients from their environment to grow and to sustain themselves. Some of the matter and energy entering microbial metabolism leaves the soil system, e.g., as CO2 and heat, while some is recycled via microbial death and turnover. All these matter and energy flows are intimately coupled according to stoichiometric relationships and the laws of thermodynamics, and unraveling the details of this coupling is essential for our understanding of soil functions mediated by microbes such as nutrient cycling and carbon storage.

The ratio of heat to CO2 release, the so-called Calorespirometric Ratio (CR), obtained from soil incubation experiments with substrate amendment has been shown to hold valuable information about the major active metabolic pathways of the microbial community and the C and energy use efficiency. However, due to the complex and obscure nature of the soil system, measured CR values always require mechanistic models of the underlying processes for proper interpretation.

Here, we illustrate both the potential and the limitations of simple dynamic bioenergetic models for explaining experimental CR data and formulating testable hypotheses. For example, we highlight how such models may reveal shifts in metabolic pathways during growth and give clues about the dominant microbial sources of CO2 and heat in the absence of easily degradable C substrates, e.g., during maintenance and turnover, based on observed temporal CR patterns.

At the same time, the CR framework and associated models face important challenges. First, the CR represents the black box sum of all heat and COproducing processes, and this complication can lead to different conclusions being drawn from the same data. Based on experiments with glucose amended soil, we explain how the CR pattern observed during the retardation phase after glucose depletion might be interpreted as resulting from either the decomposition of SOM or the formation of necromass or a combination of both. While this challenge prevents a definitive interpretation based on CO2 ­and heat data alone, it can nonetheless play a vital role in informing and designing future experiments.

Second, evaluating the temporal patterns of the CR relies on synchronous measurements of heat and CO2. In contrast, these two quantities are often measured separately in experiments, and their different diffusion rates may also cause a delay of CO2 relative to heat in the case of simultaneous measurement. We demonstrate that even small shifts in the relative timing can cause a characteristic artificial pattern in observed CR data, with initially high CR values followed by a pronounced drop. We finally indicate how this issue may be accounted for in the structure of the dynamic models.

In summary, we present two major challenges – the black box nature of CR and shifts in relative timing – that arise from the interpretation of experimental rates of heat and CO2 release using mechanistic dynamic models, and we show how these issues may be addressed, and even leveraged, to advance our understanding of microbial processes in soil.

How to cite: Endress, M.-G., Dehghani, F., Blagodatskaya, E., and Blagodatsky, S.: The potential and challenges of dynamic models for investigating microbial processes in soil using the Calorespirometric Ratio, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7984, https://doi.org/10.5194/egusphere-egu24-7984, 2024.

EGU24-8685 | ECS | Orals | SSS4.1

Insights into the role of the environmental setting versus microbial actors for soil carbon cycling 

Daniel Wasner, Joerg Schnecker, Xingguo Han, Aline Frossard, Erick Zagal Venegas, and Sebastian Doetterl

Soil microbes perform important functions in the soil organic carbon (SOC) cycle and soil microbial decomposition activity is a major determinant of the carbon budget of a soil. It is well-established that soil microbial physiology is directly affected by temperature and moisture. However, it is less clear to what extent the environmental setting (i.e. long-term climatic conditions, soil physicochemistry) vs. the microbial actors (i.e. soil bacterial and fungal community composition) control the cycling of SOC in the absence of strong direct physiological constraints such as temperature and moisture limitation.

To address this knowledge gap, we used 35 grassland topsoils (0 – 10 cm) from 10 WRB major soil groups along a north-south transect in Chile, which ranged from arid steppe to tundra. We compiled climatic data and relevant physicochemical soil properties, together with an in depth characterization of OM quality. We then incubated the soils for 1 week in conditions favorable for microbial activity (20 °C, 50 % of water holding capacity). After incubation, we quantified soil microbial carbon and nitrogen, enzyme kinetics of three groups of relevant extracellular enzymes, basal heterotrophic respiration as well as microbial growth rates and carbon use efficiencies by incorporation of 18O into DNA. In addition, we characterized the microbial actors by DNA extraction and Illumina barcoding of a region of the 16S rRNA gene (bacteria) and a section of the ITS region (fungi). Finally, to investigate how strongly the measured microbial SOC functions were linked with the environmental setting vs. the microbial actors, we applied three different cross-validated regression approaches.

The resulting data highlights the links between environment, microbial community composition and SOC cycle functions under conditions without direct temperature and moisture limitation. Our findings show that the environmental setting controlled the amount of microbial biomass, and in extension biomass dependent SOC cycle functions such as heterotrophic respiration. In  contrast, microbial community composition was a better predictor of SOC cycle functions that are independent of microbial biomass such as carbon use efficiency and relative microbial growth rates. These insights help to disentangle the roles of the environmental setting and the microbial actors in the context of microbial SOC cycle functions.

How to cite: Wasner, D., Schnecker, J., Han, X., Frossard, A., Zagal Venegas, E., and Doetterl, S.: Insights into the role of the environmental setting versus microbial actors for soil carbon cycling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8685, https://doi.org/10.5194/egusphere-egu24-8685, 2024.

EGU24-8948 | Orals | SSS4.1

Thermodynamic control of microbial turnover of organic substrates in soils 

Anja Miltner, Matthias Kästner, Thomas Maskow, Marcel Lorenz, and Sören Thiele-Bruhn

Microbial turnover of organic substrates is a key process in soil organic matter formation and turnover. As microorganisms require both carbon and energy for growth and maintenance, carbon and energy fluxes in soils are tightly coupled. On the level of cellular metabolism, the substrates have to be allocated to catabolism and anabolism according to the requirements of the cells. In the soil system, additional processes have to be considered such as multiple substrate use, recycling of biomass components, interaction between different organisms and abiotic processes. As most of the energy flux in catabolism is created by the reduction of the terminal electron acceptors, the availability of the electron acceptors strongly affects carbon use efficiency and energy use efficiency. Here, we present a thermodynamic concept that combines experimental approaches of calorimetry and turnover mass balances paving the way for a better understanding of microbially mediated organic matter turnover and stabilization in soil.

Mass balances in soil systems need to be set up for exemplary substrates using isotope labelled compounds. They should be combined with information on energy fluxes, which can be obtained using calorimetric methods for thermodynamic calculations. Recently, calorimetric methods have been introduced into soil studies, e.g. differential scanning calorimetry or isothermal reaction calorimetry. Alternatively, enthalpies of combustion or formation must be known or estimated, e.g. based on the nominal oxidation state of the substrates and reaction products. All of these methods have their strengths and weaknesses, which need to be considered when assessing and interpreting the results. From a thermodynamic perspective, it is crucial to define the system boundaries and to use thermodynamic state variables such as reaction enthalpy, entropy and Gibbs free energy. If applied properly, the predictive power of thermodynamics can be fully utilized for process evaluation. In particular, this approach will enable us to identify whether a particular process is thermodynamically feasible or not under the given conditions.

In summary, linking mass balances and thermodynamics will allow us to better understand and predict soil organic matter turnover and sequestration.

How to cite: Miltner, A., Kästner, M., Maskow, T., Lorenz, M., and Thiele-Bruhn, S.: Thermodynamic control of microbial turnover of organic substrates in soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8948, https://doi.org/10.5194/egusphere-egu24-8948, 2024.

EGU24-9988 | Orals | SSS4.1

It’s the little things that count – how microbial dynamics affect simulation results of the systemic soil model BODIUM 

Sara König, Ulrich Weller, Thomas Reitz, Julius Diel, Ute Wollschläger, and Hans-Jörg Vogel

Mechanistic simulation models are essential tools for predicting soil functions such as nutrient cycling, water filtering and storage, productivity, and carbon storage as well as the complex interactions between these functions. Most soil functions are driven or affected by soil microorganisms. Yet, biological processes are often neglected in soil function models or only implicitly considered in form of unspecific, effective rate parameters. This can be explained by the high complexity of the soil ecosystem with its dynamic and heterogeneous environment, and by the range of temporal and spatial scales at which these processes take place.

We integrated different microbial processes and feedbacks into our systemic soil model BODIUM (König et al., 2023) and tested the sensitivity of soil functions such as productivity and nutrient cycling to these microbial aspects at the scale of soil profiles. This includes flexible C:N ratios, carbon use efficiency, nitrogen fixation, feedback with root exudation, and the dynamics of different functional groups such as fungi and bacteria. We observed a high sensitivity of our simulation outcomes to microbial parameters related to the microbial component, such as the exudation rate or fungal/bacterial resistance to environmental conditions. This shows the high relevance of microbial processes for soil functions at the field scale, but also indicates that the process description should be further improved.  In process-based models, a high sensitivity of parameters is often a sign for an instable process description relying too much on site-specific calibration instead of mechanistic understanding.

We will discuss how to improve this, but also further extensions, including an approach that accounts for the spatial distribution of microorganisms within the pore space.

 

König, S., Weller, U., Betancur-Corredor, B., Lang, B., Reitz, T., Wiesmeier, M., Wollschläger, U., & Vogel, H.-J. (2023). BODIUM—A systemic approach to model the dynamics of soil functions. European Journal of Soil Science, 74(5), e13411. https://doi.org/10.1111/ejss.13411

How to cite: König, S., Weller, U., Reitz, T., Diel, J., Wollschläger, U., and Vogel, H.-J.: It’s the little things that count – how microbial dynamics affect simulation results of the systemic soil model BODIUM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9988, https://doi.org/10.5194/egusphere-egu24-9988, 2024.

EGU24-10414 | ECS | Posters on site | SSS4.1

Kill’em all? Interactions of predatory Myxobacteria with soil microbes – an in vitro and microcosm perspective on their role in the soil microbial food-web. 

Marc Piecha, Mandip Tamang, Michael Pester, Miriam van Bommel, Liliane Ruess, Morten Streblow, Jonas Woyde, Verena Groß, Mathilde Borg Dahl, Anne Reinhard, Haitao Wang, and Tim Urich

Soil is one of the most complex ecosystems, being an elementary source for food and resources needed by humankind. Despite its pivotal role in shaping and transforming this complex ecosystem, the soil microbial food-web is still poorly understood, which stands also true for matter and energy fluxes to higher trophic levels. A group of microbiome predators that has recently come more into focus are the Myxobacteria. They are famous for their predatory life style and might thus influence microbial death, growth and turnover in the soil environment via predation and an elaborate arsenal of secondary metabolites. To shed light on their role in the soil food-web, we investigated their predatory behavior and interactions with potential prey and predators using in vitro and in situ approaches. 

We tested the predation spectra in vitro with binary interaction assays of four different Myxobacteria (Haliangium ochraceum, Myxococcus virescens, Myxococcus fulvus, Corallococcus coralloides) with 16 different prey bacteria isolated from soils. The in vitro assay showed that each Myxobacterium had species-specific prey spectra. While Haliangium ochraceum and Myxococcus virescens showed the strongest predation effects on prey bacteria, the Corallococcus coralloides strain lysed the fewest prey bacteria. Taken together, not a single bacterium of the tested ones was resistant to lysis. Remarkably, also strains of the never before tested phyla Gemmatimonadota and Veruccomicrobiota can be lysed by Myxobacteria.

To shed light on (inter)actions of Myxobacteria with microbiome members in situ, a 32 day long microcosm study with an agricultural soil was performed, manipulating (a) the carbon source and (b) the grazing pressure of higher trophic levels, via the addition of fungivorous and bacterivorous nematodes, respectively. We applied quantitative PCR and quantitative metatranscriptomics microbiome profiling of 80 samples to shed light of the impact of aforementioned manipulations of C-source and grazers on the microbiome. Three-Domain SSU rRNA profiling showed that myxobacteria were highly abundant (up to 20%) in the used agricultural soil. In contrast, fungal abundance was much lower (1.5 %), while Protozoa, i.e. dominated by Amoebozoa and Cercozoa, were much more abundant than fungi (5 %). This suggests a microbial food-web dynamic in this agricultural soil that was heavily dominated by a bacterial, and not fungal channel. As expected, the abundance and composition of Myxobacteria were not affected by addition of fungivorous Nematodes, but it was surprising that this was also true for adding bacterivorous nematodes. We speculate that Myxobacteria reduce predation pressure of nematodes by utilizing secondary metabolites, while in turn killing enough prey bacteria for their own metabolism and growth. Consequently, the high abundance of Myxobacteria suggests a substantial contribution of their (predatory) activity on matter and energy fluxes in these microcosms. In a next step, we will integrate the metatranscriptomics results with organic matter and energy fluxes via flux-web modelling.

In conclusion, the in vitro assays showed that Myxobacteria killed all prey bacteria. This, together with their high abundance and resistance to predation from higher trophic levels in the in situ microcosm suggest Myxobacteria as important players in the agricultural soil food web.

How to cite: Piecha, M., Tamang, M., Pester, M., van Bommel, M., Ruess, L., Streblow, M., Woyde, J., Groß, V., Borg Dahl, M., Reinhard, A., Wang, H., and Urich, T.: Kill’em all? Interactions of predatory Myxobacteria with soil microbes – an in vitro and microcosm perspective on their role in the soil microbial food-web., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10414, https://doi.org/10.5194/egusphere-egu24-10414, 2024.

Electron transfer reactions are central to the transformation of energy in the environment and play an important role in biogeochemical element cycling. In soils, one of the main drivers of carbon cycling is the activity of organisms that utilize the energy stored in soil organic matter by extracting electrons from organic carbon and transferring them to various electron acceptors. Yet, our understanding of this process is incomplete and the response of the soil carbon pool to climate change remains one of the primary sources of uncertainty in projections of atmospheric carbon dioxide concentrations.

Here, I discuss how we can track electron transfer reactions in soil and relate them to bioenergetic descriptors to elucidate controls on soil heterotrophic respiration. I will use two examples from my research to illustrate this:  first, I show how to characterize the redox properties of solid phase electron acceptors on the basis of reaction thermodynamics. I focus on iron minerals which are abundant solid phase electron acceptors in many soils. Using mediated electrochemistry, I quantified differences in the reactivity and energetics of synthetic iron minerals and variations in mineral redox properties during microbial mineral reduction. Second, I demonstrate how we can assess effects of mineral redox reactivity on anaerobic microbial respiration in a redox-dynamic floodplain soil. To this end, I link the kinetics of electron transfer to electron acceptors to the rate of microbial carbon dioxide production in a series of soil incubations. These two examples provide inspiration on how to integrate the redox reactivities and energetics of electron acceptors into bioenergetic frameworks.

How to cite: Aeppli, M.: Electron transfer reactions and their role in soil carbon cycling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10556, https://doi.org/10.5194/egusphere-egu24-10556, 2024.

EGU24-11690 | Orals | SSS4.1

From energy to soil organic matter 

Yakov Kuzyakov, Chaoqun Wang, and Anna Gunina

We developed a new concept of soil organic matter (SOM) formation and microbial utilization of organic carbon (C) and energy: microorganisms use most of the organics entering the soil as energy rather than as a C source, while SOM accumulates as a residual by-product because the microbial energy investment in its decomposition exceeds the energy gain. So, the energy use efficiency (EUE) is at least as important as the carbon use efficiency (CUE). The microbial EUE depends on the nominal oxidation state of carbon (NOSC) of organic compounds, which is the exact proxy of energy content: The energy content per C atom (enthalpy of combustion) increases by 108 kJ mol−1 C per one NOSC unit. The NOSC in litter remaining by decomposition decreases, and the energy content increases. Consequently, the NOSC of the remaining compounds drops to −0.3 units, and the oxidation decreases due to the residual accumulation of aromatic and aliphatic compounds, and entombment of the necromass. Preferential recycling of energy-rich reduced (lipids, aromatics, certain amino acids, amino sugars) and the microbial degradation of oxidized compounds (carboxylic acids) enrich energy content in remaining SOM. This explains why SOM is not fully mineralized (thermodynamically unfavorable). Energy from litter activates decomposers to mine nutrients stored in SOM (the main function of priming effects) because the nutrient content in SOM is 2–5 times higher than that of litter. Thus, the energy captured by photosynthesis is the main reason why microorganisms utilize organic matter, whereby SOM is merely a residual by-product of nutrient storage and a mediator of energy fluxes. For the first time we assessed the NOSC of microbial biomass in soil (−0.52) and calculated the corresponding energy content of −510 kJ mol−1 C, whereas bacteria contain less energy per unit of C than fungi. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The microbial EUE is always lower than CUE. This is one of the reasons why microbial growth is more limited by energy than by C. Based on the comparison of processes of C and energy utilization for cell growth and maintenance, we concluded that the two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.

Gunina A, Kuzyakov Y 2022. From energy to (soil organic) matter. Global Change Biology 28 (7), 2169-2182
Wang C, Kuzyakov Y 2023. Energy use efficiency of soil microorganisms: Driven by carbon recycling and reduction. Global Change Biology 29, 6170-6187

How to cite: Kuzyakov, Y., Wang, C., and Gunina, A.: From energy to soil organic matter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11690, https://doi.org/10.5194/egusphere-egu24-11690, 2024.

EGU24-12150 | ECS | Posters on site | SSS4.1

Effect of passive warming (soil translocation) on 18O CUE and soil enzyme activity along a tropical forest elevational gradient 

Bin Song, Aiwei Huang, Kevin Z.Mganga, Juuso Tuure, Christopher Poeplau, Xuhui Luo, and Kristiina Karhu

The impact of global warming on soil processes is a critical area of concern. Limited studies have investigated soil organic carbon (SOC) dynamics' adaptation to warming. This poses a great challenge in assessing and understanding terrestrial C cycle response to climate change. Carbon Use Efficiency (CUE), indicating the proportion of metabolized organic C allocated to microbial biomass growth, is a pivotal regulator governing the fate of soil C. Moreover, our understanding of fundamental drivers of microbial CUE is largely elusive and inconclusive, especially in tropical ecosystems.

To address these knowledge gaps, we translocated top soil samples (10 cm deep soil cores) from two higher elevation sites (Vuria, 2000 m a.s.l, and Ngangao, 1800 m a.s.l) to a lower site (Macha, 1600 m a.s.l) along a moist montane rain forest gradient in Taita Hills, Kenya. Utilizing an 18O-water tracing approach, we examined the changes in microbial CUE in response to approximately three years of experimental warming. We also measured enzyme activities and conducted a 6-month laboratory incubation (15°C and 25°C) to study temperature sensitivity in native and translocated samples.

Our hypotheses were: (i) Both microbial CUE and C related enzyme activities would decrease, however, N- and P- cycle enzyme would increase along an altitudinal gradient toward the top of the Taita Hills, primarily governed by soil C and N availability; (ii) passive warming by soil translocation would result in higher CUE in translocated soils compared to native soils; (iii) At lower temperatures, soil microbial CUE is expected to decrease due to microbes allocating increased energy towards synthesis of enzymes involved in nutrient acquisition, while reducing C investment towards their growth.

Initial findings have revealed significant distinctions in enzyme activity profile due to elevation and temperature effects. Specifically, β-glucosidase and acid phosphatase activities increased and decreased along the elevation, respectively. Consistent with our hypothesis, enzyme activities and microbial CUE were higher in translocated soil than native soil. The six-month incubation had a similar effect on translocated soils and lower temperature increased the microbial CUE. In summary, our study indicates that passive warming alters microbial temperature adaption and underscores the influential role of soil enzyme activities in regulating microbial CUE. We suggest that soil microbiome at lower temperature indicates greater need for nutrients and energy. Our results highlight the need to investigate a wide variety of temperature influence on tropical soils in order to better understand and predict how the changing climate will affect C and nutrient cycling.

How to cite: Song, B., Huang, A., Z.Mganga, K., Tuure, J., Poeplau, C., Luo, X., and Karhu, K.: Effect of passive warming (soil translocation) on 18O CUE and soil enzyme activity along a tropical forest elevational gradient, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12150, https://doi.org/10.5194/egusphere-egu24-12150, 2024.

EGU24-13165 | ECS | Posters on site | SSS4.1

Both soil minerals and organic material contribute to the energy content of soil – Insights from an artificial soil experiment and calorimetric analyses 

Marcel Lorenz, Christian Fricke, Klaus Kaiser, Elvira Sieberger, Thomas Maskow, and Sören Thiele-Bruhn

The thermodynamic perspective on soil systems gets more and more in the research focus and has the potential to take us a substantial step toward a holistic understanding of soil organic matter (SOM) turnover and stabilization. An integral part of new bioenergetic concepts and models is the energy content of SOM, but its determination particularly in mineral soils is challenging. One of the most promising techniques in this respect is thermogravimetry combined with differential scanning calorimetry (TG-DSC), where the heat of combustion is related to the mass losses of soil material during a temperature ramp from 50 to 1000°C under an oxidative atmosphere. Heat and mass changes in the range from 180-600°C are usually interpreted as the result from the exothermic reaction of SOM and thus used to obtain the energy content (combustion enthalpy, ∆CH) of SOM. Overlapping exo- and endothermic reactions by other non-oxidizing processes (e.g. dehydroxylation/-carboxylation and desorption of soil minerals etc.) in that temperature range are often neglected because their distinction and quantification from the rather strong exothermic oxidation reactions from SOM is challenging.

To investigate this, we determined the ∆CH of an organic substrate (cellulose) and soil minerals (quartz sand, quartz silt, goethite, illite, montmorillonite) 1) individually, 2) intensively mixed in the dry state, and 3) intensively mixed after several wetting-drying cycles. Furthermore, the minerals were mixed to create a silt loam texture and combined with cellulose to mimic an artificial soil. Calorimetric analyses were conducted using a TG-DSC coupled with a mass spectrometer (MS) to analyze the evolved gases during combustion.

First results show that the ∆CH value obtained by TG-DSC is lower for the organic substrate compared to reference values obtained by combustion calorimetry as the standard method. Furthermore, ∆CHdiffers when mineral compounds are mixed with cellulose indicating that thermal reactions by mineral soil compounds affect the determination of the energy content by the TG-DSC standard procedure described above. This is supported by the analyses of the pure mineral compounds, which revealed that all investigated minerals show exothermic and/or endothermic side reactions in the range from 180-600°C affecting the TG-DSC signal. In dependence on the mineral composition of the soil, the energy content of SOM by the classical TG-DSC approach can be substantially over- or underestimated.

From this first data set, we identified options to improve both the measurement and the data evaluation procedures. Building on this, we aim to develop a procedure for the accurate measurement of the energy content of SOM in (mineral) soils by TG-DSC(-MS), taking into account the contribution of mineral oxidation and the effect of organo-mineral associations on the energetic signatures derived from the thermograms. This is crucial if energy flows and sinks in soil systems are to be quantified to better understand OM turnover and stabilization in soil.

How to cite: Lorenz, M., Fricke, C., Kaiser, K., Sieberger, E., Maskow, T., and Thiele-Bruhn, S.: Both soil minerals and organic material contribute to the energy content of soil – Insights from an artificial soil experiment and calorimetric analyses, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13165, https://doi.org/10.5194/egusphere-egu24-13165, 2024.

EGU24-14773 | ECS | Posters on site | SSS4.1

Investigation of thermal reactions and energy content of building blocks of soil organic matter using simultaneous thermal analyses 

Christian Fricke, Marcel Lorenz, Thomas Maskow, Sören Thiele-Bruhn, and Gabriele Schaumann

Soils are multi-component, open systems and play a decisive role in natural energy and matter fluxes, e.g. in the storage and bioenergetic control of carbon. A key component in this system is soil organic matter (SOM), as it determines the functionality of the soil. SOM is formed by building blocks from biomass, plant and animal detritus. Therefore, SOM itself is a complex, supramolecular mixture of different components. This property complicates the thermodynamic characterization of SOM and consequently the determination of the energy content. The latter is an important piece of the puzzle for a thermodynamic description of energy fluxes in soil systems, which is necessary for a holistic understanding of SOM turnover and stabilization.

In soil science, simultaneous thermal analysis (STA) is used to determine the energy content of SOM. The soil sample is heated in crucibles in a defined temperature program (e.g. 30-1000 °C, 10 °C/min) under an oxidative atmosphere. During heating, the mass loss (thermogravimetry, TG) and heat flux caused by SOM combustion (dynamic scanning calorimetry, DSC) are measured simultaneously. The STA data can be used to determine the energy content of the SOM during combustion and to identify SOM fractions of different thermal stability.

To develop a deeper understanding of the reactions taking place during STA of SOM, we investigated the combustion of building blocks of SOM and examined the influence of different crucible setups (Al2O3 with and without lid, Pt-Rh-Al2O3 with lid) on the measured energy content. The selection of building blocks included well-defined compounds like glucose, cellulose, chitin, etc. and complex compounds like maize straw, peptidoglycan, humic acid and lignin (organosolv). The STA was coupled with an evolved gas analyzer (mass spectrometer, MS) to draw also conclusions about the combustion reactions of the building blocks by monitoring H2O and CO2.

Our results show two main points: First, the crucible setup has a huge impact on the measured energy content. A better thermal conductivity (Pt-Rh > Al2O3) and the use of a lid lead to an increase in the measured energy content. Secondly, we observe two distinguishable thermal reactions for most of the building blocks, which were mainly revealed by the release of H2O and CO2. The first reaction is a decomposition at low temperatures (< 400 °C) with the formation of char, which was then further oxidized at higher temperatures (> 400 °C). The change in the ratio between the H2O- and CO2-MS signal allows a clear allocation of different thermal reactions.

In summary, the investigation of building blocks of SOM by STA coupled with MS provides a better understanding of the combustion of SOM in soil samples and thus allows a more reliable interpretation of the measured energy contents. Further STA studies should focus on the interaction between SOM building blocks and soil minerals to identify other possible thermal reactions that could affect the measured energy content.

How to cite: Fricke, C., Lorenz, M., Maskow, T., Thiele-Bruhn, S., and Schaumann, G.: Investigation of thermal reactions and energy content of building blocks of soil organic matter using simultaneous thermal analyses, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14773, https://doi.org/10.5194/egusphere-egu24-14773, 2024.

EGU24-15343 | ECS | Orals | SSS4.1

Labile substrate availability affects interactions and function in degrader communities: Insights from a combined experimental and modelling approach 

Moritz Mohrlok, Ksenia Guseva, Lauren Alteio, Julia Berger, Lilian Kaufmann, Julia Mor Galvez, Dave Sirbu, and Christina Kaiser

Bacterial communities that degrade chitin in soils often exhibit “social” behavior, where different strains fulfill different functional roles. “Degraders” produce extracellular enzymes that attack and cleave the complex biopolymer, releasing the monomer N-acetylglucosamine (NAG) as a public good. This compound can be readily taken up by both degraders and “exploiters”. The latter do not contribute directly to the degradation process but might in turn produce different substances that can be utilized by other members. “Scavengers” do not utilize NAG themselves but live mostly off metabolites secreted by the other strains. Our work aimed to investigate what effect the addition of a readily available C compound, like NAG, has on these interactions in such a system. Based on the results of a wet-lab experiment using a model bacterial consortium, we hypothesized that adding labile C leads to domination of the exploiter-strain though competitive exclusion. This in turn results in the breakdown of positive interactions, and a loss of diversity and functionality of the community. To further investigate this, we designed an ordinary differential equation (ODE) consumer-resource model, consisting of different linked pools representing the experiment. By parametrizing this model based on our respiration measurements and simulating the system over time, we were able to reproduce most of the observed experimental patterns in silico. When there was no NAG added to the system, the model matched the measured respiration when we included several positive interactions (such as crossfeeding or division of labor). This resulted in a more diverse community that degraded chitin more efficiently than the degrader-strain in monoculture. When NAG was added, the exploiter-strain outcompeted the other strains quickly, resulting in a loss of their potential function for the community. Through this combined experimental and modelling approach, our work shows that the addition of excess labile C to degrader communities in soil can alter interactions between bacteria, possibly leading to a loss of biodiversity and function.

How to cite: Mohrlok, M., Guseva, K., Alteio, L., Berger, J., Kaufmann, L., Mor Galvez, J., Sirbu, D., and Kaiser, C.: Labile substrate availability affects interactions and function in degrader communities: Insights from a combined experimental and modelling approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15343, https://doi.org/10.5194/egusphere-egu24-15343, 2024.

EGU24-15875 | ECS | Orals | SSS4.1

Changes in the microbial control of C and N cycling in future subarctic tundra soils 

Agnieszka Rzepczynska, Johannes Rousk, and Lettice Hicks

Arctic climate warming will affect microbially-controlled nutrient cycling through elevated nutrient availability and changes in vegetation productivity and composition. Plant-derived C inputs will serve as a microbial energy and C source, while the inorganic N released from soil organic matter (SOM) could . Albeit controlled by different mechanisms, increased C and N availability may each stimulate microbes to degrade more SOM, creating positive climate change feedbacks. Simultaneously, microbes provide the main pathway to sequester and stabilize C and N in SOM through growth and subsequent necromass formation, termed the “microbial pump”, generating a negative climate change feedback. Combining estimates of microbial growth, biomass, and biogeochemical rates allows for the calculation of Carbon Use Efficiency (CUE) and Nitrogen Use Efficiency (NUE). Analyzing NUE relative to CUE may elucidate microbial resource limitation. Resultantly, NUE exceeding CUE indicates microbial N-limitation, and suggests that microbes sequester N in SOM. Conversely, CUE exceeding NUE suggests microbial C-limitation and points towards microbial C sequestration in SOM. In addition, the strength of the microbial C and N pumps can be estimated by assessing microbial growth along with microbial C and N retention times, providing insights into how long resources will be retained in the microbial biomass. These tools contribute to a comprehensive understanding of whether resources will be liberated through decomposition or sequestered via the microbial pump.

Here, we investigated microbial responses to changes in resource availability associated with future climate change in a subarctic tundra heath. We used additions of mineral N and litter in the field to mimic the effects of elevated nutrient availability and shrubification on microbial growth rates (radio-isotope tracing), C and gross N mineralisation rates (gas chromatography and 15N pool dilution methods, respectively), and microbial community size was estimated with phospholipid fatty acids.

We found that field N-fertilization generally decreased microbial NUE, and that the resulting NUE/CUE ratio was close to 1, thereby pointing towards alleviated microbial N-limitation. Field N-fertilization also accelerated N-cycling but had no significant effects on C retention times. Conversely, litter addition in the field led to NUE exceeding CUE, implying the induction of microbial N-limitation, and it slowed C turnover times, but had no significant effect on N turnover times. When N and litter were applied together, similar CUE and NUE values, but accelerated C and N turnover times were observed. Overall, fungal contribution to resource cycling diminished across all field treatments, evident from a reduced fungal-to-bacterial growth ratio compared to the control treatment.

These findings highlight that changes in nutrient availability impact microbial C and N cycling independently and emphasize that the microbial resource limitation may be altered by the substrate stoichiometry. Additionally, our results suggest that while microbial N cycling is likely to accelerate, thus weakening the microbial N pump, microbial C cycling may be impeded and microbial C pump strengthened. Overall, these observations align with projections of more fertile and productive subarctic ecosystems in the future, and underscore the potential for microbial C sequestration even under altered resource availability. 

How to cite: Rzepczynska, A., Rousk, J., and Hicks, L.: Changes in the microbial control of C and N cycling in future subarctic tundra soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15875, https://doi.org/10.5194/egusphere-egu24-15875, 2024.

Microbial communities in soil play a pivotal role in nutrient cycling and organic matter decomposition, relying on carbon (C) and energy sources for growth. The allocation of these substrates, crucial for their metabolic activities, is influenced by environmental conditions. We hypothesize a close linkage between carbon and energy fluxes in soil, with environmental conditions shaping substrate requirements and activities, thereby influencing Carbon Use Efficiency (CUE) and Energy Use Efficiency (EUE).

To establish the link between matter and energy fluxes, we employed artificial soil consisting of a sand, clay, and silt mixture as a simplified system, with cellulose as the only added substrate. This model system allowed us to investigate the relationship between C and energy fluxes without a large background of soil organic matter background (SOM). Experimental conditions included three different water contents (10%, 14.4% and 19%), two ratios of added carbon (C) to nitrogen (N) (C/N = 18 and C/N = 9), and two temperature regimes (7  and 20 ). Mineralization (measured by GC-TCD) and residual cellulose (measured by phenol sulphuric acid assay) were quantified on sampling days, while continuous monitoring of heat production rate (P) was monitored using isothermal microcalorimeter (i.e. TAM Air).

Results revealed a clear correlation between environmental conditions and microbial activities. Higher moisture levels led to increased CO2 production, heat generation, and cellulose degradation. Similarly, lower N supply (higher C/N ratio) exhibited the same trend. Decreased temperatures resulted in minimal CO2 evolution and heat production rates and diminished cellulose degradation.

Analysis of CUE over time indicated a decline, possibly due to biomass recycling and additional respiration. Surprisingly, little apparent effect of water content or N supply on CUE was observed. CUE in the two temperature treatments show similar decreasing trends, but CUE is at an overall higher level at 7°C. EUE remained relatively stable over time but tended to decrease under conditions of environmental stress, such as extreme water content or N limitation. However, high variability is observed, and no statistical significance can be found.

An energy balance framework is being developed and will be used to calculate CUE from a theoretical perspective. Comparisons between experimentally derived CUE and theoretically calculated values will prompt a re-evaluation of the underlying assumptions and a call for refined theoretical protocols. In summary, our findings suggest that environmental conditions significantly influence cellulose degradation. However, a clear correlation between CUE and EUE requires further analyses and experimental improvements. This study contributes to our understanding of the intricate relationships between carbon and energy fluxes in soil microbial systems and emphasizes the need for nuanced analyses in future research.

How to cite: Yang, S., Rupp, A., Miltner, A., Maskow, T., and Kästner, M.: Linking mass balances and thermodynamic energy balances at different water contents, temperature and nutrient supply in simplified model systems with artificial soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16129, https://doi.org/10.5194/egusphere-egu24-16129, 2024.

EGU24-16811 | Orals | SSS4.1

Prospects and challenges of simulating organic matter turnover and stabilization in soil systems 

Holger Pagel, Thilo Streck, Ahmet Sircan, and Stefano Manzoni

Understanding the turnover and stabilization of soil organic matter (SOM) is the key to highly productive agriculture and to climate change mitigation. Understanding and predicting biogeochemical matter and energy flows in soil systems is challenging due to persisting knowledge gaps regarding biological and energetic controls of SOM turnover and limited knowledge integration of informative data with process-based models. We present modeling concepts of microbially explicit soil organic matter models and shed light on integrating trait-based ecological frameworks in process-based models and the use of advanced data-model fusion approaches. We highlight some insights from applying process-based models and challenges we need to address to acquire robust predictions.

How to cite: Pagel, H., Streck, T., Sircan, A., and Manzoni, S.: Prospects and challenges of simulating organic matter turnover and stabilization in soil systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16811, https://doi.org/10.5194/egusphere-egu24-16811, 2024.

EGU24-17226 | ECS | Orals | SSS4.1

Dynamics of soil microbial carbon storage compounds in low fertility landscapes 

Orpheus Butler, Stefano Manzoni, and Charles Warren

Intracellular storage of carbon (C) by soil micro-organisms is emerging as a key process that influences soil biogeochemical cycling and the broader function of terrestrial ecosystems. One likely role of intracellular C storage is to serve as a stoichiometric buffer against nutritional imbalances in the microbial substrate. Such a function would make storage compounds vital to the long-term function of ecosystems associated with strongly weathered, low fertility soils, yet there have been few studies of intracellular carbon storage in such ecosystems. We examined the dynamics of two putative storage compounds (triacylglycerol [TAG] and polyhydroxybutyrate [PHB]) across two natural soil fertility gradients in eastern Australia. Across all sites and samples, absolute quantities of storage compounds ranged from 0 to 173 µg C g soil-1 in the case of TAG and 0 to 56 µg C g soil-1 for PHB. When standardized to total soil organic C, quantities of storage compounds tended to be markedly higher than those observed in prior studies of temperate and/or agricultural soils. Allocation to storage compounds followed strong trends across natural gradients of soil fertility and tended to peak in phosphorus-deficient and/or retrogressive ecosystems. Across soils of differing parent material, allocation to C storage was highest in infertile soils derived from phosphorus-depleted sandstone and ironstone compared to soils derived from shale and basalt. Likewise, allocation to C storage increased throughout ~700k years of soil development across a strongly weathered podzolic dune chronosequence. Dynamics of community-level C storage allocation were evidently underpinned by a combination of assemblage-level processes, most notably changes in the relative abundance of TAG-rich, C-limited fungal taxa, and physiological plasticity on the level of individual P-limited bacterial cells. Our findings are largely consistent with the surplus/reserve storage framework and highlight the importance of storage compounds for the function of oligotrophic ecosystems and as a major pool of C in soil.

How to cite: Butler, O., Manzoni, S., and Warren, C.: Dynamics of soil microbial carbon storage compounds in low fertility landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17226, https://doi.org/10.5194/egusphere-egu24-17226, 2024.

EGU24-18651 | Orals | SSS4.1

Using metabolic flux modeling to disentangle anabolic and catabolic contributions to soil heat dissipation 

Guodong Shao, Xin Xu, Callum C. Banfield, Lingling Shi, Kyle Mason-Jones, Weichao Wu, and Michaela A. Dippold

Metabolic flux analysis is an integrated experimental and computational approach for quantitative understanding of biochemical reaction networks with particular relevance in systems biology. Mass and energy flows through soil microbial metabolism are subject to the laws of thermodynamics. Carbon (C) allocation through central metabolic pathways (e.g. glycolysis, pentose phosphate, and Entner-Doudoroff) can be reconstructed by 13C-labelling coupled to metabolic flux analysis (13C-MFA) by tracing specific C atoms from within substrate molecules into metabolic products such as carbon dioxide (CO2) or fatty acids. However, mass flow calculated via 13C-MFA alone cannot fully characterise microbial carbon use. Here, we took the novel approach of coupling MFA with microcalorimetry, to also take bioenergetic constraints into account. We coupled energetics and mass flow on a metabolic level by selecting optimal sets of isotopomer tracers. Fifteen position-specific or uniformly 13C-labelled isotopomers - four alanine, seven glucose, and four glutamic acid ones – were added to a Luvisol (in total 4 folds of the microbial biomass C), and we analyzed substrate-derived 13CO2 fluxes as well as heat dissipation via isothermal microcalorimetry.

Our results demonstrate that the temporal dynamics of catabolic CO2 release resembles that of the heat dissipation, i.e. peak respiration and peak heat dissipation were reached approximately 18 h after substrate addition, irrespective of whether the substance entered the central metabolic pathway at the monosaccharide level (glucose), at the pyruvate level (alanine) or in the citric acid cycle (glutamic acid). This indicates that heat dissipation in the initial growth period was strongly dominated by catabolic processes. However, whereas 13CO2 release leveled off during the 36 hours of incubation, the heat dissipation remained above its original level, suggesting that anabolic processes increasingly contribute to the heat dissipation in the later phases of incubation. Glucose isotopomer utilization indicated dominance of the pentose phosphate and Entner Douderoff pathways over glycolysis, suggesting a high activity of fast-growing organisms with considerable C allocation to anabolism. The dominance of this anabolic C use in the later stage of the incubation was confirmed by the isotopomer utilization of alanine and glutamic acid. This study shows that the heat dissipation of growing microbial communities under high C supply is closely linked to their catabolic CO2 release, whereas slow, potentially recycling-based growth after resource depletion releases energy more via anabolic reactions. We furthermore demonstrated that coupled MFA and calorespirometry provides a powerful tool to differentiate among metabolic contributions to the energy use of soil microbial communities in different growth phases.

How to cite: Shao, G., Xu, X., Banfield, C. C., Shi, L., Mason-Jones, K., Wu, W., and Dippold, M. A.: Using metabolic flux modeling to disentangle anabolic and catabolic contributions to soil heat dissipation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18651, https://doi.org/10.5194/egusphere-egu24-18651, 2024.

EGU24-19075 | ECS | Orals | SSS4.1

Global distribution and drivers of microbial carbon use efficiency for projecting soil organic carbon fates under a changing climate: A meta-analysis 

Qing-Fang Bi, Bernhard Ahrens, Thomas Wutzler, Markus Reichstein, and Marion Schrumpf

Comprehending the factors influencing microbial carbon use efficiency (CUE), and where CUE is most optimal to soil organic carbon (SOC) storage, are crucial for managing microbial roles in SOC sequestration and model prediction. Yet, establishing a direct mathematical relationship between CUE and SOC might be challenging, with global distributions and controls remaining unresolved, particularly in response to various global changes. Here, we leverage a global synthesis of CUE measurements by 18O-microbial DNA growth, and observed an average CUE across all biomes at 0.3, with the highest in temperate grasslands and deeper soils, and the lowest in tropical forests. Random forest analysis identified climates (aridity index and mean annual temperature: MAT) and soil properties (pH, bulk density and soil C:N ratio) as primary drivers influencing CUE. However, microbial biomass size overall exhibited a smaller effects on CUE, despite its substantial impact in each land use type. We then review how these drivers affecting CUE values may be altered by warming, soil fertilization, altered precipitation and elevated carbon dioxide. Notably, nitrogen additions plays a big role in increasing CUE and promoting SOC contents, while warming effects depend on time-scale, with long-term warming potentially leading to SOC losses with a lower CUE and growth. Moreover, we found that the CUE–SOC relationship varies across different climates, greatly driven by MAT and soil properties. Higher CUE promots SOC per fine fraction (clay+silt) across the major data points, contrasting with a negative relationship in a subarctic study, where pH is the primary determinate. Consequently, there might be no simple linear relationship between CUE and C in microbial biomass and soil. We conclude by discussing the integration of CUE into SOC models and the necessity of incorporating interactions between CUE and individual drivers for predicting soil carbon-climate change scenarios. Our study underscores the importance of considering microbial CUE and other microbial processes for improving projections of SOC dynamics.

How to cite: Bi, Q.-F., Ahrens, B., Wutzler, T., Reichstein, M., and Schrumpf, M.: Global distribution and drivers of microbial carbon use efficiency for projecting soil organic carbon fates under a changing climate: A meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19075, https://doi.org/10.5194/egusphere-egu24-19075, 2024.

EGU24-19954 | ECS | Orals | SSS4.1

Microbial phenology in high-alpine environments: the influence of plant dynamics and physiological stress in a changing climate.  

Adam T. Ruka, Johannes Schweichhart, Jiří Doležal, Kateřina Čapková, Travis B Meador, Roey Angel, Rosa Paulina Calvillo Medina, Zuzana Chlumská, Vojtěch Lanta, Nadine Praeg, Paul Illmer, and Klára Řeháková

Alpine biomes experience harsh environmental conditions and short growing seasons, which necessitate interspecific and intraspecific interactions among plants and soil microbes to ensure the stability of diversity and ecosystem multifunctionality. With strong seasonal dynamics in alpine regions, including snow cover, snowmelt, and drought, “hot moments” of biogeochemical activity occur when pulses of nutrients dictate microbial processes across the biome. However, within the rhizosphere, microbial processes are promoted or deterred during phases of plant growth, senescence, and nutrient allocation, leading to a more nuanced seasonal pattern of soil microbes. Indeed, these factors lead to a general microbial phenology of soil processes and community composition. Yet, shifted climatic regimes due to warming likely cause these relationships to be strained, potentially resulting in physiological stress among plants and microbes. Therefore, our research focuses on the coupling or decoupling of plant and microbial parameters across seasonal changes in the Austrian Alps by assessing stoichiometric ratios of shared nutrients such as carbon (C), nitrogen (N) and phosphorus (P), along with microbial diversity. 

Using elevation gradients, the corresponding influence of plants, soil chemistry, and environmental conditions upon microbial phenology can be assessed in two different biomes: undeveloped subnival zones and nutrient-rich alpine meadows.  Furthermore, by combining methods for assessing biological soil parameters, such as chloroform fumigation extraction, enzymatic assays, and respiration measurements, with amplicon DNA sequencing, we can observe broad microbial community responses such as increased biomass (Cmic) in different seasons related to plant-specific interactions while identifying microbial taxa (fungal and bacterial) that indicate nutrient limitations in conjunction with ratios of enzymatic activity. Additionally, by measuring plant nutrient concentrations in distinct plant organs, we can infer which physiological processes among plant species most closely correspond with changes in broad microbial parameters and rhizosphere diversity.

Therefore, we propose that certain aspects of microbial phenology are generalizable, such as increased N cycling during winter and spring months, while the temporal optima for C cycling is more plant-specific. Furthermore, we present results from the rarely studied snow-covered winter months, in which the mineralization of C, P, and chitin degradation are highest. In total, these studies demonstrate a thorough analysis of plant-microbial interactions in alpine ecosystems which are subject to significant change within the coming decades.

How to cite: Ruka, A. T., Schweichhart, J., Doležal, J., Čapková, K., Meador, T. B., Angel, R., Calvillo Medina, R. P., Chlumská, Z., Lanta, V., Praeg, N., Illmer, P., and Řeháková, K.: Microbial phenology in high-alpine environments: the influence of plant dynamics and physiological stress in a changing climate. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19954, https://doi.org/10.5194/egusphere-egu24-19954, 2024.

EGU24-21168 | Orals | SSS4.1

What taxon-specific growth measurements reveal about microbial growth strategies in natural soil communities 

Andreas Richter, Dennis Metze, Alberto Canarini, Lucia Fuchslueger, Hannes Schmidt, and Christina Kaiser

Heterotrophic microorganisms decompose soil organic matter to assimilate organic compounds that provide energy and carbon for growth and maintenance. The growth of microbial communities is thus at the heart of the carbon cycle, and understanding how microbial growth is controlled is arguably of paramount importance for understanding global carbon cycling in the present and future climate. 

Most information on microbial growth comes from work with pure cultures (population level) or from studies of microbial community growth, while understanding the growth of individual microbial taxa in natural communities is poorly studied and understood. However, with the advent of new stable isotope probing techniques based on 18O from labelled water, it is now possible to look beyond the community level to the growth of individual populations of microorganisms in complex soil communities. In addition, recent advances in labelling growing microbial taxa without the addition of liquid water, the so-called ‘vapor qSIP', allow us to analyze microbial growth in complex communities without changing environmental conditions, a prerequisite for studying the behavior of microbial communities in climate change experiments.

We report here on two climate change experiments in which we performed taxon-resolved growth measurements under different environmental conditions. Our results show the following:

(1) Contrary to our expectations, changing environmental conditions (e.g., soil warming and drought) led to a change in the number of actively growing bacterial taxa, but not in their growth rates. Among other things, this challenges the paradigm developed from a plethora of measurements of microbial community growth that microbial physiology is accelerated by higher temperatures.

(2) Many microbial taxa were only actively dividing in specific climate change treatments, i.e., under specific environmental conditions. We conclude that the realized ecological niche of bacteria appears to be much smaller than community growth measurements suggest. Testing, for example, the temperature niche of individual populations (with presumably different functional traits) may therefore lead to very different predictions of soil functions in a future climate.

(3) Compared to estimates of total soil microbial community composition (e.g., amplicon sequencing of the 16S rRNA gene), the actively growing community is more sensitive to changes in environmental conditions, allowing a more accurate prediction of community structure in a future climate and its functional roles in biogeochemistry.

Overall, measuring taxon-resolved population growth rates of complex communities provides a novel, more nuanced and sophisticated picture of soil ecosystems, which may help to develop better predictions of structural and functional changes in microbial ecosystems in a future climate.

How to cite: Richter, A., Metze, D., Canarini, A., Fuchslueger, L., Schmidt, H., and Kaiser, C.: What taxon-specific growth measurements reveal about microbial growth strategies in natural soil communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21168, https://doi.org/10.5194/egusphere-egu24-21168, 2024.

EGU24-21170 | ECS | Posters on site | SSS4.1

Tracking 13C into soil organic matter through the mycorrhizal fungal pathway under nutrient addition 

Kaydee S. Barker, Matthew L. Meehan, David Johnson, Richard D. Bardgett, and Clare H. Robinson

Arbuscular mycorrhizal (AM) fungi are ubiquitous plant symbionts that mediate soil organic matter (SOM) formation through nutrient exchange and the accumulation of their own biomass and necromass. Recent studies suggest that microbial necromass, including fungal necromass, may account for upwards of half of SOM carbon, but the specific contribution of AM necromass remains unknown. Additionally, how land management impacts AM-mediated SOM is not well understood, especially in grasslands where AM fungi are prevalent and play a key role in regulating plant diversity and ecosystem function. We grew Lolium perenne with four treatments: (1) an inoculation of AM spore-rich sandy soil, (2) an application of nitrogen-phosphorus-potassium (NPK) fertilizer, (3) a combination of spore-rich soil and NPK, and (4) a control. We isotopically labelled plants with 13C-CO2 before incubating the roots and AM hyphae in place, and are measuring 13C in SOM, plant and microbial pools, and released CO2 at multiple timepoints over 6 months to track C through decomposition. Our preliminary results show that both 13C and 13C-CO2 respiration were lower for fertilizer treatments compared to control and inoculation-only treatments during the first month of incubation. This demonstrates that even a small one-time NPK application may influence subsequent decomposition of root and AM tissues at the end of the growing season. The lower amounts of 13C respiration may be due to differences in plant carbon to nitrogen ratios, leading to higher microbial carbon use efficiency, or NPK addition may have inhibited the growth of AM hyphae, leading to decreased available 13C in the soil. These hypotheses will be investigated further with additional measurements as outlined above. By using stable isotope tracing into biomarkers, SOM pools, and soil respiration, our study will shed light on the contribution of AM and associated root necromass to SOM carbon and provide needed insight for conscious grassland management.

How to cite: Barker, K. S., Meehan, M. L., Johnson, D., Bardgett, R. D., and Robinson, C. H.: Tracking 13C into soil organic matter through the mycorrhizal fungal pathway under nutrient addition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21170, https://doi.org/10.5194/egusphere-egu24-21170, 2024.

BG4 – Marine and Freshwater Biogeosciences

A buried layer rich in organic matter (OM) has been identified in the mangrove soils along the West coast of New Caledonia (South Pacific), resulting from a long period of stable sea levels during the Holocene. This study aims to characterize this OM-enriched layer isotopically, molecularly (lignin and neutral carbohydrates), and using Rock-Eval pyrolysis, while identifying the decomposition and preservation processes in these anoxic and sulfidic conditions. The study site is a mangrove forest of the West coast of New Caledonia, with a vegetation typical of this semi-arid area. The species Rhizophora stylosa develops in monospecific stand seaward and the species Avicennia marina landward. Multiple parameters such as the high total organic carbon content (10%) indicate the presence of this enriched layer below 30 cm depth beneath the A. marina stand. Stable isotopic ratios indicate that the roots of R. stylosa are the primary source of OM in this layer. Degradation mechanisms include dehydrogenation and the loss of major neutral sugars (glucose, xylose, galactose), while preservation processes involving arabinose, vanillin, and p-hydroxyacetophenone contribute to the stabilization of OM. The presence of well-preserved root material associated with pyrite observed using a scanning electron microscope, along with high Sorg/C ratio provide tangible evidence of interactions between OM and minerals and OM sulfurization, reinforcing preservation in anoxic and sulfidic environments. Through radiocarbon dating, the OM-enriched layer is placed in the historical context of a period characterized by stable sea levels approximately 4,000 years ago, emphasizing the profound impact of prolonged stability on OM accumulation and preservation in mangrove soils.

How to cite: Robin, S., Baudin, F., Le Milbeau, C., and Marchand, C.: Millennial-aged organic matter sequestration and preservation in anoxic and sulfidic mangrove soils: insights from isotopic and molecular analyses, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-189, https://doi.org/10.5194/egusphere-egu24-189, 2024.

EGU24-552 | ECS | Orals | BG4.1

Blue Carbon Additionality: New Insights from the Radiocarbon Content of Saltmarsh Soils and their Respired CO2 

Alex Houston, Mark Garnett, and William Austin

International policy frameworks recognize the net drawdown and storage of atmospheric greenhouse gases through management interventions on blue carbon ecosystems (saltmarshes, mangroves, seagrasses) as potential emissions offset strategies. However, key questions remain around the ‘additionality’ of the carbon sequestered by these ecosystems, and whether some fraction of the organic carbon (OC) that does not derive from in-situ production (allochthonous) should be included in carbon budgets. This study compares the radiocarbon (14C) contents of saltmarsh soils and CO2 evolved from aerobic laboratory incubations to show that young OC is preferentially respired over aged OC, and that the latter is also vulnerable to remineralisation under oxic conditions. The results from this study are the first to empirically show the remineralisation of aged OC from a blue carbon ecosystem. This highlights that management interventions which reduce the exposure of saltmarsh soils to oxic conditions support the inclusion of some portion of allochthonous OC in carbon budgets. Elevated temperature incubations provide preliminary evidence that the predominant source of respired OC will not change under predicted future warmer conditions. Saltmarsh typology also influences the 14C content of both the bulk soil and respired CO2, highlighting the importance of site selection for optimized blue carbon additionality. 

How to cite: Houston, A., Garnett, M., and Austin, W.: Blue Carbon Additionality: New Insights from the Radiocarbon Content of Saltmarsh Soils and their Respired CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-552, https://doi.org/10.5194/egusphere-egu24-552, 2024.

EGU24-846 | ECS | Orals | BG4.1

Data deficient saltmarsh species has climate relevant carbon stocks from the east coast of India 

Sandip Kumar Mohakud, Amrit Kumar Mishra, and Syed Hilal Farooq

The saltmarsh ecosystems of India are least studied,  despite being considered as nature-based solutions (NbS) towards climate change mitigation. This study quantifies the seasonal variation in carbon stocks of mono-specific saltmarsh specie (Porteresia coarctata) and its potential to play an important role in India’s climate change mitigation plans. Seasonal (pre-and post-monsoon) sampling of P. coarctata surface water, biomass and 30 cm sediment core was collected across four estuarine locations on the east coast of India to quantify the sediment dry bulk density (DBD), organic matter (OM%), organic carbon (Corg%), Corg stocks of sediment and biomass, total carbon (C%) and nitrogen (N%) and stable isotope ratios of Carbon (δ13C) and Nitrogen (δ15N).  In general, the sediment DBD, OM and Corg of P. coarctata meadows was higher in post-monsoon and was influenced by salinity and pH changes. Carbon isotope ratio (δ13C) of sediment C sources suggested, particulate organic matter (POM) contribution was highest (0.04-0.79%) followed by P. coarctata (0.01–052%) and other macrophytes across our study locations.  The seasonal variation of δ13C showed increased contribution of marine derived particulate and dissolved organic matter into P. coarctata meadows in post-monsoon season.  Higher δ15N values observed in post-monsoon season suggest an anthropogenic input, that was utilized by P. coarctata to increase its above and below-ground biomass and shoot density. The combined ecosystem (30 cm sediment + biomass) Corg stocks of P. coarctata was 1.7-fold higher in post-monsoon (4021.20± 917 Mg C) compared to pre-monsoon (2297.36 ±647 Mg C) season among the four locations with a sediment Corg contribution >70%. Based on the International Panel for Climate Change Tier II assessment the P. coarctata meadows (443 ha) can help in avoiding the pre-and post-monsoon emissions of 8431.34 and 14757.84 Mg CO2, respectively. The combined price of the total CO2 equivalent stored in P. coarctata meadows in pre- and post-monsoon is calculated to be US$ 14.50 and US$ 25.38 million, respectively. Further studies quantifying the NbS potential of mono-specific and mixed P. coarctata meadows along the coast of India is important, along with the integration of saltmarsh ecosystems into India’s National Action Plan on Climate Change.

Keywords: Saltmarsh, Carbon stocks, Porterasia coarctata, Nature-based solution, Stable isotopes

How to cite: Mohakud, S. K., Mishra, A. K., and Farooq, S. H.: Data deficient saltmarsh species has climate relevant carbon stocks from the east coast of India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-846, https://doi.org/10.5194/egusphere-egu24-846, 2024.

EGU24-1293 | ECS | Posters on site | BG4.1

Tidal restriction likely has greater impact on the carbon sink of coastal wetland than climate warming and  invasive plant 

Pan Zhou, Siyuan Ye, Liujuan Xie, Ken W. Krauss, Lixin Pei, Samantha K. Chapman, Hans Brix, Edward A. Laws, Hongming Yuan, Shixiong Yang, Xigui Ding, and Shucheng Xie

Aims Coastal salt marshes are productive ecosystems that are highly efficient carbon sinks, but there is uncertainty regarding the interactions among climate warming, plant species, and tidal restriction on C cycling.

Methods Open-top chambers (OTCs) were deployed at two coastal wetlands in Yancheng, China, where native Phragmites australis (Phragmites) and invasive Spartina alterniflora (Spartina) were dominant, respectively. Two study locations were set up in each area based on difference in tidal action. The OTCs achieved an increase of average daytime air temperature of ~1.11–1.55 °C. Net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), CH4 fluxes, aboveground biomass and other abiotic factors were monitored over three years.

Results Warming reduced the magnitude of the radiative balance of native Phragmites, which was determined to still be a consistent C sink. In contrast, warming or tidal flooding presumably transform the Spartina into a weak C source, because either warming-induced high salinity reduced the magnitude of NEE by 19% or flooding increased CH4 emissions by 789%. Remarkably, native Phragmites affected by tidal restrictions appeared to be a consistent C source with the radiative balance of 7.11–9.64 kg CO2-eq m–2 yr–1 because of a reduction in the magnitude of NEE and increase of CH4 fluxes.

Conclusions Tidal restrictions that disconnect the tidal hydrologic connection between the ocean and land may transform coastal wetlands from C sinks to C sources. This transformation may potentially be an even greater threat to coastal carbon sequestration than climate warming or invasive plant species in isolation.

How to cite: Zhou, P., Ye, S., Xie, L., W. Krauss, K., Pei, L., K. Chapman, S., Brix, H., A. Laws, E., Yuan, H., Yang, S., Ding, X., and Xie, S.: Tidal restriction likely has greater impact on the carbon sink of coastal wetland than climate warming and  invasive plant, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1293, https://doi.org/10.5194/egusphere-egu24-1293, 2024.

EGU24-1961 | ECS | Orals | BG4.1

Size matters – small estuaries fringed by blue carbon ecosystems deliver disproportionately high dissolved carbon to the ocean 

Gloria Reithmaier, Damien T. Maher, Ceylena Holloway, Rogger E. Correa, and Isaac R. Santos

Blue carbon ecosystems, e.g., mangroves and saltmarshes, may help to mitigate climate change by storing atmospheric carbon. Most blue carbon studies focus on carbon burial in soils. However, lateral exports from blue carbon systems (termed outwelling) represents an additional carbon sink. We investigated dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and alkalinity (TA) outwelling rates as well as CO2 emissions from 18 estuaries fringed by mangroves and saltmarshes. On average, estuaries exported 344 ± 150 mmol m-2 y-1 DIC and 120 ± 55 mmol m-2 y-1 DOC. Carbon outwelling rates were ~20-times higher than estuarine CO2 emissions (33 ± 20 mmol m-2 d-1). Blue carbon ecosystems contributed 19 – 41 % to the overall carbon export to the ocean. In addition to wetland cover, estuary size and runoff were key drivers impacting carbon outwelling rates. Overall, small estuaries exported disproportionally high carbon loads, contributing up to 80% of the carbon outwelling from Australian estuaries. To improve global carbon budgets, it is crucial to consider carbon outwelling from small estuaries fringed by blue carbon ecosystems.

How to cite: Reithmaier, G., Maher, D. T., Holloway, C., Correa, R. E., and Santos, I. R.: Size matters – small estuaries fringed by blue carbon ecosystems deliver disproportionately high dissolved carbon to the ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1961, https://doi.org/10.5194/egusphere-egu24-1961, 2024.

EGU24-2506 | ECS | Orals | BG4.1 | Highlight

Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change 

Shanshan Song, Yali Ding, Wei Li, Yuchen Meng, Jian Zhou, Ruikun Gou, Conghe Zhang, Shengbin Ye, Neil Saintilan, Ken Krauss, Stephen Crooks, Shuguo Lv, and Guanghui Lin

Significant efforts have been invested to restore mangrove forests worldwide through reforestation and afforestation. However, blue carbon benefit has not been compared between these two silvicultural pathways at the global scale. Here, we integrated results from direct field measurements of over 370 restoration sites around the world to show that mangrove reforestation (reestablishing mangroves where they previously colonized) had a greater carbon storage potential per hectare than afforestation (establishing mangroves where not previously mangrove). Greater carbon accumulation was mainly attributed to favorable intertidal positioning, higher nitrogen availability, and lower salinity at most reforestation sites. Reforestation of all physically feasible areas in the deforested mangrove regions of the world could promote the uptake of 671.5–688.8 Tg CO2-eq globally over a 40-year period, 60% more than afforesting the same global area on tidal flats (more marginal sites). Along with avoiding conflicts of habitat conversion, mangrove reforestation should be given priority when designing nature-based solutions for mitigating global climate change.

How to cite: Song, S., Ding, Y., Li, W., Meng, Y., Zhou, J., Gou, R., Zhang, C., Ye, S., Saintilan, N., Krauss, K., Crooks, S., Lv, S., and Lin, G.: Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2506, https://doi.org/10.5194/egusphere-egu24-2506, 2024.

EGU24-2741 | ECS | Posters virtual | BG4.1

Functional organic matter components in mangrove soils revealed by density fractionation 

Morimaru Kida, Kota Hamada, Toshiyuki Ohtsuka, Nobuhide Fujitake, Toshihiro Miyajima, Yusuke Yokoyama, and Yosuke Miyairi

The mechanisms underlying stabilization of soil organic matter (SOM) in vegetated coastal ecosystems, including mangrove forests, are poorly understood, limiting our ability to predict the consequences of disturbances. Here, we introduce density fractionation to mangrove soils to identify the distribution and properties of the functional components of SOM with regard to degradation state, stability, and origin, namely, the free low-density fraction (f-LF), mineral-associated LF (m-LF), and high-density fraction (HF).

Three 1-m soil cores were collected in the Fukido mangrove forest on Ishigaki Island, Japan, segmented into 10 cm intervals, and analyzed for C and N concentrations, stable carbon isotopes (13C), and radiocarbon isotopes (14C) followed by density fractionation. Although HF exhibited the highest abundance, the massive production of mangrove fine roots resulted in a high abundance of LFs throughout the cores, which markedly differed from terrestrial soils. The relative abundance of LFs collectively accounted for 38%–66% of total soil C. Notably, m-LF was as abundant as f-LF and 1.6 times higher in relative abundance than the global average of terrestrial soils. The C/N ratios and δ13C values exhibited a clear increase with depth in all fractions, attributed to the increased contribution from roots. A consistent pattern in Δ14C values across density fractions in the deepest section was observed, with HF exhibiting the oldest values (between -149‰ and -97‰), followed by m-LF (between -130‰ and -87‰), and f-LF (between -89‰ and 78‰). This implies that mineral association may play a pivotal role in long-term carbon storage in the mangrove mineral soil studied.

A further analysis of reactive iron (Fe) and aluminum (Al) present in HF through pyrophosphate (PP) and dithionite-citrate (DC) extractions suggested that PP-extractable, organically complexed metals regulate organic carbon concentrations in HF, rather than crystalline or nano-crystalline Al and Fe phases. Our analysis successfully identified meaningful functional components of mangrove SOM, yet several questions remained unanswered, including the large variability in Δ14C values among different cores.

How to cite: Kida, M., Hamada, K., Ohtsuka, T., Fujitake, N., Miyajima, T., Yokoyama, Y., and Miyairi, Y.: Functional organic matter components in mangrove soils revealed by density fractionation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2741, https://doi.org/10.5194/egusphere-egu24-2741, 2024.

EGU24-3934 | ECS | Orals | BG4.1

Minerogenic Salt Marsh Soil Responses to Increasing Rainfall Intensity and Soil CO2: Implications for Alkalinity Generation 

Panunporn Tutiyasarn, Peter Müller, Gibran Romero Mujalli, Bryce Van Dam, Jens Hartmann, and Philipp Porada

Salt Marshes and other vegetated coastal ecosystems play a crucial role in sequestering anthropogenic CO2 by storing carbon as organic matter within the ecosystem. Additionally, these ecosystems have been identified as potential hotspots for alkalinity generation, via anaerobic respiration and dissolution of carbonate minerals within sediments. In this way, they enhance the capacity of the ocean for CO2 removal. Quantitative insights into alkalinity generation at small scales, particularly those where rhizosphere processes and associated feedback take place, still remain limited. Our study addresses this gap by conducting a two-factorial lab-based column experiment coupled with water chemistry analysis to elucidate the influence of increased rainfall intensity and elevated soil CO2 levels on alkalinity generation in organic-poor minerogenic salt marsh soil. The results revealed a significant positive effect of increased rainfall intensity and elevated soil CO2 levels on alkalinity generation. Carbonate mineral dissolution was identified as the dominant driving force, with an additional dissolution of silicate minerals. Together, this study advances the understanding of rhizosphere environments characterized by relatively high CO2 levels as potential hotspots for alkalinity generation through mineral dissolution processes. Moreover, it indicates a clear association between intensified rainfall and heightened alkalinity generation, underlining an implication for future climate scenarios.

How to cite: Tutiyasarn, P., Müller, P., Romero Mujalli, G., Van Dam, B., Hartmann, J., and Porada, P.: Minerogenic Salt Marsh Soil Responses to Increasing Rainfall Intensity and Soil CO2: Implications for Alkalinity Generation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3934, https://doi.org/10.5194/egusphere-egu24-3934, 2024.

EGU24-4233 | Posters virtual | BG4.1

High resolution Sentinel-2 data-based ecological and biophysical variables analysis in Indian part of Sundarban Mangrove Forest 

Baqer Al-Ramadan, Bijay Halder, Zaher Mundher Yaseen, and Liew Juneng

Mangrove forests are important in Indian Sundarban Biosphere Research (SBR) for coastal hazards and vulnerability reduction. Recent extreme natural disasters like flood inundation, cyclonic effects, shoreline change, and river bank erosion are the main threatening phenomena for coastal livelihood and forest cover change. Mangrove forest is not only a shelter for human life but also important for animals and gradually forest degradation triggers their life in serious issues. Technologies can assist in reducing those serious issues through space-based analysis, and adaptation policies and give them a sustainable life. Current space-based technologies can be applied for forest cover change analysis in the SBR area. This analysis investigates the forest cover in different years (2018 and 2022) through Sentinel-2 data. Various biophysical and ecological variables are measured because of recent cyclonic effects that have gradually affected this region. Some recent cyclones like Titli (2018), Fani (2019), Bulbul (2019), Amphan (2020), and Yass (2021) gradually triggered coastal geomorphology change, shoreline shifting, river bank erosion, and mangrove forest losses. Sentinel 2 data is applied in ArcGIS v10.8 and SNAP v9.0 for calculating those outcomes. The highest NDVI values are observed at 0.72 (2018) and 0.53 (2022), while the highest TNDVI values are also remarkable observations like 1.11 (2018) and 1.02 (2022) respectively. During cyclonic effects, those regions are affected by flood inundation, increased soil salinity, bank erosion, and huge economic losses observed. Similarly, high SAVI values are 1.08 (2018) and 0.81 (2022). The forest areas mainly decrease in G-plot, L block, some parts of Kultali block, and Jambu Dweep areas, while Blacky Island, HaLF-FiSH Island, and near Kakdwip block have increased mangrove forest areas. The high NDSI values observed were 0.42 (2018) and 0.49 (2022) because of saltwater intrusion which is triggering the crop dynamics and production losses in those regions. The S2REP and IRECI, both chlorophyll estimation indices indicate that the forest cover areas are lost during the study periods. The forest degradation index (FDI) values and threshold-based forest health index are also warned for adopting those regions, otherwise, the mangrove environment is gradually destroyed by natural extreme events and some man-made activities. Mangrove forest protection is essential for the planners, policy-makers, and stakeholders for safe forest life as well as coastal environment and coastal livelihood. Some adaptation strategies like cyclone shelters, mangrove plantations, early warning systems, river bank erosion reduction, and awareness can help to reduce the risk of extreme natural hazard events.

How to cite: Al-Ramadan, B., Halder, B., Yaseen, Z. M., and Juneng, L.: High resolution Sentinel-2 data-based ecological and biophysical variables analysis in Indian part of Sundarban Mangrove Forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4233, https://doi.org/10.5194/egusphere-egu24-4233, 2024.

EGU24-4577 | ECS | Posters on site | BG4.1

On the decadal linkage of seagrass growth in southern Taiwan with the Pacific Meridional Mode 

Liang-Yu Hsu, Wan-Ling Tseng, Pei-Chun Hsu, Kuan-Yu Chen, Shih-Yu Wang, and Hsing‐Juh Lin

While decadal predictability is one of the key information demands on marine management and conservation endeavors, the lack of long-term observed records and complex climate variability challenges understanding it. Seagrass beds are not only important blue carbon sinks but also crucial habitats and feeding grounds for diverse marine organisms. This study uses in-situ data from 2001 to 2021 to investigate the primary decadal environmental control, the Pacific Meridional Mode, on seagrass growth in southern Taiwan. Two primary seagrass metrics, aboveground biomass and cover, were examined against various environmental and meteorological variables. Our initial findings reveal a significant correlation between PMM and seagrass growth. Aboveground biomass exhibits a robust negative correlation with PMM, while cover displays a weaker yet positive association. Further examination of regional climate dynamics unveils notable shifts in surface solar radiation, temperature, and rainfall concerning seagrass. Specifically, increased aboveground biomass coincides with reduced solar radiation, lower temperatures, and enhanced rainfall in southern Taiwan, resembling a negative PMM-like pattern. This pattern underscores the sensitivity of aboveground biomass to large-scale climatic fluctuations across the Pacific basin. Conversely, seagrass cover demonstrates opposing patterns compared to aboveground biomass but with less statistical significance. This suggests that cover growth is influenced by a broader array of factors, resulting in a more nonlinear response. In essence, our research underscores the vital role of PMM and regional climate conditions in shaping tropical seagrass growth, offering further insights for marine conservation efforts.

How to cite: Hsu, L.-Y., Tseng, W.-L., Hsu, P.-C., Chen, K.-Y., Wang, S.-Y., and Lin, H.: On the decadal linkage of seagrass growth in southern Taiwan with the Pacific Meridional Mode, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4577, https://doi.org/10.5194/egusphere-egu24-4577, 2024.

This paper presents a model of competition between the arborescent canopy-forming algae Cystoseira s.l., and the smaller size algae forming turf on rocky bottoms. The two algal assemblages are both grazed by sea urchins. The algae and invertebrates involved in the model play an important role in the health of coastal ecosystems and particularly in the conservation of biodiversity-rich habitats of temperate nearshore rocky reefs: the model presented is intended to help describing real ecological processes of canopy degradation and recovery. The model is a 3-species space implicit food web. Its distinctive feature is the inclusion of community border effects in interactions, as only the individuals laying along the canopy border of Cystoseira s.l. forests take part in recruitment and competition with algal turfs, and undergo grazing by sea urchins. Also endogenous recruitment of turf involves only border individuals. These border effects are taken into account in the same way of herd behavior in the mathematical ecology of animal species. Some important features of the model phase space are investigated, focussing on the capacity of the system to mimic the transitions among ecologically different states of the rocky bottom (canopy, turf, and barren).

How to cite: Materassi, M.: Modelling Cystoseira s.l.-turf competition via a space-implicit model with border dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5113, https://doi.org/10.5194/egusphere-egu24-5113, 2024.

EGU24-5320 | ECS | Posters on site | BG4.1

Carbon storage in coastal reed (Phragmites australis) ecosystems 

Margaret Williamson, Tom Jilbert, Alf Norkko, and Camilla Gustafsson

Distribution of the common reed (Phragmites australis) has increased in coastal ecosystems across the globe. Currently, there appears to be a gap in knowledge about carbon (C) cycling and sequestration in reed beds though preliminary findings indicate these systems are unique, show great potential for C storage, and, therefore, should be taken into consideration while developing blue carbon (BC) budgets. The aim of my study is to quantify how much C is stored in reed bed biomass and sediment along the brackish Pojo Bay system in coastal Finland. We selected 6 reed beds to sample along Pojo Bay covering a range of salinities and wave exposure from the northern-most part of the Bay to the southern-most part opening into the Baltic Sea. Within each reed bed, samples were taken from randomly selected sites within each of the 3 reed bed zones (terrestrial, intermittent, and littoral) and replicate samples were taken within each zone along a transect. Plant and sediment samples were collected and taken back to the lab to run for C content.  

My results from sediment LOI (loss of ignition) show higher organic matter content in the upper segments of sediment profiles and a general trend towards higher organic matter content in terrestrial and intermittent zones than littoral zones of reed beds. Preliminary results for C content within sediment and biomass samples show similar trends. These findings are significant as they help rectify a gap in knowledge and provide us with an estimate of how much C is stored in reed bed biomass and sediment. Information on how much C is stored within this rapidly expanding coastal ecosystem type is important for the management of reed beds and greatly impacts calculations for coastal carbon budgets to combat climate change. Further information will be gathered from these field sites every 3 months for 2 years to show seasonal variability in the C storage, C isotope analysis, and methane emissions to get a more comprehensive picture of C cycling in these important coastal ecosystems reed bed systems.

How to cite: Williamson, M., Jilbert, T., Norkko, A., and Gustafsson, C.: Carbon storage in coastal reed (Phragmites australis) ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5320, https://doi.org/10.5194/egusphere-egu24-5320, 2024.

EGU24-5934 | Orals | BG4.1 | Highlight

Predicting global soil organic carbon dynamics in tidal marshes 

Tania L. Maxwell, Mark Spalding, and Thomas A. Worthington and the global marsh soil C team

Tidal marshes are known for their capacity to store large amounts of carbon in their water-logged soils; however, this coastal ecosystem is threatened by land conversion, climate change, and habitat degradation. Therefore to support conservation efforts, it is important to accurately quantify and map the benefits of this ecosystem such as their current soil organic carbon (SOC) stocks. Based on the newly developed tidal marsh extent map by Worthington et al. (2023), we produced the first global spatially-explicit map of SOC storage in tidal marshes at 30 m resolution, as well as presenting the uncertainty and limitations around the predictions  

To produce our predictions, we used training data from the recently published global tidal marsh soil organic carbon (MarSOC) dataset, supplemented by data from the Coastal Carbon Research Coordination Network database. We modelled SOC in relation to potential landscape-level environmental drivers, including vegetation indices, elevation, tidal amplitude, and climatic variables. Finally, we trained a random forest model using the dataset and the environmental covariates, taking into account the spatial nature of the data in the cross validation. We applied a new area of applicability method from Meyer & Pebesma (2021) to avoid predicting SOC values into unknown space, and estimated pixel-level uncertainty using the predicted model error. 

Globally the model predicts on average 83.09 Mg SOC ha-1 (average predicted error 44.77 Mg ha-1) is held in the 0-30 cm layer and 185.27 Mg ha-1 (average predicted error 105.71 Mg ha-1) in the 30-100 cm layer. However due to the current sparsity of data in places, the area of applicability of the model for the 0-30 cm layer represents 58.0% of mapped marshes and this drops to 46.2% for the 30-100 cm layer. Considering the total tidal marsh extent, we estimate tidal marshes to hold 1.44 Petagrams of SOC to 1 m globally. Regionally, higher predicted stocks per unit area are found in the Arctic; however, this is confounded by high uncertainty. The Temperate Northern Atlantic is estimated to hold the highest amount of carbon due to the large tidal marsh extent in this region. 

Due to the lack of training soil carbon data we were unable to provide accurate predictions in several areas, therefore our approach also highlights the need for further sampling efforts in specific geographies. It also highlights the needs for the development of additional global covariate layers, to improve our estimates on SOC stocks in tidal marshes. Notwithstanding, our model and map will be valuable to support conservation efforts, aiding the implementation of blue carbon actions in Nationally Determined Contributions.

How to cite: Maxwell, T. L., Spalding, M., and Worthington, T. A. and the global marsh soil C team: Predicting global soil organic carbon dynamics in tidal marshes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5934, https://doi.org/10.5194/egusphere-egu24-5934, 2024.

EGU24-5956 | Orals | BG4.1 | Highlight

searching for solutions for Carbon-sequestration in coastal ecosystems: an international and interdisciplinary approach 

Martin Zimmer and the sea4soCiety-Consortium

Climate change-mitigation requires immediate and long-lasting drastic reductions in anthropogenic greenhouse gas emissions. As some of these emissions are considered hard-to-abate, the net-zero emissions aim can only be reached through carbon dioxide removal (CDR) strategies. Many of these rely on technical, physical or chemical approaches that are promising but not yet fully implementable nor fully accepted by society (https://cdrmare.de/en). Nature-based Solutions (NbS), by contrast, may be less efficient but enjoy high societal desirability and methodological feasibility. sea4soCiety (https://sea4society.cdrmare.de/en) aims at developing innovative approaches to enhance the potential for Blue Carbon sequestration in mangrove forests (and other blue carbon ecosystems: saltmarshes, seagrass meadows, kelp beds) through expanding their spatial extent into new areas, if and where ecologically feasible, in an environmentally sound, legally and ethically unobjectionable, socially acceptable, and economically viable manner. With the first phase (2021-2024) of the long-term project ending, I will critically shed light on the general concept, progress. Based on first findings -specifically with respect to methodology, organic matter stability and origin, faunal effects on carbon fluxes, and societal perception and acceptance-, an outlook to the second phase (2024-2027) will provide a glimpse at future plans and directions towards Blue Carbon-based climate change-mitigation through the (re-)establishment of coastal vegetated ecosystems.

How to cite: Zimmer, M. and the sea4soCiety-Consortium: searching for solutions for Carbon-sequestration in coastal ecosystems: an international and interdisciplinary approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5956, https://doi.org/10.5194/egusphere-egu24-5956, 2024.

EGU24-5983 | ECS | Posters on site | BG4.1

The impact of water table level and grazing on greenhouse-gas exchange in salt marshes 

Dan Yang, Asger Jensen, Brian Sorrell, Hans Brix, and Franziska Eller

Saline wetlands play a crucial role in climate regulation through their robust cooling effect, attributed to rapid carbon sequestration and minimal methane production. Despite this, a comprehensive understanding of the mechanisms supporting such carbon exchange, and their specific contributions to greenhouse gas mitigation potential, is lacking, particularly in salt marshes facing the impacts of global climate changes. Here, we test the effects of water table levels, grazing, and plant community composition on CO2 and CH4 fluxes during the growing season of salt marshes by a controlled manipulative experiment and an in situ experiment. Rising water table levels resulted in higher CH4 emissions but reduced photosynthesis and ecosystem respiration. Conversely, grazing enhanced ecosystem respiration but suppressed plant photosynthesis. Furthermore, CH4 emissions from Phragmites-dominated communities were nearly a thousand times higher compared to Spartina-dominated communities. Our findings indicate that, throughout the growing season, lower salt marshes function as carbon sinks, whereas grazed Phragmites-dominated salt marshes are carbon sources. Our study accounted for CH4 fluxes, CO2 uptake and emission together, and identified the mechanisms controlling carbon exchange, an approach that is crucial for evaluating the potential of saline tidal wetlands as net atmospheric carbon sinks and developing scientifically sound climate mitigation policies.

How to cite: Yang, D., Jensen, A., Sorrell, B., Brix, H., and Eller, F.: The impact of water table level and grazing on greenhouse-gas exchange in salt marshes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5983, https://doi.org/10.5194/egusphere-egu24-5983, 2024.

EGU24-6525 | Orals | BG4.1 | Highlight

Mapping intertidal mudflat gross primary production (GPP) by hyperspectral imagery, coupling with atmospheric CO2 fluxes at varied temporal and spatial scales: from the lab to the ecosystem level, through the seasons. 

Vona Méléder, Pierre Polsenaere, Patrick Launeau, Bruno Jesus, Meng Zhang, Johann Lavaud, Manuel Giraud, Philippe Rosa, Jonathan Deborde, Philippe Geairon, James Grizon, Eric Lamaud, and Jean-Marc Bonnefond

Intertidal mudflats, present all over the world are excluded from global carbon budget calculation; while these ecosystems are increasingly recognized to be as productive as tropical forests. With an annual global productivity estimated to be in the order of 500 million tons of carbon, mudflats can therefore represent up to 20% of the global production of the oceans, whereas they occupy only 0.03% of their surface, with a total area estimated at 130,000 km2. Despite their potentially high contribution to the overall carbon budget, their actual contribution remains unknown. Moreover, these ecosystems are currently under threat from global climate changes and increased human activities. In this context, estimating the actual carbon uptake by these ecosystems from the local to the global scale is a challenge that has to be tackled, which is the objective of this project.

The main innovation of our project resides in coupling hyperspectral remote sensing, with CO2 fluxes measured at different spatial and temporal scales using benthic chambers and atmospheric eddy covariance. The first results shown the effect of seasons, tide, and habitats on CO2 fluxes, making intertidal mudflats as a sink, rather than a source of CO2. The final objective is to map the gross primary production (GPP) to estimate for the first time the contribution of these ecosystems at the global carbon cycle and more specifically, to the Blue Carbon. Such tools and results will help predicting what will happen to the tidal ecosystems due to changes linked to global climate changes and assist in developing mitigation and adaptation strategies to comply with the objectives of the Paris Agreement.

How to cite: Méléder, V., Polsenaere, P., Launeau, P., Jesus, B., Zhang, M., Lavaud, J., Giraud, M., Rosa, P., Deborde, J., Geairon, P., Grizon, J., Lamaud, E., and Bonnefond, J.-M.: Mapping intertidal mudflat gross primary production (GPP) by hyperspectral imagery, coupling with atmospheric CO2 fluxes at varied temporal and spatial scales: from the lab to the ecosystem level, through the seasons., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6525, https://doi.org/10.5194/egusphere-egu24-6525, 2024.

EGU24-6747 | ECS | Posters on site | BG4.1

Investigation of carbon sequestration and mercury contamination in the Northeastern US salt marshes and the potential impact of anthropogenic activities 

Hejia Zhang, Mingyu Zhang, Bibek shrestha, Shou-En Tsao, Derrick Vaughn, Maodian Liu, and Peter Raymond

Wetlands are recognized as critical sinks of carbon among terrestrial ecosystems. The demand for atmospheric carbon mitigation, exacerbated by climate change, underscores the importance of wetland carbon sequestration. Meanwhile, due to the strong affinity of mercury (Hg) with organic matter, Hg in the atmosphere can also be scavenged and buried in wetlands. However, increased anthropogenic activities, such as urbanization, disrupt sediment dynamics in coastal wetlands, affecting their capacity to sequester carbon and Hg. To explore the urbanization impacts, One-meter sediment cores were collected from five salt marshes in Connecticut and Massachusetts, USA. Sediment samples were collected every 2 cm, and then processed through freeze-drying, sieving, acidification, and weighing. Subsequent laboratory analyses include total organic carbon (TOC), stable carbon isotope (δ13C), carbon/nitrogen (C/N) ratio, and mercury (Hg) concentrations throughout the core. The TOC source (terrestrial vs. marine) was determined using an isotopic mixing model with Monte Carlo simulation. The data indicate a temporal decrease in terrestrial TOC and an uptick in marine-derived TOC. Within the terrestrial fraction, local vegetation is the primary contributor. This shift in TOC source, driven by reduced terrestrial contributions, suggests wetland degradation and a potential decline in carbon sequestration due to urbanization. Furthermore, Hg analysis reveals a negative correlation with TOC in disturbed salt marshes, highlighting Hg dilution by marsh-derived organic matter and the effects of anthropogenic point source releases of Hg. Notably, two sites uniquely showed extremely high Hg concentrations and decoupling between Hg and TOC, tracing back to localized Hg releases from industrial activities in Danbury, Connecticut, during the 19th century. This study demonstrates the temporal shifts in sources of TOC, a decline in carbon sequestration, and historical Hg contamination across Northeast US salt marshes, underscoring anthropogenic impacts on these ecosystems. Future work will incorporate Lead-210 and radiocarbon dating of sediment cores to better understand the temporal variation of carbon sequestration. 

How to cite: Zhang, H., Zhang, M., shrestha, B., Tsao, S.-E., Vaughn, D., Liu, M., and Raymond, P.: Investigation of carbon sequestration and mercury contamination in the Northeastern US salt marshes and the potential impact of anthropogenic activities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6747, https://doi.org/10.5194/egusphere-egu24-6747, 2024.

EGU24-7022 | Posters on site | BG4.1

Blue Carbon Management for Climate Resilience 

Dahai Liu and Tong Dong

Global warming, accelerating at an alarming rate, has thrust climate change into the forefront of global concerns. The recent warning from the World Meteorological Organization (WMO) about the record-low Antarctic sea ice coverage serves as a stark reminder of the urgency surrounding environmental issues in the twenty-first century. Climate change is undeniably one of the most pressing challenges facing humanity today, with far-reaching implications for our survival and socio-economic development.In response to the escalating crisis, there has been a global call to action, urging nations to limit the rise in global temperatures to 1.5 to 2 degrees Celsius. Oceans, as the primary regulators of climate change, emerge as pivotal players, holding approximately 93 percent of the Earth's CO2. In exploring solutions, the concept of "blue carbon" has emerged, drawing attention to coastal ecosystems' carbon sequestration potential. However, the effective management of blue carbon presents a myriad of challenges, necessitating a holistic approach. There is a growing consensus that international standards for assessing marine carbon sinks are lacking. Experimental methods, including those proposed by the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Environment Programme (UNEP), have been explored. However, the absence of a universally accepted framework impedes progress. It is within this context that the First Institute of Oceanography (FIO), Ministry of Natural Resources (MNR), China, has embarked on a pioneering initiative, developing China's first comprehensive marine carbon sink accounting standard. The standard, structured into five parts—Scope, Documents, Definitions, Accounting, and Appendix—provides a vital foundation for research, development, and management of blue carbon projects. Key terms and definitions, including ocean carbon sinks, mangroves, salt marshes, seagrass beds, phytoplankton, macroalgae, and shellfish, contribute to a robust scientific framework for the comprehensive understanding of marine ecosystems.Despite these advancements, challenges persist in blue carbon management, requiring focused attention. From a scientific perspective, understanding carbon sink mechanisms, potential, and capacity is essential. At the technical level, the development of observation systems, monitoring data, and international standards is crucial. On a practical level, conducting high-level dialogues, implementing international blue carbon plans, and establishing global blue carbon governance structures are imperative for improving the quality and functioning of marine ecosystems. In conclusion, the journey towards effective blue carbon management is a complex but imperative one. Standardizing practices, promoting international cooperation, and encouraging transactions related to carbon sink accounting are pivotal steps in our collective efforts to mitigate the impacts of climate change and safeguard the health of marine ecosystems worldwide.

How to cite: Liu, D. and Dong, T.: Blue Carbon Management for Climate Resilience, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7022, https://doi.org/10.5194/egusphere-egu24-7022, 2024.

EGU24-7714 | ECS | Orals | BG4.1 | Highlight

Zero-Carbon Wetlands’ from qualitative and possibilistic perspectives 

Lucila Xaus, Cédric Gaucherel, and Christine Dupuy

Understanding how social-nature and ecological-nature functions and their dynamics affect carbon emissions is critical due to the growing anthropogenic impact and its constant denial. According to the Paris Agreement in 2015, several countries and cities aim at becoming zero-carbon areas by 2050. In this context, wetlands and other coastal vegetated systems have been recognized for their major roles in “blue carbon” sequestration and storage. In addition, wetlands such as marshes can be either natural or managed by man for agriculture, aquaculture or other anthropogenic needs. Therefore, it is essential to accurately comprehend wetlands ecological functions for a better understanding of CO2 regulating factors and how they affect carbon budgets in these dynamic and heterogeneous systems. A few quantitative models are already in use for the study of social-ecological system (SES), however qualitative models have demonstrated to be an alternative and novel way for representing the essential long-term dynamics of SES. These models make it possible to qualify the responses of the system as a whole to its many exposed disturbances (human pressures, global change, biological activity, etc.), as well as to predict them. Here, a qualitative rule-based model for La Rochelle city (France) SES in wetlands has been developed to assess carbon neutrality, using the Ecological Discrete-Event Network (EDEN) modeling framework. The most important ecological components (variables) related to carbon emission for wetlands (e.g., phytoplankton, sediments, plants) and social (e.g., transportation, agriculture) domains have been carefully chosen from the literature, field studies, interviews and data analyses. Using these variables and related processes, every possible pathway will be computed to assess whether carbon neutrality is reachable from a chosen initial state by this modeled SES. Moreover, by the hand of EDEN, the recommended and dangerous pathways will be identified. The Eco-Marsh model is the first qualitative and possibilistic model ever, to our knowledge, for assessing carbon neutrality in a social-ecological system as a whole including wetlands. The first results will be presented, and will become part of a larger model which will include additional physicochemical, economical and political domains of La Rochelle region. In a second step, such an integrated model will enable the mechanisms governing these areas to be presented to stakeholders, so that integrated management strategies will be devised to optimise regional carbon functioning.

How to cite: Xaus, L., Gaucherel, C., and Dupuy, C.: Zero-Carbon Wetlands’ from qualitative and possibilistic perspectives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7714, https://doi.org/10.5194/egusphere-egu24-7714, 2024.

EGU24-8023 | ECS | Posters on site | BG4.1 | Highlight

Carbon recalcitrance and stabilization processes vary across mangrove eco-geomorphologies 

Marion Maceiras, Marie Arnaud, Catherine Lovelock, Alex Pearse, Huyen Dang, Sarah Robin, Cyril Marchand, Axel Felbacq, Samuel Abiven, Johanne Lebrun Thauront, Nicolas Bottinelli, Amrit kumar Mishra, Syed Hilal Farooq, Tuhin Bhadra, and Cornelia Rumpel

Mangrove ecosystems are one of the most carbon dense ecosystems worldwide. Yet, the stabilization and recalcitrance of carbon (C) and organic matter (OM) are little understood in mangroves, especially across eco-geomorphological settings and depths. Here, we characterized the sediment C and OM of Indo-Pacific mangroves, located in four distinct eco-geomorphological settings (i.e., delta, estuary, non-carbonated open coast, carbonated open coast) and at two different depths (i.e., 0-20 cm and 80-100 cm). We quantified the fraction of C within (i) mineralized associated organic matter (MAOM), and (ii) within particulate organic matter (POM). We coupled these analyses with lignin quantity and composition, as well as stable C isotopes analysis in mangrove sediments.

We found significant variation in the quantity of MAOM and POM across mangrove eco-geomorphological settings, but not across mangrove sediment depths. The terrigenous deltaic mangrove exhibited up to three times more MAOM than the carbonate open coast mangrove, which was dominated by POM. Mangroves of the carbonate coast type had higher C content than other eco-geomorphic types. The  was not different across mangrove eco-geomorphologies, but was different across mangrove sediment depths. Regarding OM recalcitrance, the lignin content displayed strong variations across the different eco-geomorphologies, however, there was no clear pattern of lignin degradation stage across depths. Finally, an inverse correlation between sediment C recalcitrance (i.e., lignin content) and stabilization (MAOM) processes were determined across mangroves.

Our findings suggest that the processes leading to OM preservation differ among mangroves in various eco-geomorphological settings. Those results have important implications to guide mangrove restoration for carbon persistence and to model carbon pools across mangrove areas.

How to cite: Maceiras, M., Arnaud, M., Lovelock, C., Pearse, A., Dang, H., Robin, S., Marchand, C., Felbacq, A., Abiven, S., Lebrun Thauront, J., Bottinelli, N., Mishra, A. K., Hilal Farooq, S., Bhadra, T., and Rumpel, C.: Carbon recalcitrance and stabilization processes vary across mangrove eco-geomorphologies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8023, https://doi.org/10.5194/egusphere-egu24-8023, 2024.

EGU24-9161 | Orals | BG4.1

The effect of a strong hurricane on carbon export from the largest contiguous mangrove forest in North America 

Annemiek I. Stegehuis, David T. Ho, Laurent Bopp, and Bertrand Guenet

Mangroves, one of the most productive ecosystems on Earth, are an important link between land and ocean and are crucial for moderating carbon fluxes to the ocean in the tropics and sub-tropics. Besides their vulnerability to sea-level rise and other human-induced changes, they are regularly exposed to hurricanes. Here we studied the impact of Hurricane Irma on dissolved organic and inorganic carbon (DOC and DIC) fluxes in the mangrove estuary of Shark River in the Everglades National Park, the largest mangrove estuary in North America. We found that both DIC and DOC fluxes decreased severely directly after Irma made landfall as a Category 4 hurricane. The DIC flux recovered quickly, while the DOC flux remained lower up to two months after Irma. Besides the change in absolute numbers, we found that the contribution of estuarine (i.e., mangrove root respiration and calcite dissolution) vs non-estuarine (i.e., from upstream of the estuary) sources to DIC decreased considerably at the site closer to the ocean after the hurricane. Although both DIC and DOC fluxes were still lower up to two years after Irma, the high inter- and intra-variability of both fluxes made it difficult to draw solid, long-term conclusions.

How to cite: Stegehuis, A. I., Ho, D. T., Bopp, L., and Guenet, B.: The effect of a strong hurricane on carbon export from the largest contiguous mangrove forest in North America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9161, https://doi.org/10.5194/egusphere-egu24-9161, 2024.

EGU24-9838 | ECS | Posters on site | BG4.1

Enhancing salt marshes monitoring: Estimating biomass with drone-derived habitat-specific models. 

Andrea Celeste Curcio, Luis Barbero, and Gloria Peralta

To quantify the amount of carbon sequestered by salt marshes, it is essential to estimate their aboveground biomass (AGB). In this study, we propose utilizing low-altitude remote sensing techniques to collect high-resolution LiDAR and multispectral (MS) data for biomass assessment. We characterized salt marsh vegetation habitats by examining vegetation indices (VIs), and the high-resolution topographic information from LiDAR helped assess habitat distribution. Specifically, the Anthocyanin Reflectance Index 2 (ARI2), combined with the Digital Surface Model (DSM), allows for the identification and separation of the two habitats with distinct dominant species (Sarcocornia spp. and Sporobolus maritimus). The VIs for the two vegetation classes exhibit different seasonal changes throughout the annual cycle, suggesting distinct growth mechanisms for each. Biomass models for the specific seasons are created, showing higher precision (up to 99%) from habitat-specific models compared to those treating species uniformly. Differences are observed in biomass estimation patterns depending on whether the marsh is assessed as a whole or separated into dominating habitats, indicating that the two dominant species exhibit different behaviours that influence biomass production differently throughout the year. Seasonal variations in AGB indicate a peak in summer and a decline in spring, with annual variation accounting for just 9% of the total output, possibly influenced by increased soil salinity and stress in spring. Using LiDAR and MS data from an unmanned aerial vehicle (UAV) is essential for precise identification of primary marsh habitats, facilitating the creation of highly accurate biomass models. This user-friendly, repeatable, and cost-effective method enables the study of salt marshes, evolutionary trends, and climate change response requiring less fieldwork.

How to cite: Curcio, A. C., Barbero, L., and Peralta, G.: Enhancing salt marshes monitoring: Estimating biomass with drone-derived habitat-specific models., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9838, https://doi.org/10.5194/egusphere-egu24-9838, 2024.

Saltmarshes provide many vital benefits (ecosystem services), including carbon sequestration, flood protection and nutrient exchange. As “carbon sinks”, these ecosystems sequester carbon up to twice the rate of terrestrial forests. Recent national and international carbon emissions targets highlight the importance to both protect and increase the area of coastal saltmarshes. In addition, these intertidal wetlands are influenced by complex interacting bio-sedimentary and hydrological processes, thus restoration projects need to consider the various processes impacting such ecosystems. To address carbon emissions targets, upscaled estimates of carbon accumulation are required, for which modelling and time-consuming field surveys are employed. An understanding of within-marsh controls on soil organic carbon content (SOC) and the resulting feedbacks (sedimentary, hydrological, geomorphological, ecological) can improve field survey efficiency and provide training data for models.  Such data aids in constraining uncertainties around scaled-up carbon accumulation estimates per unit area saltmarsh for regional, national and international inventories. Quantitative data on the variation in SOC and the facilitating processes remains relatively scarce.

This research investigates SOC distribution, alongside potential explanatory factors within unmanaged and managed saltmarshes. Through the collection of sediment samples (near-surface, core), alongside location-specific data on elevation, inundation, biomass and accretion rates in Turvey Nature Reserve (Co. Dublin), this project aims to quantify the impact of several key factors (e.g. drainage, topography, biomass and accretion) on carbon accumulation. SOC will be determined through Loss-on-Ignition laboratory analysis. An existing carbon accumulation model will then be improved upon, and the updated model will be utilised to inform an investigation of future carbon storage potential under various climate scenarios.

Initial results from an on-going project are presented to provide quantitative field- and laboratory-derived data, enhancing knowledge of within- and between-marsh variation of SOC in saltmarshes.

How to cite: Rounce, J. and Moeller, I.: Spatial variation in carbon storage within managed and unmanaged saltmarsh systems: A case study in the Rogerstown Estuary, Ireland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13500, https://doi.org/10.5194/egusphere-egu24-13500, 2024.

EGU24-13829 | ECS | Posters on site | BG4.1

Soil and carbon accumulation rates in different ecological types of mangroves in a karstic region (Celestún, Yucatán) 

Jesús Andrés Canul Cabrera, Jorge Alfredo Herrera Silveira, Misael Díaz Asencio, Eunice Pech Poot, Beat Gasser, and Pere Masque

Mangroves, as well as other coastal ecosystems, perform a fundamental role as sinks of carbon in their soils for long periods of time (hundreds to thousands of years). This capacity for sequestering carbon is controlled by several factors, such as mesoscale meteorology, structural complexity of the forest, hydrological regimes, and microtopography. Therefore, quantifying the carbon on these forests is fundamental to understand their potential for climate change mitigation and local adaptation. The Ria Celestun Biosphere Reserve is a natural protected area located in a karstic region in Mexico with a shallow slope and a strong environmental gradient that allows the presence of different ecological types of mangroves. Based on the analysis of sedimentary cores collected in mangrove areas and dated with the 210Pb method, we assessed the soil and carbon accumulation rates in the upper 50 centimeters in four ecological types of mangroves (fringe, basin, dwarf and peten). According to preliminary results, basin mangrove dominated by Rhizophora mangle and Avicennia germinans showed higher values of carbon stocks (360 MgCha-1), than fringe and peten mangroves (240 MgCha-1 and 270 MgCha-1, respectively). Taking into account gaps in mangrove knowledge in karst regions and among mangrove associations, the results could be used as a tool for decision-making and priority-setting of conservation actions.

How to cite: Canul Cabrera, J. A., Herrera Silveira, J. A., Díaz Asencio, M., Pech Poot, E., Gasser, B., and Masque, P.: Soil and carbon accumulation rates in different ecological types of mangroves in a karstic region (Celestún, Yucatán), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13829, https://doi.org/10.5194/egusphere-egu24-13829, 2024.

EGU24-14194 | ECS | Orals | BG4.1

Towards continental-scale mapping of supratidal forests to support blue carbon initiatives for Australia 

Christopher Owers, Rafael Carvalho, and Jeffrey Kelleway

Australia’s coastal wetlands include a diversity of vegetation structures and compositions across intertidal and supratidal elevations. While there have been significant recent advances in continental-wide information on mangrove and saltmarsh, neighbouring supratidal forests represent a significant missing link in knowledge of the distribution of coastal ecosystems in Australia. Without the ability to classify supratidal forests using remotely sensed imagery, it is currently not possible to identify where this ecosystem exists across Australia or to track changes over time, including increases in extent from restoration projects. This knowledge gap impacts a range of end-users, including federal and state/territory government portfolios responsible for monitoring and managing coastal wetland sites across Australia. In addition, the Clean Energy Regulator and project developers require access to current and historic coastal wetland extent to track and report on changes of supratidal forest extent for new Blue Carbon methods under Australia’s Emissions Reduction Fund. Access to publicly available, nationally consistent supratidal forest maps would further benefit coastal wetland managers, including state and territory governments, NRM groups and local councils across Australia.

We have developed an initial ecosystem extent workflow and associated maps of supratidal forest distribution, with the view to develop a continental scale national supratidal forest mapping workflow for Australia. This workflow and associated maps are based upon an emerging conceptual understanding of supratidal forest characteristics and biophysical drivers from multiple settings around the country. New field measurements will be used to calibrate and validate an improved workflow and national map products. The final outputs from this project will align with Australia’s Ocean Accounts, providing a missing piece in national mapping and reporting on Australia’s ocean-based natural assets. Addressing this data gap is crucial for effective management and protection of coastal wetland ecosystems and their associated services.

How to cite: Owers, C., Carvalho, R., and Kelleway, J.: Towards continental-scale mapping of supratidal forests to support blue carbon initiatives for Australia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14194, https://doi.org/10.5194/egusphere-egu24-14194, 2024.

EGU24-14230 | ECS | Posters virtual | BG4.1

Assessing Blue Carbon Storage in an Urbanized Coastal Region: Insights from Hong Kong's Seagrass Ecosystems 

Man Zhao and Juan Diego Gaitán-Espitia

Seagrass meadows are globally important blue carbon sinks, accumulating organic carbon within their beds from both seagrass and the burial of non-seagrass organic matter.  To date, substantial attention has been attracted on this nature-based carbon offsetting solution, especially for countries with large blue carbon resources (e.g., Australia, Indonesia, and USA). However, the carbon sink potential of small coastal regions characterized by high carbon densities of blue carbon ecosystems and its contribution to regional climate change mitigation efforts remain largely unclear. This study focusses on the quantification of seagrass carbon stock in an urbanized coastal area, Hong Kong. We collect 1-meter sediment cores from four sites (i.e., San Tau, Yam O, Sheung Pak Nai and Ha Pak Nai) covering two seagrass species (i.e., Halophila beccarii and Halophila ovalis). Our investigation encompasses the analysis of total organic carbon (OC%), organic carbon sources (δ13C and δ15N), labile and recalcitrant organic carbon pools, and organic carbon accumulation rates (Pb210) at various depths within the sediment cores. The results of this study will shed light on the extent to which seagrass ecosystems can contribute to Hong Kong's Nationally Determined Contributions, as assessed under the IPCC Tier-II framework.

How to cite: Zhao, M. and Gaitán-Espitia, J. D.: Assessing Blue Carbon Storage in an Urbanized Coastal Region: Insights from Hong Kong's Seagrass Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14230, https://doi.org/10.5194/egusphere-egu24-14230, 2024.

Globally, salt marshes play a pivotal role as efficient carbon (C) sinks, absorbing and storing substantial C in the soil. Despite their high C sequestration potential, understanding C exchange mechanisms in salt marshes along the Pacific coast in western Canada remains limited, resulting in uncertainties in estimating regional C budgets. This study addresses this gap by analyzing two years of eddy covariance (EC) measurements in a temperate salt marsh, revealing a shift from being a C sink (-185.3 gC m-2 yr-1) in the first year to a weak C source (10.4 gC m-2 yr-1) in the second year.

Exploring the annual patterns of Gross Primary Productivity (GPP) and ecosystem respiration (Reco) sheds light on the dynamics of C exchange within the ecosystem. GPP of the first year is significantly higher than that of the second year during the growing season, from April to October. The light response curve indicated that the second year had lower light use efficiency and light-saturated net photosynthesis rate than the first-year data. Moreover, we found similar values in temperature sensitivity of soil respiration (Q10) for both years using Reco and soil temperature, with the first year slightly higher. Notably, the annual estimates for 2021 reveal a GPP of 1488.9 gC m-2 yr-1 and Reco of 1303.6 gC m-2 yr-1. Conversely, for 2022, GPP was 1147.8 gC m-2 yr-1, and Reco was 1158.2 gC m-2 yr-1. The contrasting GPP values between the two years suggest a significant influence of GPP over Reco on the overall C balance of the ecosystem, which predominantly controls the variations in NEE.

In delving into the relationship between environmental factors and C exchange patterns, it becomes evident that water availability emerges as a key determinant at this site. The rainfall during the growing season of the first year closely matched 30-year averages from nearby meteorological stations, approximately 15% above the Climate Normals. In contrast, the second growing season precipitation was below average, only 52% of the long-term average. Additionally, it is noteworthy that in 2022, the growing season had a significantly higher Vapor Pressure Deficit (VPD), which led to lower GPP. This salt marsh demonstrates enhanced C uptake capabilities in a specific range of VPD, with peak efficiency observed at VPD levels ranging from 3 to 10 kPa. Conversely, CO2 absorption capacity diminishes when VPD falls outside this range.

Water scarcity negatively impacts plant life, potentially leading to ecosystem instability and reduced C uptake capacity under climate change. A focused exploration of influencing factors is warranted to enhance our understanding of the observed transition from a C sink to a weak C source in the second year. Considering the broader implications of water scarcity on plant and ecosystem health could inform strategies to mitigate climate-induced stress. Addressing these areas will advance our knowledge of C dynamics in salt marsh ecosystems, guiding conservation and management efforts.

How to cite: Lu, T.-Y., Russell, S., and Knox, S.: Controls on Interannual Variability of Carbon Dioxide (CO2) in a Coastal Wetland Ecosystem: Insights from Two-year Measurements in a Temperate Salt Marsh , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14700, https://doi.org/10.5194/egusphere-egu24-14700, 2024.

EGU24-15255 | ECS | Posters on site | BG4.1 | Highlight

Estimating current and future saltmarsh areas and carbon storage in Irish Blue Carbon habitats 

Andrea Fuchs, Shannon Burke, Isabelle Delamer, and Grace Cott

Saltmarshes protect the coast against storm surges and erosion, are important ecosystems for breeding and sheltering birds and fishes, and sequester large amounts of carbon in their soils. Natural plant colonisation of mudflats as well as future sea-level rise will contribute to new saltmarsh formation and additional managed realignment projects can improve national capacities to meet climate targets. In this study, we’re investigating the current and future extent of saltmarshes in Ireland and estimate their carbon storage potential. The areas of current saltmarshes are identified based on literature and openly available GIS data. The potential natural development and expansion of existing saltmarshes is analysed using mean and extreme water level data from marine tidal gauges and topographic elevation data of the adjacent terrestrial areas. Further, carbon storage in up to 1 m deep soils was determined in various types of saltmarshes in a nationwide field campaign and upscaled to estimate future blue carbon potential. Results show that e.g. saltmarshes in County Dublin could increase from 181 ha to 227 ha due to natural saltmarsh expansion, with a potential increase of stored carbon by 22,688 Mg Corg and avoiding the emission of 83,264 t CO2. However, saltmarsh depth plays a significant role in carbon sequestration. Thus, when considering carbon storage in only 10 cm deep soils the estimated carbon storage increase is reduced to 1,588 Mg Corg and 5,828 t CO2 emission avoided. Further, our results indicate that Irish saltmarsh plants sequester less carbon than species in China or the United States, thus lowering global blue carbon estimates. Results of this study will serve as a basis for managers and policymakers estimating carbon credit potentials of saltmarshes and planning Managed Realignment projects.

How to cite: Fuchs, A., Burke, S., Delamer, I., and Cott, G.: Estimating current and future saltmarsh areas and carbon storage in Irish Blue Carbon habitats, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15255, https://doi.org/10.5194/egusphere-egu24-15255, 2024.

EGU24-15440 | Orals | BG4.1

Carbon dynamics at the mudflat-marsh edge of a temperate tidal bay 

Pierre Polsenaere, Camille Péry, Eric Lamaud, Maxime Paschal, Nicolas Lachaussée, Natacha Volto, Nathalie Long, Bénédicte Dubillot, Jonathan Deborde, Louis Costes, Lucila Xaus, Benjamin Amann, Eric Chaumillon, Thomas Lacoue-Labarthe, Jean-Pierre Guéret, Marine Afonso, and Christine Dupuy

Vegetated coastal ecosystems are still under represented in regional/global carbon cycling and flux studies. Despite their small surface area, they represent a significant part in annual global ocean productivity (mudflats, up to 20%), carbon stored on Earth and in air-sea CO2 fluxes (wetlands, 17%). In the context of rising greenhouse gas emissions, climate change and mitigation, it is paramount to increase integrative and multidisciplinary approaches to better understand processes, flux dynamics and controlling factors at terrestrial-aquatic-atmospheric exchange interfaces at the various spatiotemporal scales. In this objective and the framework of the La Rochelle Zero Carbon Territory project (LRTZC 2019-27), the carbon dynamic was studied within a temperate intertidal bay (Aiguillon, French Atlantic coast) at its mudflat - salt marsh edge, colonized by microphytobenthic communities and halophytic plants respectively, and likely to influence associated carbon processes and fluxes. An atmospheric Eddy Covariance station was deployed with simultaneous seasonal in situ and satellite measurements within the different compartments (air, soil/sediment, water) and associated interfaces to temporally and spatially characterize atmospheric CO2 exchanges and controlling factors. Our first results showed mean CO2 sink values higher in spring than winter (-2.42±4.21 and -0.73±1.83 µmol m−2 s−1), at low than high tides (-1.26±3.14 and -0.49±2.45 µmol m−2 s−1) and from mudflats than marsh habitats (-1.47±2.79 and -0.98±3.56 µmol m−2 s−1). Photosynthetically active radiation, air temperature as well as wind direction significantly controlled CO2 fluxes through photosynthesis and respiration activities of involved habitats. At the small-time scales (diurnal, tidal), the tide clearly influenced carbon processes and fluxes at the studied site, though 90% of the time emerged. However, at larger time scales (seasonal, annual), observed incoming CO2 oversaturated coastal waters did not question the overall CO2 sinks ensured by the mudflat – marsh system. These ongoing LRTZC measurements and results take part in the better carbon process/flux understanding of under studied blue carbon ecosystems in France and elsewhere and will earn to be discussed in the context of the climate change and its potential impact on carbon budgets.

How to cite: Polsenaere, P., Péry, C., Lamaud, E., Paschal, M., Lachaussée, N., Volto, N., Long, N., Dubillot, B., Deborde, J., Costes, L., Xaus, L., Amann, B., Chaumillon, E., Lacoue-Labarthe, T., Guéret, J.-P., Afonso, M., and Dupuy, C.: Carbon dynamics at the mudflat-marsh edge of a temperate tidal bay, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15440, https://doi.org/10.5194/egusphere-egu24-15440, 2024.

EGU24-15567 | ECS | Posters on site | BG4.1

Carbon dioxide fluxes from an Irish saltmarsh 

Lisa Jessen, Elke Eichelmann, Andrea Fuchs, and Grace Cott

Saltmarshes are important ecosystems for carbon capture and storage and play a vital role in carbon cycling processes. Despite their significance, the carbon fluxes within Irish saltmarshes remain poorly understood, with a notable absence of greenhouse gas flux data from coastal wetlands in the region. This study addresses this gap by employing the eddy covariance method to calculate carbon dioxide (CO2) fluxes from Derrymore saltmarsh, County Kerry, a natural estuarine saltmarsh on the west coast of Ireland, from May 2023 to the present. The tower is equipped with an open path CO2 and water vapour (H2O) infrared gas analyser (LI-7500, LI-COR biosciences) and a sonic anemometer (CSAT3, Campbell Scientific) set 3.2m above the marsh surface. This method allows us to get continuous high frequency CO2 and H2O data with measurements being taken ten times per second.

Our findings reveal patterns in net ecosystem exchange (NEE), with higher values observed during autumn compared to summer months, attributed to reduced photosynthetic CO2 uptake. These findings are comparable to saltmarshes in other regions. With a project duration of 12 months, our hypothesis suggests Derrymore saltmarsh will act as a modest CO2 sink.

The use of the eddy covariance method allows us to get an overall picture as to the extent to which this saltmarsh acts as a carbon sink, giving us a better understanding of the carbon dynamics from this Kerry saltmarsh. This ongoing project contributes vital data to a broader initiative in Irish saltmarsh research, aiming to establish a scientific foundation for a comprehensive management framework. The framework will guide efforts in saltmarsh protection, restoration, and optimisation of carbon sequestration. Our research underscores the importance of understanding local variations in carbon dynamics, paving the way for informed environmental strategies in the context of climate change.

How to cite: Jessen, L., Eichelmann, E., Fuchs, A., and Cott, G.: Carbon dioxide fluxes from an Irish saltmarsh, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15567, https://doi.org/10.5194/egusphere-egu24-15567, 2024.

EGU24-17518 | ECS | Posters on site | BG4.1

Carbon footprint (uptake/sequestration) of freshwater marshes according to agricultural water management practices 

Marie Anais Perdrau, Pierre Polsenaere, Lilia Mzali, and Christine Dupuy

Recent scientific investigations have classified blue carbon ecosystems as coastal vegetated areas characterized by rooted vegetation and marine sediments, spanning coastal, continental shelf, and offshore regions. While vegetated coastal salt marshes are recognized as highly effective carbon storage ecosystems, there is a limited understanding of the blue carbon potential when these ecosystems are transformed into embanked freshwater agricultural marshes. In regions like Charente-Maritime (France), where marshes cover 15 to 20%, comprising 95,000 hectares of freshwater marshes and 15,000 hectares of saltwater marshes, human activities through farming and water control, play a pivotal role in shaping and managing these areas. This results in a blend of water and land habitats, namely ditches and meadows, crucial for biodiversity maintenance and carbon storage. Despite the well-documented green carbon storage potential of meadows, able to store up to 1200 Kg C/ha/yr, the blue carbon footprint (uptake/sequestration) of associated freshwater ditches or wet meadows under various water management practices remains inadequately understood.

The present PhD work is closely aligned with two prominent regional blue carbon initiatives in France, namely TETRAE MAVI (Living Marshes) and LRTZC (La Rochelle Zero Carbon Territory). It focuses on the impact of water management practices in Charente's marshes on biodiversity and carbon dynamics in aquatic and terrestrial ecosystems. The study targets three different habitats - ditches, ditch edges, and wet meadows- and their corresponding compartments. Efforts will be made to understand the functional diversity of aquatic organisms (pelagic and benthic) and carbon dynamics in the water column, along with associated fluxes at exchange interfaces (water-air, sediment-air) using various methods such as sensors, chambers, samplings, and laboratory analyses.

A significant innovation of our work lies in the simultaneous consideration and measurement of blue carbon (aquatic) and green/brown carbon (terrestrial), leading to an integrative and comprehensive assessment. For example, one management approach, i.e. the dredging of a marsh (ditch), will enable a coupled analysis of blue carbon and green/brown carbon capture and sequestration, addressing the dual challenge of biodiversity and carbon balance on the terrestrial part too, considering all ecosystem components, and associated human activities.

The aim of this presentation is to present my PhD work in the framework of MAVI and LRTZC projects and to discuss the measurements and methodologies employed in our approach. Anticipated results will revolve around evaluating functional diversity and carbon capture/sequestration in the three studied habitat systems, considering human activities. To achieve this, a two-year on-site monitoring, coupled with laboratory measurements, will be conducted within an experimental unit in Charente-Maritime, encompassing diverse freshwater marsh habitats and ensuring logistical instrumentation and reliable data acquisition. Standardizing carbon footprint analysis methodologies is crucial for a consistent and reliable assessment of the carbon balance as intended here in this work presentation that would benefit from discussions to optimize the associated efficiency and overall benefit to the blue carbon community.

How to cite: Perdrau, M. A., Polsenaere, P., Mzali, L., and Dupuy, C.: Carbon footprint (uptake/sequestration) of freshwater marshes according to agricultural water management practices, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17518, https://doi.org/10.5194/egusphere-egu24-17518, 2024.

EGU24-18253 | ECS | Posters on site | BG4.1

The diverse influence of halophyte species on carbon sequestration capacity in salt-marshes 

Tegan Blount, Sonia Silvestri, Marco Marani, and Andrea D'Alpaos

As an ecosystem of high socioeconomic and ecological importance, global loss and degradation of salt-marshes has multifaceted detrimental impacts. Salt-marshes are recognised as blue carbon ecosystems and play a notable role in the global carbon cycle, due to their enhanced ability to efficiently uptake and store organic carbon over long time scales. The characterisation of salt-marsh carbon sequestration capacity across spatial and temporal scales, however, is challenging due to the inherent complexities of the factors which dictate these processes. To capture the spatial variability, it is necessary to formulate relationships between halophyte specie above and below ground biomass and subsoil organic carbon content and then examine how this interacts with hydraulic regimes, geomorphological context and external pressures. In this study, seven typically occurring associations of halophyte species in the Venice Lagoon (Italy) were selected and the relative magnitude of above and below ground biomass as well as their relationship to soil organic carbon content was examined for each association. Specifically, the analysis examined measurements of AGB, BGB, LOI, SOC and Bulk Density at 54 sample sites over two different years for species associations dominated by Inula crithmoides, Sarcocornia fruticose, Juncus maritimus, Limonium narbonense, Spartina maritima, Spartina anglica, and Salicornia veneta. The results confirmed that the association type is influential and must be considered when mapping carbon sequestration capacity. The halophyte evolutionary differences paired with geomorphology and external forcings play a key role in determining the spatial variability of carbon sequestration capacity. Above ground biomass has a stepped increase on the transition between low and high marsh with the greatest densities being found in the high marsh, often adjacent to channels. Whereas, below ground biomass and soil organic carbon content peaked in the middle marsh zone. Furthermore, the below ground to above ground biomass ratio depends strongly on the association, the higher ratios being found in the low to middle marsh. Overall, the derived patterns in halophyte biomass and sequestration capacity across diverse associations of species is vital for predicting below ground biomass and organic carbon content based on above ground biomass. These results support salt-marsh monitoring and modelling endeavours, particularly in a sustainable coastal management and blue carbon assessment context.

How to cite: Blount, T., Silvestri, S., Marani, M., and D'Alpaos, A.: The diverse influence of halophyte species on carbon sequestration capacity in salt-marshes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18253, https://doi.org/10.5194/egusphere-egu24-18253, 2024.

EGU24-18776 | ECS | Posters on site | BG4.1

A human-in-the-loop approach to monitor blue carbon ecosystems at scale with Copernicus Sentinel-2 imagery 

Gyde Krüger, Silvia Huber, Lisbeth T. Nielsen, Paul Daniel, Charalampos Malathounis, and Lars B. Hansen

A human-in-the-loop approach to monitor blue carbon ecosystems at scale with Copernicus Sentinel-2 imagery

Blue carbon ecosystems, such as seagrass meadows, mangroves or coral reefs play an essential role for food provision, erosion control, disaster resilience, biodiversity and as habitats, and in addition they serve as important natural sinks for carbon. With increasing climate pressures and human impacts related to eutrophication, overfishing and habitat fragmentation, the coverage and health of these coastal habitats have declined globally. To address this, it requires first and foremost an accurate quantification of the distribution and quality of these ecosystems. This poses challenges from multiple angles (i.e., lack of manpower, fiscal limitations, etc.). By exploiting the full capacity of Copernicus Sentinel-2 imagery and AI technology, we have developed a cloud-based interactive platform, MCSAV – short for Mangrove, Coral and Submerged Aquatic Vegetation (Figure 1) – to map and improve the planning, management and monitoring of blue carbon ecosystems worldwide. The platform is designed with a focus on making coastal mapping as easy as possible for users with greater local knowledge of blue carbon ecosystems but without expert knowledge in satellite image processing or machine learning. The entire mapping process, from the selection of suitable satellite imagery to the final classification, can be executed in just a few clicks with the platform. The backbone of the classification model that is integrated into the backend of the platform, is a pretrained convolutional neural network (DeepResUNet). A Human-in-the-Loop component allows fine-tuning of the pre-trained classification model with additional training data.

Our approach has already been applied to high latitude regions with success [1] and is currently applied to Semporna in Sabah, Malaysia, as part of the United Nations Development Programme’s (UNDP) third cohort of Ocean Innovations on marine protected areas, area-based management, and blue economy.

We will give an introduction into the project, present the methods implemented in our interactive mapping approach, and demonstrate the coastal mapping tool. We will conclude with some lessons learnt and an outlook.

Figure 1 MCSAV interface showing Copernicus Sentinel-2 image of 13 March 2023 after pre-processing module has been run (top) and an example habitat classification (preliminary) and deepwater areas for Mapul region (bottom).

 

References

[1]          S. Huber et al., “Novel approach to large-scale monitoring of submerged aquatic vegetation: A nationwide example from Sweden,” Integr Environ Assess Manag, vol. 18, no. 4, pp. 909–920, 2022, doi: https://doi.org/10.1002/ieam.4493.

 

How to cite: Krüger, G., Huber, S., Nielsen, L. T., Daniel, P., Malathounis, C., and Hansen, L. B.: A human-in-the-loop approach to monitor blue carbon ecosystems at scale with Copernicus Sentinel-2 imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18776, https://doi.org/10.5194/egusphere-egu24-18776, 2024.

EGU24-19077 | ECS | Posters on site | BG4.1

Large porewater-derived carbon outwelling across two mangrove-seascapes revealed by radium isotopes 

Alex Cabral, Gloria M. S. Reithmaier, Yvonne Y. Y. Yau, Luiz C. Cotovicz Jr., João Barreira, Bárbara Viana, Juliana Hayden, Steven Bouillon, Nilva Brandini, Carlos E. de Rezende, Alessandra L. Fonseca, and Isaac R. Santos

Mangroves have high CO2 sequestration capacity, storing large amounts of carbon on their biomass and sediments/soil. Mangrove carbon is also transported to the ocean, i.e. outwelling or lateral fluxes, where it can be stored for long time scales. Here, we used radium isotopes (224Ra and 223Ra) to resolve carbon and alkalinity outwelling to the ocean from two mangrove seascapes in Brazil. We sampled porewaters to define the source composition, mangrove creek waters to resolve tidal cycles, and performed transects away from the mangrove into continental shelf to trace mangrove carbon across the seascape. High-resolution observations of radium isotopes in the creek indicated that tidal pumping is the main driver of carbon exchange. Low pH (6.8 – 7.0) and high 224Ra activities (165 – 290 dpm 100L-1) were found during low tides, indicating mangrove porewater exchange. Radium mass balance models revealed porewater exchange at 20.0 ± 25.4 cm d-1 in the tropical mangrove and 3.0 ± 2.0 cm d-1 at the sub-tropical mangrove. Radium-derived transport rates of mangrove porewater to the continental shelf were higher in the mesotidal tropical (667 ± 313 m d-1) than the microtidal subtropical (371 ± 168 m d-1) seascape. Radium isotopes were positively correlated (p < 0.05) with dissolved inorganic (DIC), organic (DOC) and particulate organic (POC) carbon across the entire seascape. DIC as bicarbonate (HCO3-) was the main form of carbon on all scales in both mangrove seascapes, representing 57 – 82% of the total carbon pool. DOC and POC accounted for 5 – 12% and 1 – 7% of total carbon, respectively. Although mangrove waters emitted CO2 to the atmosphere (38.4 – 142.9 mmol m-2 d-1), both bays and continental shelves were a CO2 sink (-1.9 – -0.6 mmol m-2 d-1). Porewater-derived carbon outwelling exceeded carbon fluxes at the mangrove-bay and bay-shelf interfaces, indicating carbon transformations across the seascape continuum. Total carbon outwelled from mangroves were 3 – 4 times higher than soil carbon burial at both mangrove sites. Bicarbonate outwelling (31.0 – 71.6 mmol m-2 d-1) reaching the continental shelves increased mangrove soil carbon sequestration capacity by 234% in these mangrove systems. Hence, overlooking outwelling as a blue carbon sink mechanism would underestimate the role of mangroves in sequestering CO2 and mitigating climate change.

How to cite: Cabral, A., M. S. Reithmaier, G., Y. Y. Yau, Y., C. Cotovicz Jr., L., Barreira, J., Viana, B., Hayden, J., Bouillon, S., Brandini, N., E. de Rezende, C., L. Fonseca, A., and R. Santos, I.: Large porewater-derived carbon outwelling across two mangrove-seascapes revealed by radium isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19077, https://doi.org/10.5194/egusphere-egu24-19077, 2024.

EGU24-19624 | Posters on site | BG4.1

Spatial variability of Soil Organic Matter and Carbon content in the salt marshes of the Venice Lagoon 

Andrea D'Alpaos, Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, and Marco Marani

Salt marshes are crucial eco-geomorphic features of tidal environments, providing numerous important ecological functions and delivering a wide range of ecosystem services that contribute to human well-being. Salt-marsh evolution is controlled by the interplay between hydrodynamics, geomorphology, and vegetation, as marshes accrete vertically through the deposition of both organic matter (OM) and inorganic sediments. This allows marshes to keep pace with relative sea-level rise, and likewise capture and store carbon (C), making them valuable allies in climate mitigation strategies. Thus, Soil Organic Matter (SOM) plays a key role within salt-marsh environments, directly contributing to soil formation and supporting C storage. Distribution patterns of SOM in salt marshes may vary in space and time across and within tidal wetland types depending on different factors including vegetation, sediment, and morphodynamics.

 

To better understand variations in SOM distribution and further comprehend physical and biological factors driving OM and C dynamics in salt-marsh soils, we analyzed soil organic content in 10 salt marshes of the microtidal sediment-starved Venice Lagoon (Italy), from 60 sediment cores to the depth of 1 m. These analyses allowed us to relate SOM patterns to soil, vegetation, and morphological variables, as well as depositional patterns testified by recent sedimentary successions.

 

Our results reveal two scales of variations in sedimentary OM content in salt-marsh soils. At the marsh scale, OM variability is influenced by the interplay between surface elevation and changes in sediment supply linked with the distance from tidal channels. At the system scale, OM content distribution is dominated by the gradient generated by marine and fluvial influence. Variations in inorganic and organic inputs, both autochthonous and allochthonous, sediment grain size, and preservation conditions may explain the observed variations in SOM. Our results highlight marsh importance as carbon sink environments, furthermore emphasizing that environmental conditions within a tidal system may generate strongly variable and site-specific carbon accumulation patterns, enhancing blue carbon assessment complexity.

How to cite: D'Alpaos, A., Puppin, A., Tognin, D., Ghinassi, M., Franceschinis, E., Realdon, N., and Marani, M.: Spatial variability of Soil Organic Matter and Carbon content in the salt marshes of the Venice Lagoon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19624, https://doi.org/10.5194/egusphere-egu24-19624, 2024.

EGU24-19749 | ECS | Orals | BG4.1

Carbon provenance study of Irish saltmarshes using bacteriohopanepolyol biomarkers 

Saule Akhmetkaliyeva, Eliza Fairchild, and Grace Cott

Coastal blue carbon ecosystems (BCEs) are one the of largest carbon sinks and play a significant role in the global carbon cycle. Approximately 40 km2 of coastline in Ireland are saltmarshes. Despite their importance, globally BCEs are being lost at an alarming rate of 1–2% for tidal marshes and 0.4–2.6% for seagrass beds annually, primarily due to anthropogenic activity, which is exacerbating climate impacts. Understanding the relative contributions of allochthonous and autochthonous carbon sources to saltmarsh carbon sequestration and the origin and sources of organic carbon, termed “carbon provenance”, is essential for accurately assessing the carbon sequestration potential of saltmarshes and developing effective strategies for climate change mitigation. This study aims to develop our understanding of the carbon sequestration mechanisms in saltmarshes in Ireland using organic carbon (OC) concentration and bacteriohopanepolyol biomarkers (BHPs, a group of membrane lipids that can be used to trace major microbial groups). We sampled two estuarine saltmarsh sites, one on the east coast (North Bull Island, county Dublin) and one on the west coast (Derrymore island, county Kerry) of Ireland. Initial OC concentrations ranged from 0.40 to 23.69 wt% in samples from North Bull Island and from 0.40 to 28.53 wt% in Derrymore island. Further, we expect to gain a better understanding of terrestrial versus marine input of OC using an Rsoil index using relative distribution of soil specific BHPs and bacteriohopanetetrol (used as a marine signature). These results will guide management and successful saltmarsh restoration schemes aimed at enhancing blue carbon sequestration in Ireland.

How to cite: Akhmetkaliyeva, S., Fairchild, E., and Cott, G.: Carbon provenance study of Irish saltmarshes using bacteriohopanepolyol biomarkers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19749, https://doi.org/10.5194/egusphere-egu24-19749, 2024.

EGU24-20114 | Orals | BG4.1 | Highlight

Blue carbon credits: a lot of promises but even more uncertainties for the Global South 

Marie-Christine Cormier-Salem, Adrien Comte, Patrice Guillotreau, Christophe Proisy, Solène Manouvrier, Issa Sakho, Claudia Agraz Hernández, Mario Soares, and Romain Chabrol

Sustainable science, socio-environmental justice and equity will determine the co-benefits necessary for the credibility, acceptability and effectiveness of blue carbon credits. Bringing together a team of researchers from various disciplines and regions of the world, we reflect on our experience of mangrove ecosystems and the influence of carbon markets on the evolution of mangroves to produce policy recommendations. The blue carbon market must not distract policy-makers from the goal of urgent and massive emission reductions in the Global North, and must be demonstrated to be equitable and inclusive in and with the Global South and useful to effectively sequester and store carbon everywhere. For this to happen, blue carbon finance strategies must be co-designed with all stakeholders, with a particular attention to the most vulnerable people in the Global South. More globally, an integrated approach addressing carbon storage but also adaptation capacities, biodiversity conservation and benefits for the communities is to be preferred.

How to cite: Cormier-Salem, M.-C., Comte, A., Guillotreau, P., Proisy, C., Manouvrier, S., Sakho, I., Hernández, C. A., Soares, M., and Chabrol, R.: Blue carbon credits: a lot of promises but even more uncertainties for the Global South, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20114, https://doi.org/10.5194/egusphere-egu24-20114, 2024.

EGU24-20196 | Orals | BG4.1

Flooded mangroves as a record of sediment accretion and carbon burial rates during Holocene sea-level rise in Rio Lagartos, northern Yucatan Peninsula, Mexico 

Misael Diaz Asencio, Mark Brenner, Nancy Suárez-Mozo, Jason Curtis, Corina Solís, María Cejas-Rodríguez, Luis W. Daessle, Vanesa Papiol, and Cecilia Enriquez

Coastal zones are dynamic regions that change over time because of both natural processes and human activities. Such changes occur over different time scales, from days (e.g., those caused by hurricanes) to millennia (e.g., those caused by sea level rise). Sediments in these zones preserve information about past environmental changes, which can be inferred from shifts in the composition and accumulation rate of accrued deposits. We investigated the transformation of an intertidal zone dominated by mangroves into an underwater system characterized by carbonate accumulation. We used stratigraphic records of sediment cores to estimate organic carbon burial rates during the intertidal phase (flooded mangrove), which existed more than 3000 years ago. We collected sediment sequences using a piston corer in the eastern sector of the coastal Río Lagartos Lagoon, northern Yucatán Peninsula, Mexico, which, because of its shallow depth and morphology, is very sensitive to drivers of change. Organic matter was relatively higher at depth in the core (15-50 cm), but upper sediments (0-15 cm) were dominated by carbonate. AMS 14C ages on total organic matter were obtained at two depths. The 14C age at 40-45 (3498 ± 35 years BP) was only slightly older than the age at 25-30 cm (3312 ± 35 years BP). The mean organic carbon (OC) burial rate in the interval 25-40 cm was 53 g m-2 yr-1, a value in the range reported for recent OC accumulation in mangroves of Yucatán. Based on the age of the 25-30 cm section and the current water depth in the area (~1 m), we estimate an increase in the sea-level rise of 0.4 mm yr-1 over the last 3000 years, lower than values reported for the area using estimates of recent accretion of sediments. This work highlights the high OC burial rates in ancient mangroves, which today are flooded and are areas that are accumulating carbonate. Our findings illustrate the importance of conserving mangrove-dominated lagoon systems on the Yucatán Peninsula, which are important carbon sinks.

How to cite: Diaz Asencio, M., Brenner, M., Suárez-Mozo, N., Curtis, J., Solís, C., Cejas-Rodríguez, M., Daessle, L. W., Papiol, V., and Enriquez, C.: Flooded mangroves as a record of sediment accretion and carbon burial rates during Holocene sea-level rise in Rio Lagartos, northern Yucatan Peninsula, Mexico, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20196, https://doi.org/10.5194/egusphere-egu24-20196, 2024.

EGU24-20654 | Orals | BG4.1 | Highlight

The dynamic of surface elevation changes over a range of mangrove management strategies in degraded coastal zone of Java, Indonesia 

Daniel Murdiyarso, Trialaksita SP Ardhani, Mikah Royna, Phidju M Sagala, and Sigit D Sasmito

Over the years the northern coast of Java has been subjected to extensive land-use change due to high population pressure. Removal of mangroves and development of aquaculture are rampant. As a consequence, many parts of the region have been flooded and submerged. It is not clear however, whether the submergence is due to sea level rise or land subsidence or both. Here, we reveal the range of surface change with high accuracy following land management strategy post conversions. Mangroves in converted area suffered the most from subsidence, which ranged between 5 and 45 mm yr-1. Meanwhile, in protected areas, instead of subsidence, land build up or accretion which ranged between 11 and 22 mm yr-1 were observed. These data suggest that restoring degraded mangrove should take into account the accommodation capacity of the landscape in order to secure the survival of newly introduced seedlings. In addition, the threat of sea level rise of 4.7 mm yr-1.

Keywords: accretion rate, restoration, rSET, sea level rise, sub-surface change

How to cite: Murdiyarso, D., Ardhani, T. S., Royna, M., Sagala, P. M., and Sasmito, S. D.: The dynamic of surface elevation changes over a range of mangrove management strategies in degraded coastal zone of Java, Indonesia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20654, https://doi.org/10.5194/egusphere-egu24-20654, 2024.

EGU24-625 | ECS | Posters on site | BG4.2

Developing the First National Blue Carbon Inventory for the Isle of Man 

Hannah Muir, Jacqui Keenan, Rowan Henthorn, James Strong, David G. Reading, Peter Duncan, Martin W. Skov, Jan G. Hiddink, Richard K. F. Unsworth, Phillip E. Warwick, and Claire Evans

Temperate coastal ecosystems including seagrass, saltmarsh, and shelf-sea sediments are natural, long-term ‘blue carbon’ (BC) sinks, with the potential to be managed for carbon storage and sequestration. These BC hotspots could help offset unavoidable greenhouse gas emissions and contribute to nations' Net Zero ambitions. The Isle of Man, a self-governing British Crown Dependency situated in the Irish Sea, has territorial waters equivalent to approximately 85% of its total jurisdiction. The island's Government is actively developing a comprehensive BC management plan aimed at maximising carbon sequestration and restoring seabed biodiversity and ecosystem services.

To inform the management plan, sediment cores were collected from three major BC habitats around the Isle of Man: seagrass, saltmarsh, and shelf-sea sediments. The cores were analysed using elemental analysis and isotope ratio mass spectrometry to quantify organic and inorganic carbon stores. Radioanalytical methods were employed to measure radionuclides (137Cs, 210Pb, 241Am, and 210Po), which were used to determine sedimentation rates and subsequently carbon accumulation rates. Complementary analyses, including grain size analysis, X-ray fluorescence, X-ray scans, and high-resolution imagery, provide a holistic understanding of the chemical, physical, and biological attributes of the sedimentary cores, illuminating the processes influencing BC storage. Furthermore, side scan sonar, drop-down video, and drone imagery have been used to assess the extent of existing seagrass meadows, which is central to informing spatial-management strategies, particularly in the establishment of seagrass conservation zones.

Our findings will help to develop the first national BC inventory for the Isle of Man and set a precedent for co-designed, collaborative, evidence-informed approaches for the sustainable management of coastal ecosystems.

How to cite: Muir, H., Keenan, J., Henthorn, R., Strong, J., Reading, D. G., Duncan, P., Skov, M. W., Hiddink, J. G., Unsworth, R. K. F., Warwick, P. E., and Evans, C.: Developing the First National Blue Carbon Inventory for the Isle of Man, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-625, https://doi.org/10.5194/egusphere-egu24-625, 2024.

EGU24-636 | ECS | Orals | BG4.2

Abandoned tidal channels as hotspots of Blue Carbon 

Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Andrea D'Alpaos, and Alvise Finotello

Tidal marshes, recognized as “Blue Carbon ecosystems” for their high carbon sequestration rates, owe their carbon storage potential to primary production and rapid surface accretion driven by complex feedbacks among hydrodynamic, morphological, and biological processes. Tidal channel networks cutting through tidal wetlands exert a first-order control on ecogeomorphological dynamics by critically controlling fluxes of nutrients, sediments, and particulate matter. Although these networks have been traditionally seen as stable features, recent studies have shown that they are in fact highly dynamic systems. In particular, lateral channel migration, coupled with high drainage density, leads to frequent channel abandonment through meander cutoffs and channel piracies (i.e., stream captures). These processes significantly impact sediment dynamics, since reduced flow velocities within abandoned channels promote particle settling and channel infill, thereby providing ideal conditions for rapid organic matter deposition and trapping.

To characterize the depositional processes occurring in abandoned tidal channels and investigate their role in blue carbon sequestration and storage, we analysed several sediment cores retrieved from abandoned tidal channels in the microtidal Venice Lagoon, Italy. Cores were sampled every 5 cm for soil dry bulk density, organic matter, and organic carbon content. Organic matter content was estimated as the difference in weight before and after the Loss-On-Ignition (LOI), while organic carbon was directly measured using an elemental analyser. Sedimentary facies analyses allowed for identifying the deposits accumulated during the abandonment phase, while aerial and satellite image analyses facilitated the evaluation of the temporal evolution of the channel infill process, enabling the estimation of the related infill rate. Combining infill rate and organic carbon density, we estimated the carbon accumulation potential of abandoned tidal channels, as well as its variability, comparing it to surrounding marshes.

Preliminary results show that even if channel fill deposits are characterized by slightly lower organic matter content relative to marsh deposits, they feature significantly higher carbon accumulation rates owing to higher sediment deposition rates. These findings suggest that abandoned tidal channels could represent key hotspots for blue carbon accumulation. Consequently, a better understanding of depositional processes and carbon accumulation in abandoned tidal channels, as well as their characteristic spatiotemporal dynamics, can critically enhance the assessment of blue carbon sequestration and stock in coastal wetlands, providing crucial insights for effective conservation and restoration strategies.

How to cite: Puppin, A., Tognin, D., Ghinassi, M., D'Alpaos, A., and Finotello, A.: Abandoned tidal channels as hotspots of Blue Carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-636, https://doi.org/10.5194/egusphere-egu24-636, 2024.

EGU24-863 | ECS | Orals | BG4.2

Exploring Macroalgal Carbon Dynamics in a Changing Climate of Arctic Fjords 

Mayuri Rabha, Biswajit Roy, and Archana Singh

The rapidly warming Arctic, exceeding global averages, experiences heightened macroalgal growth in high Arctic fjords due to rising seawater temperatures and reduced sea ice. However, uncertainties surround the consequences of climate-induced changes in the carbon cycle resulting from extensive macroalgal growth and increased carbon flux dynamics in these fjords. This study examines the fate of macroalgal-derived fatty acids (Saturated Fatty Acid: SFA, Monounsaturated Fatty Acids: MUFA and Polyunsaturated Fatty Acids: PUFA) across Kongsfjorden and Krossfjorden (Ny-Alesund) in response to Arctic amplification. For this study, dominant brown, green, and red macroalgal species (n=20), along with sediment samples (n=18) across the fjords, were collected during summer 2022. Brown algae dominated with the highest average fatty acid concentration 435.72 ±534.14 μg/g, while red and green algae had lower concentrations 72.84 ±52.75 μg/g and 90.25 ± 84.67 μg/g, respectively. Brown algae exhibited a concentration trend of SFA>MUFA>PUFA, while green and red showed SFA>PUFA>MUFA. The primary PUFA in these algae were n-C18 and n-C20, and filamentous growth forms exhibited higher levels compared to thallus or short/dwarf forms in green and red algae. However, brown algae, except for the genus Chorda, did not exhibit clear trends for these compounds. The distinct phylogenetic position of brown algae from red and green algae likely accounts for these divergent patterns. The filamentous form having the highest concentration of fatty acids could result from increased resistance to degradation, attributed to their minimized surface-to-volume ratio. Macroalgal species outside their natural habitat (ex-situ) had higher PUFA, MUFA, and SFA concentrations, likely due to unfavourable conditions of growth in intertidal regions, suggesting enhanced adaptation for growth across the arctic fjords. While in the sediments, a significant (~50%) reduction in the PUFA and MUFA fraction concerning SFA was observed. The transport of the algal material was more towards the outer fjord and was possibly favoured by glacial melting and runoff activities. The decrease in fatty acids derived from algae, coupled with the presence of iso- and anteiso- branched-chain fatty acids, implies limited residence and faster turnover of algal matter into intermediate metabolites by microorganisms, possibly bacteria. Such observation suggests a potential release of carbon fluxes into the atmosphere through degradation of lipids, and contributing to a negative trend in the macroalgal-induced carbon storage in fjords.

 

How to cite: Rabha, M., Roy, B., and Singh, A.: Exploring Macroalgal Carbon Dynamics in a Changing Climate of Arctic Fjords, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-863, https://doi.org/10.5194/egusphere-egu24-863, 2024.

EGU24-1793 | Orals | BG4.2

Impacts of demersal fishing on sedimentary organic matter: a global meta-analysis. 

Marija Sciberras, Sarah Paradis, Justin Tiano, Emil De Borger, Clare Bradshaw, Claudia Morys, Antonio Pusceddu, Claudia Ennas, Karline Soetaert, Pere Puig, and Pere Masque

Marine sediments represent a hot spot of ecosystem services, but their integrity is increasingly put at risk by anthropogenic disturbance, most notably by demersal fisheries. The need for global action to minimize the impacts of destructive fishing techniques on the marine environment is urgent. The urgency to act, however, needs to be met with caution, as scientists are pushed for action, global predictions of trawling impacts are tempting, yet poor validation and oversimplified assumptions can lead to large uncertainties. We visit the scientific literature on trawl studies to map out current evidence from the literature and report on a global meta-analysis to quantify the effects of demersal fishing on sedimentary and biogeochemical properties. 

Studies examining the direct impacts of bottom fishing revealed significant reductions in total organic carbon (TOC; -10%), chlorophyll-a (Chl-a, -10%), phaeopigments (-21%) and proteins (-24%), and largest impact was detected on surficial sediment (0-2 cm). Implications of methodological biases as a result of inappropriate sampling in trawl studies and the importance of context-dependency for effect size is flagged up. Environmental parameters such as bottom current velocity and surface primary productivity significantly influenced both the direction and magnitude of fishing effects. We highlight where the lack of evidence lies that might create bias in regional and global models that require empirical data for validation. The objective is to summarize current knowledge and to direct future studies towards more robust analysis of the impacts of bottom trawling, which will provide a basis of sound advice to fisheries managers and policy makers.

How to cite: Sciberras, M., Paradis, S., Tiano, J., De Borger, E., Bradshaw, C., Morys, C., Pusceddu, A., Ennas, C., Soetaert, K., Puig, P., and Masque, P.: Impacts of demersal fishing on sedimentary organic matter: a global meta-analysis., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1793, https://doi.org/10.5194/egusphere-egu24-1793, 2024.

EGU24-3088 | ECS | Orals | BG4.2

Effect of addition of organic carbon on greenhouse gas release and subsurface biogeochemistry in salt marshes 

Nora Kainz, Franziska Raab, Andreas Kappler, and Prachi Joshi

Vegetated coastal wetlands – comprising mangroves, salt marshes, and seagrass meadows – play an important role in the global carbon cycle due to their high sequestration rates of carbon (annual organic carbon burial rate 114-131 Tg C). The decomposition of organic carbon by microorganisms in these ecosystems causes greenhouse gas releases such as carbon dioxide (CO2) and methane (CH4). Understanding the rate and extent of microbially mediated greenhouse gas formation from coastal wetlands under current climate conditions is needed to predict greenhouse gas fluxes from these ecosystems with future climate change. Here, we investigate the processes that control the microbial decomposition of organic carbon at the Wadden Sea, northern Germany. Our preliminary field and laboratory results indicate that the degradation of organic carbon is not limited by the availability of electron acceptors such as sulfate, but rather by the concentrations and composition of the organic carbon itself. The objective of this project was therefore to test how the microbially mediated degradation of organic carbon and thus greenhouse gas fluxes change as a consequence of organic carbon input to the sediment. To do this, we conducted a field experiment in which we injected two different organic carbon sources separately into the sediment of the Wadden Sea and measured greenhouse gas fluxes over the course of six weeks. We choose acetate as a relatively labile organic carbon source and humic acids (purchased from the International Humic Substance Society) as a recalcitrant source. The in situ experiment was performed at two locations with differing tidal influence: (i) tidal flats, which are inundated twice a day during high tide, and (ii) pioneer marshes, which are inundated twice a month during spring tide. In addition to flux measurements, porewater, and sediment were sampled and used to study geochemical processes. For both marsh zones, an enhanced CO2 flux was measured for the plots where labile organic carbon was injected relative to control plots in which no organic carbon was added. However, the addition of the recalcitrant organic carbon only caused an increase in the CO2 flux in the tidal flat. Porewater data showed that the addition of the labile organic carbon promoted iron(III) reduction, especially in the pioneer marsh, while for the tidal flat, enhanced sulfate reduction was observed for both organic carbon sources. Overall, a significantly higher CO2 flux was measured from plots enriched with labile organic carbon. The gained knowledge is important in the context of predicting how such an ecosystem reacts to an additional input of organic matter e.g., caused by eutrophication or mobilization of organic matter. Furthermore, it is also relevant for estimating the extent and rate of greenhouse gas fluxes from these ecosystems.

How to cite: Kainz, N., Raab, F., Kappler, A., and Joshi, P.: Effect of addition of organic carbon on greenhouse gas release and subsurface biogeochemistry in salt marshes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3088, https://doi.org/10.5194/egusphere-egu24-3088, 2024.

EGU24-5089 | Orals | BG4.2 | Highlight

Substantial amounts of organic carbon are accumulated and stored in surface sediments of the Norwegian continental margin 

Markus Diesing, Sarah Paradis, Henning Jensen, Terje Thorsnes, Lilja Bjarnadóttir, and Jochen Knies

To keep the global average temperature rise well below 2°C requires drastic emission reductions and a removal of carbon dioxide (CO2) from the atmosphere. It has been suggested that part of the CO2 removal could be achieved by nature itself, if ecosystems that remove substantial amounts of carbon from the atmosphere are protected, managed, or restored. In the marine environment, the focus has so far been placed on coastal ecosystems with rooted vegetation (saltmarshes, mangroves, and seagrass beds), as they sequester carbon at high rates, are threatened by human activities and are amenable to management. Collectively, these are called actionable Blue Carbon ecosystems. More recently, other ecosystems such as marine sediments have been put forward, but these are currently considered emerging Blue Carbon ecosystems, as knowledge gaps do not allow us to decide yet, whether they are actionable or not. To help close some of the existing knowledge gaps we applied machine learning to spatially predict the amount of organic carbon that is stored in sediments of the Norwegian continental margin and the rates at which it is accumulated. We found that Norway has 100 times more organic carbon stored in its surficial (0 – 0.1 m sediment depth) seabed sediments than in its vegetated coastal ecosystems (0 – 1 m sediment depth). Rates of organic carbon accumulation vary spatially and are highest in depressions of the continental shelf that were carved out by glaciers during the last ice age. These so-called glacial troughs are found on the formerly glaciated continental margins of North America, Eurasia, south America, and Antarctica, covering an area ten times larger than that we mapped and might be important places of organic carbon accumulation globally. To improve our estimates of how much carbon accumulates in marine sediments at a global scale will require a) data on organic carbon content, dry bulk density and sediment accumulation rates of sufficient quality and quantity, b) relevant predictor variables of global coverage and sufficient resolution, and c) predictive spatial models that consider the complex nature of continental margins, where centres of organic carbon accumulation and cycling might be found in close proximity to each other. Based on improved global estimates of organic carbon stocks, accumulation rates and the release of CO2 due to anthropogenic disturbance (demersal fisheries, seafloor cables, offshore wind farms, deep-sea mining etc.) it should be possible to decide whether marine sediments can be considered actionable Blue Carbon ecosystems.

How to cite: Diesing, M., Paradis, S., Jensen, H., Thorsnes, T., Bjarnadóttir, L., and Knies, J.: Substantial amounts of organic carbon are accumulated and stored in surface sediments of the Norwegian continental margin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5089, https://doi.org/10.5194/egusphere-egu24-5089, 2024.

EGU24-5362 | Posters on site | BG4.2 | Highlight

A global inventory of shelf sea carbon 

Sophie Ward, James Scourse, Zoe Roseby, and Sarah Bradley

The ocean is known to be a vast and globally important carbon sink and there is an urgent need to better understand the role played by shelf sea sediments in the ocean carbon cycle. Organic carbon is preferentially stored in marine muds, the deposition of which has predominantly been dictated by bottom currents controlled by waves and tides. Through numerical modelling to predict carbon accumulation, alongside data mining and synthesis, we aim to make a first-order approximation of global carbon stocks in shelf sea sediments. We are developing new high resolution numerical models to simulate the timing and distribution of carbon-rich mud accumulations across global shelf seas. These models will reconstruct current flows near the seabed driven by the tides and waves, for the period since the Last Glacial Maximum (approximately 22,000 years ago). We incorporate dynamic palaeo-topographies from the latest regional glacial isostatic adjustment models, as well as adopting the novel approach of palaeo-wave modelling (forced by palaeo-wind datasets). The simulated hydrodynamics will be used to estimate where accumulation of fine sediments may occur on shelf seas. These synthetic maps of fine sediment deposits will be constrained and validated using observational data from sediment samples (e.g., data on sediment grain size and carbon content). Radiocarbon age-constrained samples from shelf sea sediment cores will then be used to test the validity of the model predictions for estimating accumulations of carbon-rich sediments over thousands of years. As this work considers potential mud accumulation – and carbon stocks - within muddy basin fills, it builds upon existing works which to date have primarily focused on surface sediment. This novel global inventory of shelf sea carbon stocks will inform global carbon budgets and protection- and restoration efforts of these globally significant blue carbon stocks.

How to cite: Ward, S., Scourse, J., Roseby, Z., and Bradley, S.: A global inventory of shelf sea carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5362, https://doi.org/10.5194/egusphere-egu24-5362, 2024.

There is ongoing debate on the influence of human activities on the marine carbon cycle, their potential impacts on climate and resulting implications for marine spatial management. In order to gauge the efficacy of different management options, we estimate the contributions of three direct human impacts on particulate organic carbon in the North Sea: material dumping, marine aggregate mining and bottom trawling. While dumping and mining are considered in a budgetary manner based on existing data, the impacts of bottom trawling are simulated using a high-resolution 3D ocean and sediment models. Several future scenarios of fishing closures and redistribution of effort are considered and their potential climate impacts discussed. Our results indicate that the impacts of sand mining are negligible, while both material dumping and bottom trawling can alter the sequestration capacity of carbon in the North Sea significantly. In the case of bottom trawling, we show that through targeted design of fishing closure zones, the impacts could be greatly reduced without the need to change the overall trawling effort.

How to cite: Porz, L. and Zhang, W.: Estimates of human influence on North Sea sedimentary carbon - Current impacts and future scenarios , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5772, https://doi.org/10.5194/egusphere-egu24-5772, 2024.

EGU24-5777 | ECS | Posters on site | BG4.2

Sedimentation rate decrease in the Skagerrak and its implication for human and natural impacts in the North Sea 

Timo Spiegel, Andrew W. Dale, Nina Lenz, Mark Schmidt, Michael Fuhr, Habeeb Thanveer Kalapurakkal, Matthias Moros, Sebastian Lindhorst, Hendrik Wolschke, Sabine Kasten, Martin Butzin, Gesine Mollenhauer, Daniel Mueller, and Klaus Wallmann

Since industrial times, human and natural processes have affected the sediment system of the North Sea. As a substantial proportion of the suspended sediment in the North Sea is ultimately deposited in the Skagerrak, it offers a representative archive for reconstructing the temporal variability of the North Sea sediment system. However, little is known about how sedimentation rates in the Skagerrak may have changed over time. In this study, we present high-resolution age-depth models based on the natural radionuclide 210Pb and the anthropogenic time markers 137Cs, 14C and mercury to determine average sedimentation rates before and after the year 1963 at six stations in the Skagerrak. This year was selected because its age-depth relationship was clearly reflected by peak activities or concentrations in the sedimentary data of the time markers. The main result of this study is a consistent decrease in sedimentation rates at all stations. On average, sedimentation rates decreased from 0.36 to 0.15 cm yr-1, suggesting a substantial alteration of the North Sea sediment system. We tentatively discuss possible driving factors including a shift in the North Sea circulation pattern, increased sediment deposition in the Wadden Sea, and reduced sediment inputs into the North Sea due to coastal protection and river damming. In terms of the overall North Sea sediment cycle, these processes may outweigh the effects of sediment resuspension by human activities and storm events, as well as temperature, humidity and sea level rise caused by climate change.

How to cite: Spiegel, T., Dale, A. W., Lenz, N., Schmidt, M., Fuhr, M., Kalapurakkal, H. T., Moros, M., Lindhorst, S., Wolschke, H., Kasten, S., Butzin, M., Mollenhauer, G., Mueller, D., and Wallmann, K.: Sedimentation rate decrease in the Skagerrak and its implication for human and natural impacts in the North Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5777, https://doi.org/10.5194/egusphere-egu24-5777, 2024.

EGU24-6380 | Orals | BG4.2

Locally refined spatial predictions of marine sediment carbon stocks from legacy data 

Mark Chatting, Markus Diesing, Anthony Grey, Brian Kelleher, and Mark Coughlan

The recent “30 by 30” global initiative to protect 30% of the world’s land and ocean by 2030 has increased the need for marine spatial planning decisions to be grounded in locally relevant empirical evidence. Continental shelves play a key role in the cycling of carbon, where marine sediments can act as an important sink of organic carbon (OC). As a result, marine sediments storing carbon have attracted recent scientific attention to elucidate the amount of OC stored and mechanisms influencing its sequestration. Spatial models of marine sediment OC stocks have previously been developed and provide preliminary estimates of standing stocks over wide geographical scales. However, these broad-scale predictions are derived from models of broad scale environmental regimes, which makes them unlikely to capture local spatial variations in environmental conditions and subsequently local variations in OC, reducing their utility for local scale marine spatial planning decisions. This study aims to determine whether legacy data could be used to produce local scale spatial predictions of OC relevant for policy makers. To achieve this aim, local scale predictors relevant for OC were produced/sourced in order to predict local-scale marine sediment OC in the Irish Sea. Legacy data of bottom water temperature (BWT) and bottom water salinity (BWS) measurements were used to bias correct and downscale global models of BWT and BWS. Recently developed high resolution sediment properties (% mud, % sand and % gravel) and locally developed Sediment Mobility and Sediment Disturbance Indices (SMI and SDI, respectively) were also sourced as potential predictors. Public-good, environmental consultancy and government agency repositories were also searched for OC-content data. A Random Forest model was trained to predict OC-content on localised predictors as well as previously identified important predictors of marine sediment OC. The outputs from the localised model were compared to one that was trained on broad-scale predictors to determine the change in model performance and utility for making local scale predictions. This study highlights the value of legacy data in contributing to locally refined spatial predictions of OC-content relevant for marine spatial planning decisions.

How to cite: Chatting, M., Diesing, M., Grey, A., Kelleher, B., and Coughlan, M.: Locally refined spatial predictions of marine sediment carbon stocks from legacy data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6380, https://doi.org/10.5194/egusphere-egu24-6380, 2024.

EGU24-7002 | Orals | BG4.2

Carbon Stocks and Greenhouse Gas Emissions (CO2 and CH4) in Mangrove Forests and Aquaculture Ponds in East Kalimantan, Indonesia   

Nisa Novita, Adibtya Asyhari, Chandra Agung Septiadi Putra, Adi Gangga, Rasis Ritonga, Aji Anggoro, Topik Hidayat, Yiwei Yang, Allison Lewin, and Muhammad Ilman

Mangroves, as part of the blue carbon ecosystem, are considered a cost-effective nature-based solution pathway to help mitigate climate change and achieve the Paris Agreement’s aim to limit warming to 1.5˚C. The accurate quantification of greenhouse gas (GHG) emissions and carbon accounting has become a key challenge for policymakers and scientists addressing climate change.  Globally, Indonesia emits the highest potential CO2 emissions from soils in the mangrove ecosystems because of its high rates of mangrove losses in recent decades. Unfortunately, there are limited studies on carbon and GHG emissions from Indonesian mangroves. This study aims to quantify carbon loss due to mangrove conversion due to aquaculture development by combining carbon stocks and GHG emissions data located in Tabalar Muara Village, Berau, East Kalimantan, Indonesia. We collected data from aboveground (vegetation, downwood) and belowground (roots and soil) carbon stocks in five and three transects of mangrove forests and aquaculture ponds, respectively. Soil bulk density and carbon concentration in various soil depth intervals were also analyzed. In addition, we conducted three consecutive days of regular monthly monitoring of CO2 and CH4 fluxes associated with soil physicochemical properties in mangrove forests and aquaculture ponds from January – December 2023. Total ecosystem carbon stocks in mangrove forests and aquaculture ponds were 926 ± 20 and 658 ± 45 Mg C ha−1, respectively. Thus, it implies 984 Mg CO2 ha−1 of potential carbon loss during mangrove forest conversion to aquaculture ponds. Soil carbon stocks between 0 and 300 cm depth varied significantly, where carbon stock in aquaculture ponds (658 Mg C ha−1) was 18% lower than in mangrove forests (777 Mg C ha−1). Soil carbon dominates total ecosystem carbon stocks by up to 88% in mangrove forests.  For GHG fluxes, mangrove forests have six times higher heterotrophic CO2 emissions (79.44 ± 4.47 Mg CO2 ha-1 yr-1) compared to that from the aquaculture ponds (13.88 ± 0.88 Mg CO2 ha-1 yr-1). The annual total CH4 flux was 17 times higher in mangrove forests (7.72 ± 0.50 Mg CO2e ha-1 yr-1) than in aquaculture ponds  (0.46 ± 0.04 Mg CO2e ha-1 yr-1). The results of this research are useful to refine GHG emissions accounting on mangroves by providing higher Tier of emission factors to fulfill Indonesia’s Enhanced Nationally Determined Contributions.

How to cite: Novita, N., Asyhari, A., Putra, C. A. S., Gangga, A., Ritonga, R., Anggoro, A., Hidayat, T., Yang, Y., Lewin, A., and Ilman, M.: Carbon Stocks and Greenhouse Gas Emissions (CO2 and CH4) in Mangrove Forests and Aquaculture Ponds in East Kalimantan, Indonesia  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7002, https://doi.org/10.5194/egusphere-egu24-7002, 2024.

EGU24-8634 | ECS | Posters on site | BG4.2

Assessing the influence of consolidation in marine sediment cores for Blue Carbon quantification 

Phoebe Walsh, Mike Long, Anthony Grey, Rasmus Svendsen, and Mark Coughlan

Blue Carbon traditionally refers to carbon buried and stored in coastal or terrestrial environments such as mangrove forests and seagrass meadows. However, marine sediments, like clays and sands, found on continental shelves, are increasingly being recognised as important Blue Carbon settings and are being included in national marine management plans.  To fully understand the importance of such environments and its potential to mitigate against climate change, a thorough understanding of the quantification of the carbon stored is required. This is performed through the analysis of marine sediment cores. 


Marine sediment cores are typically extracted by forcing a PVC pipe into the seafloor through varied methodologies. During the extraction process, the method itself can have adverse effects  on the sediment, including causing changes in profile integrity resulting in a shortening of the core profile through consolidation. This can increase the dry bulk density of the sediment, which is an important parameter in calculating carbon stock, resulting in an overestimation of results. There is a paucity of studies regarding the impacts these effects can have on the quantification of Blue Carbon in marine sediments. 


In this study, a set of cores were gathered from the same geographical location using three different offshore coring techniques, namely: gravity coring, vibro coring and box coring. These techniques are standard in offshore site investigations. Samples from these cores were used to assess the extent of the impact of consolidation on quantifying carbon stock measurements in marine sediments through several geotechnical techniques. These include evaluating parameters that directly influence consolidation in marine sediments, such as moisture content, Atterberg limits and particle size. Additionally, compressibility measurements, through oedometer testing, can help elucidate to what degree compaction may have taken place. Carbon stocks are calculated using total organic carbon and loss on ignition measurements, which will be compared across profiles from different coring techniques. Similarly, accumulation rates calculated using gamma spectrometry (e.g. 210Pb) allow for comparison across core profiles. These tests were performed across the three offshore coring techniques to determine which method of core extraction is optimal for Blue Carbon quantification.

How to cite: Walsh, P., Long, M., Grey, A., Svendsen, R., and Coughlan, M.: Assessing the influence of consolidation in marine sediment cores for Blue Carbon quantification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8634, https://doi.org/10.5194/egusphere-egu24-8634, 2024.

EGU24-9903 | ECS | Posters virtual | BG4.2

Understanding the methane cycle in heavily populated semi-closed Bays: a case study of Tokyo Bay and the Baltic Sea 

Satoko Owari, Marcelo Ketzer, Alexis Gilbert, Christian Stranne, Cheng Chang, and Changxun Yu

Methane is an important greenhouse gas, and global methane emission has been estimated separately from the perspective of anthropogenic and natural factors. However, in heavily populated semi-closed bays, methane emissions may be governed by both or even significantly amplified by human activities. One of the main factors mitigating methane emission from marine sediments to seawater and the atmosphere is the anaerobic oxidation of methane (AOM). The sulfate-rich zone acts as a barrier to methane release from the subseafloor because sulfate-dependent AOM removes sulfate and methane dissolved in interstitial water in a 1:1 molar ratio. Due to significant riverine inputs of freshwater and restricted water exchange, the seawater in some of the semi-closed bays is potentially fresher and has lower sulfate concentration, leading to a less effective AOM barrier for methane. Furthermore, the influx of nutrient-rich wastewater to densely populated semi-enclosed bays frequently leads to severe eutrophication, greatly enhancing biological productivity, anoxia, and the accumulation of organic-rich sediments in these systems. The objective of this study is to gain a deeper understanding of how the methane cycle is changed by anthropogenic activities in two case studies, with geochemical datasets collected from Tokyo Bay and the Baltic Sea, both known as heavily populated semi-closed bays.

We conducted sediment coring at the entrance of Tokyo Bay and offshore Stockholm in the Baltic Sea. Two cores (2.5 m in length) from Tokyo Bay and six cores (4 to 6 m in length) from the Baltic Sea were recovered, respectively. Organic matter in the surface of 1 m of sediment, which may have been strongly influenced by recent anthropogenic activities, showed 1.5 to 2% and 1.5 to 3.6% of total organic carbon (TOC) in Tokyo Bay and the Baltic Sea, respectively. These results indicate the Baltic Sea has a higher potential to generate more methane than the Tokyo Bay. The sulfate concentration at the seafloor was 27 mM in Tokyo Bay and 4 mM in the Baltic Sea and decreased with depth due to the AOM reaction reaching 0 mM at 2.5 mbsf in both bays. The thickness of the sulfate reduction zone was the same in both bays, even though they have a large difference in sulfate concentration in the bottom seawater. The iodine concentration, which has been used as a tracer for methane due to its close association with organic matter, increased with depth up to 74 µM at 2.5 mbsf in Tokyo Bay and 63 µM at 4.5 mbsf in the Baltic Sea. The iodine flux in Tokyo Bay was two times higher than in the Baltic Sea, indicating the possibility of strong methane flux from deeper sediments, which may not directly derive from Anthropocene organic-rich sediment. We will discuss and compare the details of the geochemical datasets in both Bays in the presentation.

How to cite: Owari, S., Ketzer, M., Gilbert, A., Stranne, C., Chang, C., and Yu, C.: Understanding the methane cycle in heavily populated semi-closed Bays: a case study of Tokyo Bay and the Baltic Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9903, https://doi.org/10.5194/egusphere-egu24-9903, 2024.

EGU24-10123 | ECS | Posters on site | BG4.2 | Highlight

Carbon storage and accumulation across the United Kingdom’s saltmarsh habitat.  

Craig Smeaton, Cai Ladd, Ed Garrett, Martha Hall, Lucy Miller, Lucy McMahon, Glen Havelock, William Blake, Natasha Barlow, Martin Skov, Roland Gehrels, and William Austin

Saltmarshes play a key role in the coastal carbon cycle through the capture and storage of organic carbon. Assessments of both organic carbon (OC) stocks and rates of OC accumulation are vital for quantifying saltmarsh contributions to climate-change mitigation and for guiding efforts to protect and restore coastal ecosystems. Current assessments of the magnitude of the store and rate of OC accumulating in UK saltmarshes are based on a small and spatially limited dataset. To address this knowledge gap, we collected sediment cores to quantify the OC stored in the soil and biomass of 26 saltmarshes and estimate OC accumulation rates for 22 saltmarshes distributed around the UK.

Across the saltmarshes, the estimated average store is 11.55 ± 1.56 kg C m-2 with values ranging between 2.24 kg C m-2 and 40.51 kg C m-2. These saltmarshes accumulate OC at a rate of 110.88 ± 43.12 g C m-2 yr-1 with values ranging from 27.57 g C m-2 yr-1 to 343.68 g C m-2 yr-1. These highly variable OC stocks and accumulation rates are dependent on interlinked factors, including local geomorphology, organic carbon source, sediment type (mud vs sand), sediment supply, and relative sea-level history.

By upscaling these estimates to all UK saltmarshes, it is calculated that these systems currently store 5.20 ± 0.65 Mt of OC and accumulate 46563 ± 4353 tonnes of OC annually. The low OC accumulation rates indicate that UK saltmarshes have relatively low additional Greenhouse Gas (GHG) abatement potential, but that they contain significant stores of OC within the ecosystem. This highlights the crucial need for the protection and restoration of existing OC stores within UK saltmarshes, providing climate benefits several times more significant than the annual accumulation of OC in these ecosystems.

How to cite: Smeaton, C., Ladd, C., Garrett, E., Hall, M., Miller, L., McMahon, L., Havelock, G., Blake, W., Barlow, N., Skov, M., Gehrels, R., and Austin, W.: Carbon storage and accumulation across the United Kingdom’s saltmarsh habitat. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10123, https://doi.org/10.5194/egusphere-egu24-10123, 2024.

EGU24-10812 | ECS | Orals | BG4.2

Rates and pathways of organic carbon mineralisation in different sedimentary environments of the Helgoland Mud Area, SE German Bight 

Daniel Müller, Bo Liu, Moritz Holtappels, Walter Geibert, Susann Henkel, and Sabine Kasten

Fine-grained coastal and continental margin sediments are the largest permanent sink for carbon on our planet. They are typically rich in organic matter and often characterised by high sedimentation rates – favouring the burial of carbon. The ultimate processes that control the preservation of organic matter (OM) and its burial to deeper sediment layers are the different aerobic and anaerobic microbial OM mineralisation pathways that occur in surface sediments. In order to assess the rates and pathways of OM degradation in fine-grained sediments of the North Sea, we have chosen the Helgoland Mud Area (HMA), which represents the most important mud depocenter in the German Bight. The HMA is located at water depths between 11 and 27 m and covers an area of about 500 km2 southeast of the island of Helgoland. We present a high spatial and vertical resolution pore-water dataset for the HMA of surface sediments retrieved using a multi-corer (MUC). This dataset includes oxygen profiles, pore-water profiles of sulfate, sulfide, nitrate, ammonia, dissolved iron, dissolved manganese, dissolved inorganic carbon and its stable carbon isotopic composition. A full diagenetic model for the uppermost 25 cm of the sediments was applied to estimate the rates of the different OM mineralisation pathways and the respective diffusive fluxes towards and across the sediment-water interface. The organic carbon burial flux and organic matter mineralisation rates range from 2.6 to 9.9 mmol m-2 d-1 and 1.9 to 9.1 mmol m-2 d-1, respectively. The highest remineralisation rates are attributed to aerobic respiration and account for up to 86 % of total OM mineralisation in the investigated surface sediments. Sulfate reduction is shown to be the second-most important mineralisation pathway of OM in the study area – except for three sites which are characterised by iron reduction and denitrification as the dominant mineralisation process after aerobic respiration. These results will be discussed in the context of the different depositional conditions, variations in particulate organic carbon (POC) accumulation and POC origin across the HMA.

How to cite: Müller, D., Liu, B., Holtappels, M., Geibert, W., Henkel, S., and Kasten, S.: Rates and pathways of organic carbon mineralisation in different sedimentary environments of the Helgoland Mud Area, SE German Bight, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10812, https://doi.org/10.5194/egusphere-egu24-10812, 2024.

EGU24-10923 | ECS | Orals | BG4.2

Landscape properties, habitat dynamics, and the carbon storage potential of seagrass meadows in the Wadden Sea 

Svenja Reents, Laura Hommes, Nele Schildt, Nicola Camillini, and Lasse Sander

Vegetated coastal ecosystems of the Wadden Sea, such as salt marshes and seagrass meadows, are important habitats and provide various ecosystem services. Efforts to protect and restore these valuable coastal systems are currently paralleled with an interest to better understand and quantify their carbon sequestration potential. Intertidal seagrass meadows comprise an area of more than 20,000 ha in the Wadden Sea, which might lead to the assumption that significant amounts of carbon are stored in these ecosystems. At present, however, very little data exists on carbon storage and dynamics in seagrass environments in the German Wadden Sea. Seagrasses declined massively about a century ago, but over the last decades underwent a process of unassisted recovery in the Wadden Sea of Schleswig-Holstein (northern Germany). Nevertheless, the two seagrass species, Zostera marina and Zostera noltii, are still mostly absent in similar coastal environments in western Germany and in The Netherlands – providing an example for the potential to enhance both ecosystem quality and carbon storage capacity.

In an ongoing study, we investigate characteristics of the tidal landscapes (e.g., surface elevation and geomorphology, adjacent landscape elements, and anthropogenic structures) and specific habitat properties (biomass productivity, sediment characteristics, hydrodynamic conditions, pore-water nutrients) at seven seagrass sites, located on tidal flats along dike-forelands of the North Sea coast of Schleswig-Holstein, northern Germany.

The aims are to (A) deliver a first assessment of the current carbon stocks, (B) quantify intra-site differences in realized seagrass habitats, and (C) understand differences in parameters that locally drive or inhibit the long-term build-up of carbon in seagrass meadows and their associated sedimentary systems. In this presentation, we will show and discuss our first preliminary results and interpretations.

How to cite: Reents, S., Hommes, L., Schildt, N., Camillini, N., and Sander, L.: Landscape properties, habitat dynamics, and the carbon storage potential of seagrass meadows in the Wadden Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10923, https://doi.org/10.5194/egusphere-egu24-10923, 2024.

EGU24-11348 | ECS | Orals | BG4.2

Organic carbon burial and degradation in estuarine sediments in Europe's largest port area (Port of Rotterdam, The Netherlands) 

Guangnan Wu, Bingjie Yang, Klaas Nierop, Gert-Jan Reichart, Julia Gebert, and Peter Kraal

Estuaries are highly active biogeochemical environments at the land-sea interface. They release approximately 0.25 Pg C y−1 on a global scale, which is equivalent to 17% of the total oceanic uptake despite occupying an area that is only 0.03% of the global oceans (Li et al., 2023). This disproportionate impact underlines the importance of understanding the processing of riverine and coastal carbon in estuarine systems. This processing, particularly the breakdown to form the greenhouse gases CO2 and CH4, is controlled by the properties (e.g. source and composition) of organic matter (OM) and the depositional conditions. In this respect, harbors are profoundly human-impacted estuaries that continuously supply vast quantities of organic-rich dredged sediment, the environmental footprint of which is of prime concern for sustainable coastal and port management. While sources and composition are essential parameters with respect to CO2 (and CH4) generation, these are challenging to determine in the dynamic setting of a harbor with strong tidal influence. Here, we use detailed organic chemical analyses to investigate how OM composition and depositional conditions control the release of greenhouse gases from (dredged) Port of Rotterdam sediment.

The Port of Rotterdam (PoR) is located in the Rhine-Meuse estuary, with sediment and OM composition controlled by the interaction between river, sea, and human activities. During a sampling campaign in 2021, both bulk surface sediments and intact sediment cores were collected at different geographical locations throughout the harbor. A general west-to-east gradient of marine influence was presented, which coincided with the changes of organic carbon and nitrogen content and their isotope abundance. The macromolecular organic matter (MOM) was isolated and analyzed with pyrolysis-GC-MS, revealing it to be of mixed terrestrial, marine, and potential anthropogenic origins. Particularly, the abundance of terrestrial pyrolytic biomolecules (e.g. guaiacols, syringols, polysaccharides) decreased as the depositional environment became increasingly marine. Despite of OM composition changes along the salinity gradient, similar organic matter degradation rates were measured in short-term (8-hour) whole-core incubations at two sites with contrasting bulk OM signatures. This was likely attributed to the rapid degradation of fresh OM at the sediment surface. In comparison, 6-week aerobic incubation suggested marine sediments possessed a larger labile carbon pool than riverine sediments. Our results indicated that PoR sediments are characterized by large spatial variability in OM quantity and quality, further determining the carbon stock and stability. OM source seems to play a crucial role in influencing the carbon stability. Considerable attention still needs to be given to link OM characterization and degradability. However, OM degradation results from OM properties governing degradability in combination with environmental conditions (e.g. electron acceptors, microbial activities, and temperature). This was witnessed by a significantly larger benthic methane efflux in riverine sediment than marine sediment. Besides, the relative significance of OM composition influencing on degradation also depends on the timescale of interest. Nevertheless, the spatial heterogeneity in OM stability between different depositional environments highlights the need for applying ‘carbon-sensitive’ management of sediments in relation to their reactive carbon fraction when exposed to human pressure and climate change.

How to cite: Wu, G., Yang, B., Nierop, K., Reichart, G.-J., Gebert, J., and Kraal, P.: Organic carbon burial and degradation in estuarine sediments in Europe's largest port area (Port of Rotterdam, The Netherlands), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11348, https://doi.org/10.5194/egusphere-egu24-11348, 2024.

EGU24-11523 | ECS | Posters on site | BG4.2

Intertidal blue carbon ecosystems and their socio-economic value at Lindisfarne, northern England  

Rebecca Dunn, Paul Hudson, and Ed Garrett

Coastal Blue carbon ecosystems offer a range of ecosystem services including, for example, carbon sequestration, feeding grounds for birds and flood defence. Therefore, the conservation and management of these ecosystems can act as a nature-based solution that contributes to multiple ecological and climate goals. Blue carbon ecosystems achieve this due to their multifaceted nature and how the communities surrounding these ecosystems interact with them. 

 

An example of blue carbon ecosystems can be found in Lindisfarne national nature reserve (NNR) located on the Northumberland coastline in the Northeast of England. The Lindisfarne NNR contains saltmarshes, seagrass meadows and sandflats in close proximity to each other. Moreover, Lindisfarne not only has value as a source of blue carbon but has further human value due to it being a destination for pilgrimages, bird watchers and holiday makers, as well containing a residential population with a small-scale fishery. Therefore, they represent locations of both natural and cultural capital.

 

The close proximity of multiple blue carbon ecosystems and various human interactions provides an opportunity for a significant comparative analysis of the above blue carbon ecosystems under similar socio-environmental conditions. We do so in terms of both their carbon sequestration potential as well as their socio-economic importance.

 

Through our comparative analysis we present two strands of work. The first is our findings regarding the estimated total sediment and vegetative carbon stock within the Lindisfarne NNR, including two seagrass meadows with contrasting sediment profiles. Additionally, we quantify the various pools of carbon storage: labile, refractory and organic; and the carbon accumulation rates of each studied ecosystem, using 210Pb and 137Cs dating analysed within a Bayesian framework. We also consider factors associated with carbon sequestration, such as vegetation coverage, surface elevation and sediment profile, in our analysis. In doing so this project will be one of the first to calculate carbon accumulation rates and carbon pools in UK seagrass meadows. The second strand of work is generated through a survey of the perceptions and values that people have towards coastal environments via discrete choice experiment survey. 

 

Taken together these results will provide insight into the design of coastal  management plans which focus on using the above blue carbon ecosystems as a tool for climate change mitigation through their long-term carbon sequestration as further contextualised through the priorities and values identified via the social survey.

How to cite: Dunn, R., Hudson, P., and Garrett, E.: Intertidal blue carbon ecosystems and their socio-economic value at Lindisfarne, northern England , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11523, https://doi.org/10.5194/egusphere-egu24-11523, 2024.

Marine sediments play a crucial role in the global carbon cycle by acting as the gateway from short- to long-term reservoirs of both terrestrial and marine organic carbon (OC). To understand the spatiotemporal variability, sources, composition and reactivity of OC in marine sediments, a curated and harmonized database of OC content and associated parameters is needed, especially considering the logistical challenges and costs of retrieving samples at sea. This has prompted the development of the Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC) database. Here we present an updated version, MOSAIC v.2.0, which stores variables such as OC content, its isotopic composition (δ13C, Δ14C), sedimentological parameters (e.g., grain size, mineral surface area), and associated molecular signatures (e.g., lignin, fatty acid, alkane biomarkers). MOSAIC v.2.0 offers a broad spatiotemporal coverage, with data from more than 21’000 individual sediment cores collected since the 1950s, providing a key tool to assess the role of coastal and marine sedimentary organic carbon in the global carbon cycle. A new and interactive open-access web-interface to the database will be presented, along with Python and R packages that allow users to integrate MOSAIC in their data processing workflows. Finally, initial applications of MOSAIC (v.2.0) to understand spatial patterns in the geochemical composition of marine sediment on regional and global scales will also be illustrated.

How to cite: Paradis, S. and Eglinton, T. I.: Introducing the Modern Ocean Sedimentary Inventory and Archive of Carbon (MOSAIC v.2.0) database and its initial applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12461, https://doi.org/10.5194/egusphere-egu24-12461, 2024.

EGU24-12798 | ECS | Posters on site | BG4.2

Trawling Impacts on Benthic Carbon Sequestration, Storage, and Processing: A Systematic Review 

Stacey Felgate, Michel Kaiser, and Marija Sciberras

Marine sediments are a significant sink for anthropogenic carbon dioxide (CO2)1. Bottom trawl fisheries constitute the most widespread physical disturbance to carbon-rich seabed habitats2. Recent research has sparked concern that this disturbance can turn marine sediments into a large source of CO23, but this is subject to ongoing debate4,5,6. Uncertainties exist regarding the effect of bottom trawling on carbon sequestration, remineralisation, and storage. To address this, we conducted a systematic review and meta-analysis of the existing literature to assemble a comprehensive, up-to-date database looking at how demersal mobile fishing affects: (i) the amount and type of carbon found in benthic sediments; (iii) the geochemical, biological, and physical parameters which control the fate of benthic carbon; (iii) the magnitude and direction of benthic-pelagic carbon fluxes; and (iv) the geochemical, biological, and physical parameters which control the fate of resuspended carbon. Here we present methodological details alongside preliminary findings of the resultant meta-analysis. We highlight the parameters which carry the greatest and least uncertainties and suggest key knowledge gaps to help target future field and laboratory studies to help better constrain the effect of bottom trawling on the benthic-pelagic carbon fluxes and processing.

1. Atwood et al., 2020. Global patterns in marine sediment carbon stocks. Frontiers in Marine Science; 2. Hiddink et al., 2017. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. PNAS; 3. Sala et al., 2021. Protecting the global ocean for biodiversity, food and climate. Nature; 4. Hilborn and Kaiser, 2022. A path forward for analysing the impacts of marine protected areas. Nature; 5. Hiddink et al., 2023. Quantifying the carbon benefits of ending bottom trawling. Nature; 6. Atwood et al., 2023. Reply to: Quantifying the carbon benefits of ending bottom trawling. Nature.

How to cite: Felgate, S., Kaiser, M., and Sciberras, M.: Trawling Impacts on Benthic Carbon Sequestration, Storage, and Processing: A Systematic Review, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12798, https://doi.org/10.5194/egusphere-egu24-12798, 2024.

EGU24-14217 | Posters on site | BG4.2

Isotopic mapping of sedimentary organic matter in the northwestern Pacific marginal sea (Yellow Sea, East China Sea, East Sea) 

Seung-Hee Kim, Dong-Hun Lee, Huitae Joo, Seok-Hyun Youn, and Young-Shin Go

We investigated physio-chemical properties, sedimentary bulk elements (C, N, S contents and heavy metals concentration), and isotopic compositions (δ13C, δ15N, 87Sr/86Sr) in the northwest Pacific marginal sea (Yellow Sea, East China Sea and East Sea; R/V Tamgu 3 and 9, February in 2019) to trace the distribution, origin, and reactivity of sedimentary organic matter (OM). Together with hydrodynamic influence (mainly freshwater input) near Yellow Sea and East China Sea, the spatial patterns of sedimentary bulk elements consider that there may be the potential accumulation of natural/anthropogenic derived-OMs transported from regional (Korea-China) river systems. Furthermore, δ13C and δ15N values in surface sediments may be characteristic of the mixture of autochthonous (e.g., algae)/allochthonous (e.g., C3 plant, soil, fertilizer) origins, suggesting the discriminative source contribution on the sedimentary OM distributions. Especially, compared to the isotopic end-members reported from Korean and China river estuaries, isotopic signatures of sedimentary OM may be regarded as the discriminative contribution of various terrestrial derived-origins within the Yellow Sea and East China Sea. Further, 87Sr/86Sr ratio indicated discriminative weathering impact and terrestrial origin OM transportation within the Korean and China river estuaries. Hence, with respect to the increase of anthropogenic activities near northwest Pacific marginal sea, the source tracing approach estimated via the multi-isotopic mapping may provide important insights for effectively understanding dramatic change of biogeochemical OM cycles from water column to sediments.

How to cite: Kim, S.-H., Lee, D.-H., Joo, H., Youn, S.-H., and Go, Y.-S.: Isotopic mapping of sedimentary organic matter in the northwestern Pacific marginal sea (Yellow Sea, East China Sea, East Sea), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14217, https://doi.org/10.5194/egusphere-egu24-14217, 2024.

EGU24-15773 | Orals | BG4.2

Blue carbon burial along intertidal mudflats 

Christian Sanders and Faming Wang

Coastal blue carbon habitats perform many important environmental functions, including long-term carbon storage. These carbon storage estimates are typically limited to the sediments within specific types of coastal vegetation. However, recent studies have shown that large fluxes of organic carbon originating from traditional and non-traditional blue carbon systems are being buried along the margins and intertidal mudflats. For example, our recent study in China showed that over 75% of the blue carbon burial occurred in unvegetated tidal flats. Further, in Brazil, organic carbon burial rates along mudflats were found to be almost 3 times greater than the flux from within coastal vegetated systems. The implications of this research are that there is an underestimation of carbon burial from blue carbon systems as a result of the large burial rates along adjacent unvegetated regions.

How to cite: Sanders, C. and Wang, F.: Blue carbon burial along intertidal mudflats, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15773, https://doi.org/10.5194/egusphere-egu24-15773, 2024.

EGU24-16476 | Orals | BG4.2

Sedimentary ancient DNA connects land carbon sources and marine carbon sinks 

Ulrike Herzschuh, Josefine Weiß, Kathleen Stoof-Leichsenring, Lars Harms, Dirk Nuernberg, and Juliane Mueller

Marine sediments contain abundant organic matter which forms a major carbon sink. About one third of it originates from land plants. The main source taxa and source region as well as the large-scale translocation are hitherto poorly understood, mainly because we lack a proxy that can identify the source taxa with high taxonomic resolution. Here, we investigate the land plant component of sedimentary ancient DNA in six globally distributed marine sediment cores as a proxy for the terrestrial organic matter quantity and preservation as well as the source taxa. The spatial and temporal plant composition reflects mainly the vegetation composition and dynamics from the nearby continents as revealed by pollen records. However, we also find indications of a global north-to-south translocation of organic matter. The plant composition shows that upland vegetation is strongly underrepresented compared to riverine and coastal sources and there is a high contribution from mosses and ferns, particularly at high latitudes during the Holocene. We find that plant matter has a higher share and is better preserved in samples from the Late Glacial, which is characterized by high runoff and mineral load. Our results suggest that plant DNA in marine sediments may provide the missing proxy that links terrestrial plant sources to marine sedimentary carbon sinks. This represents the basis of how climate change and land-use change translates into carbon-sink dynamics and also informs about natural carbon-capture solutions.

How to cite: Herzschuh, U., Weiß, J., Stoof-Leichsenring, K., Harms, L., Nuernberg, D., and Mueller, J.: Sedimentary ancient DNA connects land carbon sources and marine carbon sinks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16476, https://doi.org/10.5194/egusphere-egu24-16476, 2024.

EGU24-16727 | ECS | Orals | BG4.2

Particulate organic carbon dynamics of a depositional area in a high-energy shelf environment 

Ulrike Hanz, Bingbing Wei, Vera Fovonova, Lasse Sander, Robert Kopte, Henning Schröder, Sabine Kasten, and Moritz Holtappels

The marine carbon pump can sequester CO2 from the atmosphere in marine sediments. Much of the carbon is taken up from the atmosphere in productive coastal waters, whereas carbon deposition often takes place in deeper areas. Tidal- and wave activity in shallow waters are producing a high energy environment where constant resuspension counteracts sinking and prevents accumulation of organic matter at the seafloor, a process that is reflected by the ubiquitous presence of non-accumulating sands covering more than 50% of the shelf areas. Nevertheless, in some shallow coastal areas, we find organic matter accumulation even under high energy conditions. One example is a 500km2 region in the German North Sea, called the Helgoland Mud Area, where local hydrodynamic conditions cause the trapping of suspended particulate matter (SPM) and subsequent sedimentation. In this study we describe the particle transport dynamics over a diurnal tidal cycle, observed via a benthic lander deployment, repeat CTDs and analysis of reactivity and isotopic composition of the particulate organic matter (POM). Driven by tidal currents, we found SPM concentrations in the bottom water fluctuating between 35 and 130 mg/l, resulting in a total amount of suspended particles within the water column of up to 400 g /m2. The constant resuspension and thus remineralisation of associated POM led to a one order of magnitude decreased carbon specific mineralization rate, compared to the upper water column. From eddy covariance measurements, the SPM resuspension flux was calculated and counteracting SPM sinking velocities of around 6 x 10-4 m/s were derived. Interestingly, the POM background under stagnant current conditions showed more terrestrial d13C values compared to the resuspended POM during strong current conditions, suggesting distinct particle size classes and transport conditions for marine and terrestrial POM, respectively. The locally observed resuspension dynamics helps to understand the larger hydrodynamic regime that controls sediment accumulation, and ultimately the carbon sequestration in the area. 

How to cite: Hanz, U., Wei, B., Fovonova, V., Sander, L., Kopte, R., Schröder, H., Kasten, S., and Holtappels, M.: Particulate organic carbon dynamics of a depositional area in a high-energy shelf environment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16727, https://doi.org/10.5194/egusphere-egu24-16727, 2024.

Seagrasses are marine flowering plants that play an important role in mitigating climate change by carbon sequestration. While only covering 0.2% of the ocean floor, seagrasses store over 15% of accumulated global carbon in the ocean’s sediments. The oxidizing microenvironments around their roots create strong and complex redox gradients which greatly affect microbial carbon mineralization rates in marine sediments. Despite seagrasses’ enormous ecological services as habitat and climate regulators, they are rapidly degrading around the world at alarming rates. Therefore, understanding the chemical changes and feedback that occur in sediments following the disappearance of seagrasses holds ecological importance.

We incubated different compartments of the tropical seagrass Halophila stipulacea (old and young leaves, rhizomes, or roots) with two sediment types from the northern tip of the Gulf of Aqaba. We measured the chemical changes in major ions (DIC, Fe2+, H2S, SO42-) and sulfur isotope ratios in sulfate within the water. We used these measurements to calculate the remineralization rate of each seagrass compartment. Our results aid us in predicting the potential effects of H. stipulacea disappearance on key microbial processes in the marine environment.

We show that the rhizomes had the fastest decomposition rates, followed by the young leaves, roots, and old leaves. This indicates the preservation potential of belowground biomass. Moreover, high hydrogen sulfide concentrations were only detected in the slurries containing rhizomes and young leaves. High sulfide concentrations can lead to enhanced seagrass mortality and a positive feedback loop where seagrass loss generates sulfide, leading to more seagrass loss. These results emphasize the importance of a deeper understanding of biogeochemical pathways following seagrass disappearance.

How to cite: Antler, G., Neta, S., and Winters, G.: The effect of anaerobic remineralization of the seagrass Halophila stipulacea on porewater biogeochemistry in the Gulf of Aqaba, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17164, https://doi.org/10.5194/egusphere-egu24-17164, 2024.

EGU24-17590 | Orals | BG4.2

Assessing the sedimentary carbon sink for climate change mitigation - the need for transdisciplinary cooperation 

Moritz Holtappels, Ute Daewel, Jannis Kuhlmann, Lucas Porz, Bettina Taylor, Klaus Wallmann, Wenyan Zhang, Nadja Ziebarth, and Sabine Kasten

Shelf sediments represent one of the largest natural carbon sinks on earth. At the same time, shelf regions are increasingly affected by human activity, disturbing sediment reservoirs directly by bottom trawling and offshore construction, or altering the carbon supply by changing river discharge, sediment management and the trophic status and food web of the sea. As global warming progresses, the sedimentary carbon sinks are becoming increasingly important in climate change mitigation measures. Thus, there is a need for in-depth knowledge of both, the dynamics and vulnerabilities of the sedimentary carbon sinks, as well as the legal and political options to protect their sequestration efficiency from human disturbances. Here we report on the transdisciplinary research project APOC, which addresses the Anthropogenic impacts on the cycling of Particulate Organic Carbon in the North Sea. Important results of the project include the quantification of sedimentation rates in the accumulation areas of the German Bight and the Skagerrak, assessing the factors that enhance organic carbon storage and the determination of the sources of deposited carbon. As major anthropogenic disturbances, the effects of bottom trawling and wind farm construction on benthic carbon storage were investigated and assessed. Bottom trawling in particular was significantly decreasing the benthic carbon storage due to a multitude of coupled physical and ecological effects. However, at the environmental policy level, it became clear that sedimentary deposits are not sufficiently recognized as valuable carbon sinks, although their storage capacity is believed to be much higher than that of blue carbon ecosystems at similar latitudes. While the project was staffed mainly with natural scientists, important expertise in environmental policies was provided by the marine protection office of the BUND, one of the largest environmental NGOs in Germany. As a fully-fledged project partner, BUND made it possible to recognize the relevance of the various project focal points for the environmental policy arena throughout the entire project. In turn, the policy experts were able to distribute the latest scientific findings to the relevant political decision makers. In effect, the transdisciplinary cooperation within the project not only produced valuable scientific results, but also numerous expert briefings for environmental policy at all levels, from local authorities to the EU Parliament, emphasizing the importance of protecting sedimentary carbon sinks for climate change mitigation measures. Key to this outcome was the continuous exchange of scientific findings and practical environmental policy knowledge, which kept all participants focused on the societal relevant objectives that were originally pursued with the project funding.

How to cite: Holtappels, M., Daewel, U., Kuhlmann, J., Porz, L., Taylor, B., Wallmann, K., Zhang, W., Ziebarth, N., and Kasten, S.: Assessing the sedimentary carbon sink for climate change mitigation - the need for transdisciplinary cooperation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17590, https://doi.org/10.5194/egusphere-egu24-17590, 2024.

EGU24-18005 | Orals | BG4.2

Predicting Global Seafloor Organic Carbon Burial Rates: A Deep Learning Approach with Uncertainty Quantification 

Naveenkumar Parameswaran, Ewa Bur­wicz-Galerne, Everardo Gonzalez, Klaus Wallmann, David Greenberg, and Malte Braack
Sediment accumulation rate is recognized as the primary parameter influencing the burial rate of organic carbon and other compounds in marine sediments. The prediction of a global map for burial rates is challenging due to the limited availability of measurements for total organic carbon (TOC) and sediment accumulation rates from the seafloor. Recent advancements in machine learning, including techniques such as K nearest Neighbours and Random Forests, have demonstrated promise in producing comprehensive predictions utilizing global maps of oceanic properties.
 
In this study, we introduce a sophisticated approach based on a newly developed deep neural network (DNN) model tailored for geospatial predictions. Employing few-shot learning techniques, such as the incorporation of prior physical knowledge into the model, along with strategies like multi-task learning and semi-supervised learning, enhances predictions amidst sparse data availability. Moreover, p​​​​​redictions of the global distribution of seafloor TOC and sediment accumulation rates presented here are coupled with uncertainty maps computed using Monte Carlo Dropout, a Bayesian approximation method that effectively inform about the degree of the model predictibility. With our results, we not only explore the global distribution of burial rates of organic carbon but also offer insights into the global carbon stocks in various marine regions.

How to cite: Parameswaran, N., Bur­wicz-Galerne, E., Gonzalez, E., Wallmann, K., Greenberg, D., and Braack, M.: Predicting Global Seafloor Organic Carbon Burial Rates: A Deep Learning Approach with Uncertainty Quantification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18005, https://doi.org/10.5194/egusphere-egu24-18005, 2024.

EGU24-18616 | ECS | Posters on site | BG4.2

Towards a sedimentary organic carbon inventory of the Western Mediterranean Sea 

Blanca Ausín, Gina Bossert, Nicola Krake, Sarah Paradis, Negar Haghipour, Xavier Durrieu de Madron, Belén Alonso, and Timothy Eglinton

Regional studies on the origin and fate of organic carbon (OC) in marine sediments are scarce due to limited spatial data coverage and the complex interplay among biological, physicochemical, and geological processes that can influence OC content and geochemical signatures on different spatial scales. Yet, such studies are vital to constrain global carbon inventories for ocean sediments.

To shed light on the controls on the origin, distribution, and fate of sedimentary OC in continental margins and adjacent deep-sea basins, we investigate the geochemical and sedimentological characteristics of organic matter (OM) in the semi-enclosed Western Mediterranean Sea. Here, we analyze 149 core-top samples from the Western Mediterranean Sea and the adjacent Atlantic Ocean sector and explore the spatial distribution of OC content, OC-ẟ13C, OC-Δ14C, C/N, grain size, and mineral surface area, among others.

Most geochemical parameters depict a clear SW-NE gradient between the westernmost and the easternmost basins. This gradient reverses in the Gulf of Lions (NW Mediterranean). Thus, OC is younger and of primarily marine origin in samples from the Atlantic sector and the Alboran Sea (SW Mediterranean). In the Algerian Basin, the Balearic Sea, and the Algero-Provencal Basin the influence of terrestrial OC input increases towards the NE characterized by the presence of highly 13C- and 14C-depleted (aged) sedimentary OC. Finally, samples from the Gulf of Lions show a larger influence of fresh and young OC compared to other northeastern basins.

The interplay between marine primary productivity and delivery of terrestrial OC is the main factor that determines the observed gradient. Primary productivity decreases from the southwestern basins towards the NE and increases again northeasternmost basin, the Gulf of Lions. By contrast, the terrestrial OC carbon delivered by rivers and channeled to the deeper basin by canyons has an increasing influence on sedimentary OC toward the NE.

When explored from a sedimentological context, our results reveal that lateral transport of OC and OM protection by mineral surfaces potentially act as secondary controls on the OC fate in surface sediments of the Western Mediterranean Sea.

This integrated study contributes to a better knowledge of the interplay of biological, chemical, and hydrological factors that influence the amount and geochemical characteristics of sedimentary OC in the land-sea continuum and the deeper ocean, a fundamental consideration to constraining global carbon inventories.

How to cite: Ausín, B., Bossert, G., Krake, N., Paradis, S., Haghipour, N., Durrieu de Madron, X., Alonso, B., and Eglinton, T.: Towards a sedimentary organic carbon inventory of the Western Mediterranean Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18616, https://doi.org/10.5194/egusphere-egu24-18616, 2024.

EGU24-19779 | ECS | Orals | BG4.2

The QUANTIFICATION, CHARACTERISATION, SOURCE AND FATE OF PAST AND PRESENT CARBON STORAGE IN COASTAL AND OFFSHORE SEDIMENTS FOR EFFECTIVE MARINE MANAGEMENT (QUEST) 

Anthony Grey, Brian Kelleher, Mark Chatting, Mike Long, Phoebe Walsh, Markus Diesing, and Mark Coughlan

Globally, continental shelf environments, and the marine sediments therein, have been recognised as having significant roles to play in the sequestration, cycling and storage of. Recently, shelf sediments have been identified as the largest, but most uncertain, stock of carbon stored on the continental shelf, citing a lack of empirical data. Moreover, seabeds are coming under increased pressure through anthropogenic impacts, such as offshore renewable energy development, trawling and dredging, and climate change effects. To fully understand, and effectively manage the seabed in terms of maximising this Blue Carbon potential requires a thorough understanding of carbon cycling in the marine environment over time, physical processes at the seafloor and high-quality spatial mapping. The QUEST project scope aims to conduct a multidisciplinary research programme to qualify, quantify and elucidate the provenance of carbon stocks in offshore marine sediments in Irelands EEZ. Furthermore, the research will examine and characterise threats to the stability of Blue Carbon in these settings and support the development of long-term management strategies. This programme will comprise spatial predictive modelling along with offshore surveying and sampling, laboratory analysis and hydrodynamic modelling, with past and new data to deliver comprehensive geochemical, geological, geotechnical, environmental and morphodynamical assessments of Blue Carbon ‘hotspots’ in the Irish offshore, as identified in the National Marine Planning Framework.

To date, this programme has worked with a variety of stakeholders to collate historical data relevant as predictors for sediment OC and generated new geochemical data sets through analysis of legacy sediment samples. The combined data sets have been used to produce spatial predictive modelling maps providing preliminary baselines for sediment OC stocks in Ireland’s EEZ.

Spatial mapping has identified knowledge gaps in the spatial extent and resolution of available sediment data. Additionally, the data collation and mapping exercise has highlighted a sparsity of physio-geochemical data essential for the accurate estimation and upscaling of OC stocks including OC content, Bulk density, and grain size analysis. Likewise, the paucity of available data extends to deeper sediments, consequently inhibiting the determination of OC stocks to the desired standard of 1 meter depth in assessment of BC ecosystems.  The first off-shore sampling survey for QUEST was completed in October 2023 providing a selection of grab (surface ~10cm depth), gravity (1-2m depth ), Vibro- ( 2-5m) and box core ( 10-25cm) samples from a series of near to off-shore transects from Ireland’s East coast encompassing the high sedimentary region of the Western Irish Sea Mudbelt (WISMB). Initial work carried out on cores has generated data describing updated OC stocks for Irish Sea sediments up to a 1m depth. Furthermore, data sets have been used to produce a region-specific conversion equation to calculate OC content using values attained from Loss on ignition analysis (LOI). This conversion factor has been applied to convert historical data LOI data for spatial predictive modelling.

 

How to cite: Grey, A., Kelleher, B., Chatting, M., Long, M., Walsh, P., Diesing, M., and Coughlan, M.: The QUANTIFICATION, CHARACTERISATION, SOURCE AND FATE OF PAST AND PRESENT CARBON STORAGE IN COASTAL AND OFFSHORE SEDIMENTS FOR EFFECTIVE MARINE MANAGEMENT (QUEST), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19779, https://doi.org/10.5194/egusphere-egu24-19779, 2024.

EGU24-19812 | ECS | Posters on site | BG4.2

Do root exudates stabilize in coastal wetland soils? 

Clarisse Gösele and Peter Müller

Salt marshes are highly effective long-term carbon sinks. The capacity of these ecosystems to sequester carbon is controlled by the balance of plant primary production and microbial decomposition. Besides the input of litter, plants are able to excrete organic carbon into the soil by transporting recently fixed carbon compounds from the living roots into the surrounding soil. Despite playing an important role in the global carbon cycle, studies on root exudates in tidal wetlands are rare. This study reports findings on (1) the detection and (2) the stabilization of root exudates in a wetland plant-soil system. Conducting a 13CO2 pulse-labeling study, we (1) tested if Spartina anglica Hubb. supplies a relevant (i.e. detectable) flux of recently fixed carbon via root exudates to the soil environment. The biogeochemical conditions of a typical wetland were simulated by planting S. anglica, a dominant grass in large parts of the European salt marsh area, in waterlogged mesocosms. The aboveground biomass was labeled by acidifying 0.1 g of 13C-pure bicarbonate inside a cylindric transparent acrylic glass chamber. Labeling was conducted once daily over a period of ten days. Isotope-ratio mass-spectrometry was used to track the 13C label through different compartments of the plant-soil system, including leaves, roots and bulk soil. We found a rapid translocation of recently fixed carbon to belowground plants tissues. (2) Subsamples of the labeled bulk soil were used to study the decay and stabilization of root exudates in the soil. A full factorial pot experiment (labeled vs. unlabeled x vegetated vs. non-vegetated) was conducted, where a total of 12 mesocosms were sampled over approx. 15 months and the bulk soil was analyzed for its δ13C-signature. This long-term approach showed that root exudates stabilize in coastal wetland soils under anoxic soil conditions and thereby could play an important role in their carbon sequestration capacity.

How to cite: Gösele, C. and Müller, P.: Do root exudates stabilize in coastal wetland soils?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19812, https://doi.org/10.5194/egusphere-egu24-19812, 2024.

EGU24-22145 | Orals | BG4.2

A toolbox approach to measuring carbon stocks and sequestration in the North Sea 

Claire Powell, Carolyn Graves, Franck Dal-Molin, Clement Garcia, Clare Hynes, Caroline Limpenny, Claire Mason, Paul Nelson, Craig Smeaton, and Ruth Parker

Understanding the capacity of marine sediments to store and sequester atmospheric carbon is an essential first step in assessing the possibilities for the management of these stores, including management of pressure such as bottom contacting fisheries, and addressing policy questions such as their potential as nature-based solutions to climate change. Using a toolbox of complimentary techniques for determining carbon abundance, provenance and reactivity, accumulation rates and vulnerability we have analysed a total of 18 sediment cores taken from sites across the North Sea during February and December 2021. Additionally, we have preliminary results from an additional 40 cores taken from a range of sites across the North Sea in June 2023, including across trawling gradients.

We present results from our toolbox approach, measuring the carbon stock and sequestration for the cores using a suite of complimentary analyses: from novel techniques such as alkane biomarkers and thermogravimetric analysis (TGA), to radiometric determination of sedimentation rates by lead-210 and stable carbon isotopes (δ13C) in bulk organic carbon, to the more routine techniques such as particle size distribution (PSA), organic & inorganic carbon and nitrogen, porosity, chlorophyll/phaeopigment, and black carbon. We show how viewing the results together can increase the understanding of how carbon is processed in the seabed at a regional scale, and how this can inform where management measures would be most appropriately applied.

How to cite: Powell, C., Graves, C., Dal-Molin, F., Garcia, C., Hynes, C., Limpenny, C., Mason, C., Nelson, P., Smeaton, C., and Parker, R.: A toolbox approach to measuring carbon stocks and sequestration in the North Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22145, https://doi.org/10.5194/egusphere-egu24-22145, 2024.

EGU24-22261 | ECS | Orals | BG4.2

The effect of man-made structures on sedimentary blue carbon dynamics  

Hugo Woodward-Rowe, Frank Dal Molin, Ben Gregson, Claire Mason, Ruth Parker, and Natalie Hicks

Continental shelf sediments contain significant carbon stocks while being increasingly subject to anthropogenic pressures such as trawling, oil and gas extraction and more recently the introduction of offshore wind farms. Despite extensive research on the effect of man-made structures on the marine environment, there remains a research gap regarding their effect on shelf sediment carbon storage through their installation, operation and following decommissioning. This is the first study to explicitly study sediment carbon dynamics surrounding man-made structures. This talk presents carbon data from two decommissioned oil and gas platforms (Northwest Hutton and Miller) in the North Sea, from sediment cores taken at increasing distances away from the decommissioned sites. Understanding the carbon dynamics includes presenting the carbon stocks, sediment composition, and carbon accumulations rates using radiochemistry techniques. This research is important for determining the role of MMS on carbon dynamics, and has implications for decommissioning practice across the North Sea.

How to cite: Woodward-Rowe, H., Dal Molin, F., Gregson, B., Mason, C., Parker, R., and Hicks, N.: The effect of man-made structures on sedimentary blue carbon dynamics , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22261, https://doi.org/10.5194/egusphere-egu24-22261, 2024.

In response to gradually expanding populations and the demand for food, excess anthropogenic phosphorus (P) input to watersheds leads to accumulating large P reservoirs in land systems, which becomes a persistent source of P pollution to aquatic systems, hindering the effectiveness of implementing water quality management. Therefore, clarifying the cycling process of P in watersheds, quantifying the legacy effects of P and identifying the spatial distribution of legacy P are key scientific issues for effectively developing watershed P management. We applied a modification Exploration of Long-tErM Nutrient Trajectories-Phosphorus model in a typical agricultural watershed in eastern China, which can well quantify the dynamics of legacy P over 40 years along the land-aquatic continuum. Modification of P erosion loss module improved the efficiency metrics of the model. The model indicated that the lag time for legacy P effects in the watershed was up to 10 years. P inputs increased by 40% (5.1 kg P ha-1 yr-1-9.8 kg P ha-1 yr-1) between 1980 and 2000 and decreased by 55% (9.8 kg P ha-1 yr-1-3.4 kg P ha-1 yr-1) between 2000 and 2020. Riverine P export fluxes increased from 0.11 kg P ha-1 yr-1to 1.49 kg P ha-1 yr-1 (13-fold increase) from 1980 to 2012, and then decreased to 0.96 kg P ha-1yr-1from 2012-2020 years to 0.96 kg P ha-1 yr-1 (35% decrease). The modification model was effective in clarifying the spatial and temporal distribution of legacy P and proposed an effective method to guide watershed P management.

How to cite: Hao, W. and Dingjiang, C.: Modification of exploration of long‐term nutrient trajectories for phosphorus (ELEMeNT-P) model to quantify legacy phosphorus dynamics in a typical watershed of eastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-713, https://doi.org/10.5194/egusphere-egu24-713, 2024.

Streams and rivers emit substantial amounts of nitrous oxide (N2O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrade to N2O, yet the role of waterborne release of N2O in permafrost regions is unclear. Here we report N2O concentrations and fluxes during different seasons between 2016 and 2018 in four watersheds on the East Qinghai-Tibet Plateau. Thawing permafrost soils are known to emit N2O at a high rate, but permafrost rivers draining the East Qinghai-Tibet Plateau behave as unexpectedly minor sources of atmospheric N2O. Such low N2O fluxes are associated with low riverine dissolved inorganic N (DIN) after terrestrial plant uptake, unfavorable conditions for N2O generation via denitrification, and low N2O yield due to a small ratio of nitrite reductase: nitrous oxide reductase in these rivers. We estimate fluvial N2O emissions of 0.432−0.463 Gg N2O-N yr−1 from permafrost landscapes on the entire Qinghai-Tibet Plateau, which is marginal (~0.15%) given their areal contribution to global streams and rivers (0.7%). However, we suggest that these permafrost-affected rivers can shift from minor sources to strong emitters in the warmer future, likely giving rise to the permafrost non-carbon feedback that intensifies warming.

How to cite: Zhang, L. and Stanley, E.: Unexpectedly small N2O emissions from alpine permafrost rivers on the East Qinghai-Tibet Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1448, https://doi.org/10.5194/egusphere-egu24-1448, 2024.

EGU24-1498 | Orals | BG4.4

Recent developments integrating connected non-lotic and ephemeral water bodies into the Pulse-Shunt Concept 

Taylor Maavara, Kelly Aho, Craig Brinkerhoff, Laura Logozzo, Lee Brown, William McDowell, and Peter Raymond

River networks have been conceptualized as “leaky pipes” for carbon loss. However, there remains considerable uncertainty regarding where, when, and how carbon loss takes place along the aquatic continuum across hydroclimatic conditions. Recent modelling efforts have been developed to (1) connect river reaches with non- or semi-lotic systems including lakes, reservoirs, floodplains and wetlands, and (2) account for river network connectivity via quantification of ephemeral streamflow. These models, which use techniques such machine learning to scale from local measurements to high-resolution river network data products, enable the quantification of relative carbon loss fluxes in lentic vs. lotic systems across stream orders (“where”) within standardized hydroclimatic scenarios representing the full continua of flows and seasonal conditions possible within a watershed (“when”). These models further quantify carbon uptake via both biomineralization and photomineralization (“how”). We frame findings into an updated conceptual model of the Pulse-Shunt Concept, which builds on the representation of river networks as leaky pipes by correlating the “leakiness” with dependence on flow and stream order. We suggest that lakes and other lentic systems should be considered as reactivity “nodes” interspersed along mostly unreactive or passive river reaches. We additionally discuss how these river network modelling approaches can continue to be improved using sensor networks.

How to cite: Maavara, T., Aho, K., Brinkerhoff, C., Logozzo, L., Brown, L., McDowell, W., and Raymond, P.: Recent developments integrating connected non-lotic and ephemeral water bodies into the Pulse-Shunt Concept, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1498, https://doi.org/10.5194/egusphere-egu24-1498, 2024.

Understanding the dynamics of organic carbon load in lakes and reservoirs is vital for comprehending the potential impact of human disturbance on the hydrological and carbon cycle. This study investigates the spatial and temporal variability of water volume and total organic carbon (TOC) concentration and examines changes in the TOC load during a drought year. We conducted a systematic analysis of water volume and TOC concentration data from 2,484 agricultural reservoirs in South Korea, covering 2020 to 2022 at both provincial and county levels. At the national level, the yearly TOC loads range between 1387 tons and1464.84 tons. This study conducts the rotated Principal Component Analysis (rPCA) of water volume and TOC concentration. The first rPCA mode showed a decreasing trend of water level (38% of the explained variance) and increasing trend of TOC concentration (23%) over the southern Korea region. The second rPCA mode is related to interannual variability of water level (23.5%) and TOC concentration (20%) over the central Korea region. In 2022, the southern and central Korea regions have a noticeable difference in water volume and TOC concentration. These variations were closely associated with a prolonged meteorological drought event in the southern Korea region, causing increased TOC levels and reduced water volume and thus changing a role of reservoirs from a carbon sink to a carbon source. This study provide insight about how organic carbon interacts with an extreme hydroclimatic condition in agricultural reservoirs.

How to cite: Lee, K.-H. and Kam, J.: Spatiotemporal patterns of water volume and total organic carbon concentration of agricultural reservoirs over South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2420, https://doi.org/10.5194/egusphere-egu24-2420, 2024.

EGU24-2512 | ECS | Posters on site | BG4.4

Relative importance of groundwater and sediment-produced methane in stream emissions of two boreal catchments  

Sivakiruthika Balathandayuthabani, Balathandayuthabani Panneer Selvam, Magnus Gålfalk, Peter Saetre, Sari Peura, Ulrik Kautsky, Leif Klemedtsson, Lakshmanan Arunachalam, Geethalakshmi Vellingiri, and David Bastviken

Inland waters are important sources of methane (CH4) to the atmosphere. Significant quantities of CH4 are shown to be emitted from stream networks, despite their small areal coverage. Considerable gaps and uncertainties exist in the knowledge on the regulation of stream CH4 emissions, and their contribution to landscape scale C emissions. When the CH4 input from groundwater/surface runoff or from sediment production reaches the discharge areas, CH4 can either be microbially oxidised to carbon dioxide or emitted to the atmosphere. The relative importance of these sources and fates has implications for modelling and assessing long-term ecosystem CH4 balances. In the existing body of literature, there is a clear lack of data on the share of groundwater CH4 and sediment-produced CH4 to the total CH4 input in streams, the extent of CH4 oxidation or emission of these sources and the spatial variability over whole-catchment scales. Here we present a study on the fates of ground water and sediment-produced CH4 reaching stream environments in two different boreal catchments in Sweden. A combination of measurements, including CH4 concentration gradients below stream beds, stable carbon isotope gradient measurements, high resolution stream flux and discharge assessments, were used to follow the transport of CH4 below the stream bed to the stream water surface using inverse mass-balance modelling. The measurements covered all parts of the stream network in both catchments to include spatial variability. We show that around half of the total CH4 entering the streams were from groundwater. Almost all the groundwater and sediment-produced CH4 were oxidised (> 97%) before reaching atmosphere. Emissions to the atmosphere only represented a small fraction of the groundwater and sediment-produced CH4 reaching the stream (< 3%), indicating that CH4 oxidation is a major sink in the studied streams. Our data also reveals large spatial variability in surface water CH4 concentrations, concentration gradients below the stream beds, CH4 inputs, oxidation, and emission related to morphometry and presumably soil characteristics. We emphasize the importance of including spatial variability in stream networks to constrain the uncertainties in stream CH4 budget studies.

How to cite: Balathandayuthabani, S., Panneer Selvam, B., Gålfalk, M., Saetre, P., Peura, S., Kautsky, U., Klemedtsson, L., Arunachalam, L., Vellingiri, G., and Bastviken, D.: Relative importance of groundwater and sediment-produced methane in stream emissions of two boreal catchments , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2512, https://doi.org/10.5194/egusphere-egu24-2512, 2024.

EGU24-2894 | ECS | Posters on site | BG4.4

Seasonal variation in organic carbon and its bioavailability (Falljökull glacier, Iceland) 

Ann-Kathrin Wild, Christina Fasching, and Peter Chifflard

Predictions regarding the export of organic carbon (OC) linked to glacier runoff remain constrained. Conventional mass balance approaches, which calculate annual OC export based on singular sampling points, overlook potential diurnal and seasonal variations in OC dynamics. In our study, we address this gap by employing high temporal resolution to systematically explore the concentration and composition of glacier-derived OC. Moreover, we examine the bioavailability of OC in glacial discharge directly at the terminus. This comprehensive investigation aims to enable accurate predictions of future OC release resulting from glacier retreat. Our chosen study site is the temperate Icelandic glacier Falljökull, part of the Öræfajökull and Vatnajökull ice cap, selected for its year-round accessibility.

Our findings reveal an average concentration of dissolved organic carbon (DOC) from the glacier of 0.14 mg L-1 based on 72 streamwater samples from the glacier terminus. Seasonal variations are evident with higher concentrations measured in winter (0.19 mg L-1) compared to summer (0.10 mg L-1). While the DOC concentration was relatively low during rain and glacial melt (0.12 mg L-1), snowmelt doubled the DOC concentration (0.20 mg L-1) indicating deposition as a source of glacial DOC. Furthermore, DOC concentration in glacial melt varied on a diurnal basis with peak values during early afternoon at highest discharges. The different weather events are reflected in the glacier discharge which could be shown by comparing the isotopic signature of ice, snow, and precipitation to the isotopic signature of the discharge water during designated events.

Absorbance and fluorescence measurements pointed to a predominantly protein-like, labile composition of DOC in glacial runoff. However, using incubation experiments with glacial meltwater we often found DOC values to increase pointing to the production of OC. Preliminary results highlight the seasonal and diurnal variability of glacial OC concentration and composition and the need to further study glacial OC bioavailability.

How to cite: Wild, A.-K., Fasching, C., and Chifflard, P.: Seasonal variation in organic carbon and its bioavailability (Falljökull glacier, Iceland), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2894, https://doi.org/10.5194/egusphere-egu24-2894, 2024.

EGU24-3133 | ECS | Orals | BG4.4

Cryosphere-fed rivers in a warming climate, 1950-2050 

Dongfeng Li, Ting Zhang, Irina Overeem, Albert Kettner, Jaia Syvitski, Des Walling, Bodo Bookhagen, Amy East, Jim Best, Achim Beylich, Michele Koppes, Jinren Ni, and Stuart Lane

Cryosphere-fed rivers drain glacier, snow, and permafrost landscapes and are characterized by glacial, nival, pluvial and mixed hydrological regimes. Such river systems originate from high-mountain areas and transport water, sediment, nutrients, and organic carbon downstream, underpinning the freshwater and coastal ecosystems and supporting the lives of more than one-third of the world’s population.

In response to the amplified climate change, accelerating glacier-snow melt and permafrost thaw, the cryosphere-fed rivers are overall becoming warmer, wider and muddier associated with markedly increasing river turbidity and suspended sediment concentration. For instance, observational data from 28 headwater rivers in High Mountain Asia reveal that the river suspended sediment loads have been increasing at a rate of ~13% per decade since the 1950s, much faster than rate of increase of river water discharge (~5% per decade). Leveraging over 120 in-field observations and a sediment-climate elasticity model, we estimate that the present-day river suspended sediment load in High Mountain Asia is nearly two billion metric tons per year, and could more than double by 2050 under an extreme climate change scenario. Beyond High Mountain Asia, such warming-driven increases in river turbidity and suspended sediment concentrations have also widely featured in other cryospheric basins such as the Arctic, European mountains, and Andes.

The muddier rivers carry pollutants, nutrients, and organic carbon, thus affecting water quality and aquatic ecosystems in the cold regions and beyond. Increases in sediment-driven river turbidity can threaten river biotic conditions by blocking sunlight from reaching the streambed, limiting respiration, and deteriorating feeding conditions of benthic macroinvertebrates and fishes, thereby affecting habitat availability. Elevated turbidity can disturb habitats of macroinvertebrates and fishes by filling interstitial spaces between pebble and cobbles on the riverbed, thereby reducing the flow of oxygenated water through bed sediment that is essential to the survival of their eggs. The increased sediment supply especially the coarse sediment further magnifies river channel instability and migration, affecting fish habitats and carbon storage and release.

To better assess the impacts of changing climate on the functions and services of river ecosystems in strategically important cold regions, we highlight the pressing need to integrate multiple-sourced river observations, to develop empirical, physics-based, and AI-based river flux models, and to promote interdisciplinary scientific collaboration. The innovative system approach would best come from the creation of an interdisciplinary collaborative initiative, where climatologists, ecologists, glaciologists, permafrost scientists, hydrologists, civil engineers, and geomorphologists work together to establish an integrated cryosphere–water–sediment–carbon-ecology observation platform that facilitates the mechanism understanding and development of novel and powerful models. Furthermore, dialogues and collaboration between international scientists, stakeholders, local communities, and policymakers would help to bridge the gaps between state-of-the-art scientific findings and practicable adaptation strategies.

How to cite: Li, D., Zhang, T., Overeem, I., Kettner, A., Syvitski, J., Walling, D., Bookhagen, B., East, A., Best, J., Beylich, A., Koppes, M., Ni, J., and Lane, S.: Cryosphere-fed rivers in a warming climate, 1950-2050, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3133, https://doi.org/10.5194/egusphere-egu24-3133, 2024.

EGU24-3644 | ECS | Orals | BG4.4

Universal microbial reworking of dissolved organic matter along soil gradients 

Erika Freeman, Erik Emilson, Thorsten Dittmar, Lucas Braga, Caroline Emilson, Tobias Goldhammer, Christine Martineau, Gabriel Singer, and Andrew Tanentzap

Soils lose a large amount of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can undermine climate change mitigation. The degradation state of DOM in aquatic ecosystems can reflect the distance from its source, with DOM increasingly dominated by similar compounds as degradation proceeds. However, the processes underlying the degradation of DOM and its generality across environments are poorly understood. Here we found DOM changed similarly along two soil-aquatic gradients irrespective of environmental conditions. We tracked DOM across soil depths and hillslope positions in forest headwater catchments using ultra-high-resolution mass spectrometry and related its composition to soil microbiomes and physical chemistry. Along both gradients, carbohydrate-like and unsaturated hydrocarbon-like compounds increased in mass, suggestive of microbial reworking of plant material. Most of the variation in the abundance of these compounds (>56%) was related to the expression of genes important for breaking down plant-derived carbohydrates. Our results highlight the value of high-resolution molecular data in understanding global carbon cycles, directly implicate microbial processing in shifting DOM towards universal compounds in soils, and suggest that this process is generalizable across ecosystems and spatiotemporal scales. This consistent degradation process could provide insights for estimating the state of DOM in different environments and inform the management of soil-to-stream carbon losses.

How to cite: Freeman, E., Emilson, E., Dittmar, T., Braga, L., Emilson, C., Goldhammer, T., Martineau, C., Singer, G., and Tanentzap, A.: Universal microbial reworking of dissolved organic matter along soil gradients, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3644, https://doi.org/10.5194/egusphere-egu24-3644, 2024.

EGU24-3814 | Posters on site | BG4.4

Fifteen years of remote sensing and analyses of the Baltic Sea primary production (2005–2019) 

Dariusz Ficek, Damian Stoltmann, Mirosława Ostrowska, Magdalena Pawlik, and Roman Majchrowski

Present systems based on data recorded by satellites allow for the determination of many characteristics of seas and oceans, including the photosynthetic production of primary organic matter in the water column (PP). The SatBaltic system, launched in 2015, was used to determine PP in the Baltic Sea waters. This system provides daily maps of the spatial distribution of PP values and other characteristics of this sea. Relevant data can be found on the SatBaltic website (www.satbaltyk.pl). The collected extensive data bank allowed for the analysis of a number of processes occurring in the ecosystem of this sea. Photosynthetic primary production of organic matter was analyzed based on data from 2005-2019. Statistical analyzes of PP data available in the SatBaltic System allowed for a quantitative description of its variability in the entire Baltic Sea area. The average daily PP value for the entire Baltic Sea varied from approximately 5 mgC m-2 day-1 in winter (December and January) to over 700 mgC m-2 day-1 in July. The total annual PP value of the Baltic Sea in the analyzed period ranged within (37 to 45)* 106 tC yr-1. The obtained results indicate a slight increase in the productivity of the Baltic Sea over a period of 15 years. PP analyzes also showed significant differences between the productivity of individual reservoirs. In the East Gotland Basin, PP is 4% higher than in the Bornholm Basin, while in the Gdańsk Basin it is 33% higher.

How to cite: Ficek, D., Stoltmann, D., Ostrowska, M., Pawlik, M., and Majchrowski, R.: Fifteen years of remote sensing and analyses of the Baltic Sea primary production (2005–2019), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3814, https://doi.org/10.5194/egusphere-egu24-3814, 2024.

Nitrous oxide (N2O) is a strong greenhouse gas with ozone layer destruction ability, and its atmospheric concentration has been increasing rapidly due to anthropogenic activities. N2O reduction to dinitrogen (N2), the last step of denitrification, was recognized as the only biological N2O sink. Recently, diazotrophic N2O assimilation to organic nitrogen in biomass by nitrogenase has been discovered in the eastern South Pacific Ocean and cultured diazotroph Crocosphaera and Trichodesmium. N2O assimilation to organic nitrogen is thermodynamically more favored than N2 fixation in higher N2O concentration and cooler environments, but the distribution and detailed mechanism of this new N2O sink are still unclear. We applied isotopic tracing experiments to validate and measure N2O assimilation and built an enzymatic kinetics model for a mechanistic explanation. Cultured diazotroph Crocosphaera (WH8501) and Trichodesmium (IMS101) both showed evident N2O assimilation rates of 0.751 nM N h-1 for Crocosphaera at [N2O]/[N2] = 0.0075, 0.690 nM N h-1 for Trichodesmium at [N2O]/[N2] = 0.01, and 0.481 nM N h-1 for Trichodesmium at [N2O]/[N2] = 0.0005. Although N2O assimilation was assumed to be carried out by nitrogenase, it was asynchronous with the diel rhythmicity of N2 fixation. Field samples from the Pearl River Estuary did not demonstrate the presence of N2O assimilation. Since N2 fixation was absent as well, the isotopic tracer 46N2O barely introduced influences on nitrogen isotopic composition compared to photosynthesis and remineralization, indicating that N2O assimilation is an insignificant N2O sink in eutrophic estuarine waters. Our enzymatic kinetic model revealed that N2 rather than N2O dominated the overall growth rates of cultured diazotrophs. The model indicated the [N2O]/[N2] required for the presence of N2O assimilation in isotopic tracing experiments and explained the absence of this process under natural N2 concentration environments. The insights from this study may suggest new engineering methods to control N2O emissions.

How to cite: Li, G. and Ji, Q.: N2O Assimilation, a New N2O Sink and Organic Nitrogen Source in Aquatic Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4027, https://doi.org/10.5194/egusphere-egu24-4027, 2024.

EGU24-5677 | Posters on site | BG4.4

The age of buried carbon changes the greenhouse gas budget of a dam 

Jörg Tittel, Yvonne Rosenlöcher, Tallent Dadi, Oliver J. Lechtenfeld, and Carsten Simon

Dams are a globally relevant source of greenhouse gases (GHG), which impair their function as a source of green energy. High burial rates of organic carbon (OC) in dam sediments may partly or fully offset the emissions. We argue that only the burial of carbon fixed in the timespan of dam operation changes the GHG balance. Here, we took sediment cores from a temperate dam. We analyzed radiocarbon age and OC molecular composition by laser desorption ionization mass spectrometry in the bulk OC and in four extract fractions. The bulk samples included modern OC, fixed after 1950. However, the extracted OC was of different ages (modern to 1900 years BP). Compounds with H/O ratios >2.5 predominated in 14C-old fractions, while compounds with ratios <2.5 were abundant in modern extracts. We conclude that only 43% of buried carbon originated from the contemporary atmosphere and can be offset against recent GHG emissions.

How to cite: Tittel, J., Rosenlöcher, Y., Dadi, T., Lechtenfeld, O. J., and Simon, C.: The age of buried carbon changes the greenhouse gas budget of a dam, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5677, https://doi.org/10.5194/egusphere-egu24-5677, 2024.

EGU24-5808 | ECS | Orals | BG4.4

Reactive macronutrient ratios as predictors for nitrate cycling in stream ecosystems 

Anika Große, Nuria Perujo, Alexander J Reisinger, Patrick Fink, Dietrich Borchardt, and Daniel Graeber

Human activities have significantly altered macronutrient concentrations in surface waters, impacting both ecological functions and water quality. Typically, research assesses this alteration and its effects from a single macronutrient perspective. Alternatively, we propose that macronutrient perspectives need to be integrated via a stoichiometric framework via carbon (C) : nitrogen (N) : phosphorus (P) ratios. These ratios may help to assess and improve natural attenuation at ecosystem and catchment level. From the C:N:P perspective, agricultural practices have resulted in a stoichiometric N surplus in temperate stream ecosystems, an issue of which German streams are a prime example.  In contrast, Florida's streams are characterized by a P surplus relative to N and C due to high geological background P supply.  Our study encompasses five streams in Germany and Florida, covering a wide range of C:N:P ratios, each characterized by distinct catchment characteristics. Here, we ask whether C:N:P ratios are the main driver of microbial nitrate-N uptake, irrespective of other differences between the two regions. Through streamside mesocosm and microcosm laboratory experiments employing an isotope tracer approach, we compared nitrate uptake. Additionally, we manipulated C:N:P ratios to assess the short-term effects on nitrate uptake and measured retention in the streamside mesocosm experiment. Enhancing our understanding of the interconnectedness of biogeochemical cycles enables the development of management recommendations for stoichiometric restoration in highly impacted stream ecosystems. This research contributes valuable insights towards sustainable practices and the preservation of aquatic ecosystems facing nutrient-related challenges and water security.

How to cite: Große, A., Perujo, N., Reisinger, A. J., Fink, P., Borchardt, D., and Graeber, D.: Reactive macronutrient ratios as predictors for nitrate cycling in stream ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5808, https://doi.org/10.5194/egusphere-egu24-5808, 2024.

EGU24-5918 | ECS | Orals | BG4.4

A coupled O2-CO2 model to understand CO2 source partitioning in flowing freshwaters 

Jacob Diamond and Enrico Bertuzzo

The freshwater riverine carbon budget has an unexplained imbalance (~1.5 Pg-C y−1) between estimates of terrestrial C lateral imports and freshwater emissions. This imbalance may be resolved by investigating the source of freshwater CO2 emissions. That is, what proportion of the excess CO2 in rivers comes from lateral CO2 inputs (external, allochthonous sources) versus from riverine respiration of organic matter (internal, autochthonous sources)? We address this question by developing a model to estimate the reach-scale dissolved inorganic carbon (DIC) mass balance using sub-daily time series of dissolved O2 and CO2. The approach extends the classical single station model for the estimation of stream metabolism based on O2 observation by coupling the mass balance of DIC with the lateral input of water, O2 and DIC, and the mass balance of total alkalinity. Here, we present the results of the model application to several study sites across varying discharge and carbonate chemistries. We further show the model's utility in estimating magnitudes of river metabolism, lateral DIC concentration, photosynthetic and respiratory quotients, and carbon flux to the atmosphere.

How to cite: Diamond, J. and Bertuzzo, E.: A coupled O2-CO2 model to understand CO2 source partitioning in flowing freshwaters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5918, https://doi.org/10.5194/egusphere-egu24-5918, 2024.

EGU24-6645 | Orals | BG4.4

Three decades of changing nutrient stoichiometry from source to sea on the Swedish west coast 

Michael Peacock, Martyn Futter, Sara Jutterström, Dolly Kothawala, Filip Moldan, Johanna Stadmark, and Chris Evans

European ecosystems have been subject to extensive shifts in anthropogenic disturbance, primarily through atmospheric deposition, climate change, and land management. These changes have altered the macronutrient composition of aquatic systems, with widespread increases in organic carbon (C), and declines in nitrogen (N) and phosphorus (P). Less well known is how these disturbances have affected nutrient stoichiometry, which may be a more useful metric to evaluate the health of aquatic ecosystems than individual nutrient concentrations. The Swedish west coast has historically experienced moderate to high levels of atmospheric deposition of sulfate and N, and eutrophication. In addition, coastal waters have been darkening with damaging effects on marine flora and fauna. Here, we present three decades of macronutrient data from seven watercourses (plus additional lakes) along the Swedish west coast, including headwaters and river mouths, across a range of land covers, and with catchments ranging 0.037 – 40000 km2.

We find a high degree of consistency between these diverse sites, with widespread increasing trends in organic C, and declines in inorganic N and total P. These trends in individual macronutrients translate into large stoichiometric changes, with a doubling in C:P, and increases in C:N and N:P by 50% and 30%, showing that freshwaters are moving further away from the Redfield Ratio, and becoming even more C rich, and depleted in N and P. These changes were not restricted to headwaters but were also evident in larger rivers and at river mouths. Although recovery from atmospheric deposition is linked to some of these changes, land cover also appears to have an effect; lakes buffer against C increases, and decreases in inorganic N have been greatest under arable land cover. Taken together, our findings show that freshwater macronutrient concentrations and stoichiometry have undergone substantial shifts during the last three decades, and these shifts can potentially explain some of the detrimental changes that adjacent coastal ecosystems are undergoing. Our findings are relevant for all European and North American waters that have experienced historically high levels of atmospheric sulphate and N deposition, and provide a starting point for understanding and mitigating against the trajectories of long-term change in aquatic systems.

How to cite: Peacock, M., Futter, M., Jutterström, S., Kothawala, D., Moldan, F., Stadmark, J., and Evans, C.: Three decades of changing nutrient stoichiometry from source to sea on the Swedish west coast, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6645, https://doi.org/10.5194/egusphere-egu24-6645, 2024.

The evaluation of metal toxicity in sediment has traditionally involved measuring sulfide concentrations and considering organic carbon content through the sediment biotic ligand model. This model operates on the assumption that the predominant formation of insoluble metal sulfides (MeS) renders the metals unavailable for uptake by benthic organisms. Specifically, in cases where the quantity of metals exceeds that of sulfides, the model postulates that the surplus metals will partition to organic carbon. It holds relevance in anoxic environments where sulfides and organic carbon play pivotal roles in metal binding. However, heavy metals susceptible to redox changes may be released from both MeS and organic carbon, particularly in oxidized sediments. Literature indicates elevated concentrations of dissolved Cadmium under oxidizing conditions compared to reduced sediments. Such liberated metals subsequently re-adsorb onto Fe oxides, another significant phase for metal binding.

To enhance cadmium toxicity prediction, we propose an advanced model that considers contributions from both Fe oxides and organic carbon, in addition to sulfide, in oxidized sediment. Partition coefficients (Kd) for both phases were determined using the Windermere Humic Aqueous Model, version 7 (UK Centre for Ecology and Hydrology, 2012), and the relationship with pH was derived through curve fitting to optimize data fitting. Previous studies' data align well with the predicted Kd values. A comprehensive model equation for determining a total Kd, incorporating these Kd values of Fe oxides and organic carbon contents, was formulated. Upon comparison with experimental data from sediment samples collected from 21 different regions in South Korea, the model exhibited accurate predictions within one order of magnitude.

To validate the proposed model, a toxicity test was conducted using a benthic invertebrate, Hyalella azteca, with the same sediment samples. While the previous model predicted toxicity, the observed mortality was less than 24%, indicating non-toxicity to the organism. The new model accurately assessed toxicity and serves as a valuable tool for predicting cadmium toxicity in oxidized sediment.

How to cite: Jeong, B., Shim, G., An, J., and Nam, K.: Integrated Prediction Model for Cadmium Toxicity in Oxidized Freshwater Sediment: Emphasis on the Role of Fe Oxides and Validation with Hyalella azteca, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7236, https://doi.org/10.5194/egusphere-egu24-7236, 2024.

EGU24-8400 | ECS | Posters on site | BG4.4

Microbial response to climate-induced nutrient alterations in high Arctic freshwaters 

Nicolas Valiente, Laurent Fontaine, Andrea L. Popp, Anja Sundal, Jing Wei, Peter Dörsch, Sigrid Trier Kjær, Dag O. Hessen, and Alexander Eiler

In the Arctic, climate change leads to increased nutrient levels and organic carbon in freshwaters, caused by factors like permafrost thaw and growing populations of geese. Such alterations significantly impact freshwater ecosystems, potentially influencing community composition and diversity across various levels, including general microbial metabolism. We tested the hypothesis that a transition from autotrophy to heterotrophy occurs across a chronosequence of lakes in the high Arctic as a result of glacier retreat, influenced by distinct nutrient supplies and varying ecological succession statuses. To do so, we studied 5 lakes in the vicinity of Ny-Ålesund (Svalbard) following a chronosequence. The older lakes, closer to the fjord, were strongly impacted by birds, notably geese. For each lake, we tested the response to nutrients by adding an artificial nutrient solution with N and P, and the response to light or dark conditions. We incubated unfiltered water samples (80 mL) at 4 ºC in 120 mL flasks with atmospheric air as headspace. After 24h, samples for gases (O2, CO2, CH4 and N2O), nutrients (organic C, P and N) and eDNA (16S metabarcoding) were collected. Ar-corrected gas saturation of each GHG was used as a proxy of net metabolic changes. Regardless of the treatment applied, our results showed an increase in N2O saturation coupled with a decrease in O2 saturation after 24h in bird-impacted lakes, likely related to heterotrophic microbial activity. In such lakes, dark conditions promoted P accumulation, while N accumulated equally in light and dark incubations. In younger lakes (i.e., not impacted by birds), increased O2 saturation after 24h of incubation suggested that phototrophic metabolism was dominant. For nutrients, no significant pattern was observed for both light and dark incubations in younger lakes. Bacterial community composition differed between locations after 24h of incubation with a greater uniformity of species in younger lakes. This research advances our understanding of how nutrient enrichment affects biodiversity in the Arctic and metabolism in freshwater ecosystems.

How to cite: Valiente, N., Fontaine, L., Popp, A. L., Sundal, A., Wei, J., Dörsch, P., Trier Kjær, S., Hessen, D. O., and Eiler, A.: Microbial response to climate-induced nutrient alterations in high Arctic freshwaters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8400, https://doi.org/10.5194/egusphere-egu24-8400, 2024.

EGU24-9024 | ECS | Posters on site | BG4.4

Dynamics and patterns of water quality and stream metabolism in a low-land Mediterranean urban stream 

Tal Godinger, Zafrir Adar, and Shai Arnon

Water quality in streams provides fundamental information on ecosystem functioning and status. The use of sensors instead of grab sampling provides near-continuous information on the water quality, which reveals information on hydrological and biogeochemical processes that were unrecognized before. While information from sensors on water quality in temperate climates becomes ubiquitous, it is still rare in semi-arid and Mediterranean climate. The aim of this work was to quantify the dynamics and patterns of water quality and metabolism in a Mediterranean low-land urban stream. Sensors that measure oxygen, carbon dioxide, nitrate, cDOM, chlorophyll a, turbidity, electric conductivity, pH, water level, and light were deployed in July 2019 in the Yarkon Stream, an urban lowland stream in Israel. Preliminary results indicated that seasonal differences were observed under base-flow conditions for parameters that are indicative of biological processes. For example, the average concentrations of nitrate and oxygen were higher in the winter than in the summer. Differences between summer and winter to spring and autumn were less consistent. Seasons also affected the daily fluctuations of the biological-related parameters. For example, oxygen concentrations were roughly stable during the day in the winter but followed a clear peak in the afternoon during the summer. In addition, oxygen consumption was dominant all year long, leading to hypoxic conditions in the stream for most of the year. The driving mechanisms for the observed patterns will be discussed in the presentation, and further comparisons will be made to patterns in streams from temperate climates. It is expected that this work will provide new insights into the water quality dynamics and ecosystem status of Mediterranean streams, which can potentially improve water resources management and future restoration efforts.

How to cite: Godinger, T., Adar, Z., and Arnon, S.: Dynamics and patterns of water quality and stream metabolism in a low-land Mediterranean urban stream, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9024, https://doi.org/10.5194/egusphere-egu24-9024, 2024.

EGU24-9065 | ECS | Orals | BG4.4

Tracking organic matter pollution and bacteria using fluorescence-based approaches in a UK Chalk stream 

Hannah Gunter, Kieran Khamis, Chris Bradley, David M. Hannah, Catherine M. Heppell, Tom Kelly, Rosie Nelson, Hannah Parry-Wilson, and Rob Stevens

Fluorescence spectroscopy is a rapidly evolving method for determining freshwater organic pollution. Historically, measurement was confined to the laboratory with a coarse temporal resolution. The development of field-deployable sensors has enabled in-situ, multi-peak monitoring - although challenges remain regarding fluctuating environmental conditions (e.g. pH and turbidity) that can impact on fluorometer accuracy and interpretation. This study aimed to use fluorescence spectroscopy (including in-situ sensors) to detect and differentiate sources of organic matter pollution in a predominantly groundwater fed, sewage-impacted, chalk stream.

High frequency monitoring (15 min resolution for 12 months) was undertaken at two sites on the River Chess, S. England. Two multi-parameter water quality sondes were installed above and below a Wastewater Treatment Works (WWTW) effluent outflow point in a mixed land use catchment (105 km2). Additional grab sampling was conducted during baseflow and stormflow for laboratory-based nutrient, spectrofluorimetric and bacterial analysis.

All sites had low turbidity (<10 NTU) and stable pH (7.7-7.8), during baseflow, ideal conditions for using in-situ fluorometers. Both the difference in wavelength intensity and the ratio of Peak T (Ex. 275/ Em. 350) to Peak C (Ex. 325/ Em. 470) could differentiate between sites, with an observable variation in response to diel cycles of effluent release downstream. The T:C ratio was able to characterize events with distinct hydrometeorological signatures (e.g. rainfall total, intensity, and antecedence), hence the ratio offers a feasible way of distinguishing between different sources of organic contamination in real-time. Relationships between fluorescence and nutrient/microbial concentrations varied in response to differing landcover (urban extent) and effluent contributions to bulk discharge. Effluent contributions also affected the strength of relationship between cultures and individual wavelength pairs, highlighting the importance of calibrating data for individual systems.

This study highlights that fluorescence is a valuable tool in both fingerprinting organic pollution and tracing the source across sites of contrasting landcover, and under varying hydro-climatological conditions that occur over event timescales. These findings provide the evidence base to develop a new method of detecting and understanding organic matter pollution events at a time scale that was previously unachievable.

How to cite: Gunter, H., Khamis, K., Bradley, C., Hannah, D. M., Heppell, C. M., Kelly, T., Nelson, R., Parry-Wilson, H., and Stevens, R.: Tracking organic matter pollution and bacteria using fluorescence-based approaches in a UK Chalk stream, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9065, https://doi.org/10.5194/egusphere-egu24-9065, 2024.

EGU24-9236 | ECS | Orals | BG4.4

Radiocarbon as a key constraint for prediction of river carbon biogeochemistry 

Timo Rhyner, Benedict Mittelbach, Margot White, Lisa Broeder, Olivier Raymond, Negar Haghipour, Alex Brunmayr, Florian Storck, Lucas Passera, Melissa Schwab, Robert Hilton, Jürg Zobrist, and Timothy Eglinton

The lateral transport of riverine carbon is a key component of the global carbon cycle, yet several aspects are poorly understood. In particular, the magnitude and nature of carbon cycle responses in freshwater aquatic networks to on-going climate and environmental change remain unclear. Addressing this issue requires assessment of temporal changes in riverine carbon dynamics and identifying the underlying factors that influence the fate of transported carbon. For example, long-term observations of river chemistry from the Swiss National River Monitoring and Survey Program have revealed a steady increase in dissolved inorganic carbon (DIC) concentrations in the major four Swiss rivers (Rhine, Rhone, Ticino, and Inn) over the past ~50 years, yet the cause of this increase remains unclear. Potential contributors include increased DIC inputs from bedrock weathering, soil organic matter (OM) respiration or OM remineralization within aquatic systems. All of these processes are potentially accelerated with increasing temperatures due to global warming, but they have markedly different implications with respect to carbon cycling and ecosystem dynamics. While sensor monitoring and remote sensing approaches are invaluable for creating high-resolution spatially and temporally resolved data, distinguishing specific source components requires ancillary information. In this context, radiocarbon (14C) measurements obtained through coordinated sampling programs can serve as a powerful complementary constraint on carbon sources, turnover and transport times.

Switzerland provides a unique opportunity to use radiocarbon to assess carbon provenance in alpine streams and rivers, thanks to its high diversity of watersheds spanning strong climatic, elevational, lithological, ecological as well as anthropogenic gradients. This diversity is expressed in a wide range of 14C signatures for particulate organic carbon (POC; Δ14C values, −446‰ to −158‰), for dissolved organic carbon (DOC; −377‰ to −43‰) and DIC (−301‰ to −40‰). We argue carefully designed parallel field sampling of streams and rivers and subsequent measurement of radiocarbon and ancillary geochemical parameters would aid in groundtruthing high-resolution sensor data. To illustrate the value of 14C measurements, we present a multi-year 14C time-series from the sub-alpine Sihl River system to highlight event- and seasonally-driven changes in the composition of riverine carbon POC, DOC, and DIC. We place these observations in the context of 14C measurements on a broad range of Swiss river systems to further investigate overarching controls on fluvial carbon export from alpine and sub-alpine watersheds. Such information can help the design of targeted sampling and measurement programs to complement sensor measurements in order to develop a comprehensive understanding of changing river carbon biogeochemical dynamics.

How to cite: Rhyner, T., Mittelbach, B., White, M., Broeder, L., Raymond, O., Haghipour, N., Brunmayr, A., Storck, F., Passera, L., Schwab, M., Hilton, R., Zobrist, J., and Eglinton, T.: Radiocarbon as a key constraint for prediction of river carbon biogeochemistry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9236, https://doi.org/10.5194/egusphere-egu24-9236, 2024.

EGU24-10723 | Posters on site | BG4.4

Low dissolved organic carbon flux in small mountainous catchments of Taiwan 

Pei-Ling Wang, Ya-Fang Cheng, Jing-Yi Tseng, and Li-Hung Lin

Stream dissolved organic carbon (DOC) is an important component of the global carbon cycle. The export ofDOC from land to the ocean is well quantified by examining large rivers, but this often excludes small mountainous rivers (SMRs), where DOC is primarily allochthonous and acts as a microbial energy source, shaping stream biogeochemical cycling. Revealing the temporal and spatial variation of DOC in SMRs is crucial for filling the missing piece of DOC export and understanding the role of DOC in stream ecology.Taiwan frequently experiences extreme weather events and earthquakes, thereby featuring deep river incisions, rapid uplift and erosion, and limited soil development. It represents an ideal model system for studying SMRs with high area-normalized material fluxes. Two catchments, the Gaoping and Beinan River systems, with high particulate organic carbon (POC) flux in Taiwan, were examined. The variation of DOCconcentrations was wider in the Gaoping River system (ranging from 0.07 to 8.85 mg/L with a mean of 0.66 mg/L) compared to the Beinan River system (ranging from 0.26 to 0.67 mg/L with a mean of 0.37 mg/L). However, the mean values in both systems are significantly lower than the global average. Despite a greater human impact in the lower reach of the Gaoping River as a result of the dense population, temporal variations were substantial at all sites, but the disparities between wet and dry seasons were notable at specific sites. Temperature appeared to be the primary factor controlling DOC concentrations during the non-typhoon period. During the typhoon event, the DOC concentrations were positively correlated with total suspended solids (TSS). By analyzing the temporal sequence, the variation in DOC concentration and TSS exhibited a clockwise hysteresis with the DOC max proceeding TSS max. This event contributed approximately 10% of the annual DOC flux in the catchment. Compared with the POC flux, the DOC flux derived from these two catchments is much lower, indicating a decoupling of transportation for particulate and dissolved materials and limited river metabolisms in SMR catchments.

How to cite: Wang, P.-L., Cheng, Y.-F., Tseng, J.-Y., and Lin, L.-H.: Low dissolved organic carbon flux in small mountainous catchments of Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10723, https://doi.org/10.5194/egusphere-egu24-10723, 2024.

Streams and rivers are increasingly recognized as vital components of the global carbon cycle, especially in the context of climate change. To comprehensively understand their impact, it is essential to move beyond the study of individual reaches and consider the entirety of fluvial networks, including their terrestrial interactions. This holistic perspective is crucial for integrating fluvial networks into Earth System models and accurately assessing their role in the global carbon cycle.

In this context, we describe the Metabolic Regimes in Alpine Stream Networks Program (METALP, https://metalp.epfl.ch), an ecohydrological and biogeochemical monitoring study of high-mountain streams in the Swiss Alps, running since 2016. Employing a network of high-frequency sensors (10-min) paired with monthly grab sampling, METALP examines the hydrological, thermal, light, and carbon regimes of high-mountain streams. Initially focused on the metabolism of alpine streams, the project has evolved to explore long-term trends in ecosystem characteristics and functions, with a particular emphasis on understanding climate change impacts. This unique observatory has so far collected over 20 million usable data points, describing annual regimes of streamwater flow, temperature, sediment load, carbon fluxes, and ecosystem metabolism.

We present insights into the hydrologic and biogeochemical consequences of glacier loss, along with findings on dissolved organic carbon, gas exchange and CO2 emissions, oxygen concentrations, and gross primary production. Building on these insights, we then delve into the unique challenges associated with long-term monitoring in high-mountain catchments. These include marked hydrologic variability, with flows ranging over several orders of magnitude, and the need for monitoring equipment to withstand high flows, sediment loads, and avalanches, and remain functional during low flow periods. Seasonal snow cover and the remoteness complicate sampling campaigns and sensor maintenance. Additionally, the oligotrophic nature of high-mountain streams, with low analyte concentrations, necessitates sensitive monitoring programs capable of detecting subtle changes. These challenges inherently lead to gaps in data, necessitating not only technical adaptations for monitoring under difficult conditions but also innovative modeling strategies for compensating data loss.

Finally, the METALP network, along with river networks located in different climatic regions (i.e., the Krycklan catchment in Sweden, the StreamPULSE project, or the Arctic Great Rivers Observatory), provides a broader perspective, enabling us to understand biogeochemical patterns and dynamics across multiple streams. This approach is crucial for constructing a comprehensive picture of stream biogeochemistry and its response to climate change.

How to cite: Deluigi, N. and Robison, A. L.: Deciphering alpine stream responses to climate change: lessons from the METALP monitoring network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10927, https://doi.org/10.5194/egusphere-egu24-10927, 2024.

EGU24-10994 | Orals | BG4.4

Variability of annual primary production in the North Sea from 1983 to 2014: diatoms and non-diatoms show different trends 

Johannes Paetsch, Gennadi Lessin, Yuri Artioli, and Jeremy Blackford

Nitrogen and phosphorus inputs via rivers entering the North Sea showed maxima in the early 1980s. This led to eutrophication phenomena near the coast with high primary production and further negative consequences for the North Sea ecosystem.

Recent simulations with the ecosystem model ECOHAM for the North Sea, nested in the model NEMO-ERSEM for the Northwest European continental shelf, show that diatom and non-diatom driven productions behave differently with respect to decreasing eutrophication. In the southern and central North Sea, non-diatom production including calcifiers has indeed responded to the changes in nutrient supply via the rivers. However, diatom production in this region mostly remained stable and even increased in some cases.

A different picture emerges in the northern North Sea, where the reversal of the winter NAO index from high to lower values (1995/1996) was followed by a drastic collapse in the inflow of North Atlantic water. This also led to a cut in the nutrient supply. Here, both phytoplankton groups reacted similarly: from 1996, the primary production of both species declined and then recovered again from 1999.

Our results confirm the hypothesis of Desmit et al. (2019) that in the southern North Sea primary productivity responds to reduction in nutrient inputs with shifts in community structure, and in the northern North Sea with decrease in total productivity rates.

Reference:

Desmit, X., A. Nohe, A. V. Borges, T. Prins, K. De Cauwer, R. Lagring, D. Van der Zande and K. Sabbe (2019). Changes in chlorophyll concentration and phenology in the North Sea in relation to de-eutrophication and sea surface warming. Limnology and Oceanography 9999. DOI: 10.1002/lno.11351.

How to cite: Paetsch, J., Lessin, G., Artioli, Y., and Blackford, J.: Variability of annual primary production in the North Sea from 1983 to 2014: diatoms and non-diatoms show different trends, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10994, https://doi.org/10.5194/egusphere-egu24-10994, 2024.

EGU24-11259 | Orals | BG4.4

A Real-time Monitoring System of Dissolved Nitrous Oxide, Methane and other Gases and their Isotopes in Aquatic Ecosystems 

Joanne Shorter, Joseph Roscioli, Elizabeth Lunny, and Scott Wankel

Coastal ecosystems are dynamic regions especially rich in diverse biological and geochemical interactions.  However, major gaps exist in our knowledge of the primary biogeochemical processes and the factors regulating their relative importance.  The study of the biogeochemical cycles of nitrogen and carbon in aquatic systems is important for understanding the fate of nutrients and other chemical components present there. Nitrous oxide (N2O) and methane (CH4), have important roles in these nitrogen and carbon biogeochemical processes as they are produced and cycled within coastal and ocean environments.  They are also significant greenhouse gases with major roles in climate change.  The gaps in our understanding of the distribution and dynamics of the underlying processes controlling their fluxes can be filled with the development and deployment of high-resolution spatial-temporal measurement methods.

We have developed a field deployable, real-time, in situ system to quantify dissolved greenhouse gases (N2O and CH4 and their isotopologues) in aquatic ecosystems including coastal wetlands.  This measurement system consists of i) an array of permeable, hydrophobic probes that can be brought under a partial vacuum without intrusion of liquid water; ii) a collection protocol for efficiently drawing dissolved gases into the sampling system without isotopic fractionation; and iii) an interface of the probe array and the extraction and sampling system with real time analytical instrumentation.  By integrating an Aerodyne tunable infrared laser direct absorption spectrometer (TILDAS) into the measurement system, we can achieve real time determination of concentration and isotopic abundances of N2O and CH4.

We have compared dissolved gases extracted from a variety of collected water samples including different tap water sources, ocean water, and wetland “swamp” water.  We observed higher N2O in the tap water samples compared to the ocean waters.  Swamp water collected from two areas of the wetland (i.e., still and moving water zones) had elevated CH4 and N2O, with the still water having higher methane and lower N2O than observed in water from area with movement.  We also compared dissolved N2O isotopologues with headspace in dosing experiments, achieving excellent comparisons of the 15N2O isotopic ratios (δ456, δ546) and site preference (SP = δ456- δ546) of dissolved N2O with the headspace.  Laboratory results as well as plans for field demonstrations in coastal areas will be discussed.

How to cite: Shorter, J., Roscioli, J., Lunny, E., and Wankel, S.: A Real-time Monitoring System of Dissolved Nitrous Oxide, Methane and other Gases and their Isotopes in Aquatic Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11259, https://doi.org/10.5194/egusphere-egu24-11259, 2024.

EGU24-11765 | ECS | Posters on site | BG4.4

Relating fluorescent dissolved organic matter to bacterial biomass in English aquifer systems 

Archita Bhattacharyya, James Sorensen, Daren Gooddy, Daniel Read, and Ben Surridge

Dissolved organic matter (DOM) serves as crucial nutrient for microorganisms in oligotrophic groundwater environment. This study investigated regional-scale variations in fluorescent DOMs (fDOM) across three major English aquifers: Jurassic limestone, Permo-triassic sandstone, and Cretaceous chalk, which display different dominant groundwater flow regimes ranging from karstic, intergranular and fractured respectively. Untreated groundwater samples from 134 public supply pumps were analysed using Fluorescence spectroscopy to characterize fDOM in these aquifers with distinct properties. Our aim was to find the baseline fDOM concentrations in uncontaminated groundwater and explore the associations between fDOM, DOC, and bacterial biomass. PARAFAC modelling of the Excitation Emission Matrices (EEMs) revealed two humic-like components (HLF): component-1 peak-C, and component-2 or peak-M; and two protein-like components: component-3 or peak-T (tryptophan like or TLF) and component 4 or peak-B (Tyrosine like). Humic-like components were predominant in groundwater, with median total HLF of 0.19 raman unit (RU). Bacterial cells were enumerated using flow cytometry. Absence of E. Coli in the samples suggested no surface microbial contamination. DOC concentration ranged from 0.76 to 1.11 mg/L, lower than the UK groundwater mean of 3.1 mg/L, implying a carbon-poor environment. Significant difference of fDOM and DOC across three aquifers were observed. Median DOC and HLF were significantly higher in limestone and chalk aquifers than in sandstone aquifers. Higher humification index in limestone (HIX=0.8) and chalk (HIX=0.74) aquifer suggested less complex and high H/C ratio fDOM was present in sandstone aquifer (HIX=0.68). Sandstone also exhibited higher β/α ratio (0.97) and fluorescence index (FI=1.53) than chalk (β/α=0.85, FI=1.4) and limestone aquifer ((β/α=0.75, FI=1.4) suggesting fresher and more microbially derived autochthonous fDOM in sandstone aquifer in contrast with more mature and allochthonous fDOM in limestone and chalk aquifers. Positive correlations between HLF, TLF, and total bacterial cell concentration (TCC) were observed across all aquifers. However, DOC was only correlated with TCC in sandstone aquifers. This emphasised that the type of DOM, rather than its quantity, closely associates with bacterial biomass. Median TCC in karstic limestone aquifer (2×104/ml) was nearly double that of intergranular sandstone (1×104/ml), and fractured chalk aquifer (8×103/ml). Despite relatively high fDOMs in chalk aquifers, TCC was significantly lower due to size exclusion of suspended bacteria through smaller pore-throats of the chalk. This also suggested that the correlation of TCC and fDOMs might not be due to more DOM promoting more bacterial productivity, but possibly due to their similar source. This study highlighted the carbon-poor nature of uncontaminated groundwater environments, with spatially distinct baseline values of fDOM, DOC, and TCC. Limestone and chalk aquifers have high permeability and surface connectivity and are therefore more vulnerable to quality degradation.

How to cite: Bhattacharyya, A., Sorensen, J., Gooddy, D., Read, D., and Surridge, B.: Relating fluorescent dissolved organic matter to bacterial biomass in English aquifer systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11765, https://doi.org/10.5194/egusphere-egu24-11765, 2024.

North American beavers commonly build dams and create ponds, which alter both the stream hydrology and biogeochemistry. Beaver ponds are common in headwaters of boreal and arctic watersheds of Canada, and while they cover only a small portion of watershed area, their position and biogeochemical influence may allow them to have a large impact on the downstream delivery of solutes and their dominant forms. Previous studies have suggested that boreal beaver ponds commonly act as methylmercury (MeHg) sources to downstream ecosystems, but this has not been studied in the wetland-rich areas of the Taiga Plains, western Canada. Since wetlands are also known as key watershed locations of MeHg production, our objective was to determine whether beaver ponds receiving water from wetland-rich areas still act as net sources of MeHg. We sampled water chemistry at the inflow and outflow of 20 beaver ponds over two years to evaluate Hg and MeHg changes. We determined that there was a net loss of MeHg in the beaver ponds (-34.4% on average), particularly during conditions when water residence time was long. This effect was greatly reduced in wet conditions when water was passing through the ponds more quickly. Net MeHg losses were greater when water entering the pond was already high in MeHg, whereas ponds receiving low MeHg concentrations were neutral or even acted as small sources. These decreases were also correlated with higher dissolved oxygen concentration and isotopic changes in surface water which suggests that aerobic microbial demethylation and photodemethylation may be contributing to net MeHg loss. Understanding the conditions that drive solute delivery from these ponds will allow local land managers to determine appropriate courses of action for beaver management and support well-informed water quality risk assessments.

How to cite: Lagroix, J., Olefeldt, D., and Hood, G. A.: I'll be dammed: Beaver ponds as sites for net loss of methylmercury along stream networks on the peatland-rich Taiga Plains, western Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11993, https://doi.org/10.5194/egusphere-egu24-11993, 2024.

EGU24-12040 | ECS | Posters on site | BG4.4

Combining isotope measurements, water quality sensors and computational methods to unravel in-stream carbon dynamics of a complex stream network in the Italian Alps 

Giulia Grandi, Gianluca Botter, Nicola Durighetto, Mirco Peschiutta, Mauro Masiol, Barbara Stenni, and Enrico Bertuzzo

Freshwaters are key players in global carbon (C) cycle as they collect C leaked from the terrestrial ecosystem and host in-stream production and respiration processes. C transported by streams and rivers can be out-gassed to the atmosphere in the form of carbon dioxide (CO2), buried in the sediments or reach the coastal oceans. In the last decades, the relevance of these exchange fluxes to global CO2 emissions has been recognised, as well as the importance of describing the C dynamics at the stream sediment-water-atmosphere interfaces. Describing the functioning of fluvial C cycling under varying hydrodynamic and morphological traits is even more critical in mountain catchments due to the rapid change they are facing under global warming. However, estimation of these fluxes is largely uncertain and requires the integration of multidisciplinary theoretical and observational studies.

This work illustrates the planned activities and the preliminary results of two synergistic research projects aimed at resolving C cycling and stream metabolism in an alpine catchment: project CONSTRAIN (CarbON exchange processes across STReAm INterfaces) funded by the Italian Ministry of Research, and project iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European Union Next-Generation EU. 

The projects focus on the Rio Valfredda, a pristine mountain stream network draining a 5.3 km2 catchment in the Italian Alps. The planned activities include the continuous, high frequency measurement of dissolved oxygen and carbon dioxide, along with environmental ancillary variables like photosynthetic active radiation, stream temperature, barometric pressure, pH and electrical conductivity, in four reaches within the stream network. Through a newly proposed model that couples the diel fluctuations of O2 and CO2, we aim to jointly estimate stream metabolism (i.e. gross primary production and ecosystem respiration), lateral input of dissolved inorganic carbon (DIC) and CO2 out-gassing to the atmosphere. 

We aim at linking C cycling patterns with hydrologic traits of the selected reaches. To that end, water stable isotopes (δ18O and δ2H) are being monitored in several tributaries of the stream network (grab samples with monthly frequency), at the catchment outlet (at daily frequency) and in the precipitation collected by rain gauges placed at different altitudes. From the analysis of the isotopic signature of streamflow and precipitation we reconstruct summary statistics of the travel time distribution of water within the hillslope with the goal of relating it with the lateral flow of DIC.

The comprehensive set of information collected, together with the previous knowledge about the hydrological dynamics of the Valfredda catchment, which has been closely monitored for the past 5 years in the framework of the DyNET project funded by the European Research Council, will allow upscaling C cycling at the level of the whole network rather than focusing on individual reaches. These projects will enhance our understanding of the role played by hydrology on the metabolism of complex river networks, unraveling the multifaceted dynamical relations that link rivers with the surrounding environment and allowing a robust assessment of the contribution of freshwaters to CO2 emissions.

How to cite: Grandi, G., Botter, G., Durighetto, N., Peschiutta, M., Masiol, M., Stenni, B., and Bertuzzo, E.: Combining isotope measurements, water quality sensors and computational methods to unravel in-stream carbon dynamics of a complex stream network in the Italian Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12040, https://doi.org/10.5194/egusphere-egu24-12040, 2024.

EGU24-13199 | Posters on site | BG4.4

Space-time dynamics of dissolved organic carbon (DOC) concentration and water quality in the Turbolo River catchment (southern Italy) 

Alfonso Senatore, Corrente Giuseppina Anna, Perri Alessio Carmelo, Greco Francesco, Mendicino Giuseppe, Beneduci Amerigo, and Botter Gianluca

This study investigates the spatial and temporal dynamics of dissolved organic carbon (DOC) and several other chemical-physical parameters concentrations in a Mediterranean headwater catchment (Turbolo River catchment, southern Italy) equipped with two multi-parameter sondes providing multiple-year (from 2019 to 2023) high-frequency measurements, complemented by discrete monitoring campaigns. The sondes were installed in two nested sections, a quasi-pristine upstream sub-catchment and a downstream outlet with anthropogenic water quality disturbances. Altogether, sixteen chemical-physical parameters were assessed: temperature, turbidity, electrical conductivity (EC), total dissolved solids (TDS), salinity, pH, ORP, ammonia nitrogen (N-NH4+) and dissolved organic carbon (DOC) in continuous mode; alkalinity, dissolved inorganic carbon (DIC), free CO2, not purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), anionic and cationic content for discrete monitoring. In particular, DOC estimates were achieved by correcting the fluorescent dissolved organic matter -fDOM - values through an original procedure that did not require extensive laboratory measurements. Then, parameter dynamics at the seasonal and storm event scales were analyzed.

Results showed that all parameters have values consistent with those expected for fluvial water. Furthermore, the majority of the parameters generally recorded the highest values during the autumn season, showing then a decrease to spring lows and a new rise with the arrival of the driest months of the year. In particular, the seasonal scale analysis confirmed the climate control on DOC production, with increasing background concentrations in hot and dry summer months. On the other hand, the hydrological regulation proved crucial for DOC mobilization and export, with the top 10th percentile of discharge associated with up to 79% of the total DOC yield. The analysis at the storm scale using flushing and hysteresis indices highlighted substantial differences between the two catchments. In the steeper upstream catchment, the limited capability of preserving hydrological connectivity over time with DOC sources determined the prevalence of transport as the limiting factor to DOC export. In the downstream catchment, transport- and source-limited processes were observed almost equally. The correlation between the hysteretic behaviour and antecedent precipitation was not linear since the process reverted to transport-limited for high accumulated rainfall values. The influence of storm events was also verified for other parameters, which were either positively (turbidity, N-NH4+) or negatively (electrical conductivity, TDS and salinity) correlated with the streamflow variation.

Exploiting high-resolution measurements, the study provided insights into DOC and several other chemical-physical parameter dynamics in nested headwater catchments at multiple time scales.

 

Reference: Senatore et al., Water Resources Research, 2023, 59(11), e2022WR034397, https://doi.org/10.1029/2022WR034397

How to cite: Senatore, A., Giuseppina Anna, C., Alessio Carmelo, P., Francesco, G., Giuseppe, M., Amerigo, B., and Gianluca, B.: Space-time dynamics of dissolved organic carbon (DOC) concentration and water quality in the Turbolo River catchment (southern Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13199, https://doi.org/10.5194/egusphere-egu24-13199, 2024.

EGU24-13957 | Posters on site | BG4.4

Flow source drives extreme variation in dissolved organic carbon in an important North American Great Plains reservoir 

Helen Baulch, Anthony Baron, Ali Nazemi, and Colin Whitfield

Elevated dissolved organic carbon (DOC) concentrations are a major concern for drinking water treatment plants that draw from surface waters, owing to effects on disinfection byproduct formation, risks of bacterial regrowth in water distribution systems, and treatment costs. Yet within the vast Great Plains of North America water supplies are limited. As a result, water utilities often rely on water bodies with naturally elevated DOC. Using a 30-year data set encompassing both extreme wet and dry conditions we investigate the drivers of high variation in DOC, exploring effects of changing flow management and in-lake water chemistry. Using wavelet coherence analyses and generalized additive models of DOC, we find DOC concentration was significantly coherent with flow from a large upstream mesotrophic reservoir. DOC was also coherent with sulfate, total phosphorus, ammonium, and chlorophyll a concentrations across the 30-year record. These variables accounted for 56% of the deviance in DOC from 1990 to 2019, suggesting that water source and in-lake nutrient and solute chemistry are effective predictors of DOC concentration. Clearly, climate and changes in water and catchment management will influence source water quality in this already water-scarce region. Our results highlight the importance of flow management to shallow eutrophic reservoirs and demonstrate impacts on source water quality.  Results also highlight a key management challenge where wet periods can exacerbate water quality issues and these effects can be compounded by flow rules that dictate reducing inflows from systems with lower DOC. Our work shows that current flow management decisions to address water level and flood risk concerns also have important impacts on drinking water treatability, creating important tradeoffs and highlighting complex challenges for regional water security.  

How to cite: Baulch, H., Baron, A., Nazemi, A., and Whitfield, C.: Flow source drives extreme variation in dissolved organic carbon in an important North American Great Plains reservoir, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13957, https://doi.org/10.5194/egusphere-egu24-13957, 2024.

EGU24-14012 | ECS | Orals | BG4.4

Sources and fate of dissolved inorganic carbon in rivers of Switzerland 

Alexander Brunmayr, Timo Rhyner, Dylan Geissbühler, Luisa Minich, Margot White, Florian Storck, Lucas Passera, Stephanie Zimmermann, Margaux Moreno Duborgel, Thomas Laemmel, Benedict Mittelbach, Negar Haghipour, Timothy Eglinton, Sönke Szidat, Frank Hagedorn, and Heather Graven

Each year, rivers export more than one teragram of carbon out of Switzerland as dissolved inorganic carbon (DIC), integrating diverse atmospheric, terrestrial, and aquatic carbon sources over their catchments. However, the contributions of the different carbon sources to riverine DIC – and thus the implications of DIC dynamics for the global carbon balance and climate – remain uncertain. Building upon the 50-year dataset from the national long-term river monitoring network of Switzerland (NADUF), we attempt to predict the vertical CO2 fluxes between rivers and the atmosphere, and to quantify catchment-scale DIC production through rock weathering, leaching of soil-respired CO2, and mineralization of organic carbon during fluvial transport. Supported by the national network of groundwater monitoring sites (NAQUA) and soil sampling sites covering Switzerland, a Bayesian mixing model disentangles the sources of riverine DIC using measured data of carbon and water isotopes (14C, 13C, 2H, 18O), as well as ion concentrations. The exchanges between river DIC and atmospheric CO2 across the air–water interface are predicted with a diffusion model, validated with measurements of the CO2 flux and isotopes from in situ floating-chamber experiments. Our predictions of the DIC source contributions and the net CO2 flux from rivers help to elucidate the role of DIC in the carbon balance of alpine and perialpine river catchments, and contribute towards closing the national carbon budget of Switzerland.

How to cite: Brunmayr, A., Rhyner, T., Geissbühler, D., Minich, L., White, M., Storck, F., Passera, L., Zimmermann, S., Moreno Duborgel, M., Laemmel, T., Mittelbach, B., Haghipour, N., Eglinton, T., Szidat, S., Hagedorn, F., and Graven, H.: Sources and fate of dissolved inorganic carbon in rivers of Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14012, https://doi.org/10.5194/egusphere-egu24-14012, 2024.

EGU24-14106 | ECS | Orals | BG4.4

Disconnectivity matters: The outsized role of small ephemeral wetlands in landscape-scale nutrient retention 

Frederick Cheng, Junehyeong Park, Mukesh Kumar, and Nandita Basu

Wetlands protect downstream waters by filtering excess nitrogen (N) generated from agricultural and urban activities. Small ephemeral wetlands, also known as geographically isolated wetlands (GIWs), are hotspots of N retention but have received fewer legal protections due to their apparent isolation from jurisdictional waters and are typically left out of restoration efforts. Here, we hypothesize that the isolation of the GIWs make them more efficient N filters, especially when considering transient hydrologic dynamics. We use a reduced complexity model with thirty years of remotely sensed monthly wetland inundation levels in 3,700 GIWs across eight wetlandscapes in the United States to show how consideration of transient hydrologic conditions that capture disconnectivity dynamics can increase N retention estimates by up to 130%, with greater retention magnification for the smaller wetlands. This effect is more pronounced in semi-arid systems, where transient assumptions lead to 1.8 times more retention, compared to humid landscapes where transient assumptions only lead to 1.4 times more retention.  Our results highlight how GIWs have an outsized role in retaining nutrients, and this service is enhanced due to their hydrologic disconnectivity. Under the context of the new EU Nature Restoration Law and other global conservation efforts, these unique ecosystems must be protected and considered in restoration plans to maintain the integrity of downstream waters.

How to cite: Cheng, F., Park, J., Kumar, M., and Basu, N.: Disconnectivity matters: The outsized role of small ephemeral wetlands in landscape-scale nutrient retention, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14106, https://doi.org/10.5194/egusphere-egu24-14106, 2024.

EGU24-14428 | Orals | BG4.4

Stream Length and Diatom Communities Control Si Dynamics in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica 

Diane McKnight, Keira Johnson, Ruth Heindel, and kathi jo Jankowski

In the polar deserts of Antarctica, meltwater from glaciers flows in streams for only about two months during the summer. As the water flows downstream and interacts with the sediment in the stream channel, weathering reactions increase the concentrations of dissolved constituents in the stream water, especially silica. In the McMurdo Dry Valleys, the glacial meltwater streams that flow during the austral summer are important biogeochemical links between the alpine and terminal glaciers and the lakes in the valley floors.  As part of the McMurdo Dry Valleys Long-Term Ecological Research (MCMLTER) project, 17 first and second order streams are monitored for flow and water quality, and diatom community composition in the perennial microbial mats on the streambed. This study found that in streams that are about 1 km long and have abundant microbial mats, the diatoms can take up enough silica to reduce the concentrations of dissolved silica to very low values (>/= 1 mg/L). In comparison, in longer streams Si concentrations are greater (2 mg/L and greater) due to the input of Si from weathering in the hyporheic zone. A previous study has found that diatom community composition in two short streams is significantly related to total flow during the austral summer, leading to a hypothesis that decreases in Si concentrations with increasing flow may favor smaller diatoms with less silicified frustules. We analyzed the 25-yr discharge and silica record for 10 streams using the Weighted Regressions on Time, Discharge, and Season (WRTDS) model to estimate mean 5-day silica concentrations for December through January. These analyses revealed that the shortest stream with the strongest relationship between flow and diatom community composition consistently exhibited minimum Si concentrations of ~ 0.5 mg/L at peak flow. In contrast, Si concentrations were higher and more stable throughout the summer for long streams that exhibit little variation in diatom community composition. These results suggest that Si uptake by diatoms can control both in-stream Si concentrations and diatom community composition.  Understanding the relationship between the diatoms in the mat communities and environmental change is useful for interpreting the record of the stream diatoms preserved in lake sediments and for considering future scenarios for the Dry Valleys.

How to cite: McKnight, D., Johnson, K., Heindel, R., and Jankowski, K. J.: Stream Length and Diatom Communities Control Si Dynamics in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14428, https://doi.org/10.5194/egusphere-egu24-14428, 2024.

EGU24-14742 | Posters on site | BG4.4

Pine pollen is an important component of the Baltic Sea 

Magdalena Pawlik and Dariusz Ficek

Every year, pine pollen occurs at the water surface and cover large areas of the Baltic waters in spring. Its concentrations in the Baltic are sometimes so large that they actually form a conspicuous yellow layer on the surface. Pine pollen is a very important source of carbon and nutrients to the Baltic Sea.

The objective of this work was to estimate the absolute and relative concentrations of pine pollen and to show the spatial differentiation of pollen levels in Baltic Sea waters.

The measurements showed that practically the whole study area was covered with pollen. substantial pollen concentrations were recorded not only in the coastal zone but also at considerable distances from the shore. Pollen levels in Baltic surface waters, measured during the 2018 pollen season, varied from 0.5 to 14.7 µl l-1, which is 10–49.2% of the total suspension, ranging from 1.25 to 250 µm. To examine the biological role of pollen in the aquatic environment, the contents of carbon C, nitrogen N and phosphorus P were measured in pollen acquired from pine trees growing close to the Baltic shore. The levels of these elements were as follows: 47.66% C, 0.32% P and 2.50% N.

This work was supported by the National Science Centre of Poland (contract No. 2017/25/N/ST10/02578 to M.M.P).

How to cite: Pawlik, M. and Ficek, D.: Pine pollen is an important component of the Baltic Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14742, https://doi.org/10.5194/egusphere-egu24-14742, 2024.

EGU24-16364 | ECS | Orals | BG4.4

Impact of Particle Resuspension on Oxygen Consumption and Nutrient Cycling in a Turbid Estuary: Insights from the Loire Estuary 

Nour El Imene Boukortt, Edouard Metzger, Eric Bénéteau, Yoann Le Merrer, Philippe Souchu, Sophie Sanchez, Mohammed Barhdadi, Grégoire Maillet, and Sabine Schmidt

A characteristic feature of macrotidal estuaries is the presence of a Maximum Turbidity Zone (TMZ), defined by a high concentration of suspended particles (>0.5 g.L-1). It is maintained by frequent resuspension and deposition events, mainly influenced by waves, tidal currents, and river discharge. These cycles often result in enhanced organic matter degradation, generating a local dissolved oxygen (DO) demand, which can lead to drastic declines in DO and even hypoxic conditions (DO<2 mg.L-1). In the Loire estuary (France), a macrotidal and turbid environment prone to summer hypoxia, the TMZ is a focal point of interest as it is the site of a persistent oxygen deficit in the inner estuary. To investigate the effects of particle reactivity on DO consumption within the inner estuary, we conducted 14 sampling campaigns between summer 2022 and summer 2023, covering a wide range of river discharge and temperature conditions. We selected two sampling stations: one subjected to freshwater influence and almost continuous presence of TMZ, and the second exposed to coastal ocean conditions. Suspended particles were collected at mid-tide and incubated in the laboratory under controlled conditions at 20°C with continuous stirring to maintain resuspension. DO concentrations were measured using optic sensors and incubations were stopped when 30% of the oxygen concentration was consumed. Nutrient and organic matter composition were investigated by pre- and post-incubation filtration to analyse ammonium, nitrate, phosphate, particulate organic carbon, and nitrogen (POC, PON). DO consumption rates reached maximum values in spring (52.2±0.1 µmol.g-1.d-1,42.6±0.4 µmol.g-1.d-1) at the upstream and downstream stations, respectively. Overall, the most downstream station had higher oxygen consumption rates due to the marine influence contributing to the input of fresher organic material compared to the upstream station where the presence of TMZ is associated with degraded material. These results emphasize the importance of the material source on oxygen consumption rates. Our discussion will focus on the degradation processes occurring within the TMZ and consider how the reactivity and source of suspended particles may play a role in influencing oxygen consumption patterns, potentially contributing to the development of hypoxic conditions within the estuary.

How to cite: Boukortt, N. E. I., Metzger, E., Bénéteau, E., Le Merrer, Y., Souchu, P., Sanchez, S., Barhdadi, M., Maillet, G., and Schmidt, S.: Impact of Particle Resuspension on Oxygen Consumption and Nutrient Cycling in a Turbid Estuary: Insights from the Loire Estuary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16364, https://doi.org/10.5194/egusphere-egu24-16364, 2024.

EGU24-17208 | Orals | BG4.4

Exploring dissolved organic matter (DOM) signatures across contrasting UK landscapes using a high-resolution mass spectrometry ‘fingerprinting’ approach. 

Charlotte Lloyd, Jonathan Pemberton, Penny Johnes, Davey Jones, Chris Yates, Helen Glanville, Fran Brailsford, and Richard Evershed

Dissolved organic matter (DOM) plays a vital role in river ecosystem function and therefore understanding its composition is key. DOM has important implications for nutrient cycling and riverine health and with this in mind, it is vital to gain a more comprehensive understanding of the composition of riverine DOM at a molecular level and how this varies across contrasting landscapes. There are many factors which will influence DOM signatures, from differences in climate, soil type/geology, land-use, as well as intensity and nature of anthropogenic activity. Through understanding the potential relationships between these factors and DOM composition, we can gain key information regarding both sources of riverine DOM within river catchments, aiding pollution mitigation strategies, and how signatures may vary under changing climate and/or land-use.

The analysis of DOM poses a significant analytical challenge due to its complexity, however the advances in mass spectrometry now allows detailed characterisation at molecular scale. This study examines the DOM composition across 56 UK field sites spanning contrasting landscapes, including four different geologies/soil types. Additionally, 18 effluents from UK sewage treatment works (STW) were investigated. River water samples were collected and an untargeted analysis carried out using direct-infusion high-resolution mass spectrometry (DI-MS) and the resultant DOM signatures across the samples were compared.

Principal component analysis (PCA) and hierarchical clustering analysis methodologies were applied and showed that the DOM molecular composition between sites could be distinguished according to landscape character. Specifically, the PCA analysis showed that contrasting geologies/soil types were separated by the derived Principle Component (PC) 2 while PC1 separated the riverine samples from the STW effluents in the analytical space. Explanatory variables including landcover, land-use and population density alongside bulk nutrient data were used to begin to elucidate the driving factors behind the PCs. In addition to differences in DOM signatures, further analysis of the molecular compositions identified anthropogenically derived organic compounds, for example, series of polypropylene glycol (PPG) and polyethylene glycol (PEG) oligomers, which were present in almost all landscapes across the UK, illustrating that they are now ubiquitous across riverine environments. Using these data, we can begin to provide generalisable information regarding the molecular composition of DOM across different UK landscapes.

How to cite: Lloyd, C., Pemberton, J., Johnes, P., Jones, D., Yates, C., Glanville, H., Brailsford, F., and Evershed, R.: Exploring dissolved organic matter (DOM) signatures across contrasting UK landscapes using a high-resolution mass spectrometry ‘fingerprinting’ approach., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17208, https://doi.org/10.5194/egusphere-egu24-17208, 2024.

EGU24-17925 | Posters on site | BG4.4

Quantifying estuarine carbon and nutrients retention at the regional scale using a generic process-based model and Monte Carlo simulations 

Goulven G. Laruelle, Vincent Thieu, Antoine Casquin, Marie Silvestre, Steeve Bonneville, and Anicée Massant

Most downstream compartments of the continental hydrological network, estuaries are the last biogeochemical filter of the Land-Ocean Aquatic Continuum before the oceanic realm. As such, they receive substantial amounts of carbon and nutrients from rivers and their intense biogeochemical processing allows the removal of part of those inputs, hence potentially contributing to the prevention of coastal eutrophication. Indeed, eutrophication resulting from enhanced nutrients loads from rivers is a pressing global issue, affecting numerous coastal areas and regional seas worldwide. However, simulating ecosystems as intricate as estuaries, characterized by numerous biogeochemical gradients, an intense benthic-pelagic coupling and controlled by complex hydrodynamics is a challenge often associated with intensive computation and data requirements. As a result, the development of numerical models suitable to quantify the filtering function of estuaries is often limited to scarce well studied systems. This highlights the still unresolved challenge of designing and applying a generic modeling strategy able to capture the complexity and intensity of biogeochemical processes for a diversity of often data-limited estuaries along a continuous coastal stretch.

In this study, we present the first spatially explicit, regional, fully transient simulation of the estuarine biogeochemical filter over a multi annual period. This application to 40 estuaries of the Atlantic coast of France from its southern border with Spain to Belgium was performed in the context of the nuts-STeauRY project which aims at illustrating the interest of integrated land-sea modelling approaches to better design spatialized scenarios of agriculture and land-use practice to limit coastal eutrophication in France.

                The simulations were performed using the proven generic estuarine model C-GEM coupled with the OMEN_SED sediment module and constrained, upstream by the pyNuts-Riverstrahler model, which describes the transfer of nutrients and carbon from the headwaters streams to the outlets of river hydrosystems. In its current version, C-GEM resolves tidally induced transport within the estuary along its longitudinal axis and its biogeochemical module includes all the main processes involving carbon and nutrients (i.e. production, remineralization, nitrification, denitrification…). The addition of a new explicit benthic module allows simulating sediments processes and burial which are essential to properly quantify carbon and nutrient retention. The strategy to simulate estuaries devoid of measurements relies on Monte Carlo simulations performed by varying the model’s parameterization constrained by an extensive literature survey and thoroughly validated on well monitored reference systems. Our results over the 2014-2019 period provide an insight into the parameters controlling the temporal and spatial variability of carbon and nutrient retention within a large set of estuaries with varying riverine nutrients loads and ranging from very small (<10km) to the Loire, Seine or Gironde estuaries, which lengths exceed 100km. The simulated retention rates vary widely from just a few percent in the smallest systems to over 40%, 30%, 20% in the largest ones for total organic carbon, total phosphorus and total nitrogen, respectively.

How to cite: Laruelle, G. G., Thieu, V., Casquin, A., Silvestre, M., Bonneville, S., and Massant, A.: Quantifying estuarine carbon and nutrients retention at the regional scale using a generic process-based model and Monte Carlo simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17925, https://doi.org/10.5194/egusphere-egu24-17925, 2024.

EGU24-20681 | Orals | BG4.4

QUANTOM – QUANTification of dissolved Organic Matter and the metabolic balance in river networks: mechanisms and model simulations of CO2 emissions 

Benoit Demars, Maeve McGovern, Leah Jackson-Blake, James Sample, Magnus Norling, Kjell Høgda, Stein Karlsen, Peter Dörsch, Marc Stutter, Barry Thornton, Jim Junker, and Juliana D'Andrilli

QUANTOM aims to quantify how changes in quality and quantity of dissolved organic matter (DOM) supply alter the metabolic balance of rivers, i.e. the contribution of in-stream DOM degradation to CO2 emissions. QUANTOM will determine the coupling between land vegetation growth from satellite observation and DOM delivery and transformation in streams using in-situ sensor technology and whole stream metabolism. QUANTOM will characterise the molecular transformations (reactive pathways) of DOM, from riparian soils to the Barents sea, through the river continuum at control points (hot spots and hot moments) using carbon stable isotope ratios and FT-ICR-MS. QUANTOM will formalise mathematically our novel understanding into a parsimonious river basin model for DOM with in-stream processes. QUANTOM’s vision is to have a model applicable across the natural northern rivers around the globe and transform the way we see and study rivers.

We have completed three years of fieldwork in the river Tana (Northern Norway), draining 16,000 km2 of north boreal and sub-arctic landscapes and discharging in the Barents sea (70°N). We will present the outline of the project, our conceptual approach and preliminary results such as satellite and in-situ sensor data, carbon fluxes and metabolic balance of the river network.   

How to cite: Demars, B., McGovern, M., Jackson-Blake, L., Sample, J., Norling, M., Høgda, K., Karlsen, S., Dörsch, P., Stutter, M., Thornton, B., Junker, J., and D'Andrilli, J.: QUANTOM – QUANTification of dissolved Organic Matter and the metabolic balance in river networks: mechanisms and model simulations of CO2 emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20681, https://doi.org/10.5194/egusphere-egu24-20681, 2024.

EGU24-1161 | ECS | Posters virtual | BG4.7

Exploring water quality and pCO2 dynamics in major rivers of Uttarakhand, India 

Pooja Upadhyay, Sanjeev Kumar Prajapati, and Amit Kumar

Rivers receive substantial amounts of organic carbon from adjacent terrestrial areas, transforming into carbon dioxide (CO2) emissions and contributing to global warming and climate change. The riverine emissions are discussed globally and yet less explored. Notably, anthropogenic land use can influence riverine CO2 emissions, leading to significant uncertainty in estimation. With the increased rates of population and industries, the GHG emissions from rivers are expected to worsen soon. Therefore, effective river management is essential to mitigate emissions and restore river ecosystems. The present study examined the relationship between water quality and CO2 emission of rivers in the Uttarakhand state of India. The partial pressure of CO2 (pCO2) showed obvious spatial variation ranging from ~235 to 12,000 µatm with a mean value of 1860 µatm. Besides, pH, Biochemical Oxygen Demand (BOD), and Alkalinity emerged as significant predictors of pCO2 (R2=0.95). Moreover, pCO2 also had a strong positive correlation with BOD, Chemical Oxygen Demand (COD), phosphate, and nitrate. This study reveals the significant influence of pH, BOD, and Alkalinity on pCO2 levels, underscoring the complex relationship between water quality and carbon dynamics in studied rivers. The correlation also emphasizes the impact of anthropogenic influences on CO2 emissions in major rivers of Uttarakhand, providing valuable insights into the complex nature of carbon dynamics in studied rivers. The strong correlation between water parameters and anthropogenic activities highlights the need for targeted riverine ecosystem management and restoration interventions.

 

How to cite: Upadhyay, P., Kumar Prajapati, S., and Kumar, A.: Exploring water quality and pCO2 dynamics in major rivers of Uttarakhand, India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1161, https://doi.org/10.5194/egusphere-egu24-1161, 2024.

EGU24-1930 | ECS | Orals | BG4.7 | Highlight

Constantly nitrogen and phosphorus input will increase methane and carbon dioxide emissions from global lakes 

fan wu, Yang Gao, Junjie Jia, Xuefa Wen, and Guirui Yu

Due to the high nitrogen (N) and phosphorus (P) input and the weak self-cleaning ability of waterbodies, lakes are more prone to be eutrophication. The continuous input of N and P in enriched lakes regulates the carbon (C) cycle process, which affects the production of greenhouse gases such as CO2 and CH4. Therefore, we assessed the water CO2 and CH4 emission fluxes and their response to ongoing N and P inputs based on data from 707 globally distributed lakes. We found that CO2 and CH4 emission fluxes were higher in the tropics than in the temperate zone, with Antarctica acting as a methane sink. The emission fluxes of CH4 and CO2 increased with the increase in N and P concentration, and the effect of total phosphorus (TP) on the emission fluxes of CO2 and CH4 was the highest. When the TP load is increased by 3 times, the CO2 emission reaches 443.99 mg m-2 d-1, and the CH4 emission reaches 205.47 mg m-2 d-1, which is 1.48 and 3.85 times of the normal condition respectively. If the TP load is reduced by 3 times, it reduces 597.83 mg m-2 d-1 C emissions. This study shows that lake C emissions are highly dependent on continuous N and P input, which provides a scientific reference for the C cycle process of eutrophic lakes, and provides an important basis for the study of lake response to climate.

How to cite: wu, F., Gao, Y., Jia, J., Wen, X., and Yu, G.: Constantly nitrogen and phosphorus input will increase methane and carbon dioxide emissions from global lakes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1930, https://doi.org/10.5194/egusphere-egu24-1930, 2024.

EGU24-2172 | ECS | Orals | BG4.7

Diurnal variations in greenhouse gas emissions from two contrasting thermokarst lakes in Nunavik, Canada 

Amélie Pouliot, Daniel Nadeau, and Isabelle Laurion

Small thermokarst lakes, formed by the thawing of ice-rich permafrost, can emit significant amounts of methane (CH4) and carbon dioxide (CO2) to the atmosphere. The physical processes behind diurnal variations in greenhouse gas (GHG) emissions from thermokarst lakes remain poorly understood due to a lack of observational data in subarctic regions. This study focuses on the dynamics of GHG emissions from two small lakes (< 200 m2) located in the Tasiapik Valley, near the village of Umiujaq, Nunavik, Canada (56°33'28.8"N 76°28'46.5"W). One lake is characterized by a more humic and sheltered environment, while the other is characterized by greater transparency and exposure to wind. Continuous measurements of temperature, conductivity, and oxygen in the water column, as well as meteorological conditions (wind, pressure, heat exchanges) have been conducted since October 2021. CO2 fluxes measured using a floating chamber and dissolved gases (CO2, CH4, N2O) at the surface were measured on a daily cycle for 2-week periods in July 2022 and August 2023, with bubble traps quantifying ebullition rates. Diffusive CO2 fluxes are in line with estimates for other thermokarst lakes, ranging from –2 to 17 mmol m–2 d–1 in July 2022 (during a particularly cold period) and from 8 to 66 mmol m–2 d–1 in August 2023, a period of stronger stratification. Turbulence, characterized by the gas transfer coefficient k600, was higher in 2023 (0.4 to 10.4 cm h–1) than in 2022 (1.1 to 4.7 cm h–1). CH4 emission through ebullition was more than 6 times higher than through diffusion in the more humic and sheltered lake (13 ± 5.5 mol m–2 d–1) and almost 7 times higher than in the more transparent and exposed lake (2 ± 1.5 mmol m–2 d–1), where ebullition was of the same order of magnitude than diffusion. Diurnal cycles were characterized by the nocturnal mixing of surface waters with deeper waters enriched in CO2, leading to a peak in CO2 fluxes in the morning, which gradually decreased over the course of the day with the establishment of thermal stratification due to solar radiation, and the potential uptake by primary production. Overall, these results highlight the complex interactions between environmental factors influencing GHG emissions in thermokarst lakes, and the major differences that can exist between adjacent lakes.

How to cite: Pouliot, A., Nadeau, D., and Laurion, I.: Diurnal variations in greenhouse gas emissions from two contrasting thermokarst lakes in Nunavik, Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2172, https://doi.org/10.5194/egusphere-egu24-2172, 2024.

EGU24-2714 | ECS | Orals | BG4.7

Isotopic Analysis of Dissolved CO2 and CH4 in a Coastal Permafrost Zone 

Shawnee Traylor, Sarah Youngs, John W. Pohlman, John D. Kessler, Kevin Manganini, William Pardis, Anna P. M. Michel, and David P. Nicholson

The steady rise in global temperature is likely to perturb the cycling and transfer of carbon in the coastal Arctic. Given the high carbon content of Arctic soils, this region may become an increasingly important source of methane (CH4) and carbon dioxide (CO2) in response to permafrost loss in coming decades. We present targeted observations along a lake to bay system during the spring thaw around Cambridge Bay, in the coastal Canadian high Arctic. In this system, greenhouse gases produced in the freshwater environment are transported to the bay, where they may undergo further transport, transformation, or ventilation to the atmosphere. As warming alters the timing and dynamics of the ice retreat, carbon sources may shift and the magnitude of outgassing may change. We investigate the sources and pathways of the dissolved CO2 and CH4 via radio- and stable carbon isotope analyses, and conduct a spatial survey using a sensor suite containing a dissolved gas extractor, greenhouse gas analyzer, conductivity-temperature-depth probe, and oxygen optode. Across the transect, observed CH4 ranged from 1-5900 ppm, with δ13C values ranging from -70 to -47‰ (mean: -61.1±10.5‰); CO2 ranged from 100-3350 ppm, with δ13C values of -12 to +38‰ (mean: 6.1±13.1‰). Isotopic depletion of 13C correlated with lower CH4, while enrichment consistent with a primary productivity signal was seen in lower CO2 concentrations. Isotopic signatures additionally clustered with habitat type, revealing spatial variability in the processes controlling the production and transformation of CH4. Radiocarbon dating of the dissolved gases indicated predominantly modern carbon sources at all locations, with the high-CH4 melt ponds containing the youngest carbon (mean age of CH4: 148±16 years; mean age of CO2: 252±16 years). This work aims to enhance our understanding of interannual variability in the carbon cycle dynamics at this site, and to assess the system’s response to a changing climate.

How to cite: Traylor, S., Youngs, S., Pohlman, J. W., Kessler, J. D., Manganini, K., Pardis, W., Michel, A. P. M., and Nicholson, D. P.: Isotopic Analysis of Dissolved CO2 and CH4 in a Coastal Permafrost Zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2714, https://doi.org/10.5194/egusphere-egu24-2714, 2024.

EGU24-2742 | Orals | BG4.7

Carbon export in the land-to-ocean aquatic continuum (LOAC) of China 

Lishan Ran, Shuai Chen, and Qianqian Yang

It has long been recognized that terrestrial ecosystems are not isolated from other earth systems with all the absorbed carbon being permanently sequestered on land. Inland water systems (e.g., streams, rivers, lakes, and reservoirs) are an important component of the global carbon cycle, functioning as active reactors that transport and transform large quantities of terrestrially derived carbon. Strong interactions between terrestrial ecosystems and inland waters indicate that a portion of the carbon sequestered on land by vegetation can be transported to the ocean through inland waters, the land-to-ocean aquatic continuum (LOAC). Therefore, the transport, transformation, and redistribution of terrestrial carbon along this continuum will change the land carbon sink strength. A comprehensive understanding of the magnitude and significance of carbon transfer in the LOAC in modulating the net landscape carbon balance is of paramount importance for an accurate assessment of carbon budget. In this work, we systematically examined the carbon transport in the LOAC of the entire China, including carbon export into the ocean, carbon burial within inland waters, and carbon emissions into the atmosphere. Our results show that the flux of carbon transported into the ocean and buried within Chinese inland waters was 40-45 Tg C yr-1 and 10-15 Tg C yr-1, respectively. In addition, the flux of carbon emissions (as CO2 and CH4) from Chinese inland waters was in the range of 100-105 Tg C yr-1. The total carbon flux entering Chinese inland waters was estimated at 150-160 Tg C yr-1 with carbon emissions being the largest transport pathway (63-70% of the total). Compared with the simultaneous terrestrial carbon sink in China, this terrestrial-aquatic carbon export could offset China’s terrestrial carbon sink capacity by up to 25%. Our results highlight that the terrestrial-aquatic carbon export must be integrated into future national-scale carbon budgets.

How to cite: Ran, L., Chen, S., and Yang, Q.: Carbon export in the land-to-ocean aquatic continuum (LOAC) of China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2742, https://doi.org/10.5194/egusphere-egu24-2742, 2024.

EGU24-3474 | ECS | Posters on site | BG4.7 | Highlight

Agricultural Ditches are Hotspots of Greenhouse Gas Emissions Controlled by Nutrient Input 

Wenxin Wu, Xueqi Niu, Si-liang Li, and Zhifeng Yan

Agricultural ditches are pervasive in agricultural areas and are potential greenhouse gas (GHG) hotspots, since they directly receive abundant nutrients from neighboring farmlands. However, few studies measure GHG concentrations or fluxes in this particular waterbody, likely resulting in underestimations of GHG emissions from agricultural regions. Here we conducted a one-year field study to investigate the GHG concentrations and fluxes from typical agricultural ditch systems, which include main ditches (MD), branch ditches (BD), collector ditches (CD), and field ditches (FD), in an irrigation district located in the North China Plain. The results showed that almost all the ditches were large GHG sources. The mean fluxes were 333 μmol m-2 h-1 for CH4, 7.1 mmol m-2 h-1 for CO2, and 2.4 μmol m-2 h-1 for N2O, which were approximately 12, 5, and 2 times higher, respectively, than that in the river connecting to the ditch systems. Nutrient input was the primary driver stimulating GHG production and emissions, resulting in GHG concentrations and fluxes increasing from the river to MDs, BDs, and then CDs as the ditch systems approached farmlands and potentially received more nutrients. Despite FDs being directly connected to farmlands, their GHG concentrations and fluxes were lower due to seasonal drying and occasional drainage. The ditches covered approximately 3.3% of the 312 km2 farmland area in the study district and the total GHG emission from the ditches in this area was estimated to be 26.6 Gg CO2-eq yr-1, with 17.5 Gg CO2, 0.27 Gg CH4, and 0.006 Gg N2O emitted annually. Overall, this study demonstrated that agricultural ditches were hotspots of GHG emissions, and future GHG estimations should incorporate this ubiquitous but underrepresented waterbody.  

How to cite: Wu, W., Niu, X., Li, S., and Yan, Z.: Agricultural Ditches are Hotspots of Greenhouse Gas Emissions Controlled by Nutrient Input, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3474, https://doi.org/10.5194/egusphere-egu24-3474, 2024.

Inland water was considered an important sources of nitrous oxide (N2O) production and emissions. However, assessment of indirect emission factors (EF5r) and contribution of different water body N2O on N2O budgets remains challenging, and results are uncertain due to limited data availability. In this study, floated chamber and boundary layer model method were conducted on four diurnal days, and two year observations at high temporal resolution in a subtropical forest catchment in Southeast China. The results showed that there was clearly diurnal characteristics of N2O emissions, and the CC98 model was more fit for estimating stream N2O emissions. The N2O fluxes from different water body was in the order: ponds (35.99±33.58 μg m-2 h-1) > main stream (17.09±4.48 μg m-2 h-1)> tributary (14.78±12.79 μg m-2 h-1). All of their EF5r (0.050%±0.058% to 0.249%±0.456%) were significantly higher than the IPCC 2006 default value 0.025%, suggesting that N2O emissions from China and world inland water may be grossly underestimated. Multiple regression model selected the dissolved oxygen and NH4-N concentrations as the crucial factors influencing the N2O emission fluxes from streams, whereas dissolved oxygen and NO3-N in ponds. Although the water body's surface area only occupied 2% in this catchment, where the N2O emissions fluxes were approximately contribute 1.4% of N2O budget in whole catchment. These findings will draw attentions to the role of inland water N2O productions and emissions in the contributions of N2O budgets, especially in the large scale N2O estimated.

How to cite: Huang, T. and Lu, L.: Nitrous oxide emissions from water bodies was a no-negligible contribution to nitrous oxide budgets in a subtropical forest catchment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4121, https://doi.org/10.5194/egusphere-egu24-4121, 2024.

EGU24-4478 | ECS | Orals | BG4.7

Water column can shift from sinks to sources of CH4 with increasing river size 

Junfeng Wang and Xinghui Xia

CH4 production in freshwaters has been considered to occur primarily in anoxic sediments. However, recent discovery of oxic CH4 production in some lake waters makes the origins and controls over the fate of cumulative CH4 in water column elusive. Especially, whether CH4 can be produced in oxic water column of river systems remains unclear, and the role of water column in CH4 emissions is poorly understood across different river sizes. Here, we present water column contributions to riverine CH4 emissions based on 4-year national-wide in situ measurements across six large river networks with stream order from 3rd to 8th. We find water column acts as a contributor of CH4 net production in 58% observations, indicating the occurrence of CH4 production in oxic water column, which is probably attributed to CH4 production in anoxic interface of suspended particles and production by phytoplankton. Water column can account for 7% of riverine CH4 emissions on average across all observations. Water-air CH4 fluxes decreased exponentially with stream order. In contrast, water column contribution increased with stream order and its roles vary with river size and shift from CH4 sinks in streams to CH4 sources in large rivers. Water column can consume 6% of CH4 released from sediment in rivers of size lower than 6th, while contribute 12% to water-air CH4 fluxes in higher-order rivers. This shift is mainly attributed to the increase of river depth and higher concentrations of suspended particles, which may facilitate net CH4 production in water column of large rivers. Our findings suggest oxic CH4 production in water column represents a hitherto overlooked source of methane and can be important for CH4 cycling and emissions in river systems, especially for large rivers.

How to cite: Wang, J. and Xia, X.: Water column can shift from sinks to sources of CH4 with increasing river size, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4478, https://doi.org/10.5194/egusphere-egu24-4478, 2024.

EGU24-5675 | ECS | Posters on site | BG4.7 | Highlight

A Comprehensive Analysis of Water Chemistry and Greenhouse Gas Emissions in a Treatment Wetland System for Diffuse Agricultural Runoff 

Jürgen Sarjas, Margit Kõiv-Vainik, Isaac Okiti, Ülo Mander, and Kuno Kasak

Agricultural activities are the main cause of eutrophication of waterbodies downstream of farmed lands. Water protection measures such as treatment wetlands (TW) are highly effective in reducing diffuse agricultural pollution and therefore reduce the risk for eutrophication. This study presents a long-term (7-year period) overview of a well-established in-stream free water surface (FWS) TW system to reduce diffuse agriculture pollution in a temperate climate zone in southern Estonia. The wetland system consists of two subsequent in-stream FWS TWs (W1 and W2) with a catchment area of 2.2 km2. The wetlands are mainly vegetated with cattail (Typha latifolia) and common reed (Phragmites australis) 

Water parameters have been monitored biweekly from 2017 to 2023 and greenhouse gas emissions have been monitored biweekly from 2018 to 2023. Water temperature, oxygen concentration, dissolved oxygen, electrical conductivity, pH, redox potential, and turbidity were measured on-site using a portable device (YSI ProDSS). Flow rate was measured with SonTek FlowTracker handheld Acoustic Doppler Velocimeter. Total carbon (TC), total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), total phosphorus (TP), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), phosphate-phosphorus (PO4-P), sulfate (SO4-2) and chloride (Cl-) concentrations were analyzed in the laboratory. CO2, CH4 and N2O fluxes were measured using a manual closed chamber method (samples analyzed with GC-2014, Shimadzu on years 2018-2022) and from 2022 using portable LI-7810 and LI-7820 trace gas analyzers (LICOR Biosciences).  

Results are showing positive removal efficiency for the whole study period in W1 for TOC (average 6.2±9.9%), DOC (average 16.9±13.9%) and TP (average 23.1±32.4%); and in W2 for TC (average 2.3±6.8%), TOC (6.9±10.4%), TN (average11.9±27,8%), NO3-N (average 8.7±28.2%), TP (average 1.3±61.2%) and PO4-P (average 20.4±301.0%). CH4 and CO2 emissions from the wetlands showed an increasing trend with a clear seasonal dynamic. Over the years the mean CH4 flux increased from 88 µg CH4-C m−2 h−1 in 2018 to 2505 µg CH4-C m−2 h−1 in 2021. The large increase in the emissions was mainly due to the more extensive vegetation growth that provides more carbon into the system. Nitrous oxide flux on the other hand showed a slight decrease over the years. However, about half of the annual N2O emission originated from very small shallow areas (less than 5% of the total area) in the wetlands that acted as hot spots throughout the study period. This study provides insights into the development of treatment efficiency of the wetland system and concordant change in greenhouse gas emissions. The long-term monitoring shows that overall, the water treatment efficiency is increasing but there is a clear trade-off related to the increase in CH4 emissions. 

How to cite: Sarjas, J., Kõiv-Vainik, M., Okiti, I., Mander, Ü., and Kasak, K.: A Comprehensive Analysis of Water Chemistry and Greenhouse Gas Emissions in a Treatment Wetland System for Diffuse Agricultural Runoff, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5675, https://doi.org/10.5194/egusphere-egu24-5675, 2024.

EGU24-5754 | ECS | Posters on site | BG4.7

Methane Flux Heterogeneity and Driving Mechanisms in Wetland Ecosystems 

Isaac Okiti, Ariane Arias-Ortiz, Robert Shortt, Eduardo Gamez, Kyle Delwiche, Carlos Wang, Arman Ahmadi, Koong Yi, Kadir Yildiz, Dennis Baldocchi, Daniela Tizabi, Patty Oikawa, Daphne Szutu, Joseph Verfaillie, Mihkel Pindus, and Kuno Kasak

Wetlands are significant contributors to global methane (CH4) emissions, a critical driver of climate change. However, the spatial heterogeneity of CH4 fluxes and the underlying mechanisms within these wetland ecosystems remains largely unexplored. This study examines the heterogeneity of CH4 emissions from different types of wetlands in Estonia and California, USA. The studied wetlands include free surface water treatment wetlands, recently restored peatlands in Estonia and three different restored wetlands in California that differ from each other in salinity level, tidal influence, vegetation, and restoration year. All studied sites except the free surface treatment wetlands are equipped with eddy covariance stations for continuous CO2, H2O, and CH4 measurements (open path LI-7500 and LI-7700 analyzers, LICOR Biosciences). Spatial heterogeneity in methane flux was assessed through static chamber measurements using a LI-7810 trace gas analyzer (LICOR Biosciences). Chamber measurement surveys revealed significant variations among gas measurement points within the eddy tower footprint. Additional parameters such as LAI, water pH, electrical conductivity, dissolved oxygen concentration, temperature, turbidity, salinity, water level, and dissolved gas concentration (dCO2 and dCH4; analyzed in the lab with GC-2014, Shimadzu) were measured from each sampling spot. After measurements, we collected surface sediment samples for soil TN, TOC, TIC, DOC, DIC, and DN analyses. Our results indicate significant variation in CH4 fluxes and soil C and N content within different sampling points and in different ecosystems. In the constructed wetland in Estonia, biweekly measurements from twelve distinct points over two years revealed significant heterogeneity in CH4 fluxes, with peak emissions ranging from 144 mg m-2 d-1 to 254.4 mg m-2 d-1 observed from specific chamber measurement plots. In contrast, the restored peatland showed a lower range of CH4 emissions (0.096 mg m-2 d-1 to 34.6 mg m-2 d-1) observed from six measurement plots. The preliminary measurements conducted in California wetlands also showed a large variation within and between the sites. These findings highlight the complex nature of CH4 flux heterogeneity in wetlands and the critical need for site-specific management strategies. Accurately quantifying and understanding these variations is essential for refining CH4 budgets and developing effective mitigation strategies for greenhouse gas emissions from wetland ecosystems.

How to cite: Okiti, I., Arias-Ortiz, A., Shortt, R., Gamez, E., Delwiche, K., Wang, C., Ahmadi, A., Yi, K., Yildiz, K., Baldocchi, D., Tizabi, D., Oikawa, P., Szutu, D., Verfaillie, J., Pindus, M., and Kasak, K.: Methane Flux Heterogeneity and Driving Mechanisms in Wetland Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5754, https://doi.org/10.5194/egusphere-egu24-5754, 2024.

EGU24-5944 | ECS | Orals | BG4.7 | Highlight

Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup 

David Piatka, Raphaela Nánási, Ricky Mwanake, Florian Engelsberger, Georg Willibald, Frank Neidl, and Ralf Kiese

Stream ecosystems are actively involved in the biogeochemical cycling of carbon (C) and nitrogen (N) from terrestrial and aquatic sources. Streams hydrologically connected to peatland soils are suggested to receive significant quantities of particulate, dissolved, and gaseous C and N species, which directly enhance losses of greenhouse gases (GHGs), i.e., carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and fuel in-stream GHG production. However, riverine GHG concentrations and emissions are highly dynamic due to temporally and spatially variable hydrological, meteorological, and biogeochemical conditions. In this study, we present a complete GHG monitoring system in a peatland stream, which can continuously measure dissolved GHG concentrations and allows to infer gaseous fluxes between the stream and the atmosphere and discuss the results from March 31 to August 25 at variable hydrological conditions during a cool spring and warm summer period. Stream water was continuously pumped into a water-air equilibration chamber, with the equilibrated and actively dried gas phase being measured with two GHG analyzers for CO2 and N2O and CH4 based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) and Non-Dispersive Infra-Red (NDIR) spectroscopy, respectively. GHG measurements were performed continuously with only shorter measurement interruptions, mostly following a regular maintenance program. The results showed strong dynamics of GHGs with hourly mean concentrations up to 9959.1, 1478.6, and 9.9 parts per million (ppm) and emissions up to 313.89, 1.17, and 0.40 mg C or N m−2h−1 for CO2, CH4, and N2O, respectively. Significantly higher GHG concentrations and emissions were observed shortly after intense precipitation events at increasing stream water levels, contributing 59% to the total GHG budget of 762.2 g m−2 CO2-equivalents (CO2-eq). The GHG data indicated a constantly strong terrestrial signal from peatland pore waters, with high concentrations of dissolved GHGs being flushed into the stream water after precipitation. During drier periods, CO2 and CH4 dynamics were strongly influenced by in-stream metabolism. Continuous and high-frequency GHG data are needed to assess short- and long-term dynamics in stream ecosystems and for improved source partitioning between in-situ and ex-situ production.

Piatka DR, Nánási RL, Mwanake RM, Engelsberger F, Willibald G, Neidl F and Kiese R (2024) Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup. Front. Water 5:1321137. doi: 10.3389/frwa.2023.1321137

How to cite: Piatka, D., Nánási, R., Mwanake, R., Engelsberger, F., Willibald, G., Neidl, F., and Kiese, R.: Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5944, https://doi.org/10.5194/egusphere-egu24-5944, 2024.

Lotic ecosystems traversing mixed land-use landscapes are sources of GHGs to the atmosphere, but their emission strength is uncertain due to longitudinal GHG heterogeneities. In this study, we quantified N2O (as well as CO2 and CH4 concentrations) and N2 concentrations and several water quality parameters along the Rhine river and the Mittelland canal, two critical inland waterways in Germany in the summer of 2023. Our main objectives were to compare N2O concentrations along the two ecosystems and to identify the main drivers responsible for their longitudinal heterogeneities. The results indicated that N2O concentrations in both ecosystems were oversaturated relative to equilibrium concentrations (116 – 782 % saturation), particularly in the Mittelland canal. We also found significant longitudinal variability in % N2O saturation along the mainstems of both lotic ecosystems (CV = 43 – 68 %), with the highest variability in the Mittelland canal, suggesting that single N2O measurements along large lotic ecosystems are not representative of the entire reach. Overall, these significant longitudinal N2O heterogeneities were driven by differences in biogeochemical processes between the two lotic ecosystems. N2O was strongly related to N2 concentrations, with a negative relationship in the Rhine river and a positive relationship in the Mittelland canal. Based on these findings, we concluded that denitrification drives the N2O hotspots in the Canal, while coupled biological N2-fixation and nitrification accounted for N2O hotspots in the Rhine. These findings also highlight the need to include N2 concentration measurements in GHG sampling campaigns, as it has the potential to help better constrain nitrogen cycling in lotic ecosystems.

How to cite: Mwanake, R., Imhof, H., and Kiese, R.: Contrasting processes involving denitrification and biological N2-fixation drive N2O hotspots along two large lotic ecosystems in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6215, https://doi.org/10.5194/egusphere-egu24-6215, 2024.

EGU24-7427 | ECS | Orals | BG4.7

Greenhouse gases gradients from Southern Greenland Fjords to subpolar North Atlantic Ocean 

Coraline Leseurre, Bruno Delille, Alizée Roobaert, Wieter Boone, Odile Crabeck, Leandro Ponsoni, Hannelore Theetaert, Michiel T'Jampens, Silke Verbrugge, and Thanos Gkritzalis

Since the beginning of the industrial era, the atmospheric greenhouse gases (GHG) have increased continuously (around +50% for carbon dioxide (CO2) and +150% for methane (CH4), for the two most important), causing the current climate change. In November 2023, the World Meteorological Organization (WMO) highlighted once again there are still significant uncertainties about the carbon cycle, its fluxes, and they stressed the importance to follow the non-CO2 GHG with greater global warming potential.

The ocean, as a sink of anthropogenic CO2, plays a crucial role in climate regulation, whereas the surface seawater is naturally supersaturated in CH4, and shallow coastal waters are a source of CH4 to the atmosphere. However, the air-sea CO2 and CH4 fluxes are driven by different key processes depending on the region of the open or coastal ocean.

To improve the understanding of the processes driving the air-sea exchange of GHG, we investigate the CO2 and CH4 concentrations and fluxes in open ocean and coastal areas affected by sea ice, glacier runoff and riverine inputs within the context of the European project GreenFeedBack. To do so, we measured CO2 and CH4 concentrations and calculated the fluxes, in surface water during a summer cruise (July-August 2023) conducted on board the RV Belgica in the subpolar North Atlantic Ocean, between Iceland and Southern Greenland Fjords. The data were obtained using a custom-made air-water equilibration system, that was connected to the vessel’s non-toxic seawater supply (equilibrator and Cavity Ring Down Spectrometer) and discrete sampling.

Our first results show a pronounced gradient of CO2 and CH4 concentration between open ocean and the fjords. The oceanic CO2 concentration is minimal in the fjords where the CH4 concentration is maximal, indicating a potential impact of freshwater discharge on the GHG exchanges.

How to cite: Leseurre, C., Delille, B., Roobaert, A., Boone, W., Crabeck, O., Ponsoni, L., Theetaert, H., T'Jampens, M., Verbrugge, S., and Gkritzalis, T.: Greenhouse gases gradients from Southern Greenland Fjords to subpolar North Atlantic Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7427, https://doi.org/10.5194/egusphere-egu24-7427, 2024.

EGU24-8036 | ECS | Orals | BG4.7 | Highlight

Greenhouse gas emissions from drainage ditches and irrigation canals 

Teresa Silverthorn, Chris Evans, and Michael Peacock

Drainage ditches and irrigation canals are widespread across the globe, and have a high potential to emit greenhouse gases (GHG) to the atmosphere, contributing to climate change. Often located in agricultural or urban areas, ditches may receive high inputs of organic matter and nutrients, thereby stimulating GHG production. Previous work (Peacock et al., 2021) has calculated the global magnitude of methane emissions from ditches (~1% of all anthropogenic methane emissions). However, the relative contributions of carbon dioxide and nitrous oxide remain unknown at national and global scales, although field studies show emissions of these GHGs can be large. As anthropogenic features, GHG emissions from ditches must be reported to the United Nations Framework Convention on Climate Change under Intergovernmental Panel on Climate Change (IPCC) protocols, but current guidelines only exist for methane (in the 2019 Refinement). Here, we present the results of an (ongoing) review where we collate existing scientific literature to synthesize carbon dioxide and nitrous oxide emissions data from ditches and canals around the world, as well as identifying the principle driving variables. The results of this research will help inform IPCC guidelines for improved GHG emission accounting, and reveal if ditches and canals act as hotspots of non-methane GHGs.

How to cite: Silverthorn, T., Evans, C., and Peacock, M.: Greenhouse gas emissions from drainage ditches and irrigation canals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8036, https://doi.org/10.5194/egusphere-egu24-8036, 2024.

EGU24-8561 | ECS | Posters on site | BG4.7

The response of phytoplankton community to dissolved organic matter composition and lake trophic state: Insights from the largest urban lake in China 

Yadi Ai, Hongguang Cheng, Yiwei Gong, Weici Quan, and Kaiming Yang

The dual impacts of human activities and climate change have increased the input of dissolved organic matters (DOM) into urban lakes, which is crucial for aquatic biogeochemical cycle and global carbon cycle, affecting the lake ecological health to some extent. What's more, phytoplankton are sensitive to changes in water environment, making them important indicator organisms in water environment monitoring. However, the composition dynamics of phytoplankton community and DOM in shallow urban lakes under strong anthropogenic disturbances, and their relationship remain poorly understood. Thus, this study aimed to reveal the composition dynamics of phytoplankton community and DOM in urban lakes, identify the main environmental factors affecting phytoplankton communities, and understand the relationship between DOM and phytoplankton composition in various trophic states. A whole-year campaign was conducted in Tangxun Lake, Wuhan City, the largest urban lake in China, which is highly urbanized and industrialized. The parallel factor analysis method (PARAFAC) was applied to identify the three-dimensional fluorescence spectra and components of DOM. As a result, it was found that: The water quality of Tangxun Lake exhibited strong spatiotemporal variability, mainly presenting a state of eutrophication to moderate eutrophication. A total of 54 genera, 26 families, 15 orders, 9 classes, 6 phyla of phytoplankton have been identified in Tangxun Lake. The phytoplankton community structure was diatomic-green algae-cyanobacteria type as a whole, and the seasonal succession changes of phytoplankton community were significant. Excitation–emission matrix fluorescence spectroscopy (EEMs) coupled with PARAFAC indicated that DOM in Tangxun Lake consisted of four components, mainly terrestrial component. This study reveals the response of phytoplankton to DOM and lake trophic status, which has profound implications for the aquatic ecosystem management, and provide reference for the potential correlation mechanism among lake carbon cycle, CDOM source composition and phytoplankton community.

How to cite: Ai, Y., Cheng, H., Gong, Y., Quan, W., and Yang, K.: The response of phytoplankton community to dissolved organic matter composition and lake trophic state: Insights from the largest urban lake in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8561, https://doi.org/10.5194/egusphere-egu24-8561, 2024.

EGU24-8671 | ECS | Posters on site | BG4.7 | Highlight

Carbon fluxes in Arctic and sub-Arctic freshwater ecosystems 

Judith Vogt, Anna-Maria Virkkala, Isabel Wargowsky, McKenzie Kuhn, Simran Madaan, and Mathias Göckede

Arctic and sub-Arctic regions host a large number of waterbodies that serve as carbon sources to the atmosphere within an environment that is predominantly characterized by carbon sequestration. The ongoing permafrost thaw in the warming Arctic is anticipated to alter the distribution of freshwater ecosystems, subsequently affecting their contribution to the overall carbon budget.

Estimates of global carbon budgets largely disregard emissions caused by permafrost thaw, and also carbon budgets for freshwater ecosystems are highly uncertain to date. A general constraint in this field is data scarcity from remote northern regions. In addition, underlying processes specific to freshwater ecosystems remain poorly understood, especially given the landscape heterogeneity in high northern latitudes. To fill these gaps, our project aims at synthesizing new and existing carbon dioxide (CO2) and methane (CH4) flux data from freshwater ecosystems accompanied by environmental parameters (temperature, pH, water depth, etc.) across the Arctic-boreal domain on a site-level and at monthly resolution.

This work is conceptually based on a range of previously published studies and will contribute to the Arctic-boreal carbon flux synthesis (ABCflux v2) that spans terrestrial, wetland and freshwater ecosystems. As of January 2024, we gathered data from almost 900 different freshwater sites with more than 2000 monthly CO2 and CH4 flux measurements. With the newly synthesized data, we aim to quantify the carbon budgets of freshwater ecosystems across the Arctic-boreal domain and evaluate their contribution to the global carbon budget. Additionally, the impact of environmental controls including temperature, pH, and water depth on the carbon cycle processes will be investigated. This dataset will provide a unique opportunity for benchmarking and verification of process-based models and remote sensing products. Finally, the synthesized dataset will be publicly available to the scientific community.

How to cite: Vogt, J., Virkkala, A.-M., Wargowsky, I., Kuhn, M., Madaan, S., and Göckede, M.: Carbon fluxes in Arctic and sub-Arctic freshwater ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8671, https://doi.org/10.5194/egusphere-egu24-8671, 2024.

EGU24-11782 | Posters on site | BG4.7

Non-negligible N2O Emission Hotspots: Rivers Impacted by Ion-adsorption Rare Earth Mining 

Qiuying Zhang, Wang Shu, Hongjie Gao, Fadong Li, Zhao Li, Shanbao Liu, Shen Chang, and Qing Fu

Rare earth mining causes severe riverine nitrogen pollution, but its effect on nitrous oxide (N2O) emissions and the associated nitrogen transformation processes remain unclear. Here, we characterized N2O fluxes from China’s largest ion-adsorption rare earth mining watershed and elucidated the mechanisms that drove N2O production and consumption using advanced isotope mapping and molecular biology techniques. Compared to the undisturbed river, the mining-affected river exhibited higher N2O fluxes (7.96±10.18 mmol m-2 d-1 vs. 2.88±8.27 mmol m-2 d-1, P=0.002), confirming that mining-affected rivers are N2O emission hotspots. Flux variations scaled with high nitrogen supply (resulting from mining activities), and were mainly attributed to changes in water chemistry (i.e., pH, and metal concentrations), sediment property (i.e., particle size), and hydrogeomorphic factors (e.g., river order and slope). Coupled nitrification-denitrification and N2O reduction were the dominant processes controlling the N2O dynamics. Of these, the contribution of incomplete denitrification to N2O production was greater than that of nitrification, especially in the heavily mining-affected reaches. Co-occurrence network analysis identified Thiomonas and Rhodanobacter as the key genus closely associated with N2O production, suggesting their potential roles for denitrification. This is the first study to elucidate N2O emission and influential mechanisms in mining-affected rivers using combined isotopic and molecular techniques. The discovery of this study enhances our understanding of the distinctive processes driving N2O production and consumption in highly anthropogenically disturbed aquatic systems, and provides the foundation for accurate assessment of N2O emissions from mining-affected rivers on regional and global scales.

How to cite: Zhang, Q., Shu, W., Gao, H., Li, F., Li, Z., Liu, S., Chang, S., and Fu, Q.: Non-negligible N2O Emission Hotspots: Rivers Impacted by Ion-adsorption Rare Earth Mining, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11782, https://doi.org/10.5194/egusphere-egu24-11782, 2024.

During the last two decades, our perception of lake and reservoir methane (CH4) emissions have changed from being peripheral to increasingly important in global CH4 budget and source attribution discussions. This is reflected by a 10-fold increase in the number of related scientific publications per year from 2001 to 2020. Earlier research provided a strong foundation that has been developed further. As a result of expanding reserach in the field, some of the early bottlenecks are getting resolved, while others remain, and new challenges have emerged.

It is now clear that lakes and reservoirs jointly contribute in the order of 5 -15 % och the global CH4 emissions to the atmosphere, and thereby cannot be ignored if we want to understand the atmospheric CH4 development. This has added challenges regarding data needs and methodologies to make more accurate large-scale CH4 flux estimates. Key questions also include how lake and reservoir emissions are influenced by environmental change including climate. Critical challenges are nested across a range of scales, from microscale process regulation that shape spatiotemporal variability at the whole-system scale, in turn generating measurement challenges and data constraints influencing global assessments. 

This presentation aims to provide a brief overview, highlighting some learnings and challenges. In addition, predictions of future global lake and reservoir CH4 emissions will be presented, exploring a data-driven approach to integrate existing knowledge on spatiotemporal flux variability with consideration of multiple emission pathways and their seasonal regulation and long-term response to climate change, as well as to projected changes in inland water area and nutrient load. The relative impacts of different potential flux change drivers was also investigated. Overall, the predicted future emission scenarios illustrate the sensitivity of one of the largest sources of atmospheric CH4 to the ongoing global change.

How to cite: Bastviken, D. and Johnson, M. S.: Lake and reservoir methane (CH4) emissions – an underground past, a rising present, and scenarios for the future  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12691, https://doi.org/10.5194/egusphere-egu24-12691, 2024.

EGU24-13280 | ECS | Posters on site | BG4.7

Nitrous oxide dynamics in the Arctic Siberian shelves of the North Kara Sea during summer 2021 

Sofia Muller, François Fripiat, Alfredo Martínez-Garcia, Samuel L. Jaccard, Jens A. Hölemann, and Bruno Delille

Nitrous oxide (N2O) distribution in the North Kara Sea during summer 2021 shows elevated N2O concentrations in shelf water masses, highlighting the significance of coupled benthic-pelagic and nitrification-denitrification processes. In surface waters, temperature emerges as the primary driver of N2O concentrations, with a clear negative correlation between both parameters. Most surface waters are near saturation for N2O, and the saturation deficit exhibits an inverse relationship with temperature. Under-ice water influx originating from the open ocean exhibits strong under-saturation (80%), attributed to the limited air-sea exchange in sea ice covered waters. Contrary to expectations, river supply does not exert a discernable influence on N2O concentrations in the studied area. This study reveals the potential of the Arctic Siberian shelves for the uptake of atmospheric N2O during summer.

How to cite: Muller, S., Fripiat, F., Martínez-Garcia, A., Jaccard, S. L., Hölemann, J. A., and Delille, B.: Nitrous oxide dynamics in the Arctic Siberian shelves of the North Kara Sea during summer 2021, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13280, https://doi.org/10.5194/egusphere-egu24-13280, 2024.

EGU24-15511 | ECS | Orals | BG4.7

Importance of alternative denitrification pathways in a seasonally stratified lake basin 

Teresa Einzmann, Moritz F. Lehmann, Jakob Zopfi, and Claudia Frey

Nitrous oxide (N2O) is a strong greenhouse gas and ozone-destroying compound, whose atmospheric concentrations have been increasing over the past decades. Lakes play a relatively uncertain role with regards to their contribution to the global natural N2O emissions, and a better understanding of the environmental controls on lacustrine N2O production and consumption is needed.

We investigated N2O production pathways in the anoxic deep hypolimnion of the South Basin of eutrophic Lake Lugano (Switzerland) during summer stratification. Temporary high concentrations of N2O (up to 3000 nmol/L) were observed in the oxygen-depleted near-bottom waters, accompanied by a site preference (SP, indicating the intramolecular 15N distribution) of +32 ‰. Incomplete heterotrophic denitrification is commonly thought to be the main N2O production pathway in low-oxygen environments, but it is typically characterized by a low SP of -5-0 ‰ (Sutka et al. 2006). High SP values, as observed here, rather point to an oxidative N2O production mechanism such as (micro-aerobic) nitrification, yet they may also be caused by partial reduction of N2O to N2 (Ostrom et al. 2007). We performed incubation experiments with 15N-labeled NH4+ to investigate oxidative N2O production through (micro-aerobic) nitrification, and 15N-labeled NO3- to investigate reductive N2O production through denitrification. Our results point indeed to a reductive mode of N2O production in the anoxic bottom water. Alternative denitrification pathways known to produce N2O with potentially higher SP, such as fungal denitrification (SP = >30 ‰, Rohe et al. 2014) and chemo-denitrification (SP = 0-27 ‰, Li et al. 2022), were investigated in additional incubation experiments using bacterial and fungal inhibitors. These experiments revealed that bacterial denitrification contributes most to N2O production in the sediment and the bottom water layer, while fungal- and chemo-denitrification were much less important.The elevated SP values in the bottom-water N2O during summer stratification are most likely due to the fact that much of the produced N2O has been reduced to N2. Thus, N2O reduction can completely mask primary N2O isotopic source signatures in redox transition zones, complicating the use of N2O stable isotope measurements to disentangle reductive and oxidative N2O production and to reveal alternative denitrification pathways.

 

REFERENCES

Li, S., Wang, S., Pang, Y., & Ji, G. 2022: Influence of electron donors (Fe, C, S) on N2O production during nitrate reduction in lake sediments: Evidence from isotopes and functional genes, ACS ES&T Water, 2(7), 1254–1264.

Ostrom, N. E., A. Pitt, R. Sutka, P. H. Ostrom, A. S. Grandy, K. M. Huizinga, and G. P. Robertson (2007), Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers, J. Geophys. Res., 112, G02005.

Rohe, L., Anderson, T.-H., Braker, G., Flessa, H., Giesemann, A., Lwicka-Szczebak, D., Wrage-Mönnig, N., & Well, R. 2014: Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification – a pure culture study, Rapid Communiciations in Mass Spectrometry, 28, 1893-1903.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., & Li, F. 2006: Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances, Applied and Environmental Microbiology, 72(1), 638–644.

How to cite: Einzmann, T., Lehmann, M. F., Zopfi, J., and Frey, C.: Importance of alternative denitrification pathways in a seasonally stratified lake basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15511, https://doi.org/10.5194/egusphere-egu24-15511, 2024.

EGU24-16142 | Orals | BG4.7

 Dynamics of N2O under coastal hypoxia: the case of Lake Grevelingen (The Netherlands)  

Damian Leonardo Arévalo-Martínez, Hermann W. Bange, Nicky Dotsios, Marit R. van Erk, Niels A.G.M. van Helmond, Peter A.G. ter Horst, Maartje A.H.J. van Kessel, Wytze Lenstra, Sebastian Lücker, Isabel Rigutto, Sarah Schrammeck, Olga Zygadlowska, Mike S.M. Jetten, and Caroline P. Slomp

Coastal margins play a crucial role for greenhouse gases (GHG) budgets because biological cycling and sediment-water-air exchanges are more intense than in the open ocean. Given the tight connection between marine GHG cycling (production, consumption, fluxes) and dissolved oxygen dynamics, ongoing deoxygenation is of particular concern in coastal systems that experience seasonal or perennial hypoxia, and could therefore have a large impact on regional GHG budgets. N2O stands out among other long-lived GHG because of its role as ozone-depleting compound and its effectiveness in enhancing Earth’s warming. Based on the vast majority of studies, marine coastal margins are expected to be hotspots of N2O emissions to the atmosphere, with nitrification and partial denitrification as the main sources. However, despite significant advances in constraining the marine budget of N2O over the last decade, the magnitude and seasonal variability of coastal emissions are still highly uncertain. While N2O depletion in marine settings is usually associated to complete denitrification, recent evidence indicates the possibility of consumption at oxic-hypoxic interfaces or under fully oxic conditions. Moreover, a mechanistic understanding on the benthic-pelagic coupling of N2O fluxes and its potential changes with deoxygenation is still rudimentary. To amend this deficit, we conducted a comprehensive study in Lake Grevelingen (Netherlands), a marine coastal reservoir characterized by seasonally hypoxic/anoxic conditions resulting from limited water exchange with the North Sea and eutrophication. Our study combined biogeochemical and microbial analyses and comprised multiyear (2020–2023) shipboard observations. We observed that unlike most coastal systems, surface waters of Lake Grevelingen are a rather weak source of atmospheric N2O, with annual sea-air fluxes that represent <0.1% of the global marine emissions, and are below the regional climatological mean of the adjacent North Sea. Overall, the water column distribution of N2O across the lake showed enhanced concentrations towards the bottom, which intensified during summer (stratified, low-oxygen period) at the deepest part of the basin (~45m). Nevertheless, computed gas saturations ranged between 20 and 100%, suggesting the occurrence of N2O consumption which cannot be explained by solubility changes alone. Quasi-monthly observations in 2021 showed a clear seasonal variability with comparatively enhanced N2O throughout the water column during summer. Although overall low, collocated measurements of amoA (gene marker of ammonia oxidation during nitrification) abundances within the oxycline showed a similar seasonal pattern, explaining part of the temporal N2O variability in the lake. Cross-lake observations showed low spatial variability in the distribution of N2O albeit ubiquitous low-oxygen conditions, suggesting N2O production/accumulation to also occur in the shallowest (~10m) parts of the basin. Benthic micro-profile measurements showed enhanced concentrations within bottom waters and a rapid decline within the sediments. Analysis of sediments from different sites indicated this pattern to be consistent, such that the sediment-water interface of the lake acted as a source of N2O. During this presentation we discuss these results, provide the first N2O budget for the lake and put forward the potential implications of our study for the future representation of coastal fluxes in modelling studies.

How to cite: Arévalo-Martínez, D. L., Bange, H. W., Dotsios, N., van Erk, M. R., van Helmond, N. A. G. M., ter Horst, P. A. G., van Kessel, M. A. H. J., Lenstra, W., Lücker, S., Rigutto, I., Schrammeck, S., Zygadlowska, O., Jetten, M. S. M., and Slomp, C. P.:  Dynamics of N2O under coastal hypoxia: the case of Lake Grevelingen (The Netherlands) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16142, https://doi.org/10.5194/egusphere-egu24-16142, 2024.

EGU24-16347 | ECS | Orals | BG4.7

Understanding the hyporheic methane cycle based on field investigations in a small stream 

Tamara Michaelis, Anja Wunderlich, Thomas Baumann, and Florian Einsiedl

Global methane emission estimates from aquatic ecosystems, especially from rivers, remain highly uncertain due to a lack of high-resolution (temporal and spatial) data. Over three years, we have gathered data on the methane cycle in the river Moosach, a small stream in Southern Germany, to increase our conceptual understanding of the methane cycle in the hyporheic zone.

The methane distribution in the streambed was measured at ten geochemical profiles with a 1 cm vertical resolution during different seasons and at several locations in the stream. Measurements of the stable carbon isotopes of methane (13C), in conjunction with analyses of the microbial community distribution, were used to decipher pathways of methane production and oxidation. To unravel the relevance of different transport pathways, methane ebullition was monitored weekly for one year at four test sites and compared to diffusive fluxes across the sediment-water and water-air interfaces. Quantifying the oxidation of methane to CO2 proved to be the most challenging part of the project. Especially when it came to distinguishing which reduction processes the oxidation was coupled to. This is because the observed geochemical gradients in the hyporheic zone were very steep, and dissolved oxygen reduction and denitrification zones often overlapped.

Dissolved methane concentrations were generally high and reached up to 1000 µmol L-1 but had a heterogeneous distribution. Ebullition transported up to 30 times more methane to the atmosphere than diffusive fluxes, although this was also highly site-specific and subject to significant seasonal variations. From the isotopic difference in 13C between dissolved methane in the surface water and in gas bubbles, we estimated that up to 44% of the methane transported diffusively was oxidized.

Taken together, these results show a high methane production in the hyporheic zone of river Moosach. The highly depleted stable carbon isotope composition of methane suggests a large contribution from hydrogenotrophic methanogenesis but the abundance of certain microbial groups and high ebullition in winter also indicate that methanol could be a substrate for methane production. Methane was oxidized at the top of the hyporheic zone, as shown by a clear isotopic enrichment in 13C of methane in several geochemical profiles, but could only marginally reduce greenhouse gas emissions since most methane escaped to the atmosphere as gas bubbles. Dissolved oxygen, nitrate, and nitrite were possible electron acceptors for methane oxidation. Factors favoring methane emissions were higher temperatures, high organic carbon contents in the hyporheic zone, and a fine-grained but permeable bed substrate that ensured anoxic conditions while allowing good exchange with the surface water. Spatial heterogeneity appeared to be larger than temporal variations, which renders extrapolation from point measurements a challenge for the overall assessment of greenhouse gas emissions.

How to cite: Michaelis, T., Wunderlich, A., Baumann, T., and Einsiedl, F.: Understanding the hyporheic methane cycle based on field investigations in a small stream, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16347, https://doi.org/10.5194/egusphere-egu24-16347, 2024.

EGU24-16944 | ECS | Posters on site | BG4.7

Temporal dynamics of subglacial methane emissions revealed through continuous measurements at the margin of the Greenland Ice Sheet 

Sarah Elise Sapper, Christian Juncher Jørgensen, Getachew Adnew, Thomas Blunier, and Jesper Riis Christiansen

Methane (CH4), produced subglacially and transported dissolved in meltwater, is released at glacier margins and contributes to atmospheric methane. Recent research expands our spatial understanding of subglacial methane production, extending beyond the large Greenland Ice Sheet to smaller mountain glaciers. However, emission patterns through an entire melt season remain poorly understood due to challenges in long-term measurements in these remote locations. Continuous measurements are crucial for accurately assessing the relation to glacial melt, total emissions, and potential future impact on the atmospheric CH4 budgets.

Our study investigated the seasonal variation of dissolved methane (dCH4) export at a lateral outlet of the Isunnguata Sermia glacier in West Greenland. We used custom-built sensors for continuous measurements that were compared to on-site samples of hydrochemistry and water isotopes alongside the continuous monitoring of water levels and water temperature.

The observed patterns of dCH4 concentrations reveal the influence of several interconnected processes, varying on both diurnal and seasonal scales. These processes encompass changes in the connectivity of subglacial meltwater channels to sediment pockets with CH4 production, mixing with fluctuating volumes of CH4-free supraglacial meltwater routed through englacial conduits and variations in the volume of air-filled headspaces of the drainage system following discharge fluctuations. A connection to sediment pockets is hypothesized to elevate the dCH4 concentrations measured at the glacier margin, while increased volumes of supraglacial meltwater are associated with lower dCH4 concentrations, as are larger volumes of air-filled headspaces in channels at low discharge due to degassing from the water phase.

We will present how temporal variations in dCH4 concentrations link to climatic variability influencing water flow over the season and their relation to geochemical indicators and water isotopes as tracers for meltwater types. Insights gathered from three seasons of measurements highlight the limitations of discrete samples and accentuate the importance of continuous monitoring in obtaining realistic estimates of subglacial CH4 emissions through upscaling and accurately assessing climate implications.

How to cite: Sapper, S. E., Jørgensen, C. J., Adnew, G., Blunier, T., and Christiansen, J. R.: Temporal dynamics of subglacial methane emissions revealed through continuous measurements at the margin of the Greenland Ice Sheet, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16944, https://doi.org/10.5194/egusphere-egu24-16944, 2024.

EGU24-17006 | Orals | BG4.7 | Highlight

Projecting Impacts of Climate Warming on Methane Production and Emissions from Urban Ponds 

Armando Sepulveda-Jauregui, Karla Martinez-Cruz, Frank Peeters, and Mark O. Gessner

Urban ponds are significant emitters of methane (CH4) to the atmosphere. Methane cycling in these ecosystems is influenced by a multitude of factors, including redox conditions, organic carbon and nutrient supplies, pollutant loads, as well physical environmental factors such as temperature. However, the quantitative relationships between CH4 production and temperature remain insufficiently known. Our aim in the present study was to quantify the impacts of CH4 production in urban pond sediments as a critical prerequisite to projected impacts of global warming on CH4 emissions from freshwaters. We collected intact sediment cores from eight ponds located in the city of Berlin, Germany, and incubated them over a broad range of temperatures (2 to 44 °C) to determine the thermal dependencies of CH4 production. The selected ponds represent a variety of urban land-use types, including residential areas, industrial areas, protected forest areas, and recreational green spaces. Our results indicate a clear dependency of CH4 production on temperature, showing that methanogenesis was consistently driven by mesophilic microorganisms, with optimal temperatures ranging between 28 and 36 °C, despite sediment temperatures that are mostly much lower throughout the year. Our findings indicate that methanogenesis in sediments of urban ponds occurs through both the heterotrophic and hydrogenotrophic pathway, with the prevailing temperatures in these environments being conducive to producing the essential precursors needed for syntrophic hydrogen production. We also integrated these temperature relationships into global warming scenarios, specifically within the Representative Concentration Pathway (RCP) framework, to make projections for the year 2100. The results of the analysis spanning a range of scenarios, from the very stringent RCP 2.6 to the continually rising RCP 8.5 indicate that even with moderate global warming, CH4 production and thus emissions to the atmosphere from urban ponds will markedly increase in the future.

How to cite: Sepulveda-Jauregui, A., Martinez-Cruz, K., Peeters, F., and Gessner, M. O.: Projecting Impacts of Climate Warming on Methane Production and Emissions from Urban Ponds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17006, https://doi.org/10.5194/egusphere-egu24-17006, 2024.

EGU24-17025 | ECS | Orals | BG4.7

Examining the Impact of Stream Permanence on Headwater Stream Carbon Emissions  

Hannah D. Conroy, Erin R. Hotchkiss, Kaelin M. Cawley, Keli Goodman, Jeremy B. Jones, Wilfred M. Wollheim, and David Butman

Quantifying headwater stream carbon emissions is important for our understanding of the global carbon cycle because these emissions (an estimated 0.93-1.15 Pg C year) can be substantial compared to the terrestrial flux. Headwater stream networks can have high emissions due to their coupling with the terrestrial environment and high turbulence with some estimates predicting headwater stream networks can contribute 70% of the global riverine stream emissions. These carbon emissions are challenging to predict, especially with regards to headwater stream network spatiotemporal heterogeneity. The majority of headwater streams exhibit changes in stream network area on a seasonal basis, and these locations and extents are not often well documented because they are based on topographic maps with limited spatial accuracy. Research suggests 50-80% of river networks are comprised of non-perennial stream segments.  Physically based models are a potential solution to both mapping streamflow permanence and carbon dioxide emissions by accounting for the spatiotemporal heterogeneity that can occur in stream networks.

In this study, we modeled stream permanence at three streams across the United States in different ecosystems using the Watershed Erosion Prediction Project (WEPP) hydrological model to simulate changes in stream network area over the year. We then used these results to inform a process-based stream network model to predict carbon emission from these networks throughout the year. We calibrated these network model with longitudinal data collected at the three sites during both low and high flow. Our results show the importance of considering stream permanence when predicting stream network carbon emissions, and how some ecosystems may emerge as hotspots for these emissions during high flow periods.

How to cite: Conroy, H. D., Hotchkiss, E. R., Cawley, K. M., Goodman, K., Jones, J. B., Wollheim, W. M., and Butman, D.: Examining the Impact of Stream Permanence on Headwater Stream Carbon Emissions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17025, https://doi.org/10.5194/egusphere-egu24-17025, 2024.

EGU24-17447 | ECS | Posters on site | BG4.7

Nitrous oxide dynamics in coastal marine surface sediments 

Marit R. van Erk, Damian L. Arévalo-Martínez, Mike S.M. Jetten, and Caroline P. Slomp

Coastal seas are especially vulnerable for eutrophication and deoxygenation. These processes can lead to major changes in oxygen concentrations within both coastal bottom waters and surface sediments. The dynamics of the greenhouse gas nitrous oxide (N2O) are strongly coupled to oxygen dynamics, and changes in oxygenation can thus lead to changes in N2O production and consumption patterns. Deoxygenation therefore has the potential to affect the exchange of N2O between surface sediments and bottom waters, which in turn might affect the water column budget of N2O and eventually its exchange across the sea-air interface. Here, we present depth profiles of oxygen and N2O as determined with microsensors within coastal marine surface sediments from Lake Grevelingen (The Netherlands) in March 2023. Lake Grevelingen is a eutrophic coastal system suffering from seasonal bottom water anoxia and euxinia. We present results for several field locations and results of laboratory experiments in which oxygen concentrations were manipulated. On-board measurements revealed high concentrations of N2O in the top sediments (~1 mm), where oxygen was also present. We find that increased depths of oxygen penetration in the sediment lead to higher penetration depths of N2O. We discuss the potential drivers of N2O fluxes between the surface sediments and bottom waters under different oxygenation conditions.         

How to cite: van Erk, M. R., Arévalo-Martínez, D. L., Jetten, M. S. M., and Slomp, C. P.: Nitrous oxide dynamics in coastal marine surface sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17447, https://doi.org/10.5194/egusphere-egu24-17447, 2024.

EGU24-18144 | ECS | Orals | BG4.7 | Highlight

Glacier meltwater, a potential source of methane in West Antarctica Peninsula 

Axelle Brusselman, Odile Crabeck, Sofia Muller, Pablo Alejandro Araujo, Martin Dogniez, Gilles Lepoint, Loïc Michel, Bruno Danis, Manuel Dall'Osto, François Fripiat, and Bruno Delille

During the late Austral summer of 2023, we carried out three surveys in the West Antarctic Peninsula (WAP) from Horseshoe Island (67° 514 south) to the Northern tip of the Peninsula to document the distribution of CH4 in surface waters. We observed a striking feature in Dodman Island in the Grand Didier Channel with a marked supersaturation of methane (up to 400%) in the bay of the island, whereas saturation (maximum of 260%) was observed elsewhere. Our main hypothesis is that this supersaturation is linked to meltwater from the glacier on the island, which acts as a source of methane in the water column. This hypothesis is supported by vertical profiles of CH4 concentration, field observations of sub-glacial water flowing to the surface of the water column, as well as by variations in salinity showing a freshwater inflow. This phenomenon has already been suggested in the Arctic (Lamarche-Gagnon et al., 2019) but does not yet seem to have been demonstrated in the Antarctic. These data show that it would be worthwhile investigating areas with active glaciers to determine whether melting glaciers can be a source of methane for the Antarctic water column.

How to cite: Brusselman, A., Crabeck, O., Muller, S., Araujo, P. A., Dogniez, M., Lepoint, G., Michel, L., Danis, B., Dall'Osto, M., Fripiat, F., and Delille, B.: Glacier meltwater, a potential source of methane in West Antarctica Peninsula, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18144, https://doi.org/10.5194/egusphere-egu24-18144, 2024.

 Since the impoundment in 2003, the flux of CO2, CH4 in the Three Gorges Reservoir has changed significantly compared with the pre-impoundment status. How to understand and evaluate the influence of the construction and operation of the Three Gorges Reservoir on the CO2, CH4 and other greenhouse gas fluxes has attracted much attention. In this paper, we reviewed the experience of monitoring and analysis of CO2, CH4 fluxes in the reservoir since 2009. At present, air-water diffusion was the major pathway for carbon emissions in the reservoir. Terrigenous organic carbon input was the main carbon source leading the production of CO2 and CH4 in the reservoir. Yet, the contribution of autochthonous organic carbon seemed to be with growing significant. Compared with pre-impoundment status, a net increase of greenhouse gas emissions in the Three Gorges Reservoir is evident. Flooding accounted for about 20% of the net increase of the reservoir formation. Anthropogenic pollution in the reservoir region did not significantly to the net increase of CO2 emissions. In addition, the dam acting as barriers and reservoir aquatic ecosystem reconstruction were major contributors for the net greenhouse gas emissions. The past decade sampling campaigns and research promoted the improvement and optimization of monitoring system of the greenhouse gas emissions in the Three Gorges Reservoir. Application of new monitoring methods and technologies also provided support and reimbursement. However, the hydro-ecological mechanism driving the carbon cycle in the reservoir under complex hydrological environment is still unclear, which is a difficulty in the long-term trend prediction of the reservoir carbon flux. In the future, innovation of monitoring technology will be applied to promote the accurate calculation of the carbon flux of the Three Gorges Reservoir. It is still urgent to put forward more scientific and effective models or methods to support the long-term trend prediction and serve the reservoir carbon management.

How to cite: Li, Z. and Liu, Y.: The field monitoring and analysis of carbon emissions in the Three Gorges Reservoir: Review and outlook, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20453, https://doi.org/10.5194/egusphere-egu24-20453, 2024.

EGU24-22385 | ECS | Posters on site | BG4.7 | Highlight

Wetland plant tissues as a hidden methane oxidation location? 

Cheng (Caroline) Chen

Net methane (CH4) flux from coastal wetlands is an equilibrium product of methanogenesis by anerobic methanogenic microbes and methane oxidation by aerobic and anaerobic methanotrophic microbes. 75-95% of the methane produced is consumed by anaerobic methane oxidation in the deep, anoxic soil layers. Meanwhile, aerobic methane oxidation, which needs both oxygen (O2) and methane as substrates, occurs in the upper soil layer. Aerobic methanotrophy has mostly been studied in temperate grasslands. The well-aerated saltmarshes of the Wadden Sea coast might show a similar effect as such grasslands regarding methane consumption. However, this is a largely understudied process, since salt marshes are known for net methane emission rather than for net methane uptake. We hypothesize that (1) methane consumption vs. emission is driven by the oxygen concentration in the soil and is reflected in the ratio of methanotrophic vs. methanogenic microbes and (2) methane consumption occurs in the rhizosphere of salt marsh soil and in the plant tissue itself. A salt marsh plant-soil pot experiment will be conducted where S. anglica is exposed to different soil oxygen concentrations due to different hydrological conditions (5x waterlogged, 5x intermittently waterlogged, 5x drained), thereby triggering various methane dynamics. To determine methane consumption and emission, chamber measurements, using a MGGA Trace Gas Analyzer, will be performed regularly throughout the experiment. The ratio and location of methanotrophic to methanogenic microbes in the plant-soil system will be determined by quantitative polymerase chain reaction (qPCR) using pmoA189-F/pmoA661-R (methanotrophic bacteria) and mlas-F/mcrA-R (methanogenic archaea) primer pairs. Further analysis will include 16S sequencing on extracted DNA and rRNA from soil and plant tissue to differentiate between the total and the active community, respectively. Results from a pre-study show net methane consumption in the drained pots while net methane emission was measured in the waterlogged pots. We attribute this effect to upregulated methanotrophic processes under oxic conditions, resulting in a higher methane oxidation rate. First results of qPCR reveal methanotrophic bacteria in the rhizosphere and within the plant stem, while methanogenic archaea were only detected in the soil. Our results suggest a previously overlooked role of plant stem associated methanotrophic microbess in salt marshes greenhouse gas dynamics.

How to cite: Chen, C. (.: Wetland plant tissues as a hidden methane oxidation location?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22385, https://doi.org/10.5194/egusphere-egu24-22385, 2024.

Marine organisms, from plankton to fish, provide a wealth of ecosystem services, including carbon sequestration in a process known as the ocean’s biological carbon pump (BCP). The BCP brings carbon from the atmosphere to the ocean depths where it is stored for decades to centuries. Although parts of the ocean’s BCP are under threat from human activities,  BCP carbon sequestration rarely features as an objective in efforts to protect ocean spaces. Moreover, although BCP carbon sequestration services could support discussions of conservation and climate finance,  its economic value has yet to be estimated in space and time.

Biogeochemical modeling and mapping efforts have grown in recent years, and emerging results could potentially help to fill in important spatially explicit and economic knowledge gaps that could inform the protection of the BCP. We developed a new metric to map and quantify the global ocean’s BCP long-term carbon sequestration and computed its value on a potential carbon market. We show the  global spatial patterns and valuation in relation to geopolitical and management boundaries, and highlight options for governance and management. Our results highlight potential opportunities for preserving the climate services of the BCP both nationally and in areas beyond national jurisdiction , and can be used to inform discussions about marine protected areas, environmental impact assessment, and conservation finance.

How to cite: Berzaghi, F., Pinti, J., Aumont, O., Maury, O., and Wisz, M.: Distribution and valuation of the biological carbon pump and its carbon sequestration:  Implications for international area-based management and climate finance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-723, https://doi.org/10.5194/egusphere-egu24-723, 2024.

EGU24-913 | ECS | Posters on site | OS3.2

Dynamics and morphology of sinking particles in the equatorial Atlantic during the 2021 Atlantic Nino 

Joelle Habib, Lars Stemman, Pierre Climent, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko

The equatorial upwelling system is characterized by a strong seasonal cycle with relatively cold sea surface temperature (SST) and enhanced primary production in the “cold tongue region” of the eastern basin during boreal summer. During the boreal summer of 2021, the equatorial Atlantic witnessed its most intense warm event since the beginning of satellite observations, which is assumed to have a direct impact on the carbon cycle. Here we use data from a BGC Argo float, deployed in the equatorial upwelling region in order to investigate the production peaks of marine particles during two distinct periods: the decay period of the anomalous weak cold tongue and the period of secondary cooling in boreal winter. In situ images of plankton and particles and physical and biogeochemical data provided by the Underwater Vision Profiler 6 (UVP6) and various sensors mounted on the float were analyzed in conjunction with satellite data (sea surface height, SST, ocean color). The float covered the period between 13 July 2021 and 23 March 2022 drifting eastward from 23-7.4°W along the equator and conducting 2000 m profiles every three days. Our data revealed the occurrence of two blooms with high surface chlorophyll concentrations accompanied by the presence of two carbon export events reaching at least 2000 m depth. Both events exhibited high carbon flux at the mixed layer with a flux of 106±5 mgC.m-2d-1 during the first event compared to 122±17 mgC.m-2d-1 during the second while flux between both events remained below 89 mgC.m-2d-1. However, a distinction in the vertical extent of these events was recorded as there was a slightly higher flux at 2000 m for the winter boreal, 30% higher, suggesting a difference between the carbon attenuation flux export associated with the primary upwelling season with the one observed during the secondary cooling period in the boreal winter. The characterization of the morphology of detritus using in situ imaging and clustering method revealed the presence of five different morpho-types with different sinking properties. Two primary classifications—large and small dense aggregates—emerged as the predominant exported detritus to depths while porous aggregates were more concentrated in the surface layer. Our study revealed a dynamic interaction between various layers, involving carbon production in the surface layer, succeeded by its subsequent export to deeper layers. Finally, this study offers new insights into particle dynamics and the morphology of sinking particles within the equatorial region.

How to cite: Habib, J., Stemman, L., Climent, P., Accardo, A., Baudena, A., Tuchen, F. P., Brandt, P., and Kiko, R.: Dynamics and morphology of sinking particles in the equatorial Atlantic during the 2021 Atlantic Nino, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-913, https://doi.org/10.5194/egusphere-egu24-913, 2024.

EGU24-2879 | Orals | OS3.2 | Highlight | Fridtjof Nansen Medal Lecture

Future trends and climate feedbacks of the biological carbon pump 

Stephanie Henson

The biological carbon pump is a series of processes that transfers organic carbon from the surface ocean into the deep ocean.  Without it, atmospheric CO2 levels would be ~ 50 % higher than pre-industrial levels.  Despite its importance, we currently struggle to understand how the strength and efficiency of the biological carbon pump varies temporally and spatially.  This makes it difficult to observe, and therefore model the pump, so our knowledge of how this important component of the global carbon cycle might respond to climate change is poor.  In this talk I’ll present recent progress on using autonomous vehicles to quantify variability in the biological carbon pump, discuss the current limitations in our understanding of the pump, and the implications of those knowledge gaps for robust modelling of the current and future pump. 

How to cite: Henson, S.: Future trends and climate feedbacks of the biological carbon pump, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2879, https://doi.org/10.5194/egusphere-egu24-2879, 2024.

Marine silicate alteration is a combined process of lithogenic silicate (LSi) dissolution (known as marine silicate weathering) and secondary clay neoformation (known as reverse weathering). Both processes have been shown to affect long-term C cycling. Yet, the net CO2 consumption and production due to marine silicate alteration have not been studied thoroughly. Factors such as silicate types and rates are crucial in determining the fate of CO2 in the marine subsurface. In this study, we aimed to constrain silicate types of marine silicate alterations and their rates by measuring Si isotopic signatures of porewater and different silicate phases (including LSi, biogenic silica (BSi) and amorphous secondary Si phase (ASSi)) and modelling downcore profiles from two drill cores retrieved from the Ulleung Basin, where up to 130 mM of alkalinity has been documented as a result of fast marine silicate weathering. A decrease in porewater dissolved Si (DSi) concentration and an increase in porewater δ30Si (δ30Sipw) value indicate the formation of ASSi in the shallow subsurface (0 to 9 meter below seafloor (mbsf)). Below the sulfate-methane transition zone (9 to 32 mbsf), an increase in DSi concentrations and a decrease in δ30Sipw values were attributed to the LSi dissolution releasing lighter Si isotopes into porewater. Such a dissolving LSi phase is likely a mica-group silicate, as suggested by the elemental content of the separated solid phase and porewater. This finding is supported by reactive transport simulation, which indicates that mica, vermiculite and albite are able to dissolve and release Mg, K and Na into porewater. Precipitation of smectite group silicates consumes Mg and K in the pore fluids at rates lower than the overall silicate dissolution rates. The dissolving mica-group silicate (and albite) neutralises CO2 produced through organic matter fermentation and increases porewater alkalinity, which is 60 times higher than the seawater value. By further conducting model sensitivity tests using various organic matter degradation rates, we found that the alkalinity concentrations contributing by dissolved Mg and K concentrations are majorly affected by changes in smectite group formation rates while mica and vermiculite dissolution rates remain constant. The decreased contribution of mica-like silicate dissolution and the increased contribution of BSi dissolution with sediment depth from 32 to 218 mbsf are indicated by increased DSi concentration, increased δ30Sipw values and rate results output by modelling.

How to cite: Huang, T.-H., Sun, X., Kim, J.-H., Mark, C., and Hong, W.-L.: Extremely high alkalinity due to dissolution of mica-group silicate in the pelagic sediments of the Ulleung Basin (East Sea): stable Si isotopes evidence and reactive transport modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3289, https://doi.org/10.5194/egusphere-egu24-3289, 2024.

EGU24-4178 | Orals | OS3.2

The role of marine silicate alteration in regulating carbon cycling 

Wei-Li Hong, Xiaole Sun, Tzu-Hao Huang, and Marta Torres

Despite the growing recognition of in-situ silicate alteration (dissolution and formation) in marine sediments, its global significance and controlling factors are still poorly understood. By compiling information from scientific ocean drilling programs and applying numerical modelling, we aim to 1) provide constraints on the environmental parameters of silicate dissolution in marine sediments, 2) identify silicate phases responsible for the hyper porewater alkalinity (>56 meq/L) commonly observed from productive continental margin sediments, and 3) investigate the interplay between silicate dissolution, clay formation, and carbonate authigenesis as well as their effect on marine carbon cycling. 

Through numerical modelling, we show that alkaline conditions resulting from combined iron and sulfate reduction favour formation of smectite group clay minerals, while the acidic conditions arising from organic matter fermentation promote dissolution of saponite and several mica-group silicates. This result resonates with previous observations of reverse weathering (i.e. clay formation) in shallow iron- and/or sulfate reducing sediments, while silicate weathering (i.e. silicate dissolution) has been reported deeper in methanogenic sediment columns. 

Using pore fluid composition data, we show that marine silicate weathering is primarily driven by dissolution of K- and Mg-containing silicate minerals. Especially, higher-than-seawater Mg concentrations were observed in almost all sites that have hyper alkalinity and the weathering process contribute more than one-third of the measured alkalinity. No apparent difference was observed for porewater Ca concentrations when comparing sites with and without hyper alkalinity, which hints for complicated feedbacks through authigenic carbonate formation. 

The global dataset analysed revealed that sites with high alkalinity correspond to locations with a medium distance from shore. While such a pattern cannot be easily explained by supply of organic matter nor by silicate phases alone, we interpret this observation to be the result of sediment maturity. Our inference is further strengthened by observations of higher alkalinity at sites with greater thermal history within the methanogenesis zone, a factor that measures how much time and temperature a sediment parcel has experienced under subsurface conditions. Collectively, we conclude that substantial dissolution of marine silicate phases occurs when the sediments have been transported some distance offshore and buried below sulfate reduction zone for a prolonged period and/or experience sufficiently high geothermal heating.

We simulated alteration of silicate and carbonate phases within a complete early diagenetic sequence to understand how dissolved carbon is converted to alkalinity under variable organic matter degradation rates. We show that authigenic carbonate formation is effective in control downcore DIC/alkalinity level with a moderate organic matter degradation rate. Only a very limited amount of carbonic acid produced by reverse weathering can diffuse away from sediments. Under a scenario with fast organic matter fermentation, dissolution of silicates (such as phlogopite) becomes the only buffer for porewater pH that converts most of the dissolved inorganic carbon produced from organic matter fermentation to carbonate alkalinity. Consequently, marine weathering sustained by silicate mineral dissolution increases the alkalinity production by as much as 16%, with most of the alkalinity leaking to surface oxic sediments instead of being sequestrated as carbonate minerals. 

How to cite: Hong, W.-L., Sun, X., Huang, T.-H., and Torres, M.: The role of marine silicate alteration in regulating carbon cycling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4178, https://doi.org/10.5194/egusphere-egu24-4178, 2024.

EGU24-4351 | Posters on site | OS3.2

Observing the biological carbon pump of the twilight zone in the South China Sea 

Bangqin Huang, Chao Xu, and Yibin Huang

The biological carbon pump (BCP) is a key mechanism sustaining ocean carbon sequestration and thus significantly influences atmospheric CO2 concentration. However, most of the key processes of the BCP, particularly in the twilight zone, remain poorly constrained. In this study, we use multiple approaches to constrain the key BCP processes throughout the water column in the South China Sea (SCS), including carbon export, remineralization and sequestration. Firstly, we calculated the small particulate organic carbon (POC) flux exported via the mixed layer pump (MLP) by biogeochemical profiling floats (BGC-float), which are typically ignored in low-latitude regions. We further combined three independent approaches, including BGC-float observation, in vivo reduction of the tetrazolium salt by the cellular electron transport system (in vivo INT), and the synthesis of prokaryotic respiration (PR) determined by radiolabeled leucine incorporation and zooplankton respiration (ZR) empirically estimated from the biomass (PR+ZR), to constrained the twilight zone remineralization (TZR) in the SCS. To reconcile methodological discrepancies, we estimated the possible range of carbon supply by integrating comprehensive carbon sources, including sinking POC flux, dissolved organic carbon input, lateral transport, dark carbon fixation, and active carbon transport by zooplankton migration. We find the in vivo INT approach may overestimate the TZR, while the TZR measured by BGC-float and PR+ZR approaches can be balanced with the total carbon sources. Finally, we further calculate the time-series POC flux at 1000 m by using the optical sediment trap equipped on the BGC-float, which indicates the real carbon sequestration flux and can be isolated from the atmosphere at the time scale of centuries to millennia. Our study provides new insights of the BCP and highlights the importance of inter-disciplinary and integrative process studies for constraining biogeochemical processes.

How to cite: Huang, B., Xu, C., and Huang, Y.: Observing the biological carbon pump of the twilight zone in the South China Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4351, https://doi.org/10.5194/egusphere-egu24-4351, 2024.

EGU24-4833 | Posters on site | OS3.2

Decreased carbonate pump during the Oligocene-Miocene Transition: Regulating the oceanic buffering capacity 

Ruigang Ma, Chuanlian Liu, and Xiaobo Jin

The oceanic carbonate cycle plays a crucial role in buffering anthopogenic CO2 emmision by regulating the total alkalinity (TA) and dissolved inorganic carbon (DIC) in the seawater. There is a growing interest in comprehending the role of biogenic calcification, the carbonate (counter) pump. The Early Miocene glaciation is thought to be triggered by the declining pCO2 potentially through a threshold effect of ~400 ppm (Greenop et al., 2019), a level we are approaching today. The mechanism(s) behind the long-term pCO2 decline during this period is still an open question, with little discussion on fluctuations in the carbonate burial. We estimated the changes in volume and flux of pelagic carbonate, specifically using coccoliths (calcite scales produced by coccolithophores). Our investigation spanned the transition from the Paleogene to the Neogene (~27-20 Ma), using marine calcareous nannofossil ooze retrieved from the IODP Site U1501 and U1505 located in the western tropical Pacific Ocean. The circular-polarized light microscope is used to measure the thickness (and volume) of the coccolith crystals. Integrating the linear sedimentation rates, we estimated that coccolith carbonate burial varied between 2-8×104 mol·yr-1·km-2. Our result aligns with the modeled alkalinity removal through pelagic carbonate burial (van der Ploeg et al., 2019). Moreover, scanning electron microscope (SEM) observations revealed calcite carbonate dissolution effects in the water column, with ~5-30% of coccolith carbonate dissolving during sinking, releasing additional alkalinity to the sea-water. A negative correlation between Ks and bulk TOC suggests that the organic and inorganic carbon burial were decoupled during the studied period. While further constraints are needed to improve our estimation (e.g., considering assemblage changes in coccolith and planktonic foraminifera), we tentatively conclude that the decline in carbonate production together with the increased dissolution weakened the carbonate pump. As a result, enhanced buffering capacity of the ocean likely played a role in the drawdown of pCO2 from the Late Oligocene to the Early Miocene.

How to cite: Ma, R., Liu, C., and Jin, X.: Decreased carbonate pump during the Oligocene-Miocene Transition: Regulating the oceanic buffering capacity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4833, https://doi.org/10.5194/egusphere-egu24-4833, 2024.

The North Pacific (>20°N) stands out as a significant carbon sink, contributing to approximately 25% of the global oceanic CO2 uptake and absorbing around 0.5 Pg C yr-1 from the atmosphere. Despite the well-established importance of the biological carbon pump in maintaining this regional carbon sink, our current understanding of the strength and efficiency of the biological pump in this vast region remains incomplete. Historical studies have primarily relied on extrapolations from a limited number of observations.

In this study, we utilize data from 85 BGC-floats, covering over 160 annual cycles, to constrain essential fluxes relevant to the biological pump in the North Pacific, including net primary production, the export of distinct biogenic carbon, and air-sea CO2 flux. Furthermore, we combine the output from a well-constrained regional ecosystem model (ROMS-CoSiNE-Iron Model) to gain mechanistic insights into how the food-web dynamics drive the strength and efficiency of the biological carbon pump across different ecosystems.

Overall, our study offers an integrated perspective on the North Pacific biological pump by leveraging high-resolution observations from the BGC-float array and simulation from an improved ecosystem model.

How to cite: Huang, Y. and Chai, F.: Integrated Perspective of the Biological Pump in the North Pacific: Synergy from BGC-Float Observations and Ecosystem Model Simulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4985, https://doi.org/10.5194/egusphere-egu24-4985, 2024.

EGU24-5933 | ECS | Posters on site | OS3.2

A mechanistic reproduction of particle transformation via fragmentation and diel vertical migration  

Aaron Naidoo-Bagwell, Fanny Monteiro, Andre Visser, and Stephanie Henson

The export efficiency of the biological carbon pump depends on a multitude of processes that can affect the sinking speed of particulate organic matter (POC). The uncertainty surrounding factors that promote particle aggregation (e.g. through transparent exopolymer particles – TEP), remineralization (e.g. via microbes) and zooplankton consumption and fragmentation (e.g. coprophagy) has led to inconsistent estimates and future predictions for global export flux amongst earth system models. Two of the most unaccounted-for and least understood processes for constraining these simulations of POC flux are fragmentation and diel vertical migration (DVM) by zooplankton, with the majority of CMIP6 model omitting these from their frameworks. Fragmentation rates can be physically-mediated (e.g. turbulent shear) or biologically-mediated (e.g. “sloppy feeding” by zooplankton) and drive remineralization and thus flux attenuation. Another zooplankton activity, DVM, also contributes to export flux. the resulting export flux. DVM, where organisms nocturnally migrate to surface waters to feed and descend during the day, has great implications for biogeochemical fluxes of nutrients and provides a mechanism for POC to bypass potential transformation via fecal pellet production at depth. Here, we use a 1-dimensional particle model (SISSOMA) that includes mechanistic descriptions of key particle transformation processes (aggregation, remineralization, fragmentation etc.) to explore the potential consequences of fragmentation and DVM. SISSOMA enables study into the formation and fate of particles in the mixed layer, producing particle size distributions of the flux exported. Through sensitivity tests on the drivers of fragmentation rates, fed by Underwater Vision Profiler (UVP) and Biogeochemical-Argo floats observations, we can determine what drives particle size distribution and ultimately carbon export. We apply a DVM component to SISSOMA, driven by ecological observations of migrating zooplankton (e.g. EcoTaxa) to investigate the extent to which this process contributes to export flux and its particle size composition. We implore future modelling and observationally-based studies related to constraining the biological pump to consider these processes when designing their research.

How to cite: Naidoo-Bagwell, A., Monteiro, F., Visser, A., and Henson, S.: A mechanistic reproduction of particle transformation via fragmentation and diel vertical migration , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5933, https://doi.org/10.5194/egusphere-egu24-5933, 2024.

EGU24-6054 | Posters on site | OS3.2 | Highlight

Temperature vs ecosystem structure control over remineralisation length scale of sinking particles in the Global Ocean  

Richard Sanders, Sarah Giering, Stephanie Henson, Adrian Martin, Elaine McDonagh, Ingrid Wiedmann, and Andrew Yool

Ocean biological processes, principally the surface production, sinking and interior conversion of organic carbon to CO2 store enough carbon in the ocean interior to keep atmospheric CO2 concentration substantially lower than it would otherwise be. The size of this effect is linked to the depth at which sinking organic matter is remineralised in the ocean, with a deeper mineralisation causing a greater storage. Two prominent hypotheses regarding the control over the depth at which sinking material is lost are Temperature and Ecosystem Structure, specifically the proportion of diatoms in the surface community. These are both theoretically valid (temperature controls respiration, diatoms control density) and have some support in the literature, however to date have been considered in isolation. In this paper we firstly compute the strength of these effects in isolation from simple theory and show that they produce relationships consistent with existing literature thus suggesting that both factors may play a role. We use these relationships to produce an equation linking mineralisation depth, parameterised as remineralisation length scale, to community structure and temperature, thus uniting the two factors. An analysis of this equation suggests that community structure exerts a stronger control over remineralisation length scale than does temperature.

How to cite: Sanders, R., Giering, S., Henson, S., Martin, A., McDonagh, E., Wiedmann, I., and Yool, A.: Temperature vs ecosystem structure control over remineralisation length scale of sinking particles in the Global Ocean , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6054, https://doi.org/10.5194/egusphere-egu24-6054, 2024.

The vast and rugged seafloor, densely populated with unique topographic characteristics such as seamounts, serves as hotspots for ocean deep-sea biodiversity and fisheries resources. For oligotrophic regions covering more than a quarter of the global ocean, such unique topography regions are ecological oases within the oceanic desert. However, research on these ecological hotspots remains scarce, particularly in understanding the mechanisms behind the formation of these ecological oases. We selected a shallow seamount in a typical oligotrophic region as a case study and conducted comprehensive on-site physical, chemical, and biological observations, revealing its coupled temporal and spatial response characteristics. By comparing observations from multiple 24-hour time-series stations at different locations on the seamount, we uncovered the differential response characteristics between the upstream and downstream sides induced by the seamount topography. Based on this, we elucidated the efficient organic matter production and export processes on the seamount, attempting to propose a mechanism for the formation of seamount ecological oases.

How to cite: Wang, X.: Seamounts Generate Efficient Biological Carbon Pump Processes to Nourish the Twilight Ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6276, https://doi.org/10.5194/egusphere-egu24-6276, 2024.

EGU24-6440 | ECS | Posters on site | OS3.2

Investigating the fractionation behaviour and mass balance of cadmium isotopes during continental weathering and marine burial. 

Neeraja Baburaj, Alexander Dickson, and Hannah Elms

Organic carbon burial plays an important role in the global carbon cycle, and changes in the magnitude of such carbon burial have the potential to impact the global climate. Recent studies have shown that stable cadmium isotopes (δ114/110Cd) have potential as a tracer for marine organic carbon burial. However, the input and output fluxes and isotopic fractionation behaviour of Cd in the marine system are currently insufficiently constrained for robust application as a paleo-proxy. For example, while the main input flux of Cd to the oceans is from rivers, the isotopic behaviour of Cd during its passage through estuarine mixing zones is poorly understood.

In this study we will present Cd concentration and isotopic measurements of waters spanning a salinity gradient of 34–1 PSU and bedload sediments collected from the Milford Haven estuary in Pembrokeshire, western Wales, The aim is to test the conservative behaviour of Cd in the estuarine mixing zone, to constrain the composition of Cd from weathering in a shale and sandstone dominated catchment, and to investigate the fractionation of Cd during catchment weathering. These data will help in better understanding the riverine input flux of cadmium into the oceans, and the marine cadmium budget.

How to cite: Baburaj, N., Dickson, A., and Elms, H.: Investigating the fractionation behaviour and mass balance of cadmium isotopes during continental weathering and marine burial., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6440, https://doi.org/10.5194/egusphere-egu24-6440, 2024.

Ocean water yields an integrated global signal of geological and biological processes operating on our planet, which in turn control the marine C cycle, oceanic alkalinity budget and atmospheric CO2 levels. Therefore, reconstructing the chemical and isotope composition of seawater and/or coastal waters through time represents one of the main research objectives of earth system evolution studies.

Here we present stable and radiogenic Sr isotope variations (δ88/86Sr and 87Sr/86Sr) measured in waters and carbonates from modern and Holocene coastal marine system in South Australia (Coorong Lagoon/Murray River Estuary) that is connected to the Southern Ocean, thus exhibiting large gradients in water chemistry, salinity and carbonate saturation (Mosley et al. 2023; Shao et al. 2021). The studied hydrological system shows a large salinity range from brackish (<20 psu) to normal marine (~35 psu) and hypersaline (~110 psu), with the salinity changes being tightly linked to DIC and Alkalinity, and thus CaCO3 saturation state (SI values) of local waters, calculated via PHREEQC. The primary research aim was to assess how spatial and temporal changes in salinity, carbonate chemistry and CaCO3 saturation (dissolution vs precipitation of carbonates), monitored throughout the year (in spring, summer, fall and winter), impact the Sr isotope composition in the present-day coastal marine system. Such knowledge is, in turn, important for a better calibration and assessment of the δ88/86Sr proxy for paleo-oceanographic and environmental applications including past marine alkalinisation/acidification events and/or paleo-salinity reconstructions (Farkas et al. 2024; Shao, 2022).

Importantly, our results from seasonal sampling and monitoring showed that the δ88/86Sr in waters is positively correlated with their SI values (carbonate saturation) and salinity, with the heaviest or most positively fractionated stable Sr isotope signatures of +0.48 ± 0.03‰ (thus above ‘normal seawater’ of +0.39 ‰) measured in summer season (hot and dry period) in hypersaline (>70 psu) and oversaturated (SI ~1) waters. In contrast, the isotopically light and systematically lower stable Sr isotope signatures (< 0.35‰) are documented in brackish waters that are also undersaturated with respect to CaCO3 minerals (SI < 0). Overall, these results point to the primary control of carbonate dissolution versus precipitation phenomena, and thus CaCO3 saturation, on the δ88/86Sr proxy in the modern coastal marine system.

Finally, we will also illustrate how a coupled δ88/86Sr and 87Sr/86Sr approach can be applied for paleo-salinity reconstructions of the coastal marine systems, such as the Coorong Lagoon, based on the Sr isotope analysis of recent and fossil carbonate archives (bivalve shells) recovered from local sediment cores (Shao, 2022). Briefly, available results and geochemical modeling of the Sr isotope data from Holocene fossil shells suggest that over the last ~2400 years the Coorong Lagoon become progressively more evaporitic, exhibiting a temporal shift from a purported brackish paleo-lagoon to the present-day hypersaline carbonate producing system.   

 

References

Farkas et al. (2024) Treatise on Geochemistry, Third Edition. Elsevier (Book Chapter 00086)

Mosley et al. (2023) Marine Pollution Bulletin, 188, 1-16.  

Shao (2022) PhD Thesis, University of Adelaide 

Shao et al. (2021) GCA, 293, 461-476.  

How to cite: Farkas, J., Shao, Y., Mosley, L., Tyler, J., Tibby, J., and Eisenhauer, A.: Calibrating stable Sr isotope proxy for paleo-oceanographic studies: Insights from δ88/86Sr variability in modern and Holocene coastal marine system in South Australia , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7103, https://doi.org/10.5194/egusphere-egu24-7103, 2024.

EGU24-7112 | ECS | Posters on site | OS3.2

POC export fluxes across the Seychelles-Chargos Thermocline Ridge in the western Indian Ocean based on 234Th as a tracer 

Junhyeong Seo, Intae Kim, Hyunmi Lee, and Suk Hyun Kim

We investigated the export flux of particulate organic carbon (POC) using 234Th as a tracer in the western Indian Ocean along 60°E and 67°E transects in 2017 and 2018. The Seychelles-Chagos Thermocline Ridge (SCTR), where production is relatively high due to nutrient replenishment by upwelling of subsurface water, was observed at 3°S – 12°S in 2017 and 4°S – 13°S both 60°E and 67°E in 2018. POC fluxes in 2017 showed no differences between the SCTR and non-SCTR regions. However, in 2018, the POC fluxes in the SCTR regions (8.52 ± 7.89 mmol Cm–2 d–1) were one order of magnitude higher than those observed in the non-SCTR regions (0.63 ± 0.07 mmol C m–2 d–1), which appeared to be related to the strong upwelling of subsurface water. These POC fluxes were comparable to those observed under bloom conditions, and thus, are important for estimating the efficiency of carbon sequestration in the ocean.

How to cite: Seo, J., Kim, I., Lee, H., and Kim, S. H.: POC export fluxes across the Seychelles-Chargos Thermocline Ridge in the western Indian Ocean based on 234Th as a tracer, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7112, https://doi.org/10.5194/egusphere-egu24-7112, 2024.

EGU24-7805 | ECS | Orals | OS3.2

Zooplankton Fecal Pellet Flux and Carbon Export in the Deep South China Sea 

Jiaying Li, Zhifei Liu, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, Thomas Blattmann, Negar Haghipour, and Timothy Eglinton

Zooplankton fecal pellets constitute a major component of passively sinking particles in the ocean. The sinking of zooplankton fecal pellets provides an efficient vehicle for the transfer and sequestration of particulate organic carbon in the deep sea, which has been widely reported in different ocean regions. However, most existing studies focus on the sinking flux of fecal pellets within the upper ocean, while the lower mesopelagic and bathypelagic zones are rarely investigated. Here, we report the spatiotemporal flux variation of zooplankton fecal pellets collected by two sediment traps deployed in mesopelagic and bathypelagic zones (500 m and 2190 m, respectively) of the southern South China Sea from June 2020 to May 2023. The average fecal pellet numerical flux is 3.21*104and 4.64*104 pellets m-2 d-1 at 500 m and 2190 m, respectively, corresponding to an average fecal pellet carbon flux from 0.43 to 0.84 mg C m-2 d-1 at these two depths. Fecal pellet fluxes display distinct seasonal patterns due to the control of the East Asian monsoon system, with higher fluxes in winter and spring, and lower fluxes in summer and autumn. Higher fecal pellet fluxes combining with the presence of extra-large pellets are found in bathypelagic zone, which is attributed primarily to in-situ reworking and repackaging of sinking particulate matter by deep-dwelling zooplankton communities, as well as lateral inputs from adjacent high productive continental coasts and shelves. We compare our results with global deep-sea (>500 m) fecal pellet flux data reported from different sediment-trap stations with distinct marine primary productivity and zooplankton biomass. Furthermore, we will report on the state of our progress on carbon isotope analysis (13C, 14C) for disentangling the source-to-sink dynamics of fecal pellets and its role in the deep-sea carbon export and sequestration.

How to cite: Li, J., Liu, Z., Lin, B., Zhao, Y., Zhang, X., Cao, J., Zhang, J., Song, H., Blattmann, T., Haghipour, N., and Eglinton, T.: Zooplankton Fecal Pellet Flux and Carbon Export in the Deep South China Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7805, https://doi.org/10.5194/egusphere-egu24-7805, 2024.

EGU24-9768 | ECS | Orals | OS3.2

Post-mortem pteropod degradation in the Southern Atlantic twilight zone 

Olivier Sulpis, Perrine Chaurand, Anne Kruijt, Ben Cala, Katja TCA Peijnenburg, Robin van Dijk, Daniëlle van der Burg, and Matthew Humphreys

Part of the carbon taken up by the ocean is transformed into biogenic particulate matter, that eventually leaves the surface ocean, settling toward the seafloor. Planktonic organisms secreting a calcium carbonate (CaCO3) shell occupy a key, but ambivalent role in this scheme. First, the precipitation of their shell generates CO2, thereby reducing the ocean CO2 sink, while the sinking of their shell constitutes a direct export of carbon to the deep ocean. Meanwhile, the dissolution of their shells generates alkalinity, which in turn boosts the capacity of seawater to take up more CO2 from the atmosphere.

 

CaCO3 is present in the ocean under two main mineral forms: calcite (relatively stable) and aragonite (relatively soluble). Aragonite, produced in today’s oceans mostly by pteropods, a group of pelagic snails, has a very poorly understood role in the marine carbon cycle, and key questions remain unanswered: what controls their soft parts degradation and shell dissolution in the upper kilometer of the water column? How do both processes interact?

 

During the BEYΩND expedition that took place in March 2023 across the Southern Atlantic, we sampled pteropods using a multinet at 5 different depth ranges in the upper kilometer. Retrieved pteropods were representative of different life stages (adults, juveniles), some still well preserved, some dead with various stages of decomposition. Individuals were then preserved into ethanol, and later scanned with a micrometric resolution using microtomography. From the scans, the post-mortem degradation of the different body parts can be appreciated, shell micro-ornamentations can be seen, and possibly gut contents, which may influence dissolution and degradation processes. From the collected scans, a reactive transport model is then applied to predict in 3D the rates at which both organic matter degradation and aragonite dissolution occur, as well as how they interact.

How to cite: Sulpis, O., Chaurand, P., Kruijt, A., Cala, B., Peijnenburg, K. T., van Dijk, R., van der Burg, D., and Humphreys, M.: Post-mortem pteropod degradation in the Southern Atlantic twilight zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9768, https://doi.org/10.5194/egusphere-egu24-9768, 2024.

EGU24-9848 | Orals | OS3.2

Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box 

Angela Landolfi, Ivy Frenger, Karin Kvale, Christopher J. Somes, Andreas Oschlies, Wanxuan Yao, and Wolfgang Koeve

The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed “export flux,” a change in export flux is perceived to directly impact atmospheric CO2, and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2. We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2, as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2. This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. A comprehensive view of the BCP's impact on atmospheric CO2, is a prerequisite for assessing the effectiveness of marine CO2 removal approaches mediated by biology.

How to cite: Landolfi, A., Frenger, I., Kvale, K., Somes, C. J., Oschlies, A., Yao, W., and Koeve, W.: Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the “export” box, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9848, https://doi.org/10.5194/egusphere-egu24-9848, 2024.

EGU24-12043 | ECS | Orals | OS3.2

Reassessing the role of diatoms in carbon transfer through the Southern Ocean Twilight Zone 

Jack Williams, Sari Giering, Chelsey Baker, Hannah East, Benoit Espinola, Fred Le Moigne, Maria Villa, Katsiaryna Pabortsava, Sabena Blackbird, Corinne Pebody, Kevin Saw, Mark Moore, Stephanie Henson, Richard Sanders, and Adrian Martin

Diatoms, a ubiquitous group of phytoplankton, account for approximately 40% of particulate organic carbon (POC) exported via the ocean biological carbon pump, which modulates atmospheric CO2. Diatoms are represented in global biogeochemical models as effective vectors for sinking POC, with their large size and dense skeletons made of biogenic Silica (BSi) thought to allow rapid transfer of organic carbon to the ocean interior. However, we observe this not to be the case across large parts of the Southern Ocean mesopelagic zone. Here we present direct flux measurements from different sectors of the Southern Ocean demonstrating that silica and carbon cycles in the Southern Ocean mesopelagic are strongly decoupled, with a weak mechanistic link between BSi and POC fluxes. By combining Marine Snow Catcher flux measurements, in-situ pump, and CTD particulate data, we show that for a large part of the productive season, diatoms do not represent efficient vectors of sinking POC through the mesopelagic, yet POC is still efficiently transferred to depth. We suggest that processes influencing flux attenuation differ between the upper mesopelagic and deep ocean, with rapid BSi flux attenuation in the upper mesopelagic caused by elevated rates of BSi remineralization or negation of biomineral ballast effects by particle processes such as buoyancy regulation or fragmentation. Biomineral ballast may yet play an important role in shaping the efficiency of sinking POC transfer in the deep ocean. More broadly, these results highlight the need to understand the nuanced role this key taxon plays in transferring carbon through the mesopelagic, a region that is highly vulnerable to climate change effects and key in shaping the efficiency of downward carbon transport. As diatoms appear to be inefficient at delivering carbon to the deep ocean, projected losses in the strength of the Southern Ocean BCP due to shifts in phytoplankton community composition to smaller size classes may be less than previously predicted.

How to cite: Williams, J., Giering, S., Baker, C., East, H., Espinola, B., Le Moigne, F., Villa, M., Pabortsava, K., Blackbird, S., Pebody, C., Saw, K., Moore, M., Henson, S., Sanders, R., and Martin, A.: Reassessing the role of diatoms in carbon transfer through the Southern Ocean Twilight Zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12043, https://doi.org/10.5194/egusphere-egu24-12043, 2024.

Phytoplankton acclimate to increased nutrient stress by decreasing their cellular quotas (nutrient:carbon ratios). Reducing cellular quotas reduces the export efficiency of the limiting nutrient, helping sustain biological productivity. Here we present a version of the Community Earth System Model with phytoplankton group specific, fully variable C:N:P:Fe:Si ratios constrained by field observations of particulate organic matter stoichiometry and individual cell spectroscopy. We compare the results of a steady-state fully fixed stoichiometry model to the fully variable model and find that using a fixed Redfield stoichiometry leads to a decrease of 1PgC/yr carbon export, increase of 18 ppm atmospheric CO2, decrease of 55 TgN/yr nitrogen fixation, and decrease of 27/yr TgN nitrogen fixation. We also investigate the impacts of variable nutrient acquisition on global patterns of nutrient limitation and find that the weaker ability of phytoplankton to acclimate to N stress by lowering their cellular quotas relative to other nutrients pushes marine ecosystems towards nitrogen limitation. Only when the nutrient supply ratios are highly skewed, exceeding the ability of the phytoplankton to acclimate, do other nutrients become growth-limiting, as with iron in the High Nitrate, Low Chlorophyll (HNLC) regions. We show that in the oligotrophic gyres, variable plankton stoichiometry, given sufficient time, pushes the marine ecosystems towards co-limitation, as non-limiting nutrients are more efficiently drawn down and exported (higher cellular quotas), relative to the growth-limiting nutrient (lower cellular quotas).

How to cite: Wiseman, N., Moore, J. K., and Martiny, A. C.: Phytoplankton variable elemental composition modifies the marine biological pump and largely determines the global patterns of nutrient limitation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12166, https://doi.org/10.5194/egusphere-egu24-12166, 2024.

EGU24-12853 | ECS | Posters virtual | OS3.2

Molecular characterization of the sedimentary organic matter deposited off central Peru (12 – 14ºS): first insights into preservation processes 

Maricarmen Igarza, Michelle Graco, Mohammed Boussafir, Abdelfettah Sifeddine, Jorge Valdés, and Dimitri Gutiérrez

Phytoplankton production represents the ultimate source of organic matter in the ocean; thus, the study of organic compounds can give us information related to organic matter (OM) origin and transformations. Usually less than 1% of the OM produced in the ocean surface reaches the seafloor, although in highly productive regions nearly 10% can be buried and subjected to further degradation. The Peruvian upwelling system is among the most productive marine ecosystems in the world ocean, with high primary production sustained mainly in a year-round upwelling. Along the Peruvian continental margin, variations in primary production, bottom dissolved oxygen, and depth influence OM accumulation and preservation, and thus determine the existence of different depositional environments. Previous geochemical and palaeoceanographic studies have shown that the best records of well-preserved OM are found towards the central area of the Peruvian continental margin, between 12°S and 14°S. Therefore, the study of organic compounds, particularly lipids, deposited in surface sediments could give us information regarding early diagenetic processes related to OM degradation/preservation. The objective of this study was to characterize both the solvent extractable OM fraction (i.e. free lipids) and the insoluble OM fraction (i.e. protokerogen) in order to elucidate possible preservation mechanisms involved in OM accumulation. A total of 14 surface sediment samples from different locations between 12°S and 14°S were analyzed by means of gas chromatography mass spectrometry. Organic compounds such as short-chain and long-chain alkanes and fatty acids were quantified in the solvent-extractable OM fraction, which allowed the calculation of a pristane/phytane index and a carbon preference index. In the insoluble OM fraction, alkanes and fatty acids were also quantified together with dithiophene and benzothiophene compounds and organic sulfur heterocompounds. Overall, our results allowed a detailed geochemical molecular characterization of the OM deposited in surface sediments beneath one of the most productive areas of the Peruvian coast. The differences observed in both the n-alkane and fatty acids distribution between the solvent-extractable OM fraction and the insoluble OM fraction, together with the quantification of sulfur compounds in the insoluble fraction, suggests that complex diagenetic processes occur in surface sediments. An important part of the freshly-produced OM in the highly productive surface waters off central Peru reaches the seafloor and undergoes preservation mechanisms mainly related to natural sulfurization and selective preservation, tightly coupled to the reduced conditions that characterize surface sediments in the area.

How to cite: Igarza, M., Graco, M., Boussafir, M., Sifeddine, A., Valdés, J., and Gutiérrez, D.: Molecular characterization of the sedimentary organic matter deposited off central Peru (12 – 14ºS): first insights into preservation processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12853, https://doi.org/10.5194/egusphere-egu24-12853, 2024.

EGU24-12937 | Posters on site | OS3.2

Reconstructing past seawater δ88/86Sr from calcium-sulfates (gypsum and anhydrite) 

Netta Shalev, Stefano Lugli, Vinicio Manzi, Christoph Leitner, Yining Li, and Yana Kirichenko

Records of the stable-Sr isotope composition of past seawater, δ88/86Srsw, have recently been demonstrated to be good proxies for the evolution of the marine ‘carbonate factory’, the ultimate sink of carbon from the ocean-atmosphere system [e.g., 1-3]. Nevertheless, these records are incomplete, and they generally do not overlap in age. Thus, despite their proven significance, these records have not been validated by data from any independent archives. The Ca-sulfate minerals, gypsum (CaSO4∙2H2O), and its burial transformation product, anhydrite (CaSO4), are relatively abundant in ancient evaporitic sequences and they contain Sr in typically high concentrations of 1000-2000 ppm. In a previous study, we show that gypsum is always 88Sr-enriched relative to its precipitating solution by around 0.2‰ and that it is possible to detect significant variations in past δ88/86Srsw (≥0.1‰) from ancient gypsum/anhydrite samples from the geological record.

Here, we study Phanerozoic Ca-sulfate samples of four different ages: Ordovician, Triassic, Cretaceous, and Messinian. Preliminary δ88/86Sr results are in the range of 0.29 – 0.67‰. Most of the results cluster between the calculated gypsum composition expected for the two known extreme cases of seawater δ88/86Sr values inferred from Ca-carbonate archives: the high- δ88/86Sr Precambrian seawater [3], and Late Permian seawater - the Phanerozoic minimum [2]. Thus, our preliminary Phanerozoic data are generally in accordance with the suggestion that the long-term Precambrian seawater δ88/86Sr is higher than the Phanerozoic long-term background [3]. Furthermore, our preliminary data point to significant seawater δ88/86Sr variations during the Phanerozoic, with lower values in the Ordovician and Triassic relative to Cretaceous and Messinian samples. Such variations may suggest major changes in the ‘carbonate factory’ in the ocean between the Triassic and Cretaceous. It is further suggested that such variations in the mineralogy and/or flux of marine carbonates may result from evolutionary changes in marine calcifiers.

 

[1] Paytan et al. (2021) A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science 371(6536), 1346-1350.

[2] Vollstaedt et al. (2014) The Phanerozoic δ88/86Sr record of seawater: New constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249–265.

[3] Wang et al. (2023) The evolution of the marine carbonate factory. Nature, 1-5.

[4] Kirichenko et al. (n.d.), First Insights into Strontium Isotope Fractionation in Gypsum and Its Geochemical Implications. Under review in Geochim. Cosmochim. Acta.

How to cite: Shalev, N., Lugli, S., Manzi, V., Leitner, C., Li, Y., and Kirichenko, Y.: Reconstructing past seawater δ88/86Sr from calcium-sulfates (gypsum and anhydrite), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12937, https://doi.org/10.5194/egusphere-egu24-12937, 2024.

EGU24-13298 | ECS | Posters on site | OS3.2

Carbonate Compensation Depth and Carbonate Carbon Flux in the Pacific Ocean over the Cenozoic  

Faranak Dalvand, Adriana Dutkiewicz, R. Dietmar Müller, Nicky M. Wright, and Ben R. Mather

The Pacific Ocean, the largest ocean basin, plays a critical role in the global carbon cycle, where a massive quantity of deep-sea sediment is sequestered on the seafloor and ultimately transferred into the mantle through its extensive subduction zones. However, the fluxes of carbonate carbon to the seafloor, and the volume stored and subducted in the Pacific remains relatively unknown over the Cenozoic. Here we estimate the carbonate carbon flux to the Pacific seafloor since the early Cenozoic by modelling the evolution of the carbonate compensation depth (CCD), defined as the water depth where carbonate supply from the surface equals its dissolution at depth. This results in a lack of carbonate sediments below the CCD. Except for the eastern equatorial region, the CCD is poorly constrained or unknown in other regions of the Pacific. Given the regional and latitudinal variations in oceanographic parameters affecting carbonate sedimentation (e.g., water chemistry, surface productivity) across the Pacific basin, the Cenozoic CCD is modelled for six regions of the western and eastern North Pacific, western tropical Pacific, eastern equatorial Pacific, and western and eastern South Pacific. We utilize 110 deep-sea drill sites from DSDP, ODP and IODP expeditions to reconstruct the paleo-water depth through time at each location using pyBacktrack software. We carry out a linear reduced major-axis regression of the carbonate accumulation rate (CAR) versus paleo-water depth to compute the CCD in 0.5 My time intervals, incorporating dynamic topography and eustatic sea-level in our computations. We find that the CCD has fluctuated over the Cenozoic by ~1–1.2 km and shows distinct variabilities within the six regions of the Pacific. For example, a relatively shallow CCD (~2.8–4 km) across the western North and eastern South Pacific versus a deep CCD (~4–4.7 km) in the eastern equatorial region, and highly fluctuating western tropical CCD over the late Cenozoic, suggest substantial latitude-longitude control on the carbonate flux. The results indicate that the total carbonate carbon flux is primarily dominated by the eastern equatorial region between the early Oligocene and the middle Miocene (to maximum 55 Mt C/yr), due to enhanced nutrient concentration and higher primary productivity rate, as reflected by a deeper CCD. This contrasts with minimal carbonate carbon flux in the eastern and western North Pacific ranging between 0 and 5 Mt C/yr over the Cenozoic. Additionally, the Pacific total carbonate carbon mass has experienced a modest rise from the early Eocene (55 Ma) to the early Oligocene at ~34 Ma (from 3000 to 3500 Mt), followed by a gradual increase, reaching 4400 Mt at the present day. This recorded progressive rise since the early Oligocene coincides with the initiation of the Antarctic ice-sheet growth and intensified continental silicate weathering and alkalinity input to the oceans. Our new modelling of the CCD to assess the evolution of the Pacific deep-sea carbonate carbon reservoir during the Cenozoic improves constraints on deep carbon computations in the context of the global carbon cycle. 

How to cite: Dalvand, F., Dutkiewicz, A., Müller, R. D., M. Wright, N., and R. Mather, B.: Carbonate Compensation Depth and Carbonate Carbon Flux in the Pacific Ocean over the Cenozoic , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13298, https://doi.org/10.5194/egusphere-egu24-13298, 2024.

EGU24-13592 | Orals | OS3.2

Present-day global patterns of the ocean carbonate pump and the key drivers of CaCO3 dissolution 

Eun Young Kwon, John Dunne, and Kitack Lee

Calcifying organisms produce calcium carbonate (CaCO3) shells and skeletons. When they die, biogenic CaCO3 is vertically exported from the euphotic zone and dissolves throughout the water column and in sediments. The alkalinity generated from this process can influence the ocean’s buffer capacity for absorbing atmospheric CO2. However, the magnitude and driver of surface CaCO3 export and subsequent dissolution in the ocean’s interior – a process called the carbonate pump – are highly uncertain. We present key drivers of pelagic CaCO3 dissolution constrained by an inverse ocean biogeochemistry model combined with multiple observation databases. Within the upper twilight zone (shallower than 300 m), we found a tight association between particulate organic carbon remineralization rates and the CaCO3 dissolution efficiency (the fraction by which the surface exported CaCO3 dissolves), which is further supported by the observed particle flux and concentration data. In the deep ocean (deeper than 300 m), dissolution of CaCO3 is primarily driven by conventional thermodynamics of CaCO3 solubility with reduced fluxes of CaCO3 burial to marine sediments beneath more corrosive North Pacific deep waters. Shallow CaCO3 dissolution, shown to be sensitive to ocean export production, can increase the neutralizing capacity for respired CO2 by up to 6% in low-latitude thermocline waters. Without shallow dissolution, the ocean might lose 20% more CO2 to the atmosphere through the low-latitude upwelling regions – the world’s largest area of CO2 outgassing in the contemporary climate. Our work identifies a previously overlooked sensitivity of oceanic CO2 uptake to the biological pump. We suggest that Earth system models need to include the respiration driven CaCO3 dissolution processes for a better projection of future oceanic carbon sink.

How to cite: Kwon, E. Y., Dunne, J., and Lee, K.: Present-day global patterns of the ocean carbonate pump and the key drivers of CaCO3 dissolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13592, https://doi.org/10.5194/egusphere-egu24-13592, 2024.

EGU24-13608 | ECS | Orals | OS3.2 | Highlight

Ocean chemistry archived in modern evaporites: implications for robust seawater and CO2 reconstructions from Earth’s past 

Hana Jurikova, Robert Bodnar, Oscar Branson, Matthew Dumont, David Evans, Fernando Gázquez, Yana Kirichenko, Boaz Lazar, Mao-Chang Liang, Tim Lowenstein, Eszter Sendula, Claudia Voigt, Chen Xu, Xinyuan Zheng, and James Rae

The chemical history of seawater provides key information on Earth’s geologic processes and is fundamental for robust CO2 reconstructions. The knowledge of the secular evolution of the oceanic boron isotope budget is particularly important for CO2 reconstruction from boron isotopes. The boron isotope composition of seawater (δ11Bsw) is homogeneous, but varies on multi-million year time scales, given its residence time of approximately 10 million years. To date, the secular evolution of the oceanic boron isotope budget has been difficult to constrain, posing a major uncertainty for boron-based pH and CO2 reconstructions from Earth’s geologic past and critically limiting our understanding of the global biogeochemical cycling of this important element through time. Evaporitic minerals bearing fluid inclusions – and halites in particular – have provided important insights on past variations in major and minor ion composition, and present a highly appealing archive for reconstructing δ11Bsw (as well as other isotopic systems) given their direct origin from seawater. However, the interpretation of their signatures is not straightforward due to the possibility of fractionation during evaporation, crystallisation, and local biogeochemical interactions. Here we present data illuminating the evolution of boron isotopes and various other elements during evaporite formation from laboratory experiments and natural modern evaporitic settings across the globe, accompanied by new analytical developments for high-precision single fluid inclusion measurement using laser ablation. These data enable us to critically evaluate the evaporite archive, paving an avenue to robust seawater and CO2 reconstructions from Earth’s geological past.

How to cite: Jurikova, H., Bodnar, R., Branson, O., Dumont, M., Evans, D., Gázquez, F., Kirichenko, Y., Lazar, B., Liang, M.-C., Lowenstein, T., Sendula, E., Voigt, C., Xu, C., Zheng, X., and Rae, J.: Ocean chemistry archived in modern evaporites: implications for robust seawater and CO2 reconstructions from Earth’s past, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13608, https://doi.org/10.5194/egusphere-egu24-13608, 2024.

Secular variations in the major ion chemistry and isotopic composition of seawater on multimillion-year time scales over the Phanerozoic are well documented, but the causes of these changes are debated. δ7Li and 87Sr/86Sr are widely utilized to interpret the driving mechanisms of secular changes in seawater chemistry, the tectonic history of the Earth and the link between paleo-ocean chemistry and the carbon cycle. These interpretations and models, however, are based on (1) few quantitative data on strontium concentration [Sr]SW in seawater calculated from the Sr/Ca ratios of marine carbonates and (2) the assumption that the Li concentration [Li]sw of seawater has been similar to modern [Li]sw. But those assumptions, if inaccurate, could undermine the validity of modeling results. The marine strontium and lithium cycles through time could be better reconstructed using coupled marine records of [Sr]SW, 87Sr/86Sr, [Li]sw and δ7Li. [Sr]SW and [Li]sw in ancient seawater would be particularly useful for examining which global processes, continental weathering or global volcanicity at seafloor hydrothermal systems and subduction zones, exerted the dominant control on the changes in seawater chemistry. Recent analytical advances using combined cryo-SEM-EDS and laser ablation ICP-MS now allow quantitative measurement of [Sr]FI and [Li]FI in fluid inclusions in halite. [Sr]SW and [Li]sw, reconstructed from chemical analyses of >1,000 fluid inclusions in more than 100 halite samples with marine 87Sr/86Sr values, varied seven-ten-fold and oscillated twice between high- and low-Sr and Li concentrations over the past 550 million years, in rhythm with Ca-rich and SO4-poor paleoseawater intervals, calcite-aragonite seas, supercontinent breakup, dispersal, and assembly cycles, greenhouse–icehouse climates, and modeled atmospheric pCO2. These data enable us to better constrain the Sr and Li cycle, and offer new insights into geochemical modeling of Phanerozoic seawater chemistry using multiple isotope systems and seawater concentrations. 

How to cite: Weldeghebriel, M., Lowenstein, T., and Higgins, J.: Variability in strontium and lithium composition of ancient seawater from fluid inclusions in halite—implications for reconstructing drivers of seawater secular variability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13908, https://doi.org/10.5194/egusphere-egu24-13908, 2024.

EGU24-16877 | ECS | Orals | OS3.2

Impacts of dynamically simulated biogenic particles and iron on the marine carbon cycle 

Markus Adloff, Ashley Dinauer, Charlotte Laufkötter, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, and Joos Fortunat

We present a novel mechanistic representation of both organic and inorganic marine particles within the Bern3D Earth system model of intermediate complexity, which is based on the columnar particle flux model MSPACMAM. This new approach moves away from the assumption of globally and temporally invariant sinking profiles. Instead, the new scheme calculates sinking speeds and remineralisation and dissolution rates based on local temperature, density, and seawater chemistry. When combined with an improved representation of dynamic iron release and scavenging, this scheme introduces new dynamic feedbacks in the response of the biological pump to climate and circulation changes in the Bern3D model. Particle remineralisation and dissolution rates are now functions of temperature, oxygenation, saturation state, and sinking speed. The sinking rate is in turn modulated by changes in export production (amount and composition) as well as the viscosity of seawater. In addition to light and macronutrients, export production is affected by iron availability, which is depending on the rate of iron removal through scavenging and iron release from decaying particles and sediments, both processes that depend on organic particle fluxes and local oxygen concentrations. We demonstrate the non-linear interactions between these new dependencies in transient and steady-state simulations of various climatic boundary conditions. The newly introduced particle concentrations sensitive to changes in temperature and density result in shallower carbonate dissolution and deeper organic particle remineralisation in the Southern Ocean under full glacial conditions. In idealized scenarios of anthropogenic climate change, there is a smaller decline of export production but faster oxygen depletion than with the old static particle decay scheme. In addition, organic particle fluxes affect sedimentary iron release, which can lead to a positive feedback on export production if the released iron reaches the surface ocean.

How to cite: Adloff, M., Dinauer, A., Laufkötter, C., Pöppelmeier, F., Jeltsch-Thömmes, A., and Fortunat, J.: Impacts of dynamically simulated biogenic particles and iron on the marine carbon cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16877, https://doi.org/10.5194/egusphere-egu24-16877, 2024.

EGU24-16921 | Orals | OS3.2

Geochemical characterization of Mediterranean Outflow Waters in the modern ocean: Nd isotopes, carbon cycle and new export constraints 

Leopoldo D. Pena, Sara Campderrós, Ester García-Solsona, Eduardo Paredes-Paredes, Jaime Frigola, César Nicolás Rodríguez-Díaz, Arturo Lucas, Eva Calvo, Carles Pelejero, and Isabel Cacho

The North Atlantic Ocean plays a critical role in the global circulation system, regulating the penetration of surface waters into the deep ocean, but also in key ocean biochemical cycles (e.g. carbon, oxygen, nutrients). Meridional heat and salt transport (i.e. buoyancy) drive the formation of different water masses and their circulation pathways. A relatively unknown but important element controlling the net meridional export of heat, salt and other chemical species into the North Atlantic is the Mediterranean Outflow Water (MOW): the salt injector. In this work, we present the first high resolution systematic study of traditional (T, S, Nutrients) and novel (Nd isotopes, alkalinity, pH) geochemical parameters of MOW waters from its source area at the Strait of Gibraltar up to the northern Iberian margin (Cantabric Sea). During the TRANSMOW cruise in spring 2021, over 500 seawater samples were collected along the main MOW pathway following its northward flow. A comprehensive suite of geochemical parameters including εNd, alkalinity, pH and preformed nutrients were analyzed for these samples. We show that MOW can be ‘traced’ unequivocally using εNd as a conservative tracer, a feature that opens a new set of possibilities to better estimate the contribution of MOW export to higher latitudes in the North Atlantic Ocean. Other parameters directly linked to the carbon cycle (alkalinity and pH) are also controlling the distinctive chemical properties of the Mediterranean waters.. One of the key advantages of these geochemical tracers is that they allow to better quantify export and mixing rates of MOW with North Atlantic waters. Using statistical tools such as the Optimum Multi-Parameter Analysis (OMPA) on an array of conservative tracers we have quantified mixing rates and exports between different water masses. These results will be fundamental to better constrain paleoreconstructions in the sedimentary record using different proxies such as Nd and B isotopes (for water mass distribution and pH), B/Ca ratios (for seawater carbonate ion saturation) and even new experimental proxies such as Na/Ca (for salinity).

How to cite: Pena, L. D., Campderrós, S., García-Solsona, E., Paredes-Paredes, E., Frigola, J., Rodríguez-Díaz, C. N., Lucas, A., Calvo, E., Pelejero, C., and Cacho, I.: Geochemical characterization of Mediterranean Outflow Waters in the modern ocean: Nd isotopes, carbon cycle and new export constraints, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16921, https://doi.org/10.5194/egusphere-egu24-16921, 2024.

EGU24-18309 | ECS | Orals | OS3.2

Examining the utility of barium isotopes as a tracer of large-scale seafloor methane venting 

Ethan Petrou, Luke Bridgestock, Gideon M. Henderson, Yu-Te Hsieh, Germain Bayon, and Nolwenn Lemaitre

Global warming has the potential to release large quantities of methane (CH4) from marine sediments, representing a positive carbon cycle-climate feedback [1]. Unambiguous evidence of this feedback in the geological record will improve understanding of the potential risk it poses for exacerbating anthropogenic global warming. For example, climate driven sedimentary CH4 release is one of the hypothesized mechanisms for the onset of the Paleocene-Eocene Thermal Maximum (PETM) [2]. Increased sedimentary barium (Ba) burial rates have been interpreted as evidence of this mechanism [2,3], but these records are also sensitive to other processes [4]. Stable Ba isotope variations are a new geochemical tool that may improve interpretations of such records, potentially leading to clearer geological insights into the significance of this carbon cycle-climate feedback.

This study aims to determine (1) the flux and isotope composition of Ba across the sediment-water interface associated with seafloor CH4 venting and (2) the significance of these fluxes for the marine Ba inventory. To achieve this, Ba concentration and isotope data is presented for seawater samples at different altitudes above the seafloor (1m to 60m) collected across the Regab pockmark, a methane cold seep offshore Congo. Samples were collected with a remotely operated vehicle, providing a high resolution of sample collection within the benthic boundary layer, spanning areas of varying CH4 venting fluxes.

The measured Ba isotope values from all sites possess δ138/134Ba values +0.20 to +0.40 ‰ and [Ba] values 80.0 – 90.6 nmol kg-1, which are typical of ambient seawater from this depth range. Furthermore, no difference in dissolved Ba isotopes or Ba concentrations with altitude at each location is observed and there is no significant difference in seawater [Ba] and Ba isotope composition between locations featuring different dissolved seawater CH4 concentrations.

These results are interpreted to show that there is no resolvable difference in the [Ba] vs. δ138/134Ba relationship over the pockmark, and any Ba fluxes are too small to resolve in a circulating water column. This likely reflects the quantitative removal of pore water Ba by barite precipitation within the upper sediments, preventing significant Ba release to the water column.

The findings indicate CH4 seeps do not seem to significantly impact either the dissolved Ba concentration or isotope composition of the ocean, and consequently makes the use of sedimentary Ba concentration and isotope records as a tracer of past CH4 release events questionable. These insights suggest caution should be held when developing Ba isotopes as a novel tracer of past large-scale seafloor methane release i.e. PETM sediments. The study also provides insights on the influence of methane seep environments on Ba isotopes and the factors governing the stable isotope distribution of Ba in both modern and ancient sediments and oceans.

 

Reference:

[1] James et al., (2017), Limnology and Oceanography, 61, S283-S299

[2] Dickens et al., (2003), GSA Special Paper, 369, 11-23

[3] Frieling et al., (2019), Palaeoceanography and paleoclimatology, 34, 546-566

[4] Bridgestock et al., (2019), Earth and Planetary Science Letters, 510, 53-63

How to cite: Petrou, E., Bridgestock, L., Henderson, G. M., Hsieh, Y.-T., Bayon, G., and Lemaitre, N.: Examining the utility of barium isotopes as a tracer of large-scale seafloor methane venting, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18309, https://doi.org/10.5194/egusphere-egu24-18309, 2024.

EGU24-18479 | ECS | Posters on site | OS3.2

Developing machine learning algorithms to quantify carbon export fluxes in the ocean 

Beatriz González-González, María Villa-Alfageme, Unai Abascal-Ruiz, and Santiago-José Hurtado-Bermúdez

Quantifying the ocean carbon export and sequestration is essential to understand not only the marine carbon cycle but also the impact of the biological pump (BP) on global carbon cycle. The BP includes the different mechanisms by which atmospheric carbon is transferred from the surface to the deep ocean in a process started by the carbon synthetization of phytoplankton and followed by the formation and sinking of the marine snow, enabling the storage of carbon for long periods of time. Particulate organic carbon (POC) downward flux is a key and necessary parameter to characterize the BP and the ocean carbon cycle models.

In order to estimate POC flux, radioactive pairs (238U-234Th or 210Pb-210Po) disequilibrium and sediment traps are robust and accurate methods; however, they generally present low spatial-temporal resolution. In situ optical observations have shown a big potential to generate a wide database of POC fluxes.

Artificial intelligence (AI) and machine learning (ML) algorithms have already shown their potential in the last years to improve the estimations of oceanic POC concentration. It can be obtained as a satellite-derived product using colour remote sensing data, as POC is correlated with optical properties and water components (suspended particulate matter and chlorophyll-a). In contrast, ML have just only recently started to be used to evaluate POC export fluxes, partly because the lack of consistent and extensive datasets combining POC fluxes and ancillary parameters.

Here, we review the state of art of the use of ML techniques for POC concentration predictions as the cornerstone for estimations of POC export fluxes. The potential of ML methodologies to generate global reconstructions of particle fluxes in the ocean, using the current available POC flux databases, will be discussed and described. We will finally include general guidelines to analyse POC export evaluations using ML and comprehensive databases.

How to cite: González-González, B., Villa-Alfageme, M., Abascal-Ruiz, U., and Hurtado-Bermúdez, S.-J.: Developing machine learning algorithms to quantify carbon export fluxes in the ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18479, https://doi.org/10.5194/egusphere-egu24-18479, 2024.

EGU24-19416 | ECS | Posters on site | OS3.2

Projections and drivers of future changes in biological pump as inferred from apparent oxygen utilizations  

Damien Couespel, Jerry Tjiputra, Siv Kari Lauvset, and Nadine Goris

The biological carbon pump (BCP) stores a large quantity of carbon in the deep ocean and is a major contributor to the surface to depth gradient in dissolved inorganic carbon. Without the BCP, the atmospheric CO2 concentration would be higher by about 200 ppm. Thus, the BCP is a key component of the global carbon cycle, and yet its future evolution is highly uncertain. In model simulations, changes in the BCP are often estimated using the Apparent Oxygen Utilisation (AOU) that measures the difference between the in-situ oxygen content and the saturated oxygen content. With a changing climate, AOU can vary because of changes in ocean circulation or changes in remineralization. Here, we combine AOU with water mass ideal age to take apart changes in the BCP due to circulation change and to remineralization change. We will apply our analysis to a set of Earth System Models under different global warming scenarios. We will determine the sensitivity of these drivers to different level of climate change and investigate the spatio-temporal variability and magnitude of the projected BCP changes. This analysis may help to trace models uncertainty in future BCP change back to ocean physic and marine biogeochemistry. 

How to cite: Couespel, D., Tjiputra, J., Lauvset, S. K., and Goris, N.: Projections and drivers of future changes in biological pump as inferred from apparent oxygen utilizations , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19416, https://doi.org/10.5194/egusphere-egu24-19416, 2024.

EGU24-19534 | Orals | OS3.2

Foraminiferal biomineralization: mechanisms, calcite chemistry and evolution 

Lennart de Nooijer, Laura Pacho Sampedro, Daniel Francois, Szabina Karancz, and Gert-Jan Reichart

Many foraminifera form shells made of calcium carbonate. The elemental and isotopic composition of these shells varies greatly from inorganically precipitated calcites, suggesting a strong biological control on the process of CaCO3 precipitation. Moreover, this composition differs, sometimes greatly, between species, which may indicate that the controls on calcite chemistry is not fixed among all species. For paleoceanographic application, a better grip on this inter-species variability in calcite chemistry is necessary. Here we present the latest insights in environmental controls on element incorporation, biomineralization mechanisms and evolutionary patterns in biomineralization. An integrated understanding of foraminiferal calcification will also allow predicting their response to changes in marine inorganic carbon chemistry (e.g. ocean acidification), which in turn, is necessary to assess the contribution of changes in foraminiferal calcification rates to (surface) marine inorganic carbon cycling.

How to cite: de Nooijer, L., Pacho Sampedro, L., Francois, D., Karancz, S., and Reichart, G.-J.: Foraminiferal biomineralization: mechanisms, calcite chemistry and evolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19534, https://doi.org/10.5194/egusphere-egu24-19534, 2024.

EGU24-19571 | ECS | Orals | OS3.2

Sulfur incorporation in (foraminiferal) calcite 

Szabina Karancz, Joji Uchikawa, Lennart J. de Nooijer, Mariëtte Wolthers, Kyle Conner, Corinne Hite, Geert-Jan A. Brummer, Julie Lattaud, Negar Haghipour, Yair Rosenthal, Richard E. Zeebe, Shiv Sharma, and Gert-Jan Reichart

Sulfur over calcium ratio (S/Ca) in foraminiferal calcite has been suggested as a potential tool to reconstruct seawater carbonate ion concentration ([CO32-]). The approach of using sulfur incorporation as a proxy for the carbon system was based on benthic foraminiferal controlled growth experiments, which suggested that foraminifera incorporate more sulfur when there is less [CO32-] available in the seawater. With sulfate ([SO42-]) being proposed to be the dominant form in which sulfur is incorporated in the calcium carbonate of the foraminiferal shells, S/Ca would provide an independent parameter for the reconstruction of seawater inorganic carbon chemistry. To further explore the potential of this proxy, we used five planktonic foraminiferal species collected from the field. S/Ca values in planktonic foraminifera collected from core-top sediments that span a large range of growth conditions (temperature, salinity, [CO32-] and [HCO3-]) reveal an opposite trend with [CO32-] compared to the results from the benthic foraminifera culture experiments. Moreover, we found an additional effect of incorporation of Mg on S/Ca ratios, or a combined effect on both. Using the ratio of S to Mg overcomes this issue and S/Mg ratios correlate with [CO32-]. Still, these correlations are likely affected by multiple parameters and/or incorporation pathways other than only SO42- as suggested by our inorganic calcite growth experiments. Results of this study suggest a critical evaluation of the use of foraminiferal S/Ca, considering the aqueous species involved during uptake and potentially combining other elements that may share controls.

How to cite: Karancz, S., Uchikawa, J., de Nooijer, L. J., Wolthers, M., Conner, K., Hite, C., Brummer, G.-J. A., Lattaud, J., Haghipour, N., Rosenthal, Y., Zeebe, R. E., Sharma, S., and Reichart, G.-J.: Sulfur incorporation in (foraminiferal) calcite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19571, https://doi.org/10.5194/egusphere-egu24-19571, 2024.

EGU24-22422 | ECS | Posters on site | OS3.2

Temporal variations of sinking particulate organic radiocarbon in the deep Sargasso Sea 

Charlotte Schnepper, Rut Pedrosa-Pamies, Maureen Conte, Nicolas Gruber, Negar Haghipour, and Timothy Ian Eglinton

The imprint of bomb radiocarbon on sinking particulate organic carbon (PO¹⁴C) intercepted by sediment traps, together with flux and elemental data, provides information about the origin and dynamics of oceanic particles (Hwang et al., 2010). Of particular interest is the question of the degree to which sinking POC in the deep ocean stems from overlying primary production, i.e., vertical supply via the biological pump, versus other processes such as advection and subsequent aggregation of resuspended sedimentary carbon originating from continental margins and other distal sources (Conte et al., 2019). In this context, natural abundance variations in 14C serves as a useful tracer given contrasting signatures recently fixed and pre-aged carbon sources. To quantify the seasonal to inter-annual variability in sinking PO¹⁴C, we have analyzed sediment trap samples from the Oceanic Flux Program (OFP) in the Sargasso Sea, a deep ocean time-series which has examined the particle flux and its composition at 500, 1500 and 3200 m water depths since 1978.

Radiocarbon measurements of POC of all OFP samples spanning September 2012 to December 2015 reveal seasonal and subseasonal variations in sinking PO¹⁴C with an amplitude in Δ¹⁴C values of ca. 100 ‰. This variability in Δ¹⁴C values is inversely linearly correlated with the proportion of lithogenic material to POC (LM:POC; r2=4.2, p <0.01). This relationship suggests that POC with high Δ¹⁴C values and a low LM:POC ratio reflect the supply of particles that sink vertically via the biological pump. Conversely, lower Δ¹⁴C values and high LM:POC ratios indicate laterally transported materials originating from resuspended sediments containing pre-aged organic carbon. Significant deviations from the linear regression (p <0.01) correlate with δ13C values, indicating an increased state of POC remineralization that is independent of Δ¹⁴C variations attributable to particle provenance.  

Over the 3.3 year period of observation, POΔ¹⁴C decreased by ca. 26 %, exceeding the expected annual decline (~6 ‰) based on reconstructed surface DI14C. This decline potentially could be linked to different source(s) of laterally supplied aged organic carbon associated with lithogenic material and/or a shift in the POΔ¹⁴C of the overlying flux (e.g.  from reduction in particle sinking speeds, enhanced decomposition, increased incorporation of aged suspended particles and/or dissolved organic carbon into the sinking flux). On-going work extending the OFP time-series will examine these multiyear trends and assess potential variability in the balance between vertically exported and laterally supplied POC to the deep ocean flux in the deep Sargasso Sea, enabling a better understanding of the underlying processes which control POC dynamics. 

How to cite: Schnepper, C., Pedrosa-Pamies, R., Conte, M., Gruber, N., Haghipour, N., and Eglinton, T. I.: Temporal variations of sinking particulate organic radiocarbon in the deep Sargasso Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22422, https://doi.org/10.5194/egusphere-egu24-22422, 2024.

EGU24-508 | ECS | Posters on site | OS1.10

Interactions Between a Marine Heatwave and Tropical Cyclone Amphan in the Bay of Bengal in 2020 

Saurabh Rathore, Rishav Goyal, Babita Jangir, Caroline Ummenhofer, Ming Feng, and Mayank Mishra

Interactions are diagnosed between a marine heatwave (MHW) event and tropical super cyclone Amphan in the Bay of Bengal. In May 2020, an MHW developed in the Bay of Bengal driven by coupled ocean-atmosphere processes which included shoaling of the mixed layer depth due to reduced wind speed, increased net surface shortwave radiation flux into the ocean, increased upper ocean stratification, and increased sub-surface warming. Ocean temperature, rather than salinity, dominated the stratification that contributed to the MHW development and the subsurface ocean warming that also increased tropical cyclone heat potential. The presence of this strong MHW with sea surface temperature anomalies >2.5°C in the western Bay of Bengal coincided with the cyclone track and facilitated the rapid intensification of tropical cyclone Amphan to a super cyclone in just 24 h. This rapid intensification of a short-lived tropical cyclone, with a lifespan of 5 days over the ocean, is unprecedented in the Bay of Bengal during the pre-monsoon period (March-May). As the cyclone approached landfall in northern India, the wind-induced mixing deepened the mixed layer, cooled the ocean's surface, and reduced sub-surface warming in the bay, resulting in the demise of the MHW. This study provides new perspectives on the interactions between MHWs and tropical cyclones that could aid in improving the current understanding of compound extreme events that have severe socio-economic consequences in affected countries.

How to cite: Rathore, S., Goyal, R., Jangir, B., Ummenhofer, C., Feng, M., and Mishra, M.: Interactions Between a Marine Heatwave and Tropical Cyclone Amphan in the Bay of Bengal in 2020, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-508, https://doi.org/10.5194/egusphere-egu24-508, 2024.

EGU24-1252 | ECS | Posters on site | OS1.10

Future Projections of Marine Heatwaves in the Indian Ocean under Different Socioeconomic Pathways 

Dushantha Sandaruwan Jayarathna Wijendra Naidhelage, Wen Zhou, Matthew Collins, Oluwafemi E. Adeyeri, Xuan Wang, Erandani Lakshani Widana Arachchige, and Ni Zekai

Marine heatwaves (MHWs) are extended periods of abnormal warm sea surface temperature (SST) events that can have considerable impact on the marine ecosystems and associated services. Despite recent developments in studying MHWs in the Indian Ocean, our understanding of their future occurrence remains limited. Hence, this study is crucial to expanding our understanding of future MHWs in the region. We use observational data from the Optimal Interpolated Sea Surface Temperature analysis (OISSTv2) and daily SST data from 14 models obtained from Coupled Model Intercomparison Project Phase 6 (CMIP6) to investigate the spatial and temporal characteristics of MHWs in the historical period (1982-2014) and future (2015-2100) under three shared socioeconomic pathways (SSPs, e.g., SSP126, SSP245, SSP585). During the historical period, more intense MHWs concentrated near the northern Arabian and Bay of Bengal region, with total MHW days of 20 ~ 25 days per year and mean intensity of 2 ~ 3 oC per year. The CMIP6 models overestimate the duration of MHWs while underestimating their intensity. Nevertheless, we employ the quantile delta mapping bias correction method to minimize these uncertainties in the CMIP6 multi model ensemble mean for a robust and reliable depiction of the future MHWs characteristics. We note accelerated positive trend in MHW metrics, including total days, and cumulative intensity, in the future compared to the historical period, resulting from global warming. Moreover, different emission scenarios exhibit different future MHWs characteristics. Specifically, the duration and mean intensity of MHWs are distinctly higher under SSP585 compare to other two scenarios, except for MHW frequency. Considering that we focused on a fixed baseline for MHW detection, we attribute the increase in MHWs duration to anthropogenic greenhouse gas emissions. Therefore, we emphasize the need for proactive measures to mitigate the impacts on future MHWs on marine ecosystems and associated services in the face of climate change.

 

How to cite: Wijendra Naidhelage, D. S. J., Zhou, W., Collins, M., E. Adeyeri, O., Wang, X., Widana Arachchige, E. L., and Zekai, N.: Future Projections of Marine Heatwaves in the Indian Ocean under Different Socioeconomic Pathways, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1252, https://doi.org/10.5194/egusphere-egu24-1252, 2024.

Heading into a potential El Niño in 2023/24, concern was high amongst Australian marine stakeholders regarding potential marine heatwave impacts on marine industries and systems in the coming summer. Targeted climate outlook briefings for the Great Barrier Reef and Western Australian coral reefs have been provided prior to and throughout the summer months by the Australian Bureau of Meteorology for the past 10-15 years, however in 2023 these were requested much earlier than usual. Also in 2023, national level seafood-focused briefings were requested by the fisheries sector for the first time, with various state and regional level meetings and information requests also occurring.

Subseasonal to seasonal forecast information played a critical role in these briefings, providing both the big picture in terms of climate drivers impacting Australian waters as well as regional information regarding sea surface temperatures around Australia. These forecast products are operationally produced by the Australian Bureau of Meteorology using the seasonal prediction system ACCESS-S. Clear communication of forecast probabilities and model skill was essential. New prototype marine heatwave forecasts were also presented to marine stakeholders, indicating where there was a high likelihood of marine heatwaves occurring in the upcoming season, together with likely severity. Demand for this new information on temperatures extremes was high and provided impetus for setting up coordinated briefings and response plans across sectors.

Forecasts can provide a 'preparation window' for marine stakeholders to implement proactive management strategies prior to high-risk conditions, noting however that not all industries have the same level of agility to respond. Subseasonal to seasonal forecast tools, that are useful, usable and used, provide valuable information to assist marine stakeholders in managing climate risk and vulnerability in a warming climate.

How to cite: Spillman, C., Hobday, A., Smith, G., and Hartog, J.: Building industry resilience through seasonal forecast briefings to Australian marine stakeholders heading into the 2023/24 summer, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1558, https://doi.org/10.5194/egusphere-egu24-1558, 2024.

EGU24-1779 | ECS | Posters on site | OS1.10

Assessing Marine Heatwave Variability in the Luzon Strait 

Rose Angeli Macagga and Po-Chun Hsu

The Luzon Strait, a 350-km wide channel located between Taiwan and the Philippines, connects the West Philippine Sea and the north Pacific Ocean. Multiple factors affect the circulation in the Luzon Strait, such as the Kuroshio Current, monsoon, and the West Philippine Sea circulation. Discrete periods of extreme ocean warming events, also known as marine heatwaves (MHWs), have been occurring longer and more frequently across the globe. Anomalous temperature events can cause drastic changes in the biogeochemical processes and trigger adverse effects on marine ecology in the surrounding areas. This study aims to understand the variation in MHWs in the study area (16-24°N, 115-126°E), focusing on the Luzon Strait, using a daily global 5-km sea surface temperature (SST) product from 1985 to 2022. Four points of known coral reef areas were also chosen to further assess the MHWs and their possible effects on marine ecology.  Six MHW indices were utilized to describe the frequency, duration, and intensity of MHW events. The highest frequency of 17 MHWs in a year occurred in 1998, while the longest duration per event of 144 days and the total duration in a year of 308 days were recorded in 2020 and 2021, respectively. The highest values for all three intensity parameters were recorded in 2021, with mean, maximum, and cumulative intensities reaching 2.62°C, 3.86°C, and 227.42°C-days, respectively. The spatial distribution of monthly SST and ocean current profile showed thermal areas and helped identify high-risk areas. Climate variations, such as El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), were also explored as physical drivers of MHW in the study area. It has been observed that most of the years featuring MHW events at the four coral reef points occurred during the La Niña phase of ENSO, in conjunction with the negative phase of PDO, including 1998, 2010, and from 2020 onwards. Additionally, from 2016 to 2019, MHWs were observed at the same points during the positive phase of PDO, in conjunction with El Niño, La Niña, or Neutral phases of ENSO.

How to cite: Macagga, R. A. and Hsu, P.-C.: Assessing Marine Heatwave Variability in the Luzon Strait, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1779, https://doi.org/10.5194/egusphere-egu24-1779, 2024.

EGU24-1883 | ECS | Orals | OS1.10

Extreme and compound ocean events are key drivers of projected low pelagic fish biomass  

Natacha Le Grix, William Cheung, Gabriel Reygondeau, Jakob Zscheischler, and Thomas Frölicher Frölicher

Ocean extreme events, such as marine heatwaves, can have harmful impacts on marine ecosystems. Understanding the risks posed by such extreme events is key to develop strategies to predict and mitigate their effects. However, the underlying ocean conditions driving severe impacts on marine ecosystems are complex and often unknown as risks to marine ecosystems arise not only from hazards but also from the interactions between hazards, exposure and vulnerability. Marine ecosystems may not be impacted by extreme events in single drivers but rather by the compounding effects of moderate ocean anomalies. Here, we employ an ensemble climate-impact modeling approach that combines a global marine fish model with output from a large ensemble simulation of an Earth system model, to identify the key ocean ecosystem drivers associated with the most severe impacts on the total biomass of 326 pelagic fish species. We show that low net primary productivity is the most influential driver of extremely low fish biomass over 68% of the ocean area considered by the model, especially in the subtropics and the mid-latitudes, followed by high temperature and low oxygen in the eastern equatorial Pacific and the high latitudes. Severe biomass loss is generally driven by extreme anomalies in at least one ocean ecosystem driver, except in the tropics, where a combination of moderate ocean anomalies is sufficient to drive extreme impacts. Single moderate anomalies never drive extremely low fish biomass. Compound events with either moderate or extreme ocean conditions are a necessary condition for extremely low fish biomass over 78% of the global ocean, and compound events with at least one extreme variable are a necessary condition over 61% of the global ocean. Overall, our model results highlight the crucial role of ex-treme and compound events in driving severe impacts on pelagic marine ecosystems.

How to cite: Le Grix, N., Cheung, W., Reygondeau, G., Zscheischler, J., and Frölicher, T. F.: Extreme and compound ocean events are key drivers of projected low pelagic fish biomass , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1883, https://doi.org/10.5194/egusphere-egu24-1883, 2024.

EGU24-1925 * | ECS | Posters on site | OS1.10 | Highlight

Drivers of Global Marine Heatwaves in a Warming World 

Ce Bian, Zhao Jing, and Lixin Wu

Global warming has exacerbated occurrence of extreme events, threatening the environment of human living. Marine heatwaves (MHWs) are prolonged extreme warm water events in the ocean, exerting devastating impacts on marine ecosystems. Comprehensive knowledge of physical processes controlling MHW life cycles is pivotal to improving MHW forecast capacity, yet it is still lacking. Here, we use a historical simulation from a global eddy-resolving climate model with an improved representation of MHWs, and innovatively show that heat flux convergence by oceanic mesoscale eddies acts as a dominant driver of MHW life cycles over most parts of the global ocean. In particular, the mesoscale eddies make an important contribution to growth and decay of MHWs, whose characteristic spatial scale is comparable or even larger than that of mesoscale eddies. Moreover, our results proved that features of global MHWs are scale-dependent. The primary drivers of MHWs shift from oceanic advection to atmospheric forcing as their spatial scale becomes larger. There is evident geographic heterogeneity in the transition scale between these oceanic and atmospheric-process dominated regimes. Our study reveals the crucial role of mesoscale eddies in controlling the global MHW life cycles and highlights that using eddy-resolving ocean models is essential for accurate MHW forecasts. Another contribution is we clarified the transition scale of global MHWs, which is essential for parameterization of MHWs forecasting in a warmer future. 

How to cite: Bian, C., Jing, Z., and Wu, L.: Drivers of Global Marine Heatwaves in a Warming World, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1925, https://doi.org/10.5194/egusphere-egu24-1925, 2024.

Under global warming, the frequency and intensity of marine heatwaves are increasing. However, the inhibition of atmospheric forcing marine heatwaves (AMHW) on upwelling and its impact on marine ecosystems remain poorly understood. To address this issue, the satellite sea surface temperature and reanalysis data during 1998-2021 were analyzed in three distinct upwelling systems, northwestern South China Sea. The results showed that the coastal tide-induced upwelling in the west (W) of Hainan Island is primarily suppressed by enhanced stratification during the AMHW events, since the coastal tide-induced upwelling is insensitive to wind weakening. Contrarily, the wind-driven upwelling in the east (E) and northeast (NE) of Hainan Island are jointly regulated by wind and stratification during the AMHW. Specifically, the AMHW events have a stronger inhibitory effect in the upwelling and phytoplankton growth in the NE than that in the E. The causes could be the followings: (1) the background upwelling in the NE region is stronger than in the E, thus the NE region has a higher susceptibility to the wind weakening; (2) the wind-driven upwelling begins to be suppressed by AMHW when the high-pressure system is aligned with the coastline of the upwelling. In the NE region, the location of the high-pressure center during the occurrence of AMHW is positioned in closer proximity to the upwelling area. Moreover, the inhibitory effect of wind weakening and stratification enhancing on upwelling changes with the development of the AMHW. Before and during the mature phase of AMHW, stratification and wind jointly inhibit upwelling and phytoplankton growth, while it shifts to stratification dominated (>85%) during the decline phase. This study suggests that MHW has a great impact on the upwelling ecosystem, especially the wind-driven upwelling, which should be given high attention under global warming (with increasing MHW events in the future).

How to cite: Liu, S., Lao, Q., and Chen, F.: Impacts of Marine Heatwave Events on Three Distinct Upwelling Systems and its Implication for Marine Ecosystems in the Northern South China Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1942, https://doi.org/10.5194/egusphere-egu24-1942, 2024.

EGU24-1948 | ECS | Posters on site | OS1.10

Frequent marine heatwaves hidden below the surface of the global ocean 

Di Sun, Furong Li, Zhao Jing, Shijian Hu, and Bohai Zhang

Marine heatwaves are extreme warm water events that can cause devastating impacts on ecosystems and have complex socio-economic ramifcations. Surface signals and drivers of marine heatwaves have been extensively investigated based on satellite observations, whereas their vertical structure in the global ocean remains unclear. In this study, we identify marine heatwave events in the epipelagic zone (0–200 m) using a four-dimensional spatio-temporal framework based on three ocean reanalysis datasets. We find that only about half of the marine heatwave events have continuous surface signals during their life cycles and around one-third always reside in the subsurface ocean without any imprint on sea surface temperature. The annual number of these subsurface marine heatwave events shows a signifcant increase in response to subsurface mean-state warming during the past three decades. Our findings reveal the limitation of identifying marine heatwaves solely based on the sea surface temperature and underscore the necessity of subsurface observations for monitoring marine heatwaves.

How to cite: Sun, D., Li, F., Jing, Z., Hu, S., and Zhang, B.: Frequent marine heatwaves hidden below the surface of the global ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1948, https://doi.org/10.5194/egusphere-egu24-1948, 2024.

EGU24-2617 | ECS | Orals | OS1.10

Underestimated Arctic warming and potential ecosystem impact due to unresolved marine heatwaves 

Ruijian Gou, Yaocheng Deng, Klara Wolf, Yingzhe Cui, Clara Hoppe, Lixin Wu, Qi Shu, and Gerrit Lohmann

The Arctic is warming faster than any other regions, a phenomenon known as Arctic amplification, which has far-reaching effects for global climate. Modelled historical simulations show a significant underestimation of the amplification and the future projection exhibits non-negligible model spread. Here we show that in a future warming scenario, the warming in the Arctic is generally larger when comparing high-resolution climate models with low-resolution versions. We attribute the different extent of Arctic warming to Arctic marine heatwaves (MHWs), known as episodes of extreme ocean surface warming. The resolution of the MHWs, which are stronger and more realistic in the high-resolution model versions, increases the melting of sea ice and thus the absorption of solar radiation by the ocean in the short term, thereby reinforcing the long-term trend of Arctic warming. We point out that the amplification of Arctic warming is underestimated by the current generation of climate models, which generally have low resolution, thereby underestimating Arctic marine heat waves. In addition, Arctic heatwaves cause extreme temperature fluctuations associated with increased stratification. This poses major challenges to Arctic ecosystems and has a negative impact through direct physiological temperature effects and indirectly through nutrient supply and taxonomic shifts. We conclude that the eddy- and storm-resolving models provide a new perspective on how the Earth system responds to past and future climate and environmental extremes.

How to cite: Gou, R., Deng, Y., Wolf, K., Cui, Y., Hoppe, C., Wu, L., Shu, Q., and Lohmann, G.: Underestimated Arctic warming and potential ecosystem impact due to unresolved marine heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2617, https://doi.org/10.5194/egusphere-egu24-2617, 2024.

EGU24-2720 | ECS | Orals | OS1.10

Significant reduction of potential exposure to extreme marine heatwaves by achieving carbon neutrality 

Seok-Geun Oh, Seok-Woo Son, Sujong Jeong, and Yang-Ki Cho

Marine heatwave (MHW), a prolonged period of anomalously warm seawater, has a catastrophic repercussion on marine ecosystems. With global warming, MHWs have become increasingly frequent, intense, and prolonged. To avoid irreversible damages from such extreme events, net-zero human-caused carbon emissions by 2050s, called carbon neutrality, were proposed. Here, we evaluate the impact of carbon neutrality on MHWs in the late 21st century using multi-model projections from the Coupled Model Intercomparison Project Phase 6 (CMIP6) Shared Socioeconomic Pathway (SSP)1-1.9 and SSP3-7.0 scenarios. It is found that if the current “regional rivalry” over carbon emissions policy continues into this century (i.e., SSP3-7.0), the MHWs in the late 21st century will become stronger over 1°C and longer lasting over 365 days than historical ones, especially in the western boundary current and equatorial current regions. Approximately 68% of the global ocean will be exposed to permanent MHWs, regionally 93% in the Indian Ocean, 76% in the Pacific Ocean, 68% in the Atlantic Ocean, 65% in the Coastal Ocean, and 48% in the Southern Ocean. Such extreme MHWs can be significantly reduced by achieving carbon neutrality (i.e., SSP1-1.9). In particular, the proportion of exposure to permanent MHWs can be reduced to as low as 0.02 to 0.07%, depending on the region. This result underscores the critical importance of ongoing efforts to achieve net-zero carbon emissions to reduce the potential ecological risks induced by extreme MHW exposure.

How to cite: Oh, S.-G., Son, S.-W., Jeong, S., and Cho, Y.-K.: Significant reduction of potential exposure to extreme marine heatwaves by achieving carbon neutrality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2720, https://doi.org/10.5194/egusphere-egu24-2720, 2024.

Extreme and persistent marine heatwaves (MHWs) occur frequently in the Northeast Pacific, with huge impacts on climate, ecosystem and socio-economic. This study investigates the atmospheric circulations associated with the 33 MHWs since 1951 in observations. The composite results reveal that the MHWs in the Northeast Pacific can be triggered by a couple of anticyclonic and cyclonic anomalies, i.e., the anticyclonic anomaly to the northeast of the MHW region and cyclonic anomaly to the southwest.  This atmospheric circulation pattern can be detected as the dominant mode through EOF analysis on 500-hPa geopotential height anomalies over the Northeast Pacific-North America region, following the Pacific–North American teleconnection. These observational results are verified by using the outputs of 34 models in the historical simulation from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Further diagnosis of the heat budget is performed, in attempt to illustrate the processes of MHW formation and maintenance.

How to cite: Tang, C. and Lu, R.: The atmospheric circulation anomalies associated with the formation of marine heatwaves in the Northeast Pacific, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3459, https://doi.org/10.5194/egusphere-egu24-3459, 2024.

EGU24-4034 | ECS | Orals | OS1.10

Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean 

Marylou Athanase, Antonio Sánchez-Benítez, Helge Goessling, Felix Pithan, and Thomas Jung

Marine heatwaves are expected to become more frequent, intense, and longer-lasting in a warming world. However, it remains unclear whether feedback processes could amplify or dampen extreme ocean temperatures. Here we impose the observed atmospheric flow in coupled climate simulations to determine how the record-breaking 2019 Northeast Pacific marine heatwave would have unfolded in preindustrial times, and how it could unravel in a +4°C warmer world compared to present-day conditions. We find that air-sea interactions, involving reductions in clouds and ocean mixed-layer depth and air advection from fast-warming subpolar regions, modulate warming rates within the marine heatwave. In a +4°C warmer climate, global oceans are +1.9°C warmer than present levels, and regional mean warming in the Northeast Pacific can reach +2.3–2.7 ± 0.25°C. Our identified feedback processes are projected to further amplify the intensity and spatial extent of analogous Northeast Pacific summer marine heatwaves beyond those thresholds, with a warming reaching +2.9 ± 0.15°C above present levels. Such an event-specific amplification would place even greater stress on marine ecosystems and fisheries.

How to cite: Athanase, M., Sánchez-Benítez, A., Goessling, H., Pithan, F., and Jung, T.: Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4034, https://doi.org/10.5194/egusphere-egu24-4034, 2024.

EGU24-4862 | ECS | Posters on site | OS1.10

Depth-dependent coastal Marine Heatwaves: a case study in Shark Bay, Western Australia 

Yuwei Hu and Chunzai Wang

Marine Heatwaves (MHWs) are commonly defined as extreme warm weather or climate events and typically have large impacts on the local ecosystems and economy. Coastal seas that connect the open ocean and land are highly impacted by local terrestrial weather and climate systems. Distinct geographical features (e.g. water depth and bottom topography) of each coastal sea may locally contribute to the spatiotemporal pattern and associated drivers of coastal MHWs. To unravel this undetermined contribution, we choose the Shark Bay (Western Australia) as a case study domain. It is a semi-enclosed bay adjacent to the warm Leeuwin Current with in-bay water depth varying around 0 to 25m and out-bay depth from 25m down to 200m in the selected study area. Thus, the contribution of air-sea heat flux, advection, and other oceanic processes can be quantitatively evaluated by applying the mixed layer heat budget analysis based on a 0.1-degree model reanalysis dataset, Bluelink ReANalysis (BRAN) 2020. Additionally, three high-resolution satellite sea surface temperature (SST) products are used to identify, visualize, and analyze the spatiotemporal patterns of MHWs in Shark Bay. The spatial maps of MHW mean duration, mean cumulative intensity and event frequency exhibit a highly consistent pattern with large differences between metrics in shallow and deep areas. Mixed layer heat budget analysis within a month before each corresponding peak day of three selected major events, to some extent, confirms that this distinct spatial pattern is partially due to the constrained contribution of the entrainment processes below the mixed layer in shallow areas. The entrainment processes that are closely related to the mixed layer depth change may warm the surface layer during mixed layer shoaling by excluding less warm water below the mixed layer. This is not the case in very shallow regions. Interestingly, slightly different from what was previously assumed, the in-bay areas, instead of being warmed by the horizontal advection when the out-bay areas are warmed by the anomalous warming Leeuwin current, are slightly cooled by a constrained net cooling effect. We found that coastal MHW events in shallow areas are typically frequent but less intense if they occur independently under the typical net cooling effects of horizontal advection. Whereas coastal MHWs in deep areas are less frequent, but more intense and prolonged when concurrent with anomalous warm water advection. The shallowest in-bay areas that are not included in the heat budget analysis are outside the influence area of the net cooling effects. Thus, these areas may be intrinsically embedded with frequently fast warming effects of the net heat flux. By using the 90th percentile definition, these frequent warming are defined as MHWs, but the regularity of historical events may not lead to catastrophic impacts regarding the shorter duration and smaller cumulative intensity of an individual event. We then suggest that a global assessment of the net cooling effects of horizontal advection is necessary, to identify qualified coastal areas associated with higher resistance to sudden and prolonged ocean warming. 

How to cite: Hu, Y. and Wang, C.: Depth-dependent coastal Marine Heatwaves: a case study in Shark Bay, Western Australia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4862, https://doi.org/10.5194/egusphere-egu24-4862, 2024.

EGU24-5083 | ECS | Orals | OS1.10

Long-term warming and interannual variability contributions’ to marine heatwaves in the Mediterranean 

Amelie Simon, Carlos Pires, Thomas L. Frölicher, and Ana Russo

In the past 40 years, marine heatwaves (MHWs) have experienced a worldwide increase in duration, intensity, frequency and spatial extent. This trend has been particularly evident in the Mediterranean, where exceptional events were observed during the summers of 2022, 2018 and 2003. This study proposes a twofold analysis of MHWs in the Mediterranean, focusing on their statistical characteristics and physical causes. A satellite dataset is utilized to analyze MHWs via an index, called activity, which aggregates the occurrence, duration, intensity and spatial extent of events. Our results show that the trend toward more active summers for MHWs is strongest in the western Mediterranean basin and long-term warming is the main driver in the whole Mediterranean basin. We also show that in the western and Adriatic Mediterranean region, the increase of SST variability contributes about a third to the MHW activity long-term trend whereas in the central, eastern and Aegean basins, the variability of SST mostly acts to diminish this trend. Through principal component analysis (PCA) of MHW activity, we found that the three most severe summer MHW events in the Mediterranean occur at the same location where the overall trend is highest. Interannual variability increased MHW activity in 2022 around the Balearic Sea, in 2018 in the eastern basins and in 2003 in the central basins. A joint PCA revealed that the long-term trend in MHW activity co-varies with a positive geopotential height anomaly over the Mediterranean, which is consistent with the generation of atmospheric-driven MHWs and which, at the North Atlantic scale, resembles the positive phase of the summer East Atlantic. The additional interannual variability contribution to these three severe summers was associated with western warming and projected onto the positive phase of the summer North Atlantic Oscillation. The increase in MHW over the last 40 years is also associated in the western, central and Adriatic regions with increased downward short-wave radiation and in the eastern Mediterranean with decreased upward long-wave radiation. Increased upward latent heat flux partly compensated for the MHW long-term increase over the whole Mediterranean basin. The interannual variability of MHW activity is related in the western, central and Adriatic basins to increased downward sensible and decreased upward latent heat flux possibly due to warm and humid air intrusion.

 

A.S., A.R. and C.P. thank Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES http://doi.org/10.54499/JPIOCEANS/0001/2019 (ROADMAP), T.L.F. thank the Swiss National Science Foundation (Grant P00P2_198897), A.R and C.P thanks the national funds (PIDDAC) – UIDB/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020). A.S. was supported by ANR and France 2030 through the project CLIMArcTIC (grant ANR-22-POCE-0005). A.R. was supported by FCT through https://doi.org/10.54499/2022.01167.CEECIND/CP1722/CT0006.

How to cite: Simon, A., Pires, C., Frölicher, T. L., and Russo, A.: Long-term warming and interannual variability contributions’ to marine heatwaves in the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5083, https://doi.org/10.5194/egusphere-egu24-5083, 2024.

EGU24-5286 | ECS | Posters virtual | OS1.10

Marine Heat Waves long-term trend assessment in the Northeast Atlantic region.  

Lluís Castrillo-Acuña, Silvia Martínez-Martínez, and Álvaro de Pascual-Collar

Marine heat waves (MHWs) may be understood as prolonged periods of anomalously high sea surface temperatures (SST). These events are associated to impacts on marine ecosystems such as coral bleaching, mass mortality of marine invertebrates due to heat stress, rapid species’ migrations, fishery closures or quota changes, among others.

The Iberia-Biscay-Ireland (IBI) region, covering from the Canary basin to the Celtic Sea, demonstrated for the year 2022 peak anomaly values of 15 MHWs events, 128 days of mean durations, and 261 total days of MHW according to a reference period from 1982 to 2022 (Castrillo-Acuña et al. 2024). The result of almost 300 days of MHW in some areas for the 2022 suggest that the current methodology may not be complete, as MHW are expected to be an extreme phenomenon. Global assessments such us Oliver et al. (2018) and Schlegel et al. (2019) had demonstrated the correlation between long term mean SST trends and some MHWs properties, but may this influence be strong enough to invalidate the results?

In this study we present a sensitive experiment of the affection of long term mean trends of SST and MHW detection by using different detrending methods. Also considering different refence periods.  It is performed in the IBI domain which covers upwellings, straits, bays, continental shelfs, open waters, etc. The study aims to investigate how the presence of medium to long-term trends may condition the MHW properties in different key oceanographic areas. In this way, we can differentiate regions where the variability of MHW is not conditioned by SST trends from those where it is and its magnitude.

 

 

 

 

 

 

 

 

Castrillo-Acuña, L., Alonso-Valle, A., de Pascual-Collar, A.: Characterization of Marine Heat Waves in the IBI Region in 2022. Manuscript submitted to the 8th edition of the Copernicus Ocean State Report (OSR8), Copernicus Publications, State Planet, 2024.

 

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., and Wernberg, T.: Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-03732-9, 2018.

 

Schlegel, R. W., Oliver, E. C. J., Hobday, A. J., & Smit, A. J. : Detecting Marine Heatwaves With Sub Optimal Data. Frontiers in Marine Science, 6.    https://www.frontiersin.org/articles/10.3389/fmars.2019.00737, 2019.

How to cite: Castrillo-Acuña, L., Martínez-Martínez, S., and de Pascual-Collar, Á.: Marine Heat Waves long-term trend assessment in the Northeast Atlantic region. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5286, https://doi.org/10.5194/egusphere-egu24-5286, 2024.

EGU24-5667 | Orals | OS1.10

Marine heatwaves: Can we predict them in the Barents Sea? 

Helene R. Langehaug, Anne Britt Sandø, Robinson Hordoir, Francois Counillon, Ping-Gin Chiu, and Roshin Raj

Marine heatwaves (MHW) can have large negative impacts on life in the ocean, such as kelp forest and corals. These environments are vital for protecting a range of different species in the ocean. With global warming, the occurrence and intensity of MHW are expected to increase, also in the polar regions. The Barents Sea has experienced large climate changes, becoming less influenced by sea ice during the last decades. Being able to predict the likelihood of MHW to occur in the Barents Sea could be highly beneficial to fisheries, aquaculture, and other relevant stakeholders. Such information could be useful in long-term risk assessment. In this study, we assess for the first time the skill of the Norwegian Climate Prediction Model (NorCPM) in predicting the likelihood of MHW. For this analysis, we focus on intense MHW in July 2016 taking place in the Barents Sea, and previously documented by satellite data. We find promising results in the seasonal predictions from NorCPM, where the predictions show increased probability for MHW to occur in July 2016 compared to July 2015 (when the MHW activity was lower than in 2016). The increased probability was already seen six months prior to the event. Furthermore, we downscale the results from the global NorCPM to a more refined grid with a horizontal resolution of 10km. This test case shows that downscaling can provide valuable information on the subsurface signature of MHW. We found the event in July 2016 to be shallow (down to about 50m) compared to another MHW event in July 2013, where warm anomalies occupied the whole water column. These results suggest that the event in July 2016 was atmospheric-driven, consistent with a previous study, whereas the event in 2013 is more likely to be ocean-driven. The results from this case study are promising for future seasonal prediction of MHW using NorCPM, and more in-depth studies are needed to quantify the predictive skill for different cases and different regions.

How to cite: Langehaug, H. R., Sandø, A. B., Hordoir, R., Counillon, F., Chiu, P.-G., and Raj, R.: Marine heatwaves: Can we predict them in the Barents Sea?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5667, https://doi.org/10.5194/egusphere-egu24-5667, 2024.

EGU24-5681 | Posters on site | OS1.10

Global surface ocean temperature anomalies in 2023 and their climate context 

Matthew Menary and Leon Hermanson

Around 3 billion people rely on the ocean for their livelihoods, with around 10% of the world’s population directly relying on fishing. As human-driven climate change causes the world to warm, the ocean and the ecosystems within are increasingly susceptible to heatwave events that can have severe consequences. Such marine heatwaves (MHWs) can last from several days to a year and result in the destruction of ocean habitats and the diminution or relocation of fish species, with knock-on effects for coastal communities. The frequency of MHWs has doubled since 1982 and they are likely to continue to increase in frequency, intensity, and duration. However, the link between MHWs and modes of climate variability remains uncertain. Here, we investigate to what extent maps of temperature anomalies in 2023 can be attributed to large-scale climate modes with centres of action in the Atlantic, North Pacific, and tropical Pacific. Specifically, we regress global sea surface temperatures on to indices of Atlantic Multidecadal Variability (AMV), the 2nd EOF of North Pacific variability (commonly linked to MHWs), and El Nino/Southern Oscillation (ENSO, which strongly correlates with the 1st EOF of North Pacific variability). We find that around 30% of the variance in global, annual sea surface temperature anomalies can be explained by a linear combination of these indices. Since 2012, the combination of these indices has been unprecedented, associated with anomalous warming (on top of the global trend) throughout the northern hemisphere. As such, climate variability (which may include a forced component) is currently providing an unusually high baseline for further MHW events. Further work will aim to use decadal prediction models to investigate the predicted evolution of these indices over the coming years.

How to cite: Menary, M. and Hermanson, L.: Global surface ocean temperature anomalies in 2023 and their climate context, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5681, https://doi.org/10.5194/egusphere-egu24-5681, 2024.

EGU24-6542 | Orals | OS1.10

Large-scale drivers of Northeast Pacific MHWs in a changing climate 

Antonietta Capotondi, Matthew Newman, Tongtong Xu, and Emanuele Di Lorenzo

The Northeast Pacific Ocean has experienced episodes of intense and persistent warm conditions, also known as marine heatwaves, with devastating ecological impacts. Being able to predict these extreme events a few seasons in advance is therefore very important, but has proven elusive in many cases. While the intensity of Northeast Pacific marine heatwaves has been related to local stochastic atmospheric forcing with limited predictability, their evolution and persistence may be controlled by large-scale climate influences. Here we use a multi-variate statistical approach to identify these large-scale drivers, as well as the initial states that optimally develop into a marine heatwave at a later time in this region. Results indicate that a decadal mode of variability related to the Pacific Decadal Oscillation plays a key role in creating conditions favorable to the development of Northeast Pacific marine heatwaves. This mode is also implicated in the development of Central Pacific El Niño events, which may contribute to the persistence of the Northeast Pacific warm anomalies. In addition, this mode of variability appears to be responsible for the increased Northeast Pacific sea surface temperature variance in recent decades, suggesting that changes in internal climate variability may be responsible for the enhanced MHW activity in this region during this recent period.

How to cite: Capotondi, A., Newman, M., Xu, T., and Di Lorenzo, E.: Large-scale drivers of Northeast Pacific MHWs in a changing climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6542, https://doi.org/10.5194/egusphere-egu24-6542, 2024.

EGU24-6880 | Posters on site | OS1.10

Just another Tasman Sea marine heatwave? 

Neil Holbrook

Through late November and early December 2023, a severe category marine heatwave (MHW) was detected moving southwards off the east coast of Tasmania, Australia. The MHW was characterised by offshore sea surface temperature anomalies ~4oC above climatological values embedded within and around large anticyclonic eddies with warm anomalies to >1000m depth. Given the deleterious impacts from previous MHWs on marine ecosystems, fisheries, and aquaculture in the region, serious concerns were raised. To advise and prepare stakeholders, a series of online briefings was given by physical, biogeochemical, fisheries, and social scientists on the current and likely evolving environmental conditions associated with the MHW. So, how unusual was this event? Was it successfully forecast? Was it expected from our knowledge of large-scale modes of climate variability and their teleconnections? This presentation will discuss the characteristics, evolution – both forecast and projected – and emerging impacts of the November-December 2023 Tasman Sea MHW. It will be argued that the characteristics of this event mirror expectations from anthropogenic climate change, and that initialised seasonal SST forecasts were little different from expectations under climate change projections and trend persistence.

How to cite: Holbrook, N.: Just another Tasman Sea marine heatwave?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6880, https://doi.org/10.5194/egusphere-egu24-6880, 2024.

EGU24-7402 | ECS | Orals | OS1.10 | Highlight

Future Intensification of Marine Heatwaves in Marine Protected Areas 

Eun Byeol Cho, Eun Young Kwon, and Axel Timmermann

Marine Protected Areas (MPAs) are designated areas aimed at preserving marine ecosystems. However, they encounter the persistent obstacle of increasing ocean temperature. The occurrence of extreme warming events, known as Marine Heatwaves (MHWs), poses a significant threat to the delicate balance of marine ecosystems within MPAs. To understand the future changes in marine heatwaves (MHWs) in these regions, it is crucial to utilize advanced climate modeling capable of accurately capturing regional bathymetric features in MPAs, like coastlines, continental shelves, or islands. In this study, we utilized the SSP585 greenhouse warming simulations conducted with the OpenIFS-FESOM2 coupled model (AWI-CM3, 31 km atmosphere resolution, 4-15 km ocean resolution) to explore future changes in MHWs in the epipelagic to the upper mesopelagic zones (0-500m depth) of the global MPAs. In the current climate, MHWs in the MPAs exhibit greater maximum intensity and higher frequency than the global averages. However, MHWs in MPAs have shorter durations, leading to a lower cumulative intensity. The average warming rate within the MPAs is similar to or slightly lower than the average warming rate of the global ocean. Nevertheless, the MPAs are expected to see a 20% greater increase in the cumulative intensities of MHWs compared to the global ocean, from the past to the future. The findings suggest that marine protected areas (MPAs) are more susceptible to extreme temperature events compared to open ocean zones. Our findings underscore the significance of addressing anthropogenic warming to safeguard MPAs, emphasizing the need for prompt measures to mitigate these impacts and protect these vital marine ecosystems. 

How to cite: Cho, E. B., Kwon, E. Y., and Timmermann, A.: Future Intensification of Marine Heatwaves in Marine Protected Areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7402, https://doi.org/10.5194/egusphere-egu24-7402, 2024.

EGU24-7671 | ECS | Orals | OS1.10

The 2023 marine heatwave in the North Atlantic and the Mediterranean Sea: ocean response to atmospheric circulation 

Lorine Behr, Elena Xoplaki, Niklas Luther, Elina Tragou, Jürg Luterbacher, and Vassilis Zervakis

The year 2023 was characterized by record-breaking global surface air and sea surface temperatures (SSTs), the latter reaching a record 21° C in April (excluding the polar regions; Copernicus 2023). As June to October were the warmest on record globally (WMO 2023), extreme and long-lasting marine heatwave (MHW) events were observed, especially in the North Atlantic and the Mediterranean Sea. In general, the occurrence of MHWs in the subtropics and western boundary current regions is predominantly driven by atmospherically induced processes such as the net ocean heat uptake from the atmosphere, associated with a reduction in latent heat loss and increased shortwave radiation (Schlegel et al. 2021; Vogt et al. 2022). The atmospheric circulation with persistent high‑pressure systems and anomalously weak wind speeds associated with increased insolation is the dominant driver of the above processes. We focus on the state of the atmosphere at the surface and in the mid-troposphere during 2023 and identify specific atmospheric patterns and SST anomaly structures. To detect MHWs and calculate their characteristics we use the daily gridded NOAA OI SST version 2.1 dataset (Huang et al. 2021, updated), derived from the AVHRR satellite, in-situ ship and buoy SST data. For the atmospheric component, we used the mean sea level pressure (SLP), the horizontal wind at 10 m, the geopotential height at 500 hPa (zg500) and the 2 m maximum temperature (Tmax) from the ECMWF ERA5 reanalysis (Hersbach et al. 2020, updated). Atmospheric and ocean datasets are provided globally with a high resolution (0.25°). We use daily anomalies with 1983 to 2012 as the reference period (as recommended by Hobday et al. 2018). The evaluation of MHW metrics such as frequency, duration, mean and cumulative intensity in different subregions of the North Atlantic and Mediterranean revealed that the most frequent MHWs were observed in the western Mediterranean (WMED), the longest MHWs in the central northeast Atlantic and the cumulatively most intense MHWs in the northwest Atlantic and central northeast Atlantic. The most intense MHWs are found in the WMED and off Newfoundland. During summer we detect asynchronous, above normal SLP, zg500 and Tmax over the northwest Atlantic, the WMED and the Black Sea, representing a type of blocking condition. A weakened Azores High, associated with reduced wind speed, mixing and upwelling, allows SSTs to rise substantially in the central northeast Atlantic during summer (Copernicus 2023). The first Empirical Orthogonal Function shows an antiphase dipole of SST and zg500 anomalies (explained variances of 43.9 % and 34.3 %, respectively) between the Mediterranean and West of the British Isles as well as monopol SST and zg500 anomalies (explained variances of 57.7 % and 41.9 %, respectively) over the northwestern Atlantic and the Labrador Sea.

How to cite: Behr, L., Xoplaki, E., Luther, N., Tragou, E., Luterbacher, J., and Zervakis, V.: The 2023 marine heatwave in the North Atlantic and the Mediterranean Sea: ocean response to atmospheric circulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7671, https://doi.org/10.5194/egusphere-egu24-7671, 2024.

EGU24-8423 | ECS | Orals | OS1.10

Mechanism and Forecast Potential of North Pacific Marine Heatwaves inferred from Adjoint Sensitivities 

Xiaoxue Wang, Armin Köhl, and Detlef Stammer

The increasing frequency and intensity of heatwave events have led to a significant rise in heat-related threads on land and in the ocean during recent years. A classic example of a marine heat wave (MHW) is the 2014 – 2016 warm event that spread across the northeastern Pacific (NEP) Ocean—an event that researchers coined “the blob”. Here we use an adjoint sensitivity approach to shed new light on potential causes for reoccurring NEP marine heatwaves events in the region of the NEP. The study is based on the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint, for which the mean sea surface temperature (SST) of different target regions (region 1: 145°~ 160°W, 48°~ 56°N; region 2: 130°~ 145°W, 40°~ 48°N) and different target years (e.g. year 2014) was set as objective function. The adjoint sensitivities show that during the year of emergence, air-sea turbulent surface heat flux is the dominant atmospheric driver. The horizontal temperature advection, i.e., the impact of the basin-wide ocean circulation, is found to be less important, but might act as a preconditioning of MHW through climate oscillations (e.g. NPGO). Because atmospheric forcing anomalies occurring within the 18 months prior to the MHW event play a particularly critical role in driving the overall response locally through air-sea interactions, the leading 18 month atmospheric conditions in the central North Pacific can be considered as predictive signals for later marine heatwave events. Based on our preliminary findings, it can be concluded that 2024 may not be a heatwave year for NEP region. 

How to cite: Wang, X., Köhl, A., and Stammer, D.: Mechanism and Forecast Potential of North Pacific Marine Heatwaves inferred from Adjoint Sensitivities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8423, https://doi.org/10.5194/egusphere-egu24-8423, 2024.

EGU24-10707 | ECS | Orals | OS1.10

Investigating the role of air-sea heat flux for marine heatwaves in the Mediterranean Sea 

Dimitra Denaxa, Gerasimos Korres, Giulia Bonino, Simona Masina, and Maria Hatzaki

The Mediterranean Sea (MS) has been experiencing progressively intensified Marine heatwave (MHW) conditions over the past decades, associated with severe environmental and socioeconomic impacts. Building upon prior research on physical mechanisms underlying the occurrence of MHWs, here we assess the relative role of air-sea heat exchange in driving the onset and decline phases of surface MHWs in the basin, utilizing remote sensing and reanalysis data for the period 1993-2022. Although contributing positively to the SST evolution during most MHWs, surface heat flux is identified as the primary driver in less than half of the onset/decline MHW phases. This finding suggests that oceanic processes play a crucial role in driving SST anomalies during MHWs in the basin. The role of surface heat flux becomes more pronounced during onset periods and warmer seasons, with the latent heat being the most significant heat flux component in modulating SST anomalies during both MHW phases and across all seasons. Heat flux emerges as the major driver of most onset phases in the Adriatic and the Aegean Seas. Onset/decline phases shorter than 5 days exhibit a weaker heat flux contribution compared to longer phases. Moreover, an inverse relationship between event severity and heat flux contribution is observed. At the subsurface, mixed layer shoaling is observed over the entire duration of most events, particularly for those of shorter duration. Therefore, the surface cooling right after the peak intensity day is likely not associated with vertical mixing in such cases. After the MHW end day, a significant mixed layer deepening in most cases suggests that further dissipation of heat is commonly driven by vertical mixing. This study emphasizes the need for considering subsurface information for MHW studies and accounting for limitations associated with the definitions employed for MHW phases. Clearly articulating such choices, tailored to the specific contexts of individual studies, is vital for precise interpretation and meaningful comparisons across different studies on MHW drivers.

How to cite: Denaxa, D., Korres, G., Bonino, G., Masina, S., and Hatzaki, M.: Investigating the role of air-sea heat flux for marine heatwaves in the Mediterranean Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10707, https://doi.org/10.5194/egusphere-egu24-10707, 2024.

EGU24-12034 | ECS | Orals | OS1.10 | Highlight

The increased likelihood of plankton community changes following marine heatwaves 

Ryan Deeley, Tobias Grafke, and Ulrike Feudel

When modelling any climatic system, it is important to carefully consider the relation between the many timescales that govern its evolution, since a certain change in their interplay can drastically affect the likelihood of observing critical transitions to distinct environmental regimes. In this study, we present how the onset of marine heatwaves - that are responsible for inducing prolonged periods of positive temperature fluctuations - can weaken state-based resilience leading to noise-induced shifts between species’ concentration levels in plankton communities. This is shown in a modified Truscott-Brindley model, a stochastically forced fast-slow system that encapsulates the interaction between phytoplankton and zooplankton species during red tide events in marine environments. Deterministically, the system can be bistable, possessing stable states with high and low phytoplankton biomass, or in an excitable monostable regime, where phytoplankton blooms form following perturbations. Environmental perturbations to the (temperature-dependent) species’ growth rates are modelled using multiplicative noise terms, namely Ornstein-Uhlenbeck processes with a correlation time parameter τ. During marine heatwaves, the correlation time τ of the external perturbations will increase. With ensemble Monte Carlo simulations of phytoplankton collapses, we demonstrate how mean first-exit times from the domain of attraction scale as the noise intensity weakens, across different prescribed values for the correlation time τ. These results yield numerical approximations for the systems’ quasipotential barrier heights - a concept from Freidlin and Wentzell’s theory of large deviations that quantifies resistance to noise-induced escape from a given domain - which elucidates a non-monotonic relation between the system vulnerability to critical transitions and the correlation time τ of the external perturbations. Indeed, initially there is a notable drop in system resilience as the correlation time τ grows from zero, although as τ increases further beyond a critical value, the system resilience begins to then increase. This non-monotonic relation is also reflected in the action values of most probable transition paths for escaping the domain of attraction, found using an augmented Lagrangian method to overcome the degenerate noise present in the system. These findings are compared and contrasted with results from other studies exploring how climate tipping points, or stochastic escapes from a domain of attraction, depend on the correlation time of the external perturbations. Finally, we consider candidate time-series for correlation times constructed from temperature records for the North Sea across periods including anomalously high values, and discuss whether - subject to these - varying system vulnerability to critical transitions is more sensitive to the rate of emergence or duration of the marine heatwaves.

How to cite: Deeley, R., Grafke, T., and Feudel, U.: The increased likelihood of plankton community changes following marine heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12034, https://doi.org/10.5194/egusphere-egu24-12034, 2024.

EGU24-13423 | Posters on site | OS1.10

Marine heatwaves in the Red Sea: a study of their spatial characteristics, trends and relationships to climate modes 

Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit

Episodes of very warm sea surface temperatures (SST), known as marine heatwaves (MHWs), can potentially alter ocean ecosystems with far-reaching ecological and socio-economic consequences. In this work, we focused on the Red Sea (RS), a region of outstanding socio-economic importance, and investigated its spatio-temporal MHW variability between 1982 and 2021. In addition, the relationship between MHWs and different climate teleconnection patterns was investigated. Our results show that during the study period (1982-2021), the highest frequencies of MHWs were in the southern Red Sea (SRS), while the prolonged and more intense ones were in the northern Red Sea (NRS). By analyzing satellite-derived sea surface temperatures (SST), we identified a warming trend in the RS that began from the mid-1990s, and has intensified since 2016. This temperature increase was accompanied by an increase in the MHW frequency and total days. 78 MHW events with a total of 1016 heat days occurred in the RS between 1982 and 2021, of which 36 events (46%) and 590 days (58%) were recorded in the last decade. In the NRS, the annual MHW frequency was highest in 2010, 2018, 2019 and 2021, while in the SRS it was highest in 1998 and from 2017 to 2021. In cold years, characterized by a negative average SST anomaly, MHWs were mainly found in the NRS. In contrast, in warm years characterized by a positive average SST anomaly, MHWs mainly affected the SRS. However, an exception was observed in 2010, which is considered one of the warmest years in the last four decades. In this year, MHWs were predominantly localized in the NRS, deviating from the typical pattern observed in warm years. The MHW frequency showed a strong positive correlation (> 0.7) with the Atlantic Multidecadal Oscillation (AMO) over the entire RS and a positive correlation (> 0.4) with the Indian Ocean Dipole Index (IOD), which was more pronounced in the SRS, whereas it had a negative correlation (< -0.5) with the East Atlantic/Western Russia (EATL/WRUS) pattern, particularly in the NRS. It was noted that 2010 was also an exceptional year for the climate modes as the AMO and IOD were in strong positive phases, and  the EATL/WRUS was in its highest negative phase, both of which may have contributed to the increased MHWs in that year. This study highlights the link between climate patterns and the occurrence of marine heatwaves in the Red Sea and provides valuable insights into this important aspect of climate change.

How to cite: Hamdeno, M., Alvera-Azcárate, A., Krokos, G., and Hoteit, I.: Marine heatwaves in the Red Sea: a study of their spatial characteristics, trends and relationships to climate modes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13423, https://doi.org/10.5194/egusphere-egu24-13423, 2024.

EGU24-14495 | Posters on site | OS1.10

Unraveling the Indian Monsoon's Role in Fueling the Unprecedented 2022 Marine Heatwave in the Western North Pacific 

Qianghua Song, Chunzai Wang, Yulong Yao, and Hanjie Fan

An unprecedented marine heatwave (MHW) event occurred in the middle-high latitude of the western North Pacific in the summer of 2022. We demonstrate that enhanced precipitation thousands of kilometers away fueled this extreme MHW event in July 2022. In the upper atmosphere of the MHW region, a persistent atmospheric blocking system is formed, which reduces convection and cloud cover and increases shortwave radiation at the ocean surface, leading to higher sea surface temperatures. Atmospheric perturbations induced by latent heat release from the extreme precipitation in the Indian summer monsoon region enhance this atmospheric blocking through the propagation of quasi-stationary Rossby waves. Our hypothesis is verified by using a numerical model that is forced with the observed atmospheric anomalous diabatic heating. This study sheds light on how a subtropical extreme event can fuel another middle-high latitude extreme event through an atmospheric bridge.

How to cite: Song, Q., Wang, C., Yao, Y., and Fan, H.: Unraveling the Indian Monsoon's Role in Fueling the Unprecedented 2022 Marine Heatwave in the Western North Pacific, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14495, https://doi.org/10.5194/egusphere-egu24-14495, 2024.

EGU24-15499 * | ECS | Orals | OS1.10 | Highlight

Modelling marine heatwaves impact on shallow and upper mesophotic tropical coral reefs  

Nicolas Colombi, Chahan M. Kropf, Friedrich A. Burger, David N. Bresch, and Thomas L. Frölicher

Coral reefs ecosystems, often compared to rain forests for their high biodiversity, are threatened by coral bleaching. Coral bleaching occurs when the symbiotic relationship between dinoflagellates and corals breaks under environmental stresses, notably high ocean temperatures. Thermal stress on coral reefs predominantly occurs during marine heatwaves, which can take place synchronously at the surface and subsurface, or asynchronously in either one of the two levels. Subsurface marine heatwaves tend to last longer with potentially higher cumulative intensities compared to their surface counterpart. However, to the best of our knowledge, no global coral bleaching model takes into account the variability between the thermal stress measured at the surface and the one experienced by coral reefs at their specific depth. Here we show that developing a marine heatwave impact model for shallow and upper mesophotic coral reefs, increased coral bleaching modelling accuracy by 4.7 ± 1.3% compared to a model using surface marine heatwaves. To define marine heatwaves at coral reef depth, we used trilinear interpolation using the GLORYS12 reanalysis temperature product. Our model provides coral bleaching values at times and locations where no record was taken, providing a global reconstructed dataset of coral bleaching with daily resolution from January 1st 1993 to December 31st 2020 in 9944 locations. Furthermore, our model indicates that since 1993 over 40% of coral reefs bleached. We anticipate this study to be a starting point for more accurate coral bleaching modelling. Observing that upper mesophotic coral reefs (30-50m) might be more threatened than shallow coral reefs, provides additional evidence to reshape our perception of upper mesophotic coral reefs as potential refugees from climate change.

How to cite: Colombi, N., Kropf, C. M., Burger, F. A., Bresch, D. N., and Frölicher, T. L.: Modelling marine heatwaves impact on shallow and upper mesophotic tropical coral reefs , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15499, https://doi.org/10.5194/egusphere-egu24-15499, 2024.

EGU24-16606 | ECS | Orals | OS1.10 | Highlight

Vertical structures of global marine heatwaves 

Ying Zhang, Yan Du, Ming Feng, and Alistair J. Hobday

A marine heatwave (MHW) is typically defined as an anomalous warm event in the surface ocean, with wide-ranging impacts on marine and socio-economic systems. The surface warming associated with MHWs can penetrate into the deep ocean; however, the vertical structure of MHWs is poorly known in the global ocean. Here, we identify four main types of MHWs with different vertical structures using Argo profiles: shallow, subsurface-reversed, subsurface-intensified, and deep MHWs. These MHW types are characterized by different spatial distributions with hotspots of subsurface-reversed and subsurface-intensified MHWs at low latitudes and shallow and deep MHWs at middle-high latitudes. These vertical structures are influenced by ocean dynamical processes, including oceanic planetary waves, boundary currents, eddies, and mixing. The area and depth of all types of MHWs exhibit significant increasing trends over the past two decades. These results contribute to a better understanding of the physical drivers and ecological impacts of MHWs in a warming climate. 

How to cite: Zhang, Y., Du, Y., Feng, M., and Hobday, A. J.: Vertical structures of global marine heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16606, https://doi.org/10.5194/egusphere-egu24-16606, 2024.

An extreme event, Marine heatwave, has become a pressing concern in recent years. It is defined as a discrete event where the sea surface temperature remains above a specific threshold value of climatology for several consecutive days, and the intervals between two consecutive abnormal high-temperature events are less than two days. Due to climate change, there is an increasing trend in both the intensity and duration of marine heat waves. Marine heatwaves may not directly affect human society; however, they can pose significant threats to marine ecosystems, coastal communities, and the ocean carbon sink, thereby impacting human well-being. The ocean carbon sink is the most significant carbon sink among the world's three major carbon sinks. It absorbs around 25% of anthropogenic carbon dioxide emissions annually. Dissolved inorganic carbon within the ocean carbon sink relies on the carbon sequestration of biological pumps such as coral, seagrasses, and kelps to store it in the deep water. Influenced by the El Niño-Southern Oscillation and currents, the northeastern Pacific Ocean is a hotspot for marine heatwaves, typically beginning from the North Pacific offshore regions in the spring and impacting the U.S. West Coast in the fall. Consequently, the coastal area of California is selected as the study area and divided into three regions.

Previous studies have shown that the escalating severity of marine heatwaves may result in these biological pumps losing their functions or habitats. However, regarding ocean carbon sequestration, whether the incapacities of these biological pumps due to marine heatwaves will have a short-term impact on the carbon sequestration capacity in the ocean remains to be verified. This study aims to analyze the time series of marine heatwaves and ocean carbon sink capacity with the time series analysis and determine the impacts on ocean carbon sink. We categorize marine heatwave extreme events in California into three indicators and the ocean carbon sequestration capacity into physical and biological indicators. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is employed to extract the trends and interannual variations. Meanwhile, to identify the correlations between the marine heatwave and the ocean carbon sink at different time points and different time scales, we apply Time-Dependent Intrinsic Correlation (TDIC). Due to the longer temporal scales in changes in the ocean, the impact of marine heatwaves on the ocean carbon sink may have a potential delay. Therefore, we employ Time-Dependent Intrinsic Cross-Correlation (TDICC), a method based on TDIC that could be utilized to analyze the time-lag effects in the interaction between marine heatwaves and the ocean carbon sink.

How to cite: Fu, C.-H. and Tsai, C. W.: Impact of Marine Heatwaves on Ocean Carbon Sink: A Case Study of Coastal Areas in California, USA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16628, https://doi.org/10.5194/egusphere-egu24-16628, 2024.

The oceanographic and climate communities are putting significant effort into reaching a consensus on a common definition for Marine Heatwaves (MHW). The absence of such a unified definition poses a substantial obstacle when it comes to making retrospective comparisons between various MHW studies. This hindrance is critical for achieving a mechanistic understanding of the role of MHWs in marine ecosystems.

However, why is it so challenging to characterize and define MHWs? The answer is straightforward: there isn't a single, distinct dynamical mechanism responsible for the persistence of heat anomalies in the ocean, which we refer to as MHWs. Unlike variability associated with phenomena such as large oceanic eddies, oceanic fronts, upwelling systems, tropical cyclones, or climate modes, prolonged heat anomalies do not exhibit characteristic time or spatial scales. As a result, common MHW definitions group together prolonged temperature anomalies lasting from days to years and spanning from a few kilometers to thousands of kilometers in scale.

Analyzing sea surface temperature anomalies through power spectra reveals a "red" power spectrum with no discernible time scales. A similar analysis in spatial dimensions similarly shows a lack of any specific scale. Given this absence of emergent scales, we suggest adopting a process-based definition for MHWs. Such an approach would classify all events into a smaller number of categories, each linked to a specific driver or dynamical process operating on certain spatiotemporal scales. This shift could significantly reduce the subjectivity involved in selecting the temporal and spatial scales required for current MHW definitions, ultimately advancing our understanding of these events.

How to cite: Liguori, G.: The need to adopt process-based or impact-based definitions for marine heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17696, https://doi.org/10.5194/egusphere-egu24-17696, 2024.

EGU24-18946 | Orals | OS1.10

Towards monitoring subsurface marine heatwaves based on sea surface properties in the Eastern Pacific 

Eike E. Köhn, Matthias Münnich, Meike Vogt, and Nicolas Gruber

As marine heatwaves (MHWs) become a growing concern for marine ecosystems, an effective ecosystem management necessitates precise monitoring of such periods with exceptionally high water temperatures. As satellite-based temperature measurements do not reach beyond the sea surface, identifying subsurface MHWs has so far relied on lower-resolution data obtained from (autonomous) in-situ measurements. In this study, we assess to which extent subsurface MHWs, defined statically by a seasonally varying 90th percentile, can be deduced from surface properties that can be remotely-sensed at a high spatio-temporal resolution. To this end, we build a Random Forest (RF) classification model with daily data from a high-resolution numerical hindcast simulation focused on the Eastern Pacific (1979-2019). The RF is trained to distinguish between extreme and non-extreme temperatures at the depth of the climatologically maximum mixed layer depth (MLD), i.e. a depth that is decoupled from the sea surface throughout most parts of the year. We train the RF on the first 80% of the hindcast simulation data (i.e., 1979-2011) and use a range of predictor variables, such as anomalies of sea surface temperature (SST), height (SSH) and salinity (SSS) as well as derivatives of these physical variables. Testing the model on the last 20% of the hindcast simulation (2012-2019), the RF correctly identifies more than two thirds of all subsurface extreme states, leaving only about 30% of subsurface extremes unidentified. Yet, of all RF-based subsurface extreme classifications, about 40% of subsurface temperatures are false positives. Nevertheless, the RF model outperforms a simple SST based extrapolation of extreme states into the ocean interior. The RF-based classification is mostly guided by SSH and SST anomalies (together reduce impurity by about 50%), followed by climate indices like the Oceanic Niño Index (ONI) and the Pacific Decadal Oscillation (combined impurity reduction by 20%). This simulation-based study emphasizes the potential of exploring remote sensing data, particularly SST and SSH, to extend the monitoring of MHWs beneath the sea surface. Integrating this high-resolution statistical estimate with lower-resolution in-situ hydrographic information has the potential to make subsurface MHW monitoring a feasible and valuable tool for marine ecosystem management.

How to cite: Köhn, E. E., Münnich, M., Vogt, M., and Gruber, N.: Towards monitoring subsurface marine heatwaves based on sea surface properties in the Eastern Pacific, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18946, https://doi.org/10.5194/egusphere-egu24-18946, 2024.

EGU24-20695 | Orals | OS1.10

Marine Heatwaves in the Chesapeake Bay: Characteristics, Subsurface Structure and Impact on Hypoxia 

Piero Mazzini, Nathan Shunk, Cassia Pianca, and Ryan Walter

Marine Heatwaves (MHWs) are prolonged events of anomalously warm sea water temperature, and have major detrimental effects to marine ecosystems and the world's economy. Thanks to satellite remote sensing of sea surface temperature, significant advances have been made regarding the characterization and impact of MHWs on global scales, however, these data are typically inadequate to resolve most estuarine environments with complex shorelines and reduced spatial scales. In our work we analyzed a novel data set with over three decades of in situ surface and subsurface temperature records to investigate MHWs in the largest estuary in the US: the Chesapeake Bay. Our major findings will be presented in detail, including MHW characteristics in the Bay, their trends, subsurface structure and impact on Bay hypoxia. Projections of trends found in our work suggest that by the end of the century the Chesapeake Bay will reach a semi-permanent MHW state, when extreme temperatures will be present over half of the year, and thus could have devastating impacts to the bay ecosystem and regional economy. Improving our basic understanding of MHWs, their trends and impact on hypoxia in the Chesapeake Bay is necessary to guide management decisions in this valuable environment.

How to cite: Mazzini, P., Shunk, N., Pianca, C., and Walter, R.: Marine Heatwaves in the Chesapeake Bay: Characteristics, Subsurface Structure and Impact on Hypoxia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20695, https://doi.org/10.5194/egusphere-egu24-20695, 2024.

BG5 – Palaeobiogeosciences

EGU24-547 | ECS | Posters on site | BG5.3

Revisiting depositional models for the Ediacara Member of the Rawnsley Quartzite in South Australia 

Karol Faehnrich, Diego C. García-Bellido, Mary L. Droser, and Robert R. Gaines

The Ediacara Member of the Rawnsley Quartzite hosts one of the best preserved and most diverse assemblages of the Ediacara Biota. In it, soft-bodied organisms are preserved across various depositional environments, with a proposed connection between sedimentary facies and fossil assemblages. Recent studies have questioned previously-established facies models, undermining links between paleoenvironment, paleoecology, and taphonomy. Here, we revisit these models using field observations from across the central Flinders Ranges, supplemented by two new cores drilled through the Ediacara Member at the Nilpena fossil site. The two drill sites are 2 km apart and span strata from the top of the underlying Chace Member through the overlying fossiliferous facies of the Ediacara Member. These two cores are easily correlated to surface outcrops and provide the most complete record of the deposition of the Ediacara Member thus far. The core drilled at “One Tree Hill” (OTH-1) reaches a depth of 65 m and records characteristic “petee laminations” below the erosional contact with the Ediacara Member, which is marked by a breccia horizon. The basal breccia of the Ediacara Member gradationally passes into thinly laminated planar to slightly wavy siltstone that then transitions into alternating thin beds of siltstone and thick beds of massive sandstone often affected by soft-sediment deformation. These beds grade into wavy-laminated siltstone interbedded with thin beds of arenite. Forming the top of the core are thick beds of massive arenite. The second drill core (MR-1) spanning 75.8 m records analogous facies with changing thickness and siltstone/sandstone ratio but lacks a breccia horizon at the base of the Ediacara Member. Both cores highlight repeated cycles of alternating deposition of sandstone and siltstone often obscured in the surface exposure. We investigate an array of sedimentary structures observed in the cores and surface exposures in thin sections, exploring the role of microbial matgrounds and silica cementation in sediment binding and transport. Both are critical for any depositional model developed for the Ediacara Member across the Nilpena site and central Flinders Ranges, its accumulation rate, sediment sources and potential triggers for repeated channelized flows observed throughout the unit. A unified depositional model built across this basin will be critical to further untangle the complex interplay between time, changing taxonomic diversity, water depth, and paleoenvironment at the dawn of animal life.

How to cite: Faehnrich, K., García-Bellido, D. C., Droser, M. L., and Gaines, R. R.: Revisiting depositional models for the Ediacara Member of the Rawnsley Quartzite in South Australia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-547, https://doi.org/10.5194/egusphere-egu24-547, 2024.

EGU24-620 | ECS | Orals | BG5.3

Numerical modelling of magmatic CO2 emissions from the Neo-Tethyan margin during the Early Cenozoic 

Bram Vaes, Pietro Sternai, Léa Ostorero, Luca Castrogiovanni, Christopher Gonzalez, and Yannick Donnadieu

Identifying the geological drivers of long-term climate change is key to improve our understanding of the interactions between the deep Earth and the Earth’s surface. Long-term Cenozoic climate cooling has been largely attributed to an increase in atmospheric carbon consumption by enhanced silicate weathering linked to the uplift of the Tethyan orogenic belt. Alternatively, this cooling trend has been explained by decreasing magmatic CO2 outgassing during the progressive closure of Neo-Tethys Ocean. However, the outgassing rates associated with Neo-Tethyan magmatism remain poorly constrained, making it difficult to assess its contribution to Cenozoic climate change. Here, we present the first results of numerical geodynamic experiments aimed at obtaining improved quantitative estimates of the magmatic CO2 outflux along the Neo-Tethyan margins. To this end, we use 2D numerical petrological-thermomechanical models of oceanic subduction and continental collision that account for partial melting and slab decarbonation. Calibrating these numerical experiments on available geological constraints from the Neo-Tethyan margin, we estimate the Neo-Tethyan magma production volumes through the Early Cenozoic. We discuss how these results are sensitive to changes in model setup and input parameters such as convergence rates, rheology, and crustal composition. To quantify the time-dependent magmatic CO2 emissions, we combine the magma production histories with both modelling- and observation-based quantifications of the volatile contents of pre- and post-eruptive igneous rocks. Finally, we discuss the potential Neo-Tethyan magmatic forcing of Early Cenozoic climate change in light of our new results and its implications for the global carbon cycle and surface-deep Earth feedbacks.

How to cite: Vaes, B., Sternai, P., Ostorero, L., Castrogiovanni, L., Gonzalez, C., and Donnadieu, Y.: Numerical modelling of magmatic CO2 emissions from the Neo-Tethyan margin during the Early Cenozoic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-620, https://doi.org/10.5194/egusphere-egu24-620, 2024.

The Permian section of the Paraná-Etendeka basin is represented by the Palermo and Irati formations, comprising a shallow sea that occupied ca. 5 million km2 of southern Gondwana before completely drying out around 277 million years ago (Irati-Whitehill ocean). This is broadly coincident with the uprising of the Cape Fold Belt of southern Africa and the San Rafael orogeny of the paleo-Pacific margin of South America, leading to the interpretation that basin restriction and the major ecosystem changes that followed were ultimately caused by uprising of mountainous domains surrounding the shallow sea. We combine new iron speciation, organic carbon isotope and trace element data with previous biomarker, organic carbon and nitrogen isotope data to unravel the biogeochemical and redox changes during this transition from an open marine realm to a restricted setting, and to test the hypothesis of external controls on the biogeochemical cycles of southern Gondwana. Mudstones and shales of the Palermo Formation yielded FeHR/FeT around or below 0.2, suggesting oxic bottom water conditions, reinforced by muted redox-sensitive element (RSE) concentrations and overall low Total Organic Carbon (TOC) contents, with δ13Corg around -25‰. Black shales of the overlying Irati Formation, on the other hand, record an abrupt shift to anoxic conditions, with FeHR/FeT between 0.3 and 0.9, representing mostly ferruginous conditions with sporadic euxinic incursions (FePy/FeHR > 0.8), higher concentrations of RSE such as Mo, higher TOC contents and d13Corg rapidly oscillating from ca. -29 up to ca. -19‰. The euxinic intervals are associated with the Assistência Member, containing tephra layers dated at 277 Ma and thus coeval to the Cape and San Rafael orogenies. Our results reinforce the hypothesis of mountain belt formation as the main external driver of biogeochemical changes, leading to toxic conditions for complex life forms in the Permian internal basins and to the accumulation of important organic-rich source rocks in the shallow seas of southern Gondwana.

How to cite: Caxito, F., Sperling, E., Bastos, L., and Pereira, E.: Anoxia in the Permian Irati-Whitehill Ocean of southern Gondwana: A possible link with uprising of the Cape and San Rafael mountain belts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1345, https://doi.org/10.5194/egusphere-egu24-1345, 2024.

EGU24-1446 | Orals | BG5.3

Plant diversification is associated with habitat disruption in the transient Hengduan Mountains 

Yaquan Chang, Wenna Ding, Junqing He, Sean Willett, Katrina Gelwick, Niklaus Zimmermann, and Loic Pellissier

Mountain regions harbor disproportionally high biodiversity levels on Earth, which can hardly be explained solely by contemporary climate and heterogeneity. The complex interactions between the geological and climate dynamics in the mountain system could provide a unique substrate for species to diversify, leading both to higher diversity and higher endemism in the mountains. The Hengduan Mountains region is a unique biodiversity hotspot outside of the tropics. It is characterized by complex geological and climate histories associated with the Indian-Eurasia plate collision and monsoon intensification shaping intense geomorphic processes. These unique and complex histories are expected to have shaped landscapes across millions of years, fostering the emergence of lineages. Using the clade level of phylogenies and species range maps, we generated the spatial pattern of diversification rate for 33 highly diversified clades in the Hengduan Mountains. These spatial clade diversification rate patterns are spatially associated with active deformation history in the past 15 Ma. In this talk, I will present hotspots of diversification rate and potential linkage to geological and climate processes. I will demonstrate that the diversification rate hotspots are concentrated in the Three Rivers Region, Dadu River, and Shangri-La Plateau in the Hengduan Mountains. Then I will show the elevational gradient of the diversification rate within these hotspots and link them to specific geological processes. Specifically, long-term erosion from low-temperature thermochronology indicates the deformation process in the recent 15 Ma associated with new habitat and high diversification speciation process in the Three Rivers region and Dadu River in the Hengduan Mountains. Moreover, the landscape transience characterized by divides migration and low relief surface formation may create habitat disruption and range fragmentation to increase allopatric speciation. Taken together, the high plant diversity of Hengduan Mountain may be caused by intense focalized geological processes generating new species from habitat disruption.

How to cite: Chang, Y., Ding, W., He, J., Willett, S., Gelwick, K., Zimmermann, N., and Pellissier, L.: Plant diversification is associated with habitat disruption in the transient Hengduan Mountains, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1446, https://doi.org/10.5194/egusphere-egu24-1446, 2024.

EGU24-3508 | ECS | Posters on site | BG5.3

Geogenomics and biogeodynamics in the Northern Apennines and Ligurian Alps (Italy)  

Gabrielle Vance, Dominik Kirschner, Sean D. Willett, and Loïc Pellissier

Complex interactions between tectonics and surface processes influence the evolution of aquatic species across orogens. These processes are likely to be important in tectonically active areas where faulting and uplift lead to drainage reorganization. The Northern Apennines are an active orogenic wedge, where horizontal shortening and topographic advection lead to river capture and drainage divide migration, which can separate or connect ecological domains and thus isolate or mix aquatic populations. In contrast, the adjacent Ligurian Alps are a remnant of the Alpine orogen with little modern deformation. In this study, we combine geomorphic analysis with environmental DNA (eDNA) collected from rivers in the Northern Apennines and Ligurian Alps to assess the influence of tectonic advection and subsequent drainage reorganization on the genetic diversity of native freshwater fish. Geomorphic metrics are asymmetric across the main drainage divide (MDD) in both orogens, and divide asymmetry indices based on these metrics suggest an MDD migration direction from Ligurian (coast) to Adriatic (Po Plain), accompanied by river captures. In the Northern Apennines, this suggested drainage divide migration direction is towards the NE, opposite that of the tectonic advection of topography. Geomorphic metrics show greater contrast across the MDD in the Northern Apennines than in the Ligurian Alps. Five native freshwater fish species show statistically significant correlations between genetic distance and divide asymmetry indices across the MDD. Genetic distance is greater across the MDD in the Northern Apennines than in the Ligurian Alps. Endemic species such as Telestes muticellus exhibit greater amplicon sequence variant (ASV) richness on the Ligurian than the Adriatic side of the MDD in both orogens; greater ASV richness in the Northern Apennines than in the Ligurian Alps; and greater ASV richness on the retrowedge of the Northern Apennines than on the prowedge.  Tectonically driven drainage reorganization may promote greater genetic diversity in coastal basins, although we can not rule out anthropogenic population transfer in some cases.

How to cite: Vance, G., Kirschner, D., Willett, S. D., and Pellissier, L.: Geogenomics and biogeodynamics in the Northern Apennines and Ligurian Alps (Italy) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3508, https://doi.org/10.5194/egusphere-egu24-3508, 2024.

EGU24-4614 | Orals | BG5.3

Greenalite provides a snapshot of metal availability in an Archean shelf environment. 

Rosalie Tostevin, Ansahmbom Y. Nke, Harilaos Tsikos, Xolane Mhlanga, and Paul R. D. Mason

Thermodynamic models predict that marine metal availability has changed over geological time, particularly in the Archean Eon (4.0 – 2.5 billion years ago), when seawater was anoxic and Fe2+-rich. Since metals are essential micronutrients required to build metalloproteins, changes in metal availability in seawater would have influenced evolving microbial ecosystems. Recent work on Archean rocks has highlighted the role of greenalite as an abundant, primary precipitate in Archean seawater, and its potential as a faithful geochemical archive. Greenalite can be exceptionally well preserved in early diagenetic chert, providing protection from diagenesis and metamorphic alteration. Furthermore, experimental work has demonstrated that several key metals enter the greenalite precursor phase during precipitation, and the associated partition coefficients are consistent under a range of conditions. Furthermore, most metals are retained in the structure during heating and crystallisation, suggesting that greenalite could represent a robust archive of the metal content of early oceans. Here, we present mineral-specific laser ablation ICP-MS data for natural greenalite from the ~2.5 Ga Transvaal Supergroup, South Africa. Petrographic relationships and rare earth element patterns suggest this greenalite precipitated from seawater in a shelf environment. We place metal abundance into a quantitative framework to predict metal availability in Archean seawater. Our calculations suggest that V and Zn were depleted, Ni was similar, Co was enriched, and Mn was super-enriched in this setting compared to modern marine environments. These results are consistent with predictions based on marine chemistry and proteomics, as well as some bulk geochemical records.

How to cite: Tostevin, R., Nke, A. Y., Tsikos, H., Mhlanga, X., and Mason, P. R. D.: Greenalite provides a snapshot of metal availability in an Archean shelf environment., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4614, https://doi.org/10.5194/egusphere-egu24-4614, 2024.

Evidence for the co-evolution of Earth and life is abundantly preserved in the minerals, which are the oldest objects you can hold in your hand. Each information-rich specimen is a time capsule waiting to be opened and to tell the stories of Earth and other worlds. The emerging field of “mineral evolution” considers changes in the diversity and distribution of minerals through billions of years of planetary history [1-5], and reveals dramatic episodes of the co-evolution of minerals and life, including stages of life's origins, microbial biomineralization, influences of global oxygenation, and the rise of the terrestrial biosphere. 

Traditional approaches to classifying minerals ignore this history. The International Mineralogical Association (IMA) has catalogued >6000 mineral species, each with a unique combination of idealized chemical composition and crystal structure. This essential scheme allows the confident identification of different condensed crystalline building blocks of planets and moons. However, lacking perspectives of time and process, this system is limited in its ability to address the evolution of planets, much less the co-evolution of the geosphere and biosphere.

We have introduced, and are now completing, a new complementary approach to mineral classification called the “evolutionary system of mineralogy.” Our system differs from IMA's in three ways. First, it splits IMA species that form in more than one way; for example, pyrite forms by both abiotic and microbial processes. Second, it lumps IMA species that form continuous solid solutions through the same process; i.e., we lump many different species of the tourmaline group into a single kind. Third, we include varied amorphous or poorly crystalline solids, such as obsidian, kerogen, and limonite, which are important in crustal processes and were included in mineral inventories before the application of x-ray diffraction.

The resulting evolutionary system of mineralogy is being released in 12 parts, 8 of which are now published or in press [6-13]. These works underscore the close connections between mineral and biological evolution. We find that while minerals played key roles in life’s origins and evolution, life changed near-surface environments in ways that led to the formation of approximately half of all known mineral species, most of which are only known to form through biological mediation.

References: 1. Hazen R.M. et al. (2008) Am.Min., 93, 1693-1720; 2. Hazen R. & Morrison S. (2022) Am.Min., 107, 1262-1287; 3. Hazen, R. et al. (2023) In: Bindi and Cruciani [Eds.], Celebrating the International Year of Mineralogy. NY: Springer, pp.15-37; 4. Hazen R. et al. (2023) JGR Planets, 128, e2023JE007865; 5. Hazen R. et al. (2022) Am.Min., 107, 1288-1301; 6. Hazen R. (2019) Am.Min., 104, 468-470; 7. Hazen R. & Morrison S. (2020) Min., 105, 627-651; 8. Morrison S. & Hazen R. (2020) Am.Min., 105, 1508-1535; 9. Hazen R. et al. (2021) Am.Min., 106, 325-350; 10. Morrison S. & Hazen R. (2021) Am.Min., 106, 730-761; 11. Hazen R. & Morrison S. (2021) Am.Min., 106, 1388-1419; 12. Morison S. et al. (2023) Am.Min., 108, 42-58; 13. Hazen R. et al. (2023) Am.Min., 108, 1620-1641; 14. Morrison et al. (2024) Am.Min., 109, in press.

How to cite: Hazen, R.: Documenting the Co-Evolution of Earth and Life: A Mineral Evolution Approach , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4723, https://doi.org/10.5194/egusphere-egu24-4723, 2024.

EGU24-5478 | ECS | Posters on site | BG5.3

Towards integrated models of mantle convection, surface dynamics and climate evolution  

Niklas Werner, Christian Verard, Maura Brunetti, Paul Tackley, and Taras Gerya

The long-term evolution of the biosphere on Earth is tightly coupled to changes in the geosphere and climate. Investigating the evolution of Earth’s climate over the course of the Phanerozoic and beyond requires extensive numerical modelling efforts. Classically, this has been done using Earth System Models of varying complexity. While these models are well-suited to simulate a majority of processes in the ocean, the atmosphere and on the land surface, they lack a key component of the Earth system ―  the interior. Processes in the mantle drive plate tectonics on Earth and by means of degassing are a key factor in determining the atmospheric CO2 concentration, influencing biological evolution. Both, the position of continents as dictated by plate tectonics as well as the concentration of greenhouse gases in the atmosphere are known to be crucial in shaping Earth’s climate. An important suite of mechanisms that influences both climate and mantle can be found in silicate weathering, the erosion of weathered material and its transport and sedimentation in subduction zones. The influx of sediments into subduction zones has been shown to alter the rheology of the subduction slab, influencing the speed of subduction and chemistry of the slab and thereby impacting mantle convection processes (e.g. Bello et al., 2015). Here, we present a framework for coupling the new PANALESIS paleogeographic reconstruction (Vérard, 2019) to an Earth System Model of Intermediate Complexity (EMIC) and the mantle convection model with plate tectonics based on StagYY code. This is done using climate output from the EMIC to force a landscape evolution model that is used to compute sediment influx into subduction zones. Degassing rates obtained from the mantle convection simulations are then used to assess atmospheric CO2 levels and create climate lookup tables for different degassing scenarios. These data can then be used to force a temporally continuous carbon cycle model to update previous pCO2 curves for the Phanerozoic and beyond. Given the new paleogeographic reconstruction and the more sophisticated modelling framework, this approach may give new insights into the long-term interactions between mantle and climate and the consequences for biological evolution.

References

Bello, L., Coltice, N., Tackley, P. J., Müller, R. D., & Cannon, J. (2015). Assessing the role of slab rheology in coupled plate-mantle convection models. Earth and Planetary Science Letters, 430, 191-201.

Vérard, C. (2019). PANALESIS: Towards global synthetic palaeogeographies using integration and coupling of manifold models. Geological Magazine, 156(2), 320-330.

How to cite: Werner, N., Verard, C., Brunetti, M., Tackley, P., and Gerya, T.: Towards integrated models of mantle convection, surface dynamics and climate evolution , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5478, https://doi.org/10.5194/egusphere-egu24-5478, 2024.

EGU24-5524 | ECS | Posters on site | BG5.3

Whence the demise and fall of the RNA World? 

Anna Medvegy and Stephen Mojzsis

A widely promulgated concept for the fundamental ancestor-descendent relationship at life’s origin, and thus the onset of Darwinian evolution, is the RNA World hypothesis. If Darwinian evolution on Earth began with a simple RNA molecule which had the ability to replicate itself, in the long run this must have given way to DNA perhaps via an intermediate RNA(±Peptide) World. This could happen once DNA appeared and became the preferred informational molecule for all extant biology. Yet, making sense of this transition is confounded both by the intervening 4 billion years of biological evolution, and a scarce ancient (pre-3.2 Gyr) geologic record. Here, we explore whether the relative instability of RNA to thermal stresses, salt content, pH, variable UV sensitivity and an overall narrow available suite of metabolic styles, strictly limited the range of suitable habitats for RNA World organisms; they were susceptible to marginalization, assimilation and effective extinction. We propose that main factors responsible for the transition from the RNA±Peptide to DNA+Peptide World included (i) overall changes in the geosphere (e.g. heat flow, crustal type, nutrient availability); (ii) transient global heating of the hydrosphere by late accretion bombardment viz. “thermal bottlenecks”; and, (iii) competition from, and perhaps predation by, metabolically diverse and genomically nimble emergent DNA+Peptide organisms. 

How to cite: Medvegy, A. and Mojzsis, S.: Whence the demise and fall of the RNA World?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5524, https://doi.org/10.5194/egusphere-egu24-5524, 2024.

Plants have been a key interface in the global carbon and water cycles for nearly 475 million years. The magnitude of vegetational effects has waxed and waned dynamically because plant abundance and community composition have changed over time. Unravelling how plant communities have shaped, and been shaped by, global biogeochemical cycles relies upon reconstructing the paleoecology and paleoecophysiology of plants, and this process can be challenging in deep time, when plant communities contained organisms with traits that are rare in—or absent from—present-day ecosystems. Fortunately, the archive of how plants have shaped and responded to environmental change is preserved in the fossil record, because the traits and properties of extinct plants can be interpreted from fossilized anatomy in a qualitative, semi-quantitative, and quantitative way. Traits related to water transport in plants. including drought resistance and hydraulic supply to leaves, are particularly useful and important because these traits link individual plant performance to the water and carbon cycles.

The collapse of tropical everwet rainforests end of the Carboniferous Period (~300 Ma) provides an illustration of how plant water transport traits influenced, and were shaped by, the water and carbon cycles. These traits are quantified by combining mathematical models of stem hydraulic conductivity and drought resistance with anatomical measurements from scanning electron and light microscopy images of fossilized plant water transport cells, called xylem. Analysis of stem hydraulic traits in five lineages of extinct Carboniferous plants—arborescent lycophytes, stem group seed plants, stem group tree ferns, coniferophytes, and sphenophytes—reveals differential hydraulic capacity and drought resistance among these plants, despite their simultaneous presence in tropical everwet ecosystems. Significant differences in these two traits are not only present between these five lineages, but can also be observed within several of these plant groups: for example, key parameters may vary by more than an order of magnitude in related plants. High hydraulic capacity and low drought resistance traits were associated with a decline in relative abundance toward the close of the Carboniferous Period, whereas plants with lower hydraulic capacity and higher drought resistance traits increased in relative abundance and survived this floral transition. This change in relative abundance within these communities shaped the hydrologic and carbon cycles which, in turn, amplified environmental stress that, consequently, further altered plant community composition. Implementing this analysis in trait-aware paleoecosystem models illustrates the effect of plant traits on global environments, and vice versa, yielding insight into plant performance during extreme environmental change that is analogous to anthropogenic impacts predicted for the late 21st century and beyond.

How to cite: Wilson, J.: Plant paleoecophysiology traits in deep time: hydraulic conductivity and drought resistance in late Carboniferous Period plants, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6891, https://doi.org/10.5194/egusphere-egu24-6891, 2024.

EGU24-7442 | Orals | BG5.3

Functional traits and trait diversity of leaves: palaeoecological perspectives 

Anita Roth-Nebelsick and Christopher Traiser

Functional traits were originally defined as any characteristic of an organism that contributes to fitness. From this autecological perspective, trait-based research has considerably expanded into approaches of ecosystem analysis that also have high potential for palaeoecological research. In the ecosystem context, the meaning of “trait” has become much broader, encompassing all sorts of measurable quantities carrying ecological information that are themselves categorized into different “trait classes”. For instance, “response traits” are organismal traits responding to environmental parameters whereas “effect traits” act upon the environment.

As primary producers, plants represent a crucial part of ecosystem functioning. Basic ecophysiological processes of plants, particularly gas exchange and photosynthesis, are key elements in the carbon and water cycle and can thereby be understood as “effect traits”. Fossil anatomical traits, such as from fossil leaves, allow for deriving basic ecophysiological parameters from physical laws (such as calculating leaf gas conductance from the diffusion equation). Biochemical parameters, however, are not provided by fossil material and require therefore estimation based on extant plants (such as kinetic properties of the enzyme apparatus of photosynthesis) which adds a certain error margin to the results. Nevertheless, these “mixed” approaches to fossil plant ecophysiology allow for obtaining crucial benchmark data on various ecosystem characteristics, such as primary productivity or evapotranspiration.

            Another branch of trait-based ecosystem research is the study of functional diversity which can be roughly described as the richness and distribution of functions expressed by organisms coexisting within a habitat. Functional diversity is less frequently considered for fossil vegetation compared to the study of autecological effect traits. One reason may be that various approaches for studying extant functional diversity are difficult or even impossible to apply to fossil plants, requiring the development of novel methods suitable for fossil remains.

As a recent example, the Shannon Diversity of leaf architecture based on functional leaf traits identifiable from fossil leaf material was shown to be related to environmental parameters for extant as well as fossil angiosperms.  Devising trait-based approaches to functional diversity suitable for fossil organisms can offer additional fruitful research perspectives for studying environments of the past.

How to cite: Roth-Nebelsick, A. and Traiser, C.: Functional traits and trait diversity of leaves: palaeoecological perspectives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7442, https://doi.org/10.5194/egusphere-egu24-7442, 2024.

EGU24-8733 | Orals | BG5.3

Biogeodynamics of narrow orogenic arcs and their biodiversity hotspots 

Guillermo Booth Rea, Paloma Mas Peinado, Jorge Pedro Galve, Octavio Jiménez Robles, and Jose Miguel Azañón

Narrow Orogenic Arcs (NOA) on Earth are oftenly biodiversity hotspots, where biogeographic evolution is influenced by tectonic forcing. However, the relationships between tectonic mechanisms intrinsic to NOA, landscape evolution and speciation forming biodiversity hotspots have not been dwelt with. Different mechanisms inherent to NOA, such as slab roll back, slab tearing, edge delamination, mantle upwelling and flow around subducted slabs, basin and archipelago migration and volcanic arc growth drive a dynamic landscape evolution that fosters processes of dispersal and allopatric-speciation. Here, we show this with examples from the Western Mediterranean and Caribbean. Slab tearing drives migrating waves of tectonic uplift and subsidence at the edges of orogenic arcs, coupled with crustal thickening followed by heterogeneous extension, forming endorheic basins and marine gateways among high-elevation ranges. Furthermore, vicariant events by isolation in high-elevation mountain ranges, internal drainage basins, stranded back-arc and volcanic arc archipelagos- seem to have driven the distribution and diversification of many taxa. Dispersal events would have been promoted by- drifting forearc archipelagos, changes of river courses (captures) and land bridges between continents, where ancient lineage dispersal followed by allopatric speciation-multiple diversification resulted in the current complex biological assemblages. The characteristic time and space migration of NOA, fosters recurrent processes of dispersal and vicariance, including in situ diversification through time. In this setting, long-time emerged parts of both drifting-forearc or stranded-backarc archipelagos represent both refuge and diversification centers where insular fauna may relate to distant, previously- attached land masses or islands. This is the case of drifting islands like the late Miocene Alboran archipelago in the Gibraltar arc or the Present Margarita island in the Caribbean, bearing biota with most common recent ancestors in the Balearic islands or the Central Coastal Range of Venezuela, respectively. Insular lineages may disperse by the closure of marine gateways between the mainland continents and drifting archipelagos, a process that may also drive the isolation of confined seaways, like the Mediterranean during the Messinian Salinity Crisis. Topographic uplift closing marine gateways or restricting seaways may occur by lithospheric rejuvenation, following delamination or detachment of subducted subcontinental mantle slabs and also by the growth of a volcanic arc. The emergence of new land and islands in the forearc domain, results in speciation and less species-rich communities in the direction of slab retreat. 

How to cite: Booth Rea, G., Mas Peinado, P., Galve, J. P., Jiménez Robles, O., and Azañón, J. M.: Biogeodynamics of narrow orogenic arcs and their biodiversity hotspots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8733, https://doi.org/10.5194/egusphere-egu24-8733, 2024.

EGU24-9713 | Orals | BG5.3

Primary producers during the early Earth  

Patricia Sanchez-Baracaldo

Primary producers convert light energy from the sun into chemical energy in the form of sugars, a fundamental process that has enabled life on Earth. Once ancestral cyanobacteria evolved, they played a crucial role in Earth's history by facilitating the rise of atmospheric oxygen, paving the way for the development of complex life forms. Despite its significance, the origins of photosynthesis are still not fully understood. During the talk, I will highlight key evolutionary events in the history of Cyanobacteria: 1) the Archean origin of PSII,  photochemical reaction centre that catalyses the light-driven oxidation of water to molecular oxygen; 2) the emergence of the crown group of Cyanobacteria; 3) the appearance of filamentous forms around the Great Oxidation Event at 2.32 Ga; and 4) the late emergence of marine planktonic groups between 800-600 Mya. Molecular evolution analyses reveal a significant time gap between the Archean origin of oxygenic photosynthesis and the appearance of planktonic forms at the end of the Precambrian era. By studying the 'genomic record,' we can now unravel how oxygenic phototrophs co-evolved with the Earth's biosphere, contributing to the habitability of our planet.

How to cite: Sanchez-Baracaldo, P.: Primary producers during the early Earth , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9713, https://doi.org/10.5194/egusphere-egu24-9713, 2024.

EGU24-10412 | ECS | Orals | BG5.3

Escarpment Retreat Drives Diversification of Eastern Madagascar through Allopatric Speciation 

Yanyan Wang, Sean Willett, Yi Liu, Loïc Pellissier, and Niklaus Zimmerman

Madagascar, as a biodiversity hotspot on Earth, exhibits a high level of endemism as observed from the prevalent vicariant speciation of terrestrial mammals, amphibians, and flora. Species richness of the island is uneven, with the highest species richness and endemism found on the steep great escarpment of the eastern margin. The unevenness is further observed within the escarpment region in that phylogenic turnover shows both latitudinal and altitudinal variations. Madagascar has remained almost tectonically inactive since the last rifting with Seychelles-India in the late Cretaceous. The high diversity and endemism of Madagascar challenge the conventional notion of uplift-driven speciation, which argues that speciation is driven by the formation of diverse habitat types from tectonic uplift.

Although the fundamental topographic framework of Madagascar has been in place since the late Cretaceous, it is modified in the Cenozoic by multiple processes including island-wide mantle-driven dynamic uplift, erosion-driven landward retreat of the escarpment at the eastern margin, localized volcanic and faulting activities. Our topographic reconstruction reveals that the dominant correlation is between the escarpment and species richness. To investigate the causal mechanisms of the diversity at the eastern escarpment, we constructed landscape evolution models, tracing the dynamics of habitable land surface patches throughout model simulations.

We investigated two distinct landscape scenarios: an escarpment retreat model simulating river incision into a pre-existing plateau with negligible tectonic uplift, and a tectonic uplift model featuring spatially and temporally constant uplift with river incision into the resulting mountain range. The steady-state topographic height of the tectonic uplift model is calibrated to match the plateau elevation of the escarpment model to ensure the same number of habitat types between models. The landscape of a great escarpment is highly dynamic and the heterogenous retreat of the escarpment and the water divide makes the geographically isolated drainage basins expand landward at different rates during the retreat process. Within the escarpment region, habitat patches dynamically appear, disappear, fragment, or merge at a frequency that scales with the retreat rate. In contrast, the tectonic uplift model only exhibits similar dynamic landscape change during the transient phase with habitat patches stabilizing spatially and temporally once a steady state topography was achieved.

The models predict that escarpment retreat fosters habitat patch dynamics such that patches isolate, or reconnect with a frequency on the order of a million years, appropriate for allopatric speciation. The habitat patch dynamics are a consequence of processes of catchment expansion, river captures, isolation of highland remnants, and formation of topographic barriers during the retreat. We conclude that the spatially heterogeneous but temporally steady retreat of the Madagascar escarpment since rifting has sustained allopatric speciation over evolutionary timescales resulting in the observed high diversity and its spatial pattern of eastern Madagascar.

How to cite: Wang, Y., Willett, S., Liu, Y., Pellissier, L., and Zimmerman, N.: Escarpment Retreat Drives Diversification of Eastern Madagascar through Allopatric Speciation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10412, https://doi.org/10.5194/egusphere-egu24-10412, 2024.

EGU24-10608 | Orals | BG5.3

On the time and space scales of geological, climatic, and biological changes 

Laurent Husson, Manon Lorcery, and Tristan Salles


It is commonplace to claim that the geo-, atmo-, and bio- spheres of the Earth are coupled, or that biodiversity depends on their interplays, but the implicit hypothesis on the time and space scales at which coupling holds are seldom envisioned. For instance, "deep time" is a convenient shortcut that loosely conveys the ideas of steady state and large spatial scales, but what are the limits? Observations often fall short because the geological record is fragmentary, but also because it is uncommon to access crucial informations such as rates of speciation, extinction, or migration. Recent advances in numerical landscape evolution models permit to explore the dynamic equilibrium between the spheres of the Earth. Based on a few examples at different time and space scales, we will browse settings where steady state holds (where biodiversity depends on the instantaneous states of the geology and climate, as for instance set by the Wilson cycle), where transient state prevails (where considering the time derivative of their states is needed, as for instance when the pace of landscape reshaping promotes biodiversification), and where dynamic equilibrium breaks down in some sort of metastable situations (as in the press-pulse theory that well applies to the mass extinction events). 

How to cite: Husson, L., Lorcery, M., and Salles, T.: On the time and space scales of geological, climatic, and biological changes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10608, https://doi.org/10.5194/egusphere-egu24-10608, 2024.

EGU24-12430 | Posters on site | BG5.3

Tectonic “quakes”, scaling and the turbulence of solids 

Shaun Lovejoy, Andrej Spiridonov, and Lauras Balakauskas

Over thirty years ago, Y. Kagan proposed that seismicity is “the turbulence of solids”.  Indeed, fluid turbulence and seismicity have many common features: they are both highly nonlinear with huge numbers of degrees of freedom.  Beyond that, Kagan recognized that they are both riddled with scaling laws in space and in time as well as displaying power law extreme variability and – we could add – multifractal statistics.

Kagan was referring to seismicity as usually conceived, as a sudden rupture process  occurring over very short time periods.  We argue that even at million year time scales, that the movement of tectonic plates is “quake-like” and is quantitatively close to seismicity, yet caused by relatively smooth mantle convection fluid. 

To demonstrate this, we analyse the GPlates data base of 1000 point trajectories over the last 200 Myrs, analyzing the statistics of the dynamically important vector velocity differences where Dr is the great circle distance between two points and Dt is the corresponding time lag.  The longitudinal and transverse velocity components are analysed separately.  The longitudinal scaling of the mean longitudinal difference follows the scaling law <Dv(Dr)> ≈ Dr^H with H close to the theoretically predicted value  H = 1.  This high value implies that  mean fluctuations vary relatively smoothly with distance.  Yet at the same time,  the intermittency exponent C1 is extremely high (C1 ≈ 0.5) implying that from time to time there are enormous “jumps” in velocity. For comparison, laminar (nonturbulent) flow has H = 1 and is not intermittent (C1 = 0), fully developed isotropic fluid turbulence has the (less smooth) value H = 1/3 (Kolmolgorov) but with non-negligible intermittency C1 ≈ 0.07 and seismicity has very large C1 ≈ 1.3.  Our study thus quantitatively shows how smooth fluid-like behaviour can co-exist with highly intermittent quake-like behaviour.

We find that the outer spatial scale is near the size of the Earth (≈15000km) whereas the outer time scale is ≈60Myrs.  We show that the statistics are multifractal with a very large intermittency parameter that is close to that of seismicity determined at sub-decadal time scales.  The transverse scale function is the 2/3 power of the longitudinal scale function,  the transverse intermittency exponent (C1 ) is reduced by this factor.  The temporal scaling of the mean fluctuations of both the longitudinal and transverse components is close to a ½ power of the time lag: Dr≈Dt^(1/2).  However since the spatial scaling of the longitudinal and transverse components are different, we obtain two somewhat different space-time diagrams.  We link the parameter estimates to fundamental mantle convection parameters, and we make corresponding multifractal simulations.

Finally, we discuss the implications for the megaclimate regime, including macro-evolution. Both megaclimate and macroevolution of global diversity are scaling processes with H>0 characterized by intermittent — climate “events”, such as P-Tr hyperthermal, in the case of former, and mass extinctions and originations in the case of latter. The tectonic scaling, and the extreme multifractal behavior grounds both—the long-term climate, and the biological evolution on the first principles of scaling in macroscopic physical systems.

How to cite: Lovejoy, S., Spiridonov, A., and Balakauskas, L.: Tectonic “quakes”, scaling and the turbulence of solids, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12430, https://doi.org/10.5194/egusphere-egu24-12430, 2024.

EGU24-12706 | Orals | BG5.3

Ediacaran ultra-weak geomagnetic field, oxygen rise, and the diversification of macroscopic animals 

Rory Cottrell, John Tarduno, Wentao Huang, Shuhai Xiao, Eric Blackman, Tinghong Zhou, Jack Schneider, Richard Bono, and Mauricio Ibañez-Mejia

A major discovery in the last 5 years has been the recognition that the geomagnetic field was at ultralow field strengths, some ten times weaker than the present-day, during the Ediacaran Period. These ultralow values were first reported from single crystal paleointensity analyses of 565 Ma rocks of the Sept Îles Mafic Intrusion Suite (Bono et al., Nature Geosci., 2019), and were later confirmed by studies of dikes and lavas from other sites in Ukraine and Canada (e.g., Thallner et al., EPSL, 2021). The ultralow values are followed by a rapid increase in field strength in the early Cambrian (Zhou et al., Nature Commun., 2022) and together these signals are consistent with initial nucleation of Earth’s inner core, as predicted by thermal models and geodynamo simulations (Davies et al., GJI, 2022). An updated timeline incorporating new paleointensity data from several localities in North America, South America and Africa highlights a striking temporal correspondence between the ultralow field, the Ediacaran diversification of macroscopic animals, and some geochemical indicators for the rise of oxygenation. The onset of inner core growth and unusual state of the geomagnetic field should not correspond with animal evolution or oxygenation unless changes in the Ediacaran magnetosphere attendant with the ultralow field somehow affected the atmosphere, oceans and/or biosphere. We will consider these possibilities. 

How to cite: Cottrell, R., Tarduno, J., Huang, W., Xiao, S., Blackman, E., Zhou, T., Schneider, J., Bono, R., and Ibañez-Mejia, M.: Ediacaran ultra-weak geomagnetic field, oxygen rise, and the diversification of macroscopic animals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12706, https://doi.org/10.5194/egusphere-egu24-12706, 2024.

EGU24-13629 | ECS | Orals | BG5.3

Ecosystem engineers impact marine biodiversity during the Phanerozoic 

Alison Cribb, Simon Darroch, and Thomas Ezard

Ecosystem engineers are keystone taxa whose behaviours alter the habitability of their environments for themselves and other organisms by directly influencing the availability of resources in their ecosystems. From a deep time perspective, ecosystem engineers are hypothesized to have played a major role in the co-evolution of life and the Earth systems, as many major ecosystem engineering activities directly modulate the cycling of key nutrients. Moreover, ecosystem engineers are thought to have impacted diversity by increasing environmental heterogeneity, and so their evolution may drive some of the biodiversity dynamics observed in the fossil record. Here, we investigate the impact of two groups of marine ecosystem engineers – bioturbators and reef-builders – on biodiversity through the Phanerozoic. Using fossil occurrence data from the Paleobiology Database, we calculate the effect size of bioturbating and reef-building ecosystem engineers on various biodiversity metrics for each stage through the Phanerozoic. Most broadly, we find that ecosystem engineers had a positive impact on biodiversity within the environments where they live during the Phanerozoic. We also find clear taxonomic differences between environments with and without ecosystem engineers, suggesting ecosystem engineers create a unique set of environmental characteristics to which taxa of specific ecological characteristics become adapted. These results emphasize the important role of ecosystem engineers in influencing key aspects of the Earth systems on a variety of scales that manifest in changes in biodiversity.

How to cite: Cribb, A., Darroch, S., and Ezard, T.: Ecosystem engineers impact marine biodiversity during the Phanerozoic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13629, https://doi.org/10.5194/egusphere-egu24-13629, 2024.

EGU24-13765 | Posters on site | BG5.3

Antifeedant biomarkers in Cretaceous sediments from the North Sudetic Basin, Poland 

Magdalena Goryl, Leszek Marynowski, and Bernd R.T. Simoneit

The Late Cretaceous succession of siliciclastic sediment from the Czerna Formation in the North Sudetic Basin (SW Poland) consists of sandstones, dark grey mudstones and shales with coal intercalations. Samples of dark grey mudstone with lignite fragments from the inoperative sandstone quarry in Rakowice Małe, and samples of coals and siltstones from the sandstone quarry in Wartowice, were selected for gas chromatography-mass spectrometry analyses. All samples were thermally immature (the mean vitrinite reflectance (Rr) values did not exceed 0.45%).

The samples contained phenolic abietans, including ferruginol and chamaecidin, which act as a defence mechanism against insect and microbial attack in coniferous trees (e.g., Gonzalez, 2015). Therefore, these compounds are widespread in extant coniferous trees (Simoneit et al., 2021) and can be identified in the geological record through their primary and diagenetic products. For instance, ferruginol (natural product), along with its derivatives: simonellite and retene, are present in the Cretaceous sedimentary rocks of the North Sudetic Basin. Another compound identified in the investigated samples is bergamotan. Perry et al. (2003) found that two derivatives of this compound were responsible for the insect antifeedant activity. Moreover, some of the identified compounds, such as chamazulene, are known in medical science for their anti-inflammatory properties (Safayhi et al., 1994).

The presence of natural products with antifeedant activity against insects in Cretaceous samples suggests that plants had developed host defence mechanisms tens of millions of years ago.

 

Acknowledgements

The authors acknowledge financial support from the Polish National Science Centre (grant 2018/31/N/ST10/01646 to MG).

 

References

Gonzalez, M.A., 2015. Aromatic abietane diterpenoids: Their biological activity and synthesis. Natural Product Reports 32, 684–704.

Perry, N. B., Burgess, E. J., Foster, L. M., Gerard, P. J. (2003). Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena clavigera. Tetrahedron Letters 44(8), 1651–1653.

Safayhi, H., Sabieraj, J., Sailer, E. R., Ammon, H. P. (1994). Chamazulene: An antioxidant-type inhibitor of leukotriene B4 formation. Planta Medica. 60 (5), 410–3. 

Simoneit, B. R. T., Rybicki, M., Goryl, M., Bucha, M., Otto, A., Marynowski, L. (2021). Monoterpenylabietenoids, novel biomarkers from extant and fossil Taxodioideae and rocks. Organic Geochemistry, 154, 104172.

How to cite: Goryl, M., Marynowski, L., and Simoneit, B. R. T.: Antifeedant biomarkers in Cretaceous sediments from the North Sudetic Basin, Poland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13765, https://doi.org/10.5194/egusphere-egu24-13765, 2024.

Mercenaria stimpsoni is a new paleoclimatic archive in the mid- to high-latitude western Pacific coastal area. This species is a cold-water bivalve with a long life span (>100 years old), and shell growth patterns and oxygen isotope ratios are useful tools as paleoenvironmental proxies. So far it is known that the shells of M. stimpsoni have distinct annual lines with microincrements between each annual line. However, the relationship between microgrowth patterns and marine environment is not understood. Fossil shells of this species are often found in interglacial marine sediments in Central Japan. Thus, understanding the relationship between microgrowth patterns and marine environment is key to reconstruct paleoclimate with high temporal resolution in this region.

The purpose of this study was to evaluate the usefulness of the microgrowth patterns in this species as a paleoenvironmental proxy. Sample shells were collected from the coasts of Hokkaido and Iwate Prefecture, Japan. Shells were then cut into thick sections along the maximum growth axis. The surfaces of the thick sections were polished. Photographs were taken with a Keyence VHX2000 at 300x to 1000x magnification. Photomosaics were created with Adobe Photoshop CC. Then, the number of microincrements and microincrement widths were measured with ImageJ. Then, 120 to 150 μg of carbonate powder was collected from the outer outer layer along the growth direction and provided for oxygen isotope analysis. Finally, we compared microgrowth patterns with marine environmental data. Growth line observations confirmed that approximately 100 microgrowth lines were formed per year in the shells, and that the micorogrowth patterns might reflect mainly seawater temperatures and planktonic blooms. In the poster presentation, we will report the relationship between microgrowth patterns and marine environment. By clarifying the relationship between them, the temporal resolution of paleoclimate reconstruction using this species can be improved to less than the annual scale.

How to cite: Miki, S. and Shirai, K.: Evaluation of the microgrowth patterns of shells of long-lived bivalve, Mercenaria stimpsoni as a paleoenvironmental proxy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14316, https://doi.org/10.5194/egusphere-egu24-14316, 2024.

EGU24-15098 | ECS | Orals | BG5.3

Climatic controls on dinosaur evolution, diversity and biogeography 

Emma Dunne, Lisa Schnetz, Alexander Farnsworth, Stephan Lautenschlager, Pedro Godoy, Eren Tasimov, Richard Butler, and Sarah Greene

Dinosaurs were dominant members of terrestrial ecosystems throughout the Mesozoic, yet only recently are studies beginning to illuminate the key role of global climate variation in controlling dinosaur biodiversity, global distribution, and macroevolution. Our work uses statistical, biogeographic, and phylogenetic comparative approaches with comprehensive fossil occurrence data and paleoclimate data from general circulation models to quantitatively examine key hypotheses connecting patterns of dinosaur diversity and evolution with climatic conditions. We examined the impact of climate change in driving early dinosaur evolution across the end-Triassic mass extinction (ETME). Our results demonstrate that the geographic distribution of early sauropodomorphs was constrained by climate and following the ETME, the expansion of climate zones facilitated the geographic expansion of sauropodomorphs and other dinosaurs. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. This same approach is also revealing the relationship between climatic conditions and dinosaur diversity in the Jurassic to Cretaceous, with implications for our understanding of the origins of sauropod gigantism and the evolution of herbivory. Our results suggest that primary productivity was a key climatic factor in driving sauropod evolution and promoting the evolution of larger body sizes, supporting the hypothesis that gigantism was facilitated by the increasing availability of high quality vegetation. Analyses of dinosaur paleoclimatic niche space show evidence of niche partitioning between herbivorous theropods and ‘traditional’ herbivorous dinosaurs (e.g. sauropods), indicating that climatic changes may have influenced evolutionary innovations related to dinosaur diet. Further work examining the relationship between dinosaur diversity and changes in vegetation using state-of-the-art vegetation models will illuminate the key role played by environmental change in controlling dinosaur diversity and evolution throughout the Mesozoic.

How to cite: Dunne, E., Schnetz, L., Farnsworth, A., Lautenschlager, S., Godoy, P., Tasimov, E., Butler, R., and Greene, S.: Climatic controls on dinosaur evolution, diversity and biogeography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15098, https://doi.org/10.5194/egusphere-egu24-15098, 2024.

EGU24-15732 | ECS | Posters on site | BG5.3

Deciphering the dynamics of the Mulde Event—Bayesian ultra-high-resolution ostracod paleocommunity analysis  

Liudas Daumantas, Simona Rinkevičiūtė, Sigitas Radzevičius, and Andrej Spiridonov

Silurian period witnessed a series of global extinction events, such as the Mulde/lundgreni Event during of the late Wenlock epoch.  These events triggered complex and abrupt changes in Earth's biota. The brief nature of these events requires a high sampling resolution for paleontological studies, a feat seldom achieved. By integrating published data with new samples from the Gėluva-118 core, we have attained resolution of ≈ 10 Ka in examining ostracod paleocommunities during the Mulde/lundgreni Event.

Our approach involved a custom-made binary recursive segmentation algorithm for the hierarchical subdivision of stratigraphically contiguous segments. This algorithm was applied to the ostracod taxonomic compositional time series data from the Gėluva-118 core (Lithuania). The results revealed significant changes in ostracod community composition, enabling us to delineate the event's stages. We employed a Bayesian Age-Depth model to assess the timing of these changes. The median and 95% Highest Density Interval (HDI) durations for each stage, as well as for the entire event, are as follows: Collapse – 50 Ka (11 – 171 Ka), Maximal Stress – 120 Ka (31 – 601 Ka), Recovery – 80 Ka (21 – 576 Ka), and the entire Mulde/lundgreni Event – 260 Ka (100 – 1,136 Ka). Our analysis of bootstrapped sample averages of diversity indices revealed that the Maximal Stress stage, marked by a severe scarcity of ostracods, signified a distinct shift in community diversity state. Prior to this stage, ostracod communities were less diverse, yet exhibited higher increases in evenness with growing diversity, indicating distinct community assembly and community structure patterns. Ostracod communities from the Collapse and Recovery stages resembled those adjacent to the Mulde/lundgreni Event interval but showed significantly reduced abundances, lower inverse Simpson index, and higher evenness. Furthermore, our findings suggest a nonlinear recovery stage, punctuated by setbacks and stabilization phases.

These insights demonstrate the potential of high-resolution paleontological studies in deciphering the chronology and pace of intermittent global events.

This research was supported by S-MIP-21- 9 “The role of spatial structuring in major transitions in macroevolution”.

How to cite: Daumantas, L., Rinkevičiūtė, S., Radzevičius, S., and Spiridonov, A.: Deciphering the dynamics of the Mulde Event—Bayesian ultra-high-resolution ostracod paleocommunity analysis , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15732, https://doi.org/10.5194/egusphere-egu24-15732, 2024.

EGU24-15917 | ECS | Orals | BG5.3

Stress, strain and crustal flow patterns in a corner collision: insights from coupled 3D numerical models 

Luuk van Agtmaal, Attila Balazs, Dave May, and Taras Gerya

Large and fast collisional systems such as the Eastern Tibetan-Himalayan orogenic system can have distinct corner structures. Away from the corners, plate convergence is accommodated primarily by convergence-parallel processes such as (continental) subduction, crustal thickening and buckling. Around the corners, oblique and convergence-perpendicular processes become more important, such as strike-slip, transpressional and transtensional faults. The strike of the subduction front itself can also vary in space, as tomographic images show for the case of the Indian slab beneath Tibet and Burma. At the corners themselves, a peculiar syntaxis structure may form which is characterised by effective strain localisation and high rates of exhumation and erosion. However, our understanding of the temporal evolution of orogenic syntaxis formation is still elusive. 

Here, we use high-resolution, three-dimensional thermomechanical models to investigate principal stress orientations, strain rate patterns and upper versus lower crustal flow patterns within a continental corner collision setting loosely resembling the Eastern Tibetan-Himalayan orogenic system. We use a 1000 x 200 x 1000 (x * y * z) model domain with a permeable lower boundary and a 2 km grid resolution in each dimension. Each grid cell has 8 markers. The models are carried out using I3ELVIS (Gerya and Yuen, 2007) coupled to the surface process model FDSPM (Munch et al., 2022). Our numerical experiments highlight that i) significant lateral variability occurs despite prescribing orthogonal kinematic boundary conditions; ii) a high variability of stress states and deformation styles occur within the modelled orogen and plateau; iii) Lower crust beneath the plateau escapes later than upper crust, but around 3-4 times faster. Lastly, we examine the sensitivity of the model evolution to different degrees of strain weakening, intracrustal layering, and the diffusion coefficient of the surface process model.

Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1), 83–105. https://doi.org/10.1016/j.pepi.2007.04.015

Munch, J., Ueda, K., Schnydrig, S., May, D. A., & Gerya, T. V. (2022). Contrasting influence of sediments vs surface processes on retreating subduction zones dynamics. Tectonophysics, 836, 229410. https://doi.org/10.1016/j.tecto.2022.229410

How to cite: van Agtmaal, L., Balazs, A., May, D., and Gerya, T.: Stress, strain and crustal flow patterns in a corner collision: insights from coupled 3D numerical models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15917, https://doi.org/10.5194/egusphere-egu24-15917, 2024.

EGU24-17160 | Orals | BG5.3

Uncovering life and planetary co-evolution through the genomic record 

Cara Magnabosco, Paula Rodriguez, Fatima Husain, Maddie Paoletti, Chris Parsons, Jack Payette, Sarah Swartz, Erik Tamre, and Greg Fournier

The maintenance of Earth’s habitability over geologic timescales is largely driven by the metabolisms and ecologies of bacteria and archaea. In this context, the role that microorganisms have played throughout major environmental transitions during the Archean and Proterozoic Eons are especially noteworthy. The “genomic record” represents the accumulated adaptations to planetary change maintained within the collective genetic pool of life. In this presentation, we will describe how the genomic record can be used to improve our understanding of microbial natural history and present six broadly applicable principles to aid in the investigation these complex questions. This framework will then be used to guide a a meta-analysis of microbial genomes derived from collections large metagenomic databases across diverse environments to illustrate how specific environmental variables drive the microbial diversity patterns we see today.

How to cite: Magnabosco, C., Rodriguez, P., Husain, F., Paoletti, M., Parsons, C., Payette, J., Swartz, S., Tamre, E., and Fournier, G.: Uncovering life and planetary co-evolution through the genomic record, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17160, https://doi.org/10.5194/egusphere-egu24-17160, 2024.

EGU24-17379 | ECS | Orals | BG5.3

125 Ma of physiographic changes and mammal macroevolution 

Manon Lorcery, Laurent Husson, Tristan Salles, Oskar Hagen, Alexander Skeels, and Sébastien Lavergne

Changes in the physical environment, whether geological or climatic, are known to be major drivers of biodiversity. At the interface between the solid Earth and the climate lies the physiography, and landscape complexity and variety may control biodiversity mechanisms at a finer scale that the large scale patterns of plate tectonics and global climate. To test whether variation of physiography through time and space can explain the current richness pattern of biodiversity and understand the impact of landscape complexity evolution on specific mechanistic processes, we simulated the diversification of terrestrial mammals at global scale, over 125 Ma of geological and climatic changes, using a spatially explicit eco-evolutionary simulation model (genesis). We designed four evolutionary scenarios in which evolution was only dependent on climate and plate tectonics (M0), and scenarios where physiographic diversity was implemented in speciation (M1), dispersion (M2) and niche ecology (M3). To assess whether model predictions are consistent with the empirical distribution of terrestrial mammals, we statistically identify general emergent patterns of biodiversity within and across spatial and temporal scales. 

How to cite: Lorcery, M., Husson, L., Salles, T., Hagen, O., Skeels, A., and Lavergne, S.: 125 Ma of physiographic changes and mammal macroevolution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17379, https://doi.org/10.5194/egusphere-egu24-17379, 2024.

EGU24-18509 | Orals | BG5.3

Exploring the Links between Testate Amoeba Traits and Eutrophication in Lakes 

Helen Roe, Andrew Macumber, Stephen Prentice, Timothy Patterson, Carl Sayer, and David Emson

There is considerable potential to apply traits-based approaches to the subfossil remains of shell-forming micro-organisms which preserve well in sediments and whose short generation times make it possible to achieve high-temporal resolution in palaeoecological studies.  In this paper we review progress in applying traits-based approaches to freshwater testate amoebae (Arcellinida), a diverse group of protists which are abundant in lakes and are valuable palaeoecological indicators.  Drawing on published studies from the last ~10 years, we describe the methodologies which have been applied to delimit testate amoeba (TA) traits and review the challenges associated with their measurement and interpretation.  We also showcase the results of ongoing work in seven lakes (UK, Canada) which aims to (i) examine the character and causes of trait-based variability in palaeolimnological settings; (ii) apply novel biometric approaches to aid in trait delimitation; and (iii) explore the potential for combining phylogenetic with advanced morphometric approaches to better understand the ecological and evolutionary significance of TA traits.

            We applied geometric morphometric analysis to define test size and shape indices and summarise testate amoeba community dynamics along a temporal gradient of eutrophication in a large shallow lake in Scotland, UK.  Cluster analysis of test size and shape indices yielded three assemblages, each dominated by a single shape: elongate, spherical and ovoid. When plotted stratigraphically, we observed increases in spherical tests, decreases in elongate tests and shrinking of test size coeval with eutrophication. Decreases in the elongate cluster may reflect benthic conditions with reduced oxygen levels, while increases in the spherical cluster are likely associated with an expanding macrophyte community that promoted pelagic and epibiotic life habits.  Shrinking of test size may be a stress response to eutrophication and/or warming temperatures. Tracking community dynamics using test size and shape indices was found to be as effective as using traditional species-based approaches to summarize key palaeolimnological changes, with the added benefit of being free of taxonomic bias.  The approach thus shows significant potential for future studies of aquatic community change in nutrient-impacted lakes.

            To further investigate the functional significance of the Arcellinida shape groups, we examined the phylogenetic signal of morphological traits in elongate Difflugia species which occur in eutrophic and mesotrophic lakes.  Previous phylogenetic work has shown that whilst overall test morphology (e.g., spherical or elongate) is generally conserved in Arcellinida lineages, the taxonomic significance of other traits (e.g., size, ornamentation, mixotrophy/heterotrophy metabolism type) is not well understood.  Our analyses revealed two clades which could be reliably separated by test size and the presence/absence of mixotrophy.  This suggests that test size may reflect trophic level, with smaller taxa occupying lower trophic levels.  In addition to having larger tests, elongate mixotrophic Difflugia are characterised by wide, flat bases and inflation of the lower part of the test.  These morphological traits may provide additional space for endosymbionts and/or increased surface area to aid light transmission.  Continued research into the ecological and evolutionary significance of morphological traits will serve to strengthen palaeoecological inferences, increasing the importance of lacustrine testate Arcellinida as environmental proxies.

How to cite: Roe, H., Macumber, A., Prentice, S., Patterson, T., Sayer, C., and Emson, D.: Exploring the Links between Testate Amoeba Traits and Eutrophication in Lakes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18509, https://doi.org/10.5194/egusphere-egu24-18509, 2024.

EGU24-18542 | Posters on site | BG5.3

Continuous 3D modelling over deep time – the SCION Earth Evolution Model 

Benjamin Mills, Dongyu Zheng, Khushboo Gurung, Andrew Merdith, Alexander Krause, Zhen Xu, Fred Bowyer, and Stephen Hunter

Earth system models for deep time have typically been unable to represent geological timespans in 3D because climate and ocean circulation plays a key role in global biogeochemistry and generating a 3D physical climate simulation is extremely computationally expensive. This means that Earth System Modelling for periods of over 1 Myr has been exclusively carried out in nondimensional box models, which leads to oversimplification of spatially heterogeneous processes like continental weathering and marine carbon burial. This simplification may be a key reason why so many climate questions over deep time remain unresolved. The SCION (Spatial Continuous IntegratiON) project aims to produce a 3D and self-consistent climate and biogeochemical system that can be run over billion-year timeframes. To do this, it employs a physical climate emulator which is developed using a Deep Learning method trained on hundreds of General Circulation Model runs over different paleogeographies and CO2 levels. The SCION development project – SIM-EARTH – also includes a new process-based reconstruction of paleotopography using the GPlates kinematic plate model, development of a long-term dynamic global vegetation module and ocean biogeochemical module, and databasing projects to establish 3D datasets for marine and terrestrial palaeontology and geochemistry that can be compared to model outputs at the local scale to test hypotheses. We hope that new model frameworks like this can help us better understand the evolution of Earth’s surface conditions over time, assess the contribution of the biosphere to global environmental change, and help determine what fundamental characteristics are required for a planet to be habitable for complex life.

How to cite: Mills, B., Zheng, D., Gurung, K., Merdith, A., Krause, A., Xu, Z., Bowyer, F., and Hunter, S.: Continuous 3D modelling over deep time – the SCION Earth Evolution Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18542, https://doi.org/10.5194/egusphere-egu24-18542, 2024.

EGU24-18738 | ECS | Orals | BG5.3

How did the Permian-Triassic hot house climate shape the vegetation landscape and how did the land plant fight back? 

Zhen Xu, Jianxin Yu, Jason Hilton, Barry H. Lomax, Paul B. Wignall, and Benjamin Mills

During the Permian-Triassic Mass Extinction (PTME) ~252Ma, diverse lowland forests were replaced by low diversity pioneer herbaceous lycopod communities that proceeded to dominate the Early and Middle Triassic landscape. The flourishing of Early-Middle Triassic herbaceous lycopods was coincident with data that suggests lethally warm surface temperatures (>40ºC) occurred across large regions of the planet. To explore how these plants were able to thrive during this interval of enhanced climatic stress, we collected data from over 400 fossil plant specimens from South China, supplemented by additional data from literature reviews from other regions and geological ages. Our studies on their morphology indicate that among all Phanerozoic lycopods the transitional Permian-Triassic genus Tomiostrobus (=Annalepis) has the closest morphological relationship with the recent lycopod Isoetes.

Extant Isoetes are renowned for their flexibility with regard to the photosynthetic pathway they use and their capacity to absorb CO2 through their roots. To evaluate whether this photosynthetic flexibility was linked to their Early-Middle Triassic ecosystem dominance, we undertook carbon isotope and sedimentary facies analysis including plant taphonomy to test for the presence of the Crassulacean Acid Metabolism (CAM) photosynthetic pathway. Plants capable of CAM pathway growing in stressful environment typically have heavier isotopic signatures while show typical C3 plant signatures in hospitable environment. Our carbon isotope data shows that Permian Triassic Transition Tomiostrobus isotopic signature is on average ~2‰ less negative when compared to contemporary non lycophyte vegetation. Furthermore, the carbon isotope of the Middle Triassic lycopods ~1.07‰ heavier than the other plants, while Late Permian Lepidodendron exhibits a similar δ13C value with other contemporary plants. These findings suggest that CAM photosynthesis may have played a role in the dominance of the Triassic herbaceous lycopods. The dominance of CAM plants following the PTME has implications from an Earth Systems standpoint due to their diminished productivity and a lower capacity for biotic weathering, features that likely suppressed negative feedback loops important in driving climate stabilization during the ~5Ma PTME recovery phase.

How to cite: Xu, Z., Yu, J., Hilton, J., Lomax, B. H., Wignall, P. B., and Mills, B.: How did the Permian-Triassic hot house climate shape the vegetation landscape and how did the land plant fight back?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18738, https://doi.org/10.5194/egusphere-egu24-18738, 2024.

EGU24-19816 | ECS | Posters on site | BG5.3

Modelling the life-environment interface in ancient shelf seas 

Sara Sjosten, Stuart Daines, and Tim Lenton

The co-evolution of life and environment is a dynamic system of feedbacks. Much of the evolution of life took place in localized shelf sea environments where evolving biota and redox conditions created feedbacks which are hypothesized to have increased the ecospace for life to radiate - and sometimes perhaps brought about its own demise. Models can suggest hypotheses to test ecosystem dynamics and the effects of changes to life or the environment on the other. A particular modelling challenge is to connect these localized environments to global Earth system dynamics over long timescales. A hierarchy of models is needed to separate spatial and temporal scales and allow for the construction of models specific enough to be supported by limited geological data. We introduce a 1D column model of an ocean shelf sea in the PALEO framework to represent the ecological dynamics of important early life forms such as plankton, sponges and early burrowers and their effects on redox conditions, sediment burial and diagenesis. This model demonstrates that ecological dynamics and nutrient cycling can be modelled at the finest scales, while remaining computationally viable over geological timescales. Ongoing work integrating this model with data from critical time intervals in the Ediacaran and Cambrian can provide specific hypotheses for the local behavior of the life-environment interface and can be connected to broader models for global investigations.

How to cite: Sjosten, S., Daines, S., and Lenton, T.: Modelling the life-environment interface in ancient shelf seas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19816, https://doi.org/10.5194/egusphere-egu24-19816, 2024.

EGU24-19830 | ECS | Posters on site | BG5.3

Exploring the role of weathering dynamics, nutrient input and palaeoredox conditions on the origin of biomineralization and ecosystem habitability in the late Ediacaran Nama Group, Namibia   

Fred Bowyer, Gustavo Paula-Santos, Collen-Issia Uahengo, Kavevaza Kaputuaza, Junias Ndeunyema, Mariana Yilales, Ruaridh Alexander, Andrew Curtis, Simon Poulton, Simone Kasemann, and Rachel Wood

     The first animals (metazoans) with skeletons belong to the tubular ‘cloudinid’ morphogroup, the lowest occurrence of which marks the base of the Nama biotic assemblage (ca. 551–550 Million years ago, Ma). This evolutionary first appearance coincided with, or immediately post-dated, a major faunal turnover event associated with the loss of many soft-bodied White Sea assemblage taxa that dominated the preceding ca. 6–10 Myrs. At present, there is no evidence that the majority of cloudinid skeletons were biomineralized under strong biological control. Instead, these early biomineralizing metazoans may have acquired their skeletons with relative ease in response to ambient seawater chemistry in carbonate settings. The trigger for the origin of metazoan biomineralization remains unknown, but may have been linked to changes in seawater Mg/Ca and/or environmental oxygen concentration.  

     Weathering-derived nutrient input can fuel marine productivity and regional deoxygenation on short-medium timescales, leading to organic carbon and pyrite burial and atmospheric oxygenation on longer timescales. Changes to the intensity and style of weathering on the global scale can also alter the flux of dissolved cations (e.g., Ca and Mg) and alkalinity to the oceans. Despite their importance, global weathering dynamics at the dawn of animal biomineralization remain poorly understood. Carbonate-hosted Sr and Li isotopes have the potential to track the degree and style of weathering, and temporal trends in both datasets may therefore provide meaningful insights into the dynamics of associated elemental fluxes to regional palaeoenvironments. 

     Late Ediacaran sedimentary rocks of the Nama Group (ca. 551–538 Ma) host a rich fossil assemblage that includes impressions of both soft-bodied organisms and the lowest known occurrence of the skeletal cloudinid, Cloudina. Here we present new Sr and Li isotope data from carbonates in four outcrop sections, and new data of carbonate carbon isotopes, major and trace element concentrations, and Fe speciation from two cores drilled as part of the ICDP GRIND-ECT project, which together span the entire Ediacaran portion of the Nama Group succession. The combination of these data, when considered within a sequence stratigraphic framework, clearly reveals the influence of changes in regional weathering intensity/style on marine palaeoredox dynamics. Furthermore, calibration of these new data within a global chronostratigraphic age model reveals cyclicity in weathering proxies from multiple cratons that respond directly to changes in eustatic sea level. The implications of these new time-calibrated geochemical and stratigraphic data are considered relative to the timing of the earliest metazoan biomineralization, and major faunal turnover events that preceded and coincided with deposition of the Nama Group succession. 

How to cite: Bowyer, F., Paula-Santos, G., Uahengo, C.-I., Kaputuaza, K., Ndeunyema, J., Yilales, M., Alexander, R., Curtis, A., Poulton, S., Kasemann, S., and Wood, R.: Exploring the role of weathering dynamics, nutrient input and palaeoredox conditions on the origin of biomineralization and ecosystem habitability in the late Ediacaran Nama Group, Namibia  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19830, https://doi.org/10.5194/egusphere-egu24-19830, 2024.

EGU24-21627 | ECS | Orals | BG5.3

Regional tectonics shaped plant biodiversity in Colombian Andes 

Yi Liu, Richard Ott, Loïc Pellissier, and Niklaus Zimmermann

Northern South America, particularly the geologically dynamic Colombian Andes, stands as a region of highest plant biodiversity. While the influence of mountain uplift in the tropical Andes on biodiversity patterns is well-recognized, the repercussions of these landscape changes on the evolutionary dynamics of the local flora have been understudied. Here, we aim to fill this gap by investigating the role of uplift history and landscape evolution in driving the assembly and maintenance of plant biodiversity in the Colombian Andes. We integrate a comprehensive reconstruction of individual geological blocks with plant phylogenies, distribution patterns, and the resulting biogeographic structuring of the endemic flora. Our comparative analysis reveals a substantial agreement between the geological blocks and biogeographic realms instead of climate, indicating the fundamental role of regional tectonics shapes the observed pattern of biodiversity. Notably, the northern segments of the Western and Central Cordillera and Eastern Cordillera, representing the two most-recent fast uplift blocks, exhibit a higher prevalence of endemic species and a significant accumulation of in situ speciation events over the last 10 million years. Our findings provide a detailed perspective on how landscape changes have driven the diversification of flora in the Colombian Andes and contribute to a broader understanding of the intricate interplay between geological processes and plant evolution, emphasizing the importance of considering regional tectonic dynamics in unraveling the heterogeneous biodiversity patterns on Earth.

How to cite: Liu, Y., Ott, R., Pellissier, L., and Zimmermann, N.: Regional tectonics shaped plant biodiversity in Colombian Andes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21627, https://doi.org/10.5194/egusphere-egu24-21627, 2024.

EGU24-892 | ECS | Orals | CL1.2.14 | Highlight

Mid-Holocene environmental change in the Central Highlands of Madagascar: pre- and post-human settlement 

Andriantsilavo Hery Isandratana Razafimanantsoa, William Bond, and Lindsey Gillson

The climate in the tropic is favourable for forest development and the presence of open and mosaic ecosystems in this region lead to confusion and controversies. The Central Highlands of Madagascar is dominated by a matrix of grassland with forest patches, but whether these open ecosystems are ancient or anthropogenically derived is still scientifically debated. Understanding the landscape history including vegetation history and its drivers of change is therefore required to identify the nature and origin of the vegetation particularly prior to and after human settlement to inform appropriate conservation and management plans in the region. Here we provide a high-resolution environmental reconstruction of the last 6300 years from a sediment core collected at a lake called Dangovavy from the Central Highlands. Pollen and stable carbon isotopes were used to reconstruct vegetation history, while charcoal and coprophilous spores were used for fire frequency and herbivory activities, respectively. The data showed that open and mosaic ecosystems comprising forest patches of variable extent in a matrix of open montane grassland and ericoid shrubland occupied the area surrounding the lake from at least 6000 years ago, i.e. 4000 years before human settlement suggested around 2 cal. ka BP. Variations in forest extent and montane possibly C3–dominated grassland were recorded until 1 cal. ka BP., associated with fluctuations in fire, herbivory and rainfall. However, an expansion of the grassland ecosystem supported by C4 plant dominance, as shown in the stable carbon isotopes (δ13C) results, was recorded in the last millennium. This change was also associated with highly increasing fire frequency and herbivory activities most likely linked to human influence. Based on these findings, the natural presence of open and mosaic ecosystems in the Central Highlands of Madagascar should be considered, as well as their validity as conservation targets other than closed forests.

How to cite: Razafimanantsoa, A. H. I., Bond, W., and Gillson, L.: Mid-Holocene environmental change in the Central Highlands of Madagascar: pre- and post-human settlement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-892, https://doi.org/10.5194/egusphere-egu24-892, 2024.

The Holocene temperature conundrum, marked by inconsistencies between proxy-based reconstructions and transient model simulations, challenges our understanding of Holocene temperature evolution. Reconstructions suggest a cooling trend after the Holocene Thermal Maximum, while model simulations indicate a consistent warming trend due to ice-sheet retreat and rising greenhouse gas concentrations. Various factors, such as seasonal biases and overlooked feedback processes, have been proposed as potential causes for this discrepancy. In this study, we found the impact of vegetation-climate feedback on temperature anomaly patterns in East Asia during the mid-Holocene (6000 BP). By utilizing the fully coupled Earth system model EC-Earth and performing simulations with and without coupled dynamic vegetation, we aim to isolate the influence of vegetation changes on regional temperature patterns. Our findings reveal that vegetation-climate feedback contributed to warming across most of East Asia, resulting in spatially diverse temperature changes during the mid-Holocene and significantly enhanced the model-data agreement. These results highlight the crucial role of vegetation-climate feedback in addressing the Holocene temperature conundrum and emphasize its importance for simulating accurate climate scenarios.

How to cite: Chen, J.: Reconciling East Asia's mid-Holocene temperature discrepancy through vegetation-climate feedback, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4255, https://doi.org/10.5194/egusphere-egu24-4255, 2024.

EGU24-4602 | Orals | CL1.2.14 | Highlight

Fire's legacy: unraveling long-term fire regime and grass-tree interactions in European temperate grassy ecosystems 

Angelica Feurdean, Diana Hanganu, and Andrei Cosmin Diaconu

Grass-dominated ecosystems, encompassing steppe, forest-steppe, savanna, woodlands, and shrublands, cover approximately 40% of the global land surface and are critical for biodiversity, carbon storage, livelihoods, and culture. Grassland ecosystems are often assumed to be dominant in regions that are too cold or dry for tree growth and have limited soil development. Many grassy ecosystems are, however, found in warm and wet climates that could support forests. This pattern may be explained by grassy ecosystems also maintained by consumers of biomass, such as fire and herbivores, which tip the competitive balance in favor of grasses. Central Eastern Europe hosts some of the largest expanses of open ecosystems, notably steppe and forest-steppe woodlands, which humans have heavily impacted for millennia. Despite the critical roles fire may have had in these landscapes, our understanding of grassland fire frequency and intensity relies on contemporary ecological studies and remote sensing. The few long-term fire regime reconstructions worldwide based on charcoal records in grasslands have revealed that many assumptions about fires in grassy ecosystems rely on extrapolations from forested environments, revealing gaps in our knowledge regarding the natural occurrence and intensity of fires to climate, vegetation composition, and biomass dynamics in grassy ecosystems. To address these gaps, we conducted palaeoecological analyses, including pollen, charcoal morphologies, and morphometrics (L/W), in two contrasting grassy ecosystems in south-eastern Romania—Lake Oltina in the forest-steppe and Mangalia Herghelie in the steppe. Our research aims are to explore: i) the variation in biomass burning, fire frequency, and severity of fire over time in response to climate, vegetation changes, and human activities; ii) to compare trends in fire regime between ecosystems with (forest-steppe) and without (steppe) tree cover; and ii) to assess deviations in modern fire regimes from long-term trends. Additionally, we examine charcoal morphological and morphometrical assemblages as signals for reconstructing vegetation composition changes in regions with poor pollen preservation. Our analysis seeks to unravel the intricate interactions and feedback among fire, climate, and vegetation dynamics. Frequent fires in grass-dominated ecosystems act as a bottleneck for tree recruitment, sustaining the dominance of grasslands. We hypothesize that fire activity increases with decreasing rainfall but decreases with increasing rainfall, potentially influencing the transition from steppe to forest-steppe to woodland. The fire regime characteristics are expected to change during this transition, with decreasing fire frequency and increasing severity due to elevated fuel loads and reduced flammable grasses. In the long term, this may lead to a shift towards a landscape dominated by woody vegetation, accompanied by lower frequency but higher severity fires. Human ignitions and the use of fire for land management alter these dynamics. Insights from this feedback and interaction will guide us in identifying thresholds in tree cover as indicators for a fire regime shift and determining tipping points in the balance between vegetation and fire. This study adds valuable knowledge to refine our understanding of the nuanced interplay between fire, climate, and vegetation dynamics in temperate European grasslands.

How to cite: Feurdean, A., Hanganu, D., and Diaconu, A. C.: Fire's legacy: unraveling long-term fire regime and grass-tree interactions in European temperate grassy ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4602, https://doi.org/10.5194/egusphere-egu24-4602, 2024.

EGU24-6575 | ECS | Posters virtual | CL1.2.14

Vegetation and Climate Patterns of Western Türkiye since the Late Glacial Period Based on Pollen Records in the Aegean Sea 

Mesut Kolbüken, Demet Biltekin, Ali Engin Aksu, Richard Hiscott, Bülent Arıkan, and Nurettin Yakupoğlu

Pollen analysis of the MAR03-02 core from the Aegean Sea (38°03.97'N, 26°22.30'E), western Türkiye allows us to reconstruct paleo-vegetation patterns and paleo-climate dynamics of the surrounding territory since the Late Glacial Period. We present palynological record from the topmost 2.8 m of a sediment core (MAR03-02) collected in the Aegean Sea, covering the last 20.7 ka. Variation in Mediterranean/temperate forests and herb/step plants indicates major climatic shifts connected to Heinrich Stadial 1, Bølling-Allerød, Younger Dryas, and the Holocene Climatic Optimum as well as some Rapid Climate Changes such as the 9.4, 8.2 and 5.9 ka events, Medieval Warm Period and Little Ice Age during the Holocene. In the cold and dry periods, low Arboreal Pollen (AP) and high amounts of herbaceous and steppe plants, including Artemisia, Cyperaceae, and Asteraceae Chichorioideae were recorded.  In warmer periods, high AP which was mainly characterized by deciduous Quercus, and low herbaceous/steppe plants dominated in the region. A warm-temperate and Mediterranean trees, consisted of mainly deciduous Quercus and Quercus ilex-type, reached the maximum level from the onset of the Holocene to 6 ka, which corresponded to the Holocene Climate Optimum. The pollen records show similarities with regional proxy records. Anthropogenic impacts occurred clearly during the last 2 ka when cultivated plants become prominent in the pollen records (e.g. Olea europea and Pistacia).

How to cite: Kolbüken, M., Biltekin, D., Aksu, A. E., Hiscott, R., Arıkan, B., and Yakupoğlu, N.: Vegetation and Climate Patterns of Western Türkiye since the Late Glacial Period Based on Pollen Records in the Aegean Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6575, https://doi.org/10.5194/egusphere-egu24-6575, 2024.

EGU24-6612 | ECS | Orals | CL1.2.14 | Highlight

Eco-evolutionary Modelling of Global Vegetation Dynamics and the Impact of CO2 during the late Quaternary: Insights from Contrasting Periods  

Jierong Zhao, Sandy P.Harrison, and Iain Colin Prentice

Changes in climate have had a significant impact on global vegetation patterns during the Quaternary. However, variations in CO2 levels also play a key role in shaping vegetation dynamics by influencing plant water-use efficiency, and consequently, the competitive success of employing the C3 and C4 photosynthetic pathways. In this study, we use an eco-evolutionary optimality (EEO) based modelling approach to examine the respective impacts of climate fluctuations and CO2-induced alterations on vegetation shifts. We consider two distinct periods, the Last Glacial Maximum (LGM, 21,000 years before present) and the mid-Holocene (MH, 6,000 years before present) and compare these to contemporary conditions. The LGM, characterised by generally colder and drier climate, had a CO2 level close to the minimum threshold for effective C3 plant operation. In contrast, the MH had warmer summers, increased monsoonal rainfall in the northern hemisphere, with CO2 levels lower than the present day. We simulate vegetation changes at the LGM and the MH using a light-use efficiency model that simulates gross primary production (GPP) coupled to an EEO model that simulates leaf area index (LAI) and C3/C4 competition. We show that low CO2 at the LGM is as important as climate in reducing tree cover, increasing the abundance of C4 plants and lowering GPP. Global GPP is also lower than today in the MH (although increased compared to the LGM), reflecting CO2 constraints on plant growth despite the positive impacts of warmer and/or wetter climates experienced in the northern hemisphere and tropical regions on plant growth. These results emphasise the importance of taking account of impacts of changing CO2 levels on plant growth in order to simulate ecosystem changes correctly.

How to cite: Zhao, J., P.Harrison, S., and Prentice, I. C.: Eco-evolutionary Modelling of Global Vegetation Dynamics and the Impact of CO2 during the late Quaternary: Insights from Contrasting Periods , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6612, https://doi.org/10.5194/egusphere-egu24-6612, 2024.

EGU24-8157 | ECS | Posters on site | CL1.2.14 | Highlight

Impact of human activity and fire on vegetation, hydrology, and carbon accumulation in Mustjärve bog, Northwest Estonia (PEATFLAMES) 

Harry Roberts, Luke Andrews, Leeli Amon, Atko Heinsalu, Piotr Kołaczek, Katarzyna Marcisz, Michał Słowiński, Normunds Stivrins, Siim Veski, and Mariusz Lamentowicz

Peatlands are important ecosystems for carbon storage, storing an estimated 25-30% of global soil carbon despite covering just 3% of Earth’s terrestrial surface. These ecosystems are under increasing pressure due to human activity and climate change, which threaten to turn peatlands from being carbon stores to sources. Human activities such as peat draining are extremely damaging to peatland hydrology, and fire was often used by people as a tool for land management clearance in the past. Fire is one of the foremost forces impacting peatlands, as it destroys surface peat and the subsequent release of stored carbon. Fire frequency is predicted to increase due to more frequent and severe droughts in some areas, and increasing human activity in areas where peat can form (particularly in the Northern Hemisphere). These trends, if realised, can accelerate climate warming as previously stored carbon is released into the atmosphere.

The focus of this study, Mustjärve bog, is an ombrotrophic peat bog located in northwest Estonia. Our project aims to assess changes in peatland fire regimes, vegetation dynamics, and hydrology to evaluate how the resilience of the site has changed over time within the context of relative changes in climate and human activity. A peat core was analysed using multiple palaeoecological proxies at high resolution (1 cm contiguous samples), to reconstruct past fire frequency, vegetation, and hydrological change over the past ~2500 years at the site. We also used historical data (population, past climate, and archaeological records) to better understand the drivers of changes uncovered in the palaeoecological record.

Our data reveals a distinct anthropogenic signal from ~700 CE onwards, coincident with increasing population and expanding land exploitation. Human activity from ~700 CE to ~1800 CE causes an increase in local fire events, culminating in lowered carbon accumulation rates, lowered water tables and higher peat bulk density. This trend continued until ~1950 CE, when there was a recovery in carbon accumulation and water table depth. Mustjärve’s vegetation history was predominantly Sphagnum, with Sphagnum Sect. Acutifolia indicative of drier conditions becoming much more prevalent from ca. 200 BC onwards, possibly owing to changes in water table depth. In the last 150 years, arboreal taxa such as Pinus sylvestris and Betula nana have encroached onto the bog, reflecting a decreasing water table and increased human activity that has impacted hydrological conditions, such as peat draining. We find little evidence for a significant climate influence on Mustjärve bog, as anthropogenic pressures on the site appear to dominate over the palaeoclimatic signal.

How to cite: Roberts, H., Andrews, L., Amon, L., Heinsalu, A., Kołaczek, P., Marcisz, K., Słowiński, M., Stivrins, N., Veski, S., and Lamentowicz, M.: Impact of human activity and fire on vegetation, hydrology, and carbon accumulation in Mustjärve bog, Northwest Estonia (PEATFLAMES), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8157, https://doi.org/10.5194/egusphere-egu24-8157, 2024.

EGU24-9872 | ECS | Orals | CL1.2.14

Impact of atmospheric relative humidity on vegetation changes during the Late Holocene reconstructed using the 17O-excess of phytoliths from sediments of Lake Ngofouo (Republic of Congo, Central Africa)  

Charlotte Mention, Julie Aleman, Jean-Charles Mazur, David Au Yang, Corinne Sonzogni, Aude Gebelin, and Anne Alexandre

Vegetation changes during the late Holocene in central Africa, especially in the Republic of Congo, are characterized by transitions between forests and savannas. However, the variables (climatic, anthropogenic) behind these transitions are still poorly identified, leading to an ongoing debate around the drivers of the central African forest block opening. Moreover, in tropical regions, the vapour pressure deficit (VPD) that controls photosynthesis and transpiration, constitutes a primary driver of ecosystems primary production and dynamics. In this context, we use a new proxy of atmospheric relative humidity (RH), which coupled with temperature allow to estimate VPD, the 17O-excess (d’17O – 0.528 x d'18O) of phytoliths. A series of calibrations have shown that the 17O-excess of plant leaf water that, according to the Craig and Gordon model is controlled by RH during transpiration, is transferred to phytoliths. A quantitative relationship linking the 17O-excess of phytoliths and RH of the growing season applies to controlled and natural climatic conditions regardless of vegetation type and atmospheric temperature. We propose to combine this new proxy of past RH, with phytoliths morphology, a long-standing paleo-vegetation proxy, to compare past RH and vegetation changes at the same temporal and spatial scales. Phytoliths were extracted from the sediments of Lake Ngofouo, located in a forest-savanna mosaic zone and which record the last 2000 years. Phytoliths types were identified and the 17O-excess of bulk phytoliths samples were analysed. Our preliminary results show a decoupling between RH and vegetation changes. A transition from forest to savanna was identified between 1534-1505 BP, following an increase in fire activity ca. 1540 BP, which marks the beginning of the recurrence of fires in the landscape. During this period no change in RH was observed (high estimated RH ~80-90%). A forest-savanna mosaic thus emerged in the landscape at 1460 BP, characterized by high percentage of grass phytoliths, despite a still high RH (~80%). RH decreased after from 79 to 62% between 997-829 BP and then increased from 62 to 83% between 829-490 BP. During the same period, tree cover increased from 829 to 662 BP and then decreased from 662 to 490 BP which occurred at the same time as an increase in population density and fire activity. It seems that the RH increase probably triggered an increase in grass biomass and thus in available fuel sufficient for more frequent and/or larger fires, which might be responsible for the later decrease in tree cover. The transition from forest to savanna at lake Ngofouo was not associated with a change in RH and was probably the result of the fire regime change that happened before. Interestingly, the later increase in RH impacted the vegetation differently; first by an increase in tree cover, and then by an increase in fire activity that resulted in a lower tree cover. This highlights the potential and complicated feedback that might exist between climate, fire and vegetation.

This study is part of the PAST-17 and Thresholds projects funded by the ANR and the European Union’s Horizon 2020 research and innovation program.

How to cite: Mention, C., Aleman, J., Mazur, J.-C., Au Yang, D., Sonzogni, C., Gebelin, A., and Alexandre, A.: Impact of atmospheric relative humidity on vegetation changes during the Late Holocene reconstructed using the 17O-excess of phytoliths from sediments of Lake Ngofouo (Republic of Congo, Central Africa) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9872, https://doi.org/10.5194/egusphere-egu24-9872, 2024.

The terrestrial vegetation plays a crucial role in co-regulating global energy, water, carbon, and nutrient cycles. Shifts in vegetation, including changes in forest and peatland areas as well as species distribution, contribute to the large uncertainties in terrestrial ecosystems and their services under increasing disturbances caused by anthropogenic climate change.

To comprehensively assess vegetation responses and feedback to perturbations, particularly regarding carbon-nitrogen cycles and greenhouse gas exchanges, modelling efforts are indispensable. For instance, dynamical vegetation models can be exploited to investigate the terrestrial biogeochemical processes under past climate changes, such as glacial-interglacial transitions. However, such efforts often remain limited by the computational demands of complex Earth system models that struggle to capture multi-millennial timescales, which is further exacerbated by the challenges associated with model validation, leaving the long-term terrestrial vegetation dynamics largely under-constrained.

Here we employ the LPX-Bern model, a cost-efficient Dynamic Global Vegetation Model of intermediate complexity with fully coupled water, carbon, and nitrogen cycles, and present the results for simulations since the last interglacial. We critically evaluate the current model configuration, validated for pre-industrial to present-day conditions, for the last glacial cycle. The challenges in applying the model to these past times, such as the knowledge gaps in process representation, limited data availability for validation, and the limitations in model parameterisations, are addressed. The implications from simulating such long timescales and potentials to enhance the terrestrial biogeochemical processes in DGVMs are discussed. This study thus aims to contribute to advancing model development in carbon-nitrogen cycles for improved future climate projections.

How to cite: Sun, Q. and Joos, F.: Modelling terrestrial vegetation dynamics and carbon-nitrogen cycles over the last glacial using LPX-Bern, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10571, https://doi.org/10.5194/egusphere-egu24-10571, 2024.

EGU24-11926 | ECS | Posters virtual | CL1.2.14

Variations of fire events and vegetation in the western Sierra Nevada archived in speleothems during Dansgaard–Oeschger (D–O) cycles  

Zhao Wang, Jonathan Smolen, Aida Zyba, Erica A. Scarpitti, Jessica L. Oster, Isabel P. Montañez, and Michael Hren

Dansgaard-Oeschger (D-O) cycles had profound impacts on climates of the northern hemisphere in the last glacial period. However, knowledge of terrestrial climatic responses in western North America and consequently vegetation responses to climatic extremes (e.g., highly variable paleohydroclimate and wildfire events) remains limited. Analysis of organic molecular traces (i.e., plant lipids and fire markers) in speleothems is one of the most promising ways to investigate feedbacks between climatic extremes and vegetation changes. Fire-derived markers, such as polyaromatic hydrocarbons (PAHs) and levoglucosan (LG), a derivative of plant cellulose burning, are increasingly applied as proxies of paleofires in speleothem records. Here, we present a new record of plant lipids, LG, and PAHs from a precisely dated and well-studied stalagmite (~55-67 ka) collected from McLean’s Cave (ML-2) in the Sierra Nevada foothills, CA (Oster et al. 2014). The variation of PAHs over the interval 62 to 67 ka corresponds with variations in stalagmite δ13C during the D-O stadials and interstadials 15-18. The highest concentration of low (≤ 4 rings) and high (≥ 5 rings) molecular weight PAHs as well as LG is found between ~64.25-63.75 ka, suggesting elevated wildfire events during D-O interstadial 18. Dehydroabietic acid (abietane-type acid) is predominantly produced from conifers, and its highest concentration occurs at 63.75 ka and then decreases from 63.5 to 62 ka. The study of modern plants (e.g., Kozłowska et al., 2022) shows that abietane-type acid accumulates at lower radiation and cooler climates and declines in heat and drought due to its antioxidative role in protecting cell membranes from stress-induced damage. The variation of dehydroabietic acid followed the changes in stalagmite δ13C between 64 and 62 ka (Oster et al., 2014), implying changes in coniferous input affected by the wet and dry cycles (D-O stadials and interstadial 18). This highlights the ability of organic molecular records archived in stalagmites to capture the links between wildfire activity, vegetation, and hydroclimate in central California during D-O cycles.   

Reference:

Kozłowska, W., Matkowski, A., Zielińska, S., 2022. Light Intensity and Temperature Effect on Salvia yangii (B. T. Drew) Metabolic Profile in vitro. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.888509

Oster, J.L., Montañez, I.P., Mertz-Kraus, R., Sharp, W.D., Stock, G.M., Spero, H.J., Tinsley, J., Zachos, J.C., 2014. Millennial-scale variations in western Sierra Nevada precipitation during the last glacial cycle MIS 4/3 transition. Quaternary Research 82, 236–248. https://doi.org/10.1016/j.yqres.2014.04.010

How to cite: Wang, Z., Smolen, J., Zyba, A., Scarpitti, E. A., Oster, J. L., Montañez, I. P., and Hren, M.: Variations of fire events and vegetation in the western Sierra Nevada archived in speleothems during Dansgaard–Oeschger (D–O) cycles , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11926, https://doi.org/10.5194/egusphere-egu24-11926, 2024.

EGU24-12877 | Posters on site | CL1.2.14

Allerød interstadial vegetation and lacustrine palaeoenvironment of the central Mologa-Sheksna Lowland (East-European Plain) 

Dmitrii Sadokov, Natalia Kostromina, Natalia Mazei, Nikita Bobrov, Ping Ding, Alexey Petrov, Larisa Savelieva, Maksim Ruchkin, Andrey Kuznetsov, Andrey Tsyganov, and Yuri Mazei

Across the northern East-European Plain, and especially in the Mologa-Sheksna Lowland (MSL), short-term climate variability in the Late Glacial caused significant palaeohydrological alterations, which drove vegetation successions. The MSL is prominent for the dense river and lake network, which have evolved through multiple water level and sedimentation regime oscillations since the Last Glacial Maximum. Extensive bogs inherit morphology of the basins, which had been filled with paleolakes for several millennia until their ultimate drainage in the early Holocene. Correspondingly, intricate morphology of lakes and deltas conditioned mosaic distribution of vegetation across the MSL.

Continuous palaeoenvironmental record for the Holocene in the MSL has been derived from several peat and lacustrine sites. The data regarding the Late Glacial is much more scarce, due to the low abundance of the relevant deposits, and poor state of preservation. Except for the MSL bog plains, pronounced evidence for the short-term palaeoenvironmental offset was discovered in the section of the sand terraces in the Mologa River catchment. The onset of Allerød warming has been traced via an organomineral layer, which was confirmed to have a continuous bedding over the area of 100 km2 in the central MSL, as revealed by auger drilling and ground-penetrating radar survey at eight sites. This layer dates back to 13.4– 12.1 cal ka BP, and is represented by interbedding of fine sand with medium decomposed peat. Palynological and plant macrofossil studies of the buried peat from three boreholes reveal several inferences about the formation of this layer and the general palaeohydrology of the MSL in the Late Glacial.

The first palaeoclimatic evidence is provided by the high abundance of spruce pollen and bark pieces, supporting the hypothesis that the layer formation occurred during the Allerød interstadial, which was characterized by a rapid expansion of spruce in the region. Secondly, high abundances of pollen and remains of hydrophytes or hydrophilous lacustrine vascular plants (Cyperaceae, Poaceae, Potamogetonaceae), mosses (Sphagnum sp., Drepanocladus aduncus and Calliergonella cuspidatum) and chara algae indicate lentic shallow water environment or the proximity of the paleolake shoreline. In general, a transition from shallow lacustrine environments, surrounded by spruce-birch forests, to tundra steppes and bogged grasslands can be deduced, based on the pollen spectra and subfossils assemblages. Third, true altitude of the buried peat layer (96.5 – 102.5 m above sea level) may be considered as a limit for the paleolake water level in the Allerød, because it delineates the surface uncovered from water or proximate to the shoreline. Thus, its lowermost discovered position can trace the extent to which the paleolake level had dropped in the Allerød. The peat was rapidly formed and buried during the late Allerød, which makes it a reliable regional isochronous stratigraphic level for the poorly studied Late Glacial sedimentary successions. This level can be used as a reference point for tracing recent short-term climate-environment interactions and effects.

How to cite: Sadokov, D., Kostromina, N., Mazei, N., Bobrov, N., Ding, P., Petrov, A., Savelieva, L., Ruchkin, M., Kuznetsov, A., Tsyganov, A., and Mazei, Y.: Allerød interstadial vegetation and lacustrine palaeoenvironment of the central Mologa-Sheksna Lowland (East-European Plain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12877, https://doi.org/10.5194/egusphere-egu24-12877, 2024.

EGU24-12926 | ECS | Orals | CL1.2.14 | Highlight

Global biosphere productivity changes during Heinrich Stadial 4: Preliminary results from the triple isotope composition of air oxygen and numerical simulation using a coupled climate model 

Ji-Woong Yang, Jean-Baptiste Ladant, Amaëlle Landais, Masa Kageyama, Thomas Blunier, Samuel Jaccard, Stéphanie Duchamp-Alphonse, Pascale Braconnot, Nicolas Viovy, Louise Crinella-Morici, and Frédéric Prié

The slowdown of Atlantic meridional overturning circulation (AMOC) caused by accelerated climate change is one of the major concerns as it would have severe impacts at global scale (e.g., Rahmstorf, 1995; Ditlevsen and Ditlevsen, 2023). However, our knowledge on the potential impact of such an event on the global biosphere productivity is still limited, despite its important role in the global carbon cycle. The reasons for this lack of knowledge is mainly two folds: on the one hand, it is challenging to estimate the global biosphere productivity based on local reconstructions as they are often based on qualitative- and indirect micropaleontological or geochemical tracers and are characterized by large spatial heterogeneities (e.g., Averyt and Paytan, 2004; Kohfeld et al., 2005), and on the other hand, numerical experiments using Earth System Models (e.g., Mariotti et al., 2012; Reutenauer et al., 2015) have yet failed to capture the response of global biosphere productivity in its entirety as they do not take into account important forcing factors such as changes in CO2, dust deposition or vegetation cover.  

To address these issues, we present here a preliminary reconstruction of the global biosphere productivity using the triple isotopic composition of air oxygen (Δ17O-O2) trapped in NEEM (North Greenland Eemian Ice Drilling) ice core samples over 42 to 37 ka covering Heinrich Stadial (HS) 4, a period marked by the weak intensity of the AMOC. Local reconstructions such as European pollen assemblages (e.g., Sánchez Goñi et al., 2020), Antarctic ice-core non-sea-salt Na and Ca (e.g., Fischer et al., 2007), or marine sediment core opal flux records from sub-Antarctic zone of Southern Ocean (Gottschalk et al., 2016) and previous model studies (e.g., Mariotti et al., 2012; Reutenauer et al., 2015) indicate a weak global biosphere productivity during HS4. However, our preliminary result from ice-core Δ17O-O2 measurements shows little evidence of reduced global biosphere productivity during HS 4. Idealized Heinrich-like freshwater hosing experiments using IPSL-CM5A2-VLR Earth System Model support our findings. In this presentation, the potential role of different forcing factors in regulating the global biosphere productivity will be discussed.

How to cite: Yang, J.-W., Ladant, J.-B., Landais, A., Kageyama, M., Blunier, T., Jaccard, S., Duchamp-Alphonse, S., Braconnot, P., Viovy, N., Crinella-Morici, L., and Prié, F.: Global biosphere productivity changes during Heinrich Stadial 4: Preliminary results from the triple isotope composition of air oxygen and numerical simulation using a coupled climate model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12926, https://doi.org/10.5194/egusphere-egu24-12926, 2024.

EGU24-13457 | Posters on site | CL1.2.14 | Highlight

StalFire Consortium: Defining the paleoclimate-fire relationship in California across temporal and spatial scales  

Isabel P. Montañez, Jessica L. Oster, Eliot A. Atekwana, Gabriel Bowen, Yuval Burstyn, Cameron de Wet, Elizabeth M. Griffith, Michael Hren, Kesego P. Letshele, Sarah Pederzani, Erica A. Scarpitti, Jonathan Smolen, Zhao Wang, and Aida Zyba

Global climate change is projected to lead to an expansion of wildfire-prone regions coupled with increase in fire frequency and intensity. In the Western US the characteristic fire season has changed considerably in recent years. Notably, there has been an observed doubling of autumn fire activity, an increase in the occurrence and duration of extreme fire weather conditions, and an intensification of wildfire severity. This trend is expected to persist and intensify with increased warming. For California (CA), climate models predict minimal changes to mean annual precipitation, but a substantial increase in climate volatility on the decadal and sub-centennial scale. This volatility manifests as persistent droughts interrupted by pluvial episodes, creating what is referred to as a 'whiplash climate.' However, predicting how the wildfire regime in CA will evolve with increased climate volatility remains a challenging task.

StalFire is multi-lab collaborative framework (consortium) established to facilitate research focused on utilizing paleoclimate data archived in stalagmites. The primary goal is to provide new insights into paleo-wildfires, with a specific emphasis on assessing the paleoclimate-wildfire relationship in CA across multiple timescales and under different climate states. Drawing upon over a decade of monitoring and stalagmite record development in CA caves exposed to significant fires, this consortium project is guided four research objectives: (1) Monitoring tracer evolution across karst systems to improve conventional proxies and expand the understanding and application of promising new qualitative hydroclimate proxies and fire tracers. (2) Developing aquantified representation  — a forward proxy system model — of the conditions and processes that govern the different proxy signals of past hydroclimate and fire behavior in stalagmites. (3) Expanding and improving existing CA multi-proxy records for stalagmites representing transects of the north-south climate dipole extending from coastal to Sierra Nevada regions. 4) Conducting site-specific to regional proxy-model comparisons and providing quantitative reconstructions of hydroclimate and fire activity in CA over the past 70,000 years. 

We provide a summary of initial results of the StalFire Consortium that focus on developing a 'surface-to-stalagmite' understanding of hydroclimate and fire tracers through monitoring coupled with proxy development (d44Ca, fluid inclusion water isotopes, dual clumped isotope, and plant/microbial biomarkers, biomass burning-derived organic molecules like anhydrosugars and polycyclic aromatic hydrocarbons). Finally, we aim for this presentation to encourage discussion among researchers, labs, and work groups involved in paleo-fire coupled with hydroclimate research, from method development to paleorecord analysis.

How to cite: Montañez, I. P., Oster, J. L., Atekwana, E. A., Bowen, G., Burstyn, Y., de Wet, C., Griffith, E. M., Hren, M., Letshele, K. P., Pederzani, S., Scarpitti, E. A., Smolen, J., Wang, Z., and Zyba, A.: StalFire Consortium: Defining the paleoclimate-fire relationship in California across temporal and spatial scales , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13457, https://doi.org/10.5194/egusphere-egu24-13457, 2024.

EGU24-13877 | Orals | CL1.2.14

Reconstructing Paleofire-Climate Connections in Speleothems Using Organic Molecules: A Source to Sink Perspective  

Michael Hren, Zhao Wang, Jonathan Smolen, Yuval Burstyn, Kesego Letshele, Aida Zyba, Erica Scarpitti, Jessica Oster, Cameron De Wet, and Isabel Montañez

Records of past fire frequency and intensity are critical for understanding the links between atmospheric pCO2, climate and ecosystem change. In terrestrial settings, stalagmites provide one of the most precise, multi-proxy, and high-resolution archives of climate information. Yet, records of past fire occurrence or fire intensity, which are commonly derived from charcoal abundances in sediments, are generally not available within the same archive or at comparable time resolution.

Sedimentary organic molecular biomarkers are increasingly utilized as proxies for past fire, environment and climate, and there is considerable potential for past fire activity to be archived in stalagmites1,2,3. Recent analytical and methodologic advances now allow measurement of molecular markers of climate and fire at trace abundances, and surface-generated, plant-derived biomolecules and fire markers, including polycyclic aromatic hydrocarbons (PAHs), lignin oxidation products (LOPs), and anhydrosugars such as levoglucosan (LG) and its isomers mannosan (MA) and galactosan (GA), have been documented in stalagmites older than 100 ka1.

Fire markers are preserved in stalagmites at multiple caves across the fire-prone landscape of California, USA, and recent study of LG and LOPs in a California Coast Range stalagmite provides evidence for a strong connection between fire activity and climate whiplash2, while measurements of PAHs from a well-studied stalagmite in McLean’s Cave located in the central Sierran foothills (ML-1) captures a link between increased fire intensity and climate change during Heinrich Stadial-13. Despite clear preservation of fire-derived molecules in stalagmites, results from modern California cave systems and surface environments show that fire markers produced from recent fire events have variable mobility through soils and the epikarst system, while plant lipids produced by surface vegetation record significant degradation during transit from the surface to cave drip water.

Here, we discuss the promises and pitfalls of producing organic molecular records of climate and fire from speleothems. Specifically, we present modern surface to cave organic molecular data from several sites in California, USA to review: 1) factors that influence the terrestrial production of organic molecular markers of ecosystem, fire and climate; 2) mobilization of organic markers through the soil, epikarst and cave environment; 3) alteration of surface-generated molecular signatures due microbial activity or preferential mobilization of different molecular classes; and 4) incorporation of organic markers of fire and climate in stalagmites.

 

1Blyth, A.J., Baker, A., Collins, M.J., Penkman, K.E.H., Gilmour, M.A., Moss, J.S., Genty, D. & Drysdale, R.N. (2008) Molecular organic matter in speleothems and its potential as an environmental proxy. Quat. Sci. Rev., 27, 905-921.

2Homann, J., Oster, J. L., de Wet, C. B., Breitenbach, S. F. M., & Hoffmann, T. (2022). Linked fire activity and climate whiplash in California during the early Holocene. Nature Communications, 13(1), 7175.

3Smolen, J., Montañez, I., and Hren, M.: Fire, Work with Me: A PAH record from a Southwestern US speleothem , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-16912, https://doi.org/10.5194/egusphere-egu23-16912, 2023.

How to cite: Hren, M., Wang, Z., Smolen, J., Burstyn, Y., Letshele, K., Zyba, A., Scarpitti, E., Oster, J., De Wet, C., and Montañez, I.: Reconstructing Paleofire-Climate Connections in Speleothems Using Organic Molecules: A Source to Sink Perspective , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13877, https://doi.org/10.5194/egusphere-egu24-13877, 2024.

EGU24-14386 | Orals | CL1.2.14 | Highlight

Holocene Land Cover Change in North America:  Trends, Drivers, and Feedbacks 

Andria Dawson, John W. Williams, Marie-José Gaillard, Simon Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Daniel G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock

Land cover governs biogeophysical and biogeochemical feedbacks between the land surface and atmosphere. Holocene vegetation-atmosphere interactions are of particular interest, both to understand the climate effects of intensifying human land use and as a possible explanation for the Holocene Conundrum, a widely studied mismatch between simulated and reconstructed temperatures. Progress addressing the Conundrum has been limited by a lack of data-constrained, quantified, and consistent reconstructions of Holocene land cover change. Following protocols from PAGES LandCover6k, a network of 1445 sedimentary pollen records from the Neotoma Paleoecology Database, and the REVEALS pollen-vegetation model coupled with a Bayesian spatial model, we developed land cover reconstructions with uncertainty for North America for 25 time intervals spanning the Holocene. We use these spatially comprehensive land cover maps to determine the pattern and magnitude of land cover changes at continental to regional scales and discuss underlying ecological, climatic, and anthropogenic drivers. Finally, we infer Holocene radiative forcing from these land cover shifts.

Major land cover changes in North America include: 1) Early Holocene afforestation is attributed to rising temperatures and deglaciation, which likely amplified early Holocene warming via the albedo effect; 2) A continental-scale mid-Holocene peak in summergreen trees and shrubs (8.5 to 4 ka) may have been caused by a positive and understudied feedback loop among insolation, temperature, and phenological seasonality.  3) A  last-millennium decrease in summergreen trees and shrubs with corresponding increases in open land, likely driven by intensifying land use and neoglacial cooling. 

Land cover trends vary within and across regions due to individualistic taxon-level responses to environmental change.  Major species-level events, such as the mid-Holocene decline of eastern hemlock, may have altered regional climates. The substantial land-cover changes reconstructed here underscore the importance of biogeophysical vegetation feedbacks to Holocene climate dynamics. Continental-scale radiative forcing inferred from land cover change indicates early and late pre-industrial Holocene warming interrupted by a mid-Holocene period of cooling and followed by cooling in the recent millenia. These forcings from natural vegetation change are of the same order of magnitude as global forcings resulting from changes in atmospheric greenhouse gas concentrations from 1750 to 2019.

These Holocene reconstructions for North America serve the Earth system modeling community by providing better-constrained land cover scenarios and benchmarks for model evaluation, that improve the understanding of regional- to global-scale processes driving Holocene land cover dynamics.

How to cite: Dawson, A., Williams, J. W., Gaillard, M.-J., Goring, S., Pirzamanbein, B., Lindstrom, J., Anderson, R. S., Brunelle, A., Foster, D., Gajewski, K., Gavin, D. G., Lacourse, T., Minckley, T. A., Oswald, W., Shuman, B., and Whitlock, C.: Holocene Land Cover Change in North America:  Trends, Drivers, and Feedbacks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14386, https://doi.org/10.5194/egusphere-egu24-14386, 2024.

EGU24-14667 | ECS | Orals | CL1.2.14

Wildfire, vegetation, and climate history of central Taiwan from the end of the last glaciation to the late Holocene 

Abdur Rahman, Yuan-Pin Chang, Hong-Chun Li, Ling-Ho Chung, and Liang-Chi Wang

Climate change is expected to lead to an increased frequency of wildfires within forest ecosystems. To accurately anticipate the ramifications of climate change on forests, a comprehensive understanding of the ecological processes governing fire dynamics—specifically intensity, size, and type—is essential. However, the scarcity of long-term data on the intricate relationship between climate, fire, and vegetation dynamics presents a considerable challenge. In this study, a long-term relationship between wildfire, vegetation has been investigated, and climate in the central Taiwan region, spanning from the late glacial period to the late Holocene. For this, multiple proxy approach, including charcoal (CHAR and fire frequency), pollen data, and the carbon isotopic composition of total organic carbon, have been followed. The current study revealed that wildfire largely occurred during the drier climate conditions in the Taiwan region, which attributed to El-Nino like situation in region. Furthermore, it has been observed that from the late glacial period to the late Holocene, there was a shift in biofuel sources from woody plants to herbaceous plants, with a sharp change at the beginning of the Holocene. High fire frequency and intense wildfires were observed during the late glacial period, attributed to a drier climate. On the other hand, higher fire frequency and more intense wildfires during the late Holocene were attributed to human-induced wildfires in the central Taiwan region. 

How to cite: Rahman, A., Chang, Y.-P., Li, H.-C., Chung, L.-H., and Wang, L.-C.: Wildfire, vegetation, and climate history of central Taiwan from the end of the last glaciation to the late Holocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14667, https://doi.org/10.5194/egusphere-egu24-14667, 2024.

EGU24-14971 | ECS | Orals | CL1.2.14

Northern African vegetation and land cover changes led to increased Arctic warming during the mid-Holocene 

Shivangi Tiwari, Francesco S. R. Pausata, Anne de Vernal, Hugo Beltrami, Allegra N. LeGrande, and Michael L. Griffiths

The mid-Holocene (MH) was characterized by substantial vegetation changes over northern Africa, termed the Green Sahara. Concurrently, several proxy reconstructions have indicated anomalous warmth over some Arctic regions during the MH, with some records also indicating an abrupt cooling coinciding with the Saharan desertification. This has prompted studies into a potential teleconnection between the MH Green Sahara and the Arctic, leading to conflicting hypotheses regarding the dominant direction and mechanism for this teleconnection.

In this study, we analysed outputs from four fully coupled global climate models to identify the impact of the Green Sahara on the Arctic region. Through the difference of two sets of mid-Holocene simulations – with and without the Green Sahara – we isolated the effect of the northern African vegetation and land cover changes on Arctic temperatures. We show that simulations incorporating the Green Sahara yield considerably higher Arctic warming relative to simulations without explicit prescriptions of vegetation changes. We also conducted atmosphere-only global climate model simulations to identify whether or not Arctic temperature changes impacted northern African precipitation. Our results suggest that while the Arctic temperature changes induced changes to the atmospheric circulation over northern Africa, they were too weak to substantially contribute to Saharan desertification.

How to cite: Tiwari, S., Pausata, F. S. R., de Vernal, A., Beltrami, H., LeGrande, A. N., and Griffiths, M. L.: Northern African vegetation and land cover changes led to increased Arctic warming during the mid-Holocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14971, https://doi.org/10.5194/egusphere-egu24-14971, 2024.

EGU24-15781 | ECS | Posters on site | CL1.2.14

An 8 ka record of drought and fire dynamics in the southern European Alps based on biomarker analyses  

Lisa Danius, Paul Strobel, Maximilian Prochnow, Roland Zech, and Marcel Bliedtner

The southern European Alps are currently suffering from serious drought conditions and wildfires due to climate change. For this reason, paleoenvironmental research is fundamental in this vulnerable region to better understand the interactions between climate, humans, and landscape in the past, which are still largely unknown. Therefore, we established an 8 ka sediment record from Lago di Pusiano in the Brianza region (northern Italy) to reconstruct previous drought and wildfire dynamics since the Neolithic period using biomarker analyses. Specifically, besides well-established geochemical analyses, we use compound-specific hydrogen isotope analyses (δ2H) of n-alkanes to reconstruct hydroclimatic conditions and polycyclic aromatic hydrocarbons (PAHs) to reconstruct fire activities.

Our results show that δ2Hof the terrestrial n‑C29 and n-C31, which both reflect the δ2H signal of the growing season precipitation, is enriched during the Mid Holocene (~8 to 4.2 cal. ka BP), depleted from ~4.2 to 2.5 cal. ka BP and enriched from ~2.5 to 0.4 cal. ka BP. On longer timescales, we interpret our terrestrial δ2H to reflect the isolation-driven temperature change due to northern hemispheric cooling, showing an ongoing depletion in δ2H from the Mid to Late Holocene. However, on shorter timescales, especially during the Late Holocene, terrestrial δ2H can be overprinted by changes in the moisture source of precipitation, which are mostly related to the North Atlantic Oscillation (NAO) and the position of the Westerlies. Compared to the terrestrial n-alkanes, δ2H of the aquatic n‑C25, which reflects the δ2H signal of lake water, is generally more enriched due to lake water evaporation. Consequently, the offset between aquatic and terrestrial δ2H gives a valuable indication about evaporation at Lago di Pusiano and indicates wetter conditions during phases of enriched terrestrial δ2H and dryer conditions during depleted terrestrial δ2H.

PAHs are abundant throughout the sediment core and increase during periods of higher regional human activity (e.g., Bronze Age pile dwellings ~4 cal. ka, Roman settlements ~2 cal. ka, and during Medieval times ~1 cal. ka), especially strongly during industrialization. The occurrence of PAHs in the Pusiano sediments, especially the large amount of high molecular PAHs, indicates significant local fire episodes with biomass combustion at high burning temperatures. The comparison of PAHs and δ2H of n‑alkanes suggests the presence of increased fire activities during wetter periods, possibly due to higher biomass availability as fuel for more extensive wildfires, and/or increased anthropogenic burning due to increased human presence during wetter periods.

How to cite: Danius, L., Strobel, P., Prochnow, M., Zech, R., and Bliedtner, M.: An 8 ka record of drought and fire dynamics in the southern European Alps based on biomarker analyses , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15781, https://doi.org/10.5194/egusphere-egu24-15781, 2024.

Investigations of past biotic responses to rapid climate shifts are useful for developing biological scenarios that may result from future climate change. Vegetation responses to the Younger Dryas (YD) cold climatic reversal, the 8.2 ka cooling event, and the 4.2 ka event are of considerable interest. In this paper, we conduct model simulations of vegetation responses to these rapid climate changes over East Asia, and compare them with pollen-based vegetation records. Our aims were to investigate the vegetation responses to rapid climate changes with different magnitudes and to analyze dominant impact factors on vegetation in East Asia. Our results reveal that all major Plant Functional Types responded to the climate changes, but the magnitude, timing, and impact of their responses varied, with most changes in vegetation composition rather than vegetation type succession. In addition, it was found that after the abrupt cooling events the vegetation did not always recover to the state simulated before the perturbation, suggesting that different vegetation compositions may occur under similar climate conditions. Notably, there was a latitudinal gradient in the magnitude of these cold events in East Asia and in the resulting vegetation response, indicating a more pronounced vegetation responses to the severe cooling in the north and weaker responses to less cooling in the south. Changes in temperature exerted a major influence on the vegetation dynamics in the most high latitude regions, and changes in both temperature and precipitation were responsible for the vegetation changes at mid-to-high-latitudes. Vegetation compositions show a long-lasting effect of abrupt climate changes through eco-physiological and ecosystem demographic processes.

How to cite: Li, H., Chen, C., Zhao, W., and Zhao, Y.: Vegetation responses in East Asia to rapid climate changes: comparisons among the Younger Dryas event, the 8.2ka event, and the 4.2ka event, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15834, https://doi.org/10.5194/egusphere-egu24-15834, 2024.

EGU24-15920 | ECS | Posters on site | CL1.2.14

Vegetation response in SE France to the millennial-scale climate variability of the last glacial period 

Tiffanie Fourcade, Maria Fernanda Sanchez Goñi, Jonathan Lesven, Christelle Lahaye, and Anne Philippe

Deep-sea pollen records from the Western European margin indicate that regional vegetation oscillated between open forest and steppe during the Last Glacial period (ca. 115-27 ka), in response to the millennial scale climate variability, specifically the Dansgaard-Oeschger, (D-O) cycles and Heinrich events (HE). The magnitude of the forest expansions during D-O warming events was modulated by orbital parameters. However, the vegetation response in the north-western Mediterranean region during this period remains poorly understood due to the fragmentary nature of the available sequences.

In this study, we present a new well-chronologically constrained high-resolution marine pollen record from the Gulf of Lion (MD99-2343, 40°29'N, 4°01'E) documenting the vegetation response in southeastern France during Marine Isotope Stages (MIS) 4 to 2 (ca. 73-27 ka). Initial findings highlight that the extent of the temperate forest expansions in SE France, i.e. the forest colonizing the Rhône valley, in response to D-Os warming events is modulated by precession, as previously indicated by Western European margin pollen records located in the Mediterranean region below 40°N. In Western Europe, the HEs are all characterized by steppe expansions, but the new pollen analysis documents another scenario with an increase in forest cover during HE 6. We hypothesize that the combination of minima in precession and local atmospheric and marine processes in the Gulf of Lion allowed the development of the temperate forest in SE France during HE 6, while the expansion of open environments occurred in Western Europe.

How to cite: Fourcade, T., Sanchez Goñi, M. F., Lesven, J., Lahaye, C., and Philippe, A.: Vegetation response in SE France to the millennial-scale climate variability of the last glacial period, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15920, https://doi.org/10.5194/egusphere-egu24-15920, 2024.

EGU24-16394 | ECS | Posters on site | CL1.2.14

Holocene Integrative Vegetation Evolution (HIVE) : dynamical modelling under transient climate conditions in Europe 

Isabeau Aurore Bertrix, Nicolas Viovy, Hisashi Sato, and Didier M Roche

European landscapes have known a variety of transformations through the Holocene as a consequence of large-scale climate changes and anthropogenic impact. Recent evolution of the European area has seen a recession of agriculture in several regions (e.g. Navarro & Pereira, 2012, Ecosystems ; Perpiña Castillo et al, 2018, European Commission) putting into question what is to happen to the land so abandoned (Fayet et al, 2022 Environmental Science & Policy), for example if more « natural » conditions are to be implemented.

During the Holocene, European forests evolved in response to both climatic and human pressure. This joint evolution makes it hard to understand what the rôle of each factor is. Recent simulations at the global scale show that there could be significant delay between the natural vegetation evolution as computed in climate models and the observed evolution as recorded in palynological assemblages (Dallmeyer et al., 2023).

We aim at exploring the effect of human and climatic impacts on the vegetation evolution in Europe during the Holocene by means of high spatial resolution modelling.

To better understand how human pressure impacted vegetation cover in Europe, initial DGVM simulations were conducted using SEIB model, and were compared to pollen-based reconstruction from the REVEALS database. That way, the difference between simulations (representing european vegetation cover without homo sapiens presence) and data (representing real european vegetation cover) are a mean to evaluate the extent of the human impact. The simulations were running using climatic inputs from the intermediate complexity climatic model iLOVECLIM, using a downscaling approach to increase the spatial resolution and a bias correction method to improve the climate representation over the european area. Using steps of 300 years time windows periods from the begining of the Holocene to the preindustrial period, we present the results of those simulations and the comparaison with the pollen database as well as comparison with another vegetation model to assess the inter-model dispertion. The outcome could help us understand how our species has shaped the lands even before agricultural times as well as the extent of the climate induced vegetation evolution.

 

References

 

Navarro, L.M., Pereira, H.M. Rewilding Abandoned Landscapes in Europe. Ecosystems 15, 900–912 (2012). https://doi.org/10.1007/s10021-012-9558-7

Perpiña Castillo, C., Kavalov, B., Diogo, V., Jacobs-Crisioni, C., Batista e Silva, F., Lavalle, C, Agricultural land abandonment in the EU within 2015-2030, JRC113718, European Commission 2018

Fayet, C., Reilly, K., Van Ham, C., Verburg, P. H. (2022) The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives, Environmental Science & Policy, Volume 133, pages 44-53.

Dallmeyer, A, Kleinen, T, et al The deglacial forest conundrum, Nature Communications, 2022 https://doi.org/10.1038/s41467-022-33646-6

How to cite: Bertrix, I. A., Viovy, N., Sato, H., and Roche, D. M.: Holocene Integrative Vegetation Evolution (HIVE) : dynamical modelling under transient climate conditions in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16394, https://doi.org/10.5194/egusphere-egu24-16394, 2024.

EGU24-16656 | Posters on site | CL1.2.14

Refining Holocene environmental change and human impacts at Moossee, Switzerland, by exploring polycyclic aromatic hydrocarbons as innovative proxies for paleofire 

Line Rittmeier, Maximilian Prochnow, Paul Strobel, Marcel Bliedtner, Fabian Rey, Willy Tinner, and Roland Zech

Charcoal has been the first choice when studying paleofire and related ecosystem disturbances over decades, because it can be easily obtained, for example, together with pollen. It is used to track changes in local versus regional fire activity (e.g., Vachula et al., 2018; Vachula, 2021, Paleo3). However, despite many progresses in charcoal analyses, specific information about paleofires such as fire intensity partly remains elusive, although such information is highly interesting particularly for archaeological sites where human impacts are expected.

Moossee is a small lake located near Bern (Switzerland) and is a key site to study past interactions between environment and human impacts because the presence of humans is documented at the site by lake pile dwellings since the Neolithic ~7 kyr ago. Moreover, the sedimentary record of this lake covers the last 19 kyr, has an excellent chronological control, and was already extensively studied by pollen and charcoal analyses at high temporal resolution.

We present first results of polycyclic aromatic hydrocarbons (PAHs) in the Moossee sediments covering the Mid and Late Holocene in 30-year resolution. PAHs are a relatively new, innovative proxy showing great potential to investigate fire characteristics and to corroborate charcoal data, since their composition varies depending on multiple factors, such as combustion temperature, intensity, and distance.

Our newly obtained PAH dataset generally agrees with the existing charcoal record from Moossee, although the PAH concentrations reveal a stronger variability in paleofires especially during pre-Roman times (i.e., prior to ~2500 cal. yr BP) where charcoal concentrations are low. However, we find high PAH concentrations during Late Iron Age (~2200 cal. yr BP) coinciding with higher charcoal concentrations related to the founding of a settlement at Bern. PAHs are dominated by low molecular weight compounds (molecular mass 152 to 202) until ~1300 cal. yr BP. The predominance of light PAHs together with low microscopic charcoal concentrations likely indicates local fire activity. This is also supported by new spatial calibrations suggesting that the distribution of light PAHs is spatially rather limited (Vachula et al., 2022, Paleo3). With the beginning of the Middle Ages (~1300 cal. yr BP), high molecular weight PAHs (molecular mass 252 to 278) are dominant documenting higher burning temperatures and increasing regional fire intensity, which is in line with increased charcoal influx. This coincides with increasing human impact across the Swiss Plateau. A massive increase of PAHs with a simultaneous drop in charcoal concentrations since 150 cal. yr BP can be attributed to the industrialization and the combustion of fossil fuels.

In conclusion, our preliminary high-resolution PAH dataset from Moossee provides valuable new information that are only partly recorded by the already existing charcoal and pollen data. Thus, PAHs have great potential for studying paleofire history at Moossee, although more evaluation of the PAHs and their differences to charcoal is necessary. During the upcoming months, we will extend this PAH dataset with high-resolution compound-specific deuterium analyses on leaf waxes to further investigate links between hydroclimatic dynamics, environmental changes and the presence of paleofires at Moossee.

How to cite: Rittmeier, L., Prochnow, M., Strobel, P., Bliedtner, M., Rey, F., Tinner, W., and Zech, R.: Refining Holocene environmental change and human impacts at Moossee, Switzerland, by exploring polycyclic aromatic hydrocarbons as innovative proxies for paleofire, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16656, https://doi.org/10.5194/egusphere-egu24-16656, 2024.

EGU24-19277 | ECS | Posters on site | CL1.2.14

Impacts of forest cover and disturbance on Holocene forest biodiversity 

Laura Schild and Ulrike Herzschuh

Forests play a critical role in carbon storage and actively mitigate climate change. By fostering biodiversity they offer further intrinsic and economic value through ecosystem functions and services. However, logging and the increasing frequency and intensity of wildfires and pest outbreaks pose significant disturbances to forests. Understanding the interactions between forest cover, biodiversity, and disturbance is essential for determining effective strategies for forest management and conservation. 

To investigate past dynamics in diversity and forest cover, we utilized pollen-based vegetation reconstructions for the Northern Hemisphere over the past 10 000 years. We derived richness and forest cover and computed metrics for forest cover trends, centennial forest cover variability, and disturbance frequency and intensity. We analyzed the relationship of these potential drivers and forest cover and richness using loess models and explored spatio-temporal patterns.

Our findings reveal a negative relationship of richness with forest cover, with maximum richness observed at low to intermediate forest cover values.This indicates a potential tradeoff between high forest cover for optimal carbon storage and high biodiversity. Richness also demonstrates a normal response to centennial forest cover variability, supporting the intermediate disturbance hypothesis. Interestingly, we also find that increasing the cumulative disturbance intensity increases richness. This indicates a positive effect on forest richness from both many small and few large disturbances. This highlights the potential of disturbances to increase and maintain biodiversity in temperate and boreal forest.
These findings could help with designing forest management and conservation measures that align with carbon storage and biodiversity goals.

How to cite: Schild, L. and Herzschuh, U.: Impacts of forest cover and disturbance on Holocene forest biodiversity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19277, https://doi.org/10.5194/egusphere-egu24-19277, 2024.

Since the middle Miocene climatic transition, Earth’s climate has steadily cooled. The Late Miocene Global Cooling (LMGC) and the Northern Hemisphere Glaciation (NHG) were key cooling events. I analyzed changes of radiolarian microfossil assemblages to try to reconstruct the paleoceanographic changes during the last 10 million years at Ocean Drilling Program (ODP) Site 1208 to better understand the climate-cooling mechanism. I reconstructed sea surface temperatures (SSTs) based on extant radiolarian species from 0 to 10 million years ago to verify the suitability of radiolarian-based SSTs. A comparison with previously published alkenone-based SSTs at Site 1208 indicated that radiolarian-based SSTs for the Miocene based on only extant species are satisfactory. However, large discrepancies were observed between radiolarian-based and alkenone-based SSTs during the LMGC and NHG. I attributed these discrepancies to a sustained influence of subsurface water (~50 to 100 m) on assemblages of radiolarians during extreme cooling events. Relative abundances of other radiolarian groups indicated that during the LMGC there was a reorganization of regional paleoceanography that probably weakened the Pacific Meridional Overturning Circulation, increased meridional temperature gradient, and caused a southward migration of the subtropical front.  It is probable that North Pacific Intermediate Water expanded southeastward during the NHG.

How to cite: Matsuzaki, K.: Evolution of the Central Northwest Pacific paleoceanography over the past 10 million years focusing on the Late Miocene Global Cooling (ODP Site 1208), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21, https://doi.org/10.5194/egusphere-egu24-21, 2024.

EGU24-1093 | ECS | Posters on site | CL1.1.4 | Highlight

Midges’ marks – what chironomid head capsules tell us about Eemian and Early Vistulian palaeoenvironment – results from Bispingen , northern Germany 

Tomasz Polkowski, Agnieszka Mroczkowska, Stefan Lauterbach, Frank Neumann, Rik Tjallingii, Michał Słowiński, and Achim Brauer

Understanding the nature of past climatic changes is essential to assess human impact on current and future climate and environment. One of the means to achieve this goal is conducting past climate reconstructions based on subfossil Chironomidae remains. Using this method allows to estimate past summer temperatures and other palaeoecological parameters such as lake trophy and pH. Although Chironomidae analysis is very useful for reconstructing past climatic and ecological conditions, not many high resolution reconstructions have been conducted for periods prior to significant human impact, e.g. during the Eemian interglacial and Early Vistulian glacial. The present study is part of a larger project that applies a multi-proxy approach to the partially annually laminated sediments of the Eemian paleolake of Bispingen in northern Germany. The analysed sediment sequence consists of around 12 meters of diatomitic, calcitic-diatomitic and clastic-organic material and was sampled continuously at 2 cm resolution. The aim of this research is to reconstruct summer temperature changes throughout the Early Vistulian glacial and Eemian interglacial and draw conclusions with respect to the climatic gradient between northern and southern Europe. Chironomids’ head capsules analysis is supported by palaeoecological and palynological data, allowing to extract distinct palaeoecological phases on the basis of trophy and thermal conditions during the period considered.

 

This project is funded by the Polish National Science Centre (No. 2019/34/E/ST10/00275).

How to cite: Polkowski, T., Mroczkowska, A., Lauterbach, S., Neumann, F., Tjallingii, R., Słowiński, M., and Brauer, A.: Midges’ marks – what chironomid head capsules tell us about Eemian and Early Vistulian palaeoenvironment – results from Bispingen , northern Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1093, https://doi.org/10.5194/egusphere-egu24-1093, 2024.

EGU24-1163 | Posters on site | CL1.1.4

Effects of PETM in SouthWestern Anatolia: preliminarily results 

Füsun Danacı, Erhan Karakuş, Dilek Tokatlı, and Banu Türkmen Bozkurt

Paleocene - early Eocene units within the Isparta Bend where located in the west of the Taurus mountain belt consist of reddish-gray micritic limestones, silty mudstones, mudstones and sandstones. The sediments in question contain a late Tantian (NP9 according to Martini 1971 Nannoplankton zoning) aged nannofossil assemblage. In the samples taken from these sediments, many nannofossil species belonging to the Discoaster and Fasciculithus genera, which have oligotrophic hot environmental conditions, were identified. In the quantitative analyses made on the nanofossil contents of the samples taken from the study area, the abundance of species belonging to the Discoaster and Fasciculithus genera shows remarkable increases at upper levels. This situation can be interpreted as a change in oligotrophic-hot environmental conditions. This possibly be an indication of an increase in sea surface water temperature within the early PETM, possibly in the period just before the Paleocene-Eocene transition, which corresponds to the NP9-NP10 boundary in nannoplankton biozonation. The samples taken from the corresponding sediments on these samples contain nannofossil assemblages (Clausicoccus norrisii Bown & Newsam, Sphenolithus radians Deflandre, Ellipsolithus macellus (Bramlette & Sullivan)) giving an early Ypresian age (NP11). According to the results of the quantitative analysis, the diversity of nannofossil species and A significant decrease in the number of species has been observed, and Fasciculithus species are also very rare. This may be signs that the environmental conditions that existed in the late Thanetian changed greatly in the early Ypresian. Planktonic foraminifera, oxygen isotope and carbon isotope analyses in the samples continuing.

How to cite: Danacı, F., Karakuş, E., Tokatlı, D., and Türkmen Bozkurt, B.: Effects of PETM in SouthWestern Anatolia: preliminarily results, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1163, https://doi.org/10.5194/egusphere-egu24-1163, 2024.

EGU24-2148 | ECS | Orals | CL1.1.4

The cessation of North Pacific Deep Water formation over Northern Hemisphere Glaciation. 

Friso de Graaf, David Thornalley, Natalie Burls, Gavin Foster, Rachel Brown, and Heather Ford

Global ocean circulation is controlled by deep water formation in the high latitude Atlantic and Southern Oceans. There is no deep water formation in the modern North Pacific due to a strong salinity gradient (or halocline) which makes the deep Pacific relatively homogenous. There is evidence to suggest that this halocline was weaker in the Late Pliocene (3.3 – 2.6 Ma) which allowed for active deep water formation. Coupled stable isotope and trace element records from benthic foraminifera at the Northwest Pacific ODP Sites 1208 (3346 m depth) and 1209 (2387 m depth) indicate deep water formation in the North Pacific during the Late Pliocene. Heavier oxygen isotopes at the shallower site 1209 require that the two sites were bathed in deep waters formed in different locations. Trace metal analysis (Mg/Ca) shows that there was a marginally colder, and thus fresher, water mass at the shallower site 1209 which is partially consistent with modelling results showing a fresher North Pacific Deep Water reaching intermediate depths in the Late Pliocene, while the deeper site was bathed in southern sourced waters. The benthic isotope values at the two sites converged during the glacials of the Early Pleistocene after the intensification of Northern Hemisphere Glaciation (iNHG, c. 2.7 Ma). This convergence was coincident with a global drop in sea levels suggesting that sea level changes, potentially by constricting water mass transport through the Indonesian Gateway, may have modulated the strength of North Pacific Deep Water formation in the Pliocene. This would mean that the complete cessation of North Pacific Deep Water does not occur until considerably after the iNHG.

How to cite: de Graaf, F., Thornalley, D., Burls, N., Foster, G., Brown, R., and Ford, H.: The cessation of North Pacific Deep Water formation over Northern Hemisphere Glaciation., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2148, https://doi.org/10.5194/egusphere-egu24-2148, 2024.

The larger-scale oceanic gyre circulation regulates temperature, salinity and nutrient flow throughout the ocean, profoundly influencing the biological environment and climate. Here, we investigate the response of the Pacific gyre circulation during the warm climate of the early Eocene in eight models from the Deep-Time model intercomparsion project (DeepMIP). Our DeepMIP results suggest a northward expansion of the North Pacific subtropical gyre by up to 10 degrees latitude in the Eocene, maintaining a similar strength to the present day. This simulated poleward expansion of the North Pacific gyre circulation is corroborated by proxy evidence, including poleward shifts in low sedimentation rate and high clay concentration during the Eocene. In the southern Pacific, the super subtropical gyre is much stronger during the Eocene due to the southward position of Australia that leads to a wide-open Indonesian gateway. The poleward shifted boundary between the subtropical and subpolar gyre in North Pacific occurs as a result of the northward shifted westerly winds maxima, as also corroborated by an analysis of the Sverdrup transport. The Sverdrup transports describes the upper circulation during the Eocene further poleward than modern day mainly due to their continental differences. The upper circulation corresponds to Sverdrup transport up to ~53°N for the North Pacific, slightly further north than modern day of 50°N, and up to ~55°S for the South Pacific that is much further south than in the modern ocean and continents (~45°S).

How to cite: Zhang, Y. and M. de Boer, A.: Poleward expansion of North Pacific gyres circulation during the warm early Eocene inferred from inter-model comparisons, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2206, https://doi.org/10.5194/egusphere-egu24-2206, 2024.

EGU24-2429 | Posters on site | CL1.1.4 | Highlight

Patterns and drivers of Holocene moisture variability in mid-latitude eastern North America 

J. Sakari Salonen, Frederik Schenk, John W. Williams, Bryan Shuman, Ana L. Lindroth Dauner, and Miska Luoto

Proxy data for North American hydroclimate (e.g., pollen and other microfossils, sedimentological data, and stable isotopes) indicate major variations in moisture balance including persistent multimillennial droughts during the Holocene. When synthesised with paleoclimate model simulations, the proxies also allow the testing of hypotheses about the drivers and feedbacks involved in the past moisture variations. Recently, advances in (A) the availability of high-resolution proxy records, (B) the numerical methods used to extract the hydroclimate signal from the proxies, and (C) the transient Earth system model simulations of the Holocene, have opened exciting new avenues in unraveling the spatiotemporal progress, magnitudes, and causes of Holocene North American droughts.

Here, we apply new machine-learning based (boosted regression tree) pollen–climate calibrations to reconstruct annual water balance and July temperature from 66 fossil pollen sequences from the eastern North American mid-latitudes. Based on these data, we prepare synthesis paleoclimate reconstructions for three regions, spanning from the prairie–forest ecotone to the eastern seaboard, designated as Midwest (MW), Great Lakes (GL), and Northeast (NE). The proxy reconstructions are complemented by state-of-the-art model simulations, including the EC-Earth and MPI-ESM transient runs for 8–0 ka and CESM1 equilibrium runs for 12, 11, and 9 ka.

Our water balance reconstructions confirm the major regional offset in drought timing suggested by earlier proxy data, with NE reaching peak drought by 11 ka but with a progressively later timing seen westward in GL (~10 ka) and MW (~7 ka). This spatiotemporal pattern is also reproduced in the model simulations. In the early Holocene simulations, the dipole of wet conditions in MW vs. dry in NE can be clearly linked to dynamical changes in atmospheric circulation, linked to anticyclonic blocking over the residual Laurentide Ice Sheet. This confluence between our water balance reconstructions and the new-generation model simulations gives strong support to the hypothesis that the broadscale drought progress can be explained by the combination of decreasing summer insolation and the waning of the Laurentide glacial anticyclone, which diverted the northward moisture advection from the mid-continent towards the eastern seaboard. Beyond these multimillennial patterns, our proxy reconstructions show coherent centennial events in moisture and temperature. Wavelet analyses of the reconstructions and the transient simulations reveal significant periodicities in both water balance and July temperature, most commonly in the 0.2–0.6 ka wavelength range in the reconstructions and at 0.1–0.2 ka in the simulations.

In the MPI-ESM and EC-Earth simulations, the mid-Holocene drought is driven by a combination of lower-than-preindustrial precipitation together with increased potential evapotranspiration due to warmer summer temperatures. The relative drought through most of the Holocene, seen in both the reconstructions and the simulations, suggests that the recent and modern climate is unusually wet while drier conditions seem to be the norm during the Holocene. Looking towards the future, it is hence plausible that reverting the natural neoglacial cooling of the recent millennia with anthropogenic global warming might cause a return of drier conditions due to a higher evaporative demand that is not compensated by higher precipitation.

How to cite: Salonen, J. S., Schenk, F., Williams, J. W., Shuman, B., Lindroth Dauner, A. L., and Luoto, M.: Patterns and drivers of Holocene moisture variability in mid-latitude eastern North America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2429, https://doi.org/10.5194/egusphere-egu24-2429, 2024.

EGU24-2571 | ECS | Orals | CL1.1.4

Iron fertilization-induced deoxygenation of Eastern Equatorial Pacific intermediate waters during the Paleocene-Eocene Thermal Maximum 

xiaodong jiang, weiqi Yao, Xiangyu zhao, Xiaoming sun, Andrew Roberts, and Appy Sluijs

Thousands of gigatons (~2500-4500 Gt) of carbon were released into the ocean and atmosphere system over several thousand years during the Paleocene-Eocene Thermal Maximum (PETM, ca. 56 Ma), a transient period of global warming, is considered an important analog for future greenhouse conditions. It was accompanied by a significant carbon cycle perturbation, intensified weathering and hydrological cycling, and ocean deoxygenation. Although ocean deoxygenation across the PETM is reported widely, its mechanism in the open ocean remains uncertain. We here present magnetic and geochemical analyses of sediments from the Eastern Equatorial Pacific (EEP) Ocean. We find that iron fertilization during the PETM by eolian dust and volcanic eruptions fueled EEP ocean productivity. This process led to increased organic matter degradation and oxygen consumption in intermediate waters, leading to deoxygenation. Our findings suggest that iron fertilization could be an important driver of open ocean oxygen loss, as a side effect of global warming. Our observation is important in the emerging discussion of how global warming will reduce dissolved oxygen in the open ocean and, in turn, affect the marine fishery industry and future food security.

How to cite: jiang, X., Yao, W., zhao, X., sun, X., Roberts, A., and Sluijs, A.: Iron fertilization-induced deoxygenation of Eastern Equatorial Pacific intermediate waters during the Paleocene-Eocene Thermal Maximum, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2571, https://doi.org/10.5194/egusphere-egu24-2571, 2024.

EGU24-2886 | Posters on site | CL1.1.4

Expanding PlioVAR to PlioMioVAR: Updates and Future Directions 

Heather L. Ford, Sindia Sosdian, Erin McClymont, Sevi Modestou, Sze Ling Ho, Natalie Burls, Aisling Dolan, and Tamara Fletcher and the PlioMioVAR

The Pliocene (~2.6-5.3 million years ago), and increasingly the Miocene (~23-5.3 million years ago), are used by the climate community as pseudo-analogs of future climate change. Relative to modern, the Plio-Miocene was globally warmer with reduced continental ice volume and reconstructed atmospheric carbon dioxide concentrations similar to or higher than present-day. The Past Global Changes (PAGES) PlioMioVAR working group expands on the previous PAGES PlioVAR working group aims to create a synthesis of marine and terrestrial data to characterise spatial and temporal reconstructions of Plio-Miocene climate. Major outputs from PlioVAR include a synthesis and evaluation of multi-proxy sea surface temperatures (SSTs) during the KM5c interglacial (~3.2 million years ago) and Pliocene-Pleistocene intensification of Northern Hemisphere Glaciation. In coordination with the Pliocene model intercomparison project Phase 3 (PlioMIP3), our Pliocene efforts are to 1) continuously update the existing mid-Pliocene database, 2) expanding our data synthesis to the early Pliocene (~4.5 and ~4.9 million years ago) and 3) synthesise terrestrial records. In coordination with the Miocene Model Intercomparison Project (MioMIP), our Miocene efforts are to 1) synthesise surface and deep temperatures and 2) identify Miocene time slices for data-model comparison. From workshop discussions, we’ve identified future research directions including 1) refining site-specific chronologies to ensure robust comparison of temperature records at short (i.e. glacial-interglacial) and longer time scales, 2) constraining seawater chemistry changes, 3) comparing multi-proxies with sufficient temporal and spatial coverage, and 4) reconstructing high-latitude regions (temperature and ice margin records) to improve our ability to to assess meridional temperature gradients, polar amplification, and ice sheet volume and stability. Focusing our efforts on these research directions could be community themes in the next incarnation of IODP. These databases and data-model comparisons are critical for navigating future climate change. This presentation outlines our current state of synthesis, assessment and analysis, and we welcome discussions on new data sets and approaches.

How to cite: Ford, H. L., Sosdian, S., McClymont, E., Modestou, S., Ho, S. L., Burls, N., Dolan, A., and Fletcher, T. and the PlioMioVAR: Expanding PlioVAR to PlioMioVAR: Updates and Future Directions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2886, https://doi.org/10.5194/egusphere-egu24-2886, 2024.

EGU24-3742 | Orals | CL1.1.4

Did monsoon govern the Asian rainy season in the early Eocene? An ensemble paleoclimate simulation perspective. 

Abhik Santra, Fabio A. Capitanio, Dietmar Dommenget, Bhupendranath Goswami, Alex Farnsworth, David K. Hutchinson, Julie M. Arblaster, Daniel J. Lunt, and Sebastian Steinig

The Asian summer monsoon (ASM) is a seasonal response of the coupled land-ocean-atmospheric system, which influences more than 60% of the world’s population. Although progress has been made in understanding the ASM variability and its prediction, the timing and governing factors for the ASM initiation are still debatable as recent proxy evidence and modeling studies suggested the initiation of a wet-dry monsoonal climate from the Cretaceous period (145 million years ago, Ma) to the early Miocene or late Oligocene epoch, ∼25-22 Ma. Capitalizing on an ensemble of paleoclimate simulations for the early Eocene (56-48 Ma), we show that the Asian wet season was considerably weaker and shorter than present in the absence of an elevated heat source like the Tibetan Plateau in the early Eocene. The deficient upper tropospheric meridional temperature gradient couldn’t drive the seasonal northward migration of the precipitation band over South Asia. Additionally, the weaker cross-equatorial moisture flow was mechanically blocked by the Gangdese mountain along the southern edge of Asia, leading to significantly dry conditions in South Asia. The enhanced atmospheric greenhouse gases were inadequate to strengthen the seasonal circulation and precipitation variability to the present level. We argue that an altered wet and dry seasonality over South Asia was not necessarily qualified as the Eocene ‘monsoon’.

How to cite: Santra, A., Capitanio, F. A., Dommenget, D., Goswami, B., Farnsworth, A., Hutchinson, D. K., Arblaster, J. M., Lunt, D. J., and Steinig, S.: Did monsoon govern the Asian rainy season in the early Eocene? An ensemble paleoclimate simulation perspective., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3742, https://doi.org/10.5194/egusphere-egu24-3742, 2024.

EGU24-3844 | Orals | CL1.1.4

Decomposition of Monsoon Dynamics: Reconciling Data and Model Comparison for Geological Time Periods 

Yong Sun, Haibin Wu, Lin Ding, and Gilles Ramstein

Understanding past climate informs our future scenarios. Proxy data and climate models are vital for studying past climate change, but discrepancies often arise between these approaches. This study introduces an innovative approach that reconciles proxy data with models by decomposing the physical processes driving monsoon precipitation changes. Focusing on East Asian Summer Monsoon (EASM) precipitation across significant periods in the PMIP, our analysis highlights: 1) the dominance of dynamic effects over thermodynamic effects during the mid-Holocene, 2) contrasting impacts of thermodynamic and dynamical processes during the Last Glacial Maximum, and 3) distinct regional controls of thermodynamic and dynamical processes in the mid-Piacenzian warm period, reflecting diverse water vapor sources. The study concludes that decomposing the physical processes of precipitation aids in reconciling records and simulations. It asserts that simulations consistently yield a decomposed process that spatially aligns with the records. The mismatch between records and simulations primarily arises from simulation biases in the relative contributions of the decomposed physical processes to precipitation changes, suggesting a need for improvement in simulations.

How to cite: Sun, Y., Wu, H., Ding, L., and Ramstein, G.: Decomposition of Monsoon Dynamics: Reconciling Data and Model Comparison for Geological Time Periods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3844, https://doi.org/10.5194/egusphere-egu24-3844, 2024.

EGU24-3889 | ECS | Posters on site | CL1.1.4

Light and temperature limitation of poleward coral reef expansion during past warm climates 

Anne Kruijt, Thomas Brachert, Jack Middelburg, and Appy Sluijs

The latitudinal range of shallow-water tropical corals is controlled by temperature, and presently limited to waters warmer than 16-18 °C yearround. However, even during Cenozoic climates with such temperatures in polar regions, coral reefs are not found beyond >50° latitude. Here, we test the hypothesis that daily available solar radiation limited poleward expansion of coral reefs during warm climates, using a new box model of shallow marine coral calcification. Our results show that calcification rates start to decline beyond 40° and more quickly beyond 50°, suggesting that winter light intensity and day length prohibits further poleward expansion. This implies that fossil coral reef distribution is not a robust proxy for water temperatures and that poleward expansion of reefs is not an expected carbon cycle feedback of climate warming.

How to cite: Kruijt, A., Brachert, T., Middelburg, J., and Sluijs, A.: Light and temperature limitation of poleward coral reef expansion during past warm climates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3889, https://doi.org/10.5194/egusphere-egu24-3889, 2024.

EGU24-4746 | Orals | CL1.1.4 | Highlight

An ice free Arctic during the Last Interglacial: CMIP6-PMIP4 progress on Arctic sea ice  

Louise Sime, Rachel Diamond, David Schroeder, Rahul Sivankutty, and Maria Vittoria Guarino

The Arctic was around 4-5C warmer in summer during peak Last Interglacial (LIG), compared to the preindustrial. However this summer warming was not accurately captured by CMIP models until 2020. Before then the lack of LIG Arctic warmth in CMIP models was most commonly postulated to be due to a lack of dynamic vegetation feedbacks. However in 2020 a UK CMIP6 model accurately captured the summer warming (Guarino et al., 2020). The warming in this model is due to a complete summertime loss of Arctic sea ice, rather than dynamic vegetation feedbacks. Whilst marine data, until 2023,  were not adequate for assessing the accuracy of this modelled LIG Arctic sea ice loss (Kagayama et al., 2021), this has now been rectified by valuable new marine core evidence from the Arctic (Vermassen et al., 2023). Here, we show firstly why we are confident that melt pond physics (albedo feedbacks) are sufficient to melt LIG sea ice, raise the Arctic temperature, and also why they are important for the accurate projection of Arctic sea ice loss during warm climate – including the future (Diamond et al., 2021; 2024). Secondly, we quantify the Arctic warmth, and discuss the nature of polar amplification in CMIP models, during the LIG (Sime et al., 2023). We find an Arctic-wide warming of 3.7±1.5 K at the LIG, alongside a climatological minimum sea ice area of 1.3 to 1.5 million km2, i.e that the peak LIG Arctic likely experienced a mixture of ice-free and near-ice-free summers.

How to cite: Sime, L., Diamond, R., Schroeder, D., Sivankutty, R., and Guarino, M. V.: An ice free Arctic during the Last Interglacial: CMIP6-PMIP4 progress on Arctic sea ice , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4746, https://doi.org/10.5194/egusphere-egu24-4746, 2024.

EGU24-5212 | Posters on site | CL1.1.4

Rates of Change in Past Warm Periods, Part 1 

Manfred Mudelsee

Since the publication of the IPCC's Fifth Assessment Report in 2013, there has been increasing evidence that the social and ecological impacts of global warming depend more on seasonal extremes (e.g. peak summer temperatures) than on trends in annual averages. This is particularly true in the tropics, where extremes have become the greatest threat to ecosystems. However, little is known about the current and future rates of change in means and extremes. Lack of high-resolution data from past warm climates (which serve as analogues) and lack of advanced data analysis methods explain this knowledge deficit.

The SEARCH project (Seasonal Extremes and Rates of Change in Past Warm Climates: Insights from Advanced Statistical Estimations on High-Resolution Coral Proxy Records) aims to advance our knowledge by means of (1) using a database of high-resolution coral proxy records and (2) applying advanced simulation techniques from statistical science. SEARCH uses a database of about 50 existing and new (bi-)monthly resolved coral proxy records during the (a) Anthropocene, (b) Medieval Climate Anomaly-Medieval Warm Period, (c) Holocene Thermal Maximum, (d) Last Interglacial and (e) Mid-Pliocene Warm Period.

In the first part of our presentation series, we explain the methodological foundations (Mudelsee 2014, 2023): proxy calibration, nonparametric kernel estimation of the first derivative of the climate proxy series and linear regression. The methods take into account typical peculiarities of paleoclimate time series: non-Gaussian distributions, autocorrelation, uneven spacing and uncertain timescales. We present some initial results. Based on the (preliminary) results of SEARCH, we also consider the lessons for navigating the climate future within the framework of the GreenSCENT project (Smart Citizen Education for a Green Future).

Acknowledgements:

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 468589022 (SEARCH), within the SPP 2299, project number 441832482; and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101036480 (GreenSCENT).

References:

Mudelsee M (2014) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second Edition. Springer, Cham. xxxii + 454 pp [https://www.manfredmudelsee.com/book/index.htm]

Mudelsee M (2023) Unbiased proxy calibration. Mathematical Geosciences. (doi:10.1007/s11004-023-10122-5).

How to cite: Mudelsee, M.: Rates of Change in Past Warm Periods, Part 1, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5212, https://doi.org/10.5194/egusphere-egu24-5212, 2024.

EGU24-5510 | Posters on site | CL1.1.4

Scanning the Ocean’s sedimentary barcode: optimising digital archives towards a deeper understanding of Earth Climate 

Anna Joy Drury, Nina Rohlfs, Roy Wilkens, Beth Christensen, Mitchell Lyle, Heiko Pälike, and Thomas Westerhold

Scientific ocean drilling (SOD) has played an important role in revealing much about Earth’s climate history through 50+ years of international programmes such as the International Ocean Discovery Programme (IODP) and its predecessors. The sedimentary records retrieved from below the ocean floor captures the evolution of Earth’s oceans and climate system, documenting both rapid climate change and long-term trends spanning at least the last 145 million years to the emergence of our modern world. All this was accomplished with a relatively traditional set of ocean drilling tools and approaches. Now with technological advances and the advent of data science, SOD is in a unique position to make similarly fundamental advances at a time when decision-makers are grappling with the effects of unprecedented rapid climate change.

Given the present need to understand the processes and capture the consequences of our changing climate, we need to employ all possible tools to achieve this. Here we present what ocean drilling material is available through geological time, summarised in easily accessible databases utilising Code for Ocean Drilling Data (CODD; www.CODD-home.net; Wilkens et al., 2017). We also highlight approaches to optimise the use of legacy SOD material and data by targeting locations with  stratigraphic continuity (e.g., locations with composite splices) combined with advances in digital capabilities, such as CODD. This includes presenting an archive of CODD core image tracks for all sites with continuous sedimentary sections based on composite splices. Together, we aim to highlight how this information can be used to develop a multifaceted approach further utilising digital archives derived from scientific ocean drilling material to read the subsurface barcode of past climate change stored in our deep-sea sediments.

How to cite: Drury, A. J., Rohlfs, N., Wilkens, R., Christensen, B., Lyle, M., Pälike, H., and Westerhold, T.: Scanning the Ocean’s sedimentary barcode: optimising digital archives towards a deeper understanding of Earth Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5510, https://doi.org/10.5194/egusphere-egu24-5510, 2024.

EGU24-5580 | ECS | Posters on site | CL1.1.4

Revisiting the physical processes controlling the tropical atmospheric circulation changes during the Mid-Piacenzian Warm Period 

Ke Zhang, Yong Sun, and Xu Zhang and the Team of co-authors of this work

The Mid-Piacenzian Warm Period (MPWP; 3.0-3.3Ma), a warm geological period about three million years ago, has been deemed as a good past analog for understanding the current and future climate change. Based on 12 climate model outputs from Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we investigate tropical atmospheric circulation (TAC) changes under the warm MPWP and associated underlying mechanisms by diagnosing both atmospheric static stability and diabatic processes. Our findings underscore the advantage of analyzing atmospheric diabatic processes in elucidating seasonal variations of TAC compared to static stability assessments. Specifically, by diagnosing alterations in diabatic processes, we achieve a quantitative understanding and explanation the following TAC changes (incl. strength and edge) during the MPWP: the weakened (annual, DJF, JJA) Northern Hemisphere and (DJF) Southern Hemisphere Hadley circulation (HC), reduced (annual, DJF) Pacific Walker circulation (PWC) and enhanced (annual, JJA) Southern Hemisphere HC and (JJA) PWC, and westward shifted (annual, DJF, JJA) PWC. We further addressed that the increasing bulk subtropical static stability and/or decreasing vertical shear of subtropical zonal wind - two crucial control factors for changes in subtropical baroclinicity - may promote HC widening, and vice versa.  Consequently, our study of spatial diabatic heating and cooling, corresponding to upward and downward motions within the TAC, respectively, provides a new perspective for understanding the processes controlling seasonal TAC changes in response to surface warming.

How to cite: Zhang, K., Sun, Y., and Zhang, X. and the Team of co-authors of this work: Revisiting the physical processes controlling the tropical atmospheric circulation changes during the Mid-Piacenzian Warm Period, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5580, https://doi.org/10.5194/egusphere-egu24-5580, 2024.

EGU24-5639 | Posters on site | CL1.1.4 | Highlight

Surface Ocean Cooling in the Eocene North Atlantic Coincides With Declining Atmospheric CO2 

Gordon Inglis, Rehemat Bhatia, David Evans, Jiang Zhu, Wolfgang Muller, David Mattey, David Thornalley, Richard Stockey, and Bridget Wade

The Eocene (56–34 million years ago) is characterized by declining sea surface temperatures (SSTs) in the low latitudes (∼4°C) and high southern latitudes (∼8–11°C), in accord with decreasing CO2 estimates. However, in the mid-to-high northern latitudes there is no evidence for surface water cooling, suggesting thermal decoupling between northern and southern hemispheres and additional non-CO2 controls. To explore this further, we present a multi-proxy (Mg/Ca, δ18O, TEX86) SST record from Bass River in the western North Atlantic. Our compiled multi-proxy SST record confirms a net decline in SSTs (∼4°C) between the early Eocene Climatic Optimum (53.3–49.1 Ma) and mid-Eocene (∼44–41 Ma). However, from the mid-Eocene onwards, east-west North Atlantic temperature gradients exhibit different trends. This is attributed to inception of Northern Component Water during the early-middle Eocene transition and incursion of warmer waters into the eastern North Atlantic, but additional data sets are required to test this further. We also demonstrate that the onset of long-term Eocene cooling in the western North Atlantic (∼49–48 Ma) occurs synchronously in other ocean basins (e.g., N. Atlantic vs. SW Pacific) and across different latitudinal bands, implying that CO2 was likely responsible for the onset of long-term Eocene cooling.

How to cite: Inglis, G., Bhatia, R., Evans, D., Zhu, J., Muller, W., Mattey, D., Thornalley, D., Stockey, R., and Wade, B.: Surface Ocean Cooling in the Eocene North Atlantic Coincides With Declining Atmospheric CO2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5639, https://doi.org/10.5194/egusphere-egu24-5639, 2024.

EGU24-5765 | ECS | Posters on site | CL1.1.4

Early Eocene Climatic Optimum Pacific deep ocean temperatures from clumped isotope thermometry 

Johanna Marquardt, Ismini Lypiridou, Victoria E. Taylor, Philip F. Sexton, Thomas Westerhold, James C. Zachos, and A. Nele Meckler

Past greenhouse climates provide crucial insights into how the climate system operates under conditions with high atmospheric carbon dioxide concentrations and smaller or absent continental ice sheets, and thus inform projections of future climate. When studying past greenhouse climate states, deep ocean temperatures are often used to estimate global mean temperature (Westerhold et al., 2020), which is needed to determine climate sensitivity and assess the performance of climate models. Additionally, deep ocean temperatures provide insights into past ocean circulation patterns.

The Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma) was characterized by extreme global warmth and elevated atmospheric CO2 concentrations (Hollis et al., 2019a). Currently, our understanding of deep ocean temperatures during the EECO relies primarily on benthic foraminiferal stable oxygen isotopes and Mg/Ca records. These proxies, however, are influenced by factors other than temperature, making robust deep-time temperature reconstructions challenging. Carbonate clumped isotope thermometry, on the other hand, is largely independent of past seawater chemistry and can therefore provide essential new constraints.

Recent clumped isotope-based deep ocean temperature reconstructions from the Atlantic Ocean are substantially warmer during the peak EECO than previous estimates based on stable oxygen isotopes and Mg/Ca records (Meckler et al., 2022). However, it remains to be tested whether these warmer temperatures are a regional signal restricted to the Atlantic Ocean or found globally in the deep ocean. Here we present a record of deep ocean temperatures using clumped isotopes in benthic foraminifera from the Pacific Ocean (ODP Site 1209, ~2300 m paleo-water depth). Our new record spans the interval between 52 Ma to 50.3 Ma, covering the peak EECO and the major shift in benthic foraminiferal stable carbon isotopes around 51 Ma which is observed globally in the deep ocean. Warmer than expected Atlantic as well as Pacific deep ocean temperatures could indicate that EECO global mean temperature was warmer than previously assumed, which would have implications for existing estimates of climate sensitivity.

References

Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., ... & Lunt, D. J. (2019a). The DeepMIP contribution to PMIP4: Methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 12(7), 3149-3206.

Meckler, A. N., Sexton, P. F., Piasecki, A. M., Leutert, T. J., Marquardt, J., Ziegler, M., ... & Bernasconi, S. M. (2022). Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science377(6601), 86-90.

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., ... & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science369(6509), 1383-1387.

How to cite: Marquardt, J., Lypiridou, I., Taylor, V. E., Sexton, P. F., Westerhold, T., Zachos, J. C., and Meckler, A. N.: Early Eocene Climatic Optimum Pacific deep ocean temperatures from clumped isotope thermometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5765, https://doi.org/10.5194/egusphere-egu24-5765, 2024.

EGU24-5915 | ECS | Orals | CL1.1.4

Response of the Hydrological Cycle to Early Eocene Warmth: Insights from DeepMIP-Eocene 

Marlow Cramwinckel and the DeepMIP-Hydrology Team

Investigating how the early Eocene (∼56–48 million years ago) hydrological cycle operated under elevated atmospheric CO2 concentrations and globally higher temperatures can provide important insights into understanding of current climate change and projects of future climate. Here, we investigate the global and zonal-mean rainfall patterns during the early Eocene using an integrated data-model approach. We leverage insights from the DeepMIP-Eocene suite of model simulations in combination with a compilation of paleobotanical proxies of precipitation. In short, the mid- and high latitudes, as well as the tropical band, are characterized by a thermodynamically-dominated hydrological response to warming, and overall wetter conditions (“wet-gets-wetter”). A more complex picture is painted for the subtropics. Although these are overall characterized by negative precipitation-evaporation anomalies (“dry-gets-drier”) in the DeepMIP models, there is surprisingly large inter-model variability in mean annual precipitation. Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics, thus going against the “wet-gets-wetter, dry-gets-drier” paradigm. This highlights the importance of evaluating multiple climate metrics against sets of simulations and can provide food for thought for DeepMIP phase two.

How to cite: Cramwinckel, M. and the DeepMIP-Hydrology Team: Response of the Hydrological Cycle to Early Eocene Warmth: Insights from DeepMIP-Eocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5915, https://doi.org/10.5194/egusphere-egu24-5915, 2024.

EGU24-7500 | ECS | Posters on site | CL1.1.4

Micro XRF elemental mapping for paleoclimate reconstruction in the Indian Ocean -to find exact timings of climate change- 

Arisa Seki, Gerald Auer, and David De Vleeschouwer

Non-destructive, high-resolution measurement of sediment cores are useful to reveal sediment feature which reflect climatic or oceanographic changes. Such non-destructive measurement (e.g. XRF core scanner measurement) could be reveal sediment feature in finer scale than discrete sample measurement. Although elemental mapping is also useful to reveal 2-dimentional structure of half split core surface, elemental mapping of large materials such as archive half core sections were usually difficult.

In this study, we utilize recently released micro-XRF (M6 JETSTREAM provided by Bruker Corporation) which could measure archive half core directly and could make high-resolution element maps. The fine scale sediment feature which reflecting exact timings of drastic climate changes were revealed by micro-XRF using sediments obtained by following two Sites.

Using the Neogene sediments obtained from DSDP Site 266, located at the high-latitude of Indian ocean close to the Antarctica, the distinctive chemical markers of IRD were observed in specific sections of Site 266. IRD is primarily distinguished by its characteristic iron-rich signature, and the identified fragments measure between 4.2 and 6.4 millimeters in length along their longest axis. Traditionally, these individual particles could only be discerned through destructive analysis. The large-scale micro-XRF capabilities of the JETSTREAM now enable us to non-destructively quantify and fingerprint IRD. The drastic changes of primary producer from the calcareous plankton to the siliceous plankton was also suggested from elemental mapping results.

The sediments obtained from ODP Site 752, located on an isolated ridge in the Indian Ocean contained concretion at Paleogene age when hiatus or lower sedimentation rate was suggested by age model. We measured the concretion and the surrounding sediments together using specialized method of JETSTREAM, and revealed high-resolution elemental maps of concretion and surroundings sediments. The maps clearly shows that each element (Ca, Fe, Mn) is concentrated on different part on and around the concretion. The Ca concentration is higher at an interval above a concretion, which may suggest high calcareous productivity during the sedimentation period.

In this study, we used legacy cores (archive halves) stored at Kochi Core Center (KCC), as the member of ReCoRD program (ReC23-01). Our measurement clearly shows reanalysis of previously obtained core materials by new technics reveals new feature of sediments which is useful to reconstruct past climate changes.

How to cite: Seki, A., Auer, G., and De Vleeschouwer, D.: Micro XRF elemental mapping for paleoclimate reconstruction in the Indian Ocean -to find exact timings of climate change-, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7500, https://doi.org/10.5194/egusphere-egu24-7500, 2024.

Nearly 100 million people live in and depend on the Sahel for agriculture and natural resources. The region is sensitive to natural climate and environment variations caused by the seasonal movement of the tropical rainbelt. In the paleoclimate record, insolation plays a clear role on West African Monsoon strength, but responses to other forcings like temperature, greenhouse gases, ice volume, and land surface cover are unclear due to the lack of highly resolved, terrestrial records that span major global and regional shifts through time. Here we present leaf wax precipitation and vegetation records from five targeted study windows throughout the last 25 million years, derived from long-chain n-alkane hydrogen (δDwax) and carbon (δ13Cwax) isotopes, respectively, in a sediment core from ODP Site 959 in the Gulf of Guinea, where westerly winds and major river systems transport Western Sahel-sourced material. Analyses of trend and variability document a range of rainfall and vegetation responses to orbital forcings in different boundary conditions in the Oligocene, Miocene, Pliocene, and Pleistocene. We find that both the climate and environment was more variable in times of higher CO2 and global temperatures, suggesting an increase in ecosystem instability moving forward into the future. Because of the high resolution and temporal coverage of these new biomarker isotope records, we can examine relationships between precipitation and vegetation fluctuations, even prior to C4-expansion when there was a strong correlation despite minimal variation in δ13Cwax in a C3 world. Further, we find a drying trend throughout the record, demonstrating that vegetation on long timescales was decoupled from hydroclimate and was like driven by global CO2, advancing our understanding of climate and ecosystem relationships across the Cenozoic.

How to cite: Lupien, R., Uno, K., and de Menocal, P.: Orbital-scale climate and environmental responses of the Western Sahel to shifts in Cenozoic boundary conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7676, https://doi.org/10.5194/egusphere-egu24-7676, 2024.

EGU24-7727 | ECS | Orals | CL1.1.4

The oxygen and carbon isotope records of East Asian climate variations during the Eocene warm periods from Weihe Basin, central China 

Kexin Wang, Huayu Lu, Wenfeng Sun, Chenghong Liang, Hongyan Zhang, Yichao Wang, Hengzhi Lv, Jingjing Wang, Hanzhi Zhang, and Wen Lai

Eocene warmth has been used as one of the best analogues for future anthropogenic warming. How East Asian hydroclimate responds to the increased temperature during the Eocene is still elusive. Here, we present a combined element and isotopic geochemistry study of an Eocene lacustrine sequence covering the period 46-33 Ma from Weihe Basin, central China. Based on the formation process of lake carbonate and the paleosol CO2 barometer equation, a calculation model of lake carbonate carbon isotope (δ13Ccarb) that is suitable for open lake basins with low productivity is proposed. The sensitivity analysis of the Eocene lacustrine carbonate δ13Ccarb  show that the SRF is the main influencing factor of the carbon isotope fractionation. The reconstructed SRF of the Eocene is generally high, with an average value of ~215 g C/m2/yr, revealing a relatively warm and humid environment in the Weihe Basin. After ~41 Ma, the SRF gradually decreased, indicating that the climate in the Weihe Basin gradually became colder and drier. This trend is consistent with the global cooling, especially at ~36 Ma, ~33 Ma (the Eocene-Oligocene transition EOT) showing the most significant reduction. The reconstructed precipitation oxygen isotope (δ18Op) in the Eocene warmth is characterized by a positive value (~-6 ‰) in the northwest inland region, and relatively negative  values in the central region such as the Weihe Basin and Lanzhou Basin (~-10 ‰), and the Qinghai-Tibetan Plateau area (~-11 ‰). This kind of distribution is similar to modern precipitation δ18Op, indicating that a prototype of the East Asian summer monsoon circulation has probably formed in the Middle Eocene.

How to cite: Wang, K., Lu, H., Sun, W., Liang, C., Zhang, H., Wang, Y., Lv, H., Wang, J., Zhang, H., and Lai, W.: The oxygen and carbon isotope records of East Asian climate variations during the Eocene warm periods from Weihe Basin, central China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7727, https://doi.org/10.5194/egusphere-egu24-7727, 2024.

EGU24-7824 | Posters on site | CL1.1.4

Effect of cloud feedbacks to CO2 level rise on the summer Arctic climate within the Eocene Deep-Time Model Intercomparison Project 

Igor Niezgodzki, Gregor Knorr, Dan Lunt, and Gerrit Lohmann

Warmer-than-today and ice-free early Eocene Arctic region serves as a testbed for possible future climate changes in the northern polar region dominated by increasing CO2 forcing and associated shrinking sea ice. It is essential for our understanding of recent climate changes to investigate short wave (SW) cloud effects on the SAT rise in the Arctic region in the high CO2 worlds as well as to separate the temperature changes in cloud-free from all-sky conditions in the same region. Here we present the first results of the boreal summer SW cloud feedbacks to atmospheric CO2 level rise from 1x to 3x pre-industrial level of 280 ppm across the ensemble of models participating in the Eocene Deep Time Model Intercomparison Project (DeepMIP). We use a relatively novel approximate partial radiative perturbation (APRP) method to decompose the cloud feedback into the contribution from changes in cloud fraction, absorption and scattering (including cloud albedo feedback) as well as to separate the radiative effects of cloud changes from surface albedo changes. Our first results show discrepancies between the models regarding the effects of clouds on surface air temperature changes. Most of the models show that the net effect of clouds has a relatively modest positive effect (warming) on surface temperature changes however one of the models shows a cooling effect. These differences are due to different effects of cloud fraction and scattering across the ensemble. Furthermore, all models show warming due to surface albedo changes and moderate warming due to atmospheric non-cloud effects. However, surface albedo changes show big discrepancies in magnitudes between the models that result from particularly big differences in the overcast conditions.

How to cite: Niezgodzki, I., Knorr, G., Lunt, D., and Lohmann, G.: Effect of cloud feedbacks to CO2 level rise on the summer Arctic climate within the Eocene Deep-Time Model Intercomparison Project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7824, https://doi.org/10.5194/egusphere-egu24-7824, 2024.

EGU24-8156 | ECS | Orals | CL1.1.4

The sensitivity of the PETM carbon cycle perturbation to orbital configurations 

Nina M. Papadomanolaki and David De Vleeschouwer

It is generally postulated that climatic change during the Paleocene – Eocene Thermal Maximum (PETM) was paced and/or caused by astronomical forcing, particularly eccentricity-modulated precession. Possible causal links include intermediate water warming and subsequent methane hydrate destabilization, increased climate sensitivity due to a warmer background state, and changes in hydrology and weathering. Current astrochronology places the PETM near a 405-kyr eccentricity maximum (Zeebe and Lourens, 2019), likely following a prolonged 2.25-Myr eccentricity minimum (Lourens et al., 2005). Similar orbital configuration sequences have been proposed for the Devonian Upper Kellwasser event (De Vleeschouwer et al., 2017) and the Cretaceous Oceanic Anoxic Event 2 (Batenburg et al., 2016). To understand how eccentricity could have made the Late Paleocene Earth System sensitive to a carbon-cycle perturbation with the amplitude of the PETM, we investigate both the equilibrium and transient climate response to changes in insolation. Specifically, our experimental set-up is to identify how rapid climate change events may unfold differently under high eccentricity (PETM) and low eccentricity (modern) regimes. We present results from equilibrium climate state simulations and transient climate responses to PETM emission scenarios, using the cGENIE Earth system model under a comprehensive set of eccentricity/precession configurations. Based on the outcomes of these simulations, we describe the differences in PETM expression in terms of climate and weathering regimes, depending on the astronomical configuration.

How to cite: Papadomanolaki, N. M. and De Vleeschouwer, D.: The sensitivity of the PETM carbon cycle perturbation to orbital configurations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8156, https://doi.org/10.5194/egusphere-egu24-8156, 2024.

EGU24-9094 | ECS | Posters on site | CL1.1.4

Late Paleocene-Early Eocene Climate Warming and Its Influence on Organic Matter Enrichment: Insights from the Kongdian Formation, Bohai Bay Basin, China 

Bixiao Xin, Fang Hao, Weidong Sun, Jinqiang Tian, Qilu Xu, and Guanlin Li

The late Paleocene to early Eocene was an interval of globally warm climate, during which organic-rich shales were developed in multiple basins. However, the impact of this climate warming on the mechanisms of organic matter enrichment remains unclear, primarily due to a scarcity of precise chronological data and continuous stratigraphic records from terrestrial basins. This study presents a continuous 400 m lacustrine core record from the GD-X borehole spanning the late Paleocene in the Bohai Bay Basin, East China. To reconstruct the palaeoenvironmental conditions and elucidate the mechanisms of organic matter enrichment of Paleocene shales, a series of analyses including total organic carbon (TOC), Rock-Eval pyrolysis, X-ray diffraction (XRD), major and trace elements testing, carbon and oxygen isotopes testing, and Gas Chromatography-Mass Spectrometry (GC-MS) were performed. The results indicate a high abundance of thermally mature Type I and II kerogen in the shales, with most samples exhibiting good to excellent generative potential. The mineralogical compositions are primarily comprised of quartz, feldspar, and dolomite, supplemented by calcite, clay minerals, and analcime. Vertical shifts in paleoenvironmental indicators suggest a climatic transition from semi-humid to arid conditions during the late Paleocene sedimentary period, characterized by reduced input of terrigenous detritus and increased water salinity. These findings indicate that rapid global warming from the late Paleocene to the early Eocene significantly altered precipitation patterns, leading to intensified lake evaporation, diminished surface runoff, and decreased inflow of terrigenous debris into lakes. Consequently, the organic matter enrichment model transitioned from a high productivity-dominated regime to one primarily driven by preservation conditions. Investigating the interplay between environment and biological evolution elucidates the enrichment mechanism of terrestrial organic matter against a backdrop of global climate warming. This research not only provides a scientific basis for predicting the distribution of continental organic-rich shale, but also offers geological insights into the carbon cycle under extreme climatic conditions in Earth's history.

How to cite: Xin, B., Hao, F., Sun, W., Tian, J., Xu, Q., and Li, G.: Late Paleocene-Early Eocene Climate Warming and Its Influence on Organic Matter Enrichment: Insights from the Kongdian Formation, Bohai Bay Basin, China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9094, https://doi.org/10.5194/egusphere-egu24-9094, 2024.

EGU24-9148 | ECS | Posters on site | CL1.1.4

Pliocene-Pleistocene orbital cycle transition of summer sea surface temperature in the mid-latitude North Atlantic 

Xiaolei Pang, Antje Voelker, and Xuan Ding

The Pliocene-Pleistocene transition marks a significant period in Earth’s climate history. During this period, the climate shifted from the relatively stable and warm unipolar cool-house climate to the bipolar glaciated climate states of the ice-house associated with the gradual development of the Northern Hemisphere Glaciation (NHG) . The onset of the NHG (oNHG) is traced back to approximately 3.6 million years ago (Ma). This was followed by an intensification of the NHG (iNHG) around 2.7 Ma, coinciding with a substantial reorganization of oceanic and atmospheric circulation in the North Atlantic. Despite these shifts, reconstructed alkenone-based sea surface temperature (SST) records from the mid- to high-latitude North Atlantic indicate persistent obliquity-dominated cycles, with a noticeable absence of the precession cycle.

 In this study, we present new high resolution Globigerinoides ruber (white) Mg/Ca-based summer SST records from the early Late Pliocene spanning from 3650 – 3370 thousand years ago (ka) at the IODP Site U1313 (41°N, 33°W, 3412m) in the mid-latitude North Atlantic. Contrary to the previous alkenone-based SST records, our Mg/Ca-based SST records reveal a dominant precession cycle. When compared with early Pleistocene G. ruber Mg/Ca-based SST records, we observed a notable transition in the dominant cycle from precession to obliquity, accompanied by a doubling increase in amplitude. These results indicate a progressively amplified effect on the obliquity cycle, correlated with the progressive growth of the Northern Hemisphere ice sheets.

How to cite: Pang, X., Voelker, A., and Ding, X.: Pliocene-Pleistocene orbital cycle transition of summer sea surface temperature in the mid-latitude North Atlantic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9148, https://doi.org/10.5194/egusphere-egu24-9148, 2024.

EGU24-10082 | Orals | CL1.1.4

Soil carbonate Δ47 paleotemperatures across the Paleocene-Eocene boundary: the Esplugafreda terrestrial record, Spain 

Gábor Újvári, Sándor Kele, László Rinyu, Aitor Payros, Victoriano Pujalte, Birger Schmitz, and Stefano M. Bernasconi

Massive additions of 13C-depleted carbon to the atmosphere-ocean system at 55.9 Myr ago led to global warming of 5–8 °C, profound floral/faunal turnovers and alteration of the global hydrological cycle at the Paleocene-Eocene boundary. Climate and environmental changes over the late Paleocene and Paleocene-Eocene Thermal Maximum (PETM) are well-preserved in continental deposits, formed in the subtropical zone (paleolatitude ~35 °N), in the Tremp-Graus Basin, northern Spain. One of the key exposures is the Esplugafreda section, which is made up of ~250 m of red mudstones with abundant paleosols and contains numerous multi-episodic channel-like bodies of calcareous conglomerates and calcarenites. The paleosols contain abundant centimeter-sized soil nodules and gypsum indicating a semi-arid to arid paleoenvironment. The Paleocene-Eocene (P-E) boundary is located near the top of the continental section, based on a 6‰ negative carbon isotope excursion (CIE). The CIE spans more than 15–20 m of yellow cumulate paleosols formed during the Paleocene-Eocene Thermal Maximum (PETM). The post-PETM interval in the Esplugafreda section comprises 20 m of red paleosols rich in gypsum and characterized by normal soil nodule δ13C values.

Here, we report the first carbonate clumped isotope thermometry data of selected soil carbonate bearing paleosol layers of the Esplugafreda sequence to quantify the magnitude of warming recorded in the sediments of this terrestrial subtropical site across the Paleocene-Eocene boundary. Soil nodules originated from red mudstone paleosols making up the upper part of the upper Paleocene Esplugafreda Formation and PETM yellow soils collected at two nearby sites. The nodules were sampled with a hand driller for Δ47 measurements, which were done using a Kiel IV carbonate device coupled to a Thermo Scientific 253 Plus IRMS at the Institute for Nuclear Research, Debrecen, Hungary. Stable carbon, oxygen isotope and clumped isotope compositions were calculated as the average of 8–16 replicate analyses of 100–150 μg of carbonate. The carbon and oxygen isotope ratios are reported in δ notation in per mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB), while the temperature-dependent mass 47 anomaly on the I-CDES90°C scale. Temperatures were calculated using the Kele et al. (2015) calibration modified by Bernasconi et al. (2018) and the Anderson et al. (2021) calibrations.

Soil carbonates of the Esplugafreda formation yield δ13Ccarb values between –8.55 and –5.85 ‰, while the PETM yellow soil carbonates are significantly more negative (–13.84 to –10.12 ‰), in good agreement with previous measurements. A much smaller, ~1.2 ‰ difference can be observed in the oxygen isotope compositions between these carbonates (δ18Ocarb: –5.46 to –4.13 versus –6.35 to –4.47 ‰). The Δ47-based paleotemperatures (T47carb) indicate mean soil carbonate formation of 33.8±9.5 °C during the late Paleocene, which are close to modern summer temperatures of subtropical regions. By contrast, a much higher mean temperature was recorded by soil carbonates of the PETM yellow soils (39±8.5 °C) with extreme (>40 °C) temperatures occurring 4 times more frequently than over the late Paleocene.

This study was supported by the NKFIH through the OTKA K-137767 project.

How to cite: Újvári, G., Kele, S., Rinyu, L., Payros, A., Pujalte, V., Schmitz, B., and Bernasconi, S. M.: Soil carbonate Δ47 paleotemperatures across the Paleocene-Eocene boundary: the Esplugafreda terrestrial record, Spain, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10082, https://doi.org/10.5194/egusphere-egu24-10082, 2024.

EGU24-10701 | ECS | Posters on site | CL1.1.4

Impact of the Early Eocene Climatic Optimum (EECO; ~53-49 Ma) on planktic foraminiferal assemblage (Pacific Ocean, sites 1209-1210).  

Giulia Filippi, Ruby Barrett, Daniela N. Schmidt, Roberta D'Onofrio, Thomas Westerhold, Valentina Brombin, and Valeria Luciani

Past warm events offer windows into the biotic response to extreme warmth. The early Eocene interval records the highest global average temperature and CO2 levels of the Cenozoic. Several transient global warming events occur within the Early Eocene Climatic Optimum (EECO, 53-49 Ma), offering an opportunity to investigate the impact of both long term and transient warm climatic conditions on planktic foraminifera. We analyse the planktic foraminiferal record across the EECO obtained from tropical Pacific ODP sites 1209-1210 (Shatsky Rise). These sites have an excellent age model and stable isotope ratios enabling linkage of the biotic data with the climate and carbon cycle spanning the EECO.

We combine indicators of carbonate production and preservation [fragmentation index (FI) as a dissolution proxy, weight percent coarse fraction (CF) as foraminiferal production and preservation index, and Foraminiferal Mass Accumulation Rate (FMAR) as foraminiferal production proxy] with changes in planktic foraminiferal assemblages and test-size.

At the EECO onset, the abundance of the genus Morozovella (53.28 Ma) and Chiloguembelina (52.85 Ma) decreased at Shatsky Rise sites, confirming previous Atlantic Ocean data and thus pointing towards global decline of these genera. We hypothesise that a reduction in foraminiferal mass accumulation and assemblage test-size would follow the drop in Morozovellids abundance, given their dominance and large size in early Eocene tropical assemblages. In contrast, we record a slight increase in test-size within assemblages and a relatively stable FMAR. These changes may be controlled by growing dominance of the genus Acarinina indicating an ability of this species to benefit from the environmental conditions. In addition, we observe a relatively stable FMAR at decreasing CF which may be linked to either increased carbonate dissolution or enhanced calcareous nannofossil productivity (or a combination of both) reducing foraminiferal relative contribution to the sediment.

Even though the pronounced warming during the EECO strongly altered the planktic foraminiferal assemblage composition resulting in the decrease in abundance of some genera, species replacement within communities highlights the resilience of pelagic carbonate production.

How to cite: Filippi, G., Barrett, R., Schmidt, D. N., D'Onofrio, R., Westerhold, T., Brombin, V., and Luciani, V.: Impact of the Early Eocene Climatic Optimum (EECO; ~53-49 Ma) on planktic foraminiferal assemblage (Pacific Ocean, sites 1209-1210). , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10701, https://doi.org/10.5194/egusphere-egu24-10701, 2024.

The Early Eocene Climatic Optimum (EECO) was the warmest sustained episode of global warming during the Cenozoic, accompanied by major alterations in land-based and marine biota. Initially identified through stable oxygen isotope minimum values between ~52—50 Ma (herein labelled ‘peak-EECO phase’) and later extended to a broader timeframe (53—49 Ma) anchored on stable carbon isotope excursions, the EECO provides a crucial window for exploring the long-term, macroevolutionary consequences of warm climates on marine primary producers. The fossil remains of coccolithophores and other calcareous nannoplankton have been studied previously in the mid- and high latitudes, where the EECO is characterized by a transition from assemblages dominated by the genus Toweius (Prinsiaceae) to the enduring presence of the genus Reticulofenestra (Noelaerhabdaceae), as is still the case for their descendants in modern assemblages (Gephyrocapsa spp. and Emiliania huxleyi).

Using a newly collected nannofossil record from the equatorial Atlantic (ODP Site 1258), we detail changes in low-latitude calcareous nannofossil assemblages throughout the various stages of the EECO and the subsequent early to middle Eocene cooling transition (EMET). The decline in Toweius spp. occurred in two steps: first, at the start of the peak-EECO phase (~52 Ma), with abundance plummeting to about one-third of previous levels, followed by its final and permanent decline and the first continuous occurrence of Reticulofenestra spp. at the end of the peak-EECO phase (~50 Ma). The EECO is also marked by a broad acme of Discoaster spp., as previously reported at several sites. Here we also report on distinct abundance increases in Campylosphaera, Umbilicosphaera and Calcidiscus. These genera declined in abundance by the conclusion of the EECO (~49 Ma) in conjunction with the rapid and sustained expansion of Reticulofenestra, marking the EMET.

Multivariate statistical analysis of nannofossil datasets at Site 1258 and sites from higher latitudes highlights the occurrence and prevalence of specialist taxa exclusively in the tropics, revealing a distinct tropical signature atop the previously identified latitudinal expansion of (sub)tropical taxa during the EECO. Compositional contrasts between the tropical and higher-latitude sites diminished significantly after the EECO, coinciding with the decline of taxa with inferred high thermal optima in the tropics. Our combined results suggest the highest biogeographical differentiation of tropical nannoplankton assemblages from the subtropics (e.g., ODP Sites 1263 and 1210) during the EECO, contrary to some expectations related to a much flatter meridional thermal gradient. The restructuring of the nannoplankton communities after the EECO, however, points to increased connectivity and dispersal between the two regions. It is important to explore the regional driving forcings (e.g., ocean circulation, temperature, nutrient availability, and biotic interactions) on local phytoplankton community structures in the tropics in order to understand broadscale changes in biogeographical and macroevolutionary patterns.

How to cite: Asanbe, J. and Henderiks, J.: Major shifts in low-latitude calcareous nannofossil assemblages across the Early Eocene Climatic Optimum (~53—49 Ma), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10705, https://doi.org/10.5194/egusphere-egu24-10705, 2024.

EGU24-12390 | ECS | Posters on site | CL1.1.4

Inter-basin comparison of deep ocean temperature change at the Eocene-Oligocene Transition 

Victoria E. Taylor, Alison M. Piasecki, Steven M. Bohaty, Paul A. Wilson, Helen K. Coxall, and A. Nele Meckler

The abrupt onset of large-scale Antarctic glaciation approximately 34 million years ago, at the Eocene-Oligocene Transition (EOT), was the pivot point in Cenozoic climate history between greenhouse and icehouse climate states. Our understanding of this event relies heavily on benthic foraminiferal oxygen isotope (δ18Ob) records but the paucity of independent temperature reconstructions prevents an assessment of the contributions of temperature and ice volume to the rapid δ18Ob increase which is interpreted to mark the onset of large-scale Antarctic glaciation. Here we present records of deep-sea temperature change for the EOT using clumped isotope thermometry which permits explicit temperature reconstructions independent of seawater chemistry and ice volume. Recently published benthic foraminiferal clumped isotope records from the eastern equatorial Pacific (Taylor et al. 2023) and a low-resolution long-term record from the northwest Atlantic Ocean (Meckler et al. 2022) hint at a possible thermal decoupling of these two major deep ocean basins at the EOT. To investigate this further, we present new temperature records from the Newfoundland margin in the northwest North Atlantic Ocean (IODP Exp. 342 Sites U1406 and U1411). In addition, we supplement the previously published records from the eastern equatorial Pacific (Taylor et al. 2023) with additional data (ODP Leg 199 Site 1218 and IODP Exp. 320 Sites U1334 and U1333) to better constrain the timing of the onset of deep ocean cooling relative to the onset of large-scale Antarctic glaciation. These new detailed records from both ocean basins enable an assessment of potential divergences in the evolution of deep ocean temperatures in the North Atlantic and Pacific at the EOT, and thus changes in ocean circulation prior to and/or in response to the onset of Antarctic glaciation.   

 

Meckler, A. N. et al., (2022). Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science377 (6601), 86-90.

Taylor, V. E., Wilson, P. A., Bohaty, S. M., Meckler, A. N., (2023). Transient deep ocean cooling in the eastern equatorial Pacific Ocean at the Eocene-Oligocene Transition. Paleoceanography and Paleoclimatology, 38, e2023PA004650. https://doi. org/10.1029/2023PA004650

How to cite: Taylor, V. E., Piasecki, A. M., Bohaty, S. M., Wilson, P. A., Coxall, H. K., and Meckler, A. N.: Inter-basin comparison of deep ocean temperature change at the Eocene-Oligocene Transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12390, https://doi.org/10.5194/egusphere-egu24-12390, 2024.

EGU24-12593 | Posters on site | CL1.1.4

Temperature reconstructions of euphotic oceans via coccolith clumped isotopes 

Luz Maria Mejia, Victoria Emma Taylor, Anna Nele Meckler, Heather Stoll, Stefano Bernasconi, Alvaro Fernández, Hongrui Zhang, José Guitián, Henrik Sadatzki, Iván Hernández-Almeida, and Heiko Pälike

Clumped isotope thermometry applied to carbonate fossils is a promising technique to derive independent and accurate reconstructions of absolute ocean temperatures, a key parameter in understanding past Earth Climate Sensitivity. Other more commonly used temperature proxies have several disadvantages, including requiring assumptions of seawater chemistry compositions (e.g. foraminifera Mg/Ca and δ18O), or being based on empirical correlations without a complete understanding of its controlling mechanisms (e.g. TEX86 and Uk'37). Conversely, clumped isotope thermometry is based on thermodynamics, and is independent from seawater chemistry. Here we present clumped isotopes (Δ47) in coccolith separations from globally distributed Holocene core tops, a monospecific Coccolithus pelagicus sediment trap in the Iceland Sea, downcore sediments from the North Atlantic during the last 16 Ma, and downcore sediments from tropical (Equatorial Pacific) and high latitudes (South Tasman Rise) spanning the Cenozoic. 

Calcification temperatures of the sediment trap agree with satellite derived temperatures, further supporting a lack of or small vital effects in coccolith clumped isotopes. Temperatures derived from Δ47 of tropical Holocene coccoliths are colder than modern Sea Surface Temperatures (SSTs). This suggests that coccolithophores may inhabit deeper than surface waters in these areas, which if proven to be true, would have implications for how other proxies, such as Uk'37, are calibrated to SSTs. At higher latitudes, calcification temperatures from Holocene coccolith separations are more similar to SSTs, and we suggest they are indicators of mixed layer depth temperatures in these regions.

Pure coccoliths from the North Atlantic during the last 16 Ma show Δ47-derived temperatures that are 10 °C colder than those derived with alkenones from the same samples. This suggests a modest, rather than an extreme polar amplification, which agrees better with climate models. Scanning Electron Microscopy (SEM) and trace elements show no evidence of significant recrystalization and therefore cannot explain such large differences in reconstructed temperatures with both proxies.

Preliminary low resolution Δ47 calcification temperatures of pure coccolith separations from the Equatorial Pacific throughout the Cenozoic show similar trends to the overall climate pattern expected from foraminiferal δ18O, but with colder absolute values. For example, published core top Δ47 coccoliths indicate warmer temperatures compared to our 2 My sample in core U1338, and may suggest potential early recrystalization effects, different sources or strength of upwelling in the past oceans, latitudinal movement of upwelling, or depth of production. Conversely, high latitude temperatures (ODP 1170) from our youngest coccolith separation (2 My) agrees better with modern SSTs and alkenone temperatures. The general expected climatic trend is also observed in our high latitude record, although the magnitude of cooling through time is less marked compared to that shown in the Equatorial Pacific. Trace element and SEM imaging could give insights on whether there is evidence of some recrystalization, or other interfering material in the analyzed pure coccolith fractions, despite the careful separation process that limited the presence of non-coccolith carbonate. Our results show that coccolith Δ47 has the promising potential to derive reconstructions of temperatures of euphotic oceans over the Cenozoic.

How to cite: Mejia, L. M., Taylor, V. E., Meckler, A. N., Stoll, H., Bernasconi, S., Fernández, A., Zhang, H., Guitián, J., Sadatzki, H., Hernández-Almeida, I., and Pälike, H.: Temperature reconstructions of euphotic oceans via coccolith clumped isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12593, https://doi.org/10.5194/egusphere-egu24-12593, 2024.

EGU24-13009 | Orals | CL1.1.4

Eocene CO2 on orbital to million year timescales 

James Rae, Sarah Greene, Philip Sexton, Markus Adloff, James Barnet, Andrea Burke, Gavin Foster, William Gray, Michael Henehan, Jo Holo, Hana Jurikova, Sandra Kirtland-Turner, Johanna Marquardt, Nele Meckler, Andy Ridgwell, Victoria Taylor, Thomas Westerhold, Ross Whiteford, and James Zachos

The early Eocene features distinctive coupling between biogeochemical cycles and climate, raising fundamental questions about Earth system functioning during major climate transitions and on orbital timescales. For instance, the transition to peak Eocene warmth is ushered in by a major shift in redox conditions and deep ocean circulation, while orbitally-paced hyperthermal events are associated with substantial carbon injections of uncertain origin.  CO2 change is thought to play a key role in these events, yet despite recent progress, resolution is still lacking for most shorter time intervals.  Here we present new, high-resolution boron isotope data from both benthic and planktic foraminifera that shed new light on Eocene carbon cycling. Using new approaches for conversion of boron isotope data to pH and CO2, we improve estimates of absolute CO2 concentrations and the change in CO2 over key events.  Our data demonstrate a pervasive link between CO2 and climate in the Eocene hothouse over a range of timescales and provide novel constraints on carbon sources and climate sensitivity.

How to cite: Rae, J., Greene, S., Sexton, P., Adloff, M., Barnet, J., Burke, A., Foster, G., Gray, W., Henehan, M., Holo, J., Jurikova, H., Kirtland-Turner, S., Marquardt, J., Meckler, N., Ridgwell, A., Taylor, V., Westerhold, T., Whiteford, R., and Zachos, J.: Eocene CO2 on orbital to million year timescales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13009, https://doi.org/10.5194/egusphere-egu24-13009, 2024.

EGU24-13057 | Orals | CL1.1.4 | Highlight

Continuous records of δ11B-CO2 covering the Plio-Pleistocene boundary and the Mid Pleistocene Transition show orbital carbon-climate coupling. 

Thomas Chalk, Rachel Brown, Sophie Nuber, Mathis Hain, Jimin Yu, James Rae, and Gavin Foster

The Pliocene-Pleistocene transition and Middle Pleistocene Transition (3.4–2.5 million years ago and ~1.2-0.6 million years ago respectively) represent major shifts in the Earth’s climate, with both being associated with global cooling, sustained and transient changes in ocean circulation, and the development and stabilization of large ice sheets in the northern hemi- sphere. These ice sheets waxed and waned over the last 2.5 million years and are the key mode of climate variability in this ice house world. Knowledge of the relationship of climate and CO2 on this timescale has to date been hampered by low resolution and imprecise records of CO2 once beyond the reach of the ice core records. Here we show orbitally resolved and multisite records of CO2 from boron isotopes across both transitions, and progress towards a highly resolved multi-basin stack of records. We find a persistent relationship between CO2 and climate state, which implicates CO2 decrease as a major contributor to both climate transitions, but also highlights non-linear responses in temperature and sea level as well as significant leads and lags on orbital timescales. Our findings confirm that changes in atmospheric CO2 play a key role in long-term Plio-Pleistocene climate and implicate the repeating transfer of carbon from the atmosphere to the ocean as a key mechanism in major climate transitions of the last 3 million years.

 

How to cite: Chalk, T., Brown, R., Nuber, S., Hain, M., Yu, J., Rae, J., and Foster, G.: Continuous records of δ11B-CO2 covering the Plio-Pleistocene boundary and the Mid Pleistocene Transition show orbital carbon-climate coupling., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13057, https://doi.org/10.5194/egusphere-egu24-13057, 2024.

EGU24-13307 | ECS | Orals | CL1.1.4

Quantifying the State Dependency of Climate Sensitivity Across Cenozoic Warm Intervals 

Mary Grace Albright, Nils Weitzel, Gordon N. Inglis, Sebastian Steinig, Martin Renoult, Tammo Reichgelt, Tamara Fletcher, Julia Tindall, and Ran Feng

Equilibrium climate sensitivity (ECS) quantifies the amount of warming resulting from a doubling of the atmospheric CO2 forcing. Despite recent advancements in climate simulation capabilities and global observations, there remains large uncertainty on the degree of future warming. To help alleviate this uncertainty, past climates provide a valuable insight into how the Earth will respond to elevated atmospheric CO2. However, there is evidence to suggest that ECS is dependent on background climate warmth, which may interfere with the direct utilization of paleo-ECS to understand present-day ECS. Thus, it is important that a range of different climate states are considered to better understand the factors modulating the relationship between CO2 and temperature. In this study, we focus on three time intervals: the mid-Pliocene Warm Period (3.3 – 3.0 Ma), the mid-Miocene (16.75 – 14.5 Ma), and the early Eocene (~50 Ma), in order to sample ECS from Cenozoic coolhouse to hothouse climates. Here, we combine the Bayesian framework of constraining the ECS and its uncertainty with several published methods to estimate the global mean surface temperature (GMST) from sparse proxy records. This framework utilizes an emergent constraint between the simulated GMST changes and climate sensitivities across the model ensemble. For each time interval, we employ a combination of parametric and non-parametric functions, coupled with a probabilistic approach to derive a refined estimate. Preliminary results for the Pliocene indicate a GMST reconstruction of approximately 19.3°C, which is higher than previous estimates that were derived using only marine records. Using this estimate, we calculate an ECS that is also higher than previously published values, especially due to the inclusion of high-latitude terrestrial temperature records into our estimates. Intriguingly, using the consistent methodology, our calculated ECS for the early Eocene is lower than that of the mid-Pliocene. This result does not support an amplified ECS in hothouse climate, and points to a potentially important role of ice albedo feedback in amplifying the ECS in coolhouse climate. Ongoing work will apply the same methodology to the mid-Miocene and further investigate the source for the estimated ECS state dependency between these climate intervals.

How to cite: Albright, M. G., Weitzel, N., Inglis, G. N., Steinig, S., Renoult, M., Reichgelt, T., Fletcher, T., Tindall, J., and Feng, R.: Quantifying the State Dependency of Climate Sensitivity Across Cenozoic Warm Intervals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13307, https://doi.org/10.5194/egusphere-egu24-13307, 2024.

EGU24-14193 | Orals | CL1.1.4

Instability in upper-ocean structure and its implications for Deep Water formation during marine isotope stage 11 

Benoit Thibodeau, John Doherty, Montserrat Alonso-García, Shraddha Band, Alba Gonazalez-Lanchas, Christelle Not, and Haojia Ren

The marine isotope stage (MIS) 11 interglacial, which occurred approximately 424 to 374 thousand years ago, is a period of significant climatological interest due to its unusual duration and intensity of warm conditions under relatively subdued orbital forcing, a phenomenon often referred to as the “MIS 11 paradox”. This study focuses on understanding the factors behind this paradox and its implications for the formation of Deep Water in the North Atlantic.

We examined the upper-ocean structure in the Iceland Basin during MIS 11, a key region for modern deep-water formation. By analyzing geochemical measurements, including stable nitrogen isotopic ratios and carbon and oxygen isotopic ratios of planktic foraminifera, we reconstructed the upper-ocean structure and its potential role in driving the Atlantic Meridional Overturning Circulation (AMOC) during MIS 11.

The findings reveal that MIS 11 experienced an initial AMOC intensification, followed by a secondary strengthening prior to the onset of the climatic optimum. The secondary intensification was attributed to the gradual reduction of northern-hemisphere sea ice, allowing for a northward extension of surface-ocean currents. This resulted in the maintenance of an anomalously deep summer mixed layer in the polar Nordic Seas during MIS 11 compared to the Holocene. The deep-water formation in the Nordic Seas played a crucial role in extending the enhanced warming of the northern hemisphere and delaying the onset of the next glacial interval.

While the contemporary Atlantic Ocean primarily relies on deep-water formation in the eastern subpolar region, the study suggests that the relative importance of deep-water formation in polar regions may increase under extreme scenarios of anthropogenic warming. By studying MIS 11 as a potential analog for Earth's contemporary climate system, we provide valuable insights into the long-term fate of the AMOC and its implications for global climate.

This study also highlights the significance of understanding the convective behavior of the subpolar Atlantic for a comprehensive understanding of the AMOC during MIS 11. We present new geochemical measurements and reconstructions of upper-ocean structure in the Iceland Basin, shedding light on the potential link between summer mixed-layer depth and deep-water formation.

How to cite: Thibodeau, B., Doherty, J., Alonso-García, M., Band, S., Gonazalez-Lanchas, A., Not, C., and Ren, H.: Instability in upper-ocean structure and its implications for Deep Water formation during marine isotope stage 11, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14193, https://doi.org/10.5194/egusphere-egu24-14193, 2024.

EGU24-15368 | ECS | Posters on site | CL1.1.4 | Highlight

Pattern of early-stage of global warming emerged in satellite measurements 

Hu Yang, Gerrit Lohmann, Christian Stepanek, Qiang Wang, Rui Xin Huang, Xiaoxu Shi, Jiping Liu, Dake Chen, Xulong Wang, Yi Zhong, Qinghua Yang, and Juliane Muller

The satellite-observed sea surface temperature (SST) provides an unprecedented opportunity to evaluate the ongoing global warming and has recently reached a milestone of 40-year temporal coverage. One of the major spatial features captured by satellites is strong subtropical (weak subpolar) ocean warming. In contrast, studies of past climate changes suggest that the greatest ocean warming should occur, however, at higher latitudes. Here, by comparing satellite observations with reconstructed mid-Pliocene SST and simulated SST evolution driven by abrupt increase in CO2, we find that the currently observed warming pattern is an expression of an early and temporary stage of planetary warming under the forcing of rapidly increasing greenhouse gas. The enhanced subtropical ocean warming, sharing similar spatial structure with the subtropical ocean gyres, is likely attributed to the background subtropical convergence of surface water. In a long-term perspective, the warming of the oceans at higher latitudes is expected to overtake the temporally strong subtropical ocean warming. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.

How to cite: Yang, H., Lohmann, G., Stepanek, C., Wang, Q., Huang, R. X., Shi, X., Liu, J., Chen, D., Wang, X., Zhong, Y., Yang, Q., and Muller, J.: Pattern of early-stage of global warming emerged in satellite measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15368, https://doi.org/10.5194/egusphere-egu24-15368, 2024.

EGU24-16204 | ECS | Orals | CL1.1.4

A framework for assessing paleoclimate analogy 

Arthur Oldeman, Lauren Burton, Julia Tindall, Aisling Dolan, Daniel Hill, Alan Haywood, Michiel Baatsen, Anna von der Heydt, and Henk Dijkstra

Our climate is changing due to anthropogenic influences, and we are heading into climate conditions that are largely unknown to modern humans. Considering the great threat that anthropogenic climate change is, there is a need to accurately project how our climate will respond to warmer conditions in the future. Reconstructions of the Earth’s past show that many climatic features that we observe today have – to some extent – been present in the geological archive. So, we can study paleoclimate to advance our understanding of dynamics and processes in warm climates, as well as to explore responses and sensitivities of the Earth’s climate to forcing changes. Given the similarities between the past and the projected future, researchers have been trying to establish analogy between paleoclimate and future climate. This could include analogy in terms of elevated or rising CO2 concentrations, elevated surface temperatures, and specific processes such as ice sheet melt or an AMOC weakening. However, often paleoclimate – future climate analogies are difficult to interpret, since conditions for analogy are not properly defined, or implications of the analogy are unclear or overstated.

In this work, we propose a practical methodological framework to assess paleoclimate analogy, for general use in the climate research community. The framework consists of five main steps: (1) stating the purpose (e.g. which processes are considered) and relevance of the analogy, (2) assessing feasibility of finding an analogy, (3) a detailed description of the followed methodology, (4) assessment of confidence in the analogue, and (5) clear communication regarding the potential as well as limitations of the analogy. As part of the framework, we identify three main types of analogy: (a) analogy in terms of forcing (e.g. CO2 concentration), (b) in terms of response (e.g. surface temperatures) and (c) in terms of processes (e.g. tipping behavior). We will briefly treat example applications of the framework to highlight its potential, for different types of analogues on different time scales.

How to cite: Oldeman, A., Burton, L., Tindall, J., Dolan, A., Hill, D., Haywood, A., Baatsen, M., von der Heydt, A., and Dijkstra, H.: A framework for assessing paleoclimate analogy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16204, https://doi.org/10.5194/egusphere-egu24-16204, 2024.

EGU24-16298 | ECS | Posters on site | CL1.1.4

Mg/Ca surface-water paleotemperatures during the Early Eocene Climatic Optimum from the Pacific Ocean: impact on planktic foraminiferal assemblages 

Silvia Sigismondi, Giulia Filippi, David Evans, Roberta D'Onofrio, Massimo Tiepolo, Enrico Cannaò, Thomas Westerhold, Bridget Wade, and Valeria Luciani

The Early Eocene Climatic Optimum (EECO; ~53–49 million years ago, Ma), that represents the Cenozoic peak of temperature and atmospheric CO2 concentrations, significantly affected planktic foraminiferal (PF) assemblages. The main change documented is the permanent decline in abundance and diversity of the symbiont-bearing mixed-layer dweller genus Morozovella, coupled with an increase in abundance and diversity of the genus Acarinina at the beginning of the EECO in the tropical Pacific Ocean (Sites 1209-1210), similar to the previously documented record from the Atlantic Ocean. A second significant variation is the change in coiling direction of morozovellids that moved from dominantly dextral to sinistral close to the K/X event (52.85 Ma), in contrast to Acarinina which does not show any preferential coiling direction throughout. In addition, the deep-dweller genus Chiloguembelina virtually disappeared at the K/X event. Even though a link between these PF changes and EECO climatic change appears evident, the driving causes are still unknown. With the aim of evaluating whether a possible temperature increase may have impacted the observed PF changes, we performed Mg/Ca analysis to derive paleotemperatures from diverse species of Morozovella and Acarinina, and on the thermocline-dweller Subbotina from tropical Pacific sites 1209-1210 using laser ablation (LA)-ICP-MS. Our B/Ca and Sr/Ca results in all the examined samples/species, along with the observed low PF test-fragmentation allow us to exclude a significant influence of contamination or diagenesis on the reconstructed temperatures. As uncertainties in the interpretation of Mg/Ca data remain when working with extinct species, the temperatures were evaluated with both a ‘Trilobatus sacculifer-like’ calibration (no pH correction) and with a ‘Globigerinoides ruber-like’ calibration (pH-correction).In both cases a mixed-layer mean temperature increase of at least 1°C is recorded, with much warmer absolute temperature resulting from the former calibration approach.We hypothesize that the temperature rise may have impacted the morozovellid symbiotic relationship that, in turn, can represent a reason for their decline in abundance, given the many examples of the evolutionary benefits of symbiosis in modern oligotrophic mixed-layer habitats. Although there may have been several contributing factors resulting in photosymbiont bleaching at this time, increased temperature is considered a primary factor of bleaching in modern tropical larger benthic foraminifera. Our assumption appears supported by the lower δ13C values exhibited by the surviving sinistral morozovellids (Luciani et al. 2021 GloPlaCha) while the new dominant genus, Acarinina that does not record lower δ13C values displays greater ecological adaptability. Our evidence appears in line with the hypothesis of Davis et al. (2022 PlosOne) that acarininids changed their symbiotic associations in response to the extreme warming of the PETM (~56 Ma) (but not the subsequent smaller hyperthermals), resulting in long term evolutionary success.

How to cite: Sigismondi, S., Filippi, G., Evans, D., D'Onofrio, R., Tiepolo, M., Cannaò, E., Westerhold, T., Wade, B., and Luciani, V.: Mg/Ca surface-water paleotemperatures during the Early Eocene Climatic Optimum from the Pacific Ocean: impact on planktic foraminiferal assemblages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16298, https://doi.org/10.5194/egusphere-egu24-16298, 2024.

EGU24-16960 | ECS | Posters on site | CL1.1.4

Developing the coupled climate model ACCESS-ESM1.5 for the early Eocene 

David Hutchinson, Katrin Meissner, and Laurie Menviel

We are currently developing the Australian community climate model ACCESS-ESM1.5 for deep time paleoclimate simulations. We are currently targeting the early Eocene (~55 Ma) and the Miocene climate optimum (~15 Ma); two warm intervals with high CO2 concentrations and strong polar amplification. The major challenge in adapting this model is to implement extensive changes to surface boundary conditions, including topography, vegetation, river runoff and ice sheets. The model has never previously been run outside of modern boundary conditions. We have developed new prototype simulations for each time period, and will present preliminary results for the Eocene and Miocene using ACCESS-ESM1.5. These simulations will be developed in parallel with simulations using the GFDL CM2.1 coupled climate model, which has been established as an efficient tool for reaching equilibrium paleoclimate scenarios. 

How to cite: Hutchinson, D., Meissner, K., and Menviel, L.: Developing the coupled climate model ACCESS-ESM1.5 for the early Eocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16960, https://doi.org/10.5194/egusphere-egu24-16960, 2024.

The earliest Eocene (~ 56 to 52 Ma) is generally considered to be a reasonable geologic analog for modern climatic change, albeit with the important caveat that current carbon dioxide emissions are increasing at unprecedentedly high rates. In addition, the series of carbon cycle perturbations (also known as hyperthermals) that characterize the early Eocene, present an ideal opportunity to explore how ancient marine ecosystems responded to different magnitudes of warming in the past. However, before such paleoecological analyses can be conducted, reliable age models with robust biostratigraphic frameworks are required.

Currently, high-resolution orbital age models for the early Eocene are predominantly based on low-or mid-latitude sites (e.g., Walvis Ridge, Shatsky Rise and Demerara Rise). In comparison, high-latitude early Eocene age models are usually only based on shipboard biostratigraphic and/or low-resolution chemostratigraphic data. Furthermore, correlation of the calcareous nannofossil biostratigraphic events at Walvis Ridge and Demerara Rise to southern high-latitude site International Ocean Discovery Program (IODP) Site U1553 (Campbell Plateau, South Pacific Ocean), reveals ~1 Myr discrepancies for many of the commonly-used biohorizons (Niederbockstruck et al., in review). However, it is uncertain whether this apparent latitudinal diachroneity is unique to Site U1553, or whether it is a typical feature of all early Eocene high-latitude sites.

This presentation introduces a new Deutsche Forschungsgemeinschaft (DFG)-funded project that aims to further explore this apparent latitudinal diachroneity. The project will generate new high-resolution bulk stable isotope records and biostratigraphic frameworks for several high-latitude, legacy Ocean Drilling Program (ODP) and IODP sites. These data will then be correlated to existing low- and mid-latitude orbital age models to determine whether early Eocene nannofossil biozones are truly latitudinally diachronous.

How to cite: Jones, H.: Exploring apparent calcareous nannofossil biozone diachroneity at the southern high-latitudes during the early Eocene , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17069, https://doi.org/10.5194/egusphere-egu24-17069, 2024.

EGU24-17733 | ECS | Orals | CL1.1.4

Reconstructing Early to Mid-Cretaceous Climate Dynamics: A Continuous Marine pCO2 Record  

Olivia A. Graham, Caitlyn R. Witkowski, and B. David A. Naafs

The Cretaceous period (145-66 Ma) experienced dramatic changes in climate, biogeochemistry, and biotic innovation. Climate varied between a super greenhouse and coolhouse world (O'Brien et al., 2017), multiple ocean anoxic events (OAEs) drove major changes in ocean chemistry and biodiversity (Jenkyns, 2010), and angiosperms became the most dominant land plant group on Earth (Lidgard and Crane, 1988, Condamine et al., 2020). However, we are unable to assess the role of pCO2 in driving these climatic, biogeochemical, and biotic changes because there is no continuous, marine based, pCO2 record for this period, mainly due to the lack of established marine-based proxies able to span this time interval.

To address this issue, we measured the carbon isotopic composition of the general phytoplankton biomarker, phytane, in ~50 sediment samples from Deep Sea Drilling Project Site 398 that span the early and middle Cretaceous (Hauterivian to Cenomanian). Additionally, we reconstruct sea surface temperature (SST) using the TEX86 paleothermometer in the same sediments, providing a long continuous temperature record from a single site and thus bridging multiple important ‘gaps’ in the current record (O'Brien et al., 2017). Together, our findings provide the first continuous marine pCO2 and temperature record of the early to mid-Cretaceous, spanning the Hauterivian to Cenomanian.

Our results indicate SSTs around 30-35 °C for most of the Hauterivian to Albian. There is a transient warming during OAE 1a (~120 Myr) followed by a more gradual warming into the Cenomanian. During the Cenomanian SSTs reach maxima of ~40 °C at this mid-latitude site, consistent with other SST records from this period that indicate extreme warmth. pCO2 values during the Hauterivian to Albian vary between 1000 and 2000 ppmv, consistent with the elevated SSTs at this time. However, unexpectedly, we do not observe a rise in pCO2 during the Cenomanian when SSTs reach their maxima. These results suggest that pCO2 was not the main driver of the Cenomanian super hothouse.

 

References:

CONDAMINE, F. L., SILVESTRO, D., KOPPELHUS, E. B. & ANTONELLI, A. 2020. The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences, 117, 28867-28875.

JENKYNS, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11.

LIDGARD, S. & CRANE, P. R. 1988. Quantitative analyses of the early angiosperm radiation. Nature, 331, 344-346.

O'BRIEN, C. L., ROBINSON, S. A., PANCOST, R. D., SINNINGHE DAMSTÉ, J. S., SCHOUTEN, S., LUNT, D. J., ALSENZ, H., BORNEMANN, A., BOTTINI, C., BRASSELL, S. C., FARNSWORTH, A., FORSTER, A., HUBER, B. T., INGLIS, G. N., JENKYNS, H. C., LINNERT, C., LITTLER, K., MARKWICK, P., MCANENA, A., MUTTERLOSE, J., NAAFS, B. D. A., PÜTTMANN, W., SLUIJS, A., VAN HELMOND, N. A. G. M., VELLEKOOP, J., WAGNER, T. & WROBEL, N. E. 2017. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172, 224-247.

How to cite: Graham, O. A., Witkowski, C. R., and Naafs, B. D. A.: Reconstructing Early to Mid-Cretaceous Climate Dynamics: A Continuous Marine pCO2 Record , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17733, https://doi.org/10.5194/egusphere-egu24-17733, 2024.

EGU24-19216 | Orals | CL1.1.4 | Highlight

Nile Basin vegetation and Mediterranean water column ecology during Sapropel formation  

Lars Wörmer, Antonio Fernández-Guerra, Raphaël Morard, Marina Zure, Mikkel Winther Pedersen, Christiane Hassenrück, Michal Kucera, Eske Willerslev, and Kai-Uwe Hinrichs

For millions of years, the Mediterranean Sea has regularly experienced episodes of disrupted thermohaline circulation and increased primary productivity that resulted in a largely anoxic water column. These anoxic episodes are typically related to a more humid climate over Northern Africa and are captured in the sedimentary record as organic-rich sapropel layers. Given the excellent preservation of organic molecules in them, sapropels are extraordinary archives for the marine and continental ecosystems associated with the unique conditions that prevailed during their formation. We applied metagenomic environmental DNA (eDNA) analysis to recent sapropels (< 175 kyr) from the Eastern Mediterranean, including Sapropel S5 deposited during the Last Interglacial, and benchmarked obtained results with high resolution geochemical and molecular biomarker records. Ancient eDNA analysis enables reconstructions across all domains of life, including those components of the ecosystem that do not leave fossils or are not recorded in the fossil record. In the case of Mediterranean sapropels, this approach reveals information on both terrestrial and marine ecosystems. We provide detailed insight into vegetation changes in the Nile River Basin during the different, climatically diverse episodes of sapropel deposition. On the marine side, we reveal how water column ecology and major elemental cycles adapted to this massive ecosystem overhaul.

How to cite: Wörmer, L., Fernández-Guerra, A., Morard, R., Zure, M., Pedersen, M. W., Hassenrück, C., Kucera, M., Willerslev, E., and Hinrichs, K.-U.: Nile Basin vegetation and Mediterranean water column ecology during Sapropel formation , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19216, https://doi.org/10.5194/egusphere-egu24-19216, 2024.

EGU24-19919 | Orals | CL1.1.4

The temperature of the deep ocean is a robust proxy for global mean surface temperature during the Cenozoic 

David Evans, Julia Brugger, Gordon Inglis, and Paul Valdes

Reconstructions of global mean surface temperature (GMST) are one of the key contributions that palaeoclimate science can make to societally-relevant questions, for example, by providing the information required to derive equilibrium climate sensitivity from the geologic record and as a means of testing climate model performance under warmer-than-present conditions. One relatively simple method of doing so is to parameterize GMST as a function of the temperature of the deep ocean, which has the advantage that deep ocean temperature is relatively well constrained for much of the Cenozoic. A commonly-used transformation approach is based on a 1:1 deep ocean-GMST scaling factor prior to the Pliocene, which is a simple assumption, but to our knowledge, without a firm mechanistic basis. Here, we test the reliability of this assumption using output from a suite of climate model simulations, including those from the DeepMIP project, as well as curated data compilations for well-studied intervals throughout the Cenozoic. Our analysis demonstrates that a simple 1:1 scaling factor is likely to be a good approximation for much of the Cenozoic, possibly mechanistically rooted in an increasing winter bias in deep water formation offsetting an increase in polar amplification/stratification during intervals of global warmth. Building on this, we reevaluate the Cenozoic records of deep ocean temperature and derive a new, continuous record of GMST. Our record is substantially warmer than the most common previous approach for much of the Cenozoic, from which we derive GMST during the early Eocene Climatic Optimum of 31.3±1.3°C, supporting the notion of a greater-than-modern ECS in this past warm climate state.

How to cite: Evans, D., Brugger, J., Inglis, G., and Valdes, P.: The temperature of the deep ocean is a robust proxy for global mean surface temperature during the Cenozoic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19919, https://doi.org/10.5194/egusphere-egu24-19919, 2024.

EGU24-20177 | ECS | Orals | CL1.1.4

The ETM2 in the Tethys Realm: Extreme Planktic Foraminiferal Dwarfism 

Roberta D’Onofrio, Ruby Barrett, Daniela N. Schmidt, Eliana Fornaciari, Luca Giusberti, Gianluca Frijia, Thierry Adatte, Nadia Sabatino, Adebowale Monsuru, Valentina Brombin, and Valeria Luciani

Pronounced warming in the geological record negatively impacts ecosystems. To show the impact on different parts of the marine calcareous plankton, we present an integrated record, from two Tethyan sections, Madeago and Terche (northeastern Italy), of the planktic foraminiferal and calcareous nannofossils response to the Eocene Thermal Maximum 2 hyperthermal (ETM2, ~54 Ma). The main result of our study is the striking planktic foraminiferal dwarfism (up to ~40% decrease in test-size compared to pre-event values) recorded at the ETM2 impacting both surface and deeper dwelling species. To a lesser extent, calcareous nannofossils exhibited a size reduction as documented by an increase of ‘small placoliths’. 
Causes to explain the dwarfism can be manifold. Enhanced metabolic rate in response to warming requires more food to support growth, thus a strategy to optimize resource uptake is to enlarge surface area/volume ratio by reducing the cell mass and therefore the test-size. Deoxygenation is not likely a driver as the dwarfing occurred in both mixed layer than deeper dwelling taxa, which oxygen limitation typically limited to the thermocline.  Our foraminiferal size data from Site 1263 (Atlantic Ocean) and Site 1209 (Pacific Ocean) highlight that the pronounced dwarfism is restricted to the Tethyan area. We record local increase in productivity in our sections not observed in the open ocean sites. This could have limited the growth of symbiont bearing taxa, as in modern ocean the size of symbiont bearing taxa decreases towards to shore due to increases in productivity reducing light availability. Reduced symbiosis though cannot be the only factors as it cannot explain the dwarfing of the deep-dweller taxa in our Tethyan sections. The warming at our site is similar to open ocean sections and cannot explain this different response. Therefore, we hypothesise that local drivers could have acted additively to warming such as the input of biolimiting/toxic metals from the volcanic emissions of the Veneto Volcanic Province, which was active during the ETM2. We find the smallest size in close temporal association with peaks in magmatic derived Hg/Th-Hg/Rb recorded just before and at the ETM2 which cannot be brought into our sections through weathering. The lack of dwarfisms associated with Hg peak above the ETM2 at Terche, when warming would have ended, suggests that the volcanic input by itself was not sufficient to cause dwarfism. We speculate that volcanism could have acted synergistically causing the uniqueness of dwarfism in the global context of warming. The size reduction lasted several thousand years thus implying long term impacts of such additive drivers.

How to cite: D’Onofrio, R., Barrett, R., Schmidt, D. N., Fornaciari, E., Giusberti, L., Frijia, G., Adatte, T., Sabatino, N., Monsuru, A., Brombin, V., and Luciani, V.: The ETM2 in the Tethys Realm: Extreme Planktic Foraminiferal Dwarfism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20177, https://doi.org/10.5194/egusphere-egu24-20177, 2024.

BG6 – Geomicrobiomes and their function

Studies of the impacts of bioaerosol on atmospheric processes often focus on their role in ice nucleation, which is largely determined by their physicochemical properties. Living microorganisms may also play roles in chemical processes by interacting with organics and other molecules, in particular in clouds where condensed water promotes metabolic processes.

Our previous model studies suggest that such biodegradation by living microorganisms may lead to a significant loss of formic and acetic acids in addition to chemical sinks in the atmospheric multiphase system (Nuñez López et al., 2023).

The prior model studies are based on the assumption of a single type of bacteria at fixed number in a small subset of droplets. However, the diversity and abundance of airborne bacteria, and thus their metabolic capabilities, greatly vary with space and time.

Explicitly describing multiple types of bacteria in individual droplet classes within cloud models can become computationally expensive and may be unfeasible to implement in larger-scale models aimed at exploring the role of biodegradation as a sink of organics.

We present different model approaches of varying complexities to explore the conditions under which simplified expressions for the biodegradation of small organic compounds can be applied. This involves the use of averaged biodegradation rates or proxies for representative bacteria species. Box model simulations are performed for airborne bacterial populations of different diversity and abundance, as observed, e.g. in continental or marine scenarios. Our model studies result in recommendations on how to implement biodegradation into atmospheric models of various scales to account for biological sinks of organic compounds and to ultimately constrain atmospheric organic budgets.

 

Nuñez López, L., Amato, P., and Ervens, B.: Bacteria in clouds biodegrade atmospheric formic and acetic acids, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2270, 2023.

How to cite: Nuñez López, L., Amato, P., and Ervens, B.: Prediction of Biodegradation rates of Atmospheric Organics as a function of bacteria diversity using models of different complexity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1474, https://doi.org/10.5194/egusphere-egu24-1474, 2024.

EGU24-2630 | PICO | AS4.6 | Highlight

Aqueous photooxidation of live bacteria  

Theodora Nah, Yushuo Liu, and Patrick Lee

Live bacteria in atmospheric aqueous droplets are exposed to photooxidants such as hydroxyl radicals (·OH), organic triplet excited states (3C*) and singlet oxygen (1O2). These photooxidants are produced from photochemical processes involving organic matter present in atmospheric aqueous droplets. ·OH is the photooxidant known to drive many aqueous photochemical processes. Even though the ·OH photooxidation of organic matter in atmospheric aqueous droplets has been widely studied, equivalent investigations on the ·OH photooxidation of bioaerosols are limited. Little is known about the daytime encounters between ·OH and live bacteria in atmospheric aqueous droplets.

We investigated the aqueous ·OH photooxidation of four bacterial strains in microcosms composed of artificial cloud water that simulated the chemical composition of cloud water in South China. The survival rates for the four bacteria strains decreased to zero within 6 hours during exposure to 1 × 10−16 M of ·OH under artificial sunlight. Bacterial cell damage and lysis released biological and organic compounds, which were subsequently oxidized by ·OH. We used ultrafiltration to separate the water-soluble biological and organic compounds into different molecular weight fractions and found that the molecular weights of some of these biological and organic compounds were larger than 50 kDa. The biological and organic compounds were identified as proteinaceous-like and humic-like components by excitation emission matrix fluorescence spectroscopy with parallel factor analysis. High-resolution mass spectrometry measurements revealed that the O/C, H/C, and N/C elemental ratios increased at the initial onset of photooxidation. As the photooxidation progressed, there were little changes in the H/C and N/C, whereas the O/C continued to increase for hours after all the bacterial cells have died. The increase in the O/C was due to functionalization and fragmentation reactions, which increased the O content and decreased the C content, respectively. We observed that fragmentation reactions played particularly important roles in transforming the biological and organic compounds. These fragmentation reactions cleaved the C-C bonds of carbon backbones of higher molecular weight proteinaceous-like matter to form a variety of lower molecular weight compounds, including humic-like components of molecular weight <3 kDa and highly oxygenated organic compounds of molecular weight <1.2 kDa. We also investigated the propensity of the biological and organic compounds from the bacteria to produce ·OH, 1O2, and 3C* upon illumination with artificial sunlight. The steady-state concentrations and quantum yields of the three photooxidants produced varied among the different molecular weight-separated fractions due to the diversity of their chemical composition and optical properties. Using a variety of correlation analysis and machine learning techniques, we identified various chemical and optical parameters that correlated particularly well with the steady-state concentrations or quantum yields of the three photooxidants. Overall, our results provided new insights at the process level on the photooxidation of live bacteria in atmospheric aqueous droplets.

How to cite: Nah, T., Liu, Y., and Lee, P.: Aqueous photooxidation of live bacteria , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2630, https://doi.org/10.5194/egusphere-egu24-2630, 2024.

Airborne microorganisms (bioaerosols), traveling across long distances, can significantly affect ecosystems, biogeochemical cycles, and human health. Dust events are a major source of bioaerosols, contributing to their global dispersion. Due to climate change-driven desertification and land-use changes, these events are projected to increase in intensity and frequency. Therefore, the transport of microorganisms over dust is expected to become more prominent. Hence, it is essential to understand the mechanisms allowing dust-borne microorganisms to survive in their atmospheric journy. Here we will present our findings on the impact of dust origins, meteorological conditions as well as diurnal sampling time on the microbial community composition and bioactivity through high throughput sequencing analysis. Our results show connectivity between bioactive groups. We will also present our findings on the distinctive characteristics of dust-borne prokaryotes isolated from dust events, showcasing diverse spore-forming bacteria with biofilm formation abilities. These findings indicate their possible preferential survival over dust, and open new paths to better understanding the survival strategies of dust-borne microorganisms.

How to cite: Lang-Yona, N.: Dust particles as a supportive environment for biofilm-forming prokaryotes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2684, https://doi.org/10.5194/egusphere-egu24-2684, 2024.

EGU24-4172 | ECS | PICO | AS4.6

Similar freezing spectra of particles in the phyllosphere as at mixed-phase cloud height 

Annika Einbock and Franz Conen

The phyllosphere is a major source of airborne microorganisms. Some of these microorganisms can act as ice nucleating particles (INPs) and initiate droplet freezing in supercooled clouds. Despite their role in this critical atmospheric process, little is known about the spatiotemporal variations of biological INPs at their source. We investigated this variation on the scale of single (or few) leaves about fortnightly from late summer throughout leaf senescence in two lime (Tilia platyphyllos), beech (Fagus sylvatica), cherry (Prunus avium), and walnut (Juglans regia) trees (n = 2 x 4 x 8 = 64) on a hillside (Gempen, 650 m a.s.l.) in north-western Switzerland. The overall result comprising all species shows an increasing trend in the median cumulative concentration of INPs active at -10 °C (INP-10) from 4 INPs cm-2 leaf area at the beginning of August to 38 INPs cm-2 in mid-November. Further, median INP-10 concentration was positively correlated with relative humidity throughout the 24 h prior to sampling (Spearman’s r = 0.90, p = 0.005, n = 8). Differential INP spectra between -3 °C to -10 °C displayed clearly defined patterns in 53 of the overall 64 samples. In 28 of these 53 samples (53%), the additional number of INPs activated with every 1 °C step in cooling increased steadily with decreasing temperature. In another 21% we observed a significant peak in the temperature step from -8 °C to -9 °C (i.e., around -8.5 °C), and in further 17% a peak around ‑7.5 °C. Interestingly, these types of spectra were similarly often found in air samples with clearly defined pattern (n = 53) at the high-altitude observatory Jungfraujoch (3580 m a.s.l., Switzerland) in summer 2022 (55% steady increase, 17% peak at -8.5 °C, 21% peak at -7.5 °C). This consistency in spectral pattern supports the notion that forests are a major source of biological INPs affecting atmospheric processes. It also prompts the question which parameter – perhaps leaf wetness duration? – could influence the abundance of biological INPs on both scales, on single leaves as well as in the airshed of a high-altitude observatory.

How to cite: Einbock, A. and Conen, F.: Similar freezing spectra of particles in the phyllosphere as at mixed-phase cloud height, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4172, https://doi.org/10.5194/egusphere-egu24-4172, 2024.

EGU24-5231 | ECS | PICO | AS4.6

Sea surface microlayer mediated exchange between the aerobiome and the Pacific Ocean 

Or Argaman Meirovich and Dr. Naama Lang-Yona

Microbes are globally ubiquitous and play a crucial role in ecological network systems and global cycles (e.g., the carbon, nitrogen, water cycles). Hundreds of trillions of microorganisms are estimated to be exchanged between the marine and atmospheric environments, due to the vastness of the sea–air interface. The sea surface microlayer (SML) serves as the interface between the ocean and the atmosphere and is a unique ecosystem for microbial life. The aerosolized microbes may affect ocean ecology, global cycles, and promote genetic exchange between ecosystems. However, little is known about the mechanisms controlling microbial exchange between the environments, and the viable state and metabolic activity of marine bioaerosols. This study aims to characterize the microbial communities of the three environments (surface water-SML-atmosphere) and explore possible linkages between them, by developing a simple and repeatable technique for sampling the SML. We will present the validation of our new SML sampling method, based on surface water sub-sampling, using cell and genomic analyses. This method may provide a substantial improvement compared to direct sampling from the sea, ensuring stabilization without unexpected disturbances. In addition, we will present our results on the linkages between marine, SML and atmospheric microbial communities using our new SML sampling technique, from samples collected in the Pacific Ocean. Our results exhibit different clustering patterns for the three proximal environments, supports their identification as distinct environments with distinct microbial signatures. However, the SML is visualized as an “average” between surface water and air samples both in clustering tightness and location, displays its role as an exchange medium between the ocean water and the marine atmospheric boundary layer. This study contributes to improving understanding of the role of the SML in emission of primary aerosols, leading to better characterization of the ocean-atmosphere interactions and allows for better assessments of their contribution to global cycles and the marine ecosystem.

How to cite: Argaman Meirovich, O. and Lang-Yona, Dr. N.: Sea surface microlayer mediated exchange between the aerobiome and the Pacific Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5231, https://doi.org/10.5194/egusphere-egu24-5231, 2024.

EGU24-6162 | PICO | AS4.6

Appearance of viral genomes with high GC base proportion in atmospheric samples from Europe and Antarctica 

Janina Rahlff, Luke Cockerton, Pierre Amato, David A. Pearce, and Manja Marz

Outdoor viruses from atmospheric ecosystems have rarely been investigated, and thus only a few viral genomes from the air can be found in public databases. Viruses and their hosts have positively correlating guanine-cytosine (GC) contents in their DNA1. High GC content was previously found in actinobacterial and betaproteobacterial isolates from the stratosphere2 as well as in aerosol and rainwater viruses3. This is proposed as an adaptation to harsh environmental conditions, primarily as protection against ultraviolet radiation. Here, we combine metagenomically derived viral operational taxonomic units (vOTUs) collected from aerosols and precipitation samples from the Swedish coast3, along with time-series data collected in Antarctica using different sampling devices. Additionally, cloud water samples from the Puy de Dôme in France4 were included. A total of 80 assembled vOTUs, of which 37 were predicted phages, across all samples, had a GC content between 55.2% and 70.3%, considered 'high GC.' Antarctic air vOTUs were found after sampling with the Coriolis µ (wet) but not with the Coriolis Compact (dry) air sampler. The time series indicates overlapping vOTUs between days and sampling height (sea-level or altitude). In Antarctic air, high GC vOTUs (mean GC = 59.6% ± 4.0) were detected on one of the seven days, while low GC viruses were absent in this sample. On other days, the GC of vOTUs was <39%. Thirteen high GC vOTUs from Sweden and Antarctica clustered in a proteomic tree analysis with known high GC phage isolates infecting Microbacterium radiodurans and Arthrobacter sp. (both phylum Actinomycetota). Host predictions using iPHoP revealed that only 11 of the 80 vOTUs could be assigned to bacterial hosts with good confidence, namely to genera Mycobacterium, Ralstonia, Sphingomonas, and Bradyrhizobium. Our results suggest that high GC is a feature in air viruses from different atmospheric sources and latitudes. While these vOTUs occur irregularly at near-ground sampling heights, a high GC content could favor the survival of airborne viruses higher in the troposphere and thus enable infections of extremophilic hosts within air ecosystems.

References:

1 Simón, D., Cristina, J., & Musto, H. (2021). Nucleotide composition and codon usage across viruses and their respective hosts. Frontiers in Microbiology, 12, 646300.

2 Ellington, A. J., Bryan, N. C., Christner, B. C., & Reisch, C. R. (2021). Draft Genome Sequences of Actinobacterial and Betaproteobacterial Strains Isolated from the Stratosphere. Microbiology Resource Announcements, 10(50), e01009-21.

3 Rahlff, J., Esser, S.P., Plewka, J., Heinrichs, M.E., Soares, A., Scarchilli, C., Grigioni, P., Wex, H., Giebel, H.A. and Probst, A.J., 2023. Marine viruses disperse bidirectionally along the natural water cycle. Nature Communications, 14(1), p.6354.

4 Dillon, K. P., Correa, F., Judon, C., Sancelme, M., Fennell, D. E., Delort, A. M., & Amato, P. (2020). Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Applied and Environmental Microbiology, 87(1), e01850-20.

How to cite: Rahlff, J., Cockerton, L., Amato, P., Pearce, D. A., and Marz, M.: Appearance of viral genomes with high GC base proportion in atmospheric samples from Europe and Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6162, https://doi.org/10.5194/egusphere-egu24-6162, 2024.

Understanding the types of microbes present and their concentrations over time is essential for deciphering the physical, chemical, and biological processes in the atmospheric environment. In this study, Hong Kong, which experiences four distinct seasons, was selected as the study site. High-throughput amplicon sequencing of the 16S rRNA gene was utilized to analyze the microbiomes present, while a light/laser-induced fluorescence (LIF) instrument was employed to characterize the real-time concentrations of fluorescent aerosol particles (FAPs) or bioaerosols. Seasonal variations in the microbiomes were observed, primarily driven by less abundant taxa that were unique to specific locations. Conversely, spatial variations were minimal, suggesting a homogeneity of microbiomes within the scale of a city. The major taxa of the microbiomes reflected the local environments (e.g., aquatic and soil), with neutral assembly processes dominating each season, indicating a minor role of selection in microbial assembly in the air. FAP concentrations were highest in the fall and winter seasons, deviating from measurements in temperate and tropical regions. Bioaerosol concentrations exhibited diurnal patterns, with higher concentrations during the daytime and lower concentrations at nighttime. Certain atmospheric pollutants were associated with bioaerosol concentrations, and positive matrix factorization analysis identified anthropogenic sources as key drivers of bioaerosol concentrations. In summary, the application of molecular techniques and LIF-based instrumentation has provided insights into the microbial composition of the atmospheric environment in a subtropical location, facilitating further investigations into the interactions involving these biological components.

How to cite: Lee, P. K. H. and Miao, Y.: Seasonal Dynamics of the Compositions and Concentrations of Microbiomes in the Atmospheric Environment at a Subtropical Location, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7371, https://doi.org/10.5194/egusphere-egu24-7371, 2024.

The Arctic region is undergoing rapid environmental changes due to global climate warming. Among the Arctic regions, the surface temperature in the northern Barents Sea, where the Svalbard archipelagos are located, has increased more significantly than in other areas over the last 40 years. This warming results in the loss of sea ice in the ocean and glacier ice in terrestrial areas. These changes in surface conditions may impact the emission of bioaerosols from the Earth's surface, which play a crucial role in ecosystem dynamics and cloud formation. However, there is still limited temporal monitoring in Svalbard and also in entire Arctic. Therefore, in this study, we focus on assessing the temporal changes in bioaerosols during the summer to autumn season in Ny-Ålesund, Svalbard using DNA metabarcoding approaches.

Bioaerosol samples were collected using a vacuum pump with a flow rate of 40 LPM onto HEPA-style filters at the outdoor observatory of the Veksthuset building in Ny-Ålesund. Filters were replaced every 24-72 hours from July to November 2022. Those were then preserved in DNA storage medium (DNA/RNA shield) and transported to the laboratory under frozen conditions. Following particle concentration and DNA extraction, we amplified and sequenced three DNA metabarcoding regions (16S, 18S, and ITS) using the MiSeq platform (Illumina).

Seasonal variations in the observed number of Amplicon Sequence Variants (ASVs) from each barcoding region reveal distinct patterns. These patterns are characterized by elevated ASV counts during the summer (ITS and 18S) and autumn (16S). Microbial communities within the 16S region at the phylum level remain relatively stable throughout the entire season. Conversely, communities within the 18S and ITS regions undergo significant changes in mid-September and after October, coinciding with the terrestrial area being covered by seasonal snowpack. In the presentation, we will provide a more detailed explanation of community changes at the ASV level and discuss the distinctive seasonal patterns observed.

How to cite: Uetake, J. and Tobo, Y.: Difference in seasonal variation between airborne prokaryotic and eukaryotic communities in Ny-Ålesund, Svalbard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10332, https://doi.org/10.5194/egusphere-egu24-10332, 2024.

EGU24-12799 | PICO | AS4.6

The transient and species-specific microbiome of radiation fog water 

Ferran Garcia-Pichel, Thi Thuong Thuong Cao, Pierre Herckes, and Derek Straub

We used sampling of quasi-stagnant radiation fogs in Central Pennsylvania during two years to study the dynamics and microbiology of bacterial assemblages in fog droplets. These microbiomes contain concentrations of bacteria orders of magnitude higher than present in concurrent interstitial aerosols, their concentration depending positively, and unlike chemical solutes, on the fog’s liquid water content and temperature, speaking for the role of in situ growth. Fog water microbiomes are recruited from locally available aerosol bacteria, they are compositionally well-differentiated, and their bacteria display differential cellular traits consistent with an actively growing assemblage. Phylogenetic analyses of bacteria enriched in the droplets suggest that C1-volatile metabolizing heterotrophs constitute the trophic basis of these dynamics. However, major loss factors (wet deposition) export much of the net gains, leaving measurable but only subtle legacies in the aerobiome upon fog dissipation. 

 

 

How to cite: Garcia-Pichel, F., Cao, T. T. T., Herckes, P., and Straub, D.: The transient and species-specific microbiome of radiation fog water, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12799, https://doi.org/10.5194/egusphere-egu24-12799, 2024.

EGU24-13840 | PICO | AS4.6 | Highlight

Impacts and Implications of Airborne Microorganisms in a Warming Atmosphere 

Stephan Schuster, Elena Gusareva, Kutmutia Shruti Ketan, Lennard Wittekindt, Yee Hui Lim, Akira Uchida, Elisa Sosa, Kaspar Rudolf Dällenbach, Imad El Haddad, Martin Gysel Beer, Adrian Egli, and Claudia Mohr

Amid escalating concerns regarding climate change and air pollution, the intricate interplay between climate dynamics and air microbiomes remains inadequately understood. Our research team is dedicated to an in-depth exploration of bioaerosol dynamics through metagenomic analysis. This will establish linkages between resultant environmental microbiomes and a spectrum of physico-chemical factors. We will further evaluate potential implications of climate driven bioaerosol dynamics on human health. Consequently, our research initiative entails a comprehensive analysis of bioaerosol dynamics across distinct climate regimes, encompassing alpine, temperate, and tropical environments. Using high-volumetric air sampling technologies,  we have conducted environmental time series that offer high temporal and taxonomic resolution. In an interdisciplinary approach that integrates expertise from aerobiology, medicine, atmospheric physics, and climate modelling, we aim at assessing the impact of raising global temperatures on atmospheric bioaerosols and the global dispersal of airborne microorganisms. Our bioaerosol detection methodologies can be applied to both, historical and contemporary air samples, enabling to examine the bioaerosol dynamics preceding the current and most acute climate crisis. By integrating biological, chemical, and physical measurements collected from pristine alpine and metropolitan areas from temperate and tropical settings, we investigate the potential interconnections between climate-driven alterations in airborne microbial dynamics and their consequential effects on human and ecosystem health.

How to cite: Schuster, S., Gusareva, E., Ketan, K. S., Wittekindt, L., Lim, Y. H., Uchida, A., Sosa, E., Dällenbach, K. R., Haddad, I. E., Beer, M. G., Egli, A., and Mohr, C.: Impacts and Implications of Airborne Microorganisms in a Warming Atmosphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13840, https://doi.org/10.5194/egusphere-egu24-13840, 2024.

The health impacts of air pollution are deeply intertwined with the composition of pollutants, with bioaerosols—microbial particles suspended in the air—playing a critical role. Despite their importance, the behavior of bioaerosols during pollution episodes remainslargely elusive. In this study, we investigated the dynamics of bacterial aerosols over a one-week period. During the sampling period, haze and sandstorm events occurred sequentially, with a transition period in between. Haze air pollution, characterized by high levels of PM2.5, is a typical form of anthropogenic pollution, whereas sandstorm dust events, characterized by high levels of PM10, are typical natural pollutions. We applied 16S rDNA and 16S rRNA sequencing techniques to explore the total bacterial community and the active bacteria, respectively. Our results revealed distinct bacterial aerosol profiles during haze and sandstorm conditions. Notably, the greatest bacterial diversity was found in sandstorm samples, with the least diversity observed during haze periods. The bacterial aerosols during haze showed the most significant differences compared to those during the transition period, particularly when contrasted with sandstorm samples. The active bacterial profiles, as determined by 16S rRNA sequencing, were found to be dissimilar from the total bacterial communities present during sandstorms. The ecological drivers shaping bacterial community structures also exhibited distinct patterns. Our data suggest that selective forces influence the composition of active bacterial communities in sandstorm samples, as well as the total bacterial population during haze events. A common feature during both haze and sandstorm episodes was the extended residence time of bacteria in the atmosphere, implying that prolonged exposure could alter the structure of airborne bacterial communities. Additionally, our results highlight the increased presence of several pathogens or opportunistic pathogens in the active bacterial communities of sandstorm samples and the total bacteria during haze, indicating a increased health risk for humans, animals, and plants.

How to cite: Shen, F. and Ma, J.: Temporal Dynamics of Bacterial Aerosols in Haze and Sandstorm Events: Implications for Atmospheric Processes and Public Health, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14338, https://doi.org/10.5194/egusphere-egu24-14338, 2024.

EGU24-17555 | PICO | AS4.6

SLIDE – Southern Latitudes Island Dispersal Evaluation  

David Pearce, Luke Cockerton, Lucie Malard, Julia Schmale, and Peter Convey

The risks of invasions of remote ecosystems by new microorganisms is a major threat as they are likely to impact the diversity and function of resident communities and local ecosystems. In the Antarctic, aerial transport is the primary source of new biological inputs. Airborne communities are believed to be influenced by environmental and climatic conditions, which are already changing rapidly on a global scale, but especially in the Polar regions. Yet, the influence of climate change, weather patterns and environmental conditions on these airborne communities are still unclear. One of the key challenges in understanding these processes is the high heterogeneity and variability of airborne samples. Following the Antarctic Expedition (ACE), in which daily samples were taken around the Antarctic continent to provide spatial distribution of airborne microorganisms, a time series was conducted at one of the ACE field sites (South Georgia) over a period of two weeks, at both high and low altitude to establish the daily variability between aerobiological sample sets. Results showed that although there was indeed a high heterogeneity and variability within the sample sets and across sample types, reliable patterns in the overall diversity could still be determined, and hence single daily samples can still provide useful assessment of aerial diversity over spatial and temporal scales in the Antarctic.

 

How to cite: Pearce, D., Cockerton, L., Malard, L., Schmale, J., and Convey, P.: SLIDE – Southern Latitudes Island Dispersal Evaluation , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17555, https://doi.org/10.5194/egusphere-egu24-17555, 2024.

EGU24-18119 | ECS | PICO | AS4.6

Long-range transatlantic dust transport: via hitchhiking to South America 

Jens Weber, Cybelli Barbosa, Isabella Hrabe de Angelis, Petya Yordanova, Sebastian Brill, Stefanie Maier, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber

Primary biological aerosols (bioaerosols) represent the predominant fraction of aerosols within the Amazon rainforest, a global biodiversity hotspot. Bioaerosols encompass a wide range of biological material. These can be single molecules such as proteins, carbohydrates, metabolites, toxins and allergens, or as large as whole dispersal units such as pollen, fungal and cryptogamic spores. They also include whole living or dead microbial organisms such as viruses, bacteria, archaea, or fungi, and fragments or secretions from organism. These bioaerosols can serve as nuclei for ice crystals and cloud droplets and thereby influence the properties of clouds and precipitations patterns with implications for hydrological cycles and the climate. Moreover, the aerial transport of microorganisms contributes to global species spread, with the potential to affect animal, plant, and ecosystem health. Aerosolized soil particles (dust) can act as vehicles, enabling microorganisms to traverse extensive distances, such as the Atlantic Ocean. However, the identity and effects of microorganisms associated with long-range transported dust masses on the local bioaerosol community of the Amazon rainforest is still unknown.

Here, we investigate the effect of dust, originating from the African continent and transported to the Amazon rainforest on the local microbial and fungal bioaerosol community of the Amazon rainforest. We collected total suspended particles at the Amazon Tall Tower Observatory (ATTO) in Brazil before, during and after a dust event, at 42 m and 320 m height. The prokaryotic and fungal communities were analyzed using amplicon sequencing techniques. Our results revealed a distinct local fungal and procaryotic bioaerosol community under dust free conditions. However, dust occurrence did not majorly effect the fungal community structure, which showed an overall very uniform core microbiome, across time and height. In contrast, the prokaryotic community was strongly altered during the dust event, with members of the Bacillota strongly increasing. Also, the prokaryotic core microbiome was smaller compared to the fungal core microbiome and changed between heights. Our findings suggest that the Amazon rainforest air microbiome can be affected by long-range transported dust and the microbial communities transported within while the fungal air microbiome seems overall more stable. Suggesting the transcontinental exchange of dust between Africa and South America as a plausible pathway for the spread of prokaryotes.

How to cite: Weber, J., Barbosa, C., Hrabe de Angelis, I., Yordanova, P., Brill, S., Maier, S., Pöschl, U., Pöhlker, C., and Weber, B.: Long-range transatlantic dust transport: via hitchhiking to South America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18119, https://doi.org/10.5194/egusphere-egu24-18119, 2024.

EGU24-18750 | ECS | PICO | AS4.6

Exploring precipitation over the northern Antarctic Peninsula - a microbiological perspective 

Ksenija Vučković, Eva Lopes, Leonor Pizarro, Miguel Semedo, Maria de Fátima Carvalho, Catarina Magalhães, and Irina Gorodetskaya

Keywords: precipitation, aerosols, microorganisms, Antarctica, clouds

Clouds and precipitation play an intrinsic role in the global climate, upholding the Earth's surface energy equilibrium and water cycle. Despite their significance, clouds and aerosols over Antarctica and the Southern Ocean remain poorly understood, primarily due to the extreme environment for observations and insufficient data. The Antarctic Peninsula (AP) has been exhibiting a significant warming trend over the last 60 years (Jones et al, 2019). Coupled with the rising temperatures, an increase in precipitation and surface melt is being observed across the AP, with major surface melts and precipitation events, both snowfall and rainfall, being associated with atmospheric rivers (ARs) (Gorodetskaya et al., 2023; Wille et al., 2021). ARs are long corridors of intense moisture and heat transport from subtropical and mid-latitude regions poleward, typically also carrying liquid-containing clouds to the AP. Moreover, ARs can impact the long-range transport of aerosols, as well as contribute to gas and aerosol exchange between the atmosphere and the ocean. Aerosols, which serve as cloud condensation and ice nuclei, determine cloud microphysical properties and influence cloud radiative forcing and precipitation formation. Given that a substantial percentage of aerosols are of biological origin, it is crucial to effectively identify and describe them.

In this project, we aim to characterize bioaerosols, specifically microorganisms, present in the precipitation and surface snow in the AP. Rainfall and snowfall samples were collected during PROPOLAR campaigns on King George Island, northern AP, in the vicinity of Escudero and King Sejong stations. The precipitation samples were preserved and analysed using culturable and non-culturable methodologies. Bacterial strains were obtained and identified through 16S rRNA gene sequencing, which provided information about the diversity and phylogenetic relationships of the identified microorganisms. The identified organisms were categorized into six distinct genera, including those recognized for their ice nucleation capabilities, such as the Pseudomonas genus (Attard et al, 2012). The main phylum identified was Proteobacteria. We identified four strains among those analyzed as potentially novel species affiliated with the Spirosoma and Paenibacillus genera. These findings highlight the untapped potential of these regions in harbouring unique microbial biodiversity. 

Obtaining a comprehensive study of the microbial community in precipitation in Antarctica will pave the path to understanding the role these microorganisms have in cloud condensation processes and ice nucleation. More international efforts and campaigns are needed to gain information about aerosols, clouds and precipitation over the Southern Ocean.

 

Acknowledgements: PROPOLAR (Portuguese Polar Program) projects APMAR/TULIP/ APMAR2 and FCT project MAPS (2022.09201.PTDC)

References: 

Attard et al. 2012. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas.  Atmos. Chem. Phys. https://doi.org/10.5194/acp-12-10667-2012

Gorodetskaya et al. (2023): Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. npj Clim.Atmos.Sci. https://doi.org/10.1038/s41612-023-00529-6

Jones et al. (2019). Sixty years of widespread warming in the Southern middle and high latitudes(1957–2016). J.Clim.https://doi.org/10.1175/JCLI-D-18-0565.1 

Wille et al. (2021).  Antarctic atmospheric river climatology and precipitation impacts. J.Geophys.Res.https://doi.org/10.1029/2020JD033788

 

How to cite: Vučković, K., Lopes, E., Pizarro, L., Semedo, M., de Fátima Carvalho, M., Magalhães, C., and Gorodetskaya, I.: Exploring precipitation over the northern Antarctic Peninsula - a microbiological perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18750, https://doi.org/10.5194/egusphere-egu24-18750, 2024.

EGU24-19988 | ECS | PICO | AS4.6

Seasonal Dynamics of Arctic Marine Ice-Nucleating Particles 

Christian Ditlev Funder Castenschiold, Anne Ellebæk, Kai Finster, and Tina Šantl-Temkiv

There is growing evidence that the oceans constitute an important source of ice-nucleating particles (INPs) in the atmosphere, aerosolized through sea spray. These particles play a crucial role in cloud formation and cloud properties by inducing ice crystal formation. Microorganisms, in particular, can produce ice-nucleating proteins which are efficient catalysts in the formation of ice, triggering heterogenous freezing between -1°C and -15°C. INPs have been measured in sea bulk water and sea surface microlayer, and specifically Arctic waters have been shown to exhibit ice-nucleation activity at high temperatures. In addition, terrestrial environments have long been recognized as substantial reservoirs of INPs. The runoff from these terrestrial environments, facilitated by meltwater and rivers, could have the potential to contribute a substantial influx of INPs to coastal marine environments. Our understanding of the extent of this input, the properties, and concentrations of INPs, and their connection with the microbial community in sea bulk water and sea surface microlayer remains limited. Furthermore, there is a lack of investigation into the temporal and spatial distribution of INPs in sea water. This information, coupled with atmospheric INP measurements, is needed to improve predictions of INP emissions from the ocean to the atmosphere. Therefore, we conducted a sampling campaign at Disko Island, Greenland, and collected sea bulk water, sea surface microlayer, and air samples from May to September 2023. Freshwater samples were collected from a river in continuation of a marine transect spanning eight km offshore to investigate the impact of terrestrial runoff on the coastal marine microbial community and INPs. Our investigation reveals distinct seasonal variations in INP concentrations, ice-nucleation activity, and microbial community at a regularly visited marine site throughout the sampling campaign. Air samples were collected simultaneously at this marine site, enabling the measurement of INP concentrations and the exploration of the microbial community present in the immediate overlaying air masses. Additional air samples were consistently collected from a foreland, located approximately five km from the marine sampling site, using a high-flow-rate impinger with a specific focus on capturing sea spray emissions and facilitating the integration of the data to the marine water samples. Our results further demonstrate a pronounced input of INPs originating from terrestrial runoff into the sea surface microlayer within coastal marine waters. Notably, this was not observed in the bulk water due to the stratification resulting from the introduction of freshwater. Our study unveils seasonal dynamics of INPs and microbial communities and a prominent impact of terrestrial runoff in Arctic marine waters. The study emphasizes the importance of considering the marine environment as a major source of atmospheric INPs and, further, contributes valuable insights to improve predictions of INP emissions from the ocean to the atmosphere.

How to cite: Castenschiold, C. D. F., Ellebæk, A., Finster, K., and Šantl-Temkiv, T.: Seasonal Dynamics of Arctic Marine Ice-Nucleating Particles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19988, https://doi.org/10.5194/egusphere-egu24-19988, 2024.

EGU24-20130 | PICO | AS4.6

Microbiome of Saharan dust aerosols 

Kalliopi Violaki, Christos Panagiotopoulos, Pierre Rossi, Ernest Abboud, Maria Kanakidou, and Athanasios Nenes

Airborne biological material, or bioaerosol, plays an important role in the Earth system and therefore have an impact on the atmosphere, the biosphere and the hydrological cycle as well as on public health. Bioaerosols consist of viruses, bacteria, mold, pollen, plant fibers and fragments that range from tens of nanometers to a few hundred micrometers in size. Terrestrial ecosystems are the major sources of the atmospheric bioaerosols with urban environments and areas with agricultural and industrial activity being particularly important. Desert dust contains high concentrations of bioaerosol mainly composed of soil microorganisms and plant detritus. This dust may be further enriched with fungal spores, bacteria, viruses, and pollen that accumulate as dust plumes are transported over terrestrial and aquatic environment through the adhesion of microbe-laden fine aquatic sprays to dust particles. The relative importance of bioaerosol sources in the atmosphere varies with altitude, season, location and meteorological factors.

In this study, Saharan dust aerosols (n=19) were sampled from East Mediterranean (Crete, Greece) using a high-volume TSPs sampler (TISCH). Dust atmospheric particles were collected on precombusted (450 °C for 5 h) 20 × 25 cm quartz filters (Pall, 2500QAT-UP). The sampling resolution was 48 h, at a flow rate of 85 m3 h−1. We established a reliable analytical protocol for extracting DNA from these Saharan dust particles. Together with biological quantification and identification, chemical analysis was performed, including metals, major ions, phospholipids and sugars.

Results show that the number of Eucaryotic DNA copies were 30 times higher than the bacterial copies during the dust events. The bacterial community composition in the collected dust aerosol as the most abundant Phyla were Proteobacteria (37%) followed by Actinobacteria (22%) and Firmicutes (13%). Furthermore, we analyzed five (n=5) intense dust events using magic angle spinning solid-state 31P-NMR. The results show that the typical functional groups in P speciation, were orthophosphate and monophosphate esters which sharing the same chemical shift (H3PO4 and RH2-PO4), phosphate diesters (R1R2 HPO4) and pyrophosphate (H4P2O7). No phosphonates were detected (C-P bond) in dust samples. Monophosphate esters and diesters are mainly found in nucleotides and their derivatives (e.g., DNA, RNA, AMP, ADP and ATP) but also in phospholipids, and as such, they constitute the majority of atmospheric organic-P. These organic-P compounds have C-O-P bonds and are easily hydrolyzed in the marine environment by alkaline phosphatase enzyme, providing an important source of P in the aquatic ecosystems when Saharan dust is deposited.

How to cite: Violaki, K., Panagiotopoulos, C., Rossi, P., Abboud, E., Kanakidou, M., and Nenes, A.: Microbiome of Saharan dust aerosols, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20130, https://doi.org/10.5194/egusphere-egu24-20130, 2024.

EGU24-837 | ECS | Orals | EMRP3.4

Identifying probable signatures of hydrothermal activity from the Carlsberg ridge sediments using rock magnetic properties 

Sambhabana Lenka, Pratima Kessarkar, Lina Fernandes, and Concy Gomes

The Carlsberg Ridge (CR) is a slow-spreading ridge occurs along divergent plate boundary, with the reports of three active and one extinct hydrothermal vent sites. For the present study eight spade cores (SCs) were collected from the CR, of which three are in the vicinity of Tianxiu hydrothermal field and one on the ridge flank. The hydrothermal sites are known to be associated with metalliferous sediments with Fe being the one of the dominant element. We measured rock magnetic properties of sediments that depend on iron bearing minerals, along with X-ray diffractometry (XRD), and microscopic observations to distinguish metalliferous sediments, that may be associated with the active/extinct hydrothermal activity at the CR. Magnetic susceptibility (χlf) of sediments ranges between 1.3 and 37.1 x10-8 m3kg-1. Low χlf signatures suggesting low metalliferous sediments are observed on flank and two cores from the ridge valley indicating, the absence of hydrothermal activity. Whereas sediments closer to the Tianxiu hydrothermal vent field are associated with high χlf, signifying higher metalliferous sediments and are also having high satuaration isothermal remanent magnetization (SIRM), hard isothermal remanent magnetization (HIRM), and low anhysteretic remanent magnetic susceptibility (χARM)/SIRM, coarse stable single domain (SSD)  and fine SSD & mixture grains characteristics. Two more spade cores ~ 250 km south of the Tianxiu vent field also showed similar signatures indicating new active/relict site/sites in the vicinity. Identifying/locating metalliferous hydrothermal sediment/sites along extensive Mid Ocean Ridge (MOR) is expensive and time-consuming; rock magnetic could be a non-destructive method to shortlist the areas for detailed studies.

How to cite: Lenka, S., Kessarkar, P., Fernandes, L., and Gomes, C.: Identifying probable signatures of hydrothermal activity from the Carlsberg ridge sediments using rock magnetic properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-837, https://doi.org/10.5194/egusphere-egu24-837, 2024.

A correlation between Earth’s magnetic field and climate change has been debated for over forty years, despite significant ~100- and ~41-kyr periods in both the stacked relative paleointensity and inclination records. In this paper, we construct a master relative intensity curve (SPIS-150) over the past ~150 kyr by stacking the data from one new core (PC27) with published intensity curves for the northern South China Sea. Additionally, we calculate the Dole effect from the sea surface temperature (SST) and d18O of planktonic foraminifera based on two cores, PC83 and PC27, and use it as a precipitation proxy. The results of this study show that geomagnetic field intensity lows are related to rich rainfall. During the ~23 kyr period, the relative intensity shows in-phase variations with simulating 0-30°N terrestrial precipitation, which shows that the superimposed effect of insolation and geomagnetic fields influences low-latitude precipitation. The strong summer monsoon predominated by insolation carries rich water vapor, which forms low cloud cover under one cloud-formation physical process where the geomagnetic field modulates galactic cosmic rays (GCRs) and leads to aerosol-related cloud condensation nuclei (CCN) formation. Deeper cloud cover produces strong rainfall in low-latitude regions.

How to cite: Yang, X.: Are there any links between geomagnetic field variations and hydrological cycles in the South China Sea since the Late Pleistocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2855, https://doi.org/10.5194/egusphere-egu24-2855, 2024.

EGU24-3158 | ECS | Posters on site | EMRP3.4

Paleomagnetism and calcite U-Pb geochronology from the Penglaitan GSSP section, South China 

Min Zhang, Huafeng Qin, Chenglong Deng, Shu-zhong Shen, and Yongxin Pan

The Guadalupian-Lopingian boundary (GLB) interval is characterized by the Pangea breakup, dramatic sea-level change, Emeishan Basalt volcanism, and biotic turnover. We conducted magnetostratigraphic, mineralogical, and calcite U-Pb geochronological studies at the Penglaitan Global Stratotype Section and Point section in South China. Rock-magnetic results indicate that magnetite and rare hematite are the dominant remanence carriers. After removing the viscous remanent magnetization, three components were isolated from the limestone at the Penglaitan section. The high-temperature remanence components were isolated from the tuffaceous limestone and yielded a mean direction of Ds/Is = 195.3°/+5.6° (α95s = 5.3°, ks = 22.8, n = 34) after tilt correction. It defined a reversed magnetozone from the top of conodont Jinogondolella granti Zone to the lower part of the Clarkina. dukouensis Zone, straddling the GLB. Additionally, intermediate-temperature components represent the Jurassic and Triassic remagnetization, also supported by the in-situ calcite U-Pb dating (~133-166 Ma and ~213-224 Ma), pyrite-to-magnetite alteration, or magnetite oxidization to maghemite and hematite. The new paleomagnetic results and calcite U-Pb dating provide new insights into Mesozoic multi-remagnetization in the South China Block and refine the GLB positioned in a reversed magnetozone.

How to cite: Zhang, M., Qin, H., Deng, C., Shen, S., and Pan, Y.: Paleomagnetism and calcite U-Pb geochronology from the Penglaitan GSSP section, South China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3158, https://doi.org/10.5194/egusphere-egu24-3158, 2024.

Situated along the Adriatic coast of southern Apulia (Italy), Grotta Romanelli (40.02o N, 18.43o E) is a natural coastal cave considered as a key site for understanding the Middle Pleistocene-Holocene geomorphological, palaeoenvironmental and stratigraphic evolution of the Mediterranean area. Its sedimentary fillings, extremely rich in archaeological and palaeontological findings have been long investigated for their stratigraphical and palaeontological aspects while efforts, mainly based on radiocarbon and pollen analyses, have been focused on better understanding their chronological framework. In this study, we propose a new age model based on the palaeomagnetic record of the uppermost Stratigraphical Unit IUS5 of Grotta Romanelli, also known as Terre Brune. Stepwise alternating field demagnetization provided well-defined directions, which were compared with the reference geomagnetic field curves calculated from the SHA.DIF.14k global geomagnetic field model directly at the cave’s geographic coordinates. A continuous age model was determined taking into consideration the principle of stratigraphic superposition. A selection of reliable, previously published, radiocarbon ages from animal teeth, bones and charcoal was also used for comparison. The proposed age-depth model covers the 14ka-8ka BP period, offering new insights on the chronology of the sedimentation and frequentation of the cave before its complete infilling. This chronological frame enables new considerations on the palaeoenvironmental evolution and climate changes that took place during the transition from the Late Pleistocene to the Holocene, and offers new insights on the dating of the Grotta Romanelli fossil remains, human rests and archaeological artifacts, including lithic tools and rock art.

How to cite: Tema, E., Lanci, L., Pieruccini, P., Mazzini, I., and Sardella, R.: Palaeomagnetic dating of the Grotta Romanelli (Apuglia, Italy) upper sedimentary filling: Insights on the Late Pleistocene-Holocene palaeoenvironment and human settings in the Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4536, https://doi.org/10.5194/egusphere-egu24-4536, 2024.

EGU24-5396 | Orals | EMRP3.4

Rock magnetic record of environmental changes over the last 40.000 years in the Westermost Mediterranean: the Alboran Sea sedimentary record 

Victor Villasante Marcos, Silvia Beltrán de Heredia García-Nieto, Francisca Martínez Ruiz, Santiago Casanova Arenillas, and Francisco Javier Rodríguez Tovar

We present here a high-resolution rock magnetic study of deep-sea marine sediments from the Alboran Sea (Westernmost Mediterranean). The analyzed sediment  record, core GP03, 889 cm in length, covers the last 40.000 years from upper Pleistocene glacial times through the Last Glacial Maximum, subsequent deglaciation, Younger Dryas cooling reversal and the whole Holocene up to the current Industrial Period. The sediment core was sampled at high resolution, and 379 samples were measured for their bulk magnetic susceptibility, frequency-dependent susceptibility, hysteresis cycles and Isothermal Remanent Magnetization (IRM) direct and reverse acquisition curves. A subset of 125 samples were subjected to thermomagnetic experiments up to 700º C in order to reveal Curie and thermal transformation temperatures and to support the identification of the precise magnetic mineralogy. The variations in the magnetic mineralogy along the analyzed record, together with previously published geochemical data, have allowed to track the main paleoenvironmental and paleoclimatic changes in the studied region over the last 38 ka, as well as documenting a very strong reductive dissolution horizon affecting magnetic phases in the Younger Dryas sediments, which points to a significant deoxygenation event. A strong correlation of magnetic parameters and stadial-interstadial fluctuations during the last glaciation, especially between 25 and 38 ka, is observed, pointing to variations in riverine vs. aeolian terrigenous input. In modern sediments (approximately the last 200 years), a sharp increase in magnetite abundance in the sediments has been recognized, coinciding with the timespan of the Industrial Period. We conducted magnetic extraction to concentrate the ferromagnetic fraction of these sediments, followed by Scanning Electron Microscopy and EDS analysis, and identified strongly ferromagnetic microspherules with textures typical of rapid crystallization from high temperature melts. These microspherules, rich in magnetite, are indistinguishable from typical fly ash magnetic microspherules of industrial origin, which support they are the magnetic fingerprint of anthropogenic industrial ferromagnetic phases in this marine setting that superimposed on the natural paleoenvironmental changes during the uppermost Pleistocene and Holocene.

How to cite: Villasante Marcos, V., Beltrán de Heredia García-Nieto, S., Martínez Ruiz, F., Casanova Arenillas, S., and Rodríguez Tovar, F. J.: Rock magnetic record of environmental changes over the last 40.000 years in the Westermost Mediterranean: the Alboran Sea sedimentary record, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5396, https://doi.org/10.5194/egusphere-egu24-5396, 2024.

EGU24-5451 | ECS | Posters on site | EMRP3.4

Time-series analysis of rock magnetic data from sediments spanning the last 40.000 years in the Western Mediterranean: strong paleoenvironmental cyclicities during the last glaciation 

Silvia Beltrán de Heredia García-Nieto, Víctor Villasante Marcos, Francisca Martínez Ruiz, Santiago Casanova Arenillas, and Francisco Javier Rodríguez Tovar

Time-series analysis of high-resolution rock magnetic data from deep-sea marine sediments (piston core GP03, Alboran Sea, Westernmost Mediterranean), spanning the last 40.000 years, has been performed to reveal paleoenvironmental cyclicities and climate variability in this region during the uppermost Pleistocene and Holocene. We have applied both the classical Fast Fourier Transform (FFT), after regularizing our data by linear interpolation, and the Lomb-Scargle periodogram, which is well suited to analyze non-regular time series, as is the case. In addition to the usual Lomb-Scargle periodogram, we have also tested a modification of the periodogram that takes into account the experimental errors of the analyzed parameters. Also, in addition to the power spectrum and its peak spectral frequencies/periods, we have computed the Achieved Confidence Level (or false positive rate) of the different spectral peaks by a Monte Carlo evaluation of the permutation test, restricting our further analysis to those spectral peaks with Achieved Confidence Levels greater than 95%. The obtained results through these different approaches show a high degree of coherency, proving the reliability not only of the methods, but also of the modifications introduced and of the obtained results. Our results highlight the presence of characteristic cyclicities with periods in the range of 1600-4500 years during the last glaciation, especially between 25 and 38 ka. The most intense spectral peak has a period around 2 ka, which is consistent with the characteristic periods of Dansgaard-Oeschger (D-O) climate fluctuations. This strong 2 ka signal is clearly arising from the observed match between high magnetic susceptibility and saturation remanent magnetization values with D-O warm phases (interstadials). These relative maxima in magnetic mineral abundance are correlated with high S-ratio values, pointing to an increase in magnetite vs. hematite abundance in the sediments. Conversely, cold D-O phases (stadials) seem to be related to low susceptibility, low saturation remanence and lower S-ratio, indicating a decrease in the contribution of low coercivity phases (like magnetite) and an increase in the relative importance of high coercivity phases like hematite. We suggest this is connected with variations in the relative importance of riverine vs. aeolian terrigenous input. In contrast, Holocene rock magnetic data do not show this 2 ka peak, but instead cyclicities with periods around 2800, 3800 and 5500 years are recognized. To our knowledge, this is the first report of such a remarkable relationship between marine sedimentary rock magnetic data and paleoclimatic cyclicities in the frequency range of the Dansgaard-Oeschger or stadial-interstadial events in the Western Mediterranean over the last glaciation, pointing to the interest of further rock magnetic studies.

How to cite: Beltrán de Heredia García-Nieto, S., Villasante Marcos, V., Martínez Ruiz, F., Casanova Arenillas, S., and Rodríguez Tovar, F. J.: Time-series analysis of rock magnetic data from sediments spanning the last 40.000 years in the Western Mediterranean: strong paleoenvironmental cyclicities during the last glaciation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5451, https://doi.org/10.5194/egusphere-egu24-5451, 2024.

The hidden link between the geomagnetic field and climate is gradually being noted for its unexpected consistency. However, the unclear linking mechanisms and questions regarding whether geomagnetic reconstructions entirely exclude climatic influences have sparked controversy surrounding this relationship. Here, we analyze a high-resolution geomagnetic paleosecular variation record since 30 ka in the northern South China Sea and find a good correlation between its climate-independent inclination record with the regional temperature and precipitation.

The studied core, SCS-5, was obtained from the northern South China Sea (21.21°N, 118.04°E) at a water depth of 1600 m, twenty AMS 14C ages were used to establish the age framework since ~30 ka, with an overall sedimentation rate exceeding 30cm/kyr. Detailed rock magnetic and environmental magnetic analysis determined that the sedimentary environment of the core is stable and homogeneous. Reliable characteristic remanent magnetization directions are established, with all the maximum angular deviations less than 3. The inclination has fluctuated considerably over the last 30 ka period, but is more moderate during 20-10 ka. Reconstructed paleointensity shows an overall upward trend except for a slight decrease during 15-12 ka, with several significant shallowing of the inclination corresponding to the low values of the field intensity, which may be related to the role of geomagnetic reverse flux patches.

Comparing the local precipitation δ18Osw local record of the core and the paleotemperature record from South China, we observe that as the geomagnetic field strength decreases with shallower inclination, regional precipitation increases significantly, while the land temperature decreases. We hypothesize that the decline in geomagnetic strength may have regulated the regional hydroclimate through the mediation of cosmic rays, aerosols, and cloud cover. The weakening field could have induced increased cloudiness, leading to a parasol effect and greater precipitation. Additionally, the correlation between rainfall and the geomagnetic field is evident throughout the Late Pleistocene-Holocene, whereas the relationship between temperature and the geomagnetic field is more pronounced in the Holocene. It suggests that the forcing mechanism of the geomagnetic field on climate change is complex and nonlinear, which may differ in glacial and interglacial periods due to low-latitude processes or other forcing mechanisms.

How to cite: Wu, S. and Yang, X.: Unveiling the Covert Linkage Between Geomagnetic Dynamics and Climate in the Northern South China Sea Over the Last 30 ka, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5734, https://doi.org/10.5194/egusphere-egu24-5734, 2024.

EGU24-5780 | Posters on site | EMRP3.4

Rock magnetic anomaly caused by the pyritization linking to the gas hydrate dissociation off SW Taiwan 

Yin-Sheng Huang, Chorng-Shern Horng, Chih-Chieh Su, Shu-Kun Hsu, Wen-Bin Doo, and Jing-Yi Lin

      In the study, we present the rock magnetic property from three sediment cores collected by the R/V Marion Dufresne (MD) during the cruise MD214 off SW Taiwan, and two of these cores, MD18-3542 and MS18-3543, have collected shallow hydrate samples. Core site MD18-3542 is on the South Yuan-An East Ridge, where an unconformity covered by fine-silt sediments lies at ~5.5 m below the seafloor, and the core site MD18-3543 is close to the Good-Weather Ridge with a gas-related pockmark and authigenic carbonates near shallow strata. The other core MD18-3548 was obtained at a basin with relatively stable deposition settings to get the background information. Rock magnetic measurements, including magnetic susceptibility (MS) and hysteresis parameters, are used to describe the downcore variations of the magnetic features, while the Day Plot and XRD analysis are applied to classify and identify the dominance of core magnetic components. Both cores MD18-3542 and MD18-3543 show the attractive anomaly with dramatic value-drop in the records of MS and hysteresis parameters, and the feature looks absent in the core MD18-3548. Such signature may link to the pyritization caused by the gas hydrate dissociation. The dissociated methane with hydrogen sulfide trapped under the structures (an unconformity at site MD18-3542 and authigenic carbonates at site MD18-3543) would form an anoxic setting and activate the pyritization at shallow layers. Detrital magnetite would be gradually turned into authigenic iron sulfides, and thus could cause the attractive anomaly in the MS and hysteresis records.

How to cite: Huang, Y.-S., Horng, C.-S., Su, C.-C., Hsu, S.-K., Doo, W.-B., and Lin, J.-Y.: Rock magnetic anomaly caused by the pyritization linking to the gas hydrate dissociation off SW Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5780, https://doi.org/10.5194/egusphere-egu24-5780, 2024.

EGU24-7855 | ECS | Orals | EMRP3.4

A new protocol for fingerprinting cultural ochre sources using mineral magnetism 

Maddison Crombie, Agathe Lise-Pronovost, Marcus Giansiracusa, Colette Boskovic, Amy Roberts, n/a River Murray and Mallee Aboriginal Corporation, and Rachel Popelka-Filcoff

Provenance studies in ochre research are used to characterise the “fingerprint” of different ochre sources, providing the opportunity to trace the cultural movement of ochre in the archaeological past. Ochre pigment composition, and therefore the “fingerprint”, often varies between sites leading to source discrimination, but in many cases the composition can also vary within a site, and therefore presents an analytical challenge to develop methods that can differentiate this “fingerprint”. This work presents a novel protocol for the analysis of iron-based archaeological ochres from known sources within Australia and Kenya using geological mineral magnetism methods to disentangle complex mineral assemblages1. Magnetic properties have been largely unexplored as a tool for ochre provenance. However, the use of measurements such as room temperature – saturation isothermal remnant magnetisation (RT-SIRM), Hysteresis loops and zero field cooled, field cooled (ZFC-FC) allow for the identification of different magnetic minerals in the ochre samples, which can, in turn, be used to fingerprint ochre sources. This approach works towards understanding (1) the variation within and between sites and how this may differ based on source geologies and (2) the larger goal of tracing the movement of ochre from their sources to archaeological contexts and related ochre cultural exchange.

(1) Lagroix, F.; Guyodo, Y. A new tool for separating the magnetic mineralogy of complex mineral assemblages from low temperature magnetic behavior. Frontiers in Earth Science 2017, 5, 61.

How to cite: Crombie, M., Lise-Pronovost, A., Giansiracusa, M., Boskovic, C., Roberts, A., River Murray and Mallee Aboriginal Corporation, N., and Popelka-Filcoff, R.: A new protocol for fingerprinting cultural ochre sources using mineral magnetism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7855, https://doi.org/10.5194/egusphere-egu24-7855, 2024.

EGU24-10469 | ECS | Orals | EMRP3.4

Magnetobiochronology of the Izaga section (South Pyrenean foreland basin) and its chronological implications: searching for a potential candidate for the Bartonian GSSP 

Pablo Sierra-Campos, Pablo Calvín, Gilen Bernaola, Manuel Montes, Aránzazu Luzón, José Ignacio Pérez-Landazábal, Cristina Gómez-Polo, Aitor Payros, Maria Pilar Mata, Eva Bellido, Emilio L. Pueyo, and Juan C. Larrasoaña

Here we introduce a new magnetobiostratigraphic section in the Jaca-Pamplona Basin, the Izaga section, which was studied in order to shed light on the chronology of the Lutetian/Bartonian boundary and the possibility of proposing it to host the Bartonian Global Stratotype Section and Point (GSSP). The Izaga section is located in the northern limb of the eastern termination of the Izaga syncline (South Pyrenean foreland basin) and is composed by a total of 1116 m of marine sediments that include the uppermost 450 m of the Jaca Turbidites and ~660 m of the prodeltaic marls of the Larrés (500 m), Urroz (110 m) and Pamplona (56 m) Formations. The uppermost Jaca Turbidites include the youngest South Pyrenean Eocene Carbonate Megabreccia (SPECM) identified in the basin to date, and the uppermost part of the Larrés Formation hosts ferroan dolomitic nodules whose formation can be linked to early diagenetic methanogenesis. Previously published biostratigraphic data based on planktic foraminifers broadly place the Lutetian/Bartonian boundary within the middle part of the Larrés Formation. A total of 173 magnetostratigraphic sites were sampled throughout the succession with an average 6.5 m spacing. Thermal demagnetization reveals the presence of two stable components: 1) a low temperature component that is identified <250ºC and is interpreted as present-day field overprint; and 2) a high-temperature component, that unblocks from 250-300ºC up to 425ºC and is identified as the ChRM. Paleo- and rock-magnetic data point to the dominant contribution of magnetite to the ChRM, although an additional drop in NRM intensity between 300-350ºC suggests the additional contribution by magnetic iron sulphides. To avoid problems with a likely diagenetic origin of magnetic iron sulphides, we established the polarity sequence of the Izaga section by using only ChRM directions associated to magnetite. The local polarity sequence comprises a normal (N1) magnetozone in the uppermost 286 m of the section and a reverse (R1) one spanning its remaining middle and lower parts. The analysis of calcareous nannofossil aseemblages allow the identification of zones CNE14 and CNE15 in the lower/middle and upper part of the succession, respectively. Overall, these new results enable the correlation of R1 and N1 with chrons C18r and C18n.2n, respectively. We have found no evidence for the presence of chron C19n, the proposed marker for the Lutetian/Bartonian boundary, within R1, which indicates that the whole studied section was deposited during the Bartonian and, therefore, has no bearings on the definition of the Bartonian GSSP. Our results also indicate: 1) that sedimentation rates (of >80 cm/kyr) in the South Pyrenean foreland basin increased towards the west; 2) that the SPECM found within the Jaca Turbidites extend the processes of SPECM formation well into the Bartonian; and 3) that the ferroan dolomitic nodules found in the uppermost part of the Larrés Formation can be considered as the sedimentological expression of the Middle Eocene Climate Optimum (MECO) in the basin.

How to cite: Sierra-Campos, P., Calvín, P., Bernaola, G., Montes, M., Luzón, A., Pérez-Landazábal, J. I., Gómez-Polo, C., Payros, A., Mata, M. P., Bellido, E., Pueyo, E. L., and Larrasoaña, J. C.: Magnetobiochronology of the Izaga section (South Pyrenean foreland basin) and its chronological implications: searching for a potential candidate for the Bartonian GSSP, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10469, https://doi.org/10.5194/egusphere-egu24-10469, 2024.

EGU24-13888 | ECS | Posters on site | EMRP3.4

Rock Magnetic and Mineralogical Analysis of IODP Expeditions 390 and 393 Basement Cores and their Implications for Fluid-Rock Interaction along the Mid-Atlantic Ridge Flank   

Gilbert Hong and Sang-Mook Lee and the The South Atlantic Transect IODP Expedition 390 & 393 Scientists

During the International Ocean Drilling Program (IODP) expeditions 390 and 393 - also referred to as the South Atlantic Transect (SAT), basement cores have been drilled from a total of 6 holes which penetrates around 150 – 300 meters of the uppermost South Atlantic seafloor. The cores mainly consist of basalts of varying age (~7 to 61 Ma) and alteration states. Some intervals of sedimentary breccia were found in older cores as well. Analyzing how these rocks have been altered and characterizing it based on age and depth are crucial to understanding how the oceanic crust along the South Atlantic has evolved throughout spreading and how fluid-rock interaction has influenced the process. Magnetic minerals can be a useful proxy of such alteration as its effects can be observed in both rock magnetism and mineralogy.   

In this study, we observed the composition and microstructure of magnetic minerals within basaltic samples of varying alteration degrees using a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS). These observations were then compared with shipboard rock magnetic data to determine which property shows correlation with the mineralogical characteristics. Magnetic minerals within the SAT basalt samples are mostly titanomaghemites with Fe content of 20 – 36 at% and Ti content of 5 – 13 at%. Ti content is generally lower in more altered samples, with some highly oxidized samples showing very low percentage (< 3 at%). In addition, heavily altered samples show smaller (< 3 μm) and elongated magnetic mineral grains. Such mineralogical properties show correlation with key rock magnetic properties such as magnetic susceptibility and coercivity of remanence (Bcr). It is also notable that samples with high alteration degree also show reversals in remanence directions caused by strong secondary magnetization that persists after 20 mT demagnetization. This finding implies that production of secondary magnetic minerals may have occurred along with the oxidation of existing grains during the alteration of basalts.

How to cite: Hong, G. and Lee, S.-M. and the The South Atlantic Transect IODP Expedition 390 & 393 Scientists: Rock Magnetic and Mineralogical Analysis of IODP Expeditions 390 and 393 Basement Cores and their Implications for Fluid-Rock Interaction along the Mid-Atlantic Ridge Flank  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13888, https://doi.org/10.5194/egusphere-egu24-13888, 2024.

Loess paleosol sequences carry valuable information on global climate change during the Quaternary. The main geochemical paleoenvironmental proxies rely on the well established sequence of mineral weathering and its products under earth surface conditions. On the other hand, mineral magnetic signal of the loess – paleosol sequences represent easily measurable and sensitive tool for identification and semi-quantification of the degree of secondary alterations of the initial loess substrate. We have analyzed geochemical and magnetic properties of a collection of loess – paleosol sediments from North Bulgaria from 8 profiles, spanning the time interval of the last 800 kyrs. Weathering indices calculated from the bulk geochemical data on major oxides indicate that loess samples are characterized by wide range of Chemical Index of Alteration (CIA) values – from 57.8 to 83.5 with the highest values typically obtained in the oldest deposits, formed during marine oxygen isotope stages (MIS) 16 and 18.  On the other hand, CIA values for paleosols are restricted in the range 73.4 – 82, indicating an intermediate weathering degree. Classic ternary A-CN-K diagram implies dominant role of plagioclase weathering. Magnetic signature of the studied collection shows typical widely observed magnetic enhancement in paleosols as compared to weakly magnetic non weathered loess material. The content of ultra fine grained superparamagnetic magnetite/maghemite give rise to the percent frequency dependent magnetic susceptibility, which shows linear relationship with CIA values, proving the genetic linkage between weathering and pedogenic magnetic fraction. On the other hand, calculated background magnetic susceptibilities χbg for the loess-paleosol couplets included in the study show reverse linear relationship with CIA values for the loess samples. Searching for possible effect of changing dust source areas, we observe decreasing χbg for sites located progressively eastward (longitudes varying from 23oE to 29oE) along with linear increase of χbg with increasing Cr/V ratio, indicative for increasing contribution of mafic component. At the same time, samples from loess horizons with the lowest χbg are characterized by the highest Al2O3/SiO2 values, e.g clay content. Thus, decreasing χbg along W – E transect probably reflects combined effects of dust source change and grain size fining during aeolian dust transportation. The relationships between CIA, χbg and pedogenic magnetic signatures suggest that aeolian dust material was already weathered before its deposition. As a result, the following periods of paleosol formation during interglacial epochs occurred under supply – limited weathering regimes.

This contribution is supported by project No KP-06-H34/2 of the Bulgarian National Science Fund

How to cite: Jordanova, D. and Jordanova, N.: Effects of dust source change, weathering and pedogenesis on loess sediments revealed by combined magnetic and geochemical studies – opportunities and challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14612, https://doi.org/10.5194/egusphere-egu24-14612, 2024.

EGU24-15097 | ECS | Posters on site | EMRP3.4

Rock Magnetic Studies of The Early Jurassic Middle Eocene Volcanic and Sedimentary Rocks of the Eastern Pontides 

Bahadırhan Sefa Algur, Sercan Kayın, Abdurrahman Dokuz, Z. Mümtaz Hisarlı, and Turgay İşseven

In this research, we revealed the findings from rock magnetic analyses, including Isothermal Remanent Magnetization (IRM) and High-Temperature Susceptibility (HTS), conducted on various volcanic and sedimentary rocks from the Early Jurassic – Middle Eocene located in the Eastern Pontides. These magnetic studies offer valuable insights into the minerals causing magnetization, as well as the composition and changes in magnetic minerals within these rocks. The experiments were carried out at the Doç.Dr. Yılmaz İspir Paleomagnetism Laboratory, Istanbul University-Cerrahpaşa.

For the Isothermal Remanent Magnetization (IRM) studies, samples were collected from 57 sites in the Eastern Pontides, ensuring representation of each rock type. The analysis revealed that “Hematite”, “Magnetite”, and a combination of “Hematite + Magnetite” are the minerals responsible for magnetization in the selected samples. Moreover, it was discovered that in 41 out of the 57 sites, the samples reached saturation magnetization, indicating that "Magnetite" is the predominant mineral responsible for magnetization. The magnetic susceptibility of the rocks was examined during the heating and cooling stages in these high-temperature susceptibility measurements. High-temperature susceptibility measurements were used to assess whether the minerals responsible for magnetization in the rocks underwent any changes due to temperature, to determine the Curie temperatures, and to understand the domain structure. For this aspect of the study, 23 sites representing various ages and types of rocks were chosen for high-temperature susceptibility studies. It can be said that some rocks are rich in "Ti-Magnetite". It is observed that mineral phase transformation occurs in some rocks as a result of heating phases.

This study was supported by the project of the Scientific Research Projects Commission of Gümüşhane University with Project Number: 21.B0126.01.01.

How to cite: Algur, B. S., Kayın, S., Dokuz, A., Hisarlı, Z. M., and İşseven, T.: Rock Magnetic Studies of The Early Jurassic Middle Eocene Volcanic and Sedimentary Rocks of the Eastern Pontides, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15097, https://doi.org/10.5194/egusphere-egu24-15097, 2024.

The East Asian Winter Monsoon (EAWM) is driven by the dry and cold north-westerly winds blowing from central Asia towards the Western Pacific Ocean as atmospheric high-pressure cell develops over Siberia and Mongolia due to low continental temperatures during boreal winter. Today, the EAWM surface winds together with the prevailing mid-latitude upper troposphere westerly jet (WJ) winds transport hundreds of millions of tons of dust every year across East Asia and/or to the North Pacific and further. Various records of past EAWM and/or WJ variability are available but well-resolved records with (sub)orbital resolution to investigate the dynamics of and relationships between EAWM and WJ are rare. The Japan Sea, as the largest marginal sea located in mid-latitude East Asia, is significantly under the influence of the EAWM and WJ. Previous studies suggest that the composition, concentration, and size of magnetic particles in sediments are sensitive to changes in aeolian dust input. Here, we study the magnetic mineralogy and reconstruct high-resolution continuous environmental magnetic records spanning the last 500 kyrs using sediments cored during Integrated Ocean Drilling Program (IODP) Expedition 346 (Asian Monsoon) at Site U1424 in the Japan Sea. Our results suggest that magnetite is the dominant magnetic phase at Site U1424 and there is a significantly increased contribution of high-coercivity magnetic phase, presumably hematite transported through aeolian dust, in samples from glacial periods. Magnetic grain size proxy (kARM/k) of Site U1424 sediments appears to covary with the population of coarse particles (> ~14 μm) that are dominated by aeolian dust, and shows a striking similarity to published EAWM records, especially during the interglacials and glacial inceptions. During the glacial maxima, largely enhanced EAWM indicated by published records are, however, not shown in the Site U1424 kARM/k record. We suggest that Site U1424 kARM/k is a proxy for dust transportation to the Japan Sea modulated by EAWM intensity as well as interactions between EAWM and the WJ. During the interglacials and glacial inceptions when the main axis of WJ frequently reaches Northern China close to the dust source region of the EAWM, interactions between the EAWM and WJ during winter/spring at mid-level troposphere enable long-distance transportation of coarse dust particles (mainly modulated by EAWM) to the Japan Sea. During the glacial maxima, when the WJ main axis no longer frequently reaches the EAWM source regions, reduced interaction between WJ and EAWM prevented long-distance transportation of coarse dust particles. A conceptual model is also presented to summarise the consequences of changes in EAWM and WJ and their interactions over glacial and interglacial cycles at different locations along the Asian dust transportation pathway.

How to cite: Wang, J., Xuan, C., and Wilson, P.: East Asian winter monsoon variability during the last 500 thousand years recorded by environmental magnetism of sediments in the Japan Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19484, https://doi.org/10.5194/egusphere-egu24-19484, 2024.

EGU24-19599 | ECS | Posters on site | EMRP3.4

Preliminary results of paleomagnetism, rock magnetism and AMS in a soot-layered speleothem from Cueva Mayor (Atapuerca, Spain) 

Elisa María Sánchez-Moreno, Eneko Iriarte, Manuel Calvo-Rathert, Eric Font, Maria-Felicidad Bógalo, and Ángel Carrancho

Speleothem are excellent recorders of the Earth’s magnetic field and climate variation. The nature and origin of the magnetic minerals trapped into the calcite laminae are controlled by climate and environmental processes acting on the surface soils and inside the cave.

In this work, we analysed samples from a stalagmite from Cueva Mayor in the archaeological site of Atapuerca (Burgos, Spain). Cueva Mayor site hosts a very important record of Pleistocene human occupation. Finding speleothems that record signs of human activity is unusual. However, in the karst system of the Sierra de Atapuerca, different works on speleothems revealed a significant human fossil record. The stalagmite studied has a small size, the sampled section measures 10 cm from base to top and is not oriented. It shows a calcite laminae alternation with darker micritic and/or ash-rich laminae, composed of aggregates of soot/smoke in the last 2.7 cm to the top. These black soot laminae are interpreted as derived from anthropogenic fires. The remaining part the stalagmite is a sequence of whitish and brownish laminae. A high detrital fraction is inferred from the brown layers. Available U-Th age data on a nearby stalagmite indicate that they grew during the last 14 kyr approximately.

In order to characterize the magnetic properties in a stalagmite of special interest considering its record of human activity, we have carried out experiments on paleomagnetism, rock magnetism, and anisotropy of magnetic susceptibility. We obtained paleomagnetic directions for most samples of calcite laminae with high detrital content and laminae with soot by alternating field demagnetization. Isothermal remanent magnetization acquisition curves of and hysteresis cycles show the presence of low coercivity ferromagnetic minerals in the soot-bearing samples, while the magnetization intensity in the rest of the samples is too weak to show clear results. The thermomagnetic curves reveal magnetite in both brownish-white and soot-containing samples. Other very low Curie temperature magnetic phases also appear in the soot samples. Finally, AMS shows a triaxial magnetic fabric with magnetic foliation pseudo-parallel to the calcite lamellae and horizontal lineation.

Acknowledgments: This work was funded by the Agencia Estatal de Investigación (España) (PID2019-105796GB-100), the postdoctoral program María Zambrano 2021 (España), the Junta de Castilla y León (España) (project BU037P23) and the Fundação para a Ciência e a Tecnologia (Portugal) (PTDC/CTA-GEO/0125/2021).

How to cite: Sánchez-Moreno, E. M., Iriarte, E., Calvo-Rathert, M., Font, E., Bógalo, M.-F., and Carrancho, Á.: Preliminary results of paleomagnetism, rock magnetism and AMS in a soot-layered speleothem from Cueva Mayor (Atapuerca, Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19599, https://doi.org/10.5194/egusphere-egu24-19599, 2024.

EGU24-20050 | ECS | Posters on site | EMRP3.4

Magnetic response of marine sediments to climate variations over the last 40 ka in the western equatorial Pacific. 

Louise Dauchy-Tric, Julie Carlut, Franck Bassinot, Laure Meynadier, and Jean-Pierre Valet

Magnetic properties from marine sediment cores, combined with other proxies, make it possible to study climatic variations. The type, concentration and grain size of magnetic minerals can be used as proxies of precipitation and deep oceanic circulation changes.  

In this study, we focus on core MD01-2385 retrieved on the northwest margin of Papua-New Guinea, in the western equatorial Pacific Ocean. This area is located in the Indo-Pacific Warm Pool (IPWP), which is a major source of heat and moisture to the atmosphere and plays an important role on global climate. The western Indo-Pacific climate is complex, being affected by the El Nino-Southern Oscillation (ENSO) and the Australian-Indonesian monsoon.

 

Core MD01-2385 was dated using 14C. The studied interval covers the last 40 ka with an average sedimentation rate of 30 cm/ka. We took samples every 2 cm (time resolution ~ 70 years). Magnetic granulometry proxies (ARM/SIRM and Karm/K) show a gradual decrease in grain size from the last glacial-interglacial transition (~17 ka) before a stabilization with fine grains from 8 ka. The records show variations associated with Heinrich events and the Younger Dryas. In the ~40 to 13 ka interval, the ARM/SIRM ratio is correlated with the d18O curve from EPICA-EDML ice cores (Antartica), whereas over the last 13 ka the ARM/SIRM ratio appears correlated to d18O curve of the NGRIP ice cores (Greenland).This observation suggests a stronger climatic influence of the Southern Hemisphere than the Northern Hemisphere in this region from 40 to 13 ka, followed since 13 ka by a period in which remote climatic influences originate from northern high latitudes.

Our magnetic results were combined with geochemical analyses carried out by Yu et al. (2023) on the same core (Rb/Sr ratio, chemical index of alteration (CIA), and the smectite/(illite + chlorite) ratio). These data indicate that heinrichs events (HS) are associated, in this region, with lower precipitation (Yu et al., 2023) and also correspond to lower magnetic concentrations, suggesting a dominant physical weathering in northwest Papua-New Guinea.

An interval with coarse magnetic grains and glass shards was dated at ~ 25 ka, suggesting the recording of a volcanic eruption during HS2. It could be the Oruanui supereruption from Taupo volcano, in New Zealand, dated at ~25.5 ka.

How to cite: Dauchy-Tric, L., Carlut, J., Bassinot, F., Meynadier, L., and Valet, J.-P.: Magnetic response of marine sediments to climate variations over the last 40 ka in the western equatorial Pacific., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20050, https://doi.org/10.5194/egusphere-egu24-20050, 2024.

EGU24-20274 | Posters on site | EMRP3.4

Selective transport and deposition of magnetic particles during speleothem growth 

Eric Font, Ana Raquel Brás, Joshua Feinberg, Ramon Egli, Ana Sofia Reboleira, Rui Melo, and Paulo Fonseca

During the last decades, advances in the field of speleothem’s magnetism opened a new door to investigate high-resolution and short-lived features of the Earth’s magnetic field. Due to the rapid precipitation of calcite/aragonite, the lock-in time of the detrital remanent magnetization resulting from the physical alignment of the magnetic minerals parallel to the Earth’s magnetic field is acquired almost instantaneously. The magnetic particles trapped into the speleothem usually originate from the soils capping the cave and are transported into the cave by dripwaters. Authigenic magnetic particles may also precipitate under conditions likely to prevail during speleothem growth. Here we investigate the magnetic mineralogy of a stalagmite from the Gruta da Ceramica of Central Portugal. We also analyzed the host carbonate, the cave sediments and the soils capping the cave. We measured concentration- and grainsize-dependent magnetic proxies, including natural remanent magnetization, anhysteretic remanent magnetization, isothermal remanent magnetization, mass specific magnetic susceptibility, FORC and hysteresis curves.  Results show that magnetic and hematite are the main magnetic carriers in all samples. A gradual enrichment of hematite relative to magnetite is observed following the transportation path from the soils to the cave sediments up to the stalagmite. The higher contribution of hematite relative to magnetite in the speleothem may reflect precipitation of authentic hematite during speleothem growth or the selective transport of finer particles from the soil to the cave.  

 

Acknowledgments: This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (refs. PTDC/CTA-GEO/0125/2021), (PIDDAC) – UIDB/50019/2020, UIDP/50019/2020 and LA/P/0068/2020

How to cite: Font, E., Brás, A. R., Feinberg, J., Egli, R., Reboleira, A. S., Melo, R., and Fonseca, P.: Selective transport and deposition of magnetic particles during speleothem growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20274, https://doi.org/10.5194/egusphere-egu24-20274, 2024.

BG7 – Extraterrestrial and Extreme Environment Biogeosciences

EGU24-2203 | ECS | Orals | BG7.1

Methane release drives subglacial microbial community assembly at the western margin of the Greenland Ice Sheet 

Lia Costa Pinto Wentzel, Petra Klímová, Anna Stehrer Polášková, Jade Hatton, Jakub Žárský, Jakub Trubač, Philip Píka, Jack Murphy, Jon Hawkings, and Marek Stibal

The basal environments of ice sheets play an important role as places of methane (CH4) production, storage, and release. Recent investigations have confirmed the release of subglacial methane of microbial origin at the western margin of the Greenland Ice Sheet (GrIS). This methane may then serve as a substrate for methane-consuming microorganisms and thus significantly shape microbial community assembly in GrIS subglacial environments.

We conducted a comparative analysis of the composition of exported microbial assemblages from six regions spanning a 2,000-km transect along the western margin of the GrIS. Based on 16S rRNA gene sequences, we identified taxa predominantly affiliated with Pseudomonadota (formerly Proteobacteria), Actinomycetota (formerly Actinobacteriota), and Acidobacteriota. Within the Pseudomonadota, notable genera such as Rhodoferax, Polaromonas, and the methylotrophic Crenothrix and Methylotenera were identified as the most abundant. Importantly, we observed a pattern in community composition related to measured methane concentrations at each site, resulting in three distinct clusters: samples from sites with atmospheric methane levels (i.e., with no significant methane release), those from sites with elevated methane concentrations, and methane release hotspots.

Our results align with recent findings, suggesting that microbial communities colonizing methane-emitting sites may have the potential to utilize methane as a resource, thereby reducing its release into the atmosphere and so mitigating its impact on climate change. Furthermore, our findings may facilitate the identification of potential methane release hotspots based on microbial community analysis.

How to cite: Wentzel, L. C. P., Klímová, P., Stehrer Polášková, A., Hatton, J., Žárský, J., Trubač, J., Píka, P., Murphy, J., Hawkings, J., and Stibal, M.: Methane release drives subglacial microbial community assembly at the western margin of the Greenland Ice Sheet, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2203, https://doi.org/10.5194/egusphere-egu24-2203, 2024.

EGU24-3316 | Posters on site | BG7.1

Characteristics of geochemistry and benthic communities in microbial mat-covered sediments related to methane seepage, northeastern Japan Sea 

Yuki Ota, Masahiro Suzumura, Ayumi Tsukasaki, Atsushi Suzuki, Akira Iguchi, Miyuki Nishijima, Hideyoshi Yoshioka, Tomo Aoyagi, and Tomoyuki Hori

We investigated characteristics of benthic macrofaunal communities and geochemical parameters in and around microbial mat-covered sediments associated with a methane seepage on Sakata Knoll in the northeastern Japan Sea. A depression on top of the knoll corresponds to a gas-hydrate-bearing area with seepage of methane-rich fluid, and microbial mats patchily cover the seafloor sediments. Sediment cores were collected at three sites for this study: one within a microbial mat, a second a few meters outside of the microbial mat, and a third from a reference site outside the gas-hydrate-bearing areas.The profile of porewater sulfate ion concentrations below the microbial mat showed linear decreases from near seawater values close to the sediment-water interface to zero concentration at approximately 7 cmbsf. Compared to the reference site, total sulfur (TS) contents were significantly higher and δ13C of total inorganic carbon were strongly negative values in the entire core below the microbial mats and in sediments below 10 cm depth outside mat, respectively. These results indicate the presence of the authigenic carbonates and sulfide minerals produced by the anaerobic oxidation of methane (AOM) in these sediments. There is no fall in sulfate concentration in the whole core collected outside microbial mat, which may be explained by the higher upward flow of methane gas inside than outside the mat. Both the 18S rRNA genes and morphological analyses showed that the surface sediment inside the microbial mat noticeably favored annelids, with dorvilleid Ophryotrocha sp. and ampharetid Neosabellides sp. identified as major constituents. The sulfidic sediment conditions with concentrations of H2S up to 121 µM resulting from AOM likely resulted in the predominance of annelids with tolerance to sulfide. In addition, the higher contents of Mo in whole cores collected inside the microbial mat than that at the reference site indicate strong enrichments of molybdenum in the sediment inside the mat. The positive correlation of Mo with TS contents suggests that the AOM-derived H2S favored the capture of Mo on sulfide minerals such as pyrite. Because of the absence of enrichments of redox-sensitive trace elements other than Mo in the Sakata Knoll sediments, molybdenum may be efficiently transported into the AOM-induced sulfidic seafloor by absorption on the particulate Fe-Mn hydroxides that are well preserved in oxic water column of the Japan Sea Proper Water.

This study was conducted as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

How to cite: Ota, Y., Suzumura, M., Tsukasaki, A., Suzuki, A., Iguchi, A., Nishijima, M., Yoshioka, H., Aoyagi, T., and Hori, T.: Characteristics of geochemistry and benthic communities in microbial mat-covered sediments related to methane seepage, northeastern Japan Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3316, https://doi.org/10.5194/egusphere-egu24-3316, 2024.

EGU24-3678 | Posters on site | BG7.1

The Life Methanic: Microbial Activity in the Deep Ocean Methanosphere of the Southern California Borderland 

Tina Treude, Emily Kloniki- Ference, Jiarui Liu, Kira Homola, Yuhe Li, Daniel R. Utter, Rebecca L. Wipfler, Magdalena J. Mayr, John S. Magyar, Victoria J. Orphan, Shana Goffredi, and Lisa A. Levin

The deep ocean methanosphere is defined by the microbial communities that cycle methane, the animals that directly consume or form symbioses with methane-consuming microbes, and the transitional animal communities that gain energy indirectly from methane and/or take advantage of the methane-derived authigenic carbonate. Our research seeks to redefine our understanding of the fate and footprint of methane on Pacific continental margins. By applying molecular, isotopic, geochemical, and radiotracer tools to the seep microbes and fauna we hope to better understand the contribution of methane to deep-sea diversity and ecosystem function. During the 2023 expedition AT50-12 with the RV Atlantis and the submersible Alvin we explored a set of methane seeps located in the Southern California Borderland. Samples were taken from seep carbonates, sediments, and the water column surrounding methane vents to study microbial methanotrophic activity and its relevance for methane removal, habitat engineering, and primary productivity. This poster will provide a first glance into new datasets on methanotrophy generated during the expedition and into the heterogeneity of deep ocean methane seeps off the coast of southern California.

How to cite: Treude, T., Kloniki- Ference, E., Liu, J., Homola, K., Li, Y., Utter, D. R., Wipfler, R. L., Mayr, M. J., Magyar, J. S., Orphan, V. J., Goffredi, S., and Levin, L. A.: The Life Methanic: Microbial Activity in the Deep Ocean Methanosphere of the Southern California Borderland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3678, https://doi.org/10.5194/egusphere-egu24-3678, 2024.

EGU24-4817 | Posters virtual | BG7.1

Modelling of sedimentation-regulated methane ebullition from reservoirs 

Enze Ma, Xiuyu Liang, Qianlai Zhuang, Zhe Li, Lian Feng, Kewei Chen, Jiangwei Zhang, and You-kuan Zhang

Ebullition is a primary pathway of CH4 emission from water reservoirs, which is poorly constrained due to its episodic nature, especially in large reservoirs. Here, by inducing the intrinsic link between sedimentation and CH4 production, and hence ebullition, a novel mechanistic reservoir CH4 model is developed for quantifying CH4 emissions from reservoirs. The model is first validated and applied in the Saar River reservoirs, effectively reproducing the seasonal patterns of ebullitive fluxes and the enhanced effects of sedimentation on ebullition. Through analyzing modelling CH4 production, bubble formation, dissolved CH4 concentration in sediments, and their interplay at different sedimentation rates, the regulatory mechanisms of sedimentation on ebullition are investigated. The results indicate that the increase in sedimentation rate augments sediment CH4 production. Excessive CH4 production beyond diffusive transport in the sediment is required to induce porewater CH4 super-saturation and trigger bubble generation. Under porewater super-saturation, the majority of the increased sediment CH4 production, resulting from an elevated sedimentation rate, is released via ebullition. Thus, sedimentation can regulate reservoir CH4 bubble formation and ebullition by influencing CH4 production. Then, the proposed model is applied to estimating CH4 emissions from the Three Gorges Reservoir (TGR). The TGR have trapped 80% sediments derived from the upstream Yangtze River since dam closure, potentially fueling CH4 production and ebullition, which has not been quantified yet. We find that the CH4 flux of the TGR is 6.71 (4.12-11.41) mg CH4-C m-2d-1 with 3.07 (0.90-6.06) mg CH4-C m-2d-1 via ebullition and 3.64 (1.88-5.35) mg CH4-C m-2d-1 via diffusion. This flux is 36% larger than other estimates in the literature. By trapping most of the sediments from upstream, the TGR experiences a surge in CH4 emission from 0.17 to 1.38 Gg CH4-C yr-1 after impoundment, mainly via ebullition (0.63 Gg CH4-C yr-1). Ebullition is highly related to the sedimentation along the channel. The proposed model provides a mechanistic approach for estimating reservoirs ebullition and introduces a new aspect for the effects of reservoir sedimentation on river carbon budget.

How to cite: Ma, E., Liang, X., Zhuang, Q., Li, Z., Feng, L., Chen, K., Zhang, J., and Zhang, Y.: Modelling of sedimentation-regulated methane ebullition from reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4817, https://doi.org/10.5194/egusphere-egu24-4817, 2024.

EGU24-5144 | ECS | Orals | BG7.1

High methane emissions from a eutrophic marine coastal basin driven by bubble release from the sediment 

Olga M. Zygadlowska, Jessica Venetz, Wytze K. Lenstra, Niels A. G. M. van Helmond, Robin Klomp, Thomas Röckmann, Annelies J. Veraart, Mike S. M. Jetten, and Caroline P. Slomp

The production of methane in coastal sediments and its release to the water column is intensified by anthropogenic eutrophication and bottom water hypoxia, and it is uncertain whether this enhances methane emissions to the atmosphere. Here, we assess seasonal variations in methane dynamics in a eutrophic, seasonally euxinic coastal marine basin (Scharendijke, Lake Grevelingen). In-situ benthic chamber incubations reveal high rates of methane release to the water column (74 – 163 mmol m-2 d-1) between March and October 2021. Comparison of in-situ benthic and calculated diffusive fluxes indicates that methane was primarily released from the sediment in the form of bubbles. In spring and fall, when the water column was oxic, most of the dissolved methane was removed aerobically in the bottom water. In early summer, in contrast, methane accumulated below the oxycline. Enrichments in δ13C–CH4 and δD-CH4 and the abundant presence of methane oxidizing bacteria point towards removal of methane around the oxycline, possibly linked to iron oxide reduction. Methane emissions to the atmosphere were substantial in all seasons with the highest, in-situ measured diffusive chamber fluxes (1.2 mmol m-2 d-1) observed upon the onset of temperature-induced mixing at the end of summer. Methane release events detected in the chamber incubations and model calculations point towards a high year-round flux of methane to the atmosphere in the form of bubbles (55 – 120 mmol m-2 d-1), which bypass the microbial methane filter. Because of such bubble formation, methane emissions from eutrophic coastal systems are likely much higher than previously thought.

How to cite: Zygadlowska, O. M., Venetz, J., Lenstra, W. K., van Helmond, N. A. G. M., Klomp, R., Röckmann, T., Veraart, A. J., Jetten, M. S. M., and Slomp, C. P.: High methane emissions from a eutrophic marine coastal basin driven by bubble release from the sediment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5144, https://doi.org/10.5194/egusphere-egu24-5144, 2024.

EGU24-5367 | ECS | Orals | BG7.1

Clumped isotopes as a tool to discern the sources and sinks of methane in a subglacial environment 

Getachew Agmuas Adnew, Thomas Röckmann, Thomas Blunier, Christian Juncher Jørgensen, Malavika Sivan, Sarah Elise Sapper, Maria Elena Popa, Carina van der Veel, and Jesper Riis Christiansen

 Recent observations have revealed that the subglacial meltwater from the western margin of the Greenland Ice Sheet (GrIS) is a net source of methane (1,2). In the future, the Arctic region might become an important methane source due to its vulnerability to anthropogenic warming, glacier retreat, and thawing permafrost.

Mapping the sources of methane and understanding its controlling mechanisms in the subglacial environment of the GrIS are essential for predicting its potential as a climate amplifier and determining its significance in the global carbon cycle. Previous studies used the bulk isotopic composition of methane (δ13C(CH4) and δD(CH4)) to understand the source and underlying cycling processes of methane below the GrIS (1,2). However, the bulk isotopes have overlapping isotope signatures from microbial, thermogenic, and abiotic sources. In addition, methanotrophic oxidation can modify the isotopic composition, making it challenging to distinguish the source of methane under the GrIS. Using only the bulk isotopes of methane, it is not possible to distinguish aerobic from anaerobic oxidation processes.

Clumped isotopes are measures of how the distribution of heavy isotopes over the various isotopologues deviates from the expected random or stochastic distribution. Measuring the clumped isotopes of methane provides additional constraints to investigate the turnover of methane in the environment. When the methane is at thermodynamic equilibrium, clumped isotopes provide the formation temperature and when the methane is out of thermodynamic equilibrium, the clumped signatures can be used to identify various kinetic gas formation/consumption and fractionation processes that are not possible to reconstruct from the bulk isotopic composition alone.

 In this study, we will present the first data on clumped isotope composition of subglacial methane. We will discuss how this new data is used to detail our understanding of the source and sink pathways of subglacial methane. Furthermore, we will show the potential of measuring the clumped isotopes of methane in discerning environmental conditions and types of methanotrophs (oxidation pathways).

 

  • Christiansen et al. (2021). DOI: 10.1029/2021JG006308
  • Lamarche-Gagnon et al. (2019). DOI: 10.1038/s41586-018-0800-0

How to cite: Adnew, G. A., Röckmann, T., Blunier, T., Jørgensen, C. J., Sivan, M., Sapper, S. E., Popa, M. E., van der Veel, C., and Christiansen, J. R.: Clumped isotopes as a tool to discern the sources and sinks of methane in a subglacial environment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5367, https://doi.org/10.5194/egusphere-egu24-5367, 2024.

EGU24-6944 | ECS | Posters on site | BG7.1

Biogeochemistry of seep-impacted sediments at a cold-water coral site off the Vesterålen coast, Northern Norway 

Claudio Argentino, Giuliana Panieri, Luca Fallati, Alessandra Savini, Ines Barrenechea Angeles, Abidemi Akinselure, and Benedicte Ferré

Methane seepage in the Hola area off the coast of Vesterålen (N. Norway) has long been known for its peculiar association with cold-water coral mounds, but only recently it was possible to explore the distribution of seafloor ecosystems using a Remotely Operated Vehicle (ROV) and to conduct microhabitat-specific samplings for biogeochemical investigations. Here, we describe the results from sediment (carbon-nitrogen systematics) and pore fluid geochemistry (sulfate, dissolved inorganic carbon, methane) and interpret them in relation to the seafloor ecosystems. Microbial mats are the dominant seep-related community and form small white patches of a few tens of cm in diameter located at various distances from the coral mounds. Seep carbonates are widespread at this location and form extensive pavements. The seafloor distribution of methane bubbling and chemosynthetic communities seem controlled by fractures in the carbonates. Microbial mats are associated with intense sulfate-driven anaerobic oxidation of methane producing shallow sulfate-methane transitions coupled with highly 13C-depleted dissolved inorganic carbon in the pore water.

Acknowledgments: this research was supported by Eman7 project (Research Council of Norway grant No. 320100) and AKMA project (Research Council of Norway grant No. 287869).

How to cite: Argentino, C., Panieri, G., Fallati, L., Savini, A., Barrenechea Angeles, I., Akinselure, A., and Ferré, B.: Biogeochemistry of seep-impacted sediments at a cold-water coral site off the Vesterålen coast, Northern Norway, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6944, https://doi.org/10.5194/egusphere-egu24-6944, 2024.

EGU24-7051 | ECS | Orals | BG7.1

The Potential Role of Marine Biogenic Methane Cycling on the Early Earth Biosphere: Insights from Green Lake in Fayetteville, New York 

Emily Klonicki-Ference, Tina Treude, Tanner Waters, Christopher Jones, Caroline Hung, Charles Diamond, and Timothy Lyons

Earth has experienced significant shifts in its ecosystems over its long history, propelled by microbial metabolic diversification in its ancient oceans. However, unraveling the contribution of the earliest forms of life to planetary evolution poses a persistent challenge because of limited physical and chemical records. Hindered by the lack of well-preserved rocks and microbial fossils from the Archean and Proterozoic Eons, ancient Earth analog sites have deepened our knowledge of early life and its co-evolving environments. Modern stratified euxinic water bodies are particularly relevant, given the evidence in the rock record that portions of the Earth's oceans were at least intermittently euxinic during the Proterozoic eon (2.5 to 0.541 Ga). Because early oxygen levels were very low, the role of biogenic methane cycling between the ocean and atmosphere as a potential regulator of atmospheric oxygen levels takes on special importance. Anaerobic methanogenesis is regarded as one of the oldest microbial metabolisms, with carbon isotope fractionation measurements and phylogenomic estimates suggesting its existence deep in Earth history during the Archean eon (4 to 2.5 Ga). As methane accumulated in the environment, it may have also facilitated the evolution of anaerobic methanotrophy. The relevance of modern analogs is elevated because of remaining uncertainties in methane’s early role in the primitive biosphere.

Green Lake near Fayetteville, New York, is an exceptional analog site given its persistent anoxic/euxinic conditions and productive shallow chemocline. Using a combination of sediment and water column analysis across the chemocline, potential electron acceptors and donors (sulfur, nitrogen, iron, and carbon-species) were constrained. Relevant methane cycling metabolic rates were investigated using radiotracer techniques, specifically, incubations with 14C-methane, 14C-mono-methylamine, and 35S-sulfate were conducted ex-situ. Water column methane increased significantly below the chemocline (1.3 to 5.6 μM from 19.5 to 35m depth) and sulfate (~11.5 mM) fueled high rates of sulfate reduction (400 nmol/L/day) and methanotrophy (360 nmol/L/day). 14C-mono-methylamine incubations revealed concurrent methanogenesis below the chemocline. Microbial population analysis and visualization through Next-generation sequencing and microscopy identified the presence of aerobic and anaerobic methanotrophs, as well as methanogens and potential syntrophic sulfate-reducing partners. Methanotrophy and sulfate reduction rates decreased in the upper sediment, while sequencing indicated the presence of pertinent methane cycling organisms. The evidence examined from Green Lake supports the notion of productive biogenic methane cycling in early euxinic settings with important implications for climate regulation and biosignatures that are relevant within and beyond our solar system. Further, demonstrated involvement of symbiotic microorganisms highlights the possibility of similar pathways in modulating oxygenation of Earth's early surface oceans.

How to cite: Klonicki-Ference, E., Treude, T., Waters, T., Jones, C., Hung, C., Diamond, C., and Lyons, T.: The Potential Role of Marine Biogenic Methane Cycling on the Early Earth Biosphere: Insights from Green Lake in Fayetteville, New York, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7051, https://doi.org/10.5194/egusphere-egu24-7051, 2024.

EGU24-8576 | ECS | Orals | BG7.1

Methane Cycling Communities in Arctic coastal and submarine permafrost environments  

Sara E. Anthony, Sizhong Yang, Christian Knoblauch, Jens Kallmeyer, Maren Jenrich, Jens Strauss, and Susanne Liebner

Thermokarst lagoons form at the terrestrial-marine interface when thermokarst lakes, hotspots for Arctic methane emissions, erode into the ocean. These lagoons are dynamic environments with seasonal ice build-up and potential alternations between freshwater and marine discharge and make an excellent natural laboratory for studying methane cycling communities as they shift from a terrestrial to marine environment. Our study site encompassed two thermokarst lakes and one thermokarst lagoon on the Bykovsky Peninsula in NE Siberia. In-situ methane concentrations, methane-carbon isotopic signatures, analysis of amplicon sequencing variants (ASVs), metagenomics, and pore-water geochemistry point towards efficient communities of anaerobic methane oxidizers (AOM) in a sulfate-methane transition zone 2-3 meters below the sediment surface of the lagoon. The methanogenic community in the sediment was dominated by methylotrophic methanogens. This is potentially the first known example of dominance of these often-ignored methanogens in a terrestrial/semi-terrestrial environment. Further molecular analyses also revealed an unusual co-occurrence of terrestrial/freshwater ANMEs, specifically of Candidatus Methanoperedens, with typical marine ANME2 a/b in the sulfate-methane transition zones of both systems. Our studies suggest that AOM can locally efficiently reduce sediment methane concentrations of subaquatic permafrost environments, especially of those with marine influence.

How to cite: Anthony, S. E., Yang, S., Knoblauch, C., Kallmeyer, J., Jenrich, M., Strauss, J., and Liebner, S.: Methane Cycling Communities in Arctic coastal and submarine permafrost environments , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8576, https://doi.org/10.5194/egusphere-egu24-8576, 2024.

We investigated water chemical properties (chlrolophyll a, nutrients), particulate/dissolved organic carbon (POC, DOC) and methane in water columns of the semi-closed estuarine system (Masan-Jinhae Bay, South Korea). Together with the overall OM increase in upper boundaries (chlrolophyll a; 13.3±2.3 μg/L, POC and DOC; 0.2-2.1 mg/L) of Masan-Jinhae Bay, methane profiles within water columns showed the distinct predominance (101.2±7.6 nM) near surface layers. Considering OC isotopic compositions (δ13CPOC; -19.4±0.6 ‰, δ13CDOC; -22.5±0.4 ‰) may reflect the decomposition of autochthonous OC sources, the methane production near surface seems to be potentially related to chemical reactions (e.g., demethylation and OM aggregates) of biological sources. Specifically, methane concentrations at adjacent terrestrial realm (inner Masan Bay) showed the most increased patterns (401.5±47.3 nM), indicating significant correlations with dissolved nitrogen and DOC. Together with the substantial transport of anthropogenic derived-nitrogen (δ15NNO3,δ18ONO3; 4.3±0.3 ‰, 6.0±1.0 ‰), our results infer that methanogenic process may be potentially influenced from the predominant OC production/decomposition under increased discharge of domestic wastewater. In near future, the additional analysis of methane isotopes may provide important clues for effectively understanding methane dynamics such as production and removal.

How to cite: Lee, D.-H., Jeong, C.-B., Kim, S.-H., and Shin, K.-H.: Potential methanogenic evidence related to the transportation of anthropogenic elements in semi-closed estuarine system (Masan-Jinhae Bay, South Korea) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11260, https://doi.org/10.5194/egusphere-egu24-11260, 2024.

EGU24-12348 | Orals | BG7.1

Monitoring Cold-Seep Emissions at the Shallow Bulgarian Coastal Shelf 

Olivia Fandino, Panagiotis Michalopoulos, Christophe Peyronnet, Jean-Pierre Donval, Christophe Brandily, Pierre Guyavarch, Jeremie Gouriou, Olivier Dugornay, Petar Petsinsk, Atanas Vasilev, Violeta Slabakova, Valentin Georgiev, Anton Antonov, Dimitar Trukhchev, Ekaterina Batchvarova, Dilian Kuzmanov, Anton Krastev, and Livio Ruffine

The Black Sea experiences widespread methane-rich gas emissions and elevated hydrogen sulfide concentrations, extending from coastal to deep basin areas. The toxicity of hydrogen sulfide and the powerfull greenhouse gas methane, can lead to local acidification, posing threats to ecosystems. Monitoring these compounds is essential for economic growth tied to Black Sea ecosystem services. Also, the rise in seawater temperatures due to climate change increases the risk of the Black Sea releasing methane stored under gas hydrates form into the atmosphere, potentially becoming a important carbon source.The significant release of methane from the seafloor accentuates environmental apprehensions, playing a role in the creation of the Earth's largest anoxic water body (Kosarev, 2007; Riboulot et al., 2017). This underscores the necessity of investigating the dynamics of these gases and closely monitoring their concentrations to gain a comprehensive understanding of their environmental repercussions.

This presentation outlines the fieldwork conducted under the European Project H2020 - DOORS, comprising two field campaigns, METZE and METZE2 (Methane dynamics at Varna lakes and the Zelenska coastal Seeps), which investigated methane dynamics in distinct Black Sea environments, namely Varna Lake and Zelenka gas-seeps. They took place in September 2022 and March 2023. The purpose of this research is to enhance our understanding of the environmental challenges associated with methane concentrations in this unique marine setting. The work initiated a study focused on comprehending methane emissions off the coast of Varna by mapping gas emission sites and measuring their flow rates, taking into account environmental factors such as seasonality and extreme events affecting methane flow rate variability. So, in situ methane sensor deployed for several months at Varna lake indicaticates that the coastal methane fluxes exhibit a noteworthy variability, with daily processes exerting discernible influences on fluxes levels. Also, preliminary findings suggest discernible seasonal fluctuations in both the molecular and isotopic compositions in the water column and sediment pore waters, alongside variations in emission flow rates.

 

Acknowledgements

The authors thank the different projects and programs for their financial supports: DOORS by the EU Project number 101000518, ORAGGE by Interdisciplinary graduate School for the Blue planet (ANR-17-EURE-0015 and "Investissements d'Avenir"), SEAMLESS by INSU LEFE Programme 2022.

References

Kosarev, A. N., 2007, The Black Sea Environment, Springer.

Riboulot, V., Cattaneo, A., Scalabrin, C., Gaillot, A., Jouet, G., Ballas, G., Marsset, T., Garziglia, S., and Ker, S., 2017, Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania: Bulletin De La Societe Geologique De France, v. 188, no. 4.

How to cite: Fandino, O., Michalopoulos, P., Peyronnet, C., Donval, J.-P., Brandily, C., Guyavarch, P., Gouriou, J., Dugornay, O., Petsinsk, P., Vasilev, A., Slabakova, V., Georgiev, V., Antonov, A., Trukhchev, D., Batchvarova, E., Kuzmanov, D., Krastev, A., and Ruffine, L.: Monitoring Cold-Seep Emissions at the Shallow Bulgarian Coastal Shelf, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12348, https://doi.org/10.5194/egusphere-egu24-12348, 2024.

EGU24-12819 | Posters on site | BG7.1

Methane occurrence in the Black Sea: From hydrates to the water column 

Livio Ruffine, Constant Art-Clarie Agnissan, Thomas Giunta, Roberto Grilli, Mathis Lozano, Christophe Peyronnet, Jean-Pierre Donval, Jean-Daniel Paris, Arnaud Desmedt, Vincent Riboulot, Stéphanie Dupré, and Olivia Fandino

Methane is widely found on continental margins. It originates from either microbial processes at shallow sedimentary depth or thermal cracking of organic matter at deep depth, and occurs as disolved or free gas, or hydrates. It is the main chemical compound found both in natural gas hydrate deposits and seafloor gas emissions at the cold-seep.

There are extensive methane manifestations both in the sedimentary and water columns of the Black Sea.  This stratified sea is characterized by large quantities of methane bubbles discharged at the seafloor from the very shallow coastal shelf to the deep basin (Riboulot et al., 2017), contributing to the high concentration level measurement in the water column. Hydrate-bearing sediments are also widely distributed within the sediment on the continental slope, and Riboulot et al. (2018) showed that the seawater infiltration make them vulnerable and prone to dissociation since the reconnection of the Atlantic Ocean via the Sea of Marmara.

The expeditions Ghass 2 in September 2021 allowed the investigation of several methane emission sites from the continental shelf to the deep basin in the Romanian sector of the Black Sea, including hydrate-bearing sites. The water column was probed to measure in situ dissolved methane concentration using a commercial methane sensor and the prototype laser spectrometer SubOcean and sampled from CTD-Rosette. A ~6m-length hydrate-bearing core was collected from a long Calypso piston corer from which a high-resolution sampling of hydrates was performed to estimate the influence of geological factors on their cage occupancy.

The presentation aims to provide further background on methane dynamics in the Black Sea.

 

References

Agnissan Constant Art-Clarie, Guimpier Charlène, Terzariol Marco, Fandino Olivia, Chéron Sandrine, Riboulot Vincent, Desmedt Arnaud, Ruffine Livio (2023). Influence of Clay-Containing Sediments on Methane Hydrate Formation: Impacts on Kinetic Behavior and Gas Storage Capacity . Journal Of Geophysical Research-solid Earth , 128(9).

Riboulot Vincent, Ker Stephan, Sultan Nabil, Thomas Yannick, Marsset Bruno, Scalabrin Carla, Ruffine Livio, Boulart Cedric, Ion Gabriel (2018). Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea . Nature Communications , 9(117), 1-8

 

Acknowledgements

The authors thank the different projects and programs for their financial supports DOORS by the EU Project number 101000518, ENVRIPLUS by EC Project number 654182, Blame ANR-18-CE01-0007, ORAGGE by Interdisciplinary graduate School for the Blue planet (ANR-17-EURE-0015 and "Investissements d'Avenir"), SEAMLESS by INSU LEFE Programme 2022

How to cite: Ruffine, L., Agnissan, C. A.-C., Giunta, T., Grilli, R., Lozano, M., Peyronnet, C., Donval, J.-P., Paris, J.-D., Desmedt, A., Riboulot, V., Dupré, S., and Fandino, O.: Methane occurrence in the Black Sea: From hydrates to the water column, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12819, https://doi.org/10.5194/egusphere-egu24-12819, 2024.

EGU24-14307 | Posters on site | BG7.1

Observing the fate of methane utilizing Ocean Network Canada's cabled seafloor NEPTUNE Observatory 

Martin Scherwath, Michael Riedel, Yann Marcon, Miriam Römer, Laurenz Thomsen, Autun Purser, Damianos Chatzievangelou, and Cherisse Du Preez

Cabled ocean observatories enable permanent continuous observations in situ in addition to regular sampling during observatory maintenance expeditions, which allow for some of the most comprehensive monitoring to understand the fate of methane all the way from below the seafloor (with instrumented boreholes), through the seafloor (with bottom sensors, cameras or cabled vehicles) into the water column (with sonars). Ocean Networks Canada is operating the NEPTUNE observatory off the coast of Vancouver Island since 2009 with two of its instrument nodes at gas hydrate sites. The first site, Clayoquot Slope, is at around 1200 m water depth and is a site of high fluid expulsion including large amounts of methane gas seepage, which has been observed for over a decade with permanent sonar scanning. The second site, Barkley Canyon, is at about 900 m water depth and has hydrate mounds with exposed gas hydrate on the seafloor, and is unique for its thermogenic methane and also oil seepage, and the most important observations have been made by a remotely-operated cabled and instrumented a seafloor crawler called Wally. This presentation will provide a few highlights on gas hydrate observations and invites the research community for new ideas how to expand the use of the permanent and continuous data flow opportunities that stem from the 24/7 presence of power and communication availability at the two different hydrate sights.

How to cite: Scherwath, M., Riedel, M., Marcon, Y., Römer, M., Thomsen, L., Purser, A., Chatzievangelou, D., and Du Preez, C.: Observing the fate of methane utilizing Ocean Network Canada's cabled seafloor NEPTUNE Observatory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14307, https://doi.org/10.5194/egusphere-egu24-14307, 2024.

EGU24-17526 | ECS | Posters on site | BG7.1

The potential for methane production and release from subglacial sediments underneath the Greenland Ice Sheet – a model sensitivity study 

Philip Pika, Sandra Arndt, Guillaume Lamarche-Gagnon, Jade Hatton, Jakub Žárský, Lia Costa Pinto Wentzel, Jakub Trubač, Anna Stehrer Polášková, Petra Klímová, Jon R. Hawkings, and Marek Stibal

Recent studies have shown the release of methane (CH4) from the melting Greenland Ice Sheet (GrIS) and identified it as having an additional potential positive climate feedback. This methane originates mainly from acetoclastic methanogenesis in subglacial sediments, accumulates over time, and subsequently diffuses into the subglacial hydrologic network which transports it to the ice sheet margin. The rates of methane production and emission from GrIS subglacial sediments likely depend on a number of factors, including sediment depth and distribution, organic matter content in the sediment and its reactivity, the redox conditions, and downstream methanotrophic activity; however, their relative significance remains unquantified.

Here, we use a reaction-transport model that accounts for heterotrophic methane production, methane oxidation, as well as advective and diffusive methane transport to quantitatively assess the potential for biogenic methane production and emissions from subglacial sediments underneath the Greenland Ice Sheet. The model is run over a large environmental condition model ensemble (n=3840) covering the entire range of plausible subglacial sediment thickness, subglacial organic matter availability and reactivity, oxygen concentration and methanotrophic activity as constrained by available field observations from subglacial and/or similar environments and/or laboratory experiments. Model results are discussed in the context of available field observations.

Results show that methanogenic activity in subglacial sediments can produce large quantities of methane (10-5 -7.9⋅101 mmol m-2 yr-1). Subglacial methane production rates compare well with observations from laboratory studies. They are strongly controlled by organic matter availability and subglacial sediment depth, but are less sensitive to the availability of oxygen in overlying waters. Only for low organic carbon contents, low methanotrophic rate constants and/or high oxygen concentrations does methane production become more sensitive to oxygen concentration in overlying waters. Simulated methane effluxes vary four orders of magnitude and again strongly depend on organic matter availability and subglacial sediment depths. However, in contrast to methane production, methane efflux is also sensitive to oxygen concentration and methanotrophic activity. Methane effluxes generally decrease with increasing oxygen concentration and their sensitivity to oxygen concentration increases with increasing methanotrophic activity. Model results show that subglacial sediments can support methane effluxes that are up to 100 times higher than the flux required to sustain observed subglacial methane fluxes at the outflow (0.653 mmol m-2 yr-1 Lamarche-Gagnon et al., 2019) for realistic organic carbon contents (0.06 - 0.5 wt%), reactivity (0.013-1.1 yr-1), subglacial sediment depths (100-500 cm) and methanotrophic rate constants (1010-1012 mol cm-3yr-1) under both anoxic and partly oxic conditions (<100 µM).

How to cite: Pika, P., Arndt, S., Lamarche-Gagnon, G., Hatton, J., Žárský, J., Wentzel, L. C. P., Trubač, J., Stehrer Polášková, A., Klímová, P., Hawkings, J. R., and Stibal, M.: The potential for methane production and release from subglacial sediments underneath the Greenland Ice Sheet – a model sensitivity study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17526, https://doi.org/10.5194/egusphere-egu24-17526, 2024.

EGU24-17830 | Orals | BG7.1

Water column methane dynamics at an abandoned well (southern North Sea, sector A15) 

Annalisa Delre, Furu Mienis, Geert de Bruin, Ilona Velzeboer, Noortje Verstaijlen, Henk de Haas, Julia Engelmann, Gert-Jan Reichart, and Helge Niemann

The coastal ocean is highly dynamic and typically rich in methane, which is produced in sediments by microbial or thermogenic processes. In the North Sea subsurface methane is commercially exploited; once a gas field is exhausted the extraction wells are sealed with concrete. Despite this precaution, these wells may leak, becoming a potential source of methane, which might reach the atmosphere. There are several thousand abandoned wells in the North Sea, but the amount of methane escaping from these and the further fate of this methane including microbial methane oxidation and liberation to the atmosphere are not well constrained. We investigated methane dynamics at an abandoned well in the Dutch sector of the North Sea (A15-3), using a combination of different sampling and investigation tools. We conducted continuous in situ measurements of water column methane concentration, currents and various other physicochemical parameters using a bottom lander (ALBEX). Furthermore, temporally replicated hydro casts were carried out to resolve methane concentrations, vertically. We also recovered discrete water samples to investigate aerobic methanotrophs and associated methane oxidation rates, both vertically and over time. First results show an elevated background methane level of about 30 nM – yet, we recorded several events of high methane concentration reaching up to 300 nM for a duration of 10 - 60 minutes. Intervals of elevated water column methane concentrations and methane oxidation rates were also found during hydro casts. We will discuss these data in relation to environmental forcing factors including tidally induced current and hydrostatic pressure changes, as well as biological factors such as the methanotrophic community dynamics.

How to cite: Delre, A., Mienis, F., de Bruin, G., Velzeboer, I., Verstaijlen, N., de Haas, H., Engelmann, J., Reichart, G.-J., and Niemann, H.: Water column methane dynamics at an abandoned well (southern North Sea, sector A15), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17830, https://doi.org/10.5194/egusphere-egu24-17830, 2024.

EGU24-18936 | Orals | BG7.1

CH4 emissions from a marine aggregate extraction site offshore Sylt (eastern North Sea, Germany) 

Martina Schmidt, Sarah Reith, Ingeborg Bussmann, Moritz Schroll, Annika Palzer, Lasse Sander, Cedric Couret, Julia Wietzel, Danieal Polag, and Frank Keppler

CH4 emission from coastal regions contribute with up to 1 % to the global CH4 budget but show large uncertainties in terms of spatial resolution and temporal variability. In-situ measurements of CH4 and CO2 in ambient air are carried out by the German Federal Environment Agency (UBA) at the coastal station Westerland (Sylt, Germany). High-resolution CH4 data from 2022, with a temporal resolution of several seconds, show CH4 spikes of up to 400 ppb above background. These spikes occurred under west wind conditions (marine air from the North Sea) during low tide and mainly in summer.

Beach nourishment at the west coast of Sylt have been regularly carried out since 1984. From April to October, dredging vessels extract a mixture of sand and water from the seafloor of a spatially confined area (Westerland II), located 8 km off the coast and transport it to the beach and foreshore on the west coast of Sylt. To investigate the relation between sand dredging and the observed atmospheric CH4 spikes, continuous measurements of dissolved and atmospheric CH4 concentrations, were conducted on board of RV “Mya II” (AWI) from Sylt along the coast to the dredging site Westerland II. In addition, water samples were taken at different depths to determine dissolved CH4 concentrations and isotopic signatures.

Near the dredging area, we observed elevated CH4 concentrations in ambient air (400-500 ppb above background) and in surface and bottom waters (80 – 100 nmol/L). The saturation of dissolved CH4 in surface waters ranged from around 100% in the control area to up to 3600% in the dredging area. Depending on the wind strength this resulted in a diffusive flux of 48 ± 47 µmol m2 d-1 in the dredging area, in contrast to a diffusive flux of 25 ± 30 µmol m2 d-1 in the control area. Taking the severe storm just before our cruise which should have led to a strong degassing of the whole area into account, the dredging seems to be a strong point source for dissolved CH4.

Our measurements clearly confirmed elevated concentrations and fluxes of CH4, both in the atmosphere and the water column above the sand dredging site, compared to the surrounding areas. Moreover, dissolved CH4 within the dredging site was characterized by more negative stable carbon and hydrogen values compared to outside Westerland II, indicating a microbial origin of the excess CH4 there.

How to cite: Schmidt, M., Reith, S., Bussmann, I., Schroll, M., Palzer, A., Sander, L., Couret, C., Wietzel, J., Polag, D., and Keppler, F.: CH4 emissions from a marine aggregate extraction site offshore Sylt (eastern North Sea, Germany), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18936, https://doi.org/10.5194/egusphere-egu24-18936, 2024.

EGU24-19144 | Posters on site | BG7.1

The exceptional winter flood of Loire river 2021: an unexpected source of methane in the inner estuary 

Edouard Metzger, Bruno Bombled, Vivien Hulot, Grégoire Maillet, Aurélia Mouret, Cyril Fleurant, Bruno Deflandre, Sylvain Rigaud, Aubin Thibault de Chanvalon, Sophie Sanchez, Eric Beneteau, Yohann Poprawski, and Christophe Rabouille

Particles generating Maximum Turbidity Zones (MTZ), in estuaries undergo several cycles of deposition/resuspension cycles before definitive burial or expelling towards the continental shelf. Positioning and spatial coverage depend on its morphology, riverine discharge and tidal dynamics. In the Loire estuary, the decadal flood of February 2021 displaced a lot of material from the upper to the lower estuary. Consequently, cores sampled at four sites upstream Paimboeuf (15 km from estuarine mouth) showed very dark cohesive sediments while those taken at two stations downstream, within the MTZ, showed a thick (10-50 cm), unconsolidated layer of a light-brown sediment over a darker-cohesive one. More striking, these four upstream stations, covering a river line of some 40 km, showed gas ebullition generating numerous cracks on the first decimetres of interface cores.

A few months later (June 2021), interface and long cores were sampled and methane analysed at three stations along the salinity gradient (two upstream and one downstream of Paimboeuf). Upstream, the entire interface and long cores showed methane saturated samples (about 2 mmol L-1) and cracks remained ebullitive. Near Paimboeuf, the cores were no longer ebullitive and a clear sulphate-methane transition zone (SMTZ) was observed at 50 cm depth. Downstream, the SMTZ was located at 30 cm depth. These results suggest that the important currents induced by the 2021 winter flood eroded a significant layer of sediment to generate depressurization and allow methane to escape in the upper estuary while the lower estuary remained capped by enough sediment to maintain the SMTZ. They also showed that the decrease of riverine discharge allowed the MTZ to migrate upstream stopping methane to escape in the mid estuary while the upper estuary continued to release methane through ebullition four months after the erosion event. Crack formation and methane release also affected benthic fluxes, increasing total oxygen uptake by a factor of ten (94 mmol m-2 d-1) compared to diffusive flux, for example.

The rare opportunity to document such processes because of extreme navigation conditions, particularly for the deployment of the corer, allows us to emphasize that winter flooding can be an important source of methane that is immediately transferred to the atmosphere due to shallow depth of estuaries and must be taken into consideration for budgets and fluxes between reservoirs. This process must also be taken into account for a better understanding of other estuarine biogeochemical cycles, such as oxygen and nutrient cycles, as crack formation and methane release significantly increase their benthic fluxes.

How to cite: Metzger, E., Bombled, B., Hulot, V., Maillet, G., Mouret, A., Fleurant, C., Deflandre, B., Rigaud, S., Thibault de Chanvalon, A., Sanchez, S., Beneteau, E., Poprawski, Y., and Rabouille, C.: The exceptional winter flood of Loire river 2021: an unexpected source of methane in the inner estuary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19144, https://doi.org/10.5194/egusphere-egu24-19144, 2024.

EGU24-19278 | ECS | Posters on site | BG7.1

Is methane being released from Norwegian glaciers?  

Anna Stehrer Polášková, Jade Hatton, Jacob Clement Yde, Siri Hesland Engen, Jakub Trubač, Lia Costa Pinto Wentzel, Guillaume Lamarche-Gagnon, Sarah Tingey, Jemma Wadham, Marek Stibal, and Sarah Elise Sapper

Recent research underscores a potential, yet overlooked, positive climate feedback mechanism: the transport of subglacially produced methane (CH4) to the atmosphere via meltwater. While the majority of research focused on release from beneath the Greenland Ice Sheet, mountain glaciers have been largely understudied, creating a gap in our understanding of the spatial distribution of subglacial CH4 emissions. Emerging research from glaciers in Iceland, Canada, Alaska, and China suggests the presence of CH4 release also from glaciers other than the Greenland Ice Sheet.

 

Here, we explore the potential of CH4 release from outlet glaciers of the Jostedalsbreen ice cap and Midtdalsbreen in central Norway. We investigated whether meltwaters from outlet glaciers of Jostedalsbreen (Tuftebreen, Fåbergstølsbreen, Bøyabreen, Supphelebreen, Austerdalsbreen and Nigardsbreen), along with Midtdalsbreen in Finse, act as a source of CH4 to the atmosphere. We collected discrete samples for dissolved CH4 (dCH4) and CO2 concentrations at all glacier outlets multiple times throughout the melt season. Additionally, we conducted longer time-series measurements of dCH4 at Tuftebreen, Fåbergstølsbreen and Midtdalsbreen, utilizing custom-made dCH4 sensors. Accompanying these measurements were samples analysed for water chemistry and stable isotopes of dCO213C-CO2) in samples where concentrations were elevated compared to atmospheric equilibrium.

 

Our results indicate that dCH4 concentrations in the meltwater of all studied glaciers remained below atmospheric equilibrium concentrations throughout the melt season. In contrast, dCO2 concentrations surpassed atmospheric equilibrium levels, suggesting that the studied glacial runoffs do not act as CH4 source to the atmosphere but might contribute as a small source of CO2. This dataset of dissolved greenhouse gases enhances our understanding of the spatial distribution of subglacial CH4 emissions, fostering discussions on carbon cycling beneath glaciers and the factors influencing the presence or absence of CH4 emissions from the subglacial domain.

How to cite: Stehrer Polášková, A., Hatton, J., Yde, J. C., Engen, S. H., Trubač, J., Costa Pinto Wentzel, L., Lamarche-Gagnon, G., Tingey, S., Wadham, J., Stibal, M., and Sapper, S. E.: Is methane being released from Norwegian glaciers? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19278, https://doi.org/10.5194/egusphere-egu24-19278, 2024.

EGU24-19350 | Posters on site | BG7.1

Demethylation of Naproxen and Caffeine by Marine Sedimentary communities 

Tetyana Gilevska, Amelia Rotaru, Alexis Fonseca, Steffen Kümmel, Martin Krauss, Pedro Inostroza Inostroza, and Stefano Bonaglia

Naproxen and caffeine may enter marine environments through discharge of wastewater, subsequently accumulating in marine sediments at nanogram per gram (ng/g) levels. These compounds, containing methyl groups linked to heteroatoms, may serve as potential substrates for microbial communities, including methanogens.  Methanogens could utilize these methyl groups directly for methylotrophic methanogenesis, or indirectly for hydrogenotrophic or acetoclastic methanogenesis. Alternatively, some other microorganisms are capable solely of demethylation. Our study investigates the capacity of marine sedimentary communities to demethylate naproxen and caffeine, potentially leading to methane production in marine sediments.

To elucidate the biotransformation pathways and potential methane production from these compounds, we employed a multiple line of evidence approach, including microbial incubation with surface marine sediments, stable isotope analysis, concentration analysis, and 16S rRNA amplicon sequencing. Sediments were collected from Hakefjorden, near the town of Stenungsund on the Swedish west coast, adjacent to the Strävliden WWTP's discharge outflow. Sediments were characterized to contain 4 and 7 ng/g of caffeine and naproxen, respectively. The top sediment layer (2-10 cm) was used for microbial incubation experiments with 13C-labeled methyl group substrates, including naproxen, caffeine, and standard methanogenesis substrates such as acetate, methylamine, and carbonate. This enabled tracing of the microbial transformation of the methyl groups within these compounds. Results indicate that both naproxen and caffeine act as precursors to 13C-methane production, with naproxen additionally leading to 13C-carbon dioxide formation. The presence of these compounds enriched specific microbial populations, including methanogens (Methanomicrobiaceae), other Archaeal groups (Lokiarchaeia), various fermentative bacteria, and sulfate-reducing bacteria.

The transformation of naproxen and caffeine stemming from wastewater into methane and carbon dioxide highlights alternative substrates for greenhouse gas production in marine sediments, an area of concern considering these and other anthropogenic compounds' presence in the sediment. This underscores the need for detailed research into the interactions between marine microbes and methylated pharmaceuticals, given their potential impact on greenhouse gas emissions.

How to cite: Gilevska, T., Rotaru, A., Fonseca, A., Kümmel, S., Krauss, M., Inostroza, P. I., and Bonaglia, S.: Demethylation of Naproxen and Caffeine by Marine Sedimentary communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19350, https://doi.org/10.5194/egusphere-egu24-19350, 2024.

EGU24-19746 | ECS | Orals | BG7.1

Evidence of past anaerobic oxidation of methane from coastal sediments 

Shuya Huang, Xia Zhang, and Chunming Lin

Coastal systems are particularly sensitive to climate divers such as sea-level rise and environmental evolution, playing important roles in greenhouse gas sink and carbon sequestration. Despite the anaerobic oxidation of methane (AOM) consumes 90% of global methane (CH4) produced by marine sediments, and AOM rates are also considerable in freshwater environments, most attention was paid to AOM in surface sediments, and little work has addressed the potential occurrence of AOM from coastal systems in the geological past and its interaction with climate change.

A 60-m-long sediment core was investigated at the Qiantang River (QR) mouth, eastern China. The QR incised valley underlies the main part of the modern QR estuary, its sediment fill recorded the complete postglacial transgressive-regressive cycle in response to Holocene sea-level rise. Combining sedimentary Fe and P speciation with the distribution of vivianite and 34S-enriched pyrite, the sulfate-driven AOM (SD-AOM) was proved to occur at the depth interval of 38.8-39.6 m, a transition zone between two stratigraphic units (paleo-estuarine and offshore shallow marine). The intense and sustained SD-AOM is likely triggered by the rapid sea-level jump and plays a critical role in CH4 and P sink, which gives us a new perspective on understanding the elemental cycling and climate change in coastal systems in the past.

How to cite: Huang, S., Zhang, X., and Lin, C.: Evidence of past anaerobic oxidation of methane from coastal sediments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19746, https://doi.org/10.5194/egusphere-egu24-19746, 2024.

EGU24-20009 | ECS | Orals | BG7.1

Modeling the fate of methane in the water column by model coupling 

Knut Ola Dølven, Håvard Espenes, Magnus Drivdal, Muhammed Fatih Serth, and Bénédicte Férré

Estimates of atmospheric methane emissions due to seabed methane seepage are hard to constrain. Additionally, high concentrations of methane can have an impact on local biology due to local ocean acidification. In both cases, better tools for modeling the fate of methane in the water column are needed.  

We present a new approach where we include and couple a wide range of water column processes by using several already verified models in tandem, attempting to form a complete modelling framework for the fate of methane in the water column. Included processes are gas phase changes, advection, dilution, direct and diffusive atmospheric flux and microbial oxidation. The modelling framework allows for a complete estimate of atmospheric emissions, both direct and diffusive fluxes, as well as the 3-dimensional distribution of methane in the water column. The framework can be applied to specific seep sites of interest using hydroacoustic data as input. Additionally, it is also possible to simulate atmospheric fluxes in potential edge cases and future scenarios in areas where local seepage is expected to change or is unknown.

We tested the methodology using hydroacoustic field data from a seep site in the Hola trough offshore North-Western Norway in Spring 2020. We calculated both direct and diffusive atmospheric methane fluxes, distribution of methane in the water column and its potential for affecting local biology due to acidification.

How to cite: Dølven, K. O., Espenes, H., Drivdal, M., Serth, M. F., and Férré, B.: Modeling the fate of methane in the water column by model coupling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20009, https://doi.org/10.5194/egusphere-egu24-20009, 2024.

EGU24-21466 | Posters on site | BG7.1

Sedimentary gas ebullition in shallow waters of the Central North Sea (German Dogger Bank) 

Katja Heeschen, Stefan Schlömer, Robert Kopte, Miriam Römer, and Martin Blumenberg

In the North Sea a number of surveys have turned their attention to the extent of methane emissions from abandoned or decommissioned wells that may provide gas migration pathways for shallow biogenic gas accumulations. As part of the diverse and partly contradicting investigations, the research cruise MSM98 was to study sedimentary gas ebullition and the consequent distribution and fate of methane (CH4) within the water column in the German EEZ, particularly at the eastern Dogger Bank in the German EEZ, where a number of abandoned wells and natural gas ebullition sites are present. During MSM98 in January 2021, sedimentary gases were sampled from two different ebullition sites using an ROV. Their main component was biogenic methane, isotopically light ethane with concentrations of 50 - 125 ppm and traces of propane. The area of the Berta salt dome on the eastern Dogger Bank was the only study site with significant elevations of methane in the water column. Four additional abandoned well sites in the German EEZ had methane concentrations close to the background values, with methane profiles at two sites showing a slightly irregular pattern. Methane maxima at known ebullition sites were significantly lower compared to an earlier study in summer 2019, when the water column was stratified with a clear thermocline. During the first three days of sampling at the eastern Dogger Bank, trace amounts of ethane and propane were detected in water samples throughout the water column showing decreasing concentrations with time. For these thermogenic gases, the analysis of currents and hydrographic properties indicated a source outside the working area. In conjunction with ventilated offshore waters coming into the working area these allochthonous light hydrocarbons disappeared except for background concentrations of methane. Short-term changes, likely horizontal input of light hydrocarbons, and rapid mixing of the complete water column did not allow for any quantitative statement with regard to sedimentary input of methane into the water column or export of methane into the atmosphere.

How to cite: Heeschen, K., Schlömer, S., Kopte, R., Römer, M., and Blumenberg, M.: Sedimentary gas ebullition in shallow waters of the Central North Sea (German Dogger Bank), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21466, https://doi.org/10.5194/egusphere-egu24-21466, 2024.

EGU24-1472 | Posters on site | GM5.2

Minimum duration of a Miocene lake phase in the hyperarid core of the Atacama Desert, Chile 

Stephanie Scheidt, Stefanie Koboth-Bahr, Volker Wennrich, Richard Albert, Julia L. Diederich-Leicher, Barbara N. Blanco-Arrué, Niklas Leicher, Lena Wallbrecht, Pritam Yogeshwar, and Martin Melles

In 2017, sediment cores were drilled in the PAG clay pan in the hyperarid core of the Atacama Desert as part of CRC1211 (Earth - Evolution at the Dry Limit). The aim of the endeavour was to deduce the climate history of this region from the sedimentary record. The core composite established from the individual core runs goes down to a depth of approx. 52 metres. The core is composed of three major lithological facies. Below 29.2 metre composite depth (mcd), the core consists of fine-grained silty-clayey sediments, which are cyclically interspersed with layers of gypsum. These sediments are interpreted as lacustrine strata. They are overlain by coarse sediments with clasts up to several centimetre in size, which are referred to as colluvial sediments. The upper around seven metre are formed by fine-grained clay pan sediments. The geochronological framework of the core was investigated using various dating methods, most of which were unable to provide reliable ages. For the lake sediments no absolute ages could be obtained. However, U-Pb ages of zircons of a tephra layers, at the transition between the lake and coarse-grained facies suggest a Miocene age for the lake deposits. To constrain the age framework of the lake phase, magnetic polarity stratigraphy was combined with an analysis of gypsum cyclicity that is interpreted as an orbital signal. Here, we present and discuss the results of the study, which provides a new age model for this lacustrine part of the core and thus, sheds new light on an extended pluvial phase in the Atacama Desert.

How to cite: Scheidt, S., Koboth-Bahr, S., Wennrich, V., Albert, R., Diederich-Leicher, J. L., Blanco-Arrué, B. N., Leicher, N., Wallbrecht, L., Yogeshwar, P., and Melles, M.: Minimum duration of a Miocene lake phase in the hyperarid core of the Atacama Desert, Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1472, https://doi.org/10.5194/egusphere-egu24-1472, 2024.

EGU24-2118 | ECS | Orals | GM5.2

The entanglement of microorganisms and mineral matrices in a hyperarid environment – observations by SEM imaging and biomarker analysis from the Atacama Desert 

Isabel Prater, Helge Mißbach-Karmrodt, Kathrin König, Daniel Friedrich, and Christine Heim

In hyperarid deserts like the Atacama Desert, biota face additional aggravations beside the dryness, e.g. high UV radiation and often high surface temperatures. However, even under these extreme conditions, diverse microbial communities thrive on and within the sediment and interact strongly with their mineral substrate. Common habitats for microbial communities in this environment are fog-receiving surfaces and endolithic zones within evaporite crusts. Endolithic microorganisms are highly adapted to both the substrate and severe water limitations and colonize protected cracks, niches, and caverns within translucent rocks and crusts. They have the potential to alter mineral components and stimulate the formation of secondary minerals as they redistribute moisture and potentially extract crystal water. Processes like these are the starting point of pedogenesis and, even if proceeding extremely slowly, affect the shape of the surface.

To elucidate the relationship of microbial communities with the mineral matrix, we investigated the biogeochemical traces of microbial communities and their spatial distribution on and within gypsum and halite crusts from different regions within the Atacama Desert in Northern Chile. We combined imaging techniques (scanning electron microscopy, SEM) and biomolecular methods (gas chromatography-mass spectrometry, GC-MS/MS and nuclear magnetic resonance, NMR) to obtain a deeper insight into the entanglement of microorganisms and evaporitic crusts. Tight interactions of bacteria and fungi with the mineral matrix were revealed by SEM. Short-chain membrane fatty acids (C14-C18) indicated recent bacterial activity in all samples analyzed. Extracellular short-chain acids (C6-C12) and carbohydrates of the extracellular polymeric substances (EPS) make up to 75% of the total biomass within evaporites which point to efficient desiccation buffers and protection mechanisms against UV radiation. Furthermore, the sticky EPS leads to the biochemical stabilization of mineral aggregates by agglutination, which was also visible with SEM.

How to cite: Prater, I., Mißbach-Karmrodt, H., König, K., Friedrich, D., and Heim, C.: The entanglement of microorganisms and mineral matrices in a hyperarid environment – observations by SEM imaging and biomarker analysis from the Atacama Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2118, https://doi.org/10.5194/egusphere-egu24-2118, 2024.

EGU24-2204 | Orals | GM5.2 | Highlight

On the tectonic and climatic controls to the evolutionary patterns of Andean plant groups 

Esteban Acevedo-Trejos, Jean Braun, Benedikt Ritter, Tim Böhnert, Adeniyi Mosaku, and Hannah Davies

Life, climate, and landforms interact to shape the biodiversity patterns we observe in Earth’s Mountain regions. Plausible tectonic and climatic explanations have emerged to explain, for example, the evolutionary patterns of Andean plant groups. However, it remains unclear how different tectonic and climatic histories affect the evolution of Andean flora on geological time scales. Here we present the results of numerical experiments using our coupled speciation and landscape evolution model to investigate how tectonics and climate interact to produce distinct evolutionary histories in the Andes. To address this, we first calibrated our model using a Bayesian inversion algorithm with observations of present-day topography and precipitation, paleo-elevation reconstructions, and thermochronological data to calibrate three scenarios with different uplift histories, which were designed based on the literature and named as propagating and compound. The propagating scenario considers the west-to-east propagation of a Gaussian-shaped wave of uplift, which has been shown to adequately approximate the evolution of plateaus. The compound scenario divides the landscape into 6 geomorphic regions, each with its uplift history. Additionally, we tested a third scenario as a control, in which we maintained the present-day topography for the course of the simulation (ca. 80 Myr), which we named static. We ran the eco-evolutionary component of our model in these three distinct uplift scenarios, covering the mountain building of the Andes for the past 80 Myrs, and designed a series of ensemble simulations in which we randomly assigned dispersal and mutation variability to recreate different assemblages with distinct evolutionary histories and evaluate if the different scenarios produce any consistent speciation patterns comparable to reported time-calibrated phylogenies of various plant groups. We found that the uplift scenario with a more complex uplift history, i.e. compound, better agrees with the different observations. This scenario also showed increased diversification during the Miocene (23-4.5 Ma), a feature observed in several Andean plant groups. This demonstrates how diversification constraints obtained from phylogenetic studies can be used to discriminate between conflicting uplift scenarios for the Andes/Altiplano that have been suggested by paleo-altimetry estimates and other geological observations.

How to cite: Acevedo-Trejos, E., Braun, J., Ritter, B., Böhnert, T., Mosaku, A., and Davies, H.: On the tectonic and climatic controls to the evolutionary patterns of Andean plant groups, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2204, https://doi.org/10.5194/egusphere-egu24-2204, 2024.

EGU24-3506 | Posters on site | GM5.2

Paleocene surface exposure ages imply an early development of hyperaridity in the Atacama Desert 

Benedikt Ritter, Steven A. Binnie, Finlay M. Stuart, Derek Fabel, Richard Albert, Volker Wennrich, and Tibor J. Dunai

The (hyper-) arid climate of the Atacama Desert preserves traces of ancient landforms. Clusters of cosmogenic 21Ne exposure ages of pebbles from Early Miocene sediment surfaces indicate the preservation and continuous exposure (low to no erosive surface activity) since the Late Eocene, with distinct phases of low fluvial activity and deposition during the Neogene. A reduction of significant fluvial activity since ~10 Ma, and the complete absence since ~1-2 Ma, indicate extreme hyperarid conditions.  Single exposure histories of Paleocene age, with age clusters during the Eocene and Oligocene, demonstrate remarkable landscape stability throughout the Cenozoic. Phases of fluvial activity, i.e. the end of a fluvial period and the beginning of continuous exposure to cosmic rays, coincide closely with trends and aberrations in regional and global Cenozoic climate variability.

How to cite: Ritter, B., Binnie, S. A., Stuart, F. M., Fabel, D., Albert, R., Wennrich, V., and Dunai, T. J.: Paleocene surface exposure ages imply an early development of hyperaridity in the Atacama Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3506, https://doi.org/10.5194/egusphere-egu24-3506, 2024.

EGU24-3594 | Orals | GM5.2

Understanding a complex ecosystem: Tillandsiales in the hyperarid core of the Chilean Atacama Desert 

Marcus Koch, Eric Stein, and Dietmar Quandt

Tillandsia landbeckii is a “core species” in the hyper arid parts of the Atacama Desert colonized by few vascular plants only and this species is totally depending on fog occurrence as the most important source of water. Tillandsia landbeckii is a key element of the most prominent vegetation type of the hyperarid Chilean Atacama core. Epiarenic growth, growing on bare sand and lacking any root system, evolved five times independently in the genus Tillandsia during the past 5 my in the Peruvian-Chilean Desert system and lay the ground to build up unique ecosystems, with Tillandsia purpurea representing the Peruvian vicariant species. The onset of this parallel evolution may be considered as a temporal land-mark for the evolution of those fog-dependent ecosystems of the hyperarid core Atacama. Footprints of evolutionary diversification of present-day gene pools of T. landbeckii go back roughly 500,000 years, and present-day biogeographic distribution pattern is mostly shaped due to environmental changes since the last 22,000 years and the Last Glacial Maximum (LGM). The genetic set-up is surprisingly characterized by ancestral gene pools, “frozen” hybrid genotypes and clonal propagation and dispersal. This observation feeds into our hypothesis that phenotypic plasticity - contributing to plant fitness and survival in space and time - is limited on individual level, but a genetic mosaic on population- and landscape level is compensating this by a mixture of different “frozen” geno- and phenotypes, thereby allowing to cope rapidly with environmental change at the extreme limits of plants´ life. A multi-disciplinary approach combining evidence from different disciplines (plant biology, evolutionary biology, microbiology, climatology, geology, geomorphology and remote sensing technology) aims to unravel the complex interplay of biotic and abiotic factors to elaborate on our understanding of life occuring at the limits of growth due to the lack of water. We introduce the complex phylogeographic history of the species in Chile and introduce a mechanistic/biological growth model exploring environmental - biotic and abiotic - parameters. For comparative analysis on metapopulation level three regions have been selected in Chile (North near Arica, Centre near Iquique, South near Caldera) for detailed comparative in-situ and ex-sito analyses. 

How to cite: Koch, M., Stein, E., and Quandt, D.: Understanding a complex ecosystem: Tillandsiales in the hyperarid core of the Chilean Atacama Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3594, https://doi.org/10.5194/egusphere-egu24-3594, 2024.

EGU24-6493 | ECS | Posters on site | GM5.2

Dating of upwelling archives in the eastern South Pacific: a multiproxy approach in the Late Neogene Bahía Inglesa Formation, North-Central Chile 

Tiago Freire, Fatima Zohra Bouhdayad, Gerald Auer, Rafael Carballeira, Fabrizio Lirer, Niklas Leicher, Volker Wennrich, Richard Albert, Axel Gerdes, Bárbara Blanco-Arrué, Pritam Yogeshwar, Stephanie Scheidt, Jassin Petersen, Sven Nielsen, Marcelo Rivadeneira, and Patrick Grunert

In modern oceans, upwelling processes are responsible for high biological productivity and low sea surface temperatures at coastal zones. Upwelling may have intensified during the late Neogene in the eastern South Pacific due to the strengthening of the Humboldt Current System. Records of Neogene coastal upwelling are preserved in outcrops along the coast of north-central Chile (~ 26°S to 28°S) as diatomaceous mudstone deposits of the Neogene Bahía Inglesa Formation. To place such records in a broader paleoceanographic context, however, their stratigraphic assessment still needs refinements. Our work presents a multiproxy dataset to provide a stratigraphic framework for the Bahía Inglesa Formation at Quebrada Tiburón (27°42' S, 70°59' W), one of the southernmost outcrops of diatomaceous mudstone. Our approach is based on tephrochronometry, strontium isotope chronology (mollusk shells 87Sr/86Sr), and calcareous nannoplankton, diatom, and planktonic foraminifera biostratigraphy. Zircon crystals separated from a volcanic ash layer at the base of the sequence were analyzed by laser ablation ICP-MS for U-Pb dating. The youngest cluster of five concordant zircon crystallization ages indicates a tephra deposition after 8.68 ± 0.15 Ma. The 87Sr/86Sr analyses were performed on an oyster and a pectinid from sandstones underlying the diatomaceous mudstone using high-precision MC-ICP-MS measurements. The corrected and adjusted 87Sr/86Sr ratios resulted in 8.12 ± 0.40 Ma and 6.10 ± 0.25 Ma ages. The microfossil biostratigraphy was based on First (FAD) and Last Appearance (LAD) datums of biostratigraphic markers from the diatomaceous mudstone. The presence of mainly Miocene diatoms (e.g., Actinocyclus ingens, Cavitatus joseanus, and Nitzschia fossilis) and the planktonic foraminifera Neogloboquadrina acostaensis (sinistral) indicate a Tortonian age for the base of the diatomaceous mudstone. The Messinian-Zanclean boundary was identified in the middle interval of the mudstone by the disappearance of the calcareous nannoplankton species Calcidiscus pataecus and the appearance of Helicosphaera sellii and Umbilicosphaera sibogae. This interpretation is supported by the continuity and limit of the diatoms Actinocyclus ellipticus, Azpeitia nodulifer, and Coscinodiscus plicatus overlapping with Hemidiscus cuneiformis. A Zanclean age was attributed to the upper part of the mudstone sequence due to the co-occurrence of the calcareous nannoplankton species Reticulofenestra pseudoumbilicus and Sphenolithus moriformis, the diatoms Actinocyclus ellipticus, the co-occurrence of the diatoms Nitzschia fossilis and Shionodiscus oestrupii, and the planktonic foraminifera Globoconella miotumida and Sphaeroidinellopsis seminulina. The following sandstones contain Pliocene mollusks. Although inconsistencies between biostratigraphic data of taxa from different microfossil groups were observed (likely due to the lack of a local biozonation appropriate for the upwelling context), our dataset suggests a late Tortonian to Zanclean (8.68 to 3.5 Ma) age constraint for the succession and late Messinian to Zanclean (6.09 to 3.5 Ma) age for the diatomaceous mudstone. Further studies will apply our stratigraphic constraints for paleoenvironmental reconstructions. This research is part of the CRC 1211 “Earth-Evolution at the dry limit” project, funded by the German Research Foundation (DFG).

How to cite: Freire, T., Bouhdayad, F. Z., Auer, G., Carballeira, R., Lirer, F., Leicher, N., Wennrich, V., Albert, R., Gerdes, A., Blanco-Arrué, B., Yogeshwar, P., Scheidt, S., Petersen, J., Nielsen, S., Rivadeneira, M., and Grunert, P.: Dating of upwelling archives in the eastern South Pacific: a multiproxy approach in the Late Neogene Bahía Inglesa Formation, North-Central Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6493, https://doi.org/10.5194/egusphere-egu24-6493, 2024.

EGU24-6736 | Posters on site | GM5.2

Early Pliocene coastal upwelling off central Chile (Coquimbo Formation, Tongoy) 

Patrick Grunert, Rafael Carballeira, Stephanie Scheidt, Tiago Menezes Freire, Sven N. Nielsen, Marcelo M. Rivadeneira, Fatima Zhora Bouhdayad, and Jassin Petersen

Diatom-rich sediments exposed along the coastline of northern and central Chile are prominent archives of coastal upwelling properties in the Neogene. Unlocking these archives is fundamental to evaluate the potential significance of changing sea surface temperatures for landward moisture transport and palaeoclimatic fluctuations in the Atacama Desert. One of the southernmost occurrences of Neogene diatom-rich sediments is known from a series of quebradas, i.e. seaward ravines, on the Tongoy Pensinsula (30.3°S). The diatomaceous muds, previously correlated with the Middle to Upper Miocene, have been deposited in the Tongoy Paleobay. Here we present new bio- and magnetostratigraphic data from a 3.5 m-thick section of diatomaceous muds in the Quebrada Las Salinas together with a preliminary assessment of the depositional environment.

While calcareous microfossils are absent, the sample material is rich in silicious microfossils. Diatoms are the predominant group, while silicoflagellates, ebridians, radiolarians, and sponge spicules contribute to a lesser extent. Co-occurrences of the diatom species Nitzschia fossilis and Shionodiscus oestrupii constrain the diatomaceous muds to an age < 5.7-5.9 Ma. Together with normal magnetic polarity at the base of the section, the lowermost age limit is further refined to an Early Pliocene age < 5.23 Ma (base of the Thvera subchron). Occurrences of the diatom species Rouxia californica in the upper part of the diatomaceous muds suggest an upper age limit within the Zanclean. The results demonstrate for the first time that diatomaceous muds in the Tongoy Paleobay extend well into the Pliocene. Comparison with previous studies suggests that diatom-rich deposits in the study area may be highly diachronous within and between quebradas.

The microfossil assemblages suggest that coastal upwelling was prevalent in the Tongoy Paleobay during the Early Pliocene. Diatom assemblages are dominated by planktonic and meroplanktonic taxa that prefer cold, nutrient-rich surface waters of coastal upwelling such as Chaetoceros and its resting spores, Thalassionema nitzschoides, Coscinodiscus spp., and Actinoptychus senarius. Cold surface waters are also indicated by high abundances of Distephanus spp. in the silicoflagellate assemblages. Benthic taxa are very rare, suggesting water depths of 100-150 meters. The Early Pliocene diatom assemblages more closely resemble those of today’s upwelling in Eastern equatorial Pacific and off the northern Peruvian continental margin than off central Chile. This may suggest a range of surface temperatures at least comparable to or even warmer than off central Chile today, and significantly enhanced primary productivity. This preliminary assessment will be further evaluated through detailed statistical analysis.

This study is part of the CRC 1211 “Earth-Evolution at the dry limit” project, funded by the Deutsche Forschungsgemeinschaft (DFG).

How to cite: Grunert, P., Carballeira, R., Scheidt, S., Menezes Freire, T., Nielsen, S. N., Rivadeneira, M. M., Bouhdayad, F. Z., and Petersen, J.: Early Pliocene coastal upwelling off central Chile (Coquimbo Formation, Tongoy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6736, https://doi.org/10.5194/egusphere-egu24-6736, 2024.

EGU24-8271 | ECS | Posters on site | GM5.2

Quantifying processes in Earth’s Critical Zone in the Atacama Desert by combined luminescence and sedimentological approaches 

Linda Maßon, Svenja Riedesel, Simon Matthias May, Johanna Steiner, Stephan Opitz, and Tony Reimann

The central Atacama Desert is generally considered the driest non-polar desert on Earth. Given the fog-related moisture availability along the northern Chilean Coastal Cordillera and the increasing precipitation towards the Andean Cordillera, it is an ideal area to explore the transition of biotically to abiotically driven subsurface soil processes (e.g., soil turbation and weathering) in the Earth’s Critical Zone (ECZ). So far, no geochronological framework exists for these subsurface soil processes, and the factors controlling these processes are still unknown. Here we combine feldspar single grain luminescence dating with detailed sedimentological and geochemical analyses to improve our understanding of factors, processes, and time scales involved in subsurface soil processes in the Atacama Desert, ultimately contributing to decipher geomorphodynamics and landscape evolution under hyper arid conditions. While single-grain luminescence dating has successfully been applied to infer sediment transport and mixing processes in various geological settings [e.g., Reimann et al., 2017], luminescence dating of Atacama Desert sediments has proven to be challenging and time-consuming. It has been shown that establishing a standardised growth curve (SGC) for single-grain feldspar post-infrared infrared stimulated luminescence measurements reduces the measurement time considerably [Li et al., 2018]. In this regard, we previously showed that SGCs are only suitable for Atacama Desert feldspars if special modifications are made [Maßon et al., under review].

Based on a combination of the sedimentological and geochemical analyses of samples from nine sediment profiles of 35-180 cm depth, four dust traps and luminescence dating techniques using the modified SGC approach of Maßon et al. [under review] we explore biotic and abiotic subsurface soil processes in the ECZ along two W-E-oriented climatic transects in the north and south of the central Atacama Desert. The northern transect focusses on the transition from the Central Depression to the Precordillera, where biotic components in the ECZ increase with increasing humidity and elevation. The southern transect reflects the transition from the fog-influenced Coastal Cordillera to the Central Depression, where biotic components in the ECZ decrease with decreasing fog-frequency and increasing elevation. We present first results of the successful combination of the refined SGC method from Maßon et al. [under review] and detailed sedimentological and geochemical results to disentangle and infer the processes and rates of sediment deposition and surface evolution, as well as post-depositional subsurface soil processes in both transects. Furthermore, we test if different soil formation processes (e.g., incorporation of aeolian dust vs. in-situ weathering), identified using a combination of sedimentological and geochemical analysis of samples from both sediment profiles and dust traps, can be traced by specific luminescence vs. depth fingerprints. Our preliminary results indicate surface and soil activity during the Late Pleistocene and Holocene even in the abiotic sections of the transects. This suggests that Earth surface dynamics and soil processes such as vertical particle transport and the incorporation of aeolian dust in the most hyperarid parts of the Atacama Desert – virtually independent from flowing water and plant activity - are more active than previously expected, although acting on long time and subtle spatial scales.

How to cite: Maßon, L., Riedesel, S., May, S. M., Steiner, J., Opitz, S., and Reimann, T.: Quantifying processes in Earth’s Critical Zone in the Atacama Desert by combined luminescence and sedimentological approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8271, https://doi.org/10.5194/egusphere-egu24-8271, 2024.

EGU24-8995 | ECS | Posters on site | GM5.2

Alluvial deposition at the Skeleton Coast, northern Namibia: chronology and spatial patterns 

Joel Mohren, Janek Walk, Dominik Brill, Julian Krieger, Wolfgang Römer, Alicia Medialdea, Anna Nguno, and Frank Lehmkuhl

Quaternary topography sculpting along the Skeleton Coast of northern Namibia has predominantly been governed by long-term (hyper-)aridity and a rather absence of tectonic activity. The long-term prevalence of such environmental conditions has been favoured by the overall geographical setting, as the Skeleton Coast is situated at the western passive continental margin of the African continent, close to the southern tropic. As a consequence, the main episode of denudation and relief building in this region is usually believed to have taken place during the Cretaceous. However, Quaternary sediment successions and modern records on flash floods hold proof for a highly active environment post-dating the Mesozoic. Given the important role climate and its variability are presumed to play for sediment redistribution during the Quaternary, alluvial deposits found along this coast-parallel stretch may be regarded as valuable paleoclimate archives, potentially reflecting indications for climate-controlled pulses of sediment aggradation. The present-day environmental conditions limit the decay of such landforms, while promoting the persistence of a long-stretched, coast-parallel dune belt obstructing fluvial sediment conveyance towards the Pacific. The dune belt, termed Skeleton Coast erg, represents aeolian, coast-parallel sediment transport, and covers older alluvial surfaces. Altogether, this special setting bears the potential to investigate linkages between pulses of wetter episodes, the different modes of erosion, and spatiotemporal patterns of alluvial deposition.

We seek to identify these patterns on a regional scale and hence apply a combined, spatially extensive approach including geochronological and (hydro-)morphometric analyses of mapped alluvial fans (n = 52) along the Skeleton Coast and catchments draining the hinterland (n = 67). The drainage is mostly confined by the Great Escarpment to the east, providing similar (modern) rainfall regimes of less than ~150 mm yr-1 on average. Preliminary results obtained from the morphometric analyses indicate that typical power-law correlations between catchment and fan metrics exist, providing evidence for intact source-sink communication pathways for climate signals from the feeding catchments towards the coast. However, significant spatial fan confinement, e.g. caused by the coastal erg, is very likely to affect the morphometric relationships and landscape reconstruction efforts based on these data. Hence, establishing a regional geochronological framework integrating over timescales relevant for major episodes of alluvial deposition is crucial for our study aims. First results obtained from optically stimulated luminescence (OSL) dating provide indications for significant Holocene and Late Pleistocene sediment conveyance, as previously reported for other study areas across Namibia. Additionally, preliminary 10Be exposure dating yields Middle Pleistocene ages for alluvial surfaces in the vicinity of the Skeleton Coast erg. Such old ages could reflect the impact of orbital forcing on fan activity and may imply that landscape formation processes temporally integrating over timescales relevant for our analyses are archived in both the fan and catchment morphology. Investigating polyphase fans will help to further increase the spatiotemporal resolution of alluvial deposition patterns to unravel Quaternary climatic conditions and climate variability along the Skeleton Coast of Namibia.

How to cite: Mohren, J., Walk, J., Brill, D., Krieger, J., Römer, W., Medialdea, A., Nguno, A., and Lehmkuhl, F.: Alluvial deposition at the Skeleton Coast, northern Namibia: chronology and spatial patterns, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8995, https://doi.org/10.5194/egusphere-egu24-8995, 2024.

EGU24-9360 | Posters on site | GM5.2

Studies of Nitrate Deposits in the Atacama Desert, Chile: Insights from Triple Oxygen Isotopes and Strontium Isotopes 

Camila Riffo Contreras, Guillermo Chong, Swea Klipsch, Kathi Deußen, Carsten Münker, and Michael Staubwasser

The Atacama Desert in northern Chile is the oldest and driest place on Earth, characterized by continuous arid conditions since mid-Tertiary times and hyperarid since the Pliocene. These extreme aridity conditions make this region an ideal environment for the accumulation of highly soluble salts, including the Nitrate Deposits which are of economic importance and scientific research. Despite almost two centuries of exploitation and research, a comprehensive generic model fitting the extremely variable settings and types of Nitrate Deposits has not been universally accepted.

Geochemical and isotopic evidence suggests predominant atmospheric deposition of sea salt and ozone oxidation products with diagnostic Δ17O anomalies in the nitrates and sulfates deposition. Current models invoke two genesis scenarios: (1)episodic rains and salts washing-down from the soil surface followed by reprecipitation due to evaporation that is assumed to concentrate nitrates and associated salts in sedimentary continental sequences, and (2)salts dissolution in low-O2 groundwater with subsequent precipitation after capillary activity and evaporation. However, certain Nitrate Deposits, like pure nitrate veins and manto-type up to 1m thick cutting through sedimentary or volcanic rocks at depths of 25m, cannot be easily explained through these two mechanisms. They are too thick and deep to be easily related to capillarity evaporitic concentration from dilute groundwater because the capillary fringe in sediments rarely exceeds 2m. On the other hand, in some cases they are related to gypsum veins, suggesting the possibility of redissolution of primary nitrate deposits by hydrothermal, seismic activity, or precipitations, and brines emplaced into fracture systems, fault planes and stratigraphic boundaries.

This study investigates a possible origin of Nitrate Deposits by analyzing triple oxygen isotopes in nitrates and sulfates. The triple oxygen isotope values in nitrates offer constraints on the formation processes, such as bacterial denitrification and atmospheric photochemical reactions, thereby giving clues to interpret the possible origin and evolution of these deposits.

Sulfates are the dominating salt in soils of the Atacama Desert and are present in Nitrate Deposits. Thenardite and mirabilite appear in several stratigraphic sequences of saline soils between 5-65 cm below the surface. Gypsum is present in continental sequences mainly as gypsysols, but our main interest is when it occurs in groups of sulfate veins associated with nitrates cutting volcanic rocks. Triple oxygen isotope analysis of sulfate veins helps to distinguish between secondary atmospheric sulfate, deposition of sea spray, biological sulfate reduction, and reoxidation. For thenardites, appear to fall on a unique trend in the multi-isotope plots, tending towards zero in ∆17OSO4 and very low δ18OSO4 and δ34SSO4, extrapolating this trend to ∆17OSO4=0‰ yields a hypothetical hydrothermal end member.

Additionally, the strontium isotopes (87Sr/86Sr) in Nitrate Deposits offer further insights. The strontium isotope composition reflects interactions between nitrate-bearing fluids (high and low temperature) and host rocks. Comparing these isotopic ratios with known geological formations aids in detecting potential nitrate sources.

The combination of these isotopic systems offers a comprehensive approach to understanding and provides new ideas about the origin and evolution of these still enigmatic deposits in the Atacama Desert.

How to cite: Riffo Contreras, C., Chong, G., Klipsch, S., Deußen, K., Münker, C., and Staubwasser, M.: Studies of Nitrate Deposits in the Atacama Desert, Chile: Insights from Triple Oxygen Isotopes and Strontium Isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9360, https://doi.org/10.5194/egusphere-egu24-9360, 2024.

EGU24-9660 | Posters on site | GM5.2 | Highlight

Terracettes in the hyperarid Atacama Desert – fog-driven landforms of Holocene age? 

Simon Matthias May, Dirk Hoffmeister, Dominik Brill, Stephan Opitz, and Olaf Bubenzer

Terracettes are quasi-contour parallel step-like microtopographic features consisting of repetitious platform-type benches and slope-type risers and are documented from hillslopes in a range of climates. While a number of studies emphasize their formation by trampling of livestock and grazing animals (cat steps or stock trails), it has been shown that terracette formation may be explained by a number of natural processes, including solifluction or freeze-thaw processes, slumping, soil creep, or vegetation control. Despite this variability and the controversy about their origin, these micro-terraces may alter hillslope soil moisture and vegetation patterns, infiltration and surface hydrology, as well as downslope sediment flux, potentially disconnecting downslope conveyance processes of surface runoff. Given the process mechanisms discussed in these previous studies, the extremely hyperarid climate of the central Atacama Desert in northern Chile may be regarded as unfavourable for terracette formation; here, livestock and grazing animals are absent, moisture availability is extremely limited, and frost processes in elevations below ~1000 m asl are rare. Nevertheless, here we report on terracette-covered slopes in the central Atacama Desert located close to the Rio Loa canyon in the Coastal Cordillera that represents an important inland pathway for coastal fog. Based on sedimentological, geochemical (e.g., micro-X-ray fluorescence) and geomorphological investigations, thin section analyses, UAV-derived aerial photos, soil moisture monitoring as well as post-infrared infrared stimulated luminescence (post-IR IRSL) dating, we present geomorphological, chronostratigraphical and soil hydrological characteristics of the terracettes and discuss potential drivers of terracette formation. Our observations suggest a combination of wind and fog-related moisture supply, particularly during several day-long periods of sustained high relative humidity and fog occurrence, as the key driver for terracette formation, adding to the various processes discussed in previous studies. Post-IR IRSL dating of terracette platform sediments suggests a late Pleistocene to Holocene formation of the terracettes, thereby illustrating the role of fog in driving hillslope dynamics and shaping the desert landscape in the Atacama under past and present hyperaridity.

How to cite: May, S. M., Hoffmeister, D., Brill, D., Opitz, S., and Bubenzer, O.: Terracettes in the hyperarid Atacama Desert – fog-driven landforms of Holocene age?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9660, https://doi.org/10.5194/egusphere-egu24-9660, 2024.

The Atacama Desert, known for its hyper-arid climate, occasionally experiences extreme rainfall events, significantly impacting desert hydrology and land-surface evolution. Climate records suggest past interruptions of hyper-aridity, notably during the mid-Pliocene. Understanding hydrological changes during the wet phases is hindered by data scarcity. To address this, we use dynamically downscaled precipitation data from a regional climate model (WRF) and offline Atmospheric and Hydrological-Sediment Modeling Systems (AHMS-SED) to analyze water and sediment discharge during extreme rainfall events under the present-day and mid-Pliocene conditions. Calibration and validation were performed for the Salado River Basin and Paranal clay pan, where relatively more data were recorded. Using AHMS-SED simulations, we explore the long-term land-surface responses to extreme precipitation events and examine the impacts of flash floods on sediment transport under different climate scenarios. This study also provides insights into the effects of extreme rainfall events on desert hydrology and land-surface evolution in a future warmer climate.

How to cite: Jiang, C. and Shao, Y.: Model Characterization of Hydrological and Fluvial Sediment Transport Processes in Present-day and Mid-Pliocene Climate Conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10039, https://doi.org/10.5194/egusphere-egu24-10039, 2024.

EGU24-10611 | ECS | Posters on site | GM5.2

Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert 

Xiaolei Sun, Wulf Amelung, Erwin Klumpp, Janek Walk, Ramona Mörchen, Christoph Böhm, Simon Matthias May, Federica Tamburini, and Roland Bol

Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0‒10 cm) from each of 54 subsites, including sites in direct adjacency (< 10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10‒23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P (δ18OHCl-Pi). Total P (Pt) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥ 10 km. With increasing distance from the coast, soil δ18OHCl-Pi values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥ 10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76‒100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (< 5 mm) as single water source, only 24±14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.

How to cite: Sun, X., Amelung, W., Klumpp, E., Walk, J., Mörchen, R., Böhm, C., May, S. M., Tamburini, F., and Bol, R.: Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10611, https://doi.org/10.5194/egusphere-egu24-10611, 2024.

EGU24-10679 | ECS | Posters on site | GM5.2

Mechanisms and timing of haloturbation in the northern Atacama Desert derived from a subsurface network of calcium sulphate wedges  

Aline Zinelabedin, Svenja Riedesel, Benedikt Ritter, Joel Mohren, Steven A. Binnie, Maria Wierzbicka-Wieczorek, Simon M. May, Tibor J. Dunai, Stefan Heinze, and Tony Reimann

The presence of subsurface wedges and polygonal patterned grounds on the Earth’s surface is usually associated with cycles of cryogenic subsurface processes in periglacial environments. However, similar though calcium sulphate-dominated structures are found at numerous sites in the central Atacama Desert (N Chile), including particularly well-developed wedges in the subsurface of the Aroma alluvial fan in the Central Depression. Here, the subsurface wedges are covered by a ~20 cm thick, gypsum‑dominated surface crust, impeding the detection of the polygonal structures on the present-day Aroma fan surface. Due to high salt contents in the local alluvial fan deposits, the wedges are thought to be preliminary formed by haloturbation and may represent a hyperarid equivalent to periglacial wedge structures. The dominance of calcium sulphate phases in the vertical lamination of the wedges, accompanied by clastic minerals, is revealed by X-ray diffraction analysis. Hence, haloturbation is likely to be the key driver of wedge formation, caused by significant volumetric changes in the deposits and soil cracking induced by swelling and shrinking during calcium sulphate phase transitions.

Geochronological information on subsurface wedge growth under conditions of extreme water scarcity is crucial for using these laminated wedges as an additional terrestrial palaeoclimate archive for arid to hyperarid environments in the northern Atacama Desert. Information on the processes and timing of wedge-polygon formation may also be important for interpreting wedge-polygon formation in other water-limited environments such as on Mars. Therefore, in order to unravel the mechanisms and governing environmental conditions of calcium sulphate wedge and crust formation at the Aroma site, we here present mineralogical, geochemical, and sedimentological data of wedge and crust material. In addition, our chronological investigations aimed at constraining the age of wedge growth activity by using a combination of feldspar luminescence dating and meteoric 10Be dating techniques as well as 239Pu concentration measurements. Based on a minimum age model of our luminescence dating results, wedge growth was last active at the Pleistocene-Holocene boundary. The presence of the overlying gypsum-dominated surface crust could reflect an environmental change from slightly marginally ‘wetter’ conditions to present-day hyperaridity, which ultimately inhibited wedge-polygon formation during the Holocene. However, 239Pu concentrations measured in surface crust samples indicate recent downward migration of soil fines through the crust body. Therefore, it remains an open question whether surface sediments and/or moisture can penetrate the surface crust to promote processes of wedge-polygon formation even under present hyperarid conditions, leading to wedge growth over longer time scales.

How to cite: Zinelabedin, A., Riedesel, S., Ritter, B., Mohren, J., Binnie, S. A., Wierzbicka-Wieczorek, M., May, S. M., Dunai, T. J., Heinze, S., and Reimann, T.: Mechanisms and timing of haloturbation in the northern Atacama Desert derived from a subsurface network of calcium sulphate wedges , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10679, https://doi.org/10.5194/egusphere-egu24-10679, 2024.

EGU24-11939 | ECS | Posters on site | GM5.2

Assessing the last “large scale fluvial modification” across the hyperarid Atacama Desert, northern Chile 

Janek Walk, Joel Mohren, Ariane Binnie, Dominik Brill, Helmut Brückner, Viktor Schaubert, Andrés Quezada, and Frank Lehmkuhl

During the last decade, a consensus has been widely established about an Early Miocene onset of hyperaridity characterizing the Atacama Desert located in the Andean forearc region in northern Chile. Prevailing hyperarid conditions were interrupted by many pluvial episodes of varying duration and spatial extent. In contrast to the onset of hyperaridity, highly discrepant interpretations persist regarding the last “large scale fluvial modification” (Ritter et al., 2018) of the Atacama Desert. While terminal aggradation of the coastal alluvial fans is constrained at several sites to the Last Glacial Maximum (MIS 2), followed by Holocene progradation to the shore, chronological constraints for last major fluvial activity throughout the inland desert scatter between the Late Miocene and Middle Pleistocene. The types of investigated sedimentary archives differ and many studies have a local focus. Instead, a systematic assessment from the hyperarid coast (W) to the footslopes of the Precordillera (E) is yet lacking. We therefore mapped 84 alluvial fan systems with small (<25 km²) source areas along a latitudinal transect at ~21°S. The last-abandoned, widely distinguishable fan surface generations (S1) and subrecent incised channels of five alluvial fan systems was further systematically sampled for 10Be cosmogenic nuclide exposure dating of surface pebbles. Morphometric results indicate a significant positive dependence of both fan area and fan slope on the catchment area and can further be interpreted as the result of (palaeo)climatic effects on the fan systems. Initial 10Be exposure dating reveals Middle Pleistocene terminal aggradation of the S1 fan generation, confirming the younger interpretations of the last “large scale fluvial modification” of the Atacama Desert. Forthcoming additional 10Be results will provide further insights into the function of the alluvial fans as buffers in the sediment cascade under prevailing hyperaridity, spatial patterns in Pleistocene fan morphodynamics and implications for a potential spatio-temporal gradient in (palaeo‑)precipitation.

Reference
Ritter, B., Stuart, F.M., Binnie, S.A., Gerdes, A., Wennrich, V., Dunai, T.J. (2018). Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert. Scientific Reports 8, 13952. doi:10.1038/s41598-018-32339-9

How to cite: Walk, J., Mohren, J., Binnie, A., Brill, D., Brückner, H., Schaubert, V., Quezada, A., and Lehmkuhl, F.: Assessing the last “large scale fluvial modification” across the hyperarid Atacama Desert, northern Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11939, https://doi.org/10.5194/egusphere-egu24-11939, 2024.

EGU24-12220 | ECS | Posters on site | GM5.2

Significance of millennial-scale coastal upwelling and Rio Loa variability forAtacama paleoclimate during MIS 2 

Jessica Fabritius, Andrea Jaeschke, Jassin Petersen, Volker Wennrich, and Patrick Grunert

The Atacama Desert located in northern Chile is one of the driest places on earth. The factors determining recent hyperarid climate conditions and their interplay and variability on interannual and decadal time scales are generally understood. Evidence for wetter (yet arid) conditions in the Atacama’s past is mostly provided by ephemeral lacustrine and fluvial deposits. The main watercourse of the Atacama Desert is the Rio Loa sourced by rainfall in the Andean mountains. Information on changes in the terrestrial supply to the ocean is recorded in marine sediments off the Rio Loa mouth.

Sediment core SO-104-52KL has been collected on the upper continental slope (∼340 m water depth, 21°S) off the Rio Loa during cruise 104, Leg 3 by RV Sonne in 1995. The preliminary chronology of the core based on 14C datings constrains the top and base of the core to 16 and 42 ka, respectively, with a mean sedimentation rate of 30-40 cm kyr-1. These very high average sedimentation rates allow reconstructions of the paleoceaonographic and paleoclimatic conditions during marine isotope stages (MIS) 3 and 2 on millennial to centennial time scales. The location of the core on the continental slope off the Rio Loa mouth allows for the parallel evaluation of the Humboldt Current System and Andean rainfall as moisture sources for the Atacama Desert.

Proxy data for upwelling properties are established from microfossil assemblages and lipid biomarkers. Preliminary results show that foraminifera are abundant and well-preserved in the upper 4 m of the core. While planktonic foraminifera are rare, benthic assemblages are rich. In total, 24 genera and 49 species of benthic foraminifera were distinguished. The three taxa Bolivina, Bulimina, and Suggrunda, which indicate hypoxic to dysoxic conditions at the seafloor, make up most of the individuals. The dominance of hypoxia tolerating taxa indicates strong upwelling conditions via the presence of a pronounced Oxygen Mimimum Zone impinging on the upper continental slope. These data are put into context with relatively warm sea surface temperatures of average 21 °C as derived from alkenone data. Together with XRF data and grain-size analyses, both applied to characterize the terrestrial input by the Rio Loa, the expected proxy data will provide new insights into the dynamics of land-ocean coupling between the Atacama Desert and the eastern Pacific Ocean.

This study is part of the CRC 1211 “Earth-Evolution at the dry limit” project, funded by the German Research Foundation (DFG).

How to cite: Fabritius, J., Jaeschke, A., Petersen, J., Wennrich, V., and Grunert, P.: Significance of millennial-scale coastal upwelling and Rio Loa variability forAtacama paleoclimate during MIS 2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12220, https://doi.org/10.5194/egusphere-egu24-12220, 2024.

EGU24-12681 | ECS | Orals | GM5.2

The coevolution of life and landscape in the Atacama Desert 

Ariane Binnie, Kathrin Lampert, Pia Victor, Klaus Reicherter, Ambrosio Vega Ruiz, Laura Evenstar, Gabriel González, and Steven Binnie

The evolution of landscapes has often been inferred from the phylogenetic records of species that inhabit them, but it is rare to have a sufficiently detailed record of landscape evolution to be able to test the validity of links between bio- and geochronometers. Here we derive the history of fluvial incision of the Tiliviche River in the Central Depression of the northern Atacama Desert, Chile, using cosmogenic nuclide exposure dating of fluvial terraces and nearby paleochannels. We compare this to the timing of speciation from molecular clock dating of Ephemeroptera (Mayflies), collected from both the Tiliviche and proximal Camerones Rivers. Both these drainages source their discharge in the Western Cordillera of the Andes Mountains and drain westwards to the Pacific Ocean. Where they pass through the low relief Central Depression between the Andes and Coastal Cordillera they have formed steeply incised canyons. Our exposure dating shows that notable incision of the Tiliviche River into the Central Depression began around 2 Myr ago. The timing of the divergence of Ephemeroptera species from the Tiliviche and Camerones Rivers is coeval with the onset of Tiliviche incision at 2 Myr. Furthermore, this history of river incision and speciation is consistent with the timing of abandonment of smaller streams that used to flow across the pampa between the Tiliviche and Camerones rivers (Binnie et al., 2020).  Our results imply that the downcutting of the Tiliviche as a deep canyon and the contemporaneous drying out of smaller drainages between Tiliviche and Camerones were sufficient to isolate the Ephemeroptera clades.  This provides a positive test of a coupled bio- geochronometer approach for unravelling relationships between life and landscape. Whether the controls of river incision and consequently speciation are predominantly climatic, tectonic, or autogenous in nature is still to be resolved.

Binnie S. A, Reicherter K. R., Victor P., González G., Binnie A., Niemann K., Stuart F.M., Lenting C., Heinze S., Freeman S.P.H.T. and Dunai T. J. (2020)
The origins and implications of paleochannels in hyperarid, tectonically active regions: The northern Atacama Desert, Chile. Global and Planetary Change, Volume 185. https://doi.org/10.1016/j.gloplacha.2019.103083

How to cite: Binnie, A., Lampert, K., Victor, P., Reicherter, K., Vega Ruiz, A., Evenstar, L., González, G., and Binnie, S.: The coevolution of life and landscape in the Atacama Desert, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12681, https://doi.org/10.5194/egusphere-egu24-12681, 2024.

The study of supergene minerals has been used as a proxy to unravel the palaeoclimatic conditions that prevailed when it occurred. The youngest age of supergene mineralisation is interpreted as the last time with sufficient moisture; therefore, it will reflect the transition from semi-arid towards hyperarid conditions.

The history of dating supergene minerals, mainly alunite and far less common copper-bearing minerals such as atacamite and pseudomalachite, in the Atacama Desert is mainly restricted to the Central Depression and Precordillera indicating that supergene processes were active from 44 to 6 Ma. In contrast, there are only four ages in the Coastal Cordillera, one reported by Sillitoe & McKee, 1996, and three obtained by Reich et al., 2009. This lack of information makes it impossible to constrain the onset of hyperaridity in the Coastal Cordillera and how it relates with the previously mentioned physiographic units.

The Coastal Cordillera in northern Chile correspond to a Jurassic-Early Cretaceous magmatic arc consisting mainly of andesites and basaltic andesites intruded by numerous plutonic bodies. It hosts the metallogenic belt with the largest number of mineral deposits in the Antofagasta Region, the majority of which are copper deposits.

We test for the first time, the potential of the LA-ICP-MS in situ U-Pb technique to date the deposition of the copper deposits in the Coastal Cordillera and use it as a new proxy to understand its palaeoclimatic evolution. For this purpose, we selected chrysocolla samples from manto- and vein-type deposits hosted in the west side of the Coastal Cordillera.

Chrysocolla is an amorphous hydrated copper silicate that precipitate from gel-like material. Furthermore, the chrysocolla may occurs as a replacement of other copper minerals such as malachite and atacamite. Macroscopically it is possible found it in crust, in veins filling cracks along the host rock or in amygdales of andesites. The second most common mineral is atacamite which presents a complex textural relationship with chrysocolla.

The amorphous structure of chrysocolla makes difficult that the U and Pb concentrations will be consistent along the same sample. Due to this, we apply a pre-scan with the laser to measure the U-Pb ratio in the sample. After that, the laser spots were defined in tree main areas: highest, intermediate and lowest U-Pb ratio to be secure that we will get a dispersion of the ratios that can help to obtain an isochron.

The preliminary results show that the chrysocolla is extremely young (<1 Ma). The oldest age obtained is 7 Ma. It is possible that these ages are the consequence of a reset of the system. We need to consider the possibility that the amorphous structure of chrysocolla allows U- and Pb-loss that can give a younger age than the real deposition age.

How to cite: Ríos-Contesse, J.: U-Pb LA-ICP-MS in situ dating of chrysocolla in copper deposits in Coastal Cordillera, northern Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13141, https://doi.org/10.5194/egusphere-egu24-13141, 2024.

EGU24-13512 | ECS | Orals | GM5.2

Depositional environment of upper Miocene to lower Pliocene diatom-rich deposits of the Bahía Inglesa Formation inferred from benthic foraminiferal assemblages 

Fatima Zohra Bouhdayad, Tiago Menezes Freire, Laura Schneider, Daniel Herwartz, Stephanie Scheidt, Jassin Petersen, Sven Nielsen, Marcelo Rivadeneira, and Patrick Grunert

Neogene diatom-rich deposits of north-central Chile represent fundamental archives for studying the dynamic relationship between sea surface temperatures and paleoclimatic fluctuations in the Atacama Desert. To ensure a reliable correlation between the (often discontinuous) marine and terrestrial archives, a well-calibrated stratigraphic framework is needed. In this sense, this study presents microfossil and sedimentological data from a c. 9m-thick diatomaceous mudstone deposit cropping out at the Quebrada Tiburón (27°42' S, 70°59' W, Bahía Inglesa Formation) for paleoenvironment investigations. Biostratigraphy, chemostratigraphy, and tephrochronometry correlated the diatomaceous mudstones with the upper Messinian and Zanclean (c. 6.1-3.6 Ma). To further improve the paleoceanographic interpretations and stratigraphic framework of the sequence, we also measured stable oxygen isotopes (δ18O) from two shallow infaunal benthic foraminifera species (Bulimina falconensis and Uvigerina striata/peregrina). However, the diatom-rich succession shows distinctive horizons of bioturbation, often associated with overlaying sandstones of variable thicknesses which are intercalated with the diatomaceous mudstones. These repetitive bioturbation cycles warrant caution when interpreting δ18O data, as they may imply potential hiatuses in sedimentation. At the same time, the observed cycles may provide the opportunity to establish a sequence stratigraphic framework for the deposition of the diatomaceous mudstones.

Benthic foraminiferal assemblages from the mudstones indicate high export productivity and limited oxygen supply at the seafloor related to a coastal upwelling setting. The low-diversity fauna is mostly dominated by individuals < 150 μm of Bolivina granti/pacifica, Epistominella obesa, and Eubuliminella bassendorfensis. Across the Miocene/Pliocene boundary, the relative abundances of Bolivina granti/pacifica and Epistominella obesa respectively increase and decrease, and Bolivina aenariensis disappears. This faunal shift may be explained by changes in the amount and/or frequency of organic matter input. In the intercalated sandstones, Bolivina granti/pacifica, Eubuliminella bassendorfensis, and Epistominella obesa are still the most abundant species, with variable minor contributions of uvigerininds, Bolivina advena and shallow-water taxa such as Buccella peruviana. Notably, the faunal composition of these sandstones differs from neritic upper Tortonian to lower Messinian and upper Pliocene sandstones below and above the studied section, respectively, in which cibicids and Buccella spp. are dominant. In further steps, increased resolution of the assemblage data and statistical analysis combined with sedimentological data will provide more insights into the depositional processes to explain the observed sedimentary cycles. Understanding these processes will help to interpret the δ18O record and potentially establish a sequence stratigraphic framework for the section.

This study contributes to CRC 1211 “Earth-Evolution at the dry limit”, funded by the Deutsche Forschungsgemeinschaft (DFG).

 

How to cite: Bouhdayad, F. Z., Menezes Freire, T., Schneider, L., Herwartz, D., Scheidt, S., Petersen, J., Nielsen, S., Rivadeneira, M., and Grunert, P.: Depositional environment of upper Miocene to lower Pliocene diatom-rich deposits of the Bahía Inglesa Formation inferred from benthic foraminiferal assemblages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13512, https://doi.org/10.5194/egusphere-egu24-13512, 2024.

EGU24-18984 | Posters on site | GM5.2

Enhancing AMS measurement precision with the incorporation of 𝛿13C data measured with IRMS 

Martina Gwozdz, Andrea Jaeschke, Stefan Heinze, Janet Rethemeyer, Dennis Mücher, and Markus Schiffer

Within the CRC1211 project-Evolution at the Dry Limit, there is a need for precise dating analysis on soil samples extracted from the Atacama Desert. These samples have a characteristically low carbon content. Consequently, ultra-small samples containing approximately 2-20 𝜇g of carbon, need to be measured reliably. For this reason an elemental analyser (EA) and an isotope ratio mass spectrometer (IRMS) have been coupled to the 6 MV AMS system of CologneAMS as well as an existing gas interface (GIS). This provides a fully automated, online-analysis of 14C/12C, and it delivers precise values for 𝛿13C. We investigated whether this set-up improves the fractionation correction which is used in the 14C data evaluation. 𝛿13C values from multiple standard materials are measured quasi-simultaneously at the AMS and at the IRMS. Within these measurements we determined that the 𝛿13C values form both AMS and IRMS agree with each other within their respective errors. While the 𝛿13C AMS values scatter multiple orders higher than the IRMS values we concluded that the 𝛿13C IRMS values can be used for a reliable and more precise AMS measurements.

How to cite: Gwozdz, M., Jaeschke, A., Heinze, S., Rethemeyer, J., Mücher, D., and Schiffer, M.: Enhancing AMS measurement precision with the incorporation of 𝛿13C data measured with IRMS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18984, https://doi.org/10.5194/egusphere-egu24-18984, 2024.

EGU24-20073 | Orals | GM5.2

Miocene to recent precipitation history of the central Atacama Desert as reconstructed from a clay pan record in the Coastal Cordillera, northern Chile.  

Volker Wennrich, Julia Diederich-Leicher, Stephanie Scheidt, Benedikt Ritter, Niklas Leicher, Richard Albert, Barbara Blanco-Arrue, Pritam Yogeshwar, Rafael Carballeira, Roberto Bao, Dominik Brill, Alicia Medialdea, Melanie Bartz, Eduardo Campos Sepúlveda, Tibor Dunai, and Martin Melles

Hyperaridity is the major limiting factor of Earth-surface processes and biological activity in the Atacama Desert of northern Chile, one of the oldest and driest deserts on Earth. On geological timescales, however, the general aridity, which is thought to have onset during the Oligocene to Miocene, has been punctuated by distinct pluvial periods. Also nowadays sporadic but severe rainfall events, like during the flood in 2015, occur within the hyperarid core of the Atacama Desert. During the Miocene and Pliocene, such wetter conditions caused lake formation in parts of the Central Depression and Coastal Cordillera, but also amplified surface processes as well as changes in vegetation dynamics. Unfortunately, due to the limited number and heterogeneity of suitable paleoclimate archives, the long-term precipitation history of the central Atacama Desert and its drivers are still a matter of controversy.

Here we present a first quasi-continuous (on time periods of 10-100 kyr) record of the Mid-Miocene to present paleoclimatic and environmental history of the central Atacama Desert obtained from an endorheic clay pan. Due to its location in the Coastal Cordillera, the investigated clay pan is assumed to have been decoupled from Andean ground and surface-water inflow, and thus to have recorded only local and regional precipitation variations on different timescales.

The investigated 52 m-long sediment sequence exhibits significant changes in the sedimentological, geochemical paleontological, and mineralogical properties. Preliminary data from the recovered Mid-Miocene sediments imply permanent lacustrine conditions with alternating evaporation cycles that point to significantly different hydrological and/or climatic conditions in Coastal Cordillera than today. A major lithological shift, accompanied by a well-preserved paleosol, documents a significant local groundwater lowering, probably due to fault activation during the mid-Miocene. Subsequent high sedimentation of coarse-grained alluvial deposits indicates alternating periods of wetter than present precipitation, though still arid, conditions with episodic shallow lake phases during the Miocene. A distinct drop in the sedimentation rate and a synchronous transition to fine-grained distal alluvial deposits highlights a significant change in the moisture availability in the Coastal Cordillera during the Pliocene and Pleistocene, probably marking the final onset of hyperarid conditions in the central Atacama Desert.

How to cite: Wennrich, V., Diederich-Leicher, J., Scheidt, S., Ritter, B., Leicher, N., Albert, R., Blanco-Arrue, B., Yogeshwar, P., Carballeira, R., Bao, R., Brill, D., Medialdea, A., Bartz, M., Campos Sepúlveda, E., Dunai, T., and Melles, M.: Miocene to recent precipitation history of the central Atacama Desert as reconstructed from a clay pan record in the Coastal Cordillera, northern Chile. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20073, https://doi.org/10.5194/egusphere-egu24-20073, 2024.

EGU24-20672 | Orals | GM5.2

Triple oxygen isotopes in Atacama Desert waters since the late Miocene 

Michael Staubwasser, Claudia Voigt, Daniel Herwartz, Carsten Münker, and Guillermo Chong

Utilizing H and triple O isotopes, the main hydrologic variables from the Craig-Gordon model (CGM) of isotope evaporation from a lake, i.e. inflow composition (Ri), the atmosphere’s vapor composition (Rv), and relative humidity (hr) can now be accurately constrained by measurements from differently evaporated subset lakes within the basin, if they fall on a single isotope evaporation trajectory in a diagram of 17O-excess or d-excess over δ18O. We demonstrate here, that this approach can be applied also to paleo-lakes by sampling subsets of lacustrine hydrous mineral deposits - e.g. gypsum (CaSO4 • 2H2O) – from the same geologic unit representing a narrowly constrained interval of time. This allows for the reconstruction of the above variables for the past. We conducted a proof-of-concept study in the Atacama Desert on modern and U-Pb dated paleo-gypsum lacustrine deposits. We tested the principles of the above approach on gypsum and lake water from the present-day Salar de Llamara. We verified signal preservation in a 1.8 Ma old – Ri constrained – marine lagoon gypsum outcrop situated on the tectonically uplifted Mejillones Peninsula that has been exposed to meteoric water for the last ~1 Ma. Finally, we applied the method to a 9 Ma old gypsum outcrop from the paleo-lake system of Tilliviche, which existed during the late Miocene / early Pliocene between ~ 11 Ma and 5 Ma. The CGM is applied to nine sub-samples with a ~ +13 to -10 per meg range in 17O-excess (~ +15 to -16 ‰ in d-excess). The model yields a paleo-Ri equal within model uncertainty to the present-day water flowing down Tilliviche ravine with a δ18O ~ -9 ‰ reflecting its high altitude source in the Andes. Paleo-Rv has a δ18O ~ -20 ‰, which is ~ 5 ‰ lower than the present-day atmosphere. Average modelled annual paleo-hr is 66 % (44 to 84 % range), which is considerably more humid than at present (30 to 40 %). The data suggests that rainfall in the late Miocene Atacama Desert had an annual distribution equal to the present time and was likely as scarce. The more depleted past vapor composition can plausibly be explained only by higher subtropical rain-out prior to moisture advection into the desert. The higher paleo-hr implies a much lower late Miocene evaporation rate, and must have been the prime cause of the lake’s existence. Thus, the late Miocene Atacama was likely already hyper-arid in terms of rainfall, but its atmosphere was more humid and less evaporative. The desert’s hyper aridity trend since the late Miocene fits with the global subtropical aridity trend beginning ~ 8 Ma ago and widely recorded by the expansion of drought-resistant C4 plants.

How to cite: Staubwasser, M., Voigt, C., Herwartz, D., Münker, C., and Chong, G.: Triple oxygen isotopes in Atacama Desert waters since the late Miocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20672, https://doi.org/10.5194/egusphere-egu24-20672, 2024.

EGU24-21353 | Orals | GM5.2

Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating 

Richard Albert, Benedikt Ritter, Aleksandr Rakipov, Frederik M. van der Wateren, Tibor J. Dunai, and Axel Gerdes

The Cenozoic “Namib Group” of the Namib Desert relies on relative chronology and lacks direct radiometric dating. Therefore, the landscape evolution and paleoclimate of the central Namib Desert remains imprecise, hindering the detailed search for global and/or local forcing factors for the aridification of the Namib. The broad presence of silcretes and calcretes in the Namib Desert allows the application of the of the U–Pb laser ablation dating technique on silcretes and calcretes to date important phases of landscape stability and to retrieve crucial paleoclimatic and environmental information on desertification and its paleoclimatic variability. Microscale silcrete formation (maximum of 8 mm), as a result of pressure solution by expanding calcrete cementation, grants the opportunity to date multiple phases (multiple generations of silcrete as growing layers) of silcrete formation. Groundwater silcrete and calcrete formation took place at our study site during the Pliocene, an epoch of relatively stable climate and landscape evolution under semi-arid to arid conditions. Terrestrial cosmogenic nuclide (TCN) exposure dates from flat canyon rim surfaces show the remission of groundwater calcrete formation due to river incision during Late Pliocene–Early Pleistocene. This incision is a consequence of a large-scale landscape rejuvenation caused by a climate shift towards more arid conditions in the Pleistocene, which can be connected to global climate patterns. This study shows the feasibility of applying U–Pb laser ablation to groundwater calcretes and silcretes, discusses important issues associated with this technique, and opens up the possibility of dating numerous sedimentary sequences with silcretes and calcretes in arid environments. Our study redefines and improves the generally accepted Late Cenozoic chronostratigraphy of the Namib Desert (Miller, 2008).

How to cite: Albert, R., Ritter, B., Rakipov, A., van der Wateren, F. M., Dunai, T. J., and Gerdes, A.: Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21353, https://doi.org/10.5194/egusphere-egu24-21353, 2024.

EGU24-21791 | Orals | GM5.2

Water vapor transport into the Atacama desertsimulated with a high resolution atmospheric model 

Jan H. Schween, Vera Schemann, and Ullrich Loehnert

The Atacama at the west coast of South America is one of the driest regions on earth. Any atmospheric transport of water vapor into this desert which may form fog or dew is accordingly important for its supply with freshwater. Within the CRC 'Earth Evolution at the dry Limit' a network of climate stations has been installed in the core of the Atacama (Schween et al 2020). This network shows a very regular circulation with strong winds from the west during day time and weaker winds from the east during night. These winds are part of a circulation pattern between the coast and the slopes of the Andes known as Rutllant cell. The daytime westerly winds in the desert are moister than the night-time easterlies but this day-night difference in moisture vanishes at the slope of the Andes. Accordingly there is a net transport of water vapor into the desert. But from these surface measurements it remains unclear whether this moisture remains in the surface layer or leaves the region at higher levels,
To get better insight in the circulation we performed simulations with the ICON-LEM model in a 300x300km domain centered around 20.75degS and 69.75W with a resolution of 624m. It covers the ocean as well the high Andes including the coastal mountain range and the central depression. A simulation of a typical winter day showed that the circulation is rather a complex movement of airmasses than a closed circulation. The moist air from the ocean reaches only partly up the slopes of the Andes before it switches to the night time pattern and flows back into the central depression of the desert. There the moist air collects as shallow pools in the basins and valleys where it eventually forms fog. When the following morning the breeze propagates into the desert, convergence at its head leads to injection of moist air into the free troposphere.
We use the model data to identify corridors in which moist air from the ocean enters the desert. In the regions where fog forms we calculate the horizontal transport of liquid (fog) water which can be used to estimate fog water deposition to the surface. We calculate a moisture budget for different layers of the atmosphere to identify where and when water vapor enters and leaves the desert.

Reference:
Schween, J. H., D. Hoffmeister, and U. Löhnert, 2020: Filling the Observational Gap in the Atacama Desert with a new Network of Climate Stations, Global and Planetary Change, 184, https://doi.org/10.1016/j.gloplacha.2019.103034

How to cite: Schween, J. H., Schemann, V., and Loehnert, U.: Water vapor transport into the Atacama desertsimulated with a high resolution atmospheric model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21791, https://doi.org/10.5194/egusphere-egu24-21791, 2024.

The depleted mantle and the continental crust are largely geochemically and isotopically complementary. However, the question of when the depleted mantle reservoirs developed on Earth remains a topic of considerable debate. In this study, we report the existence of a ca. 3.8 Ga detrital zircon from the quartzite of the Paleoproterozoic Songshan Group in the southern North China Craton. In situ zircon hafnium isotopic characteristics of the 3.8–3.2 Ga detrital zircons indicate the presence of source rocks as old as ca. 4.5 Ga in the southern North China Craton. Together with the global zircon U-Pb-Hf isotope dataset from the North China Craton, Jack Hills, Acasta as well as available μ142Nd values of ancient rocks from Archean craton worldwide, the new results indicate that the silicate Earth has differentiated at 4.5–4.4 Ga almost immediately after accretion, developing continental crust and a complementary depleted mantle reservoir at that same time.

How to cite: Si, B., Diwu, C., and Si, R.: Eoarchean-Paleoarchean crustal material in the southern North China Craton and possible mantle reservoir of early Earth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-406, https://doi.org/10.5194/egusphere-egu24-406, 2024.

EGU24-1479 | Orals | GD3.1 | Highlight

Recipes for a Hadean Earth 

Stephen J. Mojzsis and Anna Medvegy

Silicate+metal worlds like Earth form hot owing to gravitational heating from accretion and differentiation, and intrinsic radioactive decay. Concurrent cooling sets off a chemical and mechanical cascade wherein siderophile elements (Fe+Ni) form a metallic core, and lithophile elements (Mg, Si, Al, Ca, Na, etc.) partition into mantle and siliceous crust. The outcome is a rocky surface beneath an outgassed fluid envelope composed of atmophile elements and compounds (CO2, H2O, H2, etc.). In its first 500 Myr (q.v. Hadean eon), Earth’s crust co-existed with liquid water; it was molded by volcanism, affected by late accretion bombardments and harbored diverse hydrothermal systems. Volcanism and differential buoyancy of the crust mandates the presence of scattered emergent landmasses. Such Hadean surfaces could host diverse (sub-)aqueous where organic chemical ingredients became concentrated to reactivity beneath a dense atmosphere bathed by the active young Sun. Soon after planet formation, it seems proto-biochemical reactions led to full-fledged living biochemistry. We do not know whether the earliest environments for life were ideally suited for its origin, or merely just good enough to accomplish the task. The inferred complexity for even the minimum biological entity means that operative and persistent biochemistry are the most difficult developmental stages to reach.

How to cite: Mojzsis, S. J. and Medvegy, A.: Recipes for a Hadean Earth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1479, https://doi.org/10.5194/egusphere-egu24-1479, 2024.

EGU24-1792 | ECS | Orals | GD3.1

Litho-structural framework of the Eoarchean Tussaap supracrustal belt, Itsaq gneiss complex, southwestern Greenland 

Peter Haproff, Alexander Webb, Chit Yan Eunice Leung, Christoph Hauzenberger, Jiawei Zuo, and Anthony Ramírez-Salazar

The Isua and Tussaap supracrustal belts of the Itsaq gneiss complex, southwestern Greenland, form the largest and best-preserved exposure of Eoarchean supracrustal materials on Earth. Previous studies have almost exclusively focused on the ∼35-km-long, arc-shaped Isua supracrustal belt and adjacent ca. 3.8–3.7 Ga meta-tonalite bodies, which are the basis for competing Archean tectonic regime interpretations (i.e., plate versus heat-pipe tectonics). In this study, we performed geologic field mapping of the seldom-explored Tussaap supracrustal belt, located ~11 km south of the Isua supracrustal belt, to better constrain its litho-structural framework and test the predictions of existing Eoarchean tectonic models. Observations from this study and previous works show that the Tussaap supracrustal belt consists of a east-northeast-striking, ~12-km-long and <1-km-wide, mostly continuous belt of greenstone rocks flanked to the north and south by ca. 3.8 Ga meta-tonalite. Lithologies of the Tussaap supracrustal belt consist of interlayered garnet ± staurolite ± sillimanite paragneiss, felsic schist, garnet mafic schist, amphibole-rich garbenschiefer, and minor pegmatite bodies and meta-ultramafic rocks. The northern and southern contacts between the Tussaap supracrustal belt and meta-tonalite are ~100-m-wide transitional zones featuring interlayered and folded meta-tonalite and greenstone rocks that increase in abundance towards each lithologic unit. Both the Tussaap supracrustal belt and adjacent meta-tonalite feature well-developed, southeast-dipping foliation and southeast-plunging stretching lineation (average 162° trend, 40° plunge). Macroscopic sheath and often rootless, disharmonic folds with hinges parallel to stretching lineation occur throughout the study area. In contrast with previous interpretations, no discrete tectonic discontinuities (i.e., brittle faults and ductile shear zones) were observed within the Tussaap supracrustal belt and meta-tonalite. Similarly, no apparent metamorphic field gradient was observed in the study area. This litho-structural framework is consistent with that of the Isua supracrustal belt and meta-tonalite bodies to the north, indicative of spatially-uniform strain and metamorphism. Based on our preliminary observations, the Archean development of the region can be explained by uniform subvertical shearing and folding of an interlayered volcanic-intrusive sequence (i.e., heat-pipe tectonics). Additional structural, geochronologic, and geochemical analyses of the Tussaap supracrustal belt and meta-tonalite are required to further elucidate their emplacement and metamorphic histories and differentiate end-member models of Archean tectonics.

How to cite: Haproff, P., Webb, A., Leung, C. Y. E., Hauzenberger, C., Zuo, J., and Ramírez-Salazar, A.: Litho-structural framework of the Eoarchean Tussaap supracrustal belt, Itsaq gneiss complex, southwestern Greenland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1792, https://doi.org/10.5194/egusphere-egu24-1792, 2024.

An Archean ancestral landmass of Columbia supercontinent is a matter of concern to geologists. A single supercontinent called “Kenorland” or several supercratons have been mainly proposed, but more evidence from geological records and palaeomagnetism argue for the latter supercraton solution, in which two long-lived supercratons Sclavia and Superior were recently reconstructed. Studies has shown that the Northern China blocks, including the North China and Tarim cratons, the Alxa, Quanji blocks, were involved in the reconstruction of Columbia. However, their affinity in Archean supercratons remained little constrained. Owe to the lack of reliable palaeomagnetic data old than 1.8 Ga, the geological piercing points in these blocks could allow us to figure out the question. Then, compilation and comparison of Neoarchean–early Paleoproterozoic magmatism, metamorphism, and sedimentary records, have been conducted among these blocks. As a result, 2.4-2.2 Ga magmatism and khondalite-like sedimentary sequence may be used as indicators of the affinity of these blocks in northern China. Consequently, the Kuruktag Block, Quanji Block, Alxa Block, TNCO, Khondalite Belt have similar evolutionary history during the Neoarchean-Paleoproterozoic, suggesting their close affinity at that period. Besides, the North China craton and Dharwar craton of India shield were proved to be connected during the Archean-Proterozoic. And latest study indicate the Dharwar craton was one of the Sclavia supercraton. Therefore, we speculate that during the Neoarchean–early Paleoproterozoic, the Kuruktag-Quanji-Alxa-TNCO-Khondalite Belt link was close to the Dharwar craton in Sclavia supercraton. The absence of Siderian glacial event (ca. 2.4 Ga) in the Alxa, Quanji, Kuruktag blocks and TNCO, Khondalite Belt of the North China craton rule out the link with Superia, which is common in Superia supercraton. Further geological and paleomagnetic studies are required to constrain the above hypothesis, the relation between these blocks clusters and other cratons, which is crucial to understand the origins of blocks in northern China.

How to cite: Zhang, Q. and Yao, J.: Paleogeographic affinity of Northern China block clusters in Archean-Paleoproterozoic supercraton solution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2507, https://doi.org/10.5194/egusphere-egu24-2507, 2024.

1 Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China.

2Department of Earth Sciences, The University of Hong Kong, Hong Kong, Hong Kong.

3Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, China.

* Corresponding author: wuzq10@ustc.edu.cn.

The origins of the Archean cratons were most important events in the early Earth and crucial for understanding how the early Earth worked. The mechanisms for the origins of the Archean cratons remain unclear. It is widely accepted that Archean tonalite-trondhjemite-granodiorite (TTG) plutons were derived from hydrous mafic magmas in the garnet/ amphibole stability field. Although the subduction can bring water to the mantle to produce granitic magma, the island Arc Model for the origin of continents meets fundamental challenges. The growing evidences support the plume-driven oceanic plateau models for the origin of continents. However, the lower parts of the oceanic plateau have been thought to be dry. How to generate the hydrous meta-basalt at the base of the oceanic plateau remain an open question.

Here we show that the Archean cratons resulted from the evolution of the hydrous magma ocean (Wu et al., 2023). The whole-mantle magma ocean created by the moon-forming giant impact likely evolved into an outer magma ocean and a basal magma ocean because the magma ocean would initially crystallize in the mid mantle and the basal magma ocean is denser than the overlying solid mantle. The basal MO at the beginning should contain a certain amount of water since extensive studies suggest substantial accretion of water-rich bodies during core formation. The major lower-mantle minerals have limited water storage capacity. Therefore, with progressive crystallization, the basal magma ocean becomes increasingly enriched in water. The basal magma ocean eventually becomes gravitationally unstable because of the enrichment of water. The triggered massive mantle overturns transported a large amount of water upward to the shallow part of the Earth and resulted in the major pulses of the crust and thick SCLM generations. The model can account for many observations including the source of water needed for generation of the continental crust, the major pulse of crustal growth around the end of the Archean, why the TTG and thick SCLM basically occurred in the Archean, and why only the Earth among inner planets was covered with the continental crust.

 

Wu, Z., Song, J., Zhao, G., & Pan, Z. (2023). Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle. Geophysical Research Letters, 50, e2023GL105178. https://doi.org/10.1029/2023GL105178

How to cite: Wu1, Z.: Water-induced mantle overturns and the origins of Archean cratons, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2870, https://doi.org/10.5194/egusphere-egu24-2870, 2024.

The BIFs in Bundelkhand Craton occurred as a discontinuous unit within the east-west trending Bundelkhand Tectonic Zone (BTZ). The BIFs were associated with amphibolite, calcsilicate rocks, and quartzite. The BIFs were massif in appearance in the Mauranipur (east of Bundelkhand Tectonic Zone, BTZ) that graded to layered variety in the Babina area (west of the BTZ).

The Bundelkhand BIFs were characterized by 45 to 55 wt.% SiO2 and 44 to 55 wt.% Fe2O3 content. The Al2O3 content was usually low and varied between > 1 to 3 wt%. Barring a few samples, the MnO and CaO contents are < 1 wt.%. The higher MnO (~ 3.70 wt.%) and CaO (~ 1 wt.%) implied a different redox condition and involvement of CaCO3 in the early stages of BIF formations. The ΣREE content of Bundelkhand BIFs varied between 10 – 38 ppm, with Eu/Eu*SN values between 1.1 to 1.5. Geochemically, the BIFs were classified as Algoma-type BIFs deposited by low-temperature hydrothermal fluids. Monoclinic amphiboles, quartz and garnet were the dominant silicate phase for Mauranipur BIFs. Hornblende was present with monoclinic amphibole in the garnet-absent BIFs. Isolated grains of magnetite were dispersed throughout the Mauranipur BIFs. In contrast, alternate hematite and SiO2-rich layers with locally developed low-T amphiboles characterized Babina BIFs. The Fe-rich oxides were mostly hematite. Mineral microstructure and P-T pseudo-section modeling implied Minnesotaite and Fe-Ca carbonate phases were the primary minerals in BIFs, deposited at temperature ~ 200°C at 0.05 to 0.1 GPa. The primary minerals experienced dehydration and decarbonization reactions, leading to the stabilization of amphibole and garnet at a temperature of ~450°C and pressure of 0.1—0.2 GPa. When plotted in a P-T diagram, the increase in temperature corresponds to tectonic activity and plutonism, leading to micro-bock accretion and growth of Bundelkhand Craton.

How to cite: Raza, M. B. and Nasipuri, P.: Mineralogy and P-T condition of Algoma type Banded Iron Formation from Bundelkhand Craton, North-Central India and their implications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2992, https://doi.org/10.5194/egusphere-egu24-2992, 2024.

Iron Formations (IF) are economically significant sedimentary rocks primarily formed in the Precambrian evolutionary history of the Earth. In the Precambrian period, Iron Formations were deposited within marine sediments on stable continental margins (superior-type) and in association with volcanic rocks and many volcanic Massive Sulphide (VMS) deposits (Algoma-type). Most scientists agree that for BIF to form, photosynthesis and changing ferrous iron from seawater into mixed-valence iron (oxy-hydroxide) oxides and carbonate phases during oxidation are needed.
The present study is based on the Superior-type BIFs from the Girar Supracrustal Belt of Southern Bundelkhand terrane, which mainly consists of Neoarchean K-rich granitoids with a minor volume of a schist complex, TTG, sanukitoids, and mafic-ultramafic layered intrusion. The Girar schist (metasedimentary) belt is mostly made up of two types of rocks: (i) quartzite and (ii) BIFs. There are also some dolomitic marble and chlorite schist lenses close to the quartzite/BIF boundary. The BIFs consist of thick-bedded quartz and hematite with magnetite. The quartzites display low-grade metamorphism of fuchsite- and hematite-bearing quartz arenite with thick meta-argillite (schist) laminae and lesser quartz pebble conglomerates.
P-T pseudosection modelling indicates that Fe-carbonates and iron-oxyhydroxides (minnesotaite) are the primary phases that stabilize at 200 – 250 O C, 0.1–0.15 GPa. Subsequently, the low-temperature phases experienced dehydration and decarbonisation reactions with an increase in temperature, leading to the stabilisation of hematite and magnetite. The absence of orthopyroxene in the BIFs suggests these rocks suffer amphibolite facies
metamorphism, which is uncommon in generally undeformed superior-type BIFs.

How to cite: Bisht, B. P. S.: Mineralogy and P-T conditions of Superior- type Iron Formation fromBundelkhand Craton, North Central India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3109, https://doi.org/10.5194/egusphere-egu24-3109, 2024.

EGU24-3114 | ECS | Orals | GD3.1

Reconstruction of the Tarim craton within Rodinia: constraints from magmatic- orogenic records in the Altyn belt 

Wei Li, Jinlong Yao, Guochun Zhao, and Yigui Han

The position of the Tarim craton within the Rodinia supercontinent has long been the focus of scientific debate, with competing models varying from internal to external positions. The Altyn belt in the southeast Tarim margin records an extensive Neoproterozoic magmatic-sedimentary successions which likely recorded the convergence of Tarim to Rodinia. Thus, we here investigated the granitoids exposed in the Kuoshi-Kalaqiaoka and Tula areas in the eastern and western segment of the South Altyn belt. We present new field geology, zircon U–Pb–Hf–O isotopes and H2O, and whole rock geochemistry data from these granitoids. Zircon U–Pb data yielded ages of 914 ± 3.9 Ma for the Tula granite, 919 ± 5.2 Ma and 932 ± 6.5 Ma for the Kuoshi granite. The Tula and Kalaqiaoka granite samples mostly display high ACNK values that are typical of S-type granitoids, consistent with the presence of Al-rich minerals, such as garnet and muscovite. In addition, the Tula granite have higher zircon δ18O (7.62 to 10.85‰, peaked at 8.9‰) and lower εHf(t) (-4.0 to +0.3) values, along with lower H2O content (medium values at 102 and 251 ppmw), indicating that the primary magmas were generated from recycled ancient crust in a water-deficient syn-collisional setting, with minor juvenile contribution. On the other hand, the Kuoshi granite have high Sr (169–259 ppm), Sr/Y (17.85–19.33) and (La/Yb)N (30–49) ratios that are indicating of adakitic affinity. The Kuoshi granite are also characterized by lower δ18O (4.15 to 9.81‰, peaked at 8.2‰) and εHf(t) values(−2.4 to 0.6), along with higher H2O content (medium values at 255 and 795 ppmw) and MgO. These signatures suggest that the Kuoshi pluton was formed by recycling ancient crust and subducted continental crust. Overall, the granitoids across the South Altyn belt reflect a transformation of tectonic regime from water-enriched subduction setting to water-deficient syn-collisional setting. Moreover, the Hf isotopes evolution tend of the early Neoproterozoic granitoids and Suoerkuli Group across the South Altyn belt also suggest a transformation from slab retreat to syn-collision in the early Neoproterozoic. Therefore, overall data and field relations across the Altyn belt indicate an early Neoproterozoic magmatic-sedimentary successions that are similar to that of the Eastern Ghats Belt in India. Given the available paleomagnetic data and detrital zircon age patterns, we conclude a position of the Tarim craton between Australian and North India block in the periphery of Rodinia, close to East Antarctica as well. This research was supported by NSFC Projects (42322208 and 41972238), National Key Research and Development Programs of China (2022YFF0802700 and 2023YFF0803604) and Hong Kong RGC GRF (17308023).

How to cite: Li, W., Yao, J., Zhao, G., and Han, Y.: Reconstruction of the Tarim craton within Rodinia: constraints from magmatic- orogenic records in the Altyn belt, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3114, https://doi.org/10.5194/egusphere-egu24-3114, 2024.

EGU24-3303 | ECS | Orals | GD3.1

Redox state of Archean surface environments: Insights from the Banded Iron Formations (BIFs) of the Western Dharwar Craton, Southern India  

Aindrila Mukherjee, Jayananda Mudlappa, Pritam Nasipuri, and Aadhiseshan Krishnasamy Raveendran

The interplay of geological, chemical and biological processes that drive the oxygenation of the oceans-atmosphere of the early earth are spatially linked to the emergence of biosphere. Banded Iron Formations (BIFs) from the Archean greenstone belts form important archives for understanding the redox conditions of Archean surface environments. The Archean Dharwar craton preserves BIFs in the volcano-sedimentary greenstone belts of two distinct stratigraphic units (older Sargur Group and younger Dharwar Supergroup) corresponding to a time span of 3300-2600 Ma.  These BIFs are confined to the highest stratigraphic levels forming summits of greenstone belts.  They show alternate layers of chert and iron oxides, and petrographic data reveal diverse mineralogy including oxides, carbonate, sulphide and silicate facies. The occurrence of riebeckite and stilpnomelane in BIFs of younger Dharwar Supergroup indicates recrystallization under low-grade metamorphism. Slightly higher abundances of CaO and Al2O3 reveal significant influence of crustal source and precipitation of CaCO3 during BIFs formation. Mesoscopic layers of chert and iron oxide with variable thickness suggest fluctuating redox state of surface environments. The higher enrichment of Ni (6-26 ppm) than the Cr content (3-19 ppm) with variable Sr concentrations may be attributed to feldspar breakdown during hydrothermal fluid acceleration. Trace element ratios (Y/Ho, Sm/Yb, Eu/Sm) coupled with positive Eu anomalies of the BIFs from both older Sargur Group and younger Dharwar Supergroup BIFs reveal dominant hydrothermal input in BIFs origin. The PAAS normalized REE data preclude major continental input in the origin of BIFs. The variable negative Ce anomalies imply periodic fluctuating surface environments (oxic to anoxic) at the dawn of the Great Oxidation Event close to 2340 Ma. This is consistent with the published Fe, N, and S isotope data on the BIFs of the Western Dharwar craton.

 

How to cite: Mukherjee, A., Mudlappa, J., Nasipuri, P., and Krishnasamy Raveendran, A.: Redox state of Archean surface environments: Insights from the Banded Iron Formations (BIFs) of the Western Dharwar Craton, Southern India , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3303, https://doi.org/10.5194/egusphere-egu24-3303, 2024.

EGU24-3394 | Orals | GD3.1

Paleoarchean volcanic stratigraphy and geochemistry of the mafic-ultramafic Kromberg Formation type-section, Barberton greenstone belt, South Africa. 

Eugene Grosch, Sibu Ndlela, David Murphy, Nicola McLoughlin, Jakub Trubac, and Jiri Slama

In this study, the c. 3.334 Ga Kromberg Formation of the Onverwacht Group, in the south-eastern limb of the Onverwacht Anticline in the Barberton greenstone belt (South Africa) is investigated. Various geodynamic models have been proposed for the evolution of the Kromberg Formation, but detailed geochemical constraints on the mafic-ultramafic sequence are sparse. The objectives are to constrain the Paleoarchean mantle source characteristics and geodynamic setting for the Kromberg mafic-ultramafic rocks, placed in the context of recent high-resolution field mapping data. To study the protolith volcanic rocks, sampling has been conducted to avoid areas affected by deformation-related alteration. In addition, screening for alteration due to Archean seawater silicification has also been conducted. In conjunction with major, trace and rare earth element data, this study presents the first whole-rock Lu-Hf isotope analyses of mafic-ultramafic rocks of the Paleoarchean Kromberg Formation type-section in the Barberton greenstone belt (Grosch et al., 2022). Three compositionally distinct volcanic rock types are identified namely Group 1 metabasalts, Group 2 metabasalts and komatiitic metabasalts. The geochemistry of these rock types will be presented, and a possible geodynamic setting on the early Earth will be explored.  

Grosch, E.G., Ndlela S., Murphy D., McLoughlin N., Trubac J., Slama J., (2022) Geochemistry of mafic-ultramafic rocks of the 3.33 Ga Kromberg type-section, Barberton greenstone belt, South Africa: Implications for early Earth geodynamic processes. Chemical Geology 605, 120947

How to cite: Grosch, E., Ndlela, S., Murphy, D., McLoughlin, N., Trubac, J., and Slama, J.: Paleoarchean volcanic stratigraphy and geochemistry of the mafic-ultramafic Kromberg Formation type-section, Barberton greenstone belt, South Africa., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3394, https://doi.org/10.5194/egusphere-egu24-3394, 2024.

EGU24-3563 | ECS | Orals | GD3.1

The geological record of H2 production in the Archean 

Renée Tamblyn and Jörg Hermann

The oxidation of iron from rocks during subaqueous alteration is a key source of the molecular hydrogen (H2) used as an energy source by chemosynthetic organisms, which may represent some of the earliest forms of life on Earth. In the Archean, a potential source of ultramafic material available for serpentinisation reactions that release H2 are komatiites. Komatiites are highly magnesian lavas, which contain evidence of extensive serpentinisation and magnetite (Fe2+Fe3+2O4) production close to the Archean seafloor. H2 production in komatiitic compositions has been modelled and experimentally investigated; however, the natural rock record has remained unexplored. Here, we examine the geological evidence of H2 production from the basaltic to komatiitic rock record held in Archean cratons. From the petrological investigation of thirty-eight samples of komatiitic basalt to komatiite, we identify the unique serpentinisation reaction responsible for H2 production from these lithologies. With support from over 1100 bulk rock geochemical analyses, we directly quantify Fe3+ and therefore H2 production of komatiites in the Archean. The chemical (high Mg) and physical (low viscosity flow) characteristics of komatiite flows allowed for extensive hydration and serpentinisation in oceanic plateaus, and therefore high H2 production available to chemosynthetic early life.

How to cite: Tamblyn, R. and Hermann, J.: The geological record of H2 production in the Archean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3563, https://doi.org/10.5194/egusphere-egu24-3563, 2024.

EGU24-4334 | Orals | GD3.1

Earth's evolution over time revealed by the Nb/U, Ce/Pb and Nb/Th ratios in the sources of mantle plumes. 

Alexander Sobolev, Adrien Vezinet, Aleksandr Chugunov, Mateo Esteban, Valentina Batanova, Nicholas Arndt, Charitra Jain, Stephan Sobolev, Evgeny Asafov, and John Valley

Magmas from mantle plumes are potentially the best monitors of Earth's compositional and thermal evolution over time. However, their erupted products are commonly modified by syn- and post-magmatic processes and thus do not fully retain original information about their mantle sources. Such data can be recovered from melt inclusions in olivine phenocrysts in the most primitive magmas from mantle plumes. Such inclusions, shielded by host olivine, retain original isotopic and critical trace element signatures of deep mantle sources even for Archean and Hadean Eons.

We will present the results of a study of chemical and Rb-Sr isotope composition (EPMA, LA-ICP-MS and RAMAN) of melt inclusions and chemical (EPMA, LA-ICP-MS) compositions of host olivines for komatiites and plume-related picrites with eruption age from 3.3 Ga to 1 Ka.

Recent advances in in-situ split stream LA-ICP-MS measurements of 87Sr/86Sr ratios and trace element contents of olivine-hosted melt inclusions revealed significant mantle source heterogeneities of magmas from individual plumes. The results are confirmed by geodynamic modelling (Jain et al., this meeting).

We show that the melt inclusions of most studied mantle plumes display heterogeneous populations in age-corrected 87Sr/86Sr ratios and include groups with model ages more than 1 Ga older than the emplacement age. The oldest inclusion groups found in Archean komatiites correspond to Hadean (4.3±0.2Ga, Vezinet et al., in review) and Eo-Paleoarchean (3.6±0.2 Ga) model ages. These and most inclusions from studied komatiites and picrites display Nb/U, Nb/Th and Ce/Pb significantly higher than in BSE.

Evolution over time of canonical proxies of continental crust generation (Nb/U, Th/U and Ce/Pb, Hofmann et al., 1986) in mantle plumes, combined with geodynamic modelling, suggests:

  • Most of the continental crust was generated in several Hadean and Archean pulses by plume-induced subduction and melting of the hydrated mafic/ultramafic crust or mantle. Hadean continental crust was subducted or/and reworked.
  • Restites left after extraction of continental crust were continuously subducted to the core-mantle boundary from the mid-Hadean and later recycled in Archean mantle plumes.
  • Active formation of both continental and oceanic crust in Hadean was governed by plume-induced subduction, which ceased after cold subducted material hindered the propagation of large plumes at the core-mantle boundary. After heating the recycled lithosphere at the core-mantle boundary, the process repeats, producing oscillating subduction and crustal formation in Hadean-Archean.

How to cite: Sobolev, A., Vezinet, A., Chugunov, A., Esteban, M., Batanova, V., Arndt, N., Jain, C., Sobolev, S., Asafov, E., and Valley, J.: Earth's evolution over time revealed by the Nb/U, Ce/Pb and Nb/Th ratios in the sources of mantle plumes., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4334, https://doi.org/10.5194/egusphere-egu24-4334, 2024.

The results of the U-Pb-Hf-O isotope study of zircon from (meta)igneous rocks sampled in all domains of the Ukrainian Shield allow recognition of the four main stages of continental crust formation:

1. The Eoarchean stage (ca. 4000-3600 Ma). Rocks of this stage occur in the Dniester-Bouh and Azov domains. In the former, they are represented by heavily metamorphosed enderbites and mafic schists reaching an age of 3.8 Ga. In contrast, tonalites with an age of 3.67 Ga were identified in the Azov Domain. The oldest zircon reaching an age of 3970 Ma was found in the Mesoarchean metadacite in the Azov Domain. The Eoarchean rocks are rare, but their presence indicates that crust-forming processes have started already in the Eoarchean, or even in Hadean, time.

2. The second major event took place between c. 3.2 and 2.7 Ma. Rocks, formed during this age interval, compose around half of the Ukrainian Shield. Considering the long duration of this event, it may have consisted of several separate episodes. The whole set of rock associations typical for the Archean continental crust, including TTG series, greenstone belts and sedimentary basins, has been formed. Hafnium isotope composition in zircon reveals the juvenile nature of this event. Some remobilization of the older crust is also recorded from several samples.

3. Nearly half of the rock assemblages were dated at ca. 2.15-1.90 Ga. In contrast to the Archean events that resulted in the formation of apparently more or less equant terranes, the Paleoproterozoic events led to the formation of orogenic belts. These belts comprise metamorphosed in amphibolite or epidote-amphibolite facies supercrustal sequences, and abundant granitic intrusions. According to the existing models, the formation of the orogenic belts was related to the assembly of Baltica as a part of the Columbia/Nuna supercontinent. Hafnium-in-zircon and whole-rock Nd isotopes indicate the predominantly juvenile nature of these rocks, with some contamination by the Archean crust.

4. The last major stage of the Ukrainian Shield evolution was linked to the formation of the Prutivka-Novohol large igneous province, which between 1.8 and 1.72 Ga affected the whole Shield. It resulted in the emplacement of numerous mafic dykes and layered massifs, alkaline intrusions, and huge anorthosite-mangerite-charnockite-granite complexes. All igneous rocks formed during this stage reveal signs of crustal contamination, although input of moderately depleted mantle material is also evident.

Obtained isotope and geochronological data demonstrate that the growth of the continental crust in the Ukrainian Shield was episodic. The mechanisms of the crustal growth were different at different times. During both Archean events, the main mechanism was mafic underplating with further remelting and generation of TTG series, whereas greenstone belts represent the results of mantle plume activity. In the Paleoproterozoic, the main mechanism of crustal growth was the subduction of the oceanic lithosphere that led to the formation of volcanic arcs. Mantle plumes remained an important mechanism of the input of mantle-derived material into the continental crust.

How to cite: Shumlyanskyy, L.: The main stages of the Ukrainian Shield evolution and plate tectonics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4724, https://doi.org/10.5194/egusphere-egu24-4724, 2024.

EGU24-4875 | ECS | Posters on site | GD3.1

Plume-induced continental crust growth rate in Early Earth:Insight from numerical modeling 

Xinyi Zhong, Zhong-Hai Li, and Yang Wang

The origin of Earth’s felsic continental crust is still a mystery. The continental crust requires two-steps partial melting of mantle rocks. There are two proposed hypotheses for the continental crust growth in the Early Earth. One is the subduction-related magmatism, e.g. island arc, that produces intermediate to felsic magma which constitutes the early buoyant continental crust. The other is that the magmatism induced by mantle plume creates the thick basaltic crust, and which partially melts into continental crust. However, both two models have their deficiencies. It is still a controversial topic that when plate tectonics begins, which is an obstacle for applying the subduction-induced model in the Early Earth. On the other hand, the plume-induced model seems to be inefficient to support the continental crust growth. The previous numerical studies haves generally focused on the mechanisms of the continental crust formation, while efficiency of the model remains unknown. Thus, we simulated the melt transport process and integrated petrological model in our numerical model to evaluate the efficiency and the plausibility of continental crust production by mantle plume in the Earth’s history. The comparison between our model results and the reconstruction model of continental crust growth provides a new insight for the problem. The results indicates that the mantle plume is an efficient and possible way to support rapid continental crust growth in the Archean. Other mechanisms, e.g. subduction, may take dominant role since the Proterozoic because of low efficiency of plume-induced continental crust production.

How to cite: Zhong, X., Li, Z.-H., and Wang, Y.: Plume-induced continental crust growth rate in Early Earth:Insight from numerical modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4875, https://doi.org/10.5194/egusphere-egu24-4875, 2024.

EGU24-5245 | Orals | GD3.1

Elemental fluxes into 3.0-billion-year-old marine environments: evidence from trace elements and Nd isotopes in banded iron formations from the Murchison Greenstone Belt, South Africa 

Johanna Krayer, Sebastian Viehmann, Alina Mayer, Toni Schulz, Christian Koeberl, Axel Hofmann, Jaganmoy Jodder, Matthias Willbold, and Stefan Weyer

Banded Iron Formations (BIFs) are authigenic, marine sediments directly reflecting the chemical composition of ancient seawater. BIFs serve as prime geochemical archives for the reconstruction of Precambrian marine environments. However, due to the scarcity of well preserved Archean rocks, atmospheric and hydrospheric environmental conditions within this time frame are still incompletely understood. In particular, elemental fluxes derived from continental weathering and submarine hydrothermal fluxes that affected ancient seawater chemistry are cornerstones for our understanding of the evolution of marine habitats through time. Here we present major- and trace element concentrations in combination with Nd isotopic compositions of 13 samples of Mesoarchean Algoma-type greenschist-facies BIFs from the ca 3.0 Ga old Murchison Greenstone Belt, South Africa. Individual Fe- and Si-rich layers are monitored for sample purity based on their chemical composition. Neodymium isotope compositions, in combination with trace element contents of BIF samples with varying amounts of clastic detritus, are further used to reconstruct the Murchison depositional environment and identify the origin of dissolved and detrital components entering the ancient ocean around 3.0 Ga ago.

Eight samples with low immobile element concentrations display typical shale-normalized Archean seawater-like rare earth and yttrium (REYSN) patterns with positive LaSN, EuCN, and GdSN anomalies, super-chondritic Y/Ho ratios, and an enrichment of heavy REYSN over light REYSN, implying an open marine-dominated depositional setting with contributions from submarine high-temperature, hydrothermal systems. A Sm-Nd regression line yields an age of 2.98 ± 0.19 Ga that overlaps with the proposed depositional age, suggesting negligible post-depositional alteration on the REY composition of the pure BIF layers. In contrast, higher concentrations of immobile elements (e.g., Zr) and/or non-seawater-like REYSN patterns are characteristic for the remaining five BIF samples, indicating elevated detrital input or post-depositional alteration. A regression line of the impure BIF layers yields an age of 2.49 ± 0.15 Ga, reflecting a potential post-depositional overprinting event such as the 2.6 Ga old Limpopo orogeny. The Nd isotopic compositions of pure and impure BIF samples cover a wide range of ca. two epsilon units suggesting a mixture of weathered mafic and felsic sources for the dissolved and suspended fluxes into the Murchison ocean.

How to cite: Krayer, J., Viehmann, S., Mayer, A., Schulz, T., Koeberl, C., Hofmann, A., Jodder, J., Willbold, M., and Weyer, S.: Elemental fluxes into 3.0-billion-year-old marine environments: evidence from trace elements and Nd isotopes in banded iron formations from the Murchison Greenstone Belt, South Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5245, https://doi.org/10.5194/egusphere-egu24-5245, 2024.

EGU24-5391 | ECS | Posters on site | GD3.1

Diverse P-T-t paths within the Neoarchean sagduction regime of North China Craton: insights from field data and numerical modeling 

Chenying Yu, Ting Yang, Jian Zhang*, Guochun Zhao, Peter A. Cawood, Changqing Yin, Jiahui Qian, Peng Gao, and Chen Zhao

The Neoarchean greenstone-granite rock association preserved in the Eastern Block of the North China Craton exhibits distinctive dome-and-keel structures. Although the metamorphic data from these rock assemblages provide valuable insights into the tectonic evolution of this region, the interpretation of the clockwise paths with nearly isothermal decompression (ITD) and the anticlockwise P–T paths involving near-isobaric cooling (IBC) remain inconsistent and controversial. By conducting 2D numerical models with the initial and boundary conditions similar to those of the Neoarchean Eastern Block, we investigated the coexistence of diverse P-T paths and determined their possible geodynamic regime. The model results demonstrate that the combination of crustal density inversion and heat from the high-temperature lower boundary initiates a crustal-scale sagduction process, leading to the formation of dome-and-keel structures. Additionally, we identified four primary types of P-T-t paths. Firstly, an anticlockwise IBC-type P-T-t path reveals the supracrustal rocks gradually subside to a deep crustal level, where they experience a prolonged residence period characterized by ambient mantle cooling without significant exhumation. Secondly, a clockwise ITD-type P-T-t path suggests the supracrustal rocks descend to the deep crust and are partly entrained by upwelling TTG magmas, leading to their rapid ascent to a middle crustal level. Thirdly, a newly identified crescent-type P-T-t path indicates an integrated burial-exhumation cycle, consisting of an initial burial stage with high dT/dP, followed by a rapid exhumation stage and a subsequent cooling stage exhibiting low dT/dP. Lastly, a hairpin-type P-T-t path highlights the slow exhumation rate experienced by deeply buried supracrustal rocks. The dome-and-keel structure and P-T-t paths observed in the numerical model are consistent with the geochronological, metamorphic and structural data of the Eastern Block. Based on these observations, we propose that the crustal-scale sagduction involving a mantle plume could responsible for the geological complexity of eastern China.

This work was financially supported by the National Natural Science Foundation of China (42025204) and National Key Research and Development Program of China (No. 2023YFF0803804).

How to cite: Yu, C., Yang, T., Zhang*, J., Zhao, G., Cawood, P. A., Yin, C., Qian, J., Gao, P., and Zhao, C.: Diverse P-T-t paths within the Neoarchean sagduction regime of North China Craton: insights from field data and numerical modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5391, https://doi.org/10.5194/egusphere-egu24-5391, 2024.

EGU24-6614 | Orals | GD3.1

Evolving Chemistry of Lithospheric Mantle Based on Oxygen Isotope and Trace Element Analyses of Olivines from Mantle Xenoliths across Earth’s History 

Ilya Bindeman, Valentina Batanova, Alexander Sobolev, Dmitri Ionov, and Leonid Danyushevsky

Oxygen is the most abundant element in the terrestrial mantle and crust. We have recently reported on a 0.2‰ δ18O decrease of continental mantle peridotites from the original primary Bulk Silicate Earth-Moon value of 5.57‰ [1] in the mid-Archean to the Phanerozoic explained by the initiation of surface recycling (linked to intensity and style of plate tectonics) sometime in the Archean. Even small variations in the volatile mass balance are critical in explaining phenomena such as the Great Oxidation Event at ~2.4 Ga that may have mantle origin. As low-δ18O subduction fluids are derived by the dehydration (and potentially oxidation) of low-δ18O interiors of subducted slabs, this work further explores this process to observe temporal changes related to the progressive input of volatile elements and potential lithospheric mantle oxidation. This study presents a record of trace elements measured in same olivines (Li, Na, Al, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Ga, Y, Zr) including oxidation-sensitive elemental ratios V/Sc and Zn/Fe for this collection. Prior melt-depletion of mantle peridotites, estimated using bulk Al2O3 content of the xenoliths, increases with age from ~25 to 35%, leading to depletion of Yb, Y, Co, Mn, Ca, P, with smaller effects on the elemental ratios.  We observe significant ranges of V/Sc (0.2-14), Li/Y and other ratios, not related to prior melt depletion that may be linked to subduction-related re-distribution of incompatible elements by subduction [2], and scattered correlation with age and δ18O values. Further trends will be analyzed during the talk after considering craton-specific domains and global trends. This work can potentially contribute to constraining a global mass balance of crustal growth and recycling based on co-variations of isotopes of a major element oxygen and trace elements in the predominant lithospheric reservoir of subcontinental mantle.

[1]Bindeman ea, (2022) Nat Comm 13, 3779; [2] Doucet ea, (2020) NatGeosci 13, 511.

How to cite: Bindeman, I., Batanova, V., Sobolev, A., Ionov, D., and Danyushevsky, L.: Evolving Chemistry of Lithospheric Mantle Based on Oxygen Isotope and Trace Element Analyses of Olivines from Mantle Xenoliths across Earth’s History, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6614, https://doi.org/10.5194/egusphere-egu24-6614, 2024.

EGU24-7106 | ECS | Orals | GD3.1 | Highlight

Fresh water on Earth four billion years ago 

Hamed Gamaleldien, Li-Guang Wu, Hugo K.H. Olierook, Christopher L. Kirkland, Uwe Kirsche, Zheng-Xiang Li, Tim Johnson, Sean Makin, Qiu-Li Li, Qiang Jiang, Simon A. Wilde, and Xian-Hua Li

The operation of a hydrological cycle (i.e., exchange of water between the land, oceans, and atmosphere) has significant implications for the emergence of life. The oldest confirmed single-celled organisms at ~3.48 billion years ago (Ga) (Pilbara Craton, Western Australia) are thought to have formed in the presence of meteoric (fresh) water on emerged (subaerial) land in a hot spring environment. However, when widespread interaction between fresh water and emerged continental crust first began is poorly constrained. In this study, we use >1000 oxygen isotope analyses of Jack Hills detrital zircon to track fluid-rock interactions from the Hadean to the Paleoarchean (~4.4–3.1 Ga). We identify extreme isotopically light O (i.e., δ18O < 4.0 ‰) values older than 3.5 Ga. The data define two periods of magmatism with extreme isotopically-light O as low as 2.0 ‰ and –0.1 ‰ at around 4.0 and 3.4 Ga, respectively. Using Monte Carlo simulations, we demonstrate that such values can only be generated by the interaction of crustal magmatic systems with meteoric water. Our data constrains the earliest emergence of continental crust on Earth, the presence of fresh water, and the start of the hydrological cycle that likely provided the environmental niches required for a life less than 600 million years after Earth’s accretion.

How to cite: Gamaleldien, H., Wu, L.-G., Olierook, H. K. H., Kirkland, C. L., Kirsche, U., Li, Z.-X., Johnson, T., Makin, S., Li, Q.-L., Jiang, Q., Wilde, S. A., and Li, X.-H.: Fresh water on Earth four billion years ago, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7106, https://doi.org/10.5194/egusphere-egu24-7106, 2024.

Several studies have already concluded the presence of 7-8 ocean equivalent water (OCE) in the mantle of earth, structurally occurring as H+/OH. This can affect the seismic anomaly, mechanical strength, ionic diffusion, etc. of the mantle. The upper mantle is primarily composed of olivine, which first transforms to wadsleyite and then to ringwoodite at ~13 and ~18 GPa, respectively. Petrological and mineralogical experiments have demonstrated that H, occurring as point defects can act as a source of water in the upper mantle. Being the abundant mineral in upper mantle, it is very important to investigate the ability of olivine to act as a potential mineral phase to house water. Incorporation of water in mantle minerals has been a burning topic for many theoretical and experimental works. Even a trace amount of water in mineral structure can significantly alter their physical (e.g., elastic behaviour, seismic velocities, etc.) and chemical properties (e.g., ionic diffusion, electrical conductivity, etc.). FT-IR studies suggested that a rapid diffusion of H+ in olivine makes it a better candidate for point defects compared to larger and heavier OH ions. Karato & Jung (2003)  showed that increment of H concentration in olivine decreases its strength. Later, Mao et al. (2008) and Panero et al. (2010) observed qualitatively similar trend in high pressure olivine polymorphs. They observed drastic reduction in selective elastic constants of C11compared to C12 and C44 as H content increases in ringwoodite. Huang et al. (2005) found that temperature and water increases electrical conductivity in both the polymorphs. Yoshino et al. (2009) reported that a hike in temperature switches H-diffusion mechanism in olivine from proton conduction to small polaron conduction. The H diffusion in Fe-bearing olivine is experimentally shown to be dictated by (i) Proton-polaron (PP) mechanism and (ii) Proton-vacancy (PV) mechanism in <1 GPa. The PV is found to be valid for incorporating more water in olivine compared to PP. However, the second method, despite being strongly anisotropic, allows a faster diffusion. Much of the existing studies deals with temperature and water content as the key physical factors in controlling proton diffusivity. The fact that most of these studies have not carried out in the exact pressure (p) and temperature (T) conditions of mantle of Earth demand further studies on the same. Present study involves the study of H diffusion in lattice structure of olivine and wadsleyite; their mechanical stability, physical and chemical properties under mantle p–T conditions. Our results suggest a drop in seismic velocities in both olivine and wadsleyite phases. This can explain few outstanding geological events such as, weakening of upper mantle etc. This study will also provide a water budget in these mantle minerals. Therefore, the proposed research embarks on advancing theoretical understanding of hydrous mineral phases, which have a stability under extreme thermo-mechanical conditions.

How to cite: Das, P. K. and Karangara, A.: First principle investigations on the water budget in olivine phases: Implications towards the behavior of hydrous mantle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7388, https://doi.org/10.5194/egusphere-egu24-7388, 2024.

EGU24-9476 | Orals | GD3.1

Spatially explicit simulations of the effect of tidal energy dissipation on the climate on early Earth 

Georg Feulner, Benjamin Biewald, J. A. Mattias Green, Matthias Hofmann, and Stefan Petri

The potential impact of the increased rates of tidal energy dissipation on the climate on early Earth is usually assessed in terms of the global contribution to the energy balance which is small compared to the incoming solar radiation. However, tidal energy dissipation depends strongly on the distribution of landmasses, and regional energy input could, in principle, impact the local and global climate state via changes in circulation patterns and feedbacks in the Earth system. Here we investigate these effects by calculating tidal energy dissipation for a randomly generated continental distribution representative of early Earth, and three different rotation rates, and feeding it into a coupled climate model. Despite marginal global impacts, tidal energy dissipation can have significant regional effects caused by changes in ocean circulation and amplified by the ice-albedo feedback. These effects are strongest in climate states and regions where meridional heat transport close to the sea-ice margin is altered. This suggests that tidal heating could have contributed to sustaining regions with no significant ice cover.

How to cite: Feulner, G., Biewald, B., Green, J. A. M., Hofmann, M., and Petri, S.: Spatially explicit simulations of the effect of tidal energy dissipation on the climate on early Earth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9476, https://doi.org/10.5194/egusphere-egu24-9476, 2024.

EGU24-10677 | Posters on site | GD3.1

Geochemical and Nd isotopic constraints on the evolution of Neoarchean continental crust underlying the central Deccan Traps 

Marc C. Halfar, Bradley J. Peters, James M.D. Day, and Maria Schönbächler

Ancient rocks documenting early silicate Earth processes are only sparsely preserved on its modern surface. Some of the oldest known crustal lithologies (≤3.7 Ga) can be found within the Indian Shield. However, a substantial area of the western and central Indian basement has been covered by the ~66 Ma old Deccan flood basalts. Some Deccan-related mafic dykes in the Nandurbar-Dhule region of the Narmada-Tapi rift zone host xenolithic crustal material, which can be used to study the otherwise inaccessible basement. Textural and mineralogical heterogeneity amongst these xenoliths implies that they derive from different depths of a single column of crust and represent randomly sampled crustal rock types with possibly distinct heritages. Well studied examples of these dykes are the adjacent Rajmane and Talwade dykes south of Duhle, which host Neoarchean-aged [1] crustal xenoliths with highly variable 87Sr/86Sr ratios between 0.70935 and 0.78479 [2]. This led previous researchers to infer a genetic relationship of these xenoliths with rocks from the Dharwar Craton [1, 2].

In this study, xenolith samples are used to investigate the evolution of sub-Deccan continental crust and evaluate whether randomly sampled crustal lithologies share a common Hadean heritage that is similar to published data for Dharwar granitic rocks. Our samples (n = 17) originate from two mafic dykes near Talwade and Ranala in the Nandurbar-Dhule region. We report major and trace element abundances and 142Nd isotopic compositions. The CIPW norms of xenoliths define a nearly continuous petrological evolution trend from tonalites to reworked, orthoclase-rich granites, with subordinate trondhjemitic compositions. The vertical cross-section of crust underlying the dykes therefore provides an opportunity to study the geochemistry of evolving primitive continental crust. Trace element abundance data also conform to a tonalite-trondhjemite-granodiorite-like (TTG) composition for a subset of the xenoliths, whereas others resemble younger granitoids, which might represent reworked TTG equivalents, or younger intrusions.

The short-lived (t1/2 = 103 Ma) 146Sm-142Nd decay system is particularly sensitive to magmatic fractionation processes that occurred within the first ca. 500 Ma of Earth’s history. Heterogeneous 142Nd/144Nd compositions (expressed as μ142Nd = [(142Nd/144Nd)sample/(142Nd/144Nd)JNdi – 1] * 106) are typically restricted to Archean-aged rocks and reveal information about the preservation of mantle heterogeneity over geological timescales. The μ142Nd of dyke host lavas (n = 3) are heterogeneous (μ142Nd = -2.0 ±5.1 to +6.1 ±5.1) but unresolved from the terrestrial standard. Such heterogeneity suggests that the parental magmas to the dykes experienced complex lithospheric and crustal assimilation during their ascent. Felsic xenoliths have homogeneous μ142Nd compositions (μ142Nd = -0.9 ±2.3, 95% c.i., n = 7). Combined with the major and trace element data, this implies an extensively reworked crust underneath the Deccan Traps. The lack of recognizable μ142Nd anomalies is consistent with data of younger Dharwar granitoids [3] and may reflect regional overprinting of mantle μ142Nd heterogeneity at or before the Neoarchean emplacement age of the xenoliths.

 

[1] Upadhyay et al. (2015) J. Geol. 123(3), 295–307.

[2] Ray et al. (2008) Gondwana Res. 13, 375–385.

[3] Ravindran et al. (2022) Goldschmidt Abst. 10986.

How to cite: Halfar, M. C., Peters, B. J., Day, J. M. D., and Schönbächler, M.: Geochemical and Nd isotopic constraints on the evolution of Neoarchean continental crust underlying the central Deccan Traps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10677, https://doi.org/10.5194/egusphere-egu24-10677, 2024.

EGU24-10889 | Orals | GD3.1

Archaean record of the Singhbhum Craton, India: new insights from greenstone belts and cratonic cover sequences.  

Jaganmoy Jodder, Axel Hofmann, Marlina Elburg, and Rebeun Ngobeli

In recent times, the Archaean geological record of the Singhbhum Craton has been scrutinized regarding early Earth crustal processes, tectonics, magmatic-detrital zircon geochronology, early life research, and Fe-Mn mineralization associated with volcano-sedimentary successions. However, many of these studies are hampered by a lack of a basic stratigraphic framework of the various litho-stratigraphic units, complicating our understanding of the overall Archaean geology of the Singhbhum Craton. Here, we share first-hand information on the Palaeoarchaean greenstone belts and Meso-Neoarchaean intracontinental volcano-sedimentary sequence of the Singhbhum Craton.

New magmatic zircon U-Pb ages determined from felsic volcanic rocks of the Badampahar Group are represented by their crystallization age at c. 3.51 Ga. Intrusive granitoids exposed in the Daitari and Gorumahisani greenstone belts yield crystallization ages ranging from 3.38 to 3.29 Ga and having inherited zircons being 3.58, 3.55, and 3.51 Ga old. A granitoid intrusive into iron formation of the Gorumahisani greenstone belt has an age of c. 3.29 Ga.  Detrital zircons recovered from Koira Group sandstone intercalated with iron formation yield a maximum depositional age of 2.63 Ga. 

We demonstrate that Palaeoarchaean greenstones exposed in the northern and southern parts of the Singhbhum Craton consists largely of sub-marine mafic-ultramafic volcanic rocks interlayered with minor felsic volcanic and chemical sedimentary rocks. Importantly, the ca. 3.51 Ga felsic volcanic rocks from the Badampahar Group permit comparison with co-eval felsic volcanic units reported from the lower part of the Onverwacht, Nondweni, Warrawoona groups of the Kaapvaal and Pilbara cratons. Otherwise, new age constraints of the Koira Group allow for better correlations with Meso-Neoarchaean cratonic cover successions elsewhere. 

How to cite: Jodder, J., Hofmann, A., Elburg, M., and Ngobeli, R.: Archaean record of the Singhbhum Craton, India: new insights from greenstone belts and cratonic cover sequences. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10889, https://doi.org/10.5194/egusphere-egu24-10889, 2024.

EGU24-12762 | ECS | Orals | GD3.1

Boron isotopes in global TTGs trace the increase in deep crustal recycling in the Mesoarchean   

Jeroen Goumans, Matthijs Smit, and Kira Musiyachenko

Granitoids of the Tonalite-Trondhjemite-Granodiorite (TTG) group are a prime constituent of Archean cratons. Differences in the composition of these rocks relative to modern-day, more potassic granitoids have been proposed to reflect changes in the conditions and mechanisms of crust generation. By extension, these differences may indicate changes in the tectonic regime through geological time. Despite a continuously growing body of TTG research, consensus on TTG generation and Archean tectonic settings has not yet been reached. A remaining open question regarding TTGs is whether a reworked crustal component is present. Silicon and O isotopes have been previously employed to address this question and both isotope systems suggest that at least some TTGs indeed contain reworked material. Boron provides an alternative isotope system that can trace surface-altered material in magmatic rocks because B isotopes fractionate significantly at Earth’s surface but remain relatively unaltered at high temperatures. On modern-day Earth, the deep recycling of isotopically heavy seawater-derived B through subduction results in a diverse, but on average heavy, B isotope composition in arc granitoids. Conversely, juvenile granitoids formed in settings unrelated to subduction typically have mantle B-isotope values. These systematics are likely uniform and would apply to the Archean as well, given that Archean seawater also appears to exhibit isotopically heavy B. The B isotope system may thus be used to investigate the presence of subducted or otherwise surface-derived material in Archean granitoids. To this end, B isotopes were analyzed for a geographically and temporally spread sample set of pristine TTGs and related granitoids (n=45, from 9 different Archean terranes covering an age range of 3.78 to 2.68 Ga). This is a considerably larger and more geographically spread sample set than a B-isotope pilot study on TTGs (Smit et al., 2019), and may as such provide more globally representative results. The B isotope signature of TTGs seem to diversify over time, diverging more from mantle-derived values starting between 3.3 and 2.9 Ga. TTGs younger than 2.9 Ga exhibit up to δ11B = +10.5 ± 0.2‰, and 48% of the samples have δ11B values heavier than depleted mantle, whereas this is 18% for TTGs older than 3.3 Ga. The B isotope signature additionally diversifies with decreasing K2O/Na2O and La/Sm. Boron isotope compositions do not correlate with geochemical or petrological proxies for (post-)magmatic processes, such as weathering, metamorphism, hydrothermal alteration, or the loss of magmatic fluids, and therefore seem to be at least not significantly altered by these processes. Instead, isotopically heavy B in TTGs may be explained by the addition of a sodic and 11B-rich contaminant into the TTG source. These contaminant characteristics point to seawater-altered oceanic crust, possibly introduced to the TTG source through subduction. If this is correct, the temporal trend observed in the δ11B values in TTGs may reflect a shift from local and episodic to global and systematic subduction of oceanic crust in the Mesoarchean.

Smit, M.A. et al., 2019, Formation of Archean continental crust constrained by boron isotopes: Geochemical Perspectives Letters, doi:10.7185/geochemlet.1930.

How to cite: Goumans, J., Smit, M., and Musiyachenko, K.: Boron isotopes in global TTGs trace the increase in deep crustal recycling in the Mesoarchean  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12762, https://doi.org/10.5194/egusphere-egu24-12762, 2024.

EGU24-12921 | Posters on site | GD3.1 | Highlight

Earth’s early tectonic modes and implications for habitability 

Peter Cawood and Priyadarshi Chowdhury

Tectonic mode manifests how a planet’s interior is cooling, and it encompasses all the geological activities (e.g., magmatism, deformation, metamorphism, sedimentation) that characterize the planetary body. Tectonic processes exert first-order control on factors key to planetary habitability (e.g., Southam et al., 2015). For example, tectonic mode controls the long-term prevalence of surface oceans, the sustenance of physicochemical conditions (e.g., temperature) favourable for metabolic activity, fluxing of elements in and out of the planet’s interior and thereby, the availability of bio-essential nutrients (e.g., C, O, H, N, P, S) (Cockell et al., 2016). However, all tectonic modes do not regulate these processes efficiently. For example, stagnant-lid mode restricts heat and material exchange between a planet’s interior and surficial reservoirs compared to plate tectonics. Further, certain factors determining a planet’s tectonic mode – like internal heat budget, mechanical behaviour of rocks, and volatile content – can vary with time, leading to the prevalence of different tectonic modes during planetary evolution. Thus, a planet’s habitability is critically intertwined with its tectonic evolution.

Modern Earth is the only known planet with plate tectonics, felsic crust, and life. Plate tectonics has resulted in a Goldilocks environment for long-term habitability via chemical cycling across the Earth system, regulating temperature through the carbonate-silicate cycle, sustaining oceans at the surface, and developing bimodal hypsometry with emergent felsic crust releasing bio-essential minerals through weathering and erosion. This has resulted in diverse habitats facilitating life’s complex phylogenetic tree. However, life initiated on Earth in the Hadean or early Archean when non-plate-tectonic modes like the stagnant- or squishy-lid modes are inferred to be prevalent (e.g., Cawood et al., 2022). Their potential to promote habitability is unknown, with few studies suggesting that they may lead to habitable conditions (e.g., Tosi et al., 2017). Nevertheless, our terrestrial planetary neighbours’ records suggest that such modes are unlikely to provide the environmental stability necessary to develop a long-term phylogenetic landscape. The geochemical cycling of elements through these modes may occur (e.g., via magmatism and episodic recycling of lithosphere) but is likely to be spatially and temporally discontinuous and limited, thereby limiting the supply of bio-essential nutrients and longevity of oceans on a planetary surface. As such, these modes inhibit a surficial environment in long-term dynamic equilibrium, leading to inhospitable habitats either through the development of a run-away greenhouse (e.g., Venus) or the loss of early atmosphere and oceans to space (e.g., Mars).

Thus, the tectonic evolution of Earth and its resultant habitability are a predictable consequence of its position, composition, size, and heat energy within the solar system. These conditions may serve as a template to search for exoplanet habitability; however, a degree of unpredictability will remain in knowing whether a similar set of planetary criteria would produce the same outcome.

References:

Cawood et al., 2022. Reviews of Geophysics, 60, e2022RG000789

Cockell et al., 2016. Astrobiology, 16(1), pp.89-117.

Southam et al., 2015. Planets and Moons, 10, pp.473-486.

Tosi et al., 2017. Astronomy & Astrophysics, 605, p.A71.

How to cite: Cawood, P. and Chowdhury, P.: Earth’s early tectonic modes and implications for habitability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12921, https://doi.org/10.5194/egusphere-egu24-12921, 2024.

The Limpopo Belt of southern Africa is a classical Paleoproterozoic orogenic belt that is believed to have resulted from the collision between the Kaapvaal and Zimbabwe Cratons. Previous studies have primarily focused on geochronology, petrology, and geochemistry of different rock assemblages, resulting in a general tectonic framework indicating at least two significant tectonothermal events from Mesoarchean to Paleoproterozoic. However, the spatial and temporal relationships between these events, as well as their overall structural patterns in the field, are poorly understood. The Central Limpopo Belt contains the best lithological exposures of different ages, making it the most promising area for detailed structural mapping and analysis, and for gaining a better understanding of these issues.
Based on the detailed field-based structural analyses, four generations of deformation were identified. The earliest D1 deformation is characterized by the penetrative S1 foliations only preserved within the 3.6-3.4 Ga anorthosites that now occur sporadically as xenoliths or boudins in the highly deformed 2.9-3.3 Ga Sand River gneiss. S2 are penetrative gneissic foliations that were extensively developed in the Sand River gneiss and were intensively superimposed by subsequent deformations into tight to isoclinal folds. After restoration of their attitude, S2 foliations strike NW-SE and dip steeply to SW at high angles, indicating that the D2 deformation experienced a roughly NE-SW-oriented compression between 2.9-2.6 Ga. D3 deformation resulted from significant NW-SE-oriented compression that intensively superimposed the earlier S2 fabrics into vertically inclined isoclinal folds and tectonites S3-L3. Strain measurements on these tectonites indicate that all pre-existing rock assemblages were stretched or sheared along the vertical orientation, resulting in the development of numerous sheath folds in the Sand River gneiss and 2.6-2.7 Grey gneiss. Associated with the zircon ages from anatexis melts, the D3 deformation most likely occurred at 2.1-2.0 Ga. SHRIMP U-Pb zircon age dating recorded these two metamorphic ages of ~2.6 Ga and 2.0 Ga on a single zircon of the foliated Sand River gneiss. A regional large scale inclined open fold F4 gently refolded the D1-D3 fabrics and marked the final deformation of the Central Limpopo Belt, occurring sometime after ~2.0 Ga. 
Detailed structural data of this study, in combination of available geochronological and metamorphic data lead us to propose that the ~2.65 Ga and ~2.0 Ga tectonothermal events occurred under different tectonic environments. The ~2.65 Ga tectonothermal event developed coevally with D2 deformation and high-grade metamorphism during the NE-SW collisional event. In contrast, the ~2.0 Ga tectonothermal event occurred during a NW-SE-oriented collisional event between the Kaapvaal and Zimbabwe Cratons, resulting in the formation of the major Limpopo tectonic linear belt seen today.

Acknowledgement
This work was financially supported by the National Natural Science Foundation of China (42025204) and National Key Research and Development Program of China (No. 2023YFF0803804).

 

How to cite: Zhang, J., Brandl, G., Zhao, G., Liu, J., and Zhao, C.: Deciphering a complex Neoarchean-Paleoproterozoic collisional history between the Kaapvaal and Zimbabwe Cratons: new constraints from polyphase deformation of the Central Limpopo Belt, southern Africa , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14565, https://doi.org/10.5194/egusphere-egu24-14565, 2024.

EGU24-16380 | ECS | Orals | GD3.1

Linking early Earth’s internal and external reservoirs: a change in oxygen fugacity of sub-arc magmas across the Great Oxidation Event 

Hugo Moreira, Craig Storey, Emilie Bruand, James Darling, Mike Fowler, Marine Cotte, Edgar E. Villalobos-Portillo, Fleurice Parat, Luís Seixas, Pascal Philippot, and Bruno Dhuime

Plate tectonics exerts a first-order control on the interaction between Earth’s reservoirs. Atmospherically-altered surface materials are recycled to the mantle via subduction, while volatiles from the mantle are liberated to the atmosphere via volcanism. This cycle regulates much of Earth’s climate, ocean levels and metallogenetic processes within the continental crust. However, the interplay between Earth’s atmospheric changes and the geochemical evolution of mantle-derived magmas has remained obscure for the ancient geological history. This has led to multiple conflicting models for the crustal evolution in the early Earth.

A time-integrated evolution of the mantle-crust-atmosphere-hydrosphere interaction is yet to be fully established. For instance, secular change of the ocean and atmosphere system is evident from several proxies but the feedback of these changes to magmatic and geochemical processes in the lithosphere remain unclear. Moreover, no clear consensus has been reached on the timing of modern-style plate tectonic initiation and the evolution of net growth of the continental crust.

To explain overt and cryptic global trends in the geochemistry of magmatic rocks, a better understanding of mineral reactions and how these control trace element evolution in magmas at the lithosphere-scale is paramount. For example, the elemental and isotopic composition of apatite inclusions hosted by zircon offers a way to better understand the evolution of magmas and, to some extent, the nature of magma sources. These proxies rely on the robust data acquisition of other isotope systems with different geochemical behaviour, such as U-Pb and Lu-Hf analyses in the host zircon crystal.

A combination of methods and proxies including the elemental composition of apatite via EPMA and the oxygen fugacity based on sulphur speciation via μ-XANES of apatite inclusions was applied to ancient sub-arc magmas formed in regions akin to modern subduction zones. These magmas share a common mantle source but crystallised more than 200 million years apart (at 2.35 and 2.13 billion years ago). Importantly, they bracket the Great Oxidation Event, when atmospheric oxygen levels increased by five orders of magnitude, causing a permanent and dramatic change in Earth’s surface chemistry. As such, these sub-arc magmas were investigated as potential tracers of the interaction between Earth’s atmosphere and the mantle.

The information from several inclusions from co-magmatic rocks can then be interpreted in the light of U-Pb, Lu-Hf, trace elements and oxygen isotope analyses of the host zircon grains. Altogether, the results show a shift in oxygen fugacity of sub-arc magmas across the Great Oxidation Event. The change in oxygen fugacity is thought to be caused by recycling into the mantle of sediments that had been geochemically altered at the surface by the increase in atmospheric oxygen levels. This study opens a wide window of opportunities for the time-integrated investigation of the interaction between atmosphere and oceans with the evolving terrestrial mantle.

How to cite: Moreira, H., Storey, C., Bruand, E., Darling, J., Fowler, M., Cotte, M., Villalobos-Portillo, E. E., Parat, F., Seixas, L., Philippot, P., and Dhuime, B.: Linking early Earth’s internal and external reservoirs: a change in oxygen fugacity of sub-arc magmas across the Great Oxidation Event, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16380, https://doi.org/10.5194/egusphere-egu24-16380, 2024.

EGU24-18408 | Orals | GD3.1

Archean continental crust formed by melting mafic cumulates 

Matthijs Smit, Kira Musiyachenko, and Jeroen Goumans

Large swaths of juvenile crust with tonalite-trondhjemite-granodiorite (TTG) composition were added to the continental crust from about 3.5 billion years ago. Although TTG magmatism marked a pivotal step in early crustal growth and cratonisation, the petrogenetic processes, tectonic setting and sources of TTGs are not well known. Part of this issue is the general difficulty in disentangling the chemical effects of fractional crystallization and partial melting, which impedes constraining primitive melt compositions and, by extension, investigating source-rock lithology and composition. To investigate these aspects, we assessed the composition and petrogenesis of Archaean TTGs using high field-strength elements that are fluid immobile, uniformly incompatible, but differently compatible between various residual minerals. The Nb concentrations and Ti anomalies of TTGs show the overwhelming effects of amphibole and plagioclase fractionation and permit constraints on the composition of primary TTGs. The latter are relatively incompatible element-poor and characterised by variably high La/Sm, Sm/Yb and Sr/Y, and positive Eu anomalies. Differences in these parameters do not represent differences in melting depth, but instead indicate differences in the degree of melting and fractional crystallisation. Primary TTGs formed by the melting of rutile- and garnet-bearing plagioclase-cumulate rocks that resided in the roots of mafic proto-continents. The partial melting of these rocks likely was part of a causal chain that linked TTG magmatism to the formation of sanukitoids and K-rich granites. These processes explain the growth and differentiation of the Archean continental crust, without requiring external forcing such as meteorite impact or the start of global plate tectonics.

How to cite: Smit, M., Musiyachenko, K., and Goumans, J.: Archean continental crust formed by melting mafic cumulates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18408, https://doi.org/10.5194/egusphere-egu24-18408, 2024.

EGU24-19222 | ECS | Posters on site | GD3.1

Petrogenetic and Geochemical studies of Sittampundi Anorthosite Complex, Southern Granulite Terrain, India. 

Amandeep Kaur, Rajagopal Krishnamurthi, and Nachiketa Rai

The Sittampundi Anorthosite complex (SAC), in the Southern Granulite terrain of Peninsular India, is a layered Archean anorthosite comprising gabbroic rocks at the base overlain by leucogabbros and anorthosites interlayered with well-developed massive chromitites. The complex has been subjected to high-pressure granulite facies (800-900°C and 11-14 Kbar) metamorphism and later retrogressed to amphibolite-facies metamorphism (550-480°C and 5.5-4.5Kbar) during exhumation (Chatterjee et al., 2022). Detailed petrography, mineral chemistry as well as major and trace element geochemistry have been used to constrain its petrogenesis and geodynamic setting.

The presence of highly calcic plagioclase and igneous amphibole indicates that magma was quite hydrous in nature. Chromites are Fe-Al rich in nature, and on the differentiation diagram, they plot near to podiform chromites and supra-subduction zone setting. Geochemical trends in major and trace elements indicate that the gabbro, leucogabbro and anorthosites were derived from the fractionated magma. However, the mineral assemblage and chromite chemistry in chromitite indicate they formed due to magma mixing.  Based on experimental studies, the composition of plagioclase limits the pressure to 2-3kb and depth of crystallization to approximately 7-11 kilometres. The findings of this study indicate the hydrous magma parental to SAC originated in a subduction zone setting in the Neoarchean.

How to cite: Kaur, A., Krishnamurthi, R., and Rai, N.: Petrogenetic and Geochemical studies of Sittampundi Anorthosite Complex, Southern Granulite Terrain, India., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19222, https://doi.org/10.5194/egusphere-egu24-19222, 2024.

EGU24-19385 | Orals | GD3.1 | Highlight

The conceptual model of the formation of Earth’s habitability 

Yun Liu

The difficulty in direct differentiation of the felsic crustal components from Earth’s mantle peridotite leads to a requirement for the presence of a large amount of hydrated mafic precursor of TTG in Earth’s proto-crust, the origin of which, however, remains elusive. The mafic proto-crust may have formed as early as  4.4 Ga ago as reflected by the Hf and Nd isotopic signals from Earth’s oldest geological records, i.e., zircons. The Archean continents, primarily composed of the felsic tonalite–trondhjemite–granodiorite (TTG) suite, were formed or conserved since  3.8 Ga, with significant growth of the continental crust since  2.7 Ga. Such a significant time lag between the formation of the mafic proto-crust and the occurrence of felsic continental crust is not easily reconciled with a single-stage scenario of Earth’s early differentiation. 
Here, inspired by the volcanism-dominated heat-pipe tectonics witnessed on Jupiter’s moon Io and the resemblances of the intensive internal heating and active magmatism between the early Earth and the present-day Io, we present a conceptual model of Earth’s early crust-mantle differentiation and the formation of habitability, which involves the tremendous heat obtained by the Moon-forming giant impact. It  forces Earth to choose an Io-like tectonics, which can efficiently dissipate heat and extract a mafic proto-crust from the early mantle, then followed by an intrusion-dominating regime that could account for the subsequent formation of the felsic continents as Earth cools. The episodic heat-pipe tectonics destroy most of rocks formed during Hadean era. The cool and hard rock layer formed due to the heat-pipe tectonics is essential for the formation of habitability of the earth. By this way, the required conditions by a habitable Earth, e.g., adequate surface temperature, aqueous sphere, and towering mountains, etc., would be appeared within a surprisingly short time. Therefore, the Moon-forming giant impact is the most important reason to make a habitable Earth. It not only brought tremendous heat into Earth and forced Earth to choose the volcanism-dominated heat-pipe tectonics but also completely destroyed the proto-atmosphere to avoid over-heated situations occurred like that of Venus at present. 

How to cite: Liu, Y.: The conceptual model of the formation of Earth’s habitability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19385, https://doi.org/10.5194/egusphere-egu24-19385, 2024.

EGU24-21184 | Orals | GD3.1

A widespread, short-lived, off-craton subduction source for hidden crustal growth in Earth’s infancy 

Eric Vandenburg, Oliver Nebel, Peter Cawood, Fabio Capitanio, Laura Miller, Marc-Alban Millet, and Hugh Smithies

The scarce geological record of Earth’s infancy, particularly before 3 billion years ago (Ga), is restricted to cratons, many of which likely originated as volcano-plutonic plateaus in a non-mobile lid geodynamic regime. However, this scarcity is at odds with the significant volumes of continental crust at 3 Ga that multi-proxy models of mantle depletion and crustal growth predict. This challenges the notion that plateau-type cratonic nuclei represent the predominant tectonomagmatic settings operating on the early Earth. Reconciling this paradox necessitates a “silent majority” of missing off-craton Archean crust of an uncharacterized affinity.

To investigate a potential rare remnant example of an Archean crust constructed away from cratonic nuclei, we report major and trace-element chemostratigraphic data from the 3.1 Ga Whundo Group of the Pilbara Craton, investigating the petrogenetic processes related to its formation. These data reveal three magmatic cycles of intercalated supracrustal successions comprising six groups: tholeiites, boninites, calc-alkaline BADR (basalt-andesite-dacite-rhyolite), high-magnesium ADR (including a subset of transitionally adakitic affinity), Nb-enriched basalts (NEB), and boninite-calc-alkaline hybrids. Th/Yb-Nb/Yb, Gd/YbN-Al/TiN, and Nd isotope systematics are inconsistent with contamination by felsic basement characteristic of cratonic cores, suggesting eruption onto thin, juvenile lithosphere that was only later incorporated into the Pilbara Craton.

How to cite: Vandenburg, E., Nebel, O., Cawood, P., Capitanio, F., Miller, L., Millet, M.-A., and Smithies, H.: A widespread, short-lived, off-craton subduction source for hidden crustal growth in Earth’s infancy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21184, https://doi.org/10.5194/egusphere-egu24-21184, 2024.

BG8 – Biogeosciences, Policy and Society

EGU24-758 | ECS | Orals | EOS4.4

Méditerranée 2000: Nurturing climate & ocean awareness 

Pimnutcha Promduangsri, Pariphat Promduangsri, and Estelle Bellanger

Humans have been suffering increasingly from the escalating impacts of climate and ocean change.  Well known examples are droughts, flooding, wildfires, acidification, heatwaves, sea-level rise, extreme storms and biodiversity loss.  If global average temperature rises by more than 1.5°C above pre-industrial levels, multiple climate tipping points will be triggered, and indeed, some already are.  This is and will be devastating for people around the world, especially those in coastal areas.  Thus, the need for immediate and informed action has become urgent.

This presentation will outline some of the many concrete, local actions in the area of climate and ocean, undertaken by Méditerranée 2000 (Med2000), an environmental association in the South of France.  Since 1989, the association has committed its efforts and educational programs to promoting sustainable development.  Each year, the association educates more than 25,000 young people and adults, led by a team of ten specialized speakers.  Med2000’s initiatives include awareness campaigns about climate and ocean change, hands-on educational activities in local schools and events for the general public.

How to cite: Promduangsri, P., Promduangsri, P., and Bellanger, E.: Méditerranée 2000: Nurturing climate & ocean awareness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-758, https://doi.org/10.5194/egusphere-egu24-758, 2024.

Academic researchers have long been advocates of various causes in the public arena; their public advocacy to take normative positions regarding various moral, political or social issues is not new. Today, however, in the face of the many challenges facing our society, the question of researchers' public positions, particularly in relation to the environment and climate change, is being raised anew. A number of climate scientists are committed in a variety of ways, from signing op-eds to participating in the work of NGOs or think tanks, supporting legal actions or writing blog posts. In addition, the development of traditional and social media has significantly increased the public exposure of these researchers. At the same time, serious questions are being raised within the research community. Many of its members are debating the ways in which researchers can engage in such public advocacy, its advisability, and even its very principle. However, these debates are currently taking place in informal settings and, given the extensive individual experience of a number of colleagues, it is probably time to engage in this discussion in a more collective and organised way, as is done in other research communities.

Here are some examples of questions that might be discussed. How can researchers engage in public advocacy safely and responsibly? What is the role of the scientist versus the expert versus the citizen versus the activist? Can a researcher be neutral when taking a public stance? What is the risk of appearing naive, manipulated or irrelevant? How should researchers deal with vested interests and private actors? Should the climate community research geoengineering? For whom should researchers develop climate services?

Because addressing these issues involves a tension between personal values that may go beyond those shared by the scientific community, they are essentially novel ethical questions. Some may be so intimidating that many researchers choose not to engage publicly. Care must therefore be taken to organise the exchange properly, for example by creating safe internal spaces for debate or by inviting experts from other disciplines.

The French CNRS Ethics Committee has recently published on opinions on these issues[1], which I will use as a starting point for a broader discussion.


[1]  https://comite-ethique.cnrs.fr/en/comets-opinion-freedom-and-responsibility-academic-researchers-public-advocacy/

How to cite: Guilyardi, E.: Freedom and Responsibility: the Ethics of Academic Researchers’ Public Advocacy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1344, https://doi.org/10.5194/egusphere-egu24-1344, 2024.

EGU24-2053 | Orals | EOS4.4

Perceiving Cape-Town-Geoethics (CTG) through Symbolic Universes (SU) 

Martin Bohle, Rika Preiser, and Eduardo Marone

Cultural milieus determine the worldviews and practices of individuals and groups, including the reception of norms that guide them. Semiotic Cultural Psychological Theory (SCPT) methods, such as Symbolic Universes (SU), describe relationships of reception, worldviews and practice, which also applies to geo-philosophical matters [1]. This essay outlines how geoethics, for example, the Cape Town Geoethics (CTG), might be received in different cultural milieus.

The Cape Town Statement on Geoethics was proposed in 2016 at the 36th IGC [2] and is the most accessible resource on geoethics. It bundles various concepts in a Kantian/Aristotelian virtue ethics framework, illustrated, for example, by the Geoethical Promise [3].

The SU method describes the understanding, insights, and behaviour of groups of people expressing their respective cultural milieus. Extensive fieldwork identified five SU for people of European (Western) cultures [4]. The SUs called "Ordered Universe", "Interpersonal Bond", "Caring Society", "Niche of Belongingness", and "Others' World" categorise milieus, for example, in terms of relation to power and institutions or sources of trust. They corroborated with the Kohlberg hierarchy of the level of societal coordination [5] that is applicable to associate CTG and the worldviews of individuals and groups [6].

Comparing CTG and SU indicates: (1) CTG resonates most positively with people of the cultural milieu “Ordered Universe” (highest Kollberg level); (2) in other milieus, the reception of the CTG will be “measured”; (3) reception will be adverse for the milieu “Others' World” (lowest Kohlberg level). Hence, considering the quantitative distribution of SUs (in Europe), European citizens' reception of CTG is likely restrained.

Given complex-adaptive social-ecological systems of the World and Nature couple world views, human practices, and societal and natural systems [7] (see example: [8]), whether variants of CTG “fitted to different milieus” should be developed is of practical relevance. The perception of norms and their acceptance or rejection is a system feature, of which geoethics should not be agnostic.

[1] Bohle M (2019) “Homo Semioticus” Migrating Out of Area? In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)Crisis. Springer Berlin Heidelberg, Cham, pp 295–307

[2] Di Capua G, et al. (2017) The Cape Town Statement on Geoethics. Ann Geophys 60:1–6. https://doi.org/10.4401/ag-7553

[3] Matteucci R, et al. (2014) The “Geoethical Promise”: A Proposal. Episodes 37:190–191. https://doi.org/10.18814/epiiugs/2014/v37i3/004

[4] Salvatore S, et al (2019) The Cultural Milieu and the Symbolic Universes of European Societies. In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)crisis. Springer, Cham, pp 53–133

[5] Kohlberg L (1981) The Philosophy of Moral Development: Moral Stages and the Idea of Justice. Harber & Row, San Francisco

[6] Bohle M, Marone E (2022) Phronesis at the Human-Earth Nexus: Managed Retreat. Front Polit Sci 4:1–13. https://doi.org/10.3389/fpos.2022.819930

[7] Preiser R, Woermann M (2019) Complexity, philosophy and ethics. In: Galaz V (ed) Global Challenges, Governance, and Complexity. Edward Elgar Publishing., Cheltenham, pp 38–62

[8] Talukder B, et al. (2023) Complex Adaptive Systems-Based Conceptual Framework for Modeling the Health Impacts of Climate Change. J Clim Chang Heal 100292. https://doi.org/10.1016/j.joclim.2023.100292

How to cite: Bohle, M., Preiser, R., and Marone, E.: Perceiving Cape-Town-Geoethics (CTG) through Symbolic Universes (SU), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2053, https://doi.org/10.5194/egusphere-egu24-2053, 2024.

EGU24-2607 | Posters on site | EOS4.4

Geoethics literacy:  Clarifying values, principles and behaviour 

David Crookall, Pimnutcha Promduangsri, and Pariphat Promduangsri

Learning about geoethics is not easy partly because the area is relatively new (having emerged in the early 2010s), the concepts are sometimes difficult to fathom and geoethics touches on such a wide area of geoscience phenomena and on such a variety of human issues.

Learning through active, participatory engagement has been developing since the 1960s, and is now deployed, albeit sporadically, across the full educational and training spectrum (from the humanities, through the social sciences to the hard sciences).  Methods that have developed in this learning paradigm include project work, internships, experiential learning, simulation/gaming, values clarification and many more.  We contend that participatory methods are an effective way in which to learn, as supported by much research.

Our poster invites you to participate in a game-like, values clarification exercise.  We have developed a new version of an exercise that we have used in several places (Austria, Costa Rica, France, online) to unravel the knotty relations among values, principles and behaviours related to geoethical issues and dilemmas.

It is possible to play alone, but it is more enlightening and engaging to play in pairs or small groups.  Please bring a friend or two to our poster and participate in our exercise.  The basic process of the exercise can be adapted to your own specific areas of interest.  We look forward to seeing you – please bring a pencil.

(This poster was originally intended as a workshop in a short course, but our SC proposal was declined.)

How to cite: Crookall, D., Promduangsri, P., and Promduangsri, P.: Geoethics literacy:  Clarifying values, principles and behaviour, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2607, https://doi.org/10.5194/egusphere-egu24-2607, 2024.

EGU24-3568 | Posters on site | EOS4.4

Exploring the horizon of geosciences through the lens of geoethics 

Silvia Peppoloni and Giuseppe Di Capua

Geosciences play an indispensable role in the functioning of contemporary societies. Nevertheless, the technological aspects associated with the practical application of geoscientific knowledge, should not overshadow the fundamental contribution of geosciences to shaping human thought. Geosciences have not only influenced but continue to shape our perception of the world, its interrelationships, and evolution.

The ongoing ecological crisis, with its environmental, social, cultural, economic, and geopolitical implications, has stemmed from an imprudent trajectory in human development. Regrettably, there have been instances where geosciences have contributed to this irresponsible path. This oversight has led to an undervaluation of the social and cultural significance inherent in geological disciplines and the crucial role they can play in addressing current global challenges to support human societies.

Geoethics, as the ethics of responsibility towards the Earth system, is grounded in the comprehensive understanding provided by geoscientific knowledge of the complexity of reality. It stands out as the optimal tool for cultivating a new perspective on geosciences, recognizing them as fundamental disciplines crucial for addressing global environmental challenges. This recognition extends beyond technical considerations, emphasizing their cultural significance. By virtue of their epistemological foundations, the geosciences collectively represent an invaluable reservoir of knowledge for human civilization. They are indispensable for redefining the intricate relationship that binds us, as humans, to the Earth.

For this reason, geoethical thought should serve as a complementary element to knowledge in the education of geoscientists. It aims to furnish them with a principled framework and ethical values, offering guidance for any application of geoscientific knowledge to the natural environment and human communities. Additionally, geoethical thought is the ground on which to set a shared, global ethical foundation, facilitating the advancement of our interactions with nature. It seeks to actualize an ecological humanism that forms the basis for human well-being and a more sustainable development of socio-ecological systems. The geoethical perspective redefines the cultural significance and objectives of the geosciences. Geoeducation and communication emerge as fundamental tools for bridging the gap between geosciences and society. They play a crucial role in promoting geoscientific knowledge, highlighting not only its scientific value in providing technical solutions to the ecological crisis but also emphasizing the philosophical dimension of geosciences, the geosophy of living consciously and responsibly within the Earth system.

How to cite: Peppoloni, S. and Di Capua, G.: Exploring the horizon of geosciences through the lens of geoethics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3568, https://doi.org/10.5194/egusphere-egu24-3568, 2024.

EGU24-3586 | Posters on site | EOS4.4

An infrastructure for researching on geoethics and facilitating its international promotion 

Giuseppe Di Capua and Silvia Peppoloni

The development of the theoretical foundations of geoethics and its practical applications have had a notable boost in recent years, seeing the involvement of a growing number of scholars from different disciplines. This has increasingly necessitated the creation of spaces where reflections, discussions, results, and study materials can be shared. The network of scholar relationships has progressively developed physical and conceptual spaces for discussions. The goal has been to sustain conceptual consistency in geoethical thinking by anchoring reflections in the discipline's historical evolution and fostering further developments through open analysis, welcoming contributions from diverse disciplinary backgrounds. Today, what can be defined as a research infrastructure on geoethics and the promotion of its contents possesses a complex structure, serving as a convergence point for various cultural and scientific experiences.

At the core of this infrastructure lies the International Association for Promoting Geoethics - IAPG (https://www.geoethics.org), established in 2012. It consists of an Executive Committee, national sections, and Task Groups focusing on specific topics within geoethics. More recently, two new entities have augmented this infrastructure: i) the Commission on Geoethics of the International Union of Geological Sciences (IUGS), established in February 2023, that is the supporting branch of the IAPG to the IUGS and the IUGS body that officially deals with geoethics and social geosciences for the Union; ii) the Chair on Geoethics of the International Council for Philosophy and Human Sciences (CIPSH, an organization operating under the umbrella of UNESCO), established in December 2023, with the aim of expanding and reinforcing an international research network of institutions, not-governmental organizations, and individual scholars to foster interdisciplinary initiatives for bridging geosciences, humanities, and social sciences through geoethics.

The research infrastructure on geoethics has been enriched over time with two editorial initiatives: a) SpringerBriefs in Geoethics series by Springer Nature (https://www.springer.com/series/16482), founded in 2020 and supported by the IAPG, that envisions a series of short publications that aim to discuss ethical, social, and cultural implications of geosciences knowledge, education, research, practice and communication; b) the Journal of Geoethics and Social Geosciences (https://www.journalofgeoethics.eu/), a diamond open access publication of the National Institute of Geophysics and Volcanology (Rome, Italy) and supported by the IAPG, founded in 2021.

Finally, the research infrastructure on geoethics is complemented by the School on Geoethics and Natural Issues (the “Schola”), founded in 2019 (https://www.geoethics.org/geoethics-school). The “Schola” is a place for teaching and learning of the principles and values of geoethics in the light of the philosophy and history of Earth sciences. The intent is to provide background knowledge and the evaluation skills necessary to understand the complex relationship between human action on ecosystems and the decisions geoscientists make in the discipline that impact society, including improving the awareness of professionals, students, decision-makers, media operators, and the public on an accountable and ecologically sustainable development.

How to cite: Di Capua, G. and Peppoloni, S.: An infrastructure for researching on geoethics and facilitating its international promotion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3586, https://doi.org/10.5194/egusphere-egu24-3586, 2024.

The ocean has started to attract more attention in the recent past with the notions of Blue Economy and Blue Growth becoming rallying points for a new frontier for investments [1]. Many countries and institutions prepare policy papers promising to end poverty, a push for new technologies and profits to fund the development. A recent systematic review of the literature [2], however, found no trace of articulated ethics and justice notions in midst of all the lofty hope and hype surrounding the often blurred concepts. The increasing financialisation of technological developments accelerated through digitalisation and the internet are creating increasing injustices to humans and harm to nature. But, as Rushkoff argues [3], the possibilities for feedback and more circular reasoning have potential to teach everybody that there is no escape from the natural world, thus weaning us from the hyperbole of permanent exponential growth. Here it is argued that critically engaged ocean and geo-sciences with their inherent message of a changing planet through deep time can contribute to debunking the ahistorical promise of fixing self-created problems by starting on a presumed ‘clean slate’. We frequently observe a pattern of wanting to solve the damage provoked by one technology with more technology, e.g. deep sea mining [4] or further technology development in fisheries and aquaculture [5]. At country level, these deliberately disruptive industrial approaches often pay little attention to working with the affected small-scale wild food producers who account for a quarter of global production. Instead, harnessing a combination of traditional and indigenous knowledges and providing intelligible access to the sciences holds significant potential for less destructive pathways. That would also be consonant with the promotion of knowledge co-creation during the UN Ocean Decade in pursuit of a vision of ‘the science we need for the ocean we want’. Practice of co-creation will require some rethinking of the self-image of many sciences and adaptations to typical project formulation and flows. In return, this is expected to produce valuable new insights in addition to opportunities for cooperation and blue justice as steps towards transformations based on ethical principles.

 

[1] World Bank. (2016). Oceans 2030: Financing the blue economy for sustainable development. Blue Economy Development Framework, Growing the Blue Economy to Combat Poverty and Accelerate Prosperity. World Bank Group, Washington DC.

[2] Das, J. (2023). Blue Economy, Blue Growth, Social Equity and Small-scale Fisheries: A Global and National Level Review. Studies in Social Science Research, 4(1):45 p. DOI: https://doi.org/10.22158/sssr.v4n1p38

[3] Rushkoff, D. (2022). Survival of the richest. Escape fantasies of the tech billionaires. Scribepublications, UK, ISBN 978-1-915590-24-4, 212 p.

[4] Zenghui Liu, Kai Liu, Xuguang Chen, Zhengkuo Ma, Rui Lv, Changyun Wei, Ke Ma. (2023). Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology, 33(9):1083-1115. https://doi.org/10.1016/j.ijmst.2023.07.007.

[5] FAO. (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. Rome, FAO. doi:10.4060/cc0461en

How to cite: Nauen, C. E.: Can geosciences help inserting social justice notions into Blue Economy narratives?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4054, https://doi.org/10.5194/egusphere-egu24-4054, 2024.

Science indicates that human impact on the planet's climate is clear. Over the past 30 years, climate change has shifted from being primarily a scientific concern to emerging as one of the defining environmental challenges within our society. However, science alone cannot guide us on how to address this crisis. This challenge is also about how we envision living together, what we collectively value, and the level of risk we are prepared to assume. It fundamentally pertains to the kind of society we aspire to, making education a pivotal component. Inspired by the Paris Agreement, the time has arrived for Climate Change Education. It derives its momentum from the aspirations and mobilization of the youth, making it the most potent transformative action in response to climate change.

Climate Change Education comes with unique and exciting opportunities. Firstly, it offers a chance to learn about science in general and climate science specifically, drawing from authoritative sources like IPCC reports. Secondly, it provides an avenue to acquire life skills, humanities knowledge, and insights into global citizenship, imparting a holistic perspective to the young generation on a global scale. Lastly, it fosters critical thinking, hopeful hearts, and empathy in an ever-evolving educational landscape. However, Climate Change Education presents numerous challenges as it strives to balance the development of cognitive, emotional, and practical aspects within existing educational systems. Educators need to be prepared for this unique combination of ‘head’, ‘heart’, and ‘hands’.

The mission of the Office for Climate Education (OCE) is precisely to empower educators in preparing young generations with a robust understanding of climate change and the skills needed to act as global citizens in a changing world. The OCE, driven by collaboration between climate science and educational communities, develops sets of pedagogical resources, offers teacher professional development opportunities, and facilitates networks of practice worldwide. As a pivotal participant in the newly established Greening Education Partnership, the OCE serves as a bridge between the global landscape of IPCC-based science and the specific needs of local primary and secondary educational systems in over 20 countries.

How to cite: Guilyardi, E. and Wilgenbus, D.: Exciting times for Climate Change Education – from global opportunities to local challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6101, https://doi.org/10.5194/egusphere-egu24-6101, 2024.

The National Association of State Boards of Geology (ASBOG) plays an essential role in supporting the licensing of applied geoscientists in more than 30 states in the United States [1] through promulgating model law, rules, and regulations for professional licensure, [2] by developing and implementing the Fundamentals of Geology (FG) and Practice of Geology (PG) exams, and [3] by providing related educational materials.  The content of the FG and PG exams is driven substantially by the results of Task Analysis Surveys (TAS) taken by practicing geologists and academic geologists.  Before 2023, the exams included content related to ethics reflected in the earlier TAS analytical summaries;  however, ethics content is not included in the 2023 TAS or, reportedly, in the current FG or PG exams.
     ASBOG has a history of including applied ethics in its products and organizational structure.  There is a "Code of Conduct/Harassment Policy and Performance Guidelines" for the ASBOG organization on its website (ASBOG.org).  The "Professional Geologist Model Licensure Law" states that each applicant must "submit a signed statement that the applicant has read and shall adhere to any code of professional conduct/ethics and rules established by the Board..." and that the application "be signed and sworn to by the applicant before a notary public" (ASBOG 2017, lines 844-847).  Its "Model Rules and Regulations" includes a sample "Code of Ethics" for licensed professional geologists (ASBOG 2019, p. 27-29).  
     Geoscience professional organizations in the US and internationally affirm the fundamental importance of ethics in academic and applied geoscience.  Virtually all professional organizations relevant to applied-geoscience practice in the United States (e.g., AAPG, AGI, AGU, AIPG, AEG, ASBOG, GSA, SIPES...) have some form of ethics code that their members are obligated to know and adhere to.  The International Association for the Promotion of Geoethics (IAPG -- www.geoethics.org) curates a list of codes of ethics/professional practice and provides publications and educational opportunities supporting geoethics.  Another essential resource is the "Teaching Geoethics" website (serc.carleton.edu/geoethics -- Mogk and Bruckner, 2014-23).
     Robert Tepel (1995) described the essential connection between licensure laws and professional ethics.  To the extent that there is a lack of ethics content in the current 2023 TAS, candidate handbook, exam preparation resources, and FG and PG exams, ASBOG sends a message that applied ethics might not be a core competency for licensed geoscientists -- a message for which there is essentially no support among geoscience professional organizations.
          I suggest that ASBOG collaborate with IAPG and other relevant organizations to address the problems or concerns that resulted in the reported elimination/reduction of ethics content in the application, preparation, and implementation of its FG and PG exams.  Licensed professional geoscientists must continue to understand that geoethics is foundational for their work within society.  For references and resources, visit CroninProjects.org/EGU-Geoethics2024/.

How to cite: Cronin, V.: The need to include ethics content in professional licensure exams in the US (and worldwide), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6136, https://doi.org/10.5194/egusphere-egu24-6136, 2024.

EGU24-6573 | ECS | Orals | EOS4.4

Proposal for a Geoethics Code for the Geoscientist Community of Chile 

Hernán Bobadilla, Luisa Pinto Lincoñir, Pablo Ramirez, Thiare González, José Benado, Nilda Lay, Tania Villaseñor, Millarca Valenzuela, Mohammad Ayaz Alam, and Alejandro Pérez

The proposal of the Geoethics Code (hereinafter “Code”) of the Geological Society of Chile arises as a strategic objective of the Geoethics Group within this institution. The Code encapsulates the principles and values that ethically guide and protect the professional decisions of geoscientists in Chile to protect society and the environment. Likewise, it establishes standards of conduct from the personal to the environmental dimension of professional and scientific practice. Consequently, the Code serves as a valuable tool to the geoscientist community in Chile, facilitating reflection and decision-making within an ethical framework.

Grounded in the principles and values defined by the Geoethics Group of the Geological Society of Chile and the Cape Town Geoethics Declaration of the International Association Promoting Geoethics (IAPG) from 2016 (Di Capua et al., 2017), the Code is built upon four titles: a) Professional and scientific work; b) Geosciences and its relationship with society; c) Geosciences and its relationship with the environment; and d) Contribution to new generations of scientists and professionals in Geosciences.

The construction strategy of the Code underscores the pivotal role of the Chilean geoscientist community. Thus, the Code proposal was enriched through consultations, including surveys, meetings, discussions, and seminars, engaging the Geoscientist Community of Chile to understand their perspectives on pertinent topics and challenges. Furthermore, consultations and reflections were conducted to validate the Code proposal before and during the XVI Chilean Geological Congress in 2023. Ultimately, the Code underwent validation with experts from the IAPG, including geoscientists representing Latin America. Consequently, the Code authentically represents the concerns and challenges of the national geoscientific community while also resonating with the international geoscientific community.

Financing

This project is sponsored by the Geological Society of Chile.

Acknowledgements

To the geoscientist community of Chile, the IAPG experts and other professionals who have participated in the process of construction and reflection on the titles of the proposed Geoethics Code.

References

Di Capua, G., Peppoloni, S., Bobrowsky, P.T., 2017. The Cape Town Statement on Geoethics. Annals of Geophysics, 60, Fast Track 7: Geoethics at the heart of all geoscience. doi: 10.4401/ag-7553.

Keywords

Geoethics Code, Principles and Values, IAPG, Geoscientist Community.

How to cite: Bobadilla, H., Pinto Lincoñir, L., Ramirez, P., González, T., Benado, J., Lay, N., Villaseñor, T., Valenzuela, M., Alam, M. A., and Pérez, A.: Proposal for a Geoethics Code for the Geoscientist Community of Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6573, https://doi.org/10.5194/egusphere-egu24-6573, 2024.

EGU24-6593 | ECS | Posters on site | EOS4.4

Invitation to a research project on geography and climate education 

Pimnutcha Promduangsri

Educational approaches around the world are shaped by diverse geographical factors, including topography, climate, distance, urbanization and societal characteristics.  As a consequence, the methods employed for climate change education (CCedu) are expected to vary according to these geographical factors.

The United Nations Educational, Scientific and Cultural Organization (UNESCO) emphasizes the crucial role of CCedu in fostering an understanding of and effective response to the impacts of the climate crisis.  The Intergovernmental Panel on Climate Change (IPCC) highlights the importance of a globally conscious population for effectively addressing and adapting to climate change challenges.

However, rather than exploring the concept of CCedu or its effectiveness, my research project will focus on identifying the influence of geographical factors on climate change education/literacy.  In the long run, this project could potentially contribute to improving the effectiveness of CCedu.  I invite participants to visit my poster to discuss, share ideas and collaborate on this research project.

How to cite: Promduangsri, P.: Invitation to a research project on geography and climate education, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6593, https://doi.org/10.5194/egusphere-egu24-6593, 2024.

Environmental (in)justice arising from Climate change and urbanization exhibit uneven distributions, specifically impacting disadvantaged communities. While studies in the USA highlight the elevated heat exposure faced by low-income and ethnic minority groups, similar insights are lacking for other countries. This knowledge gap impedes a comprehensive understanding of environmental (in)justice experienced by various socio-economic and ethnic groups and hampers the identification of inadequacy in urban planning policies.

This research seeks to bridge the gap between social and environmental sciences to address environmental (in)justice by establishing a link between extreme heat (at both regional and country level) and socio-economic disparities for Australia and New Zealand. Using remotely sensed satellite data for Land Surface temperature mapping for summer (night time) and Census data of countries, the analysis explores various socio-economic indicators—such as education levels, age demographics, and the proportion of foreign populations.

Australia and New Zealand serve as pertinent case studies due to their distinct socio-economic landscapes and Indigenous populations. By recognizing the unequal distribution of urban heat and its disproportionate impact on vulnerable communities, there emerges a critical mandate to prioritize equitable urban planning policies. This research underscores the urgency for policymakers and urban planners to prioritize environmental justice interventions and integrate strategies that aim to reduce race and class disparities concerning urban heat. The findings also serve as a template for similar analyses globally; fostering inclusive, equitable and resilient urban landscapes.

How to cite: Chawla, J. and Benz, S.: Examining Race and Class Disparities in Urban Heat in Australia and New Zealand: Towards Environmental Justice in Urban Planning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6662, https://doi.org/10.5194/egusphere-egu24-6662, 2024.

EGU24-7655 | Orals | EOS4.4

Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues 

Richard Herrington and Sarah Gordon

Leaders across geographical and political boundaries are united behind a pledge to deliver a net zero carbon world by 2050.  Society’s conundrum is that mining is an essential part of that delivery, yet is an activity regarded by many as unpalatable. Projects that have fallen short on ecological, ethical, or social grounds, serve to confirm to many that mining is currently not an industry to be trusted, rather than being the industry that could and should be empowering significant societal development.

Examples of societal failure include the incidents around the 2012 miners’ strike at the Marikana platinum mine in South Africa which escalated into violence and loss of life.  Failure on ethical grounds was most recently highlighted by the settlement of corruption claims in the Democratic Republic of Congo (DRC) where international mining company staff bribed country officials to secure “improper business advantages.”  Ecological failures are all too common and most visible in the failure of tailings storage facilities such as the 2015 Mariana (Brazil), 2019 Brumadinho (Brazil), and 2022 Jagersfontein (South Africa) dam disasters.

The challenge for those who explore, extract, and process the raw materials so vital for the energy transition, is to do so whilst delivering on true Sustainability right from the start of any project.  Mining disasters are rarely a surprise.  The proactive management of both threats and opportunities is therefore key to the urgent delivery of materials to secure our net zero future in a responsible manner.  We must ensure that this delivery is achieved by projects with wholly net positive outcomes for the environment and people.

How to cite: Herrington, R. and Gordon, S.: Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7655, https://doi.org/10.5194/egusphere-egu24-7655, 2024.

EGU24-8075 | Orals | EOS4.4

Can landslides provide geosystem services? 

Martin Mergili, Christian Bauer, Andreas Kellerer-Pirklbauer-Eulenstein, Jana Petermann, Hanna Pfeffer, Jörg Robl, and Andreas Schröder

The concepts of biodiversity and ecosystem services, focusing on the diversity of life and the services provided to humans by such diversity, in interaction with abiotic ecosystem components, are well established. Only recently, geosciences have started to challenge this rather biocentric view by highlighting that geodiversity – understood as the diversity of minerals, rocks, geological structures, soils, landforms, and hydrological conditions – provides substantial services to society and should be treated as equal partner to biodiversity. It was proposed to use the more general term natural services or, where geodiversity is much more relevant than biodiversity, geosystem services. Even though the term geosystem services is more and more employed in literature, it evolves only slowly into a commonly used concept with a clearly defined meaning. Interpretations range from all services associated with geodiversity which are independent of interactions with biotic nature, to the restriction to subsurface services. None or few of these concepts, however, include risks as negative services, or as costs of services, which is surprising as this would enable a more integrated vision on human-nature relationships. Only very recently, the potential of geosystem service maps to highlight both services and risks related to geomorphological processes was pointed out.

This work picks up landslides as a type of geomorphological process and landform, which is rather negatively connotated in society and associated with risks rather than with chances. We use landslides to develop a broader understanding of geosystem services, together with the common understanding of hazards and risks. We will (i) present a sound and integrated conceptual framework to consider landslides within the field of tension between risks and resources, and (ii) highlight a case study where landslides are used as cultural geosystem services for environmental education in the context of UNESCO Global Geoparks, which are considered important instruments for conserving and promoting geodiversity.

How to cite: Mergili, M., Bauer, C., Kellerer-Pirklbauer-Eulenstein, A., Petermann, J., Pfeffer, H., Robl, J., and Schröder, A.: Can landslides provide geosystem services?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8075, https://doi.org/10.5194/egusphere-egu24-8075, 2024.

EGU24-10646 | Posters virtual | EOS4.4

Protects and Heats 

Walter Tavecchio

The project “Protects and Heats” aims to safeguard the environment, to reduce the carbon dioxide emissions and the risk of collapse of buildings affected by earthquakes.

This is a new way to heat and cool buildings and at the same time mitigate the seismic vibrations.

 

The logic of the project is to create a discontinuity (Moat) in the ground in front of the structures to be protected, similar to damping methods that are implemented to dampen the vibrations produced by mechanical machines and without compromising the stability of the buildings themselves.

The project involves the construction of a double row of aligned micro piles and the insertion of HDPE and steel pipes inside the vertical drilling holes.

Closed circuit geothermal probes will be positioned, inside some vertical holes, with a low enthalpy closed circuit geothermal system.

The method of the project is achieved by combining two types of technologies:

-   The first concerns the interposition, between the direction of the seismic waves and the buildings, of a damping barrier.

The vertical barrier starting from the topographic surface will be positioned outside the buildings, generally orthogonal to the direction of the seismic waves.

-  The second concerns the installation of geo-exchange pipes, in the holes.

How to cite: Tavecchio, W.: Protects and Heats, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10646, https://doi.org/10.5194/egusphere-egu24-10646, 2024.

EGU24-12918 | Orals | EOS4.4

The most consequential ethical decision for geoscience  

Emlyn Koster and Philip Gibbard

A geological definition of the Anthropocene, shorthand for humanity’s cumulative disruption of the Earth-Human Ecosystem, looms as the planet-and-people focused UN approaches its Summit of the Future in New York City on 22-23 September 2024. The International Union of Geological Sciences (IUGS) “aims to promote development of the Earth sciences through the support of broad-based scientific studies relevant to the entire Earth system”. With the UN recently declaring that the planet is in peril and in need of a rescue plan, Anthropocene considerations with a geoethical lens are urgently needed.

Each potential new interval in the Geological Time Scale begins with a working group mandated by the International Stratigraphic Commission (ICS), in the case of the Anthropocene also by its Subcommission on Quaternary Stratigraphy (SQS). The Anthropocene Working Group (AWG) was formed in 2009. In 2010, its first chair Jan Zalasiewicz with co-authors Mark Williams, Will Steffen and Paul Crutzen recognized that “the Anthropocene represents a new phase in both humankind and of the Earth, when natural forces and human forces become intertwined, so that the future of one determines the fate of the other”. In 2015, the AWG’s second and current chair Colin Waters with ten co-authors posed the question "Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?" in the Bulletin of the Atomic Scientists. This was affirmed in 2019 and the AWG presented its recommendation to the SQS in early 2024. The remaining review and decision steps are the ICS and IUGS. Reflecting concerns of other geoscience scholars as well as of other professions and an anxious public, an opposing mindset advocates for an Anthropocene event that spans the cumulative and ongoing environmental impacts of Homo sapiens. It views Geological Time Scale protocols as unsuitable for archaeological and contemporary developments, regards unemotive references to humanity’s most abhorrent invention as distasteful, and visualizes the Anthropocene Event as valuably informing a new zeitgeist for our troubled world.

In 1950 astronomer Fred Hoyle anticipated that humanity’s first view of the Earth from space would revolutionize the course of history. Insofar as a ‘giant leap of mankind’ did not result from NASA’s Apollo 1969 lunar mission with its estimated 600 million viewers, the Anthropocene Event fuels an opportunity for geoscience to inform a realistic outlook during NASA’s upcoming Artemis lunar mission. With unique knowledge of once pristine environments, current climate change and incipient sea level rise, ongoing biodiversity loss and ecosystem disruption, finite energy and mineral resources, the geoscience profession should arguably have already become a crucial asset in this troubled world.

How to cite: Koster, E. and Gibbard, P.: The most consequential ethical decision for geoscience , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12918, https://doi.org/10.5194/egusphere-egu24-12918, 2024.

EGU24-13965 | Orals | EOS4.4

Ocean Futures: A New Paradigm and Teaching in the Age of Ocean Change 

Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, and Nick Bates

The new School of Ocean Futures (oceans.asu.edu) at Arizona State University (Tempe, AZ, USA) has embarked on a novel way of teaching ocean science with a forward-looking philosophy that centers on the current and future states of the ocean. While situated in Arizona State University’s main campus, it leverages the location of its two offshore campuses, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, and the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda. The Ocean Futures programs combine aspects of traditional ocean science teaching with ocean stewardship, partnerships, and Indigenous knowledge, and focus on the communities that live with the ocean and are affected by its rapid change. In this presentation we will introduce the curriculum of the new degree, as well as the challenges encountered, and best practices learned. Novel courses include “Introduction to Ocean Futures”, a capture course that aims at increasing the interdisciplinary knowledge of oceans, while actively seeking to increase diversity and retention in the field via inclusive pedagogical practices, the historical context of oceanography and an emphasis on developing a mindset of empowerment for change. It is followed by “Ocean Communities”, a course that immerses students through an ethnobotanical lens in global mountain to ocean cultural connections, while elaborating on how various human communities engage, exchange, and build relationships with regional resources. The students will receive hands-on aquatic knowledge through field courses at BIOS, the Sea of Cortez, Hawaii, and Antarctica. The curriculum culminates with an ocean workshop and capstone course that will allow the students to work directly with partners to address real-world challenges facing coastal communities and marine systems.

 

 

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., and Bates, N.: Ocean Futures: A New Paradigm and Teaching in the Age of Ocean Change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13965, https://doi.org/10.5194/egusphere-egu24-13965, 2024.

In the Anthropocentric era, the human-driven climate crisis has become a serious global issue. To mitigate the impacts of climate change, it is crucial for humans to adopt a more sustainable way of living. Human behaviors are shaped by their culture, where religious beliefs play important roles. As a result, people turned to religions for addressing with climate change issues.

Seeming to be unrelated, religions and climate issues have found connections through social systems and communication. By endowing climate issues with religions meanings, religions are able to resonate with the ecological crisis and take meaningful actions. Through this "resonance," religions contribute to climate issues by shaping worldviews, establishing sustainable habits, initiating actions, and influencing policies.

Religious communities have recognized the severity of the human-driven climate crisis. Their call for action reflects the fact that Taiwanese society has failed to respond to the climate crisis due to its endless pursuit of consumerism. To deal with the challenges, religious communities have advocated for “Ecological Conversion”, which persuade people to save the nature for the sake of God.

How religions can empirically contribute to environment issues has been a long-discussed topic. However, previous literatures only focus on the Western-Christian World. Countries with religious beliefs other than Judeo-Christian ethics are seldom discussed. To explore the relationship between religion and climate in Asian contexts, this research will focus on Taiwan, a multicultural country with various religions.

Using the sample data from the 2020 Taiwan Social Change Survey, this study aims to explore the relationship between religion and climate by conducting factor analysis and ordinary least squares regressions.

The evidence reveals a weak connection between religions and people's climate attitudes in Taiwan. Among all the religions in Taiwan, Buddhists and Christians tend to have the most eco-friendly attitudes. The social networks within these two religious communities foster an eco-friendly atmosphere, which highlights the importance of environmental conservation. However, when it comes to peoples’ willingness to pay, faith holders are less likely to show their supports.

By illustrating the religion-climate relationship in Taiwan, this study demonstrates how these two fields intersect in a non-Western society. It also provides implications for how religions can inspire people's willingness to engage in environmental conservation efforts.

How to cite: Tsui, C. H.: Do religions matter? The empirical study of the religion-climate relation in Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14027, https://doi.org/10.5194/egusphere-egu24-14027, 2024.

EGU24-14752 | Posters on site | EOS4.4

Towards sustainable management of georesources: the importance of Cooperation Projects to boost education on responsible and sustainable mining. The example of the SUGERE and GEODES projects. 

Giovanna Antonella Dino, Susanna Mancini, Dolores Pereira, Manuela Lasagna, Francesca Gambino, Guido Prego, Domingos Gonçalves, Aida Jacinto, Daud Jamal, Josè Loite, Hélio Nganhane, Nelson Rodrigues, and Pedro Dinis

Sustainable and responsible management of geo-resources requires a rethinking and redesign of our production and consumption patterns. Awareness of the natural environment as a common good to be preserved, and knowledge of the close link between the natural environment and the socio-economic system are prerequisites for a profound change in human attitudes at both individual and societal levels. In this context, training and education of all actors involved in the management of geo-resources is an indispensable starting point for the acquisition of critical, ethical, and conscious thinking and the technical skills necessary to solve local problems and initiate sustainable development.

The present research focuses on two consequential ERASMUS+ projects: SUGERE and GEODES. Both had the common goal of the international standardization of Higher Education training and teaching in Earth Sciences and Mining Engineering.

SUGERE (Sustainable Sustainability and Wise Use of Geological Resources) was successfully completed in September 2023, involved 3 European universities (from Portugal, Spain, and Italy) and 6 non-European universities (from Mozambique, Cape Verde, and Angola). The objective was to enhance capacity building for the responsible and sustainable use of geological resources by supporting the didactic organization and standardization of 5 degree courses at Bachelor, Master and Doctorate levels in Earth Sciences and Mining Engineering. Both online and face-to-face training sessions were organized in European and African universities.

GEODES, started in June 2023, represents the continuation of the SUGERE project and involves a total of 9 partners. The same 3 European universities and 6 African institutions, formally attributing teaching and training roles to 2 universities that participated in SUGERE, already achieved a good standard in terms of infrastructures and have long teaching experience in the field of geosciences, and receiving 4 young institutions from less favored regions of Angola and Mozambique.

SUGERE and GEODES projects aim to strengthen the role of geosciences in the development of up-to-date strategies for the sustainable management of natural resources and to implement new collaborations thanks to an international network focused on local economic and social development and respect for the natural environment in the geological-mining context. The culture of sustainability and the deepening of skills in the field of geological mining form the basis for the development of the critical thinking necessary for local problem solving, the acquisition of ethical values and the technical skills that underpin sustainable development.

Deepening technical skills in geomining from a sustainable perspective is crucial for developing critical thinking and acquiring ethical values necessary for solving local problems. SUGERE and GEODES contribute to this outcome with a solid network of research, training, sharing and exchange of expertise and research activities between European and non-European universities interested in mining issues. A careful analysis of the local economic development of the countries involved in the projects is required to achieve the most effective methods for the exploration and sustainable exploitation of underground georesources.

 

How to cite: Dino, G. A., Mancini, S., Pereira, D., Lasagna, M., Gambino, F., Prego, G., Gonçalves, D., Jacinto, A., Jamal, D., Loite, J., Nganhane, H., Rodrigues, N., and Dinis, P.: Towards sustainable management of georesources: the importance of Cooperation Projects to boost education on responsible and sustainable mining. The example of the SUGERE and GEODES projects., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14752, https://doi.org/10.5194/egusphere-egu24-14752, 2024.

Since time immemorial, nature, and by extension the ocean, have made positive contributions to the health of mankind. Whether it be fertile soil, pollination, medicine, taking part in mindfulness activities, or food, we as a species depend on the many services provided by the natural world.  Our environment can be linked to some fundamental determinants of health, such as clean air, clean water, and balanced nutrition, and emotional wellbeing.  Therefore, any environmental degradation as a result of climate change has undeniable tangible and intangible effects on human health all over the globe, and this is especially true in relation to mental health in populations occupying Large Ocean Island States (LOIS).   As climate change has led to an increase in extreme weather events, and the accompanying devastation, there has been a corresponding decrease in health and quality of life.  This presentation will explore how the impact of climate change and its corresponding impact on the ocean has enduring impacts, both physiologically and mentally.   Therefore, all of the processes and recommendations to combat climate
change will have important co-benefits to mental and physical health, and help to build resilience in the face of the dearth of resources faced by LOIS. This lack of resources must be urgently addressed, and solutions can be explored by fostering collaboration between mental health professionals and climate scientists to collect sufficient data. The resulting findings can be used to expedite access to the funds needed to implement the necessary levels of mitigation and adaptation specifically tailored to the infrastructural realities of LOIS.

How to cite: Alvarez de la Campa, S.: Climate Change, Ocean Health and Quality of Life - An Inextricable Connection in Large Ocean Island States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16730, https://doi.org/10.5194/egusphere-egu24-16730, 2024.

EGU24-17346 | Posters on site | EOS4.4

The importance of making geoethics a central concern of Sri Lankan education strategy 

Giuseppe Di Capua and Udaya Gunawardana

Like numerous regions worldwide, Sri Lanka faces significant environmental challenges that endanger its biodiversity, natural resources, and the well-being of its population. Predominant issues encompass water and air pollution, land degradation, deforestation, improper waste disposal, consequences of climate change, disaster risks, as well as the loss of biodiversity and geodiversity. The nexus between political, economic, and social factors contributes to these geo-environmental challenges, often exacerbated by the politicization of the environmental issues in Sri Lanka. However, it is crucial to acknowledge that human activities primarily drive these conditions. Gunnar Myrdal’s Soft State theory asserts that despite the existence of multiple governing bodies, regulations, and laws, humans strategically transcend the environment leading to the depletion of geo-environmental resources within a context of strong societal inequalities, particularly in developing countries influenced by the historical conditioning of colonial interests by developed nations. A philosophical exploration of this issue emphasizes the pivotal role of human indifference towards the environment and natural resources in causing these challenges. To address this issue effectively, a transformation in people's attitudes is imperative, and education emerges as the most potent tool for this purpose. However, a careful analysis of Sri Lanka's primary and secondary school curricula reveals an absence of a dedicated discipline addressing the philosophical and social dimensions of the geo-environmental matter. In light of this, the incorporation of subjects such as geoethics, which specifically addresses the ethical problems in the human-environment interaction, becomes paramount. Integrating geoethics into the educational framework, particularly at primary and secondary levels, stands as the foundation of a sustainable and responsible strategic approach to many societal and environmental problems. This educational strategy should envision as the most important solution to mitigate the majority of geo-environmental problems in Sri Lanka, fostering environmentally sensitive and responsible citizens.

How to cite: Di Capua, G. and Gunawardana, U.: The importance of making geoethics a central concern of Sri Lankan education strategy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17346, https://doi.org/10.5194/egusphere-egu24-17346, 2024.

EGU24-17614 | Orals | EOS4.4

Choice Question (MCQ) Peer Construction for Training Students as Climate Change decision-makers or Knowledge Spreaders 

Gérard Vidal, Charles-Henri Eyraud, Carole Larose, and Éric Lejan

After more than 40 years of reasoned alerts from the scientific community directed towards society, with minimal impact, a recent surge in the size and frequency of extraordinary climatic events has begun to reshape the perspectives of ordinary citizens. This situation underscores the challenge of directly influencing society with scientific evidence or models, emphasizing the crucial role of universities in training students who will occupy intermediate or elevated positions that may impact society at large.

While "Climate Fresk" has gained widespread popularity in higher education institutions as an effective tool for raising awareness about climate change and the intricate processes affecting our global earth ecosystem, concerns have arisen at the university level. The repetition of "Climate Fresk" or similar tools may be perceived as greenwashing practices, as university students are already well-acquainted with the issue. Hence, there is a need to surpass mere awareness in higher education.

As TASK Change Leaders at ENS-Lyon, we explored pedagogical and assessment tools provided by Sulitest. This initiative, extends beyond climate and ocean changes, it places a significant emphasis on various topics, including Sustainable Development Goals, earth limits, and driving processes of climate change. One of the major interest of the approach is to address all disciplines (scientific or non scientific).

We built a three-step strategy involving:

  • Administering a positioning test to enable students to assess their performance relative to the institution and the wider community.

  • Utilizing the looping tool from Sulitest, wherein small teams of students generate Multiple Choice Questions accompanied by a list of academic publications validating the terms of their questions. Subsequently, these questions are discussed in large interdisciplinary open groups, compelling students to articulate questions and answers intelligible across all disciplines.

  • Participating in the TASK to receive an assessment of their proficiency in sustainable development, evaluated by an external body.

This strategy, particularly the second step, empowers students to assume the role of a teacher or knowledge spreader in the face of a diverse peer community. It serves as a simulation of their potential future roles as educators, knowledge spreaders or decision-makers, instilling an understanding of the importance of providing validated sources and the challenges associated with crafting questions and answers comprehensible to all, preparing them for future teaching or decision-making scenarios. A notable byproduct is the creation of valuable pedagogical resources in a "connectivist MOOC flavor."

Beyond the training benefits, membership in the TASK Change Leaders group provides opportunities for discussions on the sustainability of education, green education, and competency frameworks, to apply to ourselves the concepts we are teaching.

How to cite: Vidal, G., Eyraud, C.-H., Larose, C., and Lejan, É.: Choice Question (MCQ) Peer Construction for Training Students as Climate Change decision-makers or Knowledge Spreaders, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17614, https://doi.org/10.5194/egusphere-egu24-17614, 2024.

EGU24-20953 | Posters on site | EOS4.4

Shaping Thriving Ocean Futures – Education to advance healthy coastal communities and marine systems 

Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, Andrew Peters, and Nick Bates

The new Ocean Futures program at Arizona State University (Tempe, AZ, USA) prepares students to become coastal and marine stewards, community leaders, innovators, and researchers capable of shaping the future of the world's oceans.  The program is taught and mentored by faculty and community leaders in an environment that supports our students’ individual and collaborative strengths, creativity, and diversity.  Students learn and work across disciplines, exploring global and local ocean dynamics, ecosystems, and stressors, engaging with community contexts and livelihoods, and advancing culturally-appropriate, reciprocal stewardship.  In support of ASUʻs mission of embeddedness and linking innovation to public value, graduates of the School of Ocean Futures are equipped with the knowledge and skills to work with diverse communities and partners to create innovative solutions for our changing world.

The School of Ocean Futures educational goal is to build student capacity to apply knowledge of coastal and marine systems coupled with community partnerships to help shape thriving futures, both locally and globally.  Students engage in research and work with partners in Arizona, the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, the Sea of Cortez, and Antarctica.

Ocean Futures education at ASU is based on an innovative “cascade” curriculum.  The cascade starts with core classes in Introduction to Ocean Futures and Ocean Communities, followed by foundational courses in sciences and mathematics, an upper-level core class in Oceanography, electives focused on partnerships, stewardship, and advanced problem-solving, and culminates in an applied workshop and capstone course where students work with partners to transfer knowledge to action in addressing problems facing coastal communities and marine systems.

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., Peters, A., and Bates, N.: Shaping Thriving Ocean Futures – Education to advance healthy coastal communities and marine systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20953, https://doi.org/10.5194/egusphere-egu24-20953, 2024.

Fifty years ago, Peter Berg developed a way to locate yourself within your bio-region, starting with your watershed. To begin, trace your water from precipitation to tap—and back to precipitation. Then, how much rain fell in your area last year? How much water does your household consume per month? What percentage of your town’s water supply goes to households? to manufacturing? to farming? to golf courses? to mining operations? to extinguishing fires? What pollutants affect your water supply? Once you can map your local water supplies, consider how manufacturing transistors, operating data storage centers and streaming videos impact international waters. With awareness of our daily lives’ impacts on local and international waters, we can create realistic limits.  

How to cite: Singer, K.: Mapping water from our tap to the watershed: A first step toward ecological limits  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21221, https://doi.org/10.5194/egusphere-egu24-21221, 2024.

This ongoing project integrates the concept of science diplomacy, conducting an in-depth exploration of the intricate interrelations among geo-bio-cultural diversity and its pivotal role in peace building, risk management, and climate action in Colombian cities and territories. Leveraging geodiversity assessment and its correlation with biodiversity, we explore how the bio-geo duplex interacts with ethnic diversity in Colombia. The aim is to develop initiatives aligned with the ancestral knowledge of indigenous, African-descended, farmers, and mixed-Colombian communities across cities and territories withing the geoethics concept.
In the realm of science diplomacy, our emphasis lies in cultivating international collaboration and knowledge exchange to tackle intricate societal challenges. We seek to foster dialogue and cooperation among traditional and nontraditional actors, advocating for the integration of scientific expertise with local and indigenous knowledge. The study provides a comprehensive analysis, considering historical, environmental, economic, social, and political contexts. It sheds light on how these interactions unfold and their diverse representations across Colombia, including the Caribbean, Pacific, and Andean regions.

How to cite: Marin-Ceron, M. I.: Science Diplomacy with Nontraditional Actors: Enhancing Geo-Bio-Cultural Diversity in Colombian Cities and Territories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22117, https://doi.org/10.5194/egusphere-egu24-22117, 2024.

EGU24-1795 | Orals | EOS4.5

Engaging with geoscientists’ conference mobility: a living lab approach 

Simone Rödder, Ella Karnik Hinks, Max Braun, and Youssef Ibrahim

Conference attendance forms a key part of academic life (Arsenault et al. 2019; Lassen 2022) and scholars of science have pointed to its functions for individual careers as well as for advancing knowledge production and integration Yet mega-conferences, such as EGU, constitute a significantly carbon-intensive aspect of scientific work, with estimates that the American counterpart, AGU, has a carbon footprint similar to that of the city of Edinburgh in one week (Klöwer et al. 2020). Advocating for sustainable transformations while simultaneously relying on air travel for mobility thus exposes academia, and especially climate scientists, to accusations of hypocrisy (Dey and Russell 2022, Nordhagen et al. 2014). How do geoscientists navigate the dilemma created by the competing demands of attending conferences for their scholarly, social, and professional development and their desire to lead an exemplary pathway?

By using the space of this session at EGU as a ‘living lab’, we as social scientists want to engage with geoscientists, gather their perceptions of academic travel and reflect on their own position in this incongruous mode of knowledge exchange. We will employ interactive methodologies such as Mentimeter mini-surveys and focused discussions to introduce reflective questions that geoscientists can ask themselves regarding the sociocultural aspects of conference attendance, the perceived impact on academic reputation, the challenges faced by early career scientists, and the complex navigation of the environmental tensions associated with high carbon footprint meetings. This contribution is informed by a research project that studies and compares academic conference and travel cultures across disciplines.  

References

Arsenault, Julien; Talbot, Julie; Boustani, Lama; Gonzalès, Rodolphe; Manaugh, Kevin (2019): The environmental footprint of academic and student mobility in a large research-oriented university. In Environ. Res. Lett. 14 (9), p. 95001. DOI: 10.1088/1748-9326/ab33e6.

Colin Dey; Shona Russell (2022): Still Flying in the Face of Low-carbon Scholarship? A Final Call for the CSEAR Community to Get on Board. In Social and Environmental Accountability Journal 42 (3), pp. 208–222. DOI: 10.1080/0969160X.2022.2094983.

Klöwer, Milan; Hopkins, Debbie; Allen, Myles; and Higham, James (2020): An analysis of ways to decarbonize conference travel after COVID-19. In Nature 583, pp. 356–359. DOI: 10.5281/ZENODO.3553784.

Lassen, Claus (2022): Aeromobilities and Academic Work. In Kristian Bjørkdahl (Ed.): Academic Flying and the Means of Communication. With assistance of Adrian Santiago Franco Duharte. Singapore: Springer Singapore Pte. Limited, pp. 269–296.

Nordhagen, Stella; Calverley, Dan; Foulds, Chris; O’Keefe, Laura; Wang, Xinfang (2014): Climate change research and credibility: balancing tensions across professional, personal, and public domains. In Climatic Change 125 (2), pp. 149–162. DOI: 10.1007/s10584-014-1167-3.

How to cite: Rödder, S., Karnik Hinks, E., Braun, M., and Ibrahim, Y.: Engaging with geoscientists’ conference mobility: a living lab approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1795, https://doi.org/10.5194/egusphere-egu24-1795, 2024.

EGU24-4006 | ECS | Orals | EOS4.5

What responsibilities of geosciences in the turmoil of the Anthropocene? Example of a political ecology perspective. 

Gabriel Hes, Jean-Michel Hupé, Sylvain Kuppel, Iris-Amata Dion, Laure Laffont, and Marieke Van Lichtervelde

Given the ever-widening gap between current policies and the socio-economic transformations required to mitigate and adapt to the ongoing environmental and related social upheaval, a growing number of academics question their role within and beyond academia. Geoscientists are holding important responsibilities, some of them they could be regarded as accountable for: if, on the one hand, they bring strong disciplinary knowledge on climate change, and they contribute to modeling scenarios of socio-economic trajectories (and, therefore, sociological imagination); on the other hand, as geological survey is key to fossil fuel exploration and minerals extraction, they have close relationships with companies and institutions that are threatening the habitability of the planet. Accepting those responsibilities means a significant departure from the research-as-usual stance, which defines a barrier between knowledge and how society uses that knowledge. Geoscientists who do not consider such a barrier as relevant may act in many different ways, such as taking moral positions in the professional arena, learning from humanities within interdisciplinary studies, or adopting a situated knowledge standpoint in place of the illusory principle of scientific neutrality. We should emphasize that these behaviors do not necessarily undermine scientific integrity. But they do reflect an epistemic view different from research-as-usual, and which requires learning and careful practices. Under the Atécopol acronym (“Atelier d’écologie politique”), the Toulouse Studies in Political Ecology is a network of academics created 5 years ago to experiment those practices. The Atécopol collectives (now about 7 in France) take a political ecology perspective, in which environmental issues necessarily imply socio-economical choices. These choices convey representations and value systems that require scientists to take a reflexive and situated stand. The collectives bring together a diversity of disciplines and professional status, with the aim to create bridges between scientific knowledge and social and political debates at a regional scale and beyond. As such, they constitute an alternative way to conduct scientific research leveraging conscious, transformative actions: an ethical posture, transdisciplinarity, horizontality and reflexivity. The Atécopol collectives therefore intend to transform local organizations and institutions within the research community, and more broadly within society as a whole. The actions undertaken so far by the Atécopol collectives include (i) knowledge circulation, such as, training, communication and scientific events, (ii) appeals to the general public in the form of opinion columns and petitions, (iii) initiating local interdisciplinary research projects and (iv) challenging research policies. Here, we intend to share the outcomes of these experiences in order to pause, reflect upon and radically question research-as-usual in the field of geoscience.

How to cite: Hes, G., Hupé, J.-M., Kuppel, S., Dion, I.-A., Laffont, L., and Van Lichtervelde, M.: What responsibilities of geosciences in the turmoil of the Anthropocene? Example of a political ecology perspective., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4006, https://doi.org/10.5194/egusphere-egu24-4006, 2024.

EGU24-8098 | Posters on site | EOS4.5

From carbon footprint to transition plan in a French geosciences laboratory 

Emilie Jardé, Laure Guérit, Val Kaupp, Annick Battais, Pierre Dietrich, Marion Fournereau, Géraldine Gourmil, Laurent Jeanneau, and Frédérique Moreau

As people from a research lab, we are committed to participate in limiting the increase of Earth's average temperature and try to resolve this dilemma: how can we carry on producing knowledge and ideas in a world of limited resources. We are aware of the need for an environmental transition that would be achieved for our professional aspect/life by a profound evolution of our research practices (ie: French CNRS ethics committee: “integrating environmental issues into research practices_ an ethical responsibility”, opinion n° 2022-43).

The Sustainable Development & Social Responsibility working group of the research laboratory “Géosciences Rennes” was created in 2021 to (i) estimate the annual C footprint by using GES1.5 (Research Consortium Laboratory 1.5) protocol, (ii) propose awareness-raising and training initiatives and communicate, (iii) propose actions to reduce our environmental impacts. Based on the GES1.5 toolkit, we have determined our environmental impact from 2019 to 2022 through the calculation of the C footprints of 3 main domains: purchases, scientific missions and operation of the premises whose respective C footprint are 879, 520 and 708 and 775 T CO2eq, corresponding to 5.8, 3.6, 5.1 and 5.1 T CO2eq/person. The purchase of goods and services is the main item, representing 48 ± 7 % (mean ± SD) of the total C footprint over the 4 years. Scientific missions represent 16 ± 8 %. Sanitary restrictions induced a drastic decrease of this C footprint in 2020 and 2021, but it has resumed and increased since.

These data were the corner stone of collaborative workshops (participatory workshops, surveys, suggestion boxes…) to invent our low-carbon laboratory and to vote a transition plan based on specific actions to collectively reduce the C footprint. The propositions do not intend to limit freedom to carry out research, but at transforming the way we do research to adapt to environmental constraints our societies are facing. 36 propositions were submitted to vote in autumn 2023 and 89% of the staff (about 150 persons) expressed an opinion. 26 propositions received more than 50% of “yes”, and will therefore be gradually implemented over 6 years (2024-2030) as the reduction targets are set for 2030 (ambition: -45% compared with 2019). The trajectory and relevancy of the adopted propositions will be re-evaluated annually by calculating the laboratory's C footprint.

Our experience shows that appropriation of the issues takes time, which we no longer have. It emphasizes the need to go further than awareness measures. In addition, working at the lab level results in an average that conceals the considerable heterogeneity in terms of staff status, thematic profiles and methods used (observation/experimentation/ modelling). Such heterogeneity generates a plurality of situations and it is uneasy to define just only strategy. More precise C footprints need to be defined, potentially on a one by one discipline basis, in order to identify avenues of research that will enable these disciplines to adapt to the conditions of a post-transition society.

How to cite: Jardé, E., Guérit, L., Kaupp, V., Battais, A., Dietrich, P., Fournereau, M., Gourmil, G., Jeanneau, L., and Moreau, F.: From carbon footprint to transition plan in a French geosciences laboratory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8098, https://doi.org/10.5194/egusphere-egu24-8098, 2024.

EGU24-8836 | ECS | Orals | EOS4.5

Climate Change Competence Needs in the Society 

Joula Siponen, Marianne Santala, Janne Salovaara, Sakari Tolppanen, Veli-Matti Vesterinen, Jari Lavonen, Katja Anniina Lauri, and Laura Riuttanen

The role of geoscientists is evolving in response to the changing world and the crises we are facing. Geoscientists, whom some of us authors identify as, possess crucial insight into phenomena of existential relevance. However, we seem to lack agency to contribute to the urgently needed transformation. Inspired by the question of what society demands, especially regarding climate change expertise, we approached individuals who play important roles in mitigation and adaptation in their organisations across different sectors of Finnish society. Using qualitative methodology, including a questionnaire to fifty-eight and in-depth expert interviews with twenty-four professionals—we developed a competency framework. This framework aims to support the development of higher education and continuous learning that is based on research and scientific knowledge on climate change and addresses the needs of society.

Our study revealed six categories of competencies: systemic climate change insight; visions and strategies in changing climate; compassionate climate leadership; active engagement in networks; courage and determination in climate action; and climate values and justice. These categories represent a combination of skills, knowledge, and attitudes useful for individuals aiming to drive climate change action, but also as basis for developing collective competence. For instance, a geoscientist might have strong systemic insight based on their training, but may lack compassionate leadership skills, meaning either that further education is needed or a group of differently skilled experts could fill the gaps to form a climate-competent team.

Competent experts and professionals must be educated hand in hand with societal transformation. Therefore education must be transdisciplinary, involving a multitude of actors and stakeholders. To respond to the societal needs, University of Helsinki is developing new continuous education to professionals in the field and a two-year 60-credits Specialisation programme in climate expertise is planned to start in spring 2024. 

How to cite: Siponen, J., Santala, M., Salovaara, J., Tolppanen, S., Vesterinen, V.-M., Lavonen, J., Lauri, K. A., and Riuttanen, L.: Climate Change Competence Needs in the Society, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8836, https://doi.org/10.5194/egusphere-egu24-8836, 2024.

EGU24-9536 | ECS | Orals | EOS4.5 | Highlight

Going Beyond Research: A Large-scale Investigation of Climate Change Engagement by Scientists 

Fabian Dablander, Maien Sachisthal, Viktoria Cologna, Noel Strahm, Anna Bosshard, Nana-Maria Grüning, Alison Green, Cameron Brick, Adam Aron, and Jonas Haslbeck

Climate change is one of the greatest threats facing humanity. Scientists are well-positioned to help address it beyond conducting academic research, yet little is known about their engagement with the issue. We investigate scientists’ engagement with climate change using quantitative and qualitative analyses of a large-scale survey (N = 9,220) across 115 countries, all disciplines, and all career stages. We explore their beliefs about the role of scientists and scientific institutions in the context of climate change as well as their engagement in climate actions. These actions include forms of advocacy and activism ranging from signing petitions to engaging in civil disobedience and high-impact lifestyle changes such as reducing flying or adopting a plant-rich diet.

We find, for example, that 91% of surveyed scientists believe that fundamental changes to social, political, and economic systems are needed to address climate change; that a large majority of scientists feel a responsibility as scientists to address climate change; that more scientists agree than disagree that scientists should become more involved in advocacy and protest; and that the proportion of scientists who say they are willing to engage in these actions is substantial, suggesting that there is great potential for increased engagement by scientists on climate change beyond research. We also find that climate researchers engage in considerably more climate advocacy and activism than their peers in other research fields, but that this difference is significantly smaller for high-impact lifestyle changes.

Based on the qualitative and quantitative responses to our survey, we propose a two-stage model of engagement in advocacy and protest: Scientists must first overcome intellectual barriers (e.g., low levels of worry, lack of efficacy beliefs, lack of identification with activists) and practical barriers (e.g., lack of skills, fear of losing credibility, fear of repercussions) to be willing to engage, and then additional barriers (e.g., lack of time, lack of opportunity, not knowing any groups) to actually engage. Based on this model, we provide concrete recommendations for increasing scientists’ engagement with climate change.

Paper I: https://osf.io/preprints/psyarxiv/73w4s
Paper II: https://osf.io/preprints/psyarxiv/5fqtr

How to cite: Dablander, F., Sachisthal, M., Cologna, V., Strahm, N., Bosshard, A., Grüning, N.-M., Green, A., Brick, C., Aron, A., and Haslbeck, J.: Going Beyond Research: A Large-scale Investigation of Climate Change Engagement by Scientists, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9536, https://doi.org/10.5194/egusphere-egu24-9536, 2024.

EGU24-9671 | Posters on site | EOS4.5

Geosciences for a Sustainable Planet: a new collaborative network to address societal and environmental challenges in the Anthropocene 

Juan Antonio Ballesteros-Canovas, Emilio L. Pueyo, Blas Valero Garcés, Concepción Ayala, Angeliki Karanasiou, Juan Tomás Vázquez Garrido, José María González-Jiménez, Eva Calvo, María del Pilar Mata Campo, José Javier Álvaro Blasco, and Ana Moreno

The Geosciences for a Sustainable Planet network is an initiative reinforced by the recent integration of the Spanish Geological Survey (IGME) and the Oceanographic Spanish Institute (IEO) within the Spanish Scientific Research Council (CSIC). The network is aimed to provide Geosciences in Spain with a collaborative framework, to maximize synergies and address sustainability and future challenges with a planetary perspective. The network shares the strategic vision for the study and care of planet Earth as the only home available for our future, as embraced by many international organizations (e. g. the European Geosciences Union (EGU), United Nations Environment Programme (UNEP), International Union of Geological Sciences (IUGS), and the European Marine Board (EMB)).

In Spain, Geosciences have played a fundamental role in properly assessing, managing, and seeking solutions for several natural and anthropogenic crises, e.g. the oil spill after the sinking of the Prestige petroleum vessel, the dumping of toxic mine sludge in Aznalcóllar, the eruption of the Cumbre Vieja volcano in La Palma island, the 2011 earthquake of Lorca, the environmental collapse of the Mar Menor oastal lagoon, or the decline in the groundwaters of Doñana National Park. Geoscientists have engaged as first responders with government agencies in emergency situations. Besides, geosciences is providing essential knowledge for public administration, as well as energy and mineral resources companies, water supply, contamination and waste elimination and reuse, and adaptation to geological and natural hazards. The network will enhance the capacity of the CSIC to respond to both, societal and public administration demands.

Geosciences also provide the temporal and spatial scale to place current climate and environmental crises in the appropriate context. The network will implement outreach activities to illustrate the interactions of surface processes and biosphere with climatic fluctuations, atmospheric CO2 variations, sea-level changes, biodiversity collapses, etc, during the evolution of life on Earth over millions of years. We believe an essential aspect of science's contribution to sustainability is improving the communication of trans-disciplinary knowledge to citizens, future generations, administrations, and companies so they can take informed decisions. The Geoscience network will focus on outreach actions, training new generations of Geoscientists and technology and knowledge transfer.

The Geosciences network seeks to facilitate the integration of research groups in the disciplines of Earth Sciences to improve our knowledge of the planet's geological processes across temporal scales ranging from millions of years to instrumental observation. This integration of basic and applied knowledge will enable Geosciences to provide tools to address the social challenges of the UN Sustainable Development Goals. Among them, we have selected four main areas: (1) energy and ecological transition, (2) access to water and geological resources, (3) mitigation and adaptation to geological hazards and risks, and (4) tools for solving environmental and climate crises. We believe that Geosciences network will offer the spatial dimension (from local to planetary) and temporal insight (natural variability beyond the human scale) to provide a common framework with a global, integrative, transversal, and multidisciplinary vision to tackle these challenges.

How to cite: Ballesteros-Canovas, J. A., Pueyo, E. L., Valero Garcés, B., Ayala, C., Karanasiou, A., Vázquez Garrido, J. T., González-Jiménez, J. M., Calvo, E., Mata Campo, M. P., Álvaro Blasco, J. J., and Moreno, A.: Geosciences for a Sustainable Planet: a new collaborative network to address societal and environmental challenges in the Anthropocene, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9671, https://doi.org/10.5194/egusphere-egu24-9671, 2024.

EGU24-9910 | Posters on site | EOS4.5

An example of reflexive and ethical work on a geoscientific speculation bubble: the case of natural hydrogen 

Odin Marc, Loïs Monnier, and Mickael Coriat

Recently, in the context of intensifying calls for a rapid decarbonation of the economy and energy systems, there has been a growing interest in developing the use of hydrogen, either as a fuel or as an energy storage system. However, hydrogen production suffers from various drawbacks, due to its carbon footprint or cost, which has led the field of geosciences to renew its interest in the possibility to collect naturally occurring hydrogen (so called "white hydrogen"), found in gas reservoirs or in hydrothermal waters for example, or stimulate natural production of hydrogen before harvesting it (so called "orange hydrogen").
Querying the Web of Science database, the average number of annual scientific publications including "natural hydrogen" in their title or abstract, was steady around 2 between 1984 and 2016, it was 6 over 2017-2019, 16 over 2020-2022 and reaching 27 in 2023, thus appearing to follow an exponential growth. Similarly in media in France we retrieved 37 articles mentioning "natural hydrogen" between 2010 and 2019, with terms such as "infancy", "pilot project" or "future energy?" , while there were 44 between 2020-2022 and 227 in 2023 alone, with terms such as "rush", "game changer", "revolution" or "bright hopes".
This exponential growth and the rapid shift toward very enthusiastic vocabulary make us hypothesize that the rising interest in natural hydrogen is a process similar to an economic bubble, in which a commodities is over-valued during a transient period.
In this work we will present reflexive work based on an analysis of the recent scientific literature and on associated media coverage, on basic comparisons between energy available from recent H2 fluxes or estimated reservoirs and from other renewable energy sources, and on semi-directive interviews of some geoscientist specialists of hydrogen.
These elements allow us to confront this hypothesis and to gain insights on the intertwined effects that may favor the over-valuation of natural hydrogen. In particular, we also discuss reasons why geoscientists contribute, actively or not, to the growth of a speculative bubble, a mechanism generally associated with irrational market dynamics. We do so by exploring the potential roles of undeclared conflicts of interests, temptation to access facilitated research funding, lack of interdisciplinary analysis, and of the predominant belief that technological innovation or adjustments is needed and sufficient to address the ecological emergencies.

How to cite: Marc, O., Monnier, L., and Coriat, M.: An example of reflexive and ethical work on a geoscientific speculation bubble: the case of natural hydrogen, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9910, https://doi.org/10.5194/egusphere-egu24-9910, 2024.

EGU24-11035 | Orals | EOS4.5

ClimarisQ: A game on the complexity of the climate systems and the extreme events 

Davide Faranda and the ClimarisQ team

ClimarisQ is a smartphone/web game from a scientific mediation project that highlights the complexity of the climate system and the urgency of collective action to limit climate change. It is available in four languages: English, French, Spanish and Italian. It is an app-game where players must make decisions to limit the frequency and impacts of extreme climate events and their impacts on human societies using real climate models. ClimarisQ is a game conceived by the CNRS researcher Davide Faranda through the CNRS – AMCSTI – ISC-PIF scientific mediation incubator on complex systems. The development of ClimarisQ, powered by the videogame company Opal Games, has been financially supported by the University of Paris-Saclay : La Diagonale Paris-Saclay.

The goal of the game is to explore the effects of mitigation and adaptation choices to extreme climate events at the local, regional and global levels. Can you achieve a greener trajectory than the IPCC RCP 4.5 emission scenario by playing ClimarisQ? Explore the feedback mechanisms (notably physical, but also economic and social) that produce extreme effects on the climate system.

In the game, you make decisions on a continental scale and see the impact of these decisions on the economy, politics and the environment. You will have to deal with extreme events (heat waves, cold waves, heavy rainfall and drought) generated by a real climate model. Then, you will have to try to balance the “popularity”, “ecology” and “finance” gauges as long as possible. Fulfill all the missions to explore different climates. The game-over displays both the PPM (parts per million) of CO2 deviation from the intermediate scenario of greenhouse gas emissions established by the IPCC (RCP4.5), as well as the number of survival game turns. These elements stimulate thinking about climate change and motivate the player to do better next time. Thanks to the hazards introduced by the extreme events and cards, every game is different!

How to cite: Faranda, D. and the ClimarisQ team: ClimarisQ: A game on the complexity of the climate systems and the extreme events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11035, https://doi.org/10.5194/egusphere-egu24-11035, 2024.

EGU24-11091 | Posters on site | EOS4.5 | Highlight

Climate Horizons: a graphic novel of key IPCC findings to reach a wider audience 

Iris-Amata Dion and Xavier Henrion

For over 30 years, the Intergovernmental Panel on Climate Change (IPCC) has been synthesizing the state of scientific knowledge on global climate change and communicating it through a series of reports. These reports highlight both the responsibility of humans in triggering this rapid climate change and the direct threat it represents for living organisms including humans. However, despite being freely available to all, many still lack basic understanding of the climate system and the associated anthropogenic forcings. One explanation to this is that these reports are not made intelligible to people outside the academic world and the decision-making sphere. The graphic novel format offers the advantage to blend art and science, making it easier for non-scientific readers to access the information contained in the IPCC reports. Therefore, we proposed an alternative way of presenting the IPCC findings through the collaboration between a climate scientist and a cartoonist. We interviewed 9 authors of the three main IPCC working groups to present the content of these reports in an accessible and intelligent graphic novel named Climate Horizons


In the story, two main characters engage in a dialogue with these IPCC co-authors allowing them to discover the complexity of natural ecosystems, climate inaction and political power struggles. While explaining their field of study, each author shares a vision of what their role as geoscientists should be in the face of urgent climate and environmental issues. Over the course of the story, the main characters gradually change the way they see the world, and go through a range of emotions (shock, denial, anger, acceptance, etc.) as they become aware of the major problem of climate change.

This approach by committed citizens and researchers responds to the need to be informed about possible solutions and encourages individual and collective reflection to imagine new possible horizons.

How to cite: Dion, I.-A. and Henrion, X.: Climate Horizons: a graphic novel of key IPCC findings to reach a wider audience, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11091, https://doi.org/10.5194/egusphere-egu24-11091, 2024.

EGU24-11357 | Orals | EOS4.5

Is the definition of the Anthropocene a political question for and within the geosciences? 

Michael Wagreich, Colin Waters, Diana Hatzenbühler, and Eva Horn

The Anthropocene Working Group (AWG) of the Subcommission on Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS) was founded in 2009 to investigate the potential of the Anthropocene as a chronostratigraphic unit of the Geological Time Scale. After more than 14 years of work, many key publications and fierce discussions both within and outside the AWG, and several rounds of voting, the AWG concluded by great majority that the Anthropocene concept of Crutzen (2002) has stratigraphic reality and that a formal GSSP definition is pragmatic and suitable at the mid-twentieth century, coincident with the Great Acceleration of Earth System Sciences. The resulting  GSSP proposal  is located in Crawford Lake (Canada) sediment core with the base of the Anthropocene marked by an upturn in plutonium coincident with autumn 1952.  However, during the years of AWG investigations, criticisms from outside and a minority group within the AWG opposed to the majority consensus and published results of the AWG (see Zalasiewicz et al., in press), have undermined the significance, importance and usefulness of the Anthropocene as a (chrono)stratigraphic unit. However, beyond its debated geological implications but in it’s wider interdisciplinary and popular context, the term has evolved into a symbol emblematic of global change, the current climate, and ecological crisis. An argument of prominent geoscientists is that the AWG is politically and not scientifically motivated when dealing with the Anthropocene. Despite the AWG following established ICS protocols and procedures for stratigraphic working groups and founding their conclusions transparently through publications (e.g. Waters et al., 2016, 2023; Zalasiewicz et al., 2017), a political dimension is implicitly imposed on both AWG members, but also at their critics. To what extent would rejection of the Anthropocene proposal be interpreted outside of the sciences as a rejection of the scale of the current global crises? Research into the Anthropocene by the AWG has resulted in awareness and engagement of involved scientists in a crisis for which geology has some liability, but also in a wider interest of the humanities, media and arts on the stratigraphic work of the AWG. Hence, one may interpret geological research in the Anthropocene as a great and timely societal mission for the geosciences, resulting, hopefully, in a sustainable geological discipline emerging out of its historical linkage with the fossil energy sector.

Crutzen, P.J., 2002. Geology of Mankind. Nature 415: 23.

Waters, C.N. et al., 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269): 137.

Waters, C.N. et al., (Eds.), 2023. Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series. The Anthropocene Review 10(1): 3–24.

Zalasiewicz, J. et al., 2017. The Working Group on the Anthropocene: Summary of evidence and interim recommendations. Anthropocene 19: 55–60.

Zalasiewicz, J. et al., in press. The Anthropocene within the Geological Time Scale: analysis of fundamental questions. Episodes.

How to cite: Wagreich, M., Waters, C., Hatzenbühler, D., and Horn, E.: Is the definition of the Anthropocene a political question for and within the geosciences?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11357, https://doi.org/10.5194/egusphere-egu24-11357, 2024.

EGU24-11767 | Posters on site | EOS4.5

“Slow science” concept: first insights of perceptions and suggestions in an oceanography laboratory 

Simon Barbot, Guillaume Roullet, and Guillaume Serazin

In the attempt to look back on our practices and to plan their evolution, a debate has been conducted in our lab to share the different perceptions about the “slow-science” concept. This debate surprisingly gathered more curiosity than expected and all profiles of scientists were represented from the BSc, PhD students and engineers to emeritus researchers. Suggestions have been made for future practices that would increase the quality of the scientific results and knowledge as well as better working conditions while reducing green gas emission. A generational inequity was pointed out to initiate the changes: early-career researchers are selected based on project-and-paper-productive metric, while established researchers have positions of influence throughout institutions. Although such changes would need institutional decisions and technical innovation for lowering the measurement’ impact, many suggestions are already feasible through hindsight and self-discipline.

How to cite: Barbot, S., Roullet, G., and Serazin, G.: “Slow science” concept: first insights of perceptions and suggestions in an oceanography laboratory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11767, https://doi.org/10.5194/egusphere-egu24-11767, 2024.

EGU24-12554 | Orals | EOS4.5

'Les Sacoches du Climat': An outreach cycling initiative for covering the last mile of climate communication in rural France 

Les Sacoches du Climat, Juliette Bernard, Antoine Bierjon, Julie Carles, Antoine Ehret, Rémi Gaillard, Alexandre Legay, Alban Planchat, and Christophe Cassou

Rural and medium-sized town populations already regularly face the tangible impacts of climate change, particularly in relation to their professional activities. However, they are often overlooked by the scientific community when it comes to knowledge sharing, even though they equally deserve attentive listening and consideration. 'Les Sacoches du Climat' (i.e. 'The Climate Panniers') is a French scientific outreach initiative led by a collective of young climate researchers specializing in various fields. The initiative was designed to raise awareness of climate issues in such regions, taking on the challenge of reaching the last mile in the large-scale French awareness campaign 'La Tournée du Climat et de la Biodiversité' (i.e. 'The Climate and Biodiversity Tour') — a traveling exhibition in major cities addressing climate and biodiversity issues led by a multidisciplinary team of scientists. 

Our journey unfolded over a week, navigating the landscapes of rural France on bicycles. During the day, we engaged with secondary school audiences, delivering an introduction to climate challenges followed by interactive discussions and workshops, with a particular emphasis on a sensitive approach. This educational endeavor was seamlessly intertwined with collaborative projects involving teaching staff. In the evening, we engaged adult audiences through conferences and debates, fostering collaboration with local communities and associations. Accompanied by esteemed French climatologists riding tandem with us, our collective presents here a brief retrospective of this journey and the messages derived from it. This initiative serves as an earnest call for climatologists to step beyond the traditional confines of research, immerse themselves in the field, and consider the impacts, adaptation, and vulnerability of territories in all their diversity and specificity in the face of climate change, fostering a responsible societal paradigm shift.

How to cite: du Climat, L. S., Bernard, J., Bierjon, A., Carles, J., Ehret, A., Gaillard, R., Legay, A., Planchat, A., and Cassou, C.: 'Les Sacoches du Climat': An outreach cycling initiative for covering the last mile of climate communication in rural France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12554, https://doi.org/10.5194/egusphere-egu24-12554, 2024.

EGU24-13761 | Orals | EOS4.5

Continuing wetland drainage: drivers, effects, and the role of science-based partnerships and understanding 

Helen Baulch, Phil Loring, Christopher Spence, Lauren Miranda, Don Selby, and Colin Whitfield

The prairie pothole region of North America has been described as a breadbasket for the world, and a ‘duck factory’ for North America, reflecting the tremendous ecosystem services associated with the vast agricultural lands, and millions of pothole wetlands in the region.  Pressure to increase agricultural outputs and profitability has led to accelerating wetland drainage, leading to a wicked problem worsened by the lack of enforcement of existing policy and vast numbers of unlicensed drainage projects.

Responsive to questions from partners, we embarked on a multi-dimensional research program to understand options for managing the drainage of prairie wetlands.  Novel ecosystem service models, based upon the unique hydrology of the region demonstrate important threats of drainage, including flooding, increased nutrient export, and profound impacts on habitat and biodiversity.  Expert-driven scenario development also shows potential for dire changes in the region associated with climate and land use change.  Importantly, there are fundamental differences among stakeholders in their understanding of how the system works, leading to divergent interpretations of the benefits, and consequences of drainage.  Not surprisingly, wetland drainage has led to conflict, as power dynamics and the effort to coordinate drainage approvals have contributed to winners, losers, and those without voice. However, in some cases drainage conflicts may simply be a resurgence of long-standing disputes over varied issues. 

While interdisciplinary and transdisciplinary work has helped understand the context of wetland drainage in this vast geographic area, problems, and possible ways forward, a weak policy environment is expected to persist because of local ideologies for limited government intervention, a highly politicised environment with strong power imbalances and strong government support of the agriculture sector.  Our work, guided by stakeholders since project inception to inform decision-making, demonstrates significant impacts of drainage with tangible policy implications, yet concerns have emerged about the role of science and representation of science in the policy process. While transdisciplinary research has clear benefits, it is not a panacea in complex, multi-sector, and conflict-prone arenas such as this. 

How to cite: Baulch, H., Loring, P., Spence, C., Miranda, L., Selby, D., and Whitfield, C.: Continuing wetland drainage: drivers, effects, and the role of science-based partnerships and understanding, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13761, https://doi.org/10.5194/egusphere-egu24-13761, 2024.

EGU24-15634 | Orals | EOS4.5 | Highlight

Conference of the Parties or Conference of the People? Introducing a series of alternative grassroots COPs 

Sylvain Kuppel and the Scientifiques en rebellion collective

The Conferences of the Parties (COP) annually assess progress in dealing with climate change and towards legally-binding obligations to reduce or limit greenhouse gas emissions. Despite almost three decades of COPs and landmark treaties such as the Kyoto protocol (1997) and the Paris agreement (2015), global greenhouse gas emissions are a far cry from the emission pathways limiting global warming below 1.5-2°C as defined by the scientific consensus synthesized by the Intergovernmental Panel on Climate Change (IPCC). The failure at igniting state-level actions for climate mitigation stems from many factors, including a politico-economic hegemony, vested interests and techno-economic mindsets (Stoddard et al., 2021), well-embodied in the meager, voluntarism-based outcomes of increasingly questioned COPs. It may make sense that leading scientists still go to COPs to carry the voice of scientific consensus and convey the need for rapid action. However, scientists may also consider taking part in transformative changes through bottom-up initiatives where the conversation between scientists, collectives, citizens and media is more easily insulated from intense lobbying and greenwashing, allowing to focus on fact-based and ethics-driven endeavors, while showcasing unbridled perspectives for policymakers. Here we report the example of alternative COPs that took place in France in parallel to the COP28 in Dubai, organized by the Scientifiques en rebellion collective during the international Scientist Rebellion campaign “How much more climate failure can we take?”. Articulating a series of short events across French cities culminating with a 4-day alterCOP in Bordeaux, this grassroots initiative by scientists and activists was an invitation to take time to germinate new imaginations and popular initiatives, in a certain way “slowing down” to catalyze action considering the broader picture. Topics covered by this alterCOP took a systemic approach, beyond the climate breakdown, to include the other intertwined planetary boundaries (ecosystem health, water cycle, land use, etc.), discussing other economic systems (e.g. degrowth), international solidarity, and stimulating various world representations (present or desirable) and communication media, from artistic performances to a mock trial of a fossil fuel company.

References
Stoddard, I, et al. (2021). Three decades of climate mitigation: why haven't we bent the global emissions curve?. Annual Review of Environment and Resources 46, 653-689.

How to cite: Kuppel, S. and the Scientifiques en rebellion collective: Conference of the Parties or Conference of the People? Introducing a series of alternative grassroots COPs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15634, https://doi.org/10.5194/egusphere-egu24-15634, 2024.

The growing involvement of researchers in the public debate is triggering reflections in various scientific institutions. Here we report on the reflections of a working group of the University of Lausanne (UNIL) gathering researchers from all faculties, coordinated by the Competence Centre in Sustainability (CCD) and the Interdisciplinary Centre for Ethics Research (CIRE). Commissioned by UNIL’s Rectorate, the working group met thirteen times between April 2020 and May 2022 and independently defined the themes, approaches and methods that it deemed relevant to mobilize in this perspective. In particular, it conducted a literature review, a survey and focus groups with the UNIL community in the spring of 2021.

The working group's reflections were primarily aimed at clarifying the issues related to the engagement of scientists in the public debate and at better understanding the practices and perceptions of the UNIL community in this respect. They also aimed to propose answers to questions such as: should researchers be free to engage in public advocacy and activism? Is this compatible with the swiss legal framework and with notions such as science neutrality and academic freedom? What good practices should be followed when engaging in advocacy and/or activism? How should UNIL, as an institution, support its engaged researchers?

The main conclusion of the working group, published in a report in May 2022, is that participation in the public debate, advocacy and activism is compatible with research activities and as such should be supported by the academic institutions. However, it recommends a few good practices such as being as transparent as possible about the role that is endorsed (expert, researcher, activist, etc.) and about the nature of the statements that are made in public (scientific findings, personal opinion, political recommendation, etc.). In this brief oral, I will delve into the main conclusions of the working group’s report and address the questions mentioned above.

How to cite: Fragnière, A.: Exploring key issues in public engagement and activism. Findings of a working group at the University of Lausanne., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16862, https://doi.org/10.5194/egusphere-egu24-16862, 2024.

EGU24-17314 | ECS | Orals | EOS4.5

An oceanography lab in its journey toward temperance 

Etienne Pauthenet, Simon Barbot, Pierre Amael Auger, and Eric Machu

The current ecological crisis requires changes in our way to make science in order to reduce the ecological footprint of scientific research activities. This is particularly crucial for setting a good example for the rest of society. Here we present the process engaged by an oceanography laboratory to reduce its environmental footprint. Using a tool developed by the French collective Labos 1point5, we calculated the carbon footprint of our laboratory separated by activities (missions, consumables, buildings, campaigns at sea, etc.). This exercise allows us first of all to quantify the contribution of the various components of our scientific activity. It also shows that the environmental footprint of our scientific activities is significant, and that it needs to be taken seriously by the community studying the Earth system. Reducing this footprint highlights different possible scales of action. Some actions involve internal laboratory processes, while others require broader societal changes. The measures implemented by our laboratory members to minimize our activities' impact will be presented, representing a part of a broader initiative under Labos 1point5.

 

How to cite: Pauthenet, E., Barbot, S., Auger, P. A., and Machu, E.: An oceanography lab in its journey toward temperance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17314, https://doi.org/10.5194/egusphere-egu24-17314, 2024.

EGU24-17840 | Orals | EOS4.5 | Highlight

The pivotal roles of the scientists in the initiative lead by the French government to train all civil servants on climate, biodiversity and natural resources issues 

Christophe Cassou, Luc Abbadie, Laurence Tubiana, Ulysse Dorioz, Jane Lecomte, and Claire Gouny and the GAES (Groupe d'Appui et d'Expertise Scientifique)

As anticipated by scientists for decades, impacts of climate change, biodiversity losses and natural resources scarcity, are increasingly challenging human societies in these early 2020s. To respond to this challenge, a large number of countries are undertaking profound societal shifts towards low-carbon and biodiversity-friendly lifestyles. So far, these efforts have been clearly insufficient to achieve sustainable development goals and more ambitious action will be needed at all decision levels.

In France, the government has taken the decisive step to train all civil servants on the three above-cited environmental issues. The aim of this unique and ambitious initiative is to engage as many state stakeholders and practioners as possible, by raising their awareness and knowledge about both environmental risks and challenges to be faced, in order to initiate an effective, societal-scale transition that has to be collective, collaborative and systemic by essence. This initiative is partly related to a "foot in the door" media operation carried out in June 2022, just after the presidential and legislative elections, and initiated by the scientific community to offer free training courses on climate and biodiversity issues to newly-elected members of parliament.

The ongoing inter-ministerial initiative is steered at national level by an interdisciplinary group of scientists who are responsible for framing training content and methods. Its operational implementation is ensured by regional committees of scientists to address local issues grounded in actionable reality, and to facilitate effective scaling-up. The ambition is to train 25,000 top managers civil servants by the end of 2024, and 5,7 million civil servants by 2027. Scientific knowledge is at the heart of the training program and the entire cursus runs over 28 hours in face-to-face to ensure cooperative dynamics during workshops, masterclasses, debates and field trips. More than 1,200 academics have volunteered to disseminate scientific facts as aid to decision-making, and to present the scientific methods that supports them. Training courses in scientific mediation will be offered to scientists engaged in the project, especially to early career researchers. The evaluation of the full initiative will be independently carried out through 3 PhD theses.

The ultimate aim of this initiative is to create shared and long-lasting spaces for dialogue and trust between public decision-makers and the scientific community. In this talk, we will describe and discuss the pivotal role played by the scientific community in this initiative. We will report the lessons learnt from the first training courses, as well as the successes and various obstacles that have been encountered.

How to cite: Cassou, C., Abbadie, L., Tubiana, L., Dorioz, U., Lecomte, J., and Gouny, C. and the GAES (Groupe d'Appui et d'Expertise Scientifique): The pivotal roles of the scientists in the initiative lead by the French government to train all civil servants on climate, biodiversity and natural resources issues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17840, https://doi.org/10.5194/egusphere-egu24-17840, 2024.

EGU24-18413 | Orals | EOS4.5

Reducing the carbon footprint of a research lab: how to move from individual initiatives to collective actions? 

Claire Lauvernet, Céline Berni, Marina Coquery, Leslie Gauthier, Louis Héraut, Matthieu Masson, Louise Mimeau, and Jean-Philippe Vidal and the Riverly Downstream team

This communication aims at exposing the steps taken by a research lab – in this case INRAE RiverLy – to reduce its carbon footprint. INRAE RiverLy is an interdisciplinary research unit for the functioning of hydrosystems. The environmental transition process originates in 2020 with the creation of the RiverLy Downstream group launched to address the downstream impacts of research practices (see Vidal et al., 2023).

The first step taken by the RiverLy Downstream group relates to monitoring the laboratory's carbon footprint and identifying the main emission sources. Yearly carbon accountings carried out since 2019 using the GES1.5 tool (https://apps.labos1point5.org/ges-1point5) show that purchases (equipment, consumables, etc.) account for the majority (>50%) of the lab footprint. They also highlight the impact of changes in individual practices related to business travel, with -63% of travel-related emissions in 2022 compared to 2019.

A second step focused on raising awareness through a Climate Day and testing the willingness to change within our research unit through an opinion poll. Results led to writing down a lab charter which was unanimously adopted by the lab council in October 2023. This charter sets a collective 10%/year cut-down trajectory with respect to the 2022 carbon accounting, while affirming the determination to preserve the positive impact of our research on society.

A third step now being undertaken by the RiverLy Downstream team is to come up with concrete collective actions to effectively reduce the lab footprint. Participatory workshops are being organised in January and February 2024 to specify agreed actions for the various research activities: long-distance travelling, purchasing scientific and IT equipment, setting up a research project, doing lab and field experiments, performing biological and chemical analyses, performing scientific computations, and organising seminars and conferences. Consolidated and agreed propositions will then be submitted to the lab council for formal acceptation and implementation.

The whole process benefits from rich interactions with the INRAE national to regional strategy for reducing its environmental footprint (https://www.inrae.fr/en/corporate-social-responsibility-inrae), and with the French national initiative Labos1point5 which set up a national network of labs in transition (https://apps.labos1point5.org/transition-1point5).

Vidal, J.-P., Berni, C., Coquery, M., Devers, A., Gauthier, L., Lauvernet, C., Masson, M., Mimeau, L., and Turlan, M. and the RiverLy Downstream team: How to collectively engage in reducing the carbon footprint of a research lab?, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3462, https://doi.org/10.5194/egusphere-egu23-3462, 2023.

How to cite: Lauvernet, C., Berni, C., Coquery, M., Gauthier, L., Héraut, L., Masson, M., Mimeau, L., and Vidal, J.-P. and the Riverly Downstream team: Reducing the carbon footprint of a research lab: how to move from individual initiatives to collective actions?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18413, https://doi.org/10.5194/egusphere-egu24-18413, 2024.

Building transdisciplinary solutions at the first ever Climate Security Festival

In September 2023, the first ever Climate Security Festival was organized in Helsinki, Finland. The event gathered close to 100 participants including researchers, civil society actors, climate security experts, artists, activists, students and others at the Finnish Meteorological Institute for two days.

The idea of the festival was to bring people together and to enable discussing the risks related to climate change in an open and equal space. The two-day program was built around parallel workshop sessions, with the aim of strengthening and fostering cooperation between different sectors. The workshop topics were: 1) War and its effects on climate and the environment 2) Climate, death & (mental) wellbeing and 3) Who owns the climate security discussion? In addition, the festival included two keynote talks, joint discussion, a transdisciplinary poster session, artistic performances and side program; a safety walk, a photography exhibition and a collaboration movie screening and panel discussion in collaboration with Finland’s biggest film festival. The event was organized in person and participants were encouraged to leave aside their electronic devices, titles and prejudice.

Based on the encouraging results and feedback from participants, some key findings from the festival can be pointed out and utilized in building sustainable collaborations and co-creating climate solutions in geosciences and beyond. The results indicate, for example, the importance of;

  • embracing a truly transdisciplinary approach (including non-academic methods)
  • putting the work in building safer spaces for discussing ethical, fundamental and even painful topics in the context of climate change and geosciences
  • involving artists, art institutions and artistic methods in climate security related discussions and action in non-performative roles
  • expanding ownership of the discussion on climate change related risks beyond ‘traditional’ research and security/foreign political frameworks

Results are presented briefly with visual materials from the festival, workshop proceedings and participant feedback.

The festival was organized by the Safer Climate network (Institute for Atmospheric and Earth System Research, University of Helsinki) in collaboration with the Committee of 100 in Finland. The next festival will be organized in 2024.

How to cite: Rantanen, R.: Building transdisciplinary solutions at the first ever Climate Security Festival, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18757, https://doi.org/10.5194/egusphere-egu24-18757, 2024.

With detailed understanding of planetary boundaries like the connection of continuously increasing global greenhouse gas emissions and the frequency and severity of climate change impacts (geo)scientists recognize the critical need for ambitious political action perhaps more urgently than non-experts. Yet, global policies have consistently failed to deliver on their ambitions, goals, and implementation, making necessary transformations elusive. We argue that (geo)scientists can have a considerable impact beyond the traditional avenues of publishing papers and reports or advising policy makers. Drawing inspiration from historical successes, particularly in non-violent civil disobedience, we explore the considerations of engaging in climate activism from the dual perspectives of scientists and civil servants. Using the example of scientists at public scientific institutions in the Netherlands, we delve into questions surrounding one’s rights, duties, and responsibilities. We aim to stimulate reflection on effective strategies for scientists to advocate for change in the critical arena of climate action and climate justice.

How to cite: Jüling, A. and Keizer, I.: Navigating the Intersection of Science, Activism, and Civil Service: Reflections on the role of scientists in civil service, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18782, https://doi.org/10.5194/egusphere-egu24-18782, 2024.

EGU24-19128 | Posters on site | EOS4.5

IPSL climactions and the bottom-up ecological transformation of  a climate research institute (2016-2024) 

Lea Bonnefoy and the IPSL Climactions

For several decades now, research communities working on the climate, its changes, including current global warming, and its consequences have been recommending drastic reductions in human-made greenhouse gas emissions and, more generally, in the ecological footprint of human activities. This implies the implementation over the next 10 to 20 years of profound and rapid systemic transformations. The latest IPCC reports show that such transformations are only possible if they involve all parts/sectors of society. Given the existence of a range of ecological constraints and the foreseeable limits to scientific and technical advances, the transformations to be implemented must also include a strong component of sufficiency ("avoidance”).

Since 2016, IPSL scientists and support staff have been working together along these lines to transform the institute's professional practices.  This engagement is generally seen as : (i) a necessity: to initiate a transition in its research practices that will bring its professional behavior in line with the message of climate urgency that it has been diffusing for over 30 years; (ii) an opportunity: to accelerate the transition at a societal level by opening up new channels of exchange with society, encouraging collective action by example, and reinforcing the credibility of its warning message; (iii) a safeguard: collective bottom-up thinking at laboratory level to ensure that this transition takes place with maximum respect for our research practices and our well-being at work, and is not imposed by potentially inappropriate top-down measures.

Achievements include (i) the development of methodologies for calculating the carbon footprint generated by staff activities and professional practices, (ii) concrete contributions to the reduction of the environmental footprint of professional travels, digital and high performance computing activities, purchases and finally observation of the earth. We will present here our approach, methodologies, achievements, and reflections at this stage, with the hope to stimulate exchange with other ongoing or emerging initiatives in other parts of the world.  

How to cite: Bonnefoy, L. and the IPSL Climactions: IPSL climactions and the bottom-up ecological transformation of  a climate research institute (2016-2024), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19128, https://doi.org/10.5194/egusphere-egu24-19128, 2024.

EGU24-19470 | Posters on site | EOS4.5 | Highlight

Scientific debunking of institutional and corporate communication 

Laurent Husson and the Scientifiques en Rébellion collective

Greenwashing sounds like a trivial manoeuvre that can easily be circumvented. In practice, private companies and institutions deploy a wealth of inventiveness to take away your vigilance. As a canonical example, it took forever before it was realized and admitted that the tobacco industry had a tremendous health burden. As scientists, we have the means to scrutinize the borderline communication, that stands half way between journalistic investigation and activism. That is the purpose of Scientist Rebellion in particular, which is particularly concerned with environmental challenges. Of course, it often requires to go beyond our daily scientific expertises, that we are trained for. Using two recent examples, I will showcase two case studies from Scientist Rebellion in France. The first one deals with the analysis of financial institutions regarding their oil and gas strategies, and the subsequent media coverage of activist communication, and an insider view on the impact of it had on the orientation of their strategies. The second one is an exploration of the governmental communication on adaptation strategies to climate change, with consideration on its political implications. 

How to cite: Husson, L. and the Scientifiques en Rébellion collective: Scientific debunking of institutional and corporate communication, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19470, https://doi.org/10.5194/egusphere-egu24-19470, 2024.

EGU24-19960 | ECS | Orals | EOS4.5

Climate activism as a form of science communication and public engagement 

Arthur Oldeman, Iris Keizer, and André Jüling

The current state and future projections of the climate and environmental crises call for science to be able to have a deep impact on society, and to have it quickly. Here we discuss how scientists engaging in climate activism can contribute to educating the general public and press for urgent action, as well as under which conditions such scientific activism can be most effective.

Traditionally, science has mostly interacted with society by making scientific results public, without interfering in how politicians, business and the general public would make use of them. Similarly, the role of science educators has been often confined to spreading knowledge to students and broader audiences, independently of how this knowledge affects society. However, such communication and education efforts appear insufficient considering unambitious policies with regards to the current climate and ecological crises. As a result, many scientists, both within and outside academia, have been looking for other ways to communicate the urgency of the climate crisis. Notably, communication efforts have increasingly extended to public support of environmental action movements and participation in protests and civil disobedience actions.

In this work, we discuss how activism can be complementary to classical approaches of science communication and public education on the urgency of the climate and environmental crises. We will highlight recent examples of civil disobedience by scientists with a focus on the Netherlands. We also present the reaction from stakeholders such as politicians and representatives of companies, as well as the reception of such actions by the scientific community. We discuss the place of activism in the broader scientific community, where our viewpoint is that scientific activism can only become an efficient way of science communication and public engagement if (i) it is accepted and respected within the scientific community, and (ii) it adheres to rules allowing such communication to maintain or increase scientific reputation in society. We also stress the supportive role of universities and research institutes in enabling the engagement with activism, especially for early career scientists. Scientific institutions should emphasize that climate activism and advocacy is welcome among both researchers and educators, that their freedom of speech is protected, and that such activities are recognized as valuable.

How to cite: Oldeman, A., Keizer, I., and Jüling, A.: Climate activism as a form of science communication and public engagement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19960, https://doi.org/10.5194/egusphere-egu24-19960, 2024.

EGU24-20093 | Posters on site | EOS4.5

Beyond Traditional Science Advocacy: Should Scientists engage in Climate Action?  

Iris Keizer, Arthur Oldeman, and André Jüling

The current climate and environmental crisis requires immediate societal changes. Here, we propose a discussion on whether scientists should engage in climate action. Activism offers a new avenue for climate advocacy that goes beyond traditional methods. We explore how scientists engaging in climate activism can educate the general public and press for urgent action and the conditions under which scientific activism can be most effective. 


Using historical and recent examples of non-violent civil disobedience by scientists, including actions we joined and/or supported as members of Scientist Rebellion, we demonstrate how such activism can be effective in complementing classical approaches to public education about the urgency of the climate and environmental crises, as well as in pushing for critically needed political action. We invite all scientists to engage in a discussion on whether we should engage in climate action as we acknowledge the complexities around scientific values, ethics, authority, and integrity. 



How to cite: Keizer, I., Oldeman, A., and Jüling, A.: Beyond Traditional Science Advocacy: Should Scientists engage in Climate Action? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20093, https://doi.org/10.5194/egusphere-egu24-20093, 2024.

EGU24-20180 | ECS | Orals | EOS4.5 | Highlight

Mapping Fossil Ties: Decentralised research into ties between universities and the fossil fuel industry 

Maien Sachisthal, Aaron Pereira, and Linda Knoester

Universities are under increasing scrutiny from students, staff and society about their ties with the fossil fuel industry. Such ties include research cooperations and commissions, influence and participation in study programmes, sponsoring of students and student societies, sponsored professorships and staff ancilliary activities, presence at careers fairs and alumni networks. For fair and open discussion on what relationships between universities and the fossil fuel industry are appropriate, such relationships must be transparent - currently this is not the case. 

In the Netherlands, the Mapping Fossil Ties coalition - a research coalition of student and staff activists, NGOs and independent investigators - map these "fossil ties" and track the influence of fossil fuel companies in universities. We use a variety of methods: freedom of information (FOI) requests to universities and funding bodies, web scraping, and decentralised, crowdsourced information gathering on campus. From this, we could build a fuller picture of how Dutch academia interacts with and is influenced by the fossil industry, and can identify hidden, yet problematic ties. 

The collaborations, news coverage, and state of the debate are continually updated on a web portal (mappingfossilties.org) for the use of investigative journalists, (activist) student and university staff, NGOs, policymakers, and the public. In this talk we present our methodology, the impact that this research has had on the Dutch public debate, how this research underpins student and staff activism, and points for improvement and learning. Finally we discuss how we are replicating such research in other countries, and how others can do so too.

How to cite: Sachisthal, M., Pereira, A., and Knoester, L.: Mapping Fossil Ties: Decentralised research into ties between universities and the fossil fuel industry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20180, https://doi.org/10.5194/egusphere-egu24-20180, 2024.

EGU24-756 | ECS | Posters on site | BG8.4

Influence of Enhanced Silicate Weathering on Streamwater Quality: A Watershed Experiment 

Rob Rioux, Fengchao Sun, Wyatt Tatge, Quinn C. Zacharias, William Miller-Brown, James B. Shanley, Noah Planavsky, Peter A. Raymond, and James Saiers

Enhanced Mineral Weathering (EMW), a Carbon Dioxide Removal approach, is of growing interest to scientists and practitioners due to its scalability, low technological demand, and co-benefits to farmers and soil health. Enhanced Silicate Weathering (ESW) is distinguished from EMW by grinding silicate rocks (e.g., basalt) into dust and applying it across a landscape, primarily agricultural land. After application, the silicate minerals react with carbonic acid (H2CO3) present in rainwater and soil pore water to generate weathering products such as base cations (Ca2+, Mg2+, Na+), alkalinity, trace elements (Al, Fe, Mn), and clays. These weathering products are used by plants or transported from the land to surface water. These weathering products influence streamwater chemistry by increasing in-stream pH, salinity, and alkalinity, which may worsen water quality and impair aquatic ecosystem function. Previous research has described the adverse water quality impacts of increased stream pH, salinity, and alkalinity at the continental scale across North America. The sources driving this change in freshwater quality have been identified as road salt, agricultural lime, and strong acids derived from anthropogenic activities (e.g., fertilizer and acid mine drainage). We are interested in understanding how ESW deployed at large scales may contribute to ongoing changes in freshwater quality. Here, in a small agricultural watershed in Northeastern Vermont, United States, we monitor water quality pre- and post-application of basalt at high-frequency intervals at two stream locations (measuring temperature, pH, specific conductance, dissolved oxygen, chlorophyll-a, and CDOM). In addition, we collected weekly baseflow water samples and stormwater samples across 19 rain events. All water samples were measured for a suite of chemical parameters, including DOC, alkalinity, major anions, cations, trace elements, and water isotopes. We analyze this data through multiple lenses, estimating changes to water quality, describing concentration-discharge dynamics, and analyzing aquatic ecosystem response via community respiration.

How to cite: Rioux, R., Sun, F., Tatge, W., Zacharias, Q. C., Miller-Brown, W., Shanley, J. B., Planavsky, N., Raymond, P. A., and Saiers, J.: Influence of Enhanced Silicate Weathering on Streamwater Quality: A Watershed Experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-756, https://doi.org/10.5194/egusphere-egu24-756, 2024.

EGU24-928 | ECS | Posters on site | BG8.4

Reactive transport modelling reveals changes in properties of tropical soils subjected to enhanced silicate weathering 

Juliette Glorieux, Yves Goddéris, Sylvain Kuppel, and Pierre Delmelle

Applied regionally to cropland soils, enhanced silicate weathering (ESW) is advocated as a viable technology for enhancing the consumption of atmospheric CO2, while also providing ancillary benefits to soil fertility and crop growth. However, important uncertainties remain regarding the short- and long-term effects of silicate addition on weathering rate and soil properties. To address this issue, we adapted and used the reactive transport model WITCH1 to simulate weathering in a tropical soil (Oxisol) amended annually with 50 t ha-1 of crushed basalt over five years. We monitored the changes in the soil chemical properties, primary and secondary mineralogy and CO2 consumption rate over a 10-year period. The modelling results confirm that the instantaneous CO2 consumption rate increases with basalt application. Basalt weathering increases the pH of the soil solution, from acidic to alkaline values, and releases Ca, Mg and K in solution, thus serving as a plant nutrient source. We also found that allophanes may form in the Oxisol in response to dissolution of the basalt’s glass and plagioclases. As evidenced in volcanic soils, allophanes typically exhibit a significant potential for organic carbon stabilisation. The formation of allophanes in the Oxisol treated with basalt may improve aggregation processes, water retention and hydraulic conductivity, but may decrease phosphate availability further. Our modelling study highlights that the intentional application of basalt to a tropical soil affects various soil properties significantly. The short and long-term impacts of these changes on soil functioning will need to be assessed.

1Goddéris et al., 2006. GCA 70:1128-1147

How to cite: Glorieux, J., Goddéris, Y., Kuppel, S., and Delmelle, P.: Reactive transport modelling reveals changes in properties of tropical soils subjected to enhanced silicate weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-928, https://doi.org/10.5194/egusphere-egu24-928, 2024.

EGU24-972 | ECS | Posters on site | BG8.4 | Highlight

Role of unfavorable impurities in CO2 mineralization process of industrial solid waste: Uncertainties in decarbonization potential  

Yikai Liu, Qiusong Chen, Maria Chiara Dalconi, Luca Valentini, Xinyi Yuan, Simone Molinari, Yunming Wang, and Gilberto Artioli

Using industrial solid waste to capture CO2 by mineral carbonation is considered one of the promising technologies to prevent waste disposal while combating global anthropogenic CO2 emissions. Especially, the carbonation reaction is spontaneous and the carbonated products are relatively stable; thus, mineral carbonation is an effective means of stabilizing CO2 and valorizing industrial solid waste. Previous estimations report that a 4.02 Gt per year mitigation potential can be facilitated through CO2 mineralization of industrial solid waste. However, existing estimates do not take into account the impacts of unfavorable impurities, which have broad uncertainty and variability due to different industrial processes and ore sources. The existence of certain impurities might influence the rate of the carbonation reaction and therefore, the amount of CO2 captured and carbonates formed. For instance, some elements (e.g., Pb, Cd, and Mn in mine tailings) can enhance the CO2 capture capacity due to the precipitation of heavy metal carbonates. While some organics (e.g., organic matter in sludge) and anions (e.g., phosphates in phosphogypsum) can influence the carbonation reactions negatively. Especially, the questionable releasing behavior of these potentially toxic elements can bring about new environmental issues when the deposited body reaches groundwater or aquifer resources. Therefore, in this work, we have attempted to clarify the roles of impurities in the mineralization process and the afterward usage period, including the accelerating or retarding effects of impurities in carbonation and the leaching behavior of potentially toxic elements. Industrial solid wastes from different sectors, such as typical mine tailings (e.g., copper mine tailings and nickel mine tailings), industrial by-products (e.g., phosphogypsum, fly ash, red mud, and coal gasification slag), and construction and demolition waste, are used for accelerated and atmospheric carbonation at ambient temperatures. Our study reveals that although mineralization and in-stu storage could turn industrial solid wastes into a global carbon mitigation sink, unfavorable impurities may curb abatement potential.

How to cite: Liu, Y., Chen, Q., Dalconi, M. C., Valentini, L., Yuan, X., Molinari, S., Wang, Y., and Artioli, G.: Role of unfavorable impurities in CO2 mineralization process of industrial solid waste: Uncertainties in decarbonization potential , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-972, https://doi.org/10.5194/egusphere-egu24-972, 2024.

EGU24-1421 | Orals | BG8.4 | Highlight

Initial agronomic benefits of enhanced weathering using basalt: A study of spring oat in a temperate climate 

Kirstine Skov, Jez Wardman, Matthew Healey, Amy McBride, Tzara Bierowiec, Julia Cooper, Ifeoma Edeh, Dave George, Mike E. Kelland, Jim Mann, David Manning, Melissa J. Murphy, Ryan Pape, Yit A. Teh, Will Turner, Peter Wade, and Xinran Liu

Addressing soil nutrient degradation and global warming requires novel solutions. Enhanced weathering using crushed basalt rock is a promising dual-action strategy that can enhance soil health and sequester carbon dioxide. This study examines the short-term effects of basalt amendment on spring oat (Avena sativa L.) during the 2022 growing season in NE England. The experimental design consisted of four blocks with control and basalt-amended plots, and two cultivation types within each treatment, laid out in a split plot design. Basalt (18.86 tonnes ha −1 ) was incorporated into the soil during seeding. Tissue, grain and soil samples were collected for yield, nutrient, and pH analysis. Basalt amendment led to significantly higher yields, averaging 20.5% and 9.3% increases in direct drill and ploughed plots, respectively. Soil pH was significantly higher 256 days after rock application across cultivation types  (direct drill: on average 6.47 vs. 6.76 and ploughed: on average 6.69 vs. 6.89, for control and basalt-amended plots, respectively), likely due to rapidly dissolving minerals in the applied basalt, such as calcite. Indications of growing season differences in soil pH are observed through direct measurement of lower manganese and iron uptake in plants grown on basalt-amended soil. Higher grain and tissue potassium, and tissue calcium uptake were observed in basalt-treated crops. Notably, no accumulation of potentially toxic elements (arsenic, cadmium, chromium, nickel) was detected in the grain, indicating that crops grown using this basaltic feedstock are safe for consumption. This study indicates that basalt amendments can improve agronomic performance in sandy clay-loam agricultural soil under temperate climate conditions. These findings offer valuable insights for producers in temperate regions who are considering using such amendments, demonstrating the potential for improved crop yields and environmental benefits while ensuring crop safety.

How to cite: Skov, K., Wardman, J., Healey, M., McBride, A., Bierowiec, T., Cooper, J., Edeh, I., George, D., Kelland, M. E., Mann, J., Manning, D., Murphy, M. J., Pape, R., Teh, Y. A., Turner, W., Wade, P., and Liu, X.: Initial agronomic benefits of enhanced weathering using basalt: A study of spring oat in a temperate climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1421, https://doi.org/10.5194/egusphere-egu24-1421, 2024.

EGU24-2598 | Posters on site | BG8.4

Impact of Enhanced Rock Weathering on Soil Organic Carbon Dynamics through Microbial Activity 

Ye Lim Park, Junge Hyun, Yejee Ok, and Gayoung Yoo

Enhanced Rock Weathering (ERW) is a method for capturing carbon dioxide from the atmosphere and turning it into inorganic carbon, which is then stored in soil or oceans. While ERW is typically acclaimed for its influence on inorganic carbon cycling, its interactions with soil organic carbon (SOC) - mainly formed through biological processes like plant and microbial activity - are less explored. This study aims to investigate the impact of ERW application on SOC dynamics, particularly through modifications in microbial activity. We tested two hypotheses: (1) The change in soil pH and micro-nutrient levels by ERW amendments could boost soil microbial activity, which then accelerate breakdown of easily decomposable SOC, and 2) Higher labile SOC content could increase SOC stabilization within soil aggregates or bound to minerals, which further contribute to an increase in long lasting SOC stock by ERW. In this study, to analyze SOC dynamics under the influence of ERW, we applied olivine, a common ERW material, to soil and conducted a four-month pot experiment with alfalfa. After experiment, soil samples from each pot were analyzed using size and density fractionation to distinguish SOC into four forms: light fraction carbon (LFC), particulate organic carbon in macroaggregates (Macro_oPOC), particulate organic carbon in microaggregates (Micro_oPOC), and mineral-associated organic carbon (MAOC). Additionally, to assess microbial activity, we measured microbial biomass carbon (MBC), extracellular enzyme activities (three hydrolases and two oxidases) associated with C decomposition, and glomalin-related soil protein (GRSP), thus providing insights into microbial processes influenced by ERW. As a result, the increased soil pH and supply of minerals from ERW are expected to boost microbial activities, potentially leading to a higher rate of labile SOC decomposition. This could result in decreases in LFC and Macro_oPOC and increases in both Micro_oPOC and MAOC. This research underscores the multifaceted role of ERW in carbon management strategies, demonstrating its potential not only in mitigating climate change through inorganic carbon sequestration but also in influencing SOC sequestration.

How to cite: Park, Y. L., Hyun, J., Ok, Y., and Yoo, G.: Impact of Enhanced Rock Weathering on Soil Organic Carbon Dynamics through Microbial Activity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2598, https://doi.org/10.5194/egusphere-egu24-2598, 2024.

EGU24-2602 | ECS | Posters on site | BG8.4

Assessing the Impact of Enhanced Rock Weathering on Soil Biological Interactions with Comprehensive Carbon Dioxide Removal Index 

Yejee Ok, Junge Hyun, Ye Lim Park, and Gayoung Yoo

Enhanced Rock Weathering (ERW) is emerging as a promising Carbon Dioxide Removal (CDR) strategy. While existing research predominantly measures dissolved inorganic carbon (DIC) and soil inorganic carbon (SIC) to evaluate CDR effects, the significance of plants and their influence on soil organic carbon (SOC) within the ERW process remains underexplored. Our study aims to investigate the impact of ERW amendments on SOC sequestration when applied to soils with planted vegetation. The variation in SOC sequestration due to ERW depends on factors such as the composition of ERW materials, soil conditions, and the presence of plants and microorganisms. Under these interactions, stable SOC storage for at least several decades needs to be considered a CDR effect, although the increase in plant growth may not be considered a CDR effect due to the short carbon storage time. Additionally, we propose the inclusion of non-CO2 greenhouse gas emissions, particularly N2O emissions resulting from microbial activity changes, in our comprehensive CDR Index. Here, we suggest a comprehensive CDR Index for ERW, encompassing direct effects on SIC and DIC, indirect impacts on SOC, and N2O fluxes. To thoroughly investigate the CDR impact of ERW materials, we assessed the CDR Index for two distinct ERW materials: natural rock and industrial by-product silicate. Our four-month pot experiment involved control and two ERW amendments(olivine and blast furnace slag) alongside two planting scenarios(with alfalfa and without plants). We hypothesize that the CDR effect calculated using our comprehensive CDR Index will differ from that calculated using only DIC or SIC measurements. We anticipate significant increases in SIC and DIC for treatments, particularly with blast furnace slag due to its composition. In the plant-involved treatments, we anticipate both higher SIC, as plants accelerate weathering with their acidic exudates, and increased SOC, indicating improved plant growth and subsequent carbon sequestration. Variations in N2O fluxes are also anticipated with different ERW amendments. Initial data from three weeks shows significant DIC increases with blast furnace slag and modest increases with olivine. Greater plant biomass was observed in treatments compared to control, suggesting varied biological impacts. Throughout the remaining four-month experiment, we aim to document changes in SIC, DIC, SOC, and differences in N2O fluxes. These results are anticipated to vary based on the type of amendment and the planting options. This research is expected to underscore the significance of the biological effect in a comprehensive CDR assessment and contribute to identifying the most effective conditions for CDR with ERW when considering biological impacts. The findings are expected to guide future research and the implementation of ERW strategies, contributing to global climate change mitigation efforts.

How to cite: Ok, Y., Hyun, J., Park, Y. L., and Yoo, G.: Assessing the Impact of Enhanced Rock Weathering on Soil Biological Interactions with Comprehensive Carbon Dioxide Removal Index, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2602, https://doi.org/10.5194/egusphere-egu24-2602, 2024.

EGU24-5560 | ECS | Posters on site | BG8.4

Maximizing limestone dissolution rate and alkalinity enhancement in an open-system benchtop reactor  

Noga Moran, Yonaton Goldsmith, and Eyal Wurgaft

Reducing CO2 emissions is crucial for mitigating climate change and its environmental impacts. A promising strategy for CO2 reduction involves enhancing limestone dissolution in seawater by reacting it with industrial CO2 waste gas to form dissolved bicarbonate, which prevents the CO2 from being released into the atmosphere. This process of limestone dissolution and atmospheric CO2 reduction occurs naturally over time-scales of 105 – 106 years and serves as “Earth's thermostat”. Enhancing this natural process could serve as an efficient way to remove man-made atmospheric CO2. To adapt this process to perform at industrial scales and rates suitable for mitigating climate change it is essential to scrutinize limestone dissolution rates and assess the parameters governing this process under controlled laboratory conditions. To assess the potential of limestone dissolution rates and characterize the conditions required to maximize dissolution rates and CO2 removal, we constructed a versatile benchtop reactor that mimics the natural limestone dissolution process and allows for experimenting with different materials and dissolution conditions. This experimental setup affords control over gas and recycled gas flow rates, as well as the mineralogy and grain size of the utilized limestones—parameters known to influence dissolution rates. The reactor is a 22 x 110 (cm) circular tube filled with a limestone medium. A continuous stream of seawater and CO2 gas is introduced into the reactor where it reacts with the limestone. An air pump recycles CO2 gas from the reactor head-space, in order to enhance the efficiency of CO2 dissolution in seawater. Excess gas and seawater are removed continuously from the reactor, creating an open, through-flowing system. The system is monitored online using temperature, pCO2 and pH meters. Total alkalinity (TA), dissolved inorganic carbon (DIC) and Calcium concentrations of the sea water in the reactor are sampled throughout the experiments and measured offline. To identify the parameters that achieve maximum limestone dissolution rates we performed experiments under different grain sizes, gas to seawater flows ratio, and recycled gas flow rate. Comparing our findings with previous studies reveals that a significant amount of limestone dissolution occurred in our system, leading to alkalinity enhancement in the sea water and removal of CO2. In the presentation, we will discuss the effects of the different parameters on the final total dissolution rate and suggest the set of parameters that maximize the limestone dissolution rate.

How to cite: Moran, N., Goldsmith, Y., and Wurgaft, E.: Maximizing limestone dissolution rate and alkalinity enhancement in an open-system benchtop reactor , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5560, https://doi.org/10.5194/egusphere-egu24-5560, 2024.

EGU24-7456 | Posters on site | BG8.4

Olivine Fertilization for Carbon Dioxide Removal: Field Demonstrations and Insights in Diverse Forest Ecosystems in a Tropical Monsoon Climate 

Ci-Jian Yang, Chun-Wei Tseng, Chiu-Hsien Wang, Xinye Shi, and Chi-Wang Tsui

A novel geoengineering technique aims to counteract global warming caused by anthropogenic CO2 through artificially enhanced silicate weathering, achieved by the dissolution of olivine. Unlike other geoengineering concepts, CDR (carbon dioxide removal) techniques not only mitigate ocean acidification but also efficiently draw down atmospheric CO2. Models predict that we can sufficiently enhance silicate weathering enough for it to be a useful CDR strategy. The models typically rely on kinetic rate constants derived from benchtop experiments conducted under conditions far from equilibrium. Hence, empirical field demonstrations are crucial to validate the effectiveness of enhanced silicate weathering. Here, we implement additional olivine (Mg2SiO4) fertilization in three plots with the same dimensions but various forest forms, grassland, Chinese fir, and mixed woodlands. The olivine doses were equivalent to 200 tons ha-1 in this study. Combining monthly samplings of runoff chemistry with hourly runoff measurement, this study aims to delineate the chemical weathering flux. Preliminary findings reveal the concentration of Si4+,Mg2+, and Ca2+ within runoff at varying soil depths and forest forms. Specifically, in the Chinese fir plot, the concentration of Si4+ increased from 5.58 to 17.47 mg L-1 within the initial three months, subsequently diminishing to 5.54 mg L-1 after one year. Conversely, the grassland exhibited a decline from 4.20 to 2.46 mg L-1 in the same period. For mixed woodlands, Si4+ concentration elevated from 4.16 to 10.87 mg L-1 at three months, followed by a reduction to 5.54 mg/L after one year. The concentrations of Si4+ within the 30 to 85 cm depth exhibited minimal variation, fluctuating between 5–8 mg L-1. The initial concentrations of Mg2+ for the Chinese fir, grassland and mixed woodlands were 2.70, 0.19, and 1.19 mg L-1, escalating to 2.90, 1.76, and 2.14 mg L-1, respectively. Correspondingly, initial Ca2+ concentrations were 42.87, 37.13, and 24.07 mg L-1, increasing to 147.70, 49.40, and 45.58 mg L-1, subsequently declining to 21.70, 7.04, and 11.78 mg L-1. The observed trends suggest that nutrient deficiency in experimental plots prompts preferential Mg uptake by plants upon excess olivine addition, resulting in the release of Ca. These insights imply that olivine fertilization necessitates a minimum of three months and persists for at least 30 months in our case. Disparities in concentrations at different depths underscore the predominance of weathering in surface layers. While silicate weathering is more pronounced in forests compared to grasslands, excessive Mg addition may disrupt the equilibrium in plant nutrient uptake.

How to cite: Yang, C.-J., Tseng, C.-W., Wang, C.-H., Shi, X., and Tsui, C.-W.: Olivine Fertilization for Carbon Dioxide Removal: Field Demonstrations and Insights in Diverse Forest Ecosystems in a Tropical Monsoon Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7456, https://doi.org/10.5194/egusphere-egu24-7456, 2024.

EGU24-9664 | ECS | Orals | BG8.4

Carbon sequestration uncertainties: bridging the model-data gap for enhanced weathering 

Salvatore Calabrese, Matteo Bertagni, Giuseppe Cipolla, Leonardo V. Noto, and Amilcare Porporato

Enhanced weathering (EW) is a promising strategy for sequestering CO2 by amending cropland and forest soils with crushed silicate materials. However, current model-based estimates suffer from numerous uncertainties resulting from the incomplete representation of the weathering process in soils and a lack of model-data comparisons. Here, we address this gap by improving and validating an ecohydrological and biogeochemical soil model that captures the EW dynamics in the upper soil layers. We present a systematic model-experiment comparison leveraging four experiments with different degrees of complexity, ranging from simple closed incubation systems to fully open mesocosm experiments. The comparison reveals an encouraging observation-model agreement for the primary variables of interest, such as rock alkalinity release and CO2 sequestration. The comparison also demonstrates that the weathering rates consistently fall below those of flask dissolution experiments, underlining the need to update mineral weathering rate formulations in soils. As measurements from field trials become available, further model-data comparisons will help refine the model in support of large-scale EW deployments.

How to cite: Calabrese, S., Bertagni, M., Cipolla, G., Noto, L. V., and Porporato, A.: Carbon sequestration uncertainties: bridging the model-data gap for enhanced weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9664, https://doi.org/10.5194/egusphere-egu24-9664, 2024.

EGU24-9670 | ECS | Posters on site | BG8.4

Feeling the “pulse”: long-term studies are key to understanding carbon dynamics in bio-weathering 

Lucilla Boito, Laura Steinwidder, Patrick Frings, Arthur Vienne, Jet Rijnders, Jasper Roussard, and Sara Vicca

Besides rapid and deep greenhouse gas emission reductions, atmospheric Carbon Dioxide Removal strategies (CDRs) will be necessary to mitigate anthropogenic climate change. A promising CDR is Enhanced rock Weathering (EW), deployed on croplands. So far, most research focused on lab-based weathering and sequestration rates, but these might differ substantially in field settings, where biota may have a strong effect on EW processes (e.g., via bio-weathering). Additionally, these studies are mostly short-term, thus limiting our knowledge on the long-term effects of silicate addition on croplands.

Here, we set up a mesocosm experiment to quantify the carbon (C) sequestration of EW and how this is affected by biota. The experiment consisted of soils applied with basalt and combinations of corn and/or earthworms. It spanned over two growing seasons, for a total duration of 16 months. We measured i) Soil CO2 Efflux (SCE) , ii) porewater and leachate water alkalinity, Dissolved Inorganic Carbon (DIC), pH and other elemental chemistry, and iii) soil pH and elemental chemistry in order to determine weathering rates.

Our data shows that basalt had a different effect on SCE in the two growing seasons. In both seasons, the effect of basalt depended on plant presence, though in two different directions. In the first growing season, basalt increased emissions significantly compared to controls, but only when plants were present. In contrast, during the second growing season basalt significantly decreased SCE over time compared to controls, but only in absence of plants. Here, there was no effect of basalt on SCE whenever plants were present. These contrasting results suggest an initial stimulation of SCE (“pulse”) due to basalt application, especially prominent in the presence of plants and possibly involving changes in soil organic carbon dynamics. These findings highlight the need for long-term studies that outlast that initial “pulse” and elucidate the fate of organic carbon in order to accurately quantify the CDR potential of EW, as well as the role of biota therein.

How to cite: Boito, L., Steinwidder, L., Frings, P., Vienne, A., Rijnders, J., Roussard, J., and Vicca, S.: Feeling the “pulse”: long-term studies are key to understanding carbon dynamics in bio-weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9670, https://doi.org/10.5194/egusphere-egu24-9670, 2024.

EGU24-10324 | ECS | Orals | BG8.4

Destabilization of carbon in tropical peatlands by enhanced rock weathering 

Alexandra Klemme, Tim Rixen, Moritz Müller, Justus Notholt, and Thorsten Warneke

Southeast Asian peatlands represent a globally significant carbon store. Recent land use changes destabilize the peat, causing increased leaching of peat carbon into rivers. Despite resulting high river organic carbon concentrations, field data suggests only moderate carbon dioxide (CO2) emissions from rivers. We offer an explanation for this phenomenon by showing that carbon decomposition is hampered by the low pH in peat-draining rivers, and we find that enhanced input of carbonate minerals increases CO2 emissions by counteracting this pH limitation. One potential source of carbonate minerals to rivers is the application of enhanced weathering, a CO2 removal strategy that accelerates weathering-induced CO2 uptake from the atmosphere via the dispersion of rock powder. The effect of enhanced weathering on peatland carbon stocks is poorly understood. We present estimates for the response of CO2 emissions from tropical peat soils, rivers and coastal waters to enhanced weathering induced changes in soil acidity. The potential carbon uptake associated with enhanced weathering is reduced by 18−60 % by land-based re-emission of CO2 and is potentially offset completely by emissions from coastal waters. These findings suggest that, in contrast to the desired impact, enhanced weathering may destabilize the natural carbon cycle in tropical peatlands.

How to cite: Klemme, A., Rixen, T., Müller, M., Notholt, J., and Warneke, T.: Destabilization of carbon in tropical peatlands by enhanced rock weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10324, https://doi.org/10.5194/egusphere-egu24-10324, 2024.

EGU24-11274 | ECS | Posters on site | BG8.4

Concrete application in enhanced weathering: Investigating the effect of concrete on barley and oat under field conditions 

Christos Chondrogiannis, Katie O’Dea, Maurice Bryson, Ruadhan Magee, and Frank McDermott

Weathering, the breakdown of rock into its elements, is a carbon sequestering process and a significant component of the Earth’s long-term carbon cycle. As rock is weathered, atmospheric CO2 reacts with elements released, forming bicarbonates. These compounds are transported to the ocean where they are stored for thousands of years.

The above mechanism has garnered much attention in recent years for its use as a potential negative emissions technology to advance efforts in climate change mitigation. Enhanced weathering (EW) aims to accelerate carbon sequestering reactions of rock weathering by applying crushed rock onto vegetated surfaces. It’s also believed this practice could provide secondary benefits of improving crop yields and soil conditions. A variety of rocks, such as basalt and olivine, have been applied to different crops all over the world in an attempt to test their potential as a CO2 removal technique and natural fertilizer.

This study aims to build upon previous attempts by employing a novel material, crushed concrete. Concrete is abundant in fast-weathering minerals such as portlandite and amorphous calcium silicates, making it an ideal candidate for EW. By harnessing the same bicarbonate forming and carbon sequestering reactions but using a waste by-product of the construction industry, the sustainability and circularity of EW technology could be further increased.

In this study, crushed concrete was applied to fields of oat (Avena sativa) and barley (Hordeum vulgare) in Co. Wexford, Ireland, during the spring growing season. Physiological (chlorophyll fluorescence and stomatal conductance) and morphological (dry mass and plant height) parameters were measured through multiple stages of the plant growth to assess the impact of concrete application on crop health and yield. Our results showed an increase in the dry mass (specifically seed dry mass) of barley, suggesting that barley may benefit from concrete application. No significant changes were observed in oat. Our results suggest that concrete does not negatively impact crop yields and could even improve yields in certain crop species.

How to cite: Chondrogiannis, C., O’Dea, K., Bryson, M., Magee, R., and McDermott, F.: Concrete application in enhanced weathering: Investigating the effect of concrete on barley and oat under field conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11274, https://doi.org/10.5194/egusphere-egu24-11274, 2024.

EGU24-11347 | ECS | Orals | BG8.4

Scaling up enhanced rock weathering: field trials and ecohydrological modelling in a temperate forest  

Gregory Jones, Athanasios Paschalis, and Bonnie Waring

Enhanced Rock Weathering (ERW) utilizing basalt in forest ecosystems has emerged as a potentially scalable strategy for carbon dioxide removal (CDR) in the context of anthropogenic climate change. Despite a robust theoretical understanding of weathering processes across geological timescales, a critical lack of empirical ERW data exists for assessing its efficacy in climate mitigation at relevant timescales. Here, we present the first large-scale, replicated field trial of ERW coupled with tree planting at an afforestation experiment in mid-Wales. The factorial experimental design integrates basalt application and tree functional types (broadleaf vs. coniferous), examining key parameters such as soil pore water pH, alkalinity, soil respiration and aboveground tree biomass. By employing novel sampling techniques, we quantify ERW extent, providing nuanced insights. Over the first three years, initial observations highlight nutrient cycling perturbations post-basalt addition, offering immediate insights into ERW effects in a forested ecosystem. To mechanistically elucidate these observations, we introduce a novel ERW module within the Tethys-Chloris ecohydrological model framework, integrating a microbially explicit soil biogeochemical component. This integrated model aims to provide a robust foundation for understanding how ERW dynamics influence ecosystem carbon sequestration and guide best sampling practices.

How to cite: Jones, G., Paschalis, A., and Waring, B.: Scaling up enhanced rock weathering: field trials and ecohydrological modelling in a temperate forest , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11347, https://doi.org/10.5194/egusphere-egu24-11347, 2024.

EGU24-12216 | ECS | Orals | BG8.4

Climate change mitigation? Interactions between bio-weathering and soil organic carbon dynamics  

Laura Steinwidder, Lucilla Boito, Arthur Vienne, Jet Rijnders, Patrick Frings, and Sara Vicca

There are two main processes acting as carbon sinks for CO2 on land: Silicate weathering and photosynthesis. The former creates bicarbonates which can be stored in soils or leached out and stored in the oceans, the latter leads to the formation of plant tissue which can be stored as soil organic matter. Soils are thus at the foundation of both of these land sinks and could therefore play a crucial role in tackling climate change. Either via enhanced silicate weathering (acceleration of the naturally extremely slow weathering process by finely grinding silicate rock and applying it on soils) or via improved management of soil organic carbon stocks.

However, there are still knowledge gaps regarding both, the natural weathering process and, more notably, the enhanced weathering process:

  • Does the presence of plants (further) accelerate the weathering rates?
  • Does an active weathering process increase soil organic carbon (SOC) stability?
  • Is there an interaction effect between the weathering process, plants and SOC?

Addressing these questions is crucial to evaluate effectiveness and safety of enhanced silicate weathering. For example, increased weathering rates due to the presence of plants, could increase the climate change mitigation effect, while increased organic matter decomposition could drastically reduce the mitigation potential of enhanced silicate weathering.

In an enhanced weathering experiment we investigated weathering rates, mineralogical changes, inorganic and organic carbon dynamics and greenhouse gas emissions. First findings provide evidence of bio-weathering; soil planted with maize displayed higher dissolved inorganic carbon and alkalinity concentrations as compared to unplanted soil. These findings are also supported by mineralogical analyses which revealed more pronounced changes in the mineral composition of planted treatments. So far, we have not only found compelling evidence of bio-weathering but we have also identified a potential connection between bio-weathering and SOC dynamics. Soil analyses showed that there was no clear change in SOC contents in planted pots. Unplanted pots, however, displayed an increase in SOC contents when silicates were added.

How to cite: Steinwidder, L., Boito, L., Vienne, A., Rijnders, J., Frings, P., and Vicca, S.: Climate change mitigation? Interactions between bio-weathering and soil organic carbon dynamics , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12216, https://doi.org/10.5194/egusphere-egu24-12216, 2024.

EGU24-12257 | ECS | Posters on site | BG8.4

Potential for atmospheric carbon dioxide removal in mafic quarries via enhanced rock weathering of basalt fines 

Amanda Stubbs, Faisal Khudur, John MacDonald, Linzi McDade, and Mark Friel

Enhanced rock weathering (ERW) is a recognized carbon dioxide removal (CDR) strategy that uses crushed silicate rock (e.g., basalt) to capture atmospheric CO2, offering co-benefits such as improved soil health and increased crop production [1]. One of the main disadvantages of ERW includes the production of energy needed to crush and transport rocks to their application site [2]. Basalt quarries might be capable of removing CO2 on-site by optimizing the management of their quarry fines. This approach would reduce transport-related emissions while repurposing valuable and previously underutilized material. To test this possibility, basalt and dolerite fines from Breedon’s Orrock Quarry and Tarmac’s Cairneyhill Quarry in Scotland are used as potential feedstocks for on-site CDR, respectively. These samples show initial evidence of on-site weathering as secondary minerals are present in some areas of the fines at both the quarries. Thermogravimetric analysis (TGA) on these samples corroborates field observations as 0.75% and 1.76% CO2 were detected at Orrock and Cairneyhill, respectively. It is estimated that 10 kg CO2/ t Orrock fines and 23 kg CO2/ t Cairneyhill fines have been sequestered passively. Based on the CaO and MgO content, the carbonation potential is 190 kg CO2/ t Orrock fines and 160 kg CO2/ t Cairneyhill fines. Due to the challenge of accessing this potential under ambient conditions, it's essential to evaluate various on-site basalt management practices. To test this, ex-situ, column-based experiments were performed in the following manner. Fines from both sites were placed into columns with varying thicknesses (1 cm and 5 cm) and grain sizes (bulk and <75 μm). These columns were then subjected to ambient UK conditions (10 °C, 0.04% CO2) in an environmental chamber and intensified carbonation conditions (50 °C, 20% CO2) in a CO2 incubator. Both sets of experiments were in place for three months, with monthly water addition to facilitate natural wetting and drying. Secondary precipitates were visible on the surface of bulk fines from both sites regardless of thickness or chamber conditions with mass increases up to 0.5 g by the end of experiments. Sieved Orrock fines (<75 μm) in the CO2 incubator exhibit secondary precipitation, irrespective of sample thickness, displaying white patches on the surface and mass increases up to 1.5 g. Energy dispersive spectroscopy reveals that calcite has begun to fill in the pore spaces. Under ambient conditions, the bulk fines generally have the most significant carbon increase at greater depths, while the sieved fines show the greatest carbonation on the surface. This research has important implications for how fines are managed at quarries in the context of CO2 sequestration and may offer new opportunities for removing CO2 on-site at quarries.

[1] Beerling, D.J. et al., 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815): 242-+. [2] Edwards, D.P. et al., 2017. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biology Letters, 13(4).

How to cite: Stubbs, A., Khudur, F., MacDonald, J., McDade, L., and Friel, M.: Potential for atmospheric carbon dioxide removal in mafic quarries via enhanced rock weathering of basalt fines, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12257, https://doi.org/10.5194/egusphere-egu24-12257, 2024.

EGU24-12948 | ECS | Orals | BG8.4 | Highlight

Comparing Potential Carbon Dioxide Removal Fluxes from Enhanced Rock Weathering with Baseline Fluxes in the UK 

Kirsty Harrington, Gideon Henderson, and Robert Hilton

Enhanced Rock Weathering (ERW) - the addition of crushed alkaline rocks onto agricultural land - has emerged as a promising approach for atmospheric carbon dioxide removal (CDR). Evaluating the global and UK CDR potential and environmental implications of ERW prior to widespread implementation is essential. Accurate quantification of CDR via ERW requires an understanding of the baseline CO2 flux due to existing natural and anthropogenic influences on weathering. Understanding these baseline weathering fluxes is also important for predicting the capacity of UK rivers to accommodate additional material from ERW, because natural weathering controls river geochemistry.  However, uncertainty exists regarding baseline values and their variability across UK catchments, which have varying lithological, climate, and anthropogenic influences. In this study, we quantify the annual baseline CO2 consumption due to natural weathering in the UK using historical river geochemical data, and a geochemical inversion technique to separate fluxes derived from weathering of silicate and carbonate rocks.

Results reveal that baseline silicate and carbonate weathering contributes up to 6.3 Mt CO2 yr-1 as dissolved inorganic carbon (DIC) to UK rivers combined. Within this total, silicate weathering, vital for long- term carbon removal, contributes up to 1.3 Mt CO2 yr-1. Normalising the CDR by catchment area highlights significant variability across the UK, with Midlands and southeastern catchments exhibiting the highest weathering CO2 yields. Increased DIC from baseline weathering in southeastern catchments brings riverine calcite saturation close to saturation thresholds. Consequently, these heightened weathering rates are expected to limit the rivers’ capacity to accommodate additional DIC from ERW. Conversely, our findings suggest that Midlands catchments may offer optimal conditions for ERW implementation- displaying favourable weathering conditions and increased riverine storage capacity to store ERW by-products. Therefore, the suitability of a catchment for ERW application hinges on achieving a balance between favourable weathering conditions and adequate riverine capacity for surplus weathering products. Consequently, a uniform approach to EW implementation may be unsuitable for widespread use in the UK. Instead, we propose a catchment specific approach, involving calculations of the potential river chemistry impacts based on intended spreading rate and arable land area.  Although more demanding, this ensures the safe implementation of ERW without compromising riverine chemical thresholds.

The baseline weathering CDR (6.3 MtCO2 yr-1) aligns with the lower end of that proposed achievable through widespread ERW implementation across the UK (6 -30 Mt CO2 yr-1)1. If this anticipated CDR is achieved and evenly distributed within UK rivers as DIC, the background riverine DIC flux would at least double. However, given the heterogenous distribution of arable land, our findings suggest that catchments with extensive arable land may experience a substantial DIC flux from ERW. This flux, especially in regions with high baseline values, could trigger carbonate precipitation, potentially reducing CDR potential by 16- 27%2.

References

1Kantzas et al (2022) ‘Substantial Carbon Drawdown Potential from Enhanced Rock Weathering in the United Kingdom’, 2Harrington et al (2023), Implications for the Riverine Response to Enhanced Weathering to CO2 Removal in the UK,

 

How to cite: Harrington, K., Henderson, G., and Hilton, R.: Comparing Potential Carbon Dioxide Removal Fluxes from Enhanced Rock Weathering with Baseline Fluxes in the UK, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12948, https://doi.org/10.5194/egusphere-egu24-12948, 2024.

EGU24-15291 | ECS | Posters on site | BG8.4

Assessing the spatial expansion of plants in an Earth System model 

Khushboo Gurung, Benjamin Mills, and Dongyu Zheng

The emergence of land plants and their expansion across the Earth's surface has helped shape the climate of the Phanerozoic. Land plants are a major contributor to global photosynthetic biomass which in turn influences atmospheric CO2 and O2 levels. They also amplify continental weathering processes, which are a critical component of many global biogeochemical cycles. The inclusion of spatially-resolved vegetation within climate-biogeochemical models that predict paleo-CO2 and O2 levels can create a more accurate picture of the paleo-Earth [Gurung et al., in revision], however these applications have been limited by the availability of climate model simulations at high time resolution, which makes continuous spatial modelling difficult. Here, we use a new machine learning approach [Zheng et al., in revision] to build a 1-Myr climate emulator for the SCION climate-biogeochemcial model, and couple this to a deep-time vegetation model [FLORA; Gurung et al., 2022]. This allows us to re-run the plant colonisation of the land over the Paleozoic in detail and to view the global impact of changes in land occupation and productivity between early and more complex plants. By integrating simplified evolutionary and competition dynamics into the model, we can compare the effects on weathering, carbon burial and climate to help us better understand the dynamics that influence the expansion of plants and the resulting long-term Earth system changes.

Gurung et al., Climate windows of opportunity for plant expansion during the Phanerozoic Nat Comms 13 (2022)

How to cite: Gurung, K., Mills, B., and Zheng, D.: Assessing the spatial expansion of plants in an Earth System model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15291, https://doi.org/10.5194/egusphere-egu24-15291, 2024.

EGU24-15573 | ECS | Posters on site | BG8.4

Enhanced weathering in building materials: Capturing CO2 with olivine-based façade plaster 

Arne Irmai, Maximilian Berndsen, Rauno Baese, and Katharina Alms

Carbon dioxide (CO2) is the main greenhouse gas emitted by human activity, and reducing its presence in the atmosphere is one of the major challenges of the 21st century. The building and construction sector is responsible for a significant proportion of current anthropogenic CO2 emissions. According to the “2022 Global Status Report for Building and Construction”, the sector accounted for approximately 37% of global CO2 emissions in 2021.  Reducing the carbon footprint of building materials is a challenging task, as some process-related CO2 emissions are unavoidable. The industry is currently developing methods to mitigate these emissions by capturing CO2 from flue gas streams. In this study, we investigate an alternative approach to reducing the carbon footprint of building materials by incorporating olivine into building materials such as façade plaster.

In nature, CO2 is removed from the atmosphere through silicate weathering and stored over geological time scales as carbonate minerals. Incorporating olivine powder into building materials exposes the mineral to increased weathering conditions, which is expected to accelerate the process of CO2 sequestration. Façade plaster is advantageous because it covers large areas of building walls that are in direct contact with the atmosphere. The method is similar to the original idea of enhanced weathering, where crushed olivine is spread over large areas of land. However, the crucial distinction is that olivine-based façade plaster is a marketable product, making its implementation more appealing.

In collaboration with Knauf Gips KG, two test stands were constructed to expose olivine-containing façade plaster to natural and accelerated weathering conditions. Knauf Gips KG is a company that specialises in drywall and flooring systems, plaster, and facades, and produced the olivine-plaster used in the experiments. This plaster is exposed to ambient weathering conditions for 12 months at an outdoor test stand. Rainwater runoff is collected and analysed for dissolved species. The fluid analyses are used to identify potential ecological hazards resulting from olivine weathering, such as the release of heavy metals into the environment. In addition to the outdoor test stand, laboratory experiments are conducted to accelerate weathering by exposing the olivine-plaster to a constantly moist CO2 atmosphere. The composition of the water and atmosphere is monitored throughout the experiment. Mineralogical and structural changes of the plaster samples are analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of CO2 mineralisation will be assessed based on mass balance calculations with the experimental reactants and their products. This contribution reports interim results from the outdoor test stand after a 6-month period and presents the results of laboratory experiments on olivine and plaster alteration.

How to cite: Irmai, A., Berndsen, M., Baese, R., and Alms, K.: Enhanced weathering in building materials: Capturing CO2 with olivine-based façade plaster, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15573, https://doi.org/10.5194/egusphere-egu24-15573, 2024.

In addition to rapid emissions reduction, different Carbon Dioxide Removal (CDR) processes are required to be deployed in the order of many Gt y-1 for limiting the global temperature increase to the ambitious target set by the Paris Agreement.

Enhanced Rock Weathering (ERW) and River Alkalinity Enhancement (RAE) are CDR approaches that mimic and accelerate the natural process of rock weathering. These processes remove CO2 from the atmosphere and store it permanently in the sea in the form of bicarbonates, thanks to the spread of grinded alkaline materials (e.g., limestone, slaked lime or dolomite) in different environments, e.g., on croplands or in rivers.

The use of limestone or dolomite involves a long time for their dissolution, which can be accelerated by reducing the size of the particles in the order of micrometres. Alternatively, using slaked lime (SL) decreases the energy requirement for grinding because SL dissolution is faster at larger particle size than limestone. On the other hand, the production of SL causes unavoidable process CO2 emission and energy consumption during the calcination (i.e., the thermal decomposition of limestone into lime).

Here, a process that produces decarbonized SL for ERW or RAE is analyzed. It consists of the use of renewable electric energy for the calcination of limestone and of the storage of CO2. Two alternative CO2 storage systems are considered: geological storage and marine storage in the form of bicarbonates. The former is more studied and currently deployed with an annual global capacity of about 50 MtCO2 per year. However, geological storage has some drawbacks, such as the long time required for the identification of a formation suitable for storage, and a high financial risk because of the money loss in case the formation will result unsuitable. Furthermore, suitable geological formations are unevenly geographically distributed in the world and the long-term sustainability of the injection rate is uncertain. The latter storage approach, still in the first phases of the development, consists of the formation of bicarbonates by reacting CO2 from the calcination with seawater. Then, part of the decarbonized SL is used for balancing the pH, so a carbon-enriched marine solution with the same pH of the seawater is released. Unlike geological storage, this storage methodology is modular with certain and constant injection rate and can be deployed in every site near the coast.

The potential environmental impacts of the process with the two different CO2 storage technologies are analyzed through the Life Cycle Assessment (LCA) methodology. In addition to climate change, 15 impact categories are assessed according to the Environmental Footprint method implemented in Simapro software. The impacts are calculated on the basis of the mass and energy balance of the processes.

The limitations of the LCA methodology for assessing the overall environmental impacts of these processes will also be investigated. In particular, the lack of an impact category able to assesses the potential river environment remediation or the contrast to ocean acidification when the added alkalinity reaches the sea.

How to cite: Campo, F. P., Grosso, M., and Caserini, S.: Assessment of potential environmental impacts of an Enhanced Rock Weathering process for carbon dioxide removal in the form of bicarbonates by means of Life Cycle Assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15982, https://doi.org/10.5194/egusphere-egu24-15982, 2024.

EGU24-16303 | ECS | Posters on site | BG8.4 | Highlight

Exploring the Synergy of Enhanced Weathering and Rhizobacteria in Sustainable Agriculture 

Harun Niron, Laura Steinwidder, Jet Rijnders, Lucilla Boito, and Sara Vicca

Enhanced Weathering (EW) is a promising negative emissions technology for atmospheric CO2 removal, particularly in agricultural setups. Spreading silicate rock powder, such as basalt, over extensive agricultural lands not only sequesters CO2 but also provides essential nutrients like K, Mg, and Fe to crops. However, the efficiency of carbon sequestration in this system varies strongly, posing a challenge to widespread adoption, particularly among stakeholders like farmers.

Climate change intensifies weather extremes, exacerbating crop drought and heat stress, with detrimental effects on production. To address these challenges, the use of Plant Growth-Promoting Rhizobacteria (PGPR), such as Bacillus subtilis, emerges as a nature-based strategy. In addition to inducing stress resistance, B. subtilis possesses Fe and P solubilizing features, potentially enhancing EW rates. Indeed, our previous study demonstrated B. subtilis efficacy in accelerating basalt weathering by increasing Ca, Mg, and Fe dissolution in bare soil.

In a maize mesocosm experiment combining B. subtilis, basalt, and water content as variables, we observed a significant impact of B. subtilis on plant biomass in treatments, while basalt showed no major effect. In treatments with reduced irrigation, plants that were amended with basalt and B. subtilis displayed elevated leaf chlorophyll levels and improved nitrogen balance compared to plants that were not amended with B. subtilis. Across both high and low watering conditions, plants amended with basalt and B. subtilis exhibited enhanced photosynthetic activity and improved stomatal regulation. These findings suggest a promising added effect of PGPR B. subtilis to basalt-based EW for efficient crop health management under varying environmental conditions. This synergy has the potential to address the challenge of variable carbon sequestration efficiency and can provide a robust basis for improving crop health under diverse settings.

How to cite: Niron, H., Steinwidder, L., Rijnders, J., Boito, L., and Vicca, S.: Exploring the Synergy of Enhanced Weathering and Rhizobacteria in Sustainable Agriculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16303, https://doi.org/10.5194/egusphere-egu24-16303, 2024.

EGU24-17266 | ECS | Orals | BG8.4 | Highlight

Alignment of industry, regulation and academia for quantification of carbon dioxide removal by enhanced weathering 

Christina Larkin, Matthew Clarkson, Philip Swoboda, Tom Reershemius, T. Jesper Suhrhoff, Cara Maesano, and James Campbell

Terrestrial enhanced weathering (EW) is a promising emerging carbon dioxide removal technique which involves the acceleration of natural weathering processes via the deployment of crushed rock feedstocks, typically Ca- and Mg-rich silicates, in soils. While models predict this has the potential to remove multiple gigatonnes of CO2 annually1,2, as an open-system pathway, the measurement (monitoring), reporting, and verification (MRV) of carbon removal and storage is challenging3. We will review the current literature showing the state-of-play of different methods for monitoring EW, as well as outlining links between industry, regulation and academia. Additionally, we outline a set of enhanced weathering carbon definitions in order to align academic studies and emergent industry in this area with the established voluntary carbon offset market. 

We will discuss two main pathways for measuring EW, one focused on solid phase measurements4 and the other on the aqueous phase3,5. Additionally, gas phase measurements have been deployed to understand CO2 fluxes, but are dominated by short-term organic carbon cycling. We emphasise that, although there is complexity in tracing EW CDR in the natural field environment, established literature validates existing approaches, and each measurement approach has strengths and limitations. The complexity inherent in EW is navigable through redundant measurement strategies and well designed experiments, which we highlight are crucial in the nascent stages of the EW industry.

1Taylor, L. L. et al. Nat. Clim. Change 6, 402–406 (2016)

2Beerling, D. J. et al. Nature 583, 242–248 (2020)

3Clarkson, M. O. et al. preprint EarthArXiv (2023)

4Reershemius, T., Kelland, M.E., et al.. Environ. Sci. Technol. (2023) 

5Larkin, C. S. et al. Front. Clim. 4, (2022).

How to cite: Larkin, C., Clarkson, M., Swoboda, P., Reershemius, T., Suhrhoff, T. J., Maesano, C., and Campbell, J.: Alignment of industry, regulation and academia for quantification of carbon dioxide removal by enhanced weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17266, https://doi.org/10.5194/egusphere-egu24-17266, 2024.

EGU24-20481 | ECS | Posters on site | BG8.4

Assessing the biogeochemical impacts of terrestrial enhanced rock weathering on soil fertility 

Xavier Dupla, Romane Claustre, Emma Bonvin, Iris Graf, Claire Le Bayon, and Stéphanie Grand

Terrestrial enhanced rock weathering (ERW) is a promising carbon dioxide removal technology that consists in applying ground silicate rock on agricultural soils. ERW efficiency is based on the carbon dioxide sequestration associated with the chemical weathering of silicate minerals. On top of carbon sequestration, this chemical weathering can most notably raise the soil pH and release nutrients, thereby potentially improving soil fertility. Despite these possible cobenefits, potential drawbacks such as heavy metal pollution or soil structure damage have also been raised. Yet to our knowledge, these potential effects of ERW on soil fertility have not been simultaneously investigated.

This field trial assessed the impact of ERW on biological, physical, and geochemical dimensions of soil fertility. Overall, basalt addition had a predominantly positive to neutral effect on soil fertility. The majority of soil properties showed no significant change either 1 month or 1 year post basalt application. Nevertheless, our study highlighted a significant increase in earthworm biomass, soil respiration and sodium concentration as early as 1 month post application. These changes, suggestive of rapid initial weathering processes, require further investigation before enhanced rock weathering can be considered a viable and secure carbon dioxide removal technology.

How to cite: Dupla, X., Claustre, R., Bonvin, E., Graf, I., Le Bayon, C., and Grand, S.: Assessing the biogeochemical impacts of terrestrial enhanced rock weathering on soil fertility, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20481, https://doi.org/10.5194/egusphere-egu24-20481, 2024.

EGU24-20843 | ECS | Posters on site | BG8.4

Application of an Innovative Centrifuge-Based Soil Pore Water Sampling Method in Basalt Enhanced Weathering Field Trials. 

Anezka Radkova, XinRan Liu, Tzara Bierowiec, Erin Chen, Ifeoma Edeh, Amy Frew, Matthew Healy, Lucy Jones, Amy Mc Bride, Mel Murphy, Robert Palmer, Kirstine Skov, Utku Solpuker, Will Turner, Villa de Toro Sanchez, Peter Wade, Jez Wardman, and Jim Mann

Basalt Enhanced Weathering as a Carbon Dioxide Removal (CDR) technology accelerates natural weathering, enhancing the CO2 removal from the atmosphere. The main objective of the ongoing field trials in Scotland and the UK is to combine geochemistry modelling with in-field measurement to most accurately quantify CO2 sequestration. To measure the weathering signal in the field, we track changes in indicators such as soil inorganic carbon (SIC), soil organic carbon (SOC), exchangeable cations, trace/immobile elements, and soil biomass. Pore water analysis is critical for directly quantifying CO2 sequestration. Bicarbonate in soil pore water is a  CO2 removal indicator, as it forms through the reaction of silicate minerals with dissolved CO2 during the initial weathering process. We analyze pore water for pH, alkalinity, Electrical Conductivity (EC), major cations, and anions. This task can be challenging due to sampling issues, the absence of rainfall, and the time-sensitive nature of alkalinity measurements. Analyses of pore water chemistry rely on the ability to separate water from solids with minimal modification of its chemistry. Rhizon samplers and ceramic lysimeters are commonly used for pore water extraction. They may not be ideal for parameters like pH and alkalinity due to certain limitations, such as degassing of dissolved gases, and biases in molecule diffusion through the membrane. In response, we are testing a centrifuge method for pore water sampling from basalt amended fields. In the initial trial, statistical significance tests were conducted to compare the pH and total alkalinity between control plot and Treatment 126 t/ha in both centrifuge and rhizon samples, revealing a statistically significant difference (p < 0.05) in values within the centrifuge samples. However, no significance was observed in the rhizon samples. We present the results of ongoing tests from different treatments and soil types conducted to investigate whether centrifuge would be a suitable method for pore water sampling and alkalinity measurement for the enhanced weathering field trials.

How to cite: Radkova, A., Liu, X., Bierowiec, T., Chen, E., Edeh, I., Frew, A., Healy, M., Jones, L., Mc Bride, A., Murphy, M., Palmer, R., Skov, K., Solpuker, U., Turner, W., de Toro Sanchez, V., Wade, P., Wardman, J., and Mann, J.: Application of an Innovative Centrifuge-Based Soil Pore Water Sampling Method in Basalt Enhanced Weathering Field Trials., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20843, https://doi.org/10.5194/egusphere-egu24-20843, 2024.

EGU24-20871 | Posters on site | BG8.4 | Highlight

Enhanced Rock Weathering and Climate Mitigation: Prospects in Urban Farming  

Simon Redfern, Shang Ma, Yiwen Zhang, Zhaofeng Ouyang, and Chin-Hsien Cheng

As part of a study of enhanced rock weathering in tropical lowland soils in an agricultural setting we are embarking on an assessment of the role of ERW in urban farming scenarios. Here, we present an evaluation of key agricultural settings in which quantification may be best achieved. In the context of Singapore, which has an ambition of domestic production of 30% of its nutritional needs by 2030, this must include urban farming. We assess development of methods for geochemical analysis of cation mobility due to weathering in urban farming substrates. We have developed a matrix of key factors in enhancing soil and likely carbon drawdown; validation and testing of existing models. Finally, we conduct assessment of implications for agricultural productivity and economic viability.

How to cite: Redfern, S., Ma, S., Zhang, Y., Ouyang, Z., and Cheng, C.-H.: Enhanced Rock Weathering and Climate Mitigation: Prospects in Urban Farming , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20871, https://doi.org/10.5194/egusphere-egu24-20871, 2024.

EGU24-21512 | Orals | BG8.4 | Highlight

Biological weathering in model systems across scales 

Katerina Dontsova

Plants and microorganisms derive mineral nutrients needed for their development and growth from dissolution of the minerals present in the soil. There is strong evidence that plants and microorganisms can increase the weathering and nutrient supply through active and passive mechanisms. However, biological weathering is challenging to quantify, particularly in natural systems, due to complex interactions between rock/parent material, hydrology of the site, and biota. Because of this, model experimental systems are often used to examine weathering in general and biological weathering in particular. This presentation focuses on several experiments that examined rock weathering as influenced by biota – non-vascular and vascular plants, free living microorganisms, and microorganisms in symbiotic relationships with plants – across different space and time scales from small mesocosm experiments to Landscape Evolution Observatory, a facility at the University of Arizona Biosphere 2 with three replicate 30 by 11 m hillslopes. The majority of these studies represent incipient weathering, where unweathered rock is used as a medium for plant growth. We will discuss evidence for biological weathering, partitioning of weathering products, and fluxes of CO2 related to weathering processes. Influence of natural succession and biological complexity on weathering will also be discussed.

How to cite: Dontsova, K.: Biological weathering in model systems across scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21512, https://doi.org/10.5194/egusphere-egu24-21512, 2024.

EGU24-21707 | ECS | Posters on site | BG8.4

Concrete as a soil amendment for carbon capture: learnings from year one of an enhanced weathering field trial in County Wexford, Ireland. 

Ruadhan Magee, Maurice Bryson, Leo Hickey, Christos Chondrogiannis, Katie O'Dea, David van Acken, and Frank McDermott

In this study, we investigate the use of milled returned concrete as an enhanced weathering soil amendment, on two arable fields in County Wexford, Ireland. The applied concrete consists of portlandite (Ca(OH)2) cement with limestone (CaCO3) aggregate. The high cation concentration and rapid weathering kinetics of both components indicate good potential for carbonic acid neutralisation and atmospheric CO2 removal as soil-water dissolved bicarbonate (HCO3-). In spring 2023, prior to crop planting (oats and barley), both trial fields were divided into two sections. Milled returned concrete was applied to a ‘treatment’ section while no concrete was applied to a ‘control’ section. All other farming practices (ploughing, tilling, sowing and fertilisation) were equivalent across control and treatment. Twelve suction-cup lysimeters were installed in each field (6 control and 6 treatment) to collect soil-water samples across the growing season and the concentrations of bicarbonate, major cations and anions were measured to assess carbon removal. Preliminary results indicate that where nitrate (NO3-) levels are low in concrete amended sites, bicarbonate concentrations are elevated above control. However, where soil-nitrate levels are high, weathering liberated cations are balanced by nitrate, and bicarbonate production is suppressed. Our findings highlight the importance of fertiliser management for optimising CO2 removal outcomes of enhanced weathering.

How to cite: Magee, R., Bryson, M., Hickey, L., Chondrogiannis, C., O'Dea, K., van Acken, D., and McDermott, F.: Concrete as a soil amendment for carbon capture: learnings from year one of an enhanced weathering field trial in County Wexford, Ireland., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21707, https://doi.org/10.5194/egusphere-egu24-21707, 2024.

EGU24-21731 | ECS | Orals | BG8.4 | Highlight

Tracking river responses to enhanced rock weathering 

Shuang Zhang, Christopher Reinhard, Shaoda Liu, Yoshiki Kanzaki, and Noah Planavsky

Enhanced Rock Weathering (ERW) is gaining prominence as a viable option among Carbon Dioxide Removal strategies, offering a sustainable way to reduce atmospheric CO₂ levels, along with additional benefits such as improved soil pH and nutrient release. However, a detailed understanding of how ERW affects river systems—a critical factor in assessing its net efficiency in consuming CO₂—is still lacking, impeding its broader acceptance as a consistent carbon management method. This study aims to bridge this gap using a comprehensive integrated approach that combines machine learning and numerical models, specifically targeting river systems in North America. A key element of our methodology is the implementation of an innovative dynamic river network model, designed to provide a thorough analysis of river responses to ERW application. Our research indicates relatively low carbon leakage in most river segments over a two-year period. Nevertheless, we also highlight significant spatial and seasonal variations in these responses, paving the way for a strategic plan to optimize ERW deployment by selecting the most suitable watersheds and optimal times for application.

How to cite: Zhang, S., Reinhard, C., Liu, S., Kanzaki, Y., and Planavsky, N.: Tracking river responses to enhanced rock weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21731, https://doi.org/10.5194/egusphere-egu24-21731, 2024.

EGU24-774 | ECS | Orals | BG8.7

Health impacts of long-range transported air pollution in South America: compound events, cascading hazards and the Pantanal 2020 fire crisis. 

Djacinto Monteiro dos Santos, Aline M. de Oliveira, Ediclê S. F. Duarte, Julia A. Rodrigues, Lucas S. Menezes, Ronaldo Albuquerque, Fabio de O. Roque, Leonardo F. Peres, Judith J. Hoelzemann, and Renata Libonati

Human-induced climate changes have increased the frequency of simultaneous hot–dry events. In 2020, the occurrence of compound droughts and heat waves (CDHW) conditions in the Pantanal (the largest continuous tropical wetland located in central-western Brazil) exacerbated fire risk, leading to unusual amounts of burned area (BA). Despite the well-documented local impacts on the ecosystem and economy, besides regional effects that included black sky episodes in South and Southeastern Brazil, the number of studies investigating the long-range impacts associated with Pantanal fires is still limited, compared to Amazon and Cerrado biomes. Here, we analyzed the long-range transport of smoke from the Pantanal during the 2020 mega fires to the São Paulo state (SPS) and the cascading impacts on air quality and human health statewide, integrating observational, satellite-based, and reanalysis data and atmospheric dispersion models. Three main episodes of transport of smoke-related to peaks of fire events in the Pantanal were identified through air mass trajectories simulated with HYSPLIT, leading to a substantial enhancement in PM2.5 levels over SPS, surpassing World Health Organization guidelines by over 70%-600% in different regions of the state. The EURAD-modeled PM2.5 concentrations during the fire episode aligned with those observed from air quality monitoring stations. Model results highlighted the key role of the South American Low-Level Jet (SALLJ) in the redistribution of smoke plumes in South America, as previously observed in central Brazil and the Amazon basin. Two smoke-induced air pollution episodes coincided with heat waves observed in the SPS, contributing to worsening air quality and amplifying health risks. Thus, the period between October 1st and October 14th was marked by excess mortality of 2,150 (2,095 - 2,206) over 14 days, representing a 21% (17-24%) mortality increase. The impact on mortality was higher in the northwestern SPS, regions more affected by the transported smoke. Our findings reinforce the need to implement public policies associated with fire control and management in the Pantanal, considering the country's large-scale interactions among different regions and biomes, besides adaptation strategies to concurrent and cascading extreme events expected to increase under any future global warming scenarios.

How to cite: Monteiro dos Santos, D., M. de Oliveira, A., S. F. Duarte, E., A. Rodrigues, J., S. Menezes, L., Albuquerque, R., de O. Roque, F., F. Peres, L., J. Hoelzemann, J., and Libonati, R.: Health impacts of long-range transported air pollution in South America: compound events, cascading hazards and the Pantanal 2020 fire crisis., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-774, https://doi.org/10.5194/egusphere-egu24-774, 2024.

EGU24-1092 | ECS | Posters on site | BG8.7

Temporal patterns of burned area in the Brazilian biomes 

Thaís Pereira de Medeiros, Débora Joana Dutra, Poliana Domingos Ferro, Henrique Alves Leão, Deila da Silva Magalhães, Celso H. L. Silva-Junior, Swanni Tatiana Alvarado Romero, Maria Isabel Sobral Escada, Luiz Eduardo Oliveira e Cruz de Aragão, and Liana Oighenstein Anderson

Fire, a dual-edged phenomenon, holds the potential for both harm and benefit to individuals and ecosystems contingent on its location, timing, and manner of occurrence. The expansion of human civilization has positioned it as the main source of fire ignitions on the Earth, fundamentally altering natural fire regimes. Ecosystems exhibit different responses and susceptibilities to fire, with impacts varying based on specific ecosystem characteristics. Across the  Brazilian landscapes, distinct biomes such as Cerrado, Pampa, and Pantanal are classified as fire-dependent. In contrast, forest-dominated biomes like the Atlantic Forest and Amazon are deemed fire-sensitive, while the Caatinga, despite limited research on its historical fire relationship, is tentatively categorized as fire-independent.

Brazil has witnessed unprecedented wildfires in recent decades, with natural fire regimes undergoing modification due to human activities, frequently tied to land-use and its changes practices or exacerbated by climate extremes associated with global warming. In this context, our goal was to characterize the temporal patterns of fires in Brazilian biomes, using a burned area dataset obtained from the Global Fire Atlas (2003-2018). This dataset tracks the daily dynamics of individual fires, and our analysis focused on the burned area extent.

In Brazil, over the time series (2003-2018), the peak years regarding the extent of burned areas were 2010, 2007 and 2012, totalling 392,057 km², 382,163 km², and 249,596 km², respectively. 2010 and 2007 presented an increase of ~240% above the mean, while 2012 an increase of ~150% above the mean.

Regarding the intra-annual fire patterns, observations revealed that Fire-sensitive biomes, in the Amazon and Atlantic Forest, the fire season was well-defined in two months, specifically August and September, representing, on average, 55% (4,058 km²) and 40% (1,027 km²) of the total burned area, respectively. In the Fire-independent biome, Caatinga, the fire season was prominent in September and October, constituting 67% (436 km²) of the total burned area. In relation to Fire-dependent biomes, Cerrado and Pantanal exhibited a concentrated fire season in August and September, accounting for 57% (10,283 km²) in Cerrado and 68% (900 km²) in Pantanal. Finally, Pampa's fire season displayed a heterogeneous configuration over time, making it impossible to extract a specific pattern of fire season.

In general, August and September of 2010 were the months that presented the greatest extent of burned area in the time series, in almost all biomes, except Pantanal and Pampa. The occurrence of fires, often caused by human actions, also can be associated with mega-droughts and ocean circulations such as the El Niño-Southern Oscillation (ENSO) event. The widespread occurrence of fires in 2010 can be attributed to the severe and unique drought that occurred as a consequence of the ENSO, affecting mainly Cerrado and Amazon.

In summary, the intensification of extreme events and the increase of fire source ignitions, even in fire-dependent environments, is affecting the Brazilian ecosystems, which presents distincts behavior and resilience in relation to fire events. Therefore, understanding the period of fire season is essential to develop command-and-control approaches and to fire prevention.

How to cite: Pereira de Medeiros, T., Joana Dutra, D., Domingos Ferro, P., Alves Leão, H., da Silva Magalhães, D., H. L. Silva-Junior, C., Tatiana Alvarado Romero, S., Sobral Escada, M. I., Oliveira e Cruz de Aragão, L. E., and Oighenstein Anderson, L.: Temporal patterns of burned area in the Brazilian biomes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1092, https://doi.org/10.5194/egusphere-egu24-1092, 2024.

EGU24-1158 | ECS | Posters on site | BG8.7

Estimation of aboveground biomass recovery through chronosequence in forests degraded by fire in the Legal Amazon 

Henrique Leão, Debora Dutra, Thaís Medeiros, Celso Silva-Junior, Swanni Alvarado, Vinicius Peripato, Marcus Silveira, Ana Larissa De Freitas, Luiz Aragão, and Liana Anderson

The Amazon biome is under constant pressure from deforestation and fire occurrence, one of the most active forest degradation processes. The advance of deforestation leads to the increase of forest edge effects. Thus, agricultural management based on slash-and-burn practices can lead to fire escaping into native vegetation, leading to forest degradation, impacting biodiversity, forest structure, carbon stocks and emissions. 

Maranhão state, located in northeastern Brazil and part of the Legal Amazon, encompasses a  transition from the Amazon rainforest to Cerrado. Attention to this region is urgent due to growing pressures related to fire and deforestation mainly within Protected Areas (PA), threatening the conservation and functioning of this unique ecosystem. An up-to-date spatial explicit diagnostic of disturbances such as fire, deforestation and edge effects is important for formulating protective measures for these areas.

Methodologies for quantifying Greenhouse Gas (GHG) emissions and removals, analyzing trends, attributing sources and sinks are key to support the establishment and reporting of national GHG inventories. Brazil has legal tools, like the National Climate Change Policy, aligned with Paris Agreement goals, emphasizing the Reduction of Emissions from Deforestation and Degradation (REDD+). Quantifying carbon losses from degradation is challenging due to uncertainties in estimating degraded forest areas and disturbance impacts. About 61% of carbon removals occur in protected native vegetation, yet estimates may be overestimated due to unaccounted forest degradation processes, like burn emissions from non-deforested native vegetation, untracked in National Inventories. These uncertainties, however, can be reduced by combining field measurements with an ever-increasing range of datasets and remote sensing methods. This study aims to enhance understanding of post-fire biomass growth dynamics and recovery potential, emphasizing the pivotal role of carbon removal by vegetation.

Our analysis covers the heterogeneous spatial and temporal patterns of vegetation growth in fire-degraded forests, where we combined a satellite dataset tracking fire disturbances with the fusion of 3 products widely used in other studies (MCD64A1, Fire_CCI and Mapbiomas Collection 2, fusion product with 30 m resolution), with a global above-ground biomass (AGB) product (Biomass_CCI, 100 m resolution) in a space-for-time substitution approach to model accumulated AGB as a function of the Years Since the Last Fire Disturbance (YSLF). 

Over 20 years of recovery (2001 - 2020), regeneration rates in areas degraded by forest fires ranged from 2 to 12% per year, totalling up to 80% biomass recovery, compared to old forests that were never burned. Degraded forests are most severely disturbed after the first YSLF, where AGB is reduced to 58% of the median AGB of old-growth forests (113.86 Mg/ha), resulting in a 42% loss of biomass. In 2016, fires breached Maranhão's protected areas for the first time in two decades. Even after a single fire event, the areas did not fully recover in terms of biomass, indicating a potential reduction in carbon storage capacity.

Extreme fire events amplify these occurrences, affecting protected areas and decreasing the carbon storage potential of forests. Urgent measures are needed to protect and restore these areas, recognizing the lasting impacts of forest fires on biodiversity, forest structure and carbon emissions.

How to cite: Leão, H., Dutra, D., Medeiros, T., Silva-Junior, C., Alvarado, S., Peripato, V., Silveira, M., De Freitas, A. L., Aragão, L., and Anderson, L.: Estimation of aboveground biomass recovery through chronosequence in forests degraded by fire in the Legal Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1158, https://doi.org/10.5194/egusphere-egu24-1158, 2024.

EGU24-3376 | ECS | Orals | BG8.7

Inferring extreme fire theory from land surface models: from imperfect proxies to predictive power. 

Simon Bowring, Wei Li, Florent Mouillot, Thais Rosan, and Philippe Ciais

Wildfire cause, effect and severity are driven by interactions between an array of climatic, biotic, and anthropogenic factors at multiple spatio-temporal scales.  While a broad theory of fire causation has been unveiled by a vast body of in vivo, in vitro and satellite studies, this complexity and wildfire’s destructive nature have precluded large-scale experimentation of remaining unresolved drivers and mechanics. This hampers theoretical advances for fire prediction at scale, acutely so where global climate and anthropogenic change amplifies hitherto minor or only-hypothesised processes.  Here, we show that where process representation is task-sufficient and appropriate, global land surface models can step in to infer and resolve these theoretical gaps.  This is possible precisely because these models currently fail to reproduce observed burned area and/or fire intensity patterns in a substantive number of space-time and biome-level configurations, despite reasonable performance at global and annual scales.  These in turn provide clues towards the primary theoretical deficiencies in contemporary fire ecology, as well as a platform for resolving them.

 

We present two studies that achieve this, which suggest that appropriate construction of model protocols enables hypothesis testing that can reject the null where simulation outcomes simultaneously meet both alternative hypothesis criteria and expected simulation improvements with respect to observed patterns, paving the way for improved theoretical understanding and predictive capacity.

 

The first study constructs a simplified yet powerful proxy for anthropogenic land fragmentation’s effects on fire activity at global scale.  Including this complex interaction of increased human ignition potential, fire size constriction, wind infiltration and land surface desiccation drives fire decreases in temperate and cold areas of moderate to high population density, while causing substantial increases in tropical areas subject to high levels of fragmentation.  In aggregate, including fragmentation effects decreased simulated global burned area by -6% and increased it by +5% (-1% net), while 7% of grid cells’ fire activity was affected by >25%.  These results were consistent with both global and regional (e.g. Brazil, Indonesia) -scale statistical and fire-fragmentation relationships.  

The second study provides a solution for representing the critical bifurcation of fire phenomena and severity between boreal Eurasia and North America, previously unachievable in global land surface models. Our solution results in wide-ranging improvements to the simulated space-time patterns of boreal burned area, fire intensity and their divergence.  The initial theoretical gap was addressed by hypothesizing that a previously described (Rogers et al., 2015) vegetation -and hence fire -ecology split between the two continents could be fundamentally defined by a top-down (climatic) signal, rather than the bottom-up (vegetation) driver identified by that study, which cascaded into ground/crown fire probability, fire spread and combustion dynamics. 

Process-based theoretical inference, in combination with high resolution machine learning techniques, may pave the way for future advances in global-scale fire ecology.

How to cite: Bowring, S., Li, W., Mouillot, F., Rosan, T., and Ciais, P.: Inferring extreme fire theory from land surface models: from imperfect proxies to predictive power., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3376, https://doi.org/10.5194/egusphere-egu24-3376, 2024.

EGU24-5700 | ECS | Posters on site | BG8.7

Optimizing Fire Preparedness: A Forward-looking Analysis for 2030 in Boca do Acre Region, Brazilian Amazon 

Débora Dutra, Marcelo Santos Junior, Igor Ferreira, Beatriz Cabral, Philip Fearnside, Paulo Graça, Aurora Yanai, Ricardo Dalagnol, Daniel Braga, Chris Jones, Chantelle Burton, Richard Betts, Henrique Leão, Thaís Medeiros, Guilherme Mataveli, Luiz Aragão, and Liana Anderson

The Amazon Rainforest, crucial for climate regulation, carbon and water cycles, and biodiversity preservation, faces escalating threats from heightened forest degradation, including disturbances from fire and logging. In 2020, Brazil was responsible for a concerning 70% of the active fire hotspots detected in the Amazon, signaling a notable 60% increase compared to 2019. This surge has pushed the region into an extreme fire situation. Urgent and effective interventions are imperative to mitigate these extremes, ensuring the preservation of the Amazon and global climate stability. The study focuses on the Boca do Acre region in the southwest Amazon, one of the most recent hotspots of deforestation and forest degradation in the Amazon. We project the suitability of fire for 2030, following the timeframe set by the United Nations for the implementation of actions aimed at creating a better world for all peoples and nations through the Agenda 2030. Using the MAXENT algorithm within the R software, we conducted a detailed analysis exclusively within the non-forest land-use class on a 5 km x 5 km grid. Burned area data from products Fire CCI (250m), MapBiomas Fire (30m), and MODIS MCD64 (500m) were used to study fire occurrence across the study area. The chosen baseline year is 2014, representing the last year of historical data before the influence of different Shared Socioeconomic Pathways (SSPs) on IPCC models (1-2.6 and 3-7.0). The statistic involves the use of specifically selected variables, determined by their performance in correlation tests and principal component analysis. These variables encompass the percentage of forested areas, agriculture, pasture, and a 1000 m buffer along the region's roads. Additionally, factors such as the percentage of conservation unit occupancy, indigenous lands, and medium-sized properties (400-1000 ha) in the Rural Environmental Registry (CAR), along with precipitation values during dry months, are taken into account. Model validation incorporates AUC analysis, where the model must exhibit performance greater than 0.7, background analysis with the same curve behavior, false positive rate (FPR), accuracy evaluation, and sensitivity analysis. Following this process, we project the feasibility of fire for 2030. Results consistently demonstrate high performance, with AUC values surpassing 0.7 and pixel-to-pixel accuracy ranging from 60% to 90%, lower FRP values, and higher sensitivity values. Projected results indicate an increased susceptibility to fires that spread in the region, especially under less sustainable scenarios, emphasizing the urgency of preventive measures before 2030. Projections reveal an advancement in fire suitability, particularly in the SSP 3-7.0 scenario, with a significant increase in non-forest areas. However, as the scenario worsens, areas prone to fires that spread decrease due to the advancement of agricultural and pasture areas, underscoring the need for more sustainable practices. In conclusion, this study holds promise as a management tool for decision-makers, offering valuable insights for the development of mitigation and adaptation measures to climate change in the Boca do Acre region. These contributions are essential for preserving this vital ecosystem, highlighting the importance of implementing effective strategies.

How to cite: Dutra, D., Santos Junior, M., Ferreira, I., Cabral, B., Fearnside, P., Graça, P., Yanai, A., Dalagnol, R., Braga, D., Jones, C., Burton, C., Betts, R., Leão, H., Medeiros, T., Mataveli, G., Aragão, L., and Anderson, L.: Optimizing Fire Preparedness: A Forward-looking Analysis for 2030 in Boca do Acre Region, Brazilian Amazon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5700, https://doi.org/10.5194/egusphere-egu24-5700, 2024.

EGU24-6369 | Posters on site | BG8.7

Prediction of forest degradation as a subsidy for mitigating actions to preventing fires and wildfires in a new Amazonian frontier 

Liana Anderson, Débora Dutra, Chris Jones, Guilherme Mataveli, Igor Ferreira, Henrique Leão, Beatriz Cabral, Philip Fearnside, Paulo Graça, Aurora Yanai, Celso Silva Junior, Thaís Medeiros, Ricardo Dalagnol, Daniel Braga, Vinícius Peripato, Chantelle Burton, Richard Betts, and Luiz Aragão

Anthropogenic disturbances stand as the primary driver of degradation in the remaining Amazon forests, posing a significant threat to their future. Notable among these disturbances are edge effects, timber extraction, fire, extreme droughts and temperatures, which have been intensified by human-induced climate change. A pilot study aiming to integrate forest fire occurrence, timber extraction and climate change scenarios was developed for a new deforestation frontier in southwestern Amazonia. We integrated a series of remote sensing fire products, spatialized land tenure information, selective logging mapping techniques and Global Climate Models (GCMs) simulated projections of three SSPs (SSP climate forcing scenarios) for 2015–2100 period. The results showed that the increased deforestation trend occurred between 2003 and 2019 predominantly on public lands, following the implementation of the new forest code.  This surge contributed to a spike in fires, escalating from 66% to 84% in 2019. Over the period from 2007 and 2019, 2.4% of the primary forest was logged. By 2022, precipitation values aligned closely with SSP 5-8.5, and temperature values neared SSP 3-7.0. Projections for 2100 indicated an alarming increase of 5.19 ºC in overall temperature and a reduction of 55 mm in annual precipitation compared to 2003 baseline. The results indicate that the study region is already heading towards a less sustainable future. Logging activities, as well as agricultural production, are threatened by both increase in economic losses by fires and temperatures, and rainfall reduction. Implementing mitigation measures, such as fire-free land management, traceability controls for all wood production from logged forests, and addressing issues of land tenure and regulation are pivotal in steering the current development pathway towards a more sustainable pathway.

How to cite: Anderson, L., Dutra, D., Jones, C., Mataveli, G., Ferreira, I., Leão, H., Cabral, B., Fearnside, P., Graça, P., Yanai, A., Silva Junior, C., Medeiros, T., Dalagnol, R., Braga, D., Peripato, V., Burton, C., Betts, R., and Aragão, L.: Prediction of forest degradation as a subsidy for mitigating actions to preventing fires and wildfires in a new Amazonian frontier, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6369, https://doi.org/10.5194/egusphere-egu24-6369, 2024.

EGU24-8126 | ECS | Orals | BG8.7

Overlapping US-Australia fire seasons reduce the window of opportunity for firefighting cooperation 

Andreia F. S. Ribeiro, Doug Richardson, Yann Quilcaille, Fulden Batibeniz, Andrew Pitman, and Jakob Zscheischler

Wildfires are a growing global challenge. In addition to becoming more widespread and intense due to climate change, the fire seasons in many regions are becoming longer. The lengthening of fire seasons reduces the window of opportunity for preparedness (e.g. prescribed burning of dry fuels before fire season onset) and increases the likelihood of spatially compounding fire risks due to overlapping fire weather seasons. These increased risks demand efficient global cooperation in sharing firefighting resources (e.g. helicopters, planes, firefighters), and of major concern, is how well-established international arrangements may be compromised or disrupted in the near future.

Here we investigate increasing fire season lengths across two distanced fire-prone regions with typically distinct fire seasons and a long-term collaboration in sharing firefighting resources, Eastern Australia (EAU) and Western North America (WNA). We aim to test the hypothesis that spatially compounding fire weather events occur due to overlapping fire weather seasons, based on the Canadian Fire Weather Index (FWI). To robustly characterize the potential overlap, we make use of CMIP6 single model initial-condition large ensembles (SMILEs) for historical and future periods, and the ERA5 reanalysis. We define Fire Weather Days (FWD) as when the FWI exceeds a climatological threshold specific to each region, and we then estimate the total number of overlapping FWD per year for different time periods.

We show that these distanced regions are becoming more likely to experience periods of overlapping FWD, which can compromise the human response in terms of firefighting. Most of the overlap occurs during boreal Autumn months, coinciding with the end of the fire season in WNA and the beginning of the fire season in EAU. Correlations between the number of overlapping FWD and the length of the regional fire season suggest that the main driver of the overlapping is the increasing early start of the fire season in EAU, rather than the late offset of the fire season in WNA. Additionally, we find that overlapping FWD is expected to increase in the future in a warming climate. As fire seasons overlap, the existing international collaborations will be increasingly constrained, and the window of opportunity for firefighting will shorten. 

How to cite: Ribeiro, A. F. S., Richardson, D., Quilcaille, Y., Batibeniz, F., Pitman, A., and Zscheischler, J.: Overlapping US-Australia fire seasons reduce the window of opportunity for firefighting cooperation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8126, https://doi.org/10.5194/egusphere-egu24-8126, 2024.

EGU24-8559 | Posters on site | BG8.7

Effects of wildfires on water quantity and quality in southern Chile 

Alejandra Stehr, Nicole Vyhmeister, Vicente Saenger, Pablo Villegas, and Efrain Duarte

Wildfires are a global and catastrophic phenomenon, generating major impacts on soil characteristics, erosion, water flow and water quality at the watershed scale, among others. Such effects depend on the severity of the fire, a metric that depends on the intensity of the fire and the nature of the vegetation that is burning. During the last 60 years the average annual area burned in Chile due to wildfires has been approximately 65,000 hectares per year. This figure has been greatly surpassed in the last 5 years, averaging approximately 155,000 hectares per year. Although worldwide, especially in the United States and Europe, there is evidence of impacts on the quantity and quality of water from wildfires, this is not the case in Chile. Given the above, the objective of this work is to analyze the effects on water quantity and quality in burned and unburned watersheds in the Andes and Coastal Cordillera in southern Chile. Two native forest basins and two exotic plantation basins were studied, one burned and one unburned in each class. The native forest basins correspond to the Allipén River and Quepe River basins, located in the Andes Mountain range, while the exotic plantation basins are found in the Carampangue River basin, located in the Coastal Mountain range. The results indicate differences in nutrients (phosphorus and nitrogen) present in the water between burned and unburned watersheds during the rainy season.

How to cite: Stehr, A., Vyhmeister, N., Saenger, V., Villegas, P., and Duarte, E.: Effects of wildfires on water quantity and quality in southern Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8559, https://doi.org/10.5194/egusphere-egu24-8559, 2024.

EGU24-9387 | Orals | BG8.7

An Operational Global Probability-of-Fire (PoF) Forecast : Can we predict extreme events? 

Joe McNorton and Francesca Di Giuseppe

Wildfires have widespread effects on local ecosystems, communities, air quality, and global atmospheric conditions. Accurate wildfire forecasts can be used by local communities and agencies to manage and respond to wildfires effectively. As such, it is essential these predictions are not only accurate but are accessible in real-time and provide sufficient advanced notice to ensure successful actions can be taken. Existing systems typically use fire danger indices to predict landscape flammability, based on meteorological forecasts alone, often using little or no direct information on land surface or vegetation state. Here, we use a vegetation characteristic model, weather forecasts and a data-driven machine learning approach to construct a global daily ~9 km resolution Probability of Fire (PoF) model operating at multiple lead times. The PoF model outperforms existing indices, providing accurate forecasts of fire activity up to 10 days in advance, and in some cases up to 30 days and has been deployed operationally at the European Centre for Medium-Range Weather Forecasts (ECMWF). The model can also be used to investigate historical shifts in regional fire patterns. Furthermore, the underlying data driven approach allows PoF to be used for fire attribution, isolating key variables for specific fire events or for looking at the relationships between variables and fire occurrence. The 2023 Canadian wildfire season is used as a test case to assess model performance at predicting extreme wildfire events.

How to cite: McNorton, J. and Di Giuseppe, F.: An Operational Global Probability-of-Fire (PoF) Forecast : Can we predict extreme events?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9387, https://doi.org/10.5194/egusphere-egu24-9387, 2024.

EGU24-10020 | ECS | Orals | BG8.7

A globally-consistent modelling approach to assess socio-economic wildfire risks 

Carmen B. Steinmann, Jonathan Koh, Samuel Lüthi, Samuel Gübeli, Tanja N. Dallafior, Benoît P. Guillod, Chahan M. Kropf, Stijn Hantson, David N. Bresch, and Dahyann Araya

Wildfires cause extensive damage to physical assets exposed to them. So far, assessing the risk of these events remains an understudied area of global disaster risk assessment. Probabilistic risk estimates covering the range and likelihood of devastating events are crucial for various applications such as prioritising adaptation measures and determining insurance pricing. Quantifying tail risks such as a one-in-a-hundred-year impact has important implications for disaster risk management, including the pricing of insurance. However, short observational time series render modelling efforts indispensable for risk assessments on a global scale.
In parallel, increasing data availability allows for the use of machine learning techniques to predict wildfire behaviour. In this context, an open-source wildfire risk model based on globally available data would facilitate the accessibility of such analysis to stakeholders from both the public and private sector. Here, we present such a machine learning model that estimates wildfire probabilities and we integrate these within a global socio-economic risk framework. 

We determine burning probabilities based on MODIS burnt area, a set of predictors and a country-and-biome specific machine learning model. The chosen predictors include weather variables, land use covariates and population density. We enhance the model with spatial and temporal feature-engineered covariates, such as the count of neighbouring burnt cells and time since the last fire in each cell. The model employs XGBoost, a tree boosting system, tailored for each country and biome. The model generates stochastic, counterfactual historic wildfire seasons by leveraging the inherent randomness in its predictions, further influenced by temporal and spatial covariates.

Secondly, we compute socio-economic impacts as the combination of the newly developed wildfire hazard, an exposure representing physical assets; and a vulnerability that was calibrated on historic fire damage data. We compute wildfire risks by combining the resulting impacts with their respective probabilities. This renders a globally consistent modelling approach of wildfire risk to physical assets. Our model's stochastic representation of wildfire hazards enables the analysis of extreme events with return periods extending beyond available observational data, enhancing our understanding of potential high-impact scenarios.  

How to cite: Steinmann, C. B., Koh, J., Lüthi, S., Gübeli, S., Dallafior, T. N., Guillod, B. P., Kropf, C. M., Hantson, S., Bresch, D. N., and Araya, D.: A globally-consistent modelling approach to assess socio-economic wildfire risks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10020, https://doi.org/10.5194/egusphere-egu24-10020, 2024.

Wildfires are phenomena that affect large areas of land worldwide, causing substantial economic and human losses every year. Ecuador is a country with important geology and archaeological heritage, recognized by several authors historically and awarded by UNESCO in 2019. On the other hand, agriculture widely distributed all along the country constitutes one of the major economic activities that supports the gross domestic product. Both resources are susceptible to the manifestation of forest fires, becoming a major problem in the country.  

In 2023, the months of August and September showed the highest recurrence of fires at national level. One of the most damaged regions was Imbabura UNESCO Global Geopark that covers the total surface of Imbabura province (4712,37 Km2) here the fires burned about 1600 hectares of land. Fires in Ecuador are usually caused by a combination of factors including inadequate human practices, highly flammable dry vegetation, and meteorological conditions. Thus, this research focuses on the estimation of the severity of damage during forest fires, also considering the forest-urban interface it was possible to estimate the impact to settlements in the geopark. The processing of satellite data was performed by applying the algorithm in Google Earth Engine (GEE), from the ImageCollection package that contains information on burned surface to Sentinel-2 satellite images based on key indices, such as Normalized Difference Vegetation Index (NDVI), Normalized Burned Area Ratio (NBR) and shortwave infrared (SWIR) (UN-SPIDER).   

The geopark embraces 12 geosites, including the “Yachay Archaeological Sites” located on the grounds of the City of Knowledge Yachay, in Urcuquí, being one of the most important cultural heritage, which importance stems from its inclusion of bone remains, malacological, ceramic, lithic, and monumental structures. It holds particular significance for the descendants of the Caranqui population that inhabits the entire area of influence; therefore, preserving it for future generations is crucial. The monuments (Tolas, Pucarás, and Pirámides), distributed aleatory in the geosite, were highly affected. Sentinel 2 has a resolution of 30 m, and some monuments are less than 5m, for this reason it was necessary to use high-resolution images captured with unmanned aerial equipment to evaluate the impact. The final analysis reveals that, for the geosite "Yachay Archaeological Sites," 127 hectares were affected, with a considerable harm in several levels that 29 out of the 37 monumental structures, this represents the 78% of the total structures were potentially damaged.  

Key words: Severity, Forest Fires, GEE, Geosites, Imbabura Geopark, Archaeological Sites Yachay, Tolas  

Reference:  

UN-SPIDER Knowledge Portal. Paso a paso: Mapeo de la severidad de incendios forestales en Google Earth Engine https://www.un-spider.org/es/asesoria/practicas-recomendadas/practica- recomendada-mapeo-gravedad-quemaduras/paso-a-paso/google-earth-engine

How to cite: Vásquez, S., Carrión, B., Torres, R., and Vázquez, Y.: Forest fire severity estimation in 2023 in UNESCO Global Geopark Imbabura with the impact review at the archaeological heritage in the geosite “Yachay Archaeological Sites”   , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12036, https://doi.org/10.5194/egusphere-egu24-12036, 2024.

EGU24-12209 | Orals | BG8.7

Monitoring wildfire smoke plumes and clouds with portable weather radar to nowcast hazards associated with extreme wildfires 

Adrien Guyot, Kathryn Turner, Jordan Brook, Joshua Soderholm, Nicholas McCarthy, Alain Protat, and Hamish McGowan

Extreme and megafires demonstrate a significant interplay between fire dynamics and the surrounding atmosphere, resulting in erratic fire behavior, rapid fire spread, long-range transport of burning embers, and pyro-convective activity that leads to the formation of pyrocumulus and/or pyrocumulonimbus clouds.

These fire-induced clouds play a crucial role, generating strong updrafts and downdrafts, causing plume collapse, and carrying particles like firebrands downwind while also lifting smoke particles into the stratosphere. Monitoring these clouds poses challenges; satellites offer limited resolution and passive sensing, while ground-based weather radars provide the best means to track their entire lifecycle, especially portable systems deployed at proximity of the fire and offering better resolution and accuracy. These systems are capable of identifying specific features and phenomena, such as rotors and vorticity, pyrometeors and the formation of condensation.

Our study presents observations from portable weather radars captured from various Australian wildfires. We introduce machine learning-based techniques to process radar data, aiming to provide actionable intelligence on wildfire-related hazards.

How to cite: Guyot, A., Turner, K., Brook, J., Soderholm, J., McCarthy, N., Protat, A., and McGowan, H.: Monitoring wildfire smoke plumes and clouds with portable weather radar to nowcast hazards associated with extreme wildfires, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12209, https://doi.org/10.5194/egusphere-egu24-12209, 2024.

Natural ecosystems are fundamental to biodiversity and reaching net-zero, but are at increasing risk from disturbance events like drought and fire. Across many landscapes, fire responds non-linearly to drought and temperature changes, obscuring evolving fire risk until critical thresholds are breached. In particular, in the absence of natural or human-made barriers, growing fire perimeters result in non-linear increases of daily burned area over the lifetime of any individual fire. Fuel conditions and structure further determine the velocity at which fires can spread across the landscape. Predicting fire extremes remains notoriously difficult due to these non-linear responses and complex interactions of natural and managed landscapes, short observational time-series from satellites, and rapid regional trends in climate and human activity. 

 

One potential new avenue of exploring fire extremes is through the use of novel object-based fire inventories, like the Global Fire Atlas or Amazon Dashboard. Here we use these novel approaches to assess several recently unfolding fire extremes, with special attention to South America. We find that fire extremes can both unfold within a single season or drought year, as well as over the course of multiple years with continued heightened fire activity across a particular landscape. Further characterization of fire types, based on unique characteristics of each fire object, helps better separate climate and land-use driven variability and change in fire extremes. Our results provide novel insights in the underlying mechanisms driving exceptional fire activity, which can inform estimates of future change and land management strategies.

How to cite: Andela, N.: New insights on global fire extremes from object-based fire inventories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12734, https://doi.org/10.5194/egusphere-egu24-12734, 2024.

EGU24-12769 | Posters virtual | BG8.7

Impact of Canadian Wildfires 2023 on North Atlantic’s Region Air Quality: An Analysis Using ASDC Data 

Hazem Mahmoud, Ingrid Garcia-Solera, Daniel Kaufman, Alexander Radkevich, and Walter Baskin

The escalating threat of wildfires in North America raises significant concerns regarding their adverse effects on air quality and public health, as recent wildfires have resulted in widespread smoke plumes that transcend international borders. This study focuses on the exposure of the North Atlantic region to smoke from Canadian wildfires, underscoring the profound implications for public health and environmental well-being. To assess the air quality impact, we analyze satellite data obtained from the NASA Atmospheric Science Data Center (ASDC) at Langley Research Center, in conjunction with ground-based measurements and atmospheric modeling outputs. Specifically, we investigate  concentrations of atmospheric aerosols, notably PM2.5 particulate matter originating from Canadian wildfires, dispersion patterns, and the duration and intensity of smoke events affecting the North Atlantic. Utilizing data from multiple instruments — including those from the Earth Polychromatic Imaging Camera (EPIC), the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP Lidar), and Measurement of Pollution in the Troposphere (MOPITT) — strengthens the conclusions drawn from the impact assessment and estimation of aerosol loading. Ground-based measurements, including data from air quality monitoring stations, provide localized information for validation and calibration purposes.

The study's findings enhance understanding of the repercussions of Canadian wildfires on air quality in the North Atlantic region, underscoring the necessity of monitoring and prediction of transboundary smoke events through the integration of data from diverse sources, such as those provided by the ASDC. This information is pivotal for policymakers, public health officials, and residents in affected areas to formulate effective strategies in mitigating health risks associated with wildfire smoke and improving air quality during wildfire seasons. The study emphasizes the critical role of atmospheric remote sensing, particularly the use of ASDC data, in addressing the challenges posed by wildfires and their consequences on regional scales.

How to cite: Mahmoud, H., Garcia-Solera, I., Kaufman, D., Radkevich, A., and Baskin, W.: Impact of Canadian Wildfires 2023 on North Atlantic’s Region Air Quality: An Analysis Using ASDC Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12769, https://doi.org/10.5194/egusphere-egu24-12769, 2024.

EGU24-12863 | ECS | Posters on site | BG8.7

The FLARE Workshop's Future Directions for Defining Extreme Fire 

Noah Liguori-Bills, Morgane Perron, Stephen Plummer, Christoph Voelker, Boris Vannière, Joanne Hall, Matthias Forkel, Kebonye Dintwe, Cristina Santin, Miriam Morrill, Jessie Thoreson, Benjamin Poulter, Matthew Jones, Douglas Kelley, Chantelle Burton, Stijn Hantson, and Douglas Hamilton

In September 2023, the Fire Learning AcRoss the Earth Systems (FLARE) workshop brought together fire scientists across a wide range of disciplines, including physical and social scientists and representatives of fire-prone communities, with the aim to facilitate a transdisciplinary discussion.

 

The FLARE community identified characterizing “fire and extreme events” as a research priority. In recent years, there has been a rise in extreme weather events worldwide. Both in science and in the media, the word “extreme” is increasingly used to describe the impact of natural phenomena on ecosystems, human health, the carbon cycle, and economies. However, the severity associated with recent changes in fire activity is not well defined. Assessing the cause(s) and consequences of a fire event on a global scale is complex, this leads to different definitions and assessment techniques/methods being used in the range of disciplines that study fire, including ecology, biology, hydrology, atmospheric science, marine science, Earth science, or public health. Additionally, it is hard to disentangle human land management and climate change induced changes in fire regimes.

 

Using examples from the 2023 Boreal fires, this presentation discusses future directions for defining extreme fires. Fires are also part of the broader interconnected Earth System and influenced by droughts, heat waves, and altered landscapes. In turn, post-fire effects such as erosion, landslides, and floods create cascade events that impact both human societies and natural ecosystems. We discuss this broader view of including fire extremes as part of compound extreme events in order to fully assess their impact. We finish by providing recommendations for the fire science community to tackle this challenge. Some of which may include more proactive modeling, observation and communication tools aimed at providing relevant and timely information.

 

https://futureearth.org/2023/12/13/reflections-from-the-fire-science-learning-across-the-earth-system-flare-workshop/

How to cite: Liguori-Bills, N., Perron, M., Plummer, S., Voelker, C., Vannière, B., Hall, J., Forkel, M., Dintwe, K., Santin, C., Morrill, M., Thoreson, J., Poulter, B., Jones, M., Kelley, D., Burton, C., Hantson, S., and Hamilton, D.: The FLARE Workshop's Future Directions for Defining Extreme Fire, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12863, https://doi.org/10.5194/egusphere-egu24-12863, 2024.

EGU24-13017 | Posters on site | BG8.7

Global Extremes in Burnt Area 

Stijn Hantson, Laura Obando Cabrera, and Matthew Forrest

In recent years, the world has witnessed a surge in "extreme" fire events, with notable occurrences in regions like California and Australia, where their disproportionate impacts have been evident. However, the term "extreme fire" lacks a standardized definition, leading to a diverse and ambiguous usage. To address this, we utilize the MODIS burnt area record spanning 2002-2022 to systematically identify extreme fire years across diverse ecoregions worldwide. Our analysis detects most of the reported events in developed regions, but also additional extreme fire occurrences in less developed areas.

While global fire models are commonly employed to estimate the overall impact of fires on a global scale, their ability to accurately represent extreme events remains uncertain. To assess this, we compare extreme events identified in the MODIS time series with simulations from six global fire models participating in FireMIP. The results reveal variations in model performance, with some models accurately simulating extreme events in burnt area while others exhibit limitations.

Our findings highlight biases in reporting on extreme events and underscore the importance of a quantitative identification framework. Additionally, our analysis suggests that certain global fire models hold promise for studying extreme fire events. This research contributes to a more comprehensive understanding of global fire dynamics and impacts.

How to cite: Hantson, S., Obando Cabrera, L., and Forrest, M.: Global Extremes in Burnt Area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13017, https://doi.org/10.5194/egusphere-egu24-13017, 2024.

EGU24-13319 | ECS | Orals | BG8.7

Probabilistic assessment of extreme fire risk under the impact of climate change 

Zhongwei Liu, Jonathan Eden, Bastien Dieppois, Igor Drobyshev, Stefaan Conradie, Carolina Gallo, Matthew Blackett, and Robert Parker

As major natural hazards, wildfires pose a significant risk to many parts of the world. The occurrence of extensive fires in both hemispheres in recent years has raised important questions about the extent to which the changing nature of such incidents can be attributed to human-induced climate change. Offering reliable answers to these questions is essential for communicating risk and increasing resilience to major wildfires. However, the scarcity of wildfire attribution studies, combined with limited observational records and the complexity of representing fires by different models, poses a challenge in establishing robust and unified conclusions to better inform future forest management strategies.

Here, a globally applicable framework is developed to better understand and quantify how wildfire risk is responding to a changing climate. The framework is based on an empirical-statistical methodology, facilitating its application to ’fire weather’ extremes from both observational records and the latest generation of global climate model ensembles (e.g. from CMIP/UKESM). Particular attention is given to the sensitivity of the eventual findings to the spatial scale of the event, the chosen event definition and the climate model(s) used in the analysis. As part of a global analysis, a series of maps are constructed detailing the change in likelihood of fire weather extremes, defined by both intensity and duration, throughout the world’s fire-prone regions as a result of rising global temperatures. Both observation- and model-based analyses reveal an increase in likelihood of at least twofold across many parts of the world, with considerable regional and inter-model variation. The value of the framework is demonstrated by combining results from a series of case studies of recent high-impact wildfires that differ by scale, duration and location. The conclusions drawn from this work provide a platform to guide future analysis of fire weather events and facilitate reliable recommendations for responding to the hazards associated with wildfires, and enhancing resilience in the face of climate change.

How to cite: Liu, Z., Eden, J., Dieppois, B., Drobyshev, I., Conradie, S., Gallo, C., Blackett, M., and Parker, R.: Probabilistic assessment of extreme fire risk under the impact of climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13319, https://doi.org/10.5194/egusphere-egu24-13319, 2024.

EGU24-13497 | Orals | BG8.7

Prescribed burning as a mechanism to mitigate emissions of extreme fire events: a case study from the Brazilian Cerrado 

Renata Moura da Veiga, Celso von Randow, Manoel Cardoso, Eddy Robertson, Eleanor Burke, Maria Lucia Barbosa, Chantelle Burton, Douglas Kelley, and Fabiano Morelli

The risk of fire occurrence and the frequency of extreme fire events have been increasing globally due to climate change. As a result, greenhouse gas (GHG) emissions are higher worldwide, including in the Brazilian Cerrado. Cerrado is a fire-prone Biome in central Brazil, where fire is essential for maintaining the Biome diversity and integrity. Cerrado presents distinct rainy and dry seasons. In the dry season, the accumulated biomass available for burning becomes highly flammable and fire can rapidly spread from grasslands and savannas to forests. In fire-prone ecosystems globally, prescribed burning prevents intense and frequent wildfires in the drier months by intentionally applying fire under controlled conditions at the end of the rainy season and/or the beginning of the dry season. In Cerrado, prescribed burning is applied in the early dry season (EDS; April-June) to avoid severe wildfires in the late dry season (LDS; August-October), but so far there have been no documented estimates of the effect of prescribed burning on carbon emissions. In this study, we evaluate the potential of prescribed burning to mitigate emissions from extreme fire events in the Brazilian Cerrado region. We modelled fire emissions in Cerrado with JULES-INFERNO over a 30-year period (1990-2019), using the ISIMIP3a simulations. We adjust JULES-INFERNO to represent Cerrado, and then simulate prescribed burning by setting an additional ignition to C4 grass during EDS. We analyse years with large burned areas, including El Niño years, to represent years with intense fire events. Over the 30 years, prescribed burning resulted in reduced fire emissions in the LDS, especially in years when there was high burned area. This indicates that prescribed burning can be used in the Cerrado to reduce the impacts of uncontrolled fires in the drier months. We also observe that the effectiveness of prescribed burning in reducing emissions depends on the C4 grass recovery rate. Further investigation is needed to better understand the model’s performance, including analysis of modelled parameters such as the C4 grass post-fire recovery.

How to cite: Moura da Veiga, R., von Randow, C., Cardoso, M., Robertson, E., Burke, E., Barbosa, M. L., Burton, C., Kelley, D., and Morelli, F.: Prescribed burning as a mechanism to mitigate emissions of extreme fire events: a case study from the Brazilian Cerrado, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13497, https://doi.org/10.5194/egusphere-egu24-13497, 2024.

EGU24-15606 | Posters on site | BG8.7

Community input for a how-to guide for using fire models. 

Douglas I Kelley, Chantelle Burton, Stacey New, Inika Taylor, Camilla Mathison, João Teixeira, Seppe Lampe, Anna Bradley, Eddy Robertson, Robert Parker, Stijn Hantson, Maria Lucia Ferreira Barbosa, Gerd Folberth, Eleanor Burke, Chris D. Jones, Jacquelyn Shuman, Adrianna Foster, and Matthew Forrest

We, the fire science community (and friends), are increasingly asked to provide information about drivers and the impact of fire and make fire projections under future climate and land use change. While the current generation of fire models has skill at modelling certain aspects of global fire regimes, many uncertainties remain. Most models struggle to represent extreme fires and often disagree over future changes in burning. We are collating information on good practices of fire model applications that consider or robustly reduce these uncertainties. These include single or multi-global fire model output, and new and novel modelling and statistical techniques, either in isolated studies or larger projects that contain multiple studies.

The aim is to provide a guide to using fire models for science and policy and a roadmap for development pathways. Thereby moving the community forward to help answer some of the urgent fire-related questions in our changing world. We aim to highlight the fantastic work of many in the community at designing and implementing robust scientific integrity in their analysis. Excellent work already identified often involves tailored modelling and evaluation techniques for specific questions, developing ways to quantify uncertainty, and statistical methods to extract relevant information from models based on historical performance. But there is certainly more we don’t know about!

Can you tell us how and when fire model evaluation has helped inform or adapt a research question? How do you account for fire model uncertainties? We especially want to hear from you if you're unsure or don't think your research is entirely relevant. Maybe we've missed that vital aspect of fire science!? 

To contribute, fill out the questionnaire, jam board, or request an interview at https://forms.gle/NJPEShq6V1ky3Dbv5. Or come talk to us at EGU and fill out our interactive poster!

 

 

How to cite: Kelley, D. I., Burton, C., New, S., Taylor, I., Mathison, C., Teixeira, J., Lampe, S., Bradley, A., Robertson, E., Parker, R., Hantson, S., Barbosa, M. L. F., Folberth, G., Burke, E., Jones, C. D., Shuman, J., Foster, A., and Forrest, M.: Community input for a how-to guide for using fire models., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15606, https://doi.org/10.5194/egusphere-egu24-15606, 2024.

EGU24-16612 | Posters on site | BG8.7

Understanding the impact of large fires in air quality in a Mediterranean area 

Grazia Pellizzaro, Valentina Bacciu, Carla Scarpa, Bachisio Arca, Michele Salis, Marcello Casula, and Annalisa Canu

Fires have been a natural component of Mediterranean ecosystems for centuries, contributing to their ecological balance. However, they also release significant amounts of smoke and various pollutants like carbon monoxide, methane, nitrous oxide, nitrogen oxides, volatile organic compounds, and particulate matter (PM). The emissions not only compromise air quality but also pose a threat to human health, particularly for those with chronic heart and lung diseases. These impacts have been largely studied in the United States and in neighboring countries, while in the Euro-Mediterranean continent the studies available on the patterns of wildfires and fire emissions are more limited. However, the increase in the frequency of large fires recorded in recent years, especially in southern Europe and often close to inhabited centers, urges the scientific community to investigate on the impact of these events on air quality and human health at European level as well.

This study examines six large fires (>2000 ha) in Sardinia, Italy, over the past fifteen years, with the main aims to (i) characterize the six forest fires in term of size, fuel, and weather conditions; (ii) estimate the contribution of the six forest fires to environmental PM levels.

Meteorological conditions at synoptic scale have been investigated through NCEP Climate Forecast System Reanalysis (CFSR) data with a spatial resolution of 0.5° x 0.5° and maps of 850 hPa temperature and airmasses from WetterZentrale (https://www.wetterzentrale.de/). The impacts on particulate matter on air quality has been evaluated through data obtained from the monitoring stations of the Air quality control network of the Regional Environment Protection Agency of Sardinia (ARPAS).  To further investigate the impacts of the fire plumes, the study employs the HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model developed by NOAA’s Air Resources Laboratory to compute the forward trajectories of air masses. Finally, for selected recent fires, the plume spatial distribution has been investigated and verified using Modis satellite images on board the Aqua satellite as well as the visible Infrared Imaging Radiometer Suite (VIIRS) Corrected Reflectance imagery on board the joint NASA/NOAA Suomi National Polar orbiting Partnership (Suomi NPP) satellite.

Preliminary findings reveal varying degrees of correlation between air quality and fire events in the six examined cases. This variability could be attributed to different fuel types, atmospheric conditions, and, to a significant extent, the location and density of air monitoring stations.

How to cite: Pellizzaro, G., Bacciu, V., Scarpa, C., Arca, B., Salis, M., Casula, M., and Canu, A.: Understanding the impact of large fires in air quality in a Mediterranean area, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16612, https://doi.org/10.5194/egusphere-egu24-16612, 2024.

EGU24-17187 | ECS | Posters on site | BG8.7

Comparative assessment of evacuation capacity of selected fire prone areas in Attica region, Greece 

Michail-Christos Tsoutsos, Nikolaos Stasinos, Melpomeni Zoka, Martha Kokkalidou, Stella Girtsou, Nikolaos Stathopoulos, and Charalampos Kontoes

During the last decades, Greece has experienced a range of natural hazards, with three significant events occurring in the wider Attica region. Notably, these include the Athens earthquake that took place on September 7, 1999, the flash flood of Mandra that unfolded on November 15, 2017, and the wildfires that happened on July 23, 2018, in Mati. Among these, wildfires stand out as particularly detrimental disasters provoking numerous fatalities, which have an intense presence within the Attica region according to the FireHub Web Service provided by the Operational Unit “BEYOND” Centre of the National Observatory of Athens. This stems from a persistent urban sprawl over the years throughout the region that leads to an unwavering invasion of urban and suburban infrastructures into wildland areas containing typical Mediterranean vegetation, and as a result, heightens the vulnerability of human lives and properties to a fire-prone environment. Furthermore, most of the suburban areas in the broader Attica region are characterized by uncontrollable urban planning, numerous dead ends, inaccessible seafronts, insufficient installation of firefighting equipment, accumulation of fuels in both private properties and public spaces, and in most cases poor road network quality. This precarious combination of factors exacerbates the risk and impact of wildfires, posing serious challenges to the safety and well-being of the community and underscores the urgent need for comprehensive and strategic protection measures. Considering the necessity to efficiently prevent any loss in human and built environments due to the aforementioned destructive hazards and the region’s characteristics, the Region of Attica funded a research project where fire, seismic, and flood risk was estimated. Within the context of fire risk assessment, evacuation plans were created given the fact to inhibit any fatalities in the likelihood of a forest fire event. The evacuation plans are based on extensive field investigations which brought about insights related to human and physical geographical elements (e.g. topography, land use/land cover, road network density) of each area of interest. The research identified the total number of dead ends, the vehicle escape routes, points of traffic congestion, and polygons representing the order of areas to be evacuated, taking into account the incoming direction of a possible fire front. Moreover, the main routes of evacuation for pedestrians were traced in conjunction with the points of public gathering. Lastly, a variety of recommendations are provided in light of the hotspots that need immediate intervention in order to counter a severe fire event. The primary objective of this research is to present and evaluate the proposed evacuation risk management plans in selected municipalities, as well as, to highlight the most vulnerable areas in terms of capacity through maps.

Acknowledgments

This research work was developed under the national research project “Seismic, Fire and Flood Risk Assessment in Attica Region, Greece”, funded by the Region of Attica, led and coordinated by the Operational Unit “BEYOND Centre of Earth Observation Research and Satellite Remote Sensing” of the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, of the National Observatory of Athens, Greece.

How to cite: Tsoutsos, M.-C., Stasinos, N., Zoka, M., Kokkalidou, M., Girtsou, S., Stathopoulos, N., and Kontoes, C.: Comparative assessment of evacuation capacity of selected fire prone areas in Attica region, Greece, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17187, https://doi.org/10.5194/egusphere-egu24-17187, 2024.

EGU24-19850 | Posters on site | BG8.7

A Tenfold Increase in Extreme Fires  expected in Europe under a warming climate   

Fredrik Wetterhall, Siham El Garroussi, and Francesca Di Giuseppe

Extreme wildfires have a disastrous impact on society and the natural environment. Wildfires are prone in areas with fuel built up and desiccated over time. A warmer and drier climate will lead to an increase in the risk of extreme fires. 
    This study quantifies how the risk of extreme fires is conditioned on potential temperature and precipitation changes. Our results indicate that large areas of southern Europe could experience a tenfold increase in the probability of catastrophic fires occurring any given year under a moderate CMIP6 scenario. If global temperatures reach the +2 C threshold, central and northern Europe will also become more susceptible to wildfires during droughts. The increasing probability of fire extremes in a warming climate, in combination with an average one-week extension of the fire season across most countries, is expected to strain Europe's ability to cope in the forthcoming decades.

How to cite: Wetterhall, F., El Garroussi, S., and Di Giuseppe, F.: A Tenfold Increase in Extreme Fires  expected in Europe under a warming climate  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19850, https://doi.org/10.5194/egusphere-egu24-19850, 2024.

EGU24-20348 | Orals | BG8.7

Projected Increases in fire weather days even when the Paris Agreement targets are met: an exploration of fire risk uncertainty with a perturbed physics ensemble of climate models  

Inika Taylor, Douglas Kelley, Camilla Mathison, Karina Williams, Andy Hartley, Richard Betts, and Chantelle Burton

Large destructive fires can cause extensive damage to ecosystems, and infrastructure, and loss of life. Understanding how these ‘wildfires’ are likely to change as the world warms is vital for effective fire management planning. This study provides information on likely future change and associated uncertainty in fire weather, relevant for fire management planning, including periods and extent of extreme fire weather and length of control burn season. 

We use the McArthur Forest Fire Danger Index (FFDI) to investigate the effect of human-caused climate change on fire weather. We use a large, perturbed physics ensemble to explore the uncertainty at three Global Warming Levels (GWLs); 1.5°C, 2.0°C and 4.0°C above pre-industrial temperatures, for two emissions scenarios, RCP2.6 (a mitigation scenario), and RCP8.5, (a high-end scenario). We look globally, and focus on three regions: Australia, Brazil and the USA.  The frequency and severity of fire weather increases at all GWLs. The amount of land with more fire weather days increases with GWL, as does the uncertainty. Limiting warming to 1.5°C limits increases in future fire weather. However, even at 1.5°C, there is still a 31% (25% – 36%) increase in the land surface with more fire weather. 

Our analysis shows a substantial increase in fire weather and shortened control burn season even under the best-case scenario of meeting the 1.5°C Paris Agreement temperature target. However, exceeding the Paris Agreement target will see a much more substantial increase in both the fire season length and the amount of the land surface exposed to a greater risk of wildfires. These potential changes in fire weather have important implications for planning appropriate responses, such as the controlled burning season length, resourcing and training of fire managers and first responders, and the development of fire management plans. 

How to cite: Taylor, I., Kelley, D., Mathison, C., Williams, K., Hartley, A., Betts, R., and Burton, C.: Projected Increases in fire weather days even when the Paris Agreement targets are met: an exploration of fire risk uncertainty with a perturbed physics ensemble of climate models , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20348, https://doi.org/10.5194/egusphere-egu24-20348, 2024.

In Latin America, social media platforms are the main source of information updates for the population with internet access. On social networks, information from quick videos, photographs and digital narratives are sources of learning exchanges, updates and lessons.  Thus in this, using the social networks to scientific dissemination with the aim of increase awareness and engagement about the occurrence of forest fires, risks of disasters and the impact of forest fires in Latin America. The digital social platforms used here were Youtube, Facebook and Instagram in Portuguese, English and Spanish. Metrics such as reach, reactions, comments, number of likes, impressions per post, number of followers and automatic evaluations of participation and engagement were collected as a positive strategy for monitoring and social participation of populations with digital access and interest in the topics.

How to cite: Maia, M. and Anderson, L. O.: Scientific communication on social media as a tool for Increase awareness on fire occurrence , risk reduction and environmental disasters associated with forest fires., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20820, https://doi.org/10.5194/egusphere-egu24-20820, 2024.

EGU24-1070 | ECS | Orals | BG8.9

Understanding spatio-temporal pattern of crop diversification for India 

Chanda Kumari, Roopam Shukla, and Stephanie Gleixner

Abstract: Agrobiodiversity, a key principle of agroecology, encompasses crop diversification, offering resilience to climate variability (Ronnie Vernooy, 2022). Increasing crop species diversity within a region could improve agricultural sustainability, but knowledge of the spatiotemporal variation of crop species diversity and how this is related to climatic conditions is limited (Sjulgård, H., et al., 2022). Higher crop diversity may alleviate the effects of heat stress (Degani et al., 2019, Marini et al., 2020) and drought (Bowles et al., 2020, Marini et al., 2020) on crop yields. Therefore, crop diversity will play a crucial role in the functioning of agroecosystems under climate change (Sjulgård, H., et al., 2022). Hence, this study aims to investigate the relation between the spatiotemporal pattern of crop diversity and changing climatic conditions at the district level in India by building relationship between crop diversification and climatic variables. Crop species diversity was estimated using the Shannon Index. Advanced statistical analysis was used to understand the relationship between climatic variables and crop diversity. The outcome will also help the policymaker, researchers, and field practitioners in designing climate-resilient agricultural practices following the principles of agroecology.

Keywords:

Crop diversification, Shannon Index, Climate variables, Risk map, Agrobiodiversity, Agroecology, India.

Figure 1: Schematic representation of the proposed work

How to cite: Kumari, C., Shukla, R., and Gleixner, S.: Understanding spatio-temporal pattern of crop diversification for India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1070, https://doi.org/10.5194/egusphere-egu24-1070, 2024.

EGU24-1392 | ECS | Posters on site | BG8.9

A novel composite Index for early-season maize mapping 

Yuan Gao, Yaozhong Pan, Shoujia Ren, and Chuanwu Zhao

Maize cultivation significantly contributes to global food security and sustains human livelihoods. Efficient early-season maize mapping is pivotal for forecasting production and informed pre-harvest decisions. Existing approaches rely on prolonged phenological data or available crop labels, limiting their applicability in areas lacking comprehensive data. Thus, an automated, dynamic, and accurate maize identification method for the early growing season is crucial. This study explores spectral bands to distinguish maize early in terms of water content and chlorophyll levels. A novel composite index for dynamic maize identification independent of labels was proposed. Utilizing this index with a multi-temporal Gaussian Mixture Model facilitated early-season maize mapping and identification. Assessments across diverse global regions revealed the method's robustness, consistently achieving 90% accuracy and F1-score. NDCI outperformed other indices, enhancing F1-score by up to 30%. NDCI-mGMM accurately generated maize maps two months pre-harvest, promising an F1 score of at least 77%. Operating autonomously from labels, this framework offers swift and precise maize identification in data-deficient regions, revolutionizing global food security and trade forecasts.

How to cite: Gao, Y., Pan, Y., Ren, S., and Zhao, C.: A novel composite Index for early-season maize mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1392, https://doi.org/10.5194/egusphere-egu24-1392, 2024.

EGU24-2876 | Posters on site | BG8.9

Modelling greenhouse gas emissions at farm level across Switzerland 

Jérôme Schneuwly, Anina Gilgen, and Daniel Bretscher

For a better understanding of the environmental impacts of the agricultural sector and based on federal regulation, the monitoring of the agri-environmental system of Switzerland (MAUS) is tracking the development of different environmental indicators, among them regional GHG emissions. For this purpose, we developed a GHG emission model to calculate farm-scale, yearly, management-influenced emissions.

The considered categories of greenhouse gas emissions largely follow the approach of Switzerland's national greenhouse gas inventory under the UNFCCC (FOEN, 2023), while adaptations in the calculation of emissions from manure management were implemented. Among them, the ALFAM2 (Hafner et al., 2019) methodology was used for slurry application emission estimation and slurry storage emission factors were revised based on the publication from Kupper et al. 2020.

The manure management part of the model depicts nitrogen flows along the manure cascade. At each step (1. barn, pasture, yard; 2. storage; 3. application), a fraction of total ammoniacal nitrogen is being lost as N2O, NH3, NOx or N2. CH4 emissions from manure management are calculated in parallel to the nitrogen containing emissions, following the methods of Soliva et al., 2006. NH3, N2O and CO2 emissions originating from mineral fertilizer, organic products and harvest residues are calculated by multiplying nitrogen or carbonate inputs with respective emission factors. Further, CH4 from enteric fermentation is implemented according to the 2019 IPCC guidelines for greenhouse gas inventories, taking into account gross energy intake. As exact and exhaustive data is not available for every single Swiss farm, data from various sources were combined and averaged on different levels if necessary.

Farm-based calculations allow to monitor the effects of management changes on GHG emissions and to summarize the results at different geographical resolutions depending on the goals of the according study. To analyze regional differences for MAUS, the emissions were summarized per municipality and set in relation to utilized agricultural area. Monte-Carlo-like simulations were run to examine sensitivities of individual input variables and uncertainties, which showed generally a large influence of animal numbers and milk urea concentrations on total farm GHG emissions.

Within MAUS, it is planned to calculate emissions annually to detect potential trends. Further, newly available data sources, like farm specific mineral fertilizer applications, will be considered to make more detailed calculations.

FOEN, 2023: Switzerland’s Greehouse Gas Inventory 1990-2021: National Inventory Document. Submission of April 2023 under the United Nations Framework Convention on Climate Change. Federal Office for the Environment, Bern. URL: https://www.bafu.admin.ch/bafu/en/home/topics/climate/state/data/climate-reporting/ghg-inventories/latest.html (20.12.2023).

Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M., Génermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Misselbrook, T., Neftel, A., Nyord, T., Sommer, S.G., 2019. A flexible semi-empirical model for estimating ammonia volatilization from field-applied slurry. Atmospheric Environment 199, 474-484.

Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A., 2020. Ammonia and greenhouse gas emissions from slurry storage - A review. Agriculture, Ecosystems and Environment 300

Soliva, C.R., 2007. Dokumentation der Berechnungsgrundlage von Methan aus der Verdauung und dem Hofdünger landwirtschaftlicher Nutztiere. Federal Office for the Environment, Bern.

How to cite: Schneuwly, J., Gilgen, A., and Bretscher, D.: Modelling greenhouse gas emissions at farm level across Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2876, https://doi.org/10.5194/egusphere-egu24-2876, 2024.

EGU24-3443 | Orals | BG8.9 | Highlight

Integration of data from agricultural practice into the Swiss agri-environmental monitoring project MAUS 

Silvio Blaser, Simon Baumgartner, Jérôme Schneuwly, and Anina Gilgen

In order to fulfil the requirements of the Agriculture Act and the Ordinance on the Assessment of Sustainability, the Swiss Federal Research Centre Agroscope assesses the quantitative and qualitative impacts of agriculture on the environment using regional and farm-related eco-indicators. This is done by the monitoring of the Swiss agri-environmental system (MAUS).

Thematically, these indicators cover a wide range of agroecological hotspots, such as humus, heavy metal and nutrient balances, use and risks of plant protection products, potential impact on biodiversity, greenhouse gas emissions and others. Agroscope bases the calculation of the indicators largely on existing data. To supplement and improve the quality of this data, MAUS is currently launching projects to acquire and integrate data from remote sensing, online surveys and farm management information systems (FMIS).

Integrating FMIS data essentially means requesting data that is already collected by farmers for their farm management and in order to receive direct payments. A large part of this is field calendar data, which describes what happened in a field after the previous crop was harvested: e.g., how was the seedbed prepared, what fertilisation and plant protection measures were carried out before the crop was harvested, etc.

There are various large gaps in the level of detail and scope of the FMIS available on the market compared to what is needed to calculate the indicators. Therefore, solutions are needed that allow the farms providing data to supplement missing information and, where necessary, to specify the entries for MAUS.

As part of a pilot project, a technical solution was developed with one of the Swiss providers and is currently being implemented. This has shown that, in addition to a precise definition of requirements, constant and lively dialogue is important. A comprehensive data set that exemplifies how operating data must arrive at MAUS not only helps with final testing, but also with understanding the implementation.

In the near future, other interested FMIS are to supplement their platforms so that data can be supplied to MAUS. In the collaboration between Agroscope and the interested providers, both parties will benefit from the preliminary work and the findings of the pilot project.

How to cite: Blaser, S., Baumgartner, S., Schneuwly, J., and Gilgen, A.: Integration of data from agricultural practice into the Swiss agri-environmental monitoring project MAUS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3443, https://doi.org/10.5194/egusphere-egu24-3443, 2024.

EGU24-5171 | ECS | Posters on site | BG8.9

Mapping the nationwide crop phenology stages in Saudi Arabia using machine learning and Sentinel-2 NDVI time series 

Ting Li, Oliver Miguel Lopez Valencia, Kasper Johansen, and Matthew Francis McCabe

Vegetation phenology, encompassing critical events like leaf emergence and maturity, serves as an important indicator of adaptive plant responses to environmental factors. In the context of Saudi Arabia, existing crop phenology retrieval methods encounter several challenges related to local farm management operations. These can include unstable crop calendars with planting and harvesting at any time throughout the year, uncertainty in sub-field management with independent control of areas within a center-pivot field, and diverse crop rotations between fodder and non-fodder crops. To address these challenges, we present an innovative framework utilizing machine learning and Sentinel-2 NDVI time series data for mapping phenology stages of key crops at a national scale. The framework is composed of three modules that are implemented step-wise, including: (1) a within-field dynamic clustering module (termed WithinFDy) that monitors fields for potential subdivision based on pixel-level NDVI temporal dynamics; (2) a phenology estimation module (termed PhenoEst) that segments NDVI time series into growing seasons and extracts essential phenology stages (e.g., planting and harvesting dates) for each season; and (3) a crop type discrimination module (termed CropDis) that utilizes extracted phenology information as input features to discriminate between different crop types. Evaluated on 1,000 randomly selected fields in northern Saudi Arabia, our framework achieved overall accuracies of 93.38%, 96.40%, and 94.39% for WithinFDy, PhenoEst, and CropDis modules, respectively. When applied nationwide in 2020, the framework revealed valuable insights. In terms of field management, 21.8% of the fields were divided into two distinct subfields, featuring different planting and harvesting dates - and sometimes crop type, while 73.2% showed consistent practices across the entire field. For seasonal dynamics, 53.4%, 36.3%, and 8.7% of fields supported crops for one, two, and three seasons annually, respectively. Main planting and harvesting activities occurred during winter seasons (November to February), with another peak observed in June. Approximately 30% of fields were under production for 5 to 6 months, and 15.7% were under production year-round. The dominant crop types in 2020 were fodder crops (e.g. alfalfa and Rhodes grass), followed by winter crops like winter wheat. Our methodology represents a substantial advancement over previous approaches, expanding applicability beyond crops with regular growth patterns. The results not only enrich agricultural datasets in Saudi Arabia but also hold promise for enhancing food and water security studies globally.

How to cite: Li, T., Lopez Valencia, O. M., Johansen, K., and McCabe, M. F.: Mapping the nationwide crop phenology stages in Saudi Arabia using machine learning and Sentinel-2 NDVI time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5171, https://doi.org/10.5194/egusphere-egu24-5171, 2024.

EGU24-5448 | Posters on site | BG8.9

Improving high-resolution spatial information on agricultural land use management in Europe for economic land use modelling and the assessment of policy impacts 

Linda See, Orysia Yashchun, Zoriana Romanchuk, Juraj Balkovič, Rastislav Skalsky, Žiga Malek, Dmitry Schepaschenko, Andre Deppermann, Tamás Kriztin, and Petr Havlík

There is currently a lack of high-resolution pan-European information on land use management, especially in terms of how intensively and extensively cropland and grassland are managed. This is partly due to the lack of ground-based information, which is needed to downscale these types of management practices (some of which are captured in different types of agricultural censuses and surveys) as well as the inability of remote sensing to capture different kinds of land use. This type of information is needed for economic land use modelling and for assessing policy impacts, such as the latest reforms from the Common Agricultural Policy (CAP) and other European Union (EU) Green Deal targets. These types of analyses are undertaken using economic land use models such as GLOBIOM and CAPRI, which is one of the main aims of the Horizon Europe funded LAMASUS project (https://www.lamasus.eu/).  

This presentation will provide an overview of the ongoing developments in creating high-resolution spatially explicit layers on agricultural and grassland management for Europe to support the LAMASUS project. The proposed cropland and grassland management classes will be outlined along with the methodology for how they have been implemented using existing data layers from remote sensing, statistical data from Eurostat, the Joint Research Centre of the EU, agricultural ministries, and other sources. One of the key challenges is ensuring that the high-resolution data matches official statistics at the national (and NUTS2 level where available) so that they can be used by the economic land use models in LAMASUS. A method will be presented for how this is achieved using priors in the form of integrated layers of cropland and grassland probability created from existing high-resolution remotely sensed input layers.

 

How to cite: See, L., Yashchun, O., Romanchuk, Z., Balkovič, J., Skalsky, R., Malek, Ž., Schepaschenko, D., Deppermann, A., Kriztin, T., and Havlík, P.: Improving high-resolution spatial information on agricultural land use management in Europe for economic land use modelling and the assessment of policy impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5448, https://doi.org/10.5194/egusphere-egu24-5448, 2024.

EGU24-6031 | Posters on site | BG8.9

Country-wide Cross-Year Crop Mapping from Optical Satellite Image Time Series 

Mehmet Ozgur Turkoglu, Helge Aasen, Konrad Schindler, and Jan Dirk Wegner

Previous works on vegetation mapping from optical satellite images use training and test datasets within the same year. We think that from a practical perspective, this experimental setting is not realistic due to (i) crop growth changes from year to year (also like from region to region), therefore test assessment does not fully reflect real-world cases and (ii) obviously it is not possible to apply the algorithm current year if it is trained with current year data. Thus a cross-year experimental setting should be de-facto for this line of research then we can readily apply developed algorithms in real-world applications. In this work, we evaluate a state-of-the-art crop classification method from optical satellite (Sentinel-2) image time series data - a hierarchical multi-stage deep learning method, i.e. ms-convSTAR which we introduced in [1] - in a cross-year experimental setting. The deep learning model is trained with the entire 2021 crop dataset in Switzerland and during test time it is applied to the 2022 crop dataset. Our results show that our method performs reasonably well in this experimental setting achieving ~83% accuracy at the pixel level. 

References

[1] Turkoglu, M. O., D'Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K., & Wegner, J. D. (2021). Crop mapping from image time series: Deep learning with multi-scale label hierarchies. Remote Sensing of Environment, 264, 112603.

How to cite: Turkoglu, M. O., Aasen, H., Schindler, K., and Wegner, J. D.: Country-wide Cross-Year Crop Mapping from Optical Satellite Image Time Series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6031, https://doi.org/10.5194/egusphere-egu24-6031, 2024.

EGU24-7035 | Orals | BG8.9 | Highlight

Assessment of wetland ecosystem services associated with changing climate and agricultural wetland drainage in a major food producing region 

Colin Whitfield, Emily Cavaliere, Helen Baulch, Robert Clark, Chris Spence, Kevin Shook, John Pomeroy, and Zhihua He

Agricultural regions worldwide face the dual challenge of producing food for a growing world population while simultaneously reducing the industry’s environmental footprint. The prairie region of western Canada, where more than 40 million ha are used as cropland or pasture, is one of the world’s major food producing regions. This complex landscape provides agroecosystem services associated with these agricultural lands and their millions of depressional wetlands. As a cold region, and one with a highly variable climate which is undergoing strong climate change, agricultural practices continue to evolve. One widely used tool for adaptation to wet periods and to maximize arable land area is to drain wetlands; however, a tradeoff exists between draining wetlands to support expansion of cropland, and conserving wetlands to maintain their valuable ecosystem services. Wetland drainage decisions are often made without identifying impacts to the services these systems provide.

We address this gap using a novel assessment to quantify impacts to ecosystem services via wetland drainage in the Canadian prairie landscape, and explore how wetland ecosystem services may be impacted by future climate. Quantifying response of a suite of indicators (median annual flows, total phosphorus export, riparian habitat, dabbling ducks, wetland-associated birds, carbon sequestration) to wetland drainage demonstrated that all respond strongly to the loss of depressional wetlands, but sensitivity varies among the indicators. Median annual flows and phosphorus export respond more strongly than longer return period flows, potentially tripling in magnitude with high levels of wetland loss. Dabbling ducks and wetland-associated bird abundances are even more sensitive, with abundances predicted to decrease by half with loss of as little as 20% of wetland area. As a relatively unique region, where inundated wetland area is highly dynamic both interannually as the system alternates between dry and wet phases, and intra-annually (across seasons), wetland ecosystem services response to climate change is more nuanced. In the Canadian prairie, there appears to be a delicate balance between future warming and changes in precipitation amount that could yield either increases or decreases in wetland area, with wetland ecosystem services anticipated to change accordingly. Our results illustrate the sensitivity of wetland ecosystem services to agroecosystem management and climate change in a major food producing region, highlighting the need to consider the tradeoff between loss of these services and benefits of agricultural expansion. Under a drier future climate, fewer remaining wetlands may both enhance the value of wetland-associated ecosystem services, and temper the demand for wetland drainage.

 

How to cite: Whitfield, C., Cavaliere, E., Baulch, H., Clark, R., Spence, C., Shook, K., Pomeroy, J., and He, Z.: Assessment of wetland ecosystem services associated with changing climate and agricultural wetland drainage in a major food producing region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7035, https://doi.org/10.5194/egusphere-egu24-7035, 2024.

EGU24-7646 | ECS | Posters on site | BG8.9

Estimation of annual grassland yields with Sentinel-2 time series 

Sophie Reinermann, Anne Schucknecht, Ursula Gessner, Sarah Asam, Ralf Kiese, and Claudia Kuenzer

Grassland ecosystems shape the landscape in large parts of Germany and provide numerous services that are relevant for the carbon cycle, water quality and biodiversity, apart from being the main source of fodder for the dairy and meat industry. Annual yields between grasslands vary strongly because their productivity depends on the management and environmental conditions. Information on grassland yields are not freely and extensively available in Germany but would be relevant for comprehensive assessments of grassland ecosystem services including the impact of extreme events on yields. With satellite remote sensing, grassland productivity and yields can be extensively and multi-temporally estimated. Within our project (SUSALPS, https://www.susalps.de/en/), grassland yields are estimated in a grassland-dominated area in southern Germany using ground-truth measurements of above-ground biomass and Sentinel-2 time series data. Field data was collected on 12 differently used grassland parcels in the region in 2019-2021. We aim to overcome limitations of previous research – caused by the heterogenous nature of grasslands due to varying use intensities in Germany – by including management information and a large gradient of field samples trough multiple measurements throughout the vegetation growth period into the modelling. We tested empirical model based on the field and accompanying Sentinel-2 data (n=74) to estimate grassland biomass. The best model was applied to all available Sentinel-2 scenes in the region in 2019. Random Forest and Artificial Neural Network models showed the highest accuracy (R²cv = 0.7). A novel input feature was the mowing date which is available as 6-year dataset (Reinermann et al. 2022 & 2023). Next, the multi-temporal biomass estimations are aggregated to annual yield estimates to enable spatially discrete and multi-annual yields are estimated and compared (2018-2023). First results show that the inclusion of mowing date information supports the reliable estimation of grassland yields and its assessment on fine spatial scale substantially. In the future, the results are coupled with modelled plant biodiversity information to gain a complementary picture on grassland ecosystem services.

How to cite: Reinermann, S., Schucknecht, A., Gessner, U., Asam, S., Kiese, R., and Kuenzer, C.: Estimation of annual grassland yields with Sentinel-2 time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7646, https://doi.org/10.5194/egusphere-egu24-7646, 2024.

EGU24-9284 | ECS | Posters on site | BG8.9

An improved biodiversity index for FAO’s Tool of Agroecology Performance Evaluation (TAPE) 

Simon Baumgartner, Anina Gilgen, Rahel Felder, Felix Herzog, Philippe Jeanneret, Robin Séchaud, Stevan Paunovic, Dario Lucatoni, Remi Cluset, Anne Mottet, and Lutz Merbold

The "Tool for Agroecology Performance Evaluation" (TAPE) was developed under the coordination of the Food and Agriculture Organisation of the United Nations (FAO) to assess the sustainability performance of agroecosystems. The assessment is mainly based on a 2-3-hour farm interview, in which a wide variety of data is collected. The environmental dimension has so far been represented in TAPE by two simple indices: A soil index, which is based on a visual analysis of the soil, and a biodiversity index, which is primarily based on the Gini-Simpson index of crops grown and animals kept. While the TAPE biodiversity index is crucial, it does not yet take into account so-called unplanned biodiversity, i.e. the impact of on-farm management practices on wild species. We have therefore expanded TAPE to include this aspect.

Direct surveys of wildlife biodiversity in the field were not possible in TAPE, as this would have far exceeded the time required for data collection. Consequently, we based the newly developed biodiversity index on the indirect European BioBio method. The new index consists of ten indicators, which can take values between 0 and 100% and be aggregated to form the overall index. Examples of these indicators are field size, nitrogen application or stocking density. The new index was developed and tested on selected Swiss farms, where the comparison with a much more comprehensive and time-consuming method showed a positive correlation (r = 0.56, p-value = 0.009).

The new index has so far been used in Switzerland (21 farms) and in Kenya (103 farms). In Switzerland, the field size and land use change indicators performed best (values > 75%), while the indicators tree habitat, nitrogen application, field operations and grazing intensity performed poorly (values > 50%). In Kenya, the field size, land use change, pesticide and field operations indicators reached values above 75%, while the tree habitat, grazing intensity and semi-natural habitat indicators had values clearly below 50%.

How to cite: Baumgartner, S., Gilgen, A., Felder, R., Herzog, F., Jeanneret, P., Séchaud, R., Paunovic, S., Lucatoni, D., Cluset, R., Mottet, A., and Merbold, L.: An improved biodiversity index for FAO’s Tool of Agroecology Performance Evaluation (TAPE), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9284, https://doi.org/10.5194/egusphere-egu24-9284, 2024.

EGU24-9951 | ECS | Posters on site | BG8.9

A hybrid framework for improved crop mapping over a large scale by combining pixel-based and object-based approaches 

Yuanyuan Di, Jinwei Dong, Ping Fu, and Stuart Marsh

Remote sensing technology presents unique possibilities for monitoring agricultural systems, providing accurate information like crop type distribution, crop planting area, crop rotation, etc. Extracted from remote sensing imagery, previous efforts generally produce crop information based on pixel-based classification strategy without considering spatial context of objects. Further incorporation of object-based image analysis in crop type mapping could improve mapping accuracy and reduce disturbance caused by uncertainties caused by pixel-based methods. Here we aim to combine the advantages of pixel-based and object-based approaches for further improving crop type maps over Northeast China based on Sentinel-2 imagery, simple non-iterative clustering (SNIC), random forest classifier and Google Earth Engine platform. The results showed in the majority of cropland, object-based mapping results had higher accuracies and reduced obvious errors at parcel level. Overall accuracies improved by 0.5% and the Kappa coefficient improved by 9% in Sanjiang Plain. However, soybean and maize intercropping with small parcels could be ignored in object-based methods when clustering objects. Therefore, an integration of pixel and object-based approaches was adopted considering different landscapes and patch areas to generate an unprecedentedly accurate crop type map in Northeast China.

How to cite: Di, Y., Dong, J., Fu, P., and Marsh, S.: A hybrid framework for improved crop mapping over a large scale by combining pixel-based and object-based approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9951, https://doi.org/10.5194/egusphere-egu24-9951, 2024.

EGU24-13479 | ECS | Orals | BG8.9 | Highlight

Spatially-explicit greenhouse gas footprints of agricultural commodities from around the world 

Chaidir Arsyan Adlan, Birka Wicke, Steef V. Hanssen, and Carlijn Hendriks

Agriculture and its land use are associated with 22% of global annual anthropogenic greenhouse gas (GHG) emissions [1]. Reducing these emissions requires insight into how much emissions are caused by specific agricultural commodities and where they occur. Commodity-specific GHG footprints are a useful tool in this regard as they enable producers to determine the emission intensity and environmental impact of their products [2]-[3]. Further, they can help identify emission reduction strategies and region-specific mitigation efforts [4]-[6].

Spatially-explicit GHG footprints are particularly useful since they show the geographic distribution of commodities’ emission intensity and allow for the comparison across countries [7]. Several past studies have produced crop-specific footprints but considered emissions solely from land use change and did not include emissions from agricultural practices [8]-[11]. Attribution was mostly conducted at aggregate level such as country and region level [16],[17]. Those studies that employed spatially-explicit attribution methods are characterized by limited geographical coverage [14] and a limited selection of crops [15]. Studies also applied largely different methods for attributing emissions to crops, making comparison across studies not possible. 

The current study aims at filling in this research gap by improving data resolution and the methodology for attributing dynamic land-use emissions to specific crops. We derive global spatially-explicit GHG emission footprints for 161 agricultural crops over the period of 1970 to 2021 at 15 arcmin resolution. We do so by quantifying spatially-explicit land-use emissions related to agriculture and then attributing them to specific agricultural commodities (Fig1). The analysis is conducted using the LUH2 dataset on land use dynamics over time [16] and IMAGE-LPJmL 3.2 for carbon stock data [17]. IMAGE-LPJmL is a dynamic global vegetation model that simulates vegetation dynamics and distribution based on carbon cycle and crop growth model [18], [19]. This allows leveraging advanced data in terms of dynamic, annual, and spatially specific carbon stocks (Tier-3), rather than constant and/or national level carbon stock data (Tier-1) as generally used in the literature.

This study also compares three different emission attribution methods (AM) (Fig2). AM1 uses an annual accounting period, attributing emissions to the land use change committed in the same year. AM2 uses a larger time step and attributes the emissions only to the land use type at the end of the accounting period. These two methods are the two most employed methods in carbon accounting studies. We also propose an alternative approach that reflects the dynamics of land use (AM3); we attribute the emissions based on occupation year of each land use type in the accounting period.

The expected results of this study are crop-specific GHG footprints in terms of land use emissions per production area (tCO2eq/ha) and per crop yield (tCO2eq/ton) at the grid level as well as means and variations per crop and country. Also, variations as a result of different AMs will be presented and its implications for research and application in e.g. corporate emission reporting and target setting will be discussed. 

Fig1

Fig2

How to cite: Adlan, C. A., Wicke, B., Hanssen, S. V., and Hendriks, C.: Spatially-explicit greenhouse gas footprints of agricultural commodities from around the world, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13479, https://doi.org/10.5194/egusphere-egu24-13479, 2024.

EGU24-13714 | Orals | BG8.9 | Highlight

Mapping, Attribution, and Environmental Effects of Woody Plant Encroachment in Grasslands under Climate Change and Human Activities 

Jie Wang, Chuchen Chang, Xu Wang, Jilin Yang, and Xiangming Xiao

Woody plant encroachment (WPE) into grasslands has been occurring globally and may be accelerated by climate change and human activities in the future. There are limited studies to document this ecological process and hamper our understanding to make sustainable management approaches for grassland conservation.  Here, we improved our previous studies on woody plant encroachment in the grasslands of Oklahoma, USA.  This study (1) summarized the detection of woody plant encroachment into grasslands over the typical regions in global through PALSAR, Sentinel-1, Sentinel-2, and Landsat images; (2) examined the drivers of woody plant encroachment into grasslands at local and global scales; and (3) developed approaches to quantify the effects of woody plant encroachment into grasslands on carbon, water, and local land surface temperature. The results provide some insights to understand the process and assocaited drivers of woody plant encroachment during the last decades and the roles on carbon and water cycles and the local environment.

How to cite: Wang, J., Chang, C., Wang, X., Yang, J., and Xiao, X.: Mapping, Attribution, and Environmental Effects of Woody Plant Encroachment in Grasslands under Climate Change and Human Activities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13714, https://doi.org/10.5194/egusphere-egu24-13714, 2024.

EGU24-14243 | Posters virtual | BG8.9

Makara: Navigating Agricultural Challenges through Digital Innovation 

Ramesh Guntha, Aiswarya Aravindakshan, Soham Adla, Maya Presannakumar, Mario Alberto Ponce Pacheco, and Saket Pande

Modern-day agriculture presents numerous challenges for small rural farmers, including labor issues, fluctuating costs, unpredictable weather, and the complexities of managing fertilizers, pesticides, and market dynamics. These challenges often hinder farmers from making timely decisions that could maximize their revenue and minimize costs.

The Makara app stands out as a groundbreaking tool in agricultural management, providing a digital platform meticulously designed to meet the diverse needs of farming. It enables farmers to create individual accounts and input detailed information about their land, including soil type, soil health parameters, water sources (such as borewells, rivers, or pipelines), and preferred irrigation methods. The app's versatility allows farmers to manage multiple lands and configure various crops for each, supporting both mixed cropping and multi-cropping systems. Additionally, farmers can adjust crop configurations annually and seasonally, offering unparalleled flexibility in digital farming management.

Makara's interface is exceptionally adaptable and capable of digitizing and tracking any farming setup. Beyond just planning, the app excels in financial management, assisting farmers in budgeting and recording expenses. This includes costs for seeds, fertilizers, and various labor activities like irrigation, weeding, land preparation, applying fertilizers and pesticides, harvesting, transportation, and storage. These financial features are detailed at the crop level for each season and year, providing farmers with a comprehensive view of their agricultural expenses and aiding in more informed financial decision-making.

A standout feature of Makara is its day-to-day advisory service, which provides guidance based on best practices, and insights into planting seasons, crop varieties, and growth stages. The app's recommendations on fertilizers and pesticides aim to promote sustainable farming and maximize yields. Additionally, Makara assists in activity planning and journaling, enabling farmers to maintain systematic records of their farming activities. The app emphasizes budgeting, cost and revenue management, and farm resource optimization, positioning itself as an all-encompassing agricultural tool.

The app's risk prediction module offers farmers valuable insights into expected crop yields for upcoming seasons, allowing them to estimate the likelihood of achieving specific yield targets and the corresponding potential income and profits. This feature is complemented by a historical market price database, enabling farmers to make informed decisions based on predicted yields and market trends.

Makara is crafted for user-friendliness and accessibility, featuring a multilingual interface that not only displays content but also provides audio readouts to farmers in their native languages. Mindful of the connectivity issues often encountered in rural settings, the app is equipped with an offline mode. This ensures uninterrupted operation and access to previously stored data, even in the absence of network connectivity, making it a reliable tool for farmers regardless of their location.

This paper introduces the Makara app, detailing its main functionalities, deployment strategies, and the considerations behind its design choices. We also present an analysis of the app's deployment and usage, highlighting its impact on alleviating the cognitive burden faced by farmers in making crucial decisions that significantly affect their costs and revenues.

How to cite: Guntha, R., Aravindakshan, A., Adla, S., Presannakumar, M., Alberto Ponce Pacheco, M., and Pande, S.: Makara: Navigating Agricultural Challenges through Digital Innovation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14243, https://doi.org/10.5194/egusphere-egu24-14243, 2024.

EGU24-15266 | Orals | BG8.9 | Highlight

Towards Live, Nation Wide, Farm-Level  Crop Monitoring  

Ishan Deshpande, Amandeep Kaur Reehal, Gaurav Singh, Chandan Nath, Renu Singh, and Alok Talekar

Accurate and timely information about expected crop production is crucial for various applications including agricultural monitoring, policy making, and food security assessment. Policy makers can use near-real time crop maps to better determine crop support prices, storage infrastructure, and imports. In the context of India, absence of farm-level crop maps r the government to work with aggregate statistics based on manual surveys, and therefore are fundamentally limited in scale and accuracy. Surveys over large regions such as entire states or countries are slow and provide information only after large delays. Indian farms also go through up to three crop rotations a year necessitating continual monitoring. We put forward a nation-wide, farm-level, weekly agricultural monitoring and event detection model for the study area of India. Our model leverages remote sensing and machine learning to build a crop map that allows us to accurately monitor individual farms across large areas. 

We utilize the rich spectral and temporal information provided by Sentinel-2 satellite to provide near-real time crop monitoring, including sowing, crop type, and harvesting information. The predictions are done on an individual farm level with farm boundaries coming from a field segmentation model. Making predictions on a farm level scale helps getting more accurate yield estimates and allows monitoring individual fields for credit, insurance, resource allocation, etc. Currently, the model is able to identify major winter crops with an accuracy of up to 80% as early as 2 months after sowing. Equipped with the ability to provide weekly sowing and harvesting information makes the model near-real time for agricultural purposes. We also demonstrate the scalability of the model by showing results pan-India, across several diverse agro climatic zones. The model successfully generalizes to many unseen regions without requiring regional data. Using satellite data to provide accurate and timely crop cover information has the potential of saving millions of dollars spent by the government on manual surveys.

How to cite: Deshpande, I., Reehal, A. K., Singh, G., Nath, C., Singh, R., and Talekar, A.: Towards Live, Nation Wide, Farm-Level  Crop Monitoring , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15266, https://doi.org/10.5194/egusphere-egu24-15266, 2024.

EGU24-15697 | Posters on site | BG8.9

Monitoring Changes In Agricultural Field Boundaries Using Spatiotemporal Remote Sensing Data 

Nikita Saxena, Abigail Annkah, Ishan Deshpande, Alex Wilson, and Alok Talekar

In the domain of precision agriculture, land-use planning, and resource management, the precise delineation of field boundaries is pivotal for informed decision-making. The dynamic nature of agricultural landscapes, particularly in smallholder farming, introduces seasonal changes that pose challenges to accurately identify and update field boundaries. The conventional approach of relying on high-resolution imagery for this purpose proves to be economically impractical on a seasonal basis. We propose a framework that utilizes a spatiotemporal series of medium-resolution public imagery (e.g., Sentinel-2) in conjunction with an outdated high-resolution image as a reference for super-resolution reconstruction. The developed methodology incorporates super-resolution techniques to enhance the spatial resolution while simultaneously performing semantic segmentation at the higher resolution. We evaluate the proposed model's performance in predicting seasonal field boundaries at a pan-India level. The validity of these findings is established through assessment by a team of human annotators.

Our approach aims to offer a scalable spatiotemporal solution for accurate field boundary identification at a national level by combining information from different satellites at different resolutions.

How to cite: Saxena, N., Annkah, A., Deshpande, I., Wilson, A., and Talekar, A.: Monitoring Changes In Agricultural Field Boundaries Using Spatiotemporal Remote Sensing Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15697, https://doi.org/10.5194/egusphere-egu24-15697, 2024.

EGU24-15816 | Posters on site | BG8.9 | Highlight

Applying the Pesticide Load Index to characterize ecotoxicological impact from pesticide use in the EU 

Rui Catarino, Francesco Galimberti, Stephanie Bopp, Thomas Fellmann, Ana Klinnert, Michael Olvedy, Maria Luisa Paracchini, Alberto Pistocchi, Xavier Rotllan-Puig, Jean-Michel Terres, Marijn Van Der Velde, and Raphael d'Andrimont

Improving the sustainability of agriculture requires an advanced assessment of the ecological impacts of pesticides at both policy and scientific levels. This can be achieved by integrating ecological considerations into the assessments of plant protection products beyond plot or experimental sites. Among plant protection products, pesticides are often the most harmful and toxic due to the chemical properties of their active substances (AS), which can range from non- to extremely toxic depending on the organism affected. Our study applies the Pesticide Load Index (PLI), as applied in Denmark and in the United Kingdom , to quantify pesticide risks to environmental health and biodiversity across the European Union. The PLI is defined as the sum of the application rate (AR) for each applied AS (k) divided by the toxicity (TOX) for a number of non-target taxa such as birds, mammals, fish, algae and agricultural beneficial insects like bees and natural enemies of pests, using the formula: PLI = Σ (ARk / TOXk,i).

Our methodology bridges the gap between ecological health and pesticide risk assessment using three extensive data sets (Figure 1). The first includes EU-wide estimations of AS emissions, as geospatial layers at 1km resolution, representing the most extensive data collection available for the entire European Union. The second dataset provides unparalleled granularity in AS use, capturing field-level information across France for the year 2018, including details on crop type distribution. The third dataset, sourced from the Pesticide Properties DataBase, assesses the ecological impacts of pesticide use by linking usage to ecotoxicological endpoints.

Figure 1: Overview of the methodology for the Pesticide Load Index (PLI) Study. 

By integrating acute toxicity, chronic toxicity, and environmental fate, our approach moves towards a thorough understanding of pesticide impacts. Acute toxicity, indicative of short-term exposure, highlights immediate and potentially severe effects, while chronic toxicity addresses the long-term consequences of prolonged and continuous exposure. The environmental fate sheds light on the pesticides' behaviour and transformation in the environment, considering their distribution, degradation, accumulation, and transport across air, water, and soil.

The outcomes of this study provide a new perspective on pesticide use within the EU. The highly granular nature of the PLI maps makes them key tools for identifying areas with high ecotoxic levels, and therefore informing where additional risk mitigation measures are necessary. Detailed analyses are done by i) identifying predicted hotspots of pesticide use across the EU, ii) analysing variations in bio-climatic regions, and iii) breaking down the results by crop type and region. The role of this approach in monitoring the progress towards the European Union Farm to Fork and Biodiversity strategies targets is therefore clear, particularly in relation to the ambitious target of reducing pesticide use and toxicity by 50% by 2030. 

Our framework provides essential ecological insights for biodiversity conservation and ecosystem preservation, providing policy-makers with spatially explicit data for better-tailored strategies. Additionally, by enabling comparisons between crops, regions, and EU Member States it can contribute as to developing protective, realistic, and scientifically sound regulatory frameworks.  

How to cite: Catarino, R., Galimberti, F., Bopp, S., Fellmann, T., Klinnert, A., Olvedy, M., Paracchini, M. L., Pistocchi, A., Rotllan-Puig, X., Terres, J.-M., Van Der Velde, M., and d'Andrimont, R.: Applying the Pesticide Load Index to characterize ecotoxicological impact from pesticide use in the EU, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15816, https://doi.org/10.5194/egusphere-egu24-15816, 2024.

EGU24-16407 | Posters virtual | BG8.9

EMBAL - European Monitoring of Biodiversity in Agricultural Landscapes 

Luca Kleinewillinghöfer, Clemens Baier, Carsten Haub, Dirk Lindemann, Rainer Oppermann, Lars Roggon, Laura Sutcliffe, and Oliver Buck

The 'European Monitoring of Biodiversity in Agricultural Landscapes' (EMBAL) is a monitoring initiative initiated by the European Commission that gathers information on the state of biodiversity in agricultural landscapes across EU member states. Developed within the EU Pollinator Monitoring Framework, EMBAL is a standardized and sample-based in-situ survey of 500x500m landscape sections (plots).

EMBAL provides comprehensive data, including general information on land use and land cover at parcel level, information about landscape elements, and specific vegetation data on a transect level in grassland and arable habitats. Both the methodology and the sampling frame are harmonized with LUCAS (Land Use and Coverage Area frame Survey).

Following a successful pilot in 2020, EMBAL was applied in all 27 EU member states in 2022 and 2023, surveying a total of 3,000 selected plots in both years. This extensive rollout served to gather harmonised baseline data on biodiversity across EU27 and provided a comprehensive field test of the EMBAL methodology across different European landscapes.

In this contribution, we offer an overview of the EMBAL 2022 and 2023 rollout, the EMBAL survey methods and parameters and provide an outlook on the results.

How to cite: Kleinewillinghöfer, L., Baier, C., Haub, C., Lindemann, D., Oppermann, R., Roggon, L., Sutcliffe, L., and Buck, O.: EMBAL - European Monitoring of Biodiversity in Agricultural Landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16407, https://doi.org/10.5194/egusphere-egu24-16407, 2024.

EGU24-16609 | Orals | BG8.9

Evaluation of pesticide use restrictions near urban areas in the European Union 

Francesco Galimberti, Rui Catarino, Thomas Fellmann, Pietro Florio, Pieter Kempeneers, Ana Klinnert, Michael Olvedy, Alberto Pistocchi, and Raphael D'Andrimont

The European Commission’s strategies under the European Green Deal aim at reducing the risks to human health and the environment from pesticide use. One of the proposed policies to achieve that goal is a restriction in use of pesticides within and near urban areas. 
In this study, we aim to estimate the impact of a full pesticide use restriction on crops near urban areas at the EU scale, by combining available EU data on urban settlements and crops. We will achieve this by utilizing spatial layers from the Joint Research Centre (JRC), including the Global Human Settlement Layer (GHSL) and the EUCROPMAP 2018 integrated with information from the Corine Land Cover (CLC) 2018.
Using various buffer distances from urban areas, the study seeks to quantify the agricultural area and crop types that will be impacted by the full restriction in use. The results will also provide insights into the percentage of treated vs. non-treated crops present in these buffer zones, highlighting country and regional differences. The economic importance of crops, together with reduced crop yields can be explored as well. Additionally, reduction in health risk to residents can be estimated from information on crop-specific intensities in pesticide use.

How to cite: Galimberti, F., Catarino, R., Fellmann, T., Florio, P., Kempeneers, P., Klinnert, A., Olvedy, M., Pistocchi, A., and D'Andrimont, R.: Evaluation of pesticide use restrictions near urban areas in the European Union, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16609, https://doi.org/10.5194/egusphere-egu24-16609, 2024.

EGU24-16882 | Posters on site | BG8.9 | Highlight

Quantitative Measurement of Landscape Features in EU Agriculture: A Novel Indicator Approach  

Raphaël d'Andrimont, Jon Skøien, Talie Musavi, Momtchil Iordanov, Javier Gallego, Davide De Marchi, Renate Koeble, Irene Guerrero, Ana Montero-Castaño, Jean-Michel Terres, and Bálint Czúcz

The conservation and creation of landscape features is recognised as a key conservation tool to halt the loss of agricultural biodiversity in European farmland.

This study introduces a new indicator to quantify landscape features in EU agricultural land, based on the LUCAS Landscape Feature survey. We developed a comprehensive methodology to measure and categorise landscape features, distinguishing Woody, Grassy, Wet, and Stony LF types. Our approach gives a robust and reproducible estimate of the indicator at the EU Member State and possibly regional levels, based on a reliable and statistically representative sample of landscape features.

The methodology combines office-based photo-interpretation with field surveys collecting 3.8 millions field points, ensuring accuracy in determining the presence and type of landscape features within agricultural contexts. Together with information on biodiversity and ecosystem services, it will play a crucial role in evaluating the performance of major policies related to biodiversity conservation in agricultural lands, aligning with the Common Agricultural Policy and the EU Biodiversity Strategy for 2030. Besides, it will play a role in the assessment of natural based solutions for mitigating climate change effects, biodiversity loss and crop production (food) security.

Our findings reveal that, in 2022, landscape features covered 5.6% of EU agricultural land. Woody features were the most prevalent, followed by Grassy, Wet, and Stony features. The percentages of landscape features varied across EU Member States, with Malta and Cyprus exhibiting higher values.

The novel indicator developed is based on a comprehensive and reproducible method for quantifying these features, providing essential insights for policy and decision-making in sustainable agriculture.

How to cite: d'Andrimont, R., Skøien, J., Musavi, T., Iordanov, M., Gallego, J., De Marchi, D., Koeble, R., Guerrero, I., Montero-Castaño, A., Terres, J.-M., and Czúcz, B.: Quantitative Measurement of Landscape Features in EU Agriculture: A Novel Indicator Approach , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16882, https://doi.org/10.5194/egusphere-egu24-16882, 2024.

EGU24-17135 | ECS | Posters on site | BG8.9

Comparing crop calendars: phenology derived from Sentinel-2 data vs official data: The case of cereals in Andalusia. 

Miguel Angel García Pérez, Jose A. Caparros-Santiago, and Victor Rodriguez-Galiano

Obtaining specific field calendars for each crop is very useful information for farmers and public administration to understand and manage harvests. This information can be collected manually from each farm, but this approach is highly time and money consuming. It is possible to acquire it more efficiently using phenology estimates obtained through remote sensing. Common Agrarian Policy (CAP) and Geographical Information System of the Common Agrarian Policy (GISCAP) data were used to know the location of principal cereal plots in Andalusia, Spain. It included common wheat, durum wheat, triticale, oat, rye, barley, sorghum, maize and rice.  Several phenometrics from Sentinel-2 were obtained: start of the season (SOS), middle of the season (MOS), length of the season (LOS) and end of the season (EOS). This dataset was correlated and compared with sowing and harvesting data collected by the Spanish government.  The results showed a high correlation between SOS and sowing and between EOS and harvest for most of the studied crops.

Sowing for common wheat, durum wheat, triticale, oat, rye, and barley took place between October and December according to government calendars, while SOS generally started one month later, between November and January. However, in these crops, harvest and EOS occurred simultaneously, mostly in June. In the case of sorghum, maize and rice, which are summer cereals, their phenometrics differed from the others. Sowing and SOS for sorghum mostly occurred in April and March, and harvest and EOS in September and October, in typically at the same time. Maize sowing took place in March, SOS in April, and harvest and EOS in September. Finally, rice sowing occurred in May, SOS in June, harvest in October and EOS in November. This study shows that obtaining accurate crop calendars from Sentinel-2 phenological trajectories is feasible, providing valuable information for farmers and public administrations.

How to cite: García Pérez, M. A., Caparros-Santiago, J. A., and Rodriguez-Galiano, V.: Comparing crop calendars: phenology derived from Sentinel-2 data vs official data: The case of cereals in Andalusia., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17135, https://doi.org/10.5194/egusphere-egu24-17135, 2024.

EGU24-17997 | Posters on site | BG8.9

Optimized resolution of gridded data from European agricultural census 

Jon Olav Skøien, Nicolas Lampach, Helena Ramos, Rudolf Seljak, Renate Koeble, and Marijn van der Velde

The European agricultural census  in 2020 collected a large number of variables from the major share of all the farms within the European Union. There are many potential applications of such a data set, from direct estimates of agricultural indicators to use as input in more complex analytical models. However, the individual responses in the data set cannot be shared directly, as they are regarded as confidential information. Instead, the data must be aggregated to a level where individual responses cannot be identified, typically NUTS regions or grid cells. As a minimum, each aggregated value must be estimated from at least 10 farms (frequency rule). Additionally, a dominance rule requires an aggregated value to be treated as confidential if the 2 largest farms are responsible for more than 85% of the value within a grid cell.

Whereas such requirements are clear, there are many methods for creating grids that respect them. The distribution of data is usually not homogeneous, and different methods have varying effects on the result.  We will outline the advantages and drawbacks of certain methods and present the most promising one that involves grid cells of varying sizes. Whereas there are some examples of this method in the past, it will be the first time it is applied on a continental scale and high-resolution data set such as the European agricultural census data.

How to cite: Skøien, J. O., Lampach, N., Ramos, H., Seljak, R., Koeble, R., and van der Velde, M.: Optimized resolution of gridded data from European agricultural census, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17997, https://doi.org/10.5194/egusphere-egu24-17997, 2024.

EGU24-18505 | Posters on site | BG8.9

European maps of crop / livestock categories and N budget parameters (timeseries 2000 – 2018) based on disaggregated CAPRI model data 

Renate Koeble, Adrian Leip, Markus Kempen, Maria Bielza, Rui Catarino, Maria Luisa Paracchini, Linda See, and Marijn Van Der Velde

The agricultural sector holds the greatest reduction potential to limit adverse effects of reactive nitrogen in the environment. Assessing the negative impacts of excessive release of reactive nitrogen into the biosphere requires spatially explicit information to capture e.g. hot spots of nitrogen surplus, nitrogen use efficiency, the impact on sensitive ecosystems or on ground/drinking water quality.

The agricultural economic model CAPRI is one of the main tools applied by the European Commission for the ex-ante analysis of the impact of agricultural policies and agro-environmental legislation at regional level (NUTS2) in Europe. CAPRI builds on long-term time series of regional, national and international agricultural statistics (e.g. crop and livestock production, fertilizer use), market and trade data. Inputs (e.g. inorganic fertilizer) in CAPRI are explicitly linked to production which delivers the basis for connecting environmental indicators (e.g. nitrogen surplus) directly to individual activities.

To provide the link between the agro-economic model CAPRI and the impact assessment of nitrogen use in agriculture on the environment at higher spatial resolution, we developed a procedure to disaggregate CAPRI regional data and provide maps of nitrogen input/output, crop and livestock production for the time series 2000 – 2018 at the level of Farm Structure Units (FSU) for 26 EU member states and the UK. The FSU are built by the spatial intersection of a 10 x 10 km2 INSPIRE compliant grid, the CAPRI NUTS2 region borders and the soil mapping units of the Harmonized World Soil Data Base (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), having a median area of 12 km2 (minimum 1 km2, maximum 100 km2).

The disaggregation procedure for 36 crop types and 18 livestock categories from the regional level to the FSU is driven by information from the gridded Farm Structure Survey (FSS, 2010) crop and livestock data at 10 x 10 km2 resolution, CORINE (2018) non-agricultural land cover shares, altitude and slope constraints for individual crops / crop classes derived from LUCAS survey data (https://ec.europa.eu/eurostat/web/lucas).

Nitrogen inputs from mineral fertilizer and manure are disaggregated from the regional level to the FSU following the crops’ requirements. N input from atmospheric deposition and N supply by biological fixation is taken into account at FSU level. N from mineralization of soil organic matter could not be taken into account due to lack of data. N losses from volatilization and surface run-off, N removal by harvest, N in crop residues complete the N flow data set in agricultural areas at FSU level.

How to cite: Koeble, R., Leip, A., Kempen, M., Bielza, M., Catarino, R., Paracchini, M. L., See, L., and Van Der Velde, M.: European maps of crop / livestock categories and N budget parameters (timeseries 2000 – 2018) based on disaggregated CAPRI model data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18505, https://doi.org/10.5194/egusphere-egu24-18505, 2024.

EGU24-19472 | Posters on site | BG8.9

Meta-analytic evidence on effective farming practices for climate change mitigation 

Simona Bosco, Andrea Schievano, Marta Pérez-Soba, Ana Montero-Castaño, Mathilde Chen, Giovanni Tamburini, Rui Catarino, Irene Guerrero, Maria Bielza, Vincenzo Angileri, Michael Assouline, Renate Koeble, Otho Mantegazza, Frank Dentener, Marijn Van der Velde, Maria Luisa Parracchini, Franz Weiss, Jean-Michel Terres, and David Makowski

In the context of climate change, high expectations have been put on the agricultural sector for reducing greenhouse gas (GHG) emissions and enhance carbon sequestration. Consequently, a large and growing number of studies have evaluated the efficacy of various agricultural practices for climate change mitigation. However, the scientific evidence is often heterogeneous and frequently contradictory, making it difficult to use to support policy decisions. Meta-analyses synthesise large data sets and have become the gold standard for providing scientific evidence to inform environmental and agricultural policies. However, a growing number of meta-analyses are now available on a specific topic, occasionally with conflicting conclusions, requiring a further level of synthesis to consolidate the findings.

We present the results of a systematic review of 693 published meta-analyses on the effect of farming practices on climate change mitigation. After a systematic search and review of the literature, we extracted data assessing the climate impacts of 34 farming practices and 123 comparisons of sub-practices with corresponding control practices, for a wide range of cropping and livestock systems around the world. From this dataset, we selected the farming practices that showed overall significantly positive effects on the reduction of GHG emission and/or on the increase of carbon sequestration. For cropland and grassland, we were able to identify a set of 35 mitigation sub-practices , including cover and catch crops, intercropping, leguminous crops, the use of enhanced efficiency fertilisers, soil amendment with lime and gypsum, different crop residue management techniques, water management practices, different conservation, restoration and management measures in grasslands, conservation and restoration of peatlands and wetlands, the conservation and creation of landscape features, as well as organic farming systems. For livestock, we identified seven effective mitigation practices, including livestock feeding techniques, manure land application techniques, manure storage techniques. A limited number meta-analyses reported the effect of a given practice on more than one GHG or on GHGs coupled with carbon sequestration together, limiting the exploration of interacting effects.

The systematic evidence map provides robust and encompassing literature based evidence on farming practices with established positive effect on climate change mitigation to support a wide community of inventory compilers, modellers and policymakers. Our review also identifies farming practices with remaining knowledge gaps and research priorities.

How to cite: Bosco, S., Schievano, A., Pérez-Soba, M., Montero-Castaño, A., Chen, M., Tamburini, G., Catarino, R., Guerrero, I., Bielza, M., Angileri, V., Assouline, M., Koeble, R., Mantegazza, O., Dentener, F., Van der Velde, M., Parracchini, M. L., Weiss, F., Terres, J.-M., and Makowski, D.: Meta-analytic evidence on effective farming practices for climate change mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19472, https://doi.org/10.5194/egusphere-egu24-19472, 2024.

EGU24-21429 | Orals | BG8.9 | Highlight

Assessing impacts of farming systems on biodiversity using predictive indicators: a gradient of complexity 

Christian Bockstaller, Emma Soulé, Bastien Dallaporta, and Clélia Sirami

Agriculture plays a major role in the erosion of biodiversity, which represents one of the exceeded planetary boundaries. In the quest for solution to mitigate impacts of farming systems on biodiversity, it is essential to have tools to assess these impacts. Besides a plethora of indicators using field measurement of abundance or/and species richness of one or several taxa, predictive indicators offer a compromise between feasibility and integration of processes. Such indicators do not require in situ measurements and enable linking the response of biodiversity to drivers like agricultural practices.

Here we review three examples of predictive indicators representing a gradient of complexity regarding the number of input variables on field practices and landscape structure, the number of output variables on biodiversity components, and the model structure. The three indicators are NIVA-Biodiversity, BioSyScan and I-BIO.

NIVA-Biodiversity assesses biodiversity at the landscape and regional level, assessing biodiversity through a global score, without any precision on taxonomic or functional components, based on the percentage of semi-natural habitats (SNH), field size and crop diversity. BioSyScan is calculated at field level and assesses the impacts of field management (e.g. tillage, fertilization, pesticides spraying) and landscape variables (e.g field size and SNH) on soil-dependent species and mobile species. Last, I-BIO considers direct impacts of cropping systems on five taxonomic groups (microorganisms, plants, soil invertebrates, flying invertebrates and vertebrates) and indirect impacts through trophic chains.  It includes more precise variables on field and landscape management than the two other indicators. The three indicators are based on mixed models using linguistic rules “if-then”. While I-BIO is based on the DEXi tool and remains totally qualitative, NIVA-Biodiversity and BioSyScan were designed using the CONTRA aggregation method integrating fuzzy subsets in the decision rules, to mitigate threshold effects and increase transparency. We will highlight the potential use of each indicator using case studies, discuss the pros and cons of each indicator, and present the research needs to ensure their scientific validity.

How to cite: Bockstaller, C., Soulé, E., Dallaporta, B., and Sirami, C.: Assessing impacts of farming systems on biodiversity using predictive indicators: a gradient of complexity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21429, https://doi.org/10.5194/egusphere-egu24-21429, 2024.

EGU24-21456 | Orals | BG8.9 | Highlight

An indicator to monitor farmland biodiversity in OECD countries 

Wendy Fjellstad and Ulrike Bayr

The OECD uses a wide range of agri-environmental indicators to monitor effects of the agricultural sector on the environment. However, the only indicator of farmland biodiversity is the farmland bird index, and this is not reported by all member states. Therefore, work is ongoing to design a more general indicator of farmland biodiversity that can be reported by all member states.

There are many challenges in creating an indicator that can be applied across all OECD countries. These countries have very diverse farming systems, land ownership, climate, biophysical conditions, and species pools. In addition, there are big differences in the type and amount of data available with which to calculate an indicator. Some countries already have monitoring programmes, tailored to their specific national needs and priorities. It may be challenging to harmonize reporting across countries, when data are collected in different ways and from different sources.

As a first step, the OECD published in 2023 guidelines for the development of an OECD farmland habitat biodiversity indicator (https://doi.org/10.1787/09d45d55-en). The aim is to calculate an indicator based on all agricultural habitats within a country, both those of high nature value, but also the ordinary and those that are currently of very low value.

In 2024, several countries are testing calculation of the indicator using national data. This presentation will describe the proposed indicator and share experiences from work to calculate the indicator for Norway.

How to cite: Fjellstad, W. and Bayr, U.: An indicator to monitor farmland biodiversity in OECD countries, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21456, https://doi.org/10.5194/egusphere-egu24-21456, 2024.

Based on the background of climate change and rapid population & land urbanization, we developed the theoretical hypothesis and questions. As we know, urban usually have good education, hospital and housing, so many rural people flow to urban and indirectly take away industry and property. So rural communities face many challenges, such as less people, land, industry and property at least. For climate change, challenges from flooding, drought, heat wave, lower temperature, and frost timing. And opportunities maybe from Increasing and northward accumulated annual temperature (AAT10), and lengthen the growing season. For urbanization, challenges from abandonment, and less cropping frequency. And opportunities maybe from well-facilitated farmland, land unified management, and intelligent agriculture. Rural revitalization and urban-rural integration are two good measures for rural development policy not only in China but in many global counties. Yet, how to catch the rural people and agro-workers' eye, and improve the food supply ability are important questions. We will show some recent study results about geo-spatial change of croplands and its impacts on farming developments in China over the past two decades in this congress.

How to cite: Liu, Z.: Potential impacts of cropland dynamics on farming developments in China by analyzing a fused crop production data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22310, https://doi.org/10.5194/egusphere-egu24-22310, 2024.

EGU24-22312 | Posters on site | BG8.9

Identify the spatial-temporal pattern of the increased Cultivated land and its vulnerability in Northeast China from 2000 to 2020  

Jieyong Wang, Zhengjia Liu, Zehong Li, and Xiaoyong Liao

Ensuring compliance with China's “1.8 billion mu”(120 million hectares) cultivated land preservation policy is a fundamental goal of land policy. Northeast China has experienced significant cultivated land expan-sion due to rigorous compensation policies over the past two decades, re-sulting in sustainable increases in grain output. This research employs re-mote sensing data to examine the spatial-temporal pattern and vulnerability of newly increased cultivated land expansion in Northeast China and its potential impact on food security. Results indicate a 3.08% increase in newly increased cultivated land from 2000 to 2020, with the majority located in the Sanjiang Plain's humid area and Inner Mongolia's arid and semiarid regions. with 58.54% of it being at grade 6-10, and the reduced cultivated land all at grade 1. Additionally, 62.84% of the newly increased cultivated land was in ecologically fragile areas, while the rest were in mildly and severely vulnerable areas. Temperature insta-bility was negatively correlated with cultivated land expansion, while grain production was negatively correlated with cultivated land vulnerability. The increase in grain production at the expense of cultivated land ecology is a potential threat to national food security. The vulnerability of cultivated land is negatively and significantly related to grain yield, suggesting an adverse impact on national food security. The poor quality of newly increased cultivated land in Northeast China, characterized by ecological fragility, may lead to short-term gains in grain yield but not guarantee long-term stability. This study found a significant negative correlation between grain yield and cultivated land ecological vulnerability in Northeast China. Thus, protection measures should focus on increasing high-quality and ecologically sound cultivated land to ensure long-term grain production stability. Priority should be given to high-quality and ecologically sound cultivated land for inclusion in high-standard cultivated land construction zones to enhance protection efforts.

How to cite: Wang, J., Liu, Z., Li, Z., and Liao, X.: Identify the spatial-temporal pattern of the increased Cultivated land and its vulnerability in Northeast China from 2000 to 2020 , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22312, https://doi.org/10.5194/egusphere-egu24-22312, 2024.

EGU24-1210 | ECS | PICO | BG8.10

Climate change effects of adaptation on annual and perennial crop yields in Uganda 

Catherine Mulinde, Revocatus Twinomuhangi, Edward Kato, and J. G. Mwanjalolo Majaliwa

Climate change impacts are expected to negatively affect crop productivity in several agricultural systems and agro-ecological zones of Africa, where the majority of the rural people derive their livelihood from rain-fed agriculture. In Uganda, mountainous and lake ecosystems are dominant growing areas for major annual and perennial crops, but are more susceptible to future changes in climate. This is likely to deteriorate agricultural livelihoods of these ecosystems through declining productivity of various crops. This study assessed the near-term future climate change effects of selected adaptation practices on yields of annual and perennial crops in coffee growing agro-ecological zones of Uganda. Based on a Cobb-Douglas logarithmic production function, the study examined whether future climate would increase crop productivity through the influence of adaptation practices at current and increased adoption levels in the near-term under RCP8.5 and RCP4.5 for five climate regimes. The study results showed that rainfall changes, particularly wetter conditions (cool-wet and hot-wet climate regimes) are expected to be the most damaging to coffee, banana, maize and beans yields than temperature changes with drier conditions (including ensemble mean, cool-dry and hot-dry) under various altitude gradients. Hence, current adaptation practices have significant potential to reduce crop yield losses especially if future climate becomes drier than wetter in the near-term. The study therefore, recommends that there is a need for further research to identify complementary adaptation practices e.g. through bioengineering, soil loss control and water draining efficiency technologies; that would boost positive crop productivity effects of current adaptation practices, as they are not sufficient on their own in the near-term future even with enhanced adoption rates. Also, plant breeding programs should focus on generating crop varieties that are drought tolerant but can also perform well in volatile hydrological conditions; and those that are more suitable for the various altitudinal changes in climate.

How to cite: Mulinde, C., Twinomuhangi, R., Kato, E., and Majaliwa, J. G. M.: Climate change effects of adaptation on annual and perennial crop yields in Uganda, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1210, https://doi.org/10.5194/egusphere-egu24-1210, 2024.

EGU24-1367 | ECS | PICO | BG8.10

Perspectives for expanding sorghum production in Europe in the face of climate change  

Mohsen Davoudkhani, Nicolas Guilpart, David Makowski, Nicolas Viovy, Philippe Ciais, and Ronny Lauerwald

Sorghum holds the fifth position worldwide in terms of both grain production and cultivation area. However, sorghum is still a minor crop in Europe where, on average, only 0.12% of the cropland area was used for sorghum production between 2017 and 2021. Nonetheless, its production is expanding in this region, with a 57% increase in total sorghum production during the last decade compared to the first decade of the 21st century. Indeed, sorghum is considered a crop of interest for climate change adaptation in Europe due to its high heat tolerance compared to other crops, especially maize. In this study, we aimed to investigate the feasibility of expanding sorghum cultivation in Europe under current and future (middle and end of the 21st century) climatic conditions. We also explored the possibility of replacing maize with locally-produced sorghum for feeding livestock in Europe.

To this end, we developed a machine-learning model that predicts sorghum yields from high-resolution climate data using a random forest algorithm. The model was trained on historical sorghum yield data collected in France, Italy, Spain, and the USA, covering the period from 2000 to 2020. The historical sorghum yield dataset comprises 11,644 data points at subnational ‎administrative levels‎. The set of predictors included monthly climate variables such as solar radiation, minimum and maximum temperature, rainfall, and relative humidity calculated over the growing season (April-November) from the ERA5-Land dataset. The model's performance was evaluated based on cross-validation (R2=0.83, RMSE=0.94 t ha-1) for the 2000 to 2020 period.

In total, we ran the model for 30 future scenarios using bias-corrected climate data produced by five Global Climate Models of the Coupled Model Intercomparison Project phase 6 (CMIP6), following three Representative Concentration Pathways scenarios (SSP1-RCP2.6, SSP3-RCP7.0, and SSP5-RCP8.5), and focusing on two periods (2041-2060 and 2081-2100). In almost all scenarios, sorghum yields decreased up to - 1.5 t ha-1 in the southern part of Europe (e.g., center of Spain, south of France, and Italy) but increased substantially up to + 3 t ha-1 in the northern part (e.g., north of Germany, Poland, and Lithuania) compared to historical yields. In all scenarios, at least 39% of European croplands were projected to support sorghum yields higher than 4.6 t ha-1 (the average sorghum actual yield in Europe in the last decade). Our results showed that sorghum production could increase significantly in Europe under future climates. Regardless of the scenario, if sorghum was grown in one out of three years (respectively, one out of six years), at least 90% (respectively, 45%) of maize used as livestock feed could be replaced by sorghum in Europe. These results could provide valuable information for improving feed security in Europe in the face of climate change.

How to cite: Davoudkhani, M., Guilpart, N., Makowski, D., Viovy, N., Ciais, P., and Lauerwald, R.: Perspectives for expanding sorghum production in Europe in the face of climate change , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1367, https://doi.org/10.5194/egusphere-egu24-1367, 2024.

This scientific inquiry delves into the far-reaching implications of global warming and the continuous emission of anthropogenic greenhouse gases into the Earth's atmosphere. With a primary focus on the semi-arid regions of Morocco, the study broadens its perspective to conduct a comparative analysis of similar challenges faced by Spain, Egypt, Italy, Jordan, Turkey, and Iran. The paper aims to illuminate the intricate interplay between climate change and agriculture, underscoring the imperative for sustainable practices to alleviate the detrimental impacts on food security and economic stability. The methodology employed centers around the utilization of the DSSAT (Decision Support System for Agrotechnology Transfer) model, a reliable tool for simulating yield across different seasons. In this study, the performance of wheat varieties in the Mediterranean and MENA (Middle East and North Africa) regions was evaluated. Optimal yields were observed under treatments involving sprinkler or furrow irrigation and nitrogen application ranging from 60 to 120 kg/ha, resulting in an average yield trend of around 6 t/ha. The identified optimal seeding date was the 1st of November, with conservation or adaptation practices demonstrating superior outcomes. This finding was further validated by MIROC5 climate change projections, estimating yields of up to 6.4 t/ha in Spain and a slight increase in Morocco and one of the sites in Jordan, alas a reduction of 20% in Italy and up to 88% in Iran at the end of the century. The study's significance lies in its evaluation of nutrient and water trends in the MENA and Mediterranean regions, offering farmers and policymakers valuable insights to guide a sustainable transition, both economically and ecologically.

How to cite: Tita, D., Devkota, K., Mahdi, K., and Devkota, M.: "Exploring pathways for the sustainable intensification of wheat production under current and future climate change scenarios in the Mediterranean region", EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3093, https://doi.org/10.5194/egusphere-egu24-3093, 2024.

Using numerical crop models that simulate fundamental plant-related processes is the most efficient way to get insights into crop responses to future potential climate-weather-environmental conditions. This is because numerical crop models can be easily manipulated while focusing on single or multiple factors. Based on functions (empirical relationships) and equations (physical representation of the processes) derived from experimental observations, such models are our most advanced attempts to predict crop “behavior” under future conditions. The current standard practice is to run as many crop models as possible and then use an ensemble of these model outputs to predict an “averaged” change in yield production and crop quality metrics in the future. However, even though tens of different crop models are often being used in the ensemble, the differences among the models can be reduced to very few core functionality processes being simulated differently in such models. Functionality-based model evaluation involves evaluating the model's ability to simulate the underlying processes that determine crop yield rather than just comparing the model output to observed data. This approach can help identify the sources of model discrepancies and improve the accuracy of crop yield projections.

Here, we used three crop models with different functionality-based approaches (DSSAT, WOFOST, and Gcros) to assess biophysical parameters, including leaf area index, aboveground biomass, and grain yield, in a maize–soybean cropping system in Nebraska, USA. We calibrated the models using field data from the US-Ne Mead site, acquired through the AmeriFlux net, as well as soil information derived from the POLARIS soil properties dataset (30 m spatial resolution). We run the models with the 4km GRIDMET weather dataset for maize and soybean across Nebraska to examine the conditions (meteorological, climatic, and other static factors) that drive the change in the results of the different crop models. We aimed to select the most suitable model for best representing the impacts of future climate and environmental changes on these crops in the area per local conditions. We present essential discrepancies among the models and attribute such differences to the functionality-based representation of key processes in the models.

How to cite: Michael, Y., Egorov, F., and Helman, D.: Functionality-based evaluation of three crop models with different key process simulation approaches across maize–soybean cropping systems in Nebraska, USA , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4594, https://doi.org/10.5194/egusphere-egu24-4594, 2024.

EGU24-5647 | ECS | PICO | BG8.10

Identifying effective strategies for cereal cultivation under dry climate in Bavaria 

Omer Shlomi, Bernhard Schauberger, Martin Wiesmeier, and Manuel Sümmerer

Farmers cultivating cereals in Germany have experienced unfavorable conditions during the recent decade due to more frequent droughts and heat episodes (Lüttger & Feike, 2018). These events are likely to aggravate in the future (Trnka et al., 2014). Drought and heat-related yield reductions were already being seen in cereal crops all over the country (Webber et al., 2020; Schmitt et al., 2022).

Franconia covers the northern part of Bavaria, the the most important region for wheat and silage maize cultivation. At the same time, Franconia is the driest region in Bavaria with mean annual precipitation <600 mm.  In the past decade, there has been a noticeable variability in crop yields. Particularly 2018 and 2020 had substantial yield shortfall due to lower rainfall amounts. However, not all regions experienced similar yield reductions. Therfore, further evaluation of the causes of yield variability in response to dry years is essential when choosing practices to increase plant resilience.

Previous studies investigating adaptation options of cereals to climate variability suggested practices such as early maturing cultivars, preceding sowing dates and breeding towards resistant varieties.

The objective of this study is to identify the challenges farmers in Franconia have faced in recent years regarding climate conditions. The temporal focus is from 2015 until the harvest of 2023. Based on that, by integrating farmer’s knowledge and experience we aim to identify successful adaptation strategies that reflect in higher and stable production under dry conditions – but also promise good yields in wet years.

Our approach is multi-faceted, including the evaluation of agricultural strategies applied by farmers, climate data analysis, and integration of satellite data and spatial characteristics. In addition, we use a long term experiment results on cereal cultivaiton methods to support the research findings. By conducting in-depth interviews with ~100 farmers in the region, we explore recent and local farming perspectives. With this combination of methods, we aim to dissect successful approaches and understand pivotal causes for sustainable productivity.

Eventually, we will be able to recommend a comprehensive set of scientifically sound and practical approaches for economic, climate resilient cereal farming under increasingly dry conditions in Northern Bavaria. 

Fig. 1. A flow chart of the data sources used in the research.

 

References:

Lüttger, A. B., & Feike, T. (2018). Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theoretical and Applied Climatology, 132(1–2), 15–29. https://doi.org/10.1007/s00704-017-2076-y

Schmitt, J., Offermann, F., Söder, M., Frühauf, C., & Finger, R. (2022). Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy, 112. https://doi.org/10.1016/j.foodpol.2022.102359

Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z., & Semenov, M. A. (2014). Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change, 4(7), 637–643. https://doi.org/10.1038/nclimate2242

Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., & Ewert, F. (2020). No perfect storm for crop yield failure in Germany. Environmental Research Letters, 15(10). https://doi.org/10.1088/1748-9326/aba2a4

How to cite: Shlomi, O., Schauberger, B., Wiesmeier, M., and Sümmerer, M.: Identifying effective strategies for cereal cultivation under dry climate in Bavaria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5647, https://doi.org/10.5194/egusphere-egu24-5647, 2024.

EGU24-6266 | PICO | BG8.10

Compound and cascading droughts and heatwaves decrease yields by more than half in Sinaloa, Mexico 

Samuel Jonson Sutanto, Susana Mora, Iwan Supit, and Mengru Wang

Drought and heatwave events contribute to agricultural loss worldwide. The impact is further exacerbated with the occurrences of compound and cascading droughts and heatwaves. Here we present a study that evaluates the impact of compound and cascading droughts and heatwaves on Maize yield in Sinaloa Mexico, simulated using the WOFOST crop model. Drought and heatwave events were identified using the Standardized Precipitation Index (SPI-3) and threshold method, respectively. Results show that significant yield reductions are found during extreme drought events, emphasizing the vulnerability of maize farming to unfavorable drought conditions. While heatwaves alone did not show a significant impact on maize yields, the compound and cascading droughts and heatwaves amplify the loss of Maize yields up to 44% compared to normal conditions. This study highlights the need for adaptive strategies in agriculture to sustain food security during extreme events, especially in the context of a multi-hazard framework.

How to cite: Sutanto, S. J., Mora, S., Supit, I., and Wang, M.: Compound and cascading droughts and heatwaves decrease yields by more than half in Sinaloa, Mexico, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6266, https://doi.org/10.5194/egusphere-egu24-6266, 2024.

EGU24-6993 | ECS | PICO | BG8.10

CO2 fertilization effects can fully offset the yield loss due to CO2 induced warming for major C3 crops 

Yuxing Sang, Xuhui Wang, Chenzhi Wang, and Christoph Müller

Rising atmospheric CO2 can enhance global crop yield directly through the CO2 fertilization effect (physiological effects, ), but can also reduce it indirectly through CO2-induced warming (radiative effects, ). The overall consequences of the two opposing CO2 effects have constituted large uncertainties in projecting future crop yields. Here, we first employ a site-level CO2 elevation experiment dataset to constrain the simulated  effect in yield projections of an ensemble of global crop models for four major cereal crops (wheat, maize, rice and soybean). Under well-watered and well-fertilized conditions, the constrained estimates show that elevated CO2 will increase yield of major C3 crops (spring/winter wheat, rice and soybean) by 16.7 ± 2.7% 100 ppm-1, 9.4 ± 2.7% 100 ppm-1, 11.2 ± 2.7% 100 ppm-1, and 12.9 ± 2.4% 100 ppm-1, respectively, while no significant yield gain was found for maize (1.6 ± 1.7% 100 ppm-1). Then, by combining CO2induced warming, crop yield response to warming and the interactive term of the physiological effects and radiative effects, we assess the integrated effects of increasing atmospheric CO2 on crop yield at global scale. The results show that the same level of increase in atmospheric CO2 tends to induce larger  than the yield loss by  for both wheat and rice. But for soybean and maize,  largely offsets , resulting in statistically not significant integrated effects of CO2 for soybean (4.2 ± 15.8%) and maize (-3.0 ± 4.6%).

How to cite: Sang, Y., Wang, X., Wang, C., and Müller, C.: CO2 fertilization effects can fully offset the yield loss due to CO2 induced warming for major C3 crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6993, https://doi.org/10.5194/egusphere-egu24-6993, 2024.

EGU24-8088 | ECS | PICO | BG8.10

Reducing nitrogen losses in agriculture: integrated modelling of fertilizer and climate change scenarios in Austria  

Elisabeth Jost, Martin Schönhart, Hermine Mitter, Ottavia Zoboli, and Erwin Schmid

The European Commission has initiated the Green Deal aiming to make the European Union climate-neutral by 2050, with the Farm to Fork strategy being one of its components. Apart from making food systems fair, healthy and eco-friendly, the Farm to Fork strategy targets to reduce nutrient losses and fertilizer use. Previous research has criticized the strategy for its expected negative impacts on European economy, agriculture, and food supply. We add to this research by using an integrated modelling framework to assess the impacts of fertilizer and climate change scenarios on agricultural production and the environment in Austria. The integrated modelling framework consists of the crop rotation model CropRota, the biophysical process model EPIC, and the spatially explicit bottom-up economic land use optimization model BiomAT. Besides other bio-physical and economic datasets, we employ national nitrogen-balance calculations to differentiate between regional and crop specific fertilization intensities as well as mineral and organic fertilizers. We have developed two fertilizer scenarios: a f20 scenario, which considers a uniform 20% reduction of mineral N fertilizer on cropland and grassland, and a fcm scenario, which combines several fertilizer restrictions such as -20% of mineral N fertilizer, a maximum application of 175 kg N ha-1 on cropland and grassland, and no mineral N fertilizer application on permanent grassland. In addition, we consider four climate change scenarios to support systematic analysis of potential effects of fertilizer reductions on land cover/use, fertilization intensities, potentially harmful nitrogen losses in air, water and soil sediments, and agricultural output. Our scenario results show a total reduction of N losses in air, water and soil sediment by 9% (f20) and 20% (fcm), yet imposed restrictions fall short of an intended 50% reduction. N loss reduction potentials are region, land cover/use and management specific. Magnitudes of N input reductions correspond well to potential N loss reductions to air. N losses to water and soil sediment seem to be determined by precipitation, temperature, and topographic factors. We conclude that agricultural measures need to be tailored to regional and topographic factors in order to effectively reduce nitrogen losses.

How to cite: Jost, E., Schönhart, M., Mitter, H., Zoboli, O., and Schmid, E.: Reducing nitrogen losses in agriculture: integrated modelling of fertilizer and climate change scenarios in Austria , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8088, https://doi.org/10.5194/egusphere-egu24-8088, 2024.

EGU24-8495 | PICO | BG8.10

Climate change projections coupled with microclimatic modelling for supporting decision making in viticulture 

André Fonseca, José Cruz, Joana Valente, Fernando Alves, Ana Neto, Rui Flores, and João Santos

Understanding the microclimate dynamics within vineyard living labs is paramount for sustainable and optimised grape production. This study delves into a comprehensive approach, using a microclimate NicheMapR model, local station hourly data, ERA5 land data, and a high-resolution Digital Elevation Model to refine microclimate analyses. The key innovation lies in achieving an unprecedented 10-meter spatial resolution of climate variables, providing a perspective on the intricate interplay of climatic variables within each living lab. The initial phase of the study involves the incorporation of local station data to perform bias correction on ERA5 land data, achieved through quantile mapping techniques. This bias-corrected dataset serves as a robust foundation for subsequent analyses, ensuring that the microclimate model accurately reflects the unique characteristics of the vine living labs under study. Integrating a high-resolution DEM further enhances spatial precision, capturing subtle variations in terrain that can profoundly impact local microclimates, such as shade and horizon angles. Additionally, the 10-meter spatial resolution output from the microclimate model is used to bias correct EURO-CORDEX ensemble models, providing the development of future climatic scenarios. This approach ensures that the future projections are not only regionally specific but also representative of each living lab. An important output of the research is the determination of future climate extreme indices and bioclimatic indices specifically designed for viticulture. By analysing the ensemble models at the 10-meter scale, the study aims to provide invaluable insights into potential shifts in temperature extremes, precipitation patterns, and other climatic variables critical to grape cultivation within a specific living lab. In conclusion, this study presents a holistic and forward-looking approach to microclimate analysis in vine living labs. By integrating advanced geospatial technologies, bias-corrected ERA5 land data, high-resolution DEMs, and the microclimate NicheMapR model, this research expands the knowledge of present microclimates and provides viticulturists with insights into future climate scenarios.

How to cite: Fonseca, A., Cruz, J., Valente, J., Alves, F., Neto, A., Flores, R., and Santos, J.: Climate change projections coupled with microclimatic modelling for supporting decision making in viticulture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8495, https://doi.org/10.5194/egusphere-egu24-8495, 2024.

EGU24-8911 | ECS | PICO | BG8.10

Modeling of farm-specific marginal abatement costs of non-CO2 greenhouse gas mitigation measures in Austria 

Verena Kröner, Katharina Falkner, Hermine Mitter, and Erwin Schmid

Agriculture is a major source of non-CO2 greenhouse gas (GHG) emissions, namely methane (CH4) and nitrous oxide (N2O), and reactive trace gases, such as ammonia (NH3). CH4 emissions originate primarily from enteric fermentation of ruminants and during manure storage. N2O emissions are produced in microbial processes of soils and manure. Emissions of NH3 arise from livestock housing systems, manure storage and application to the soil as well as during grazing. Mitigating GHG emissions has emerged as a key priority for policy makers, researchers and stakeholders, evident in the ambitious emission reduction targets set at both the EU and national levels. However, mitigation measures at the farm level incur different marginal abatement costs (MACs) due to farm and regional specific characteristics. Farm specific calculations of MACs are still limited. Therefore, we aim at (i) modeling non-CO2 GHG emissions, (ii) computing MACs of mitigation measures and (iii) identifying cost-efficient mitigation measures for the Austrian farms using the Farm Optimization Model FAMOS. FAMOS is a mixed-integer linear farm optimization model implemented in GAMS (General Algebraic Modeling Systems; https://www.gams.com/). It is extended with a non-CO2 GHG emission accounting module that follows the guidelines for national GHG inventories provided by the Intergovernmental Panel on Climate Change. Country and farm-specific emission factors are used in the non-CO2 GHG emission accounting. This module enhances the accuracy of emission calculations at the farm level. FAMOS maximizes farm net returns, defined as the sum of market revenues and policy payments minus the costs of production and investment, subject to the farm’s resource endowments such as available land, livestock housing capacity and farm family labor. Agronomic production relationships (e.g., fertilizer and feed balances), farm management practices (e.g., crop rotations, fertilization, irrigation, tillage, feeding and grazing strategies), and legal compliances (e.g., CAP measures and payments, fertilizer intensities as part of the Austrian agri-environmental OEPUL programme) are taken into account. The model uses farm level data from various data sources (e.g., Farm Structure Survey, Integrated Administration and Control System, Standard Gross Margin Catalogue) and is individually solved for each farm in Austria. The model results show that the MACs of mitigation measures differ between farm types and agricultural production regions. For instance, MACs are higher for specialized farms with few and labor-intensive management options. The MACs are lower for managerial measures (e.g., changes in fertilizer management), compared to technological (e.g., changes in livestock housing) and agronomic measures (e.g., cover cropping). Our analysis complements the existing research by calculating MACs of selected mitigation measures at farm level. These results may inform farmers, farm consultants and policy makers in fostering the implementation of cost-efficient mitigation strategies at farm level.

How to cite: Kröner, V., Falkner, K., Mitter, H., and Schmid, E.: Modeling of farm-specific marginal abatement costs of non-CO2 greenhouse gas mitigation measures in Austria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8911, https://doi.org/10.5194/egusphere-egu24-8911, 2024.

EGU24-9832 | PICO | BG8.10

Crop modelling with AquaCrop during climate change in the Ancash region of the Peruvian Andes 

Patrick C. McGuire, Joy S. Singarayer, Andrew J. Wade, Harvey J.E. Rodda, Nicholas P. Branch, Dionisa Joseph Mattam, Francisco Araujo-Ferreira, Eric Capoen, Alden A. Everhart, Christian Florencio, Fernando Gonzalez, Alexander Herrera, Kevin Lane, Frank M. Meddens, Diana Santos Shupingahua, Martín E. Timaná, and Douglas Walsh

Peruvian Andean rural farmers often have precarious livelihoods and already experience less predictable weather conditions than in recent decades. With the goal of investigating hydrological and agricultural resilience in a region with an uncertain climate future (with regard to both temperature and precipitation), we present here the results obtained from using the AquaCrop software to model both crop growth and the consequent harvest yields in the valleys of the Peruvian Andes, including the Rio Santa Valley in the Ancash region. The crop models are presented for 1970-2099 (the historical and the future during climate change), using RCP2.6 & RCP8.5 Regional Climate Models (RCMs) from CORDEX at a spatial resolution of 0.22 degrees. We chose the CORDEX RCM data that was dynamically downscaled from the CMIP5 GCMs instead of the CHELSA statistically-downscaled data, since the downscaling of the CORDEX RCM data produces more locally-heterogeneous climate averages, which are more consistent with the variable topography. The CORDEX RCM model data has subsequently been bias-corrected to monthly CHIRPS precipitation and monthly ECMWF ERA-Interim temperature extremes from 1981-2005 for locations in the Ancash region, including Yungay and Aija. For the various crops that we modelled (maize/corn, potatoes, dry beans, quinoa, wheat), we find significant interannual variability of the dry yields from crop harvest (without irrigation or fertilizers), particularly when the climate is transitioning to a warmer one for those crops that prefer warmer climates. Without the consideration of irrigation or fertilizers, the possibility of high yield interannual variability could make it difficult for the Peruvian Andean farmers to plan ahead, and maintaining a diversity of crops within the Rio Santa Valley and the wider Ancash region could be advantageous for these farmers.

How to cite: McGuire, P. C., Singarayer, J. S., Wade, A. J., Rodda, H. J. E., Branch, N. P., Joseph Mattam, D., Araujo-Ferreira, F., Capoen, E., Everhart, A. A., Florencio, C., Gonzalez, F., Herrera, A., Lane, K., Meddens, F. M., Santos Shupingahua, D., Timaná, M. E., and Walsh, D.: Crop modelling with AquaCrop during climate change in the Ancash region of the Peruvian Andes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9832, https://doi.org/10.5194/egusphere-egu24-9832, 2024.

EGU24-9930 | ECS | PICO | BG8.10

Soil-crop long-term feedback matters to assess climate change impact on maize yield in Sub-Saharan Africa 

Antoine Couëdel, Gatien N. Falconnier, Myriam Adam, Rémi Cardinael, Kenneth Boote, Eric Justes, Alex Ruane, Ward Smith, Anthony Whitbread, and Marc Corbeels and the co-authors

Sub-Saharan Africa (SSA) faces significant food security risks, primarily due to low soil fertility leading to low crop yields. Climate change is expected to worsen food security issues in SSA due to a combined negative impact on crop yield and soil fertility. A common omission from climate change impact studies in SSA is the interaction between change in soil fertility and crop yield. Integrated soil fertility management (ISFM), which includes the combined use of mineral and organic fertilizers, is expected to increase crop yield but it is uncertain how this advantage is maintained with climate change.   

We explored the impact of scenarios of change in soil fertility and climate variables (temperature, rainfall, and CO2) on rainfed maize yield in four representative sites in SSA with no input and ISFM management. To do so, we used an ensemble of 15 calibrated soil-crop models. Reset and continuous simulations were performed to assess the impact of soil fertility vs climate change on crop yield. In reset simulations, SOC, soil N and soil water were reinitialized each year with the same initial conditions. In continuous simulations, SOC, soil N and soil water values of a given year were obtained from the simulation of the previous year, allowing cumulative effects on SOC and crop yields.

Most models agreed that with current baseline (no input) management, yield changed by a much larger order of magnitude when considering declining soil fertility with baseline climate (-39%), compared with considering constant soil fertility but changes in temperature, rainfall and CO2 (from -12% to +5% depending on the climate variable considered). The interaction between change in soil fertility and climate variables only marginally influenced maize yield (high agreement between models). The model ensemble indicated that when accounting for soil fertility change, the benefits of ISFM systems over no-input systems increased over time (+190%). This increase in ISFM benefits was greater in sites with low initial soil fertility. We advocate for the urgent need to account for soil-crop long-term feedback in climate change studies to avoid large underestimations of climate change and ISFM impact on food production in SSA.

How to cite: Couëdel, A., Falconnier, G. N., Adam, M., Cardinael, R., Boote, K., Justes, E., Ruane, A., Smith, W., Whitbread, A., and Corbeels, M. and the co-authors: Soil-crop long-term feedback matters to assess climate change impact on maize yield in Sub-Saharan Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9930, https://doi.org/10.5194/egusphere-egu24-9930, 2024.

EGU24-10313 | ECS | PICO | BG8.10

Learning from yields: Prevailing features for winter wheat yield variability and the role of farmers’ management decisions 

Luca Giuliano Bernardini, Gernot Bodner, Martin Hofer, and Emma Izquierdo-Verdiguier

The relationship between food security and climate change is a central concern for policymakers and society at large. Temperature fluctuations and extreme weather events significantly impact agriculture, notably affecting yield production. Effective management measures that enhance resilience of crop production to abiotic stress are thus highly important. This requires an appropriate understanding of the predominant stressors and their temporal impact on yield formation under given pedo-climatic conditions. Designing future climate-smart management systems will strongly profit from an appropriate evaluation of current yield variability, identifying the main underlying environmental and management related factors. Therefore, the two key questions addressed in this study are:     

  • At which temporal stage does crop development indicate differentiation in biomass growth that impacts the attainable final crop yield?
  • Are the distinctive crop growth and yield patterns in a region predominantly driven to environmental site effects (soil type, rainfall, temperature) and to what extent farmers’ management decisions (pre-crop, cover crop, seeding time) can influence the site-specific natural drivers? 

In recent decades, multiple approaches have been used to analyze factors driving crop yields, from classical replicated field trials over plot scale agroecosystem models to remote sensing-based machine learning approaches. This work is centered on a georeferenced polygon dataset, containing fields from 0.1 to 16.6 hectares in Lower Austria focused on the country's predominant staple crop, winter wheat, between the years 2013 and 2020. In total, the dataset contains 541 entries with winter wheat yield data and detailed management history of the respective fields. Using different types of feature selection techniques, from classical machine learning (i.e., random forest) to recent techniques (i.e., guided regularized random forest), we aim to (i) analyze the temporal growth pattern and extract the yield determinant features as well as their specific timing from several remote sensing derived indices (e.g., Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI)), and (ii) the role of the site specific pedoclimatic information (e.g., surface air temperature, rainfall, soil data) as well as management data (e.g., previous crop, cover crop, seeding time, tillage type). 

Based on the most promising feature models, we will map the expected winter wheat yield variability for Lower Austria and evaluate yield predictability with regional winter wheat yield data from Lower Austria at NUTS3 level between 2015-2022. Since crop-specific crop yield maps are not currently available at the regional level, the validation data will be obtained by intersecting regional yield data and yearly land cover data.

From the results, we expect to provide an improved insight into yield-relevant time periods for winter wheat growth and their interplay with prevailing site-conditions such as soil type based on remote sensing indices. This can contribute to an improved understanding of winter wheat yield formation, thereby providing decision support for more targeted management adaptation and more realistic estimates of expectable management impacts over the unmanageable fate of natural site conditions.

How to cite: Bernardini, L. G., Bodner, G., Hofer, M., and Izquierdo-Verdiguier, E.: Learning from yields: Prevailing features for winter wheat yield variability and the role of farmers’ management decisions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10313, https://doi.org/10.5194/egusphere-egu24-10313, 2024.

EGU24-10424 | ECS | PICO | BG8.10

How to simulate canopy temperatures in a global, process-based model? 

Marie Hemmen, Werner von Bloh, Heidi Webber, Jens Heinke, and Christoph Müller

The frequency and intensity of high temperature events will very likely increase in the future, which could have significant effects on agricultural production. A suitable tool to assess potential heat stress damages in crops is the climate-driven simulation of crop growth and development processes with computer models. While studies show that process-based models reproduce observed yield variabilities, the temperature sensitivities of underlying growth and development processes are often not in accordance with observational data, which can be a significant source of uncertainty especially in future projections. We intend to reduce these uncertainties by improving process responses to high temperatures in the dynamic global vegetation model LPJmL.

A common weakness of models, including LPJmL, is the use of air temperatures in crop related processes. Depending on climatic factors and water status, these can deviate strongly from canopy temperatures, which can have significant effects on the triggering of temperature-related process responses. As a first step, we thus implemented a combination of energy balance and empirical model in LPJmL that computes canopy temperatures based on equations of Penman and Monteith and empirical findings from Idso and Jackson. First preliminary results of future scenarios (SSP585) show that projected wheat yields are substantially higher or lower in some regions when using canopy temperatures compared to solely air temperature-driven LPJmL simulations. However, while the implemented approach assumes neutral atmospheric stability and thus requires little computing capacity, a comparison study showed that more complex methods that include stability correction factors better reproduce observed canopy temperatures. The difficulty with these complex canopy temperature computations is that the high computing costs can be a limitation for already computationally expensive global models. To solve this problem, we built a complex stand-alone model based on the Monin-Obukhov Similarity Theory for computing canopy temperatures with consideration of the stability conditions and from this derived two emulators that reproduce the results of the complex model with significantly less computing power. The two emulators describe upper and lower canopy temperature bounds under two extreme states of water stress as a function of air temperature, radiation, wind, vapor pressure deficit and leaf area index. For this, we chose parametric models with a third-order polynomial basis function that also include interaction terms of the different variables. To train the emulators, we used a global dataset that covers a broad range of combinations of different weather variables. These two emulators will be implemented in LPJmL to simulate canopy temperatures by first calculating upper and lower canopy temperature bounds and from this deriving final canopy temperatures through scaling with actual water stress. We will then compare the results to those of the approach that assumes neutral atmospheric conditions.

The computation of canopy temperatures is a first step towards better crop yield projections accounting for responses to high temperatures. The first preliminary results highlight the importance of improving the representation of canopy temperatures in global models to better estimate future agricultural yields and to identify potential risks to food security.

How to cite: Hemmen, M., von Bloh, W., Webber, H., Heinke, J., and Müller, C.: How to simulate canopy temperatures in a global, process-based model?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10424, https://doi.org/10.5194/egusphere-egu24-10424, 2024.

Annual food caloric production is the product of caloric yield, cropping frequency (CF, number of production seasons per year) and cropland area. Existing studies have largely focused on crop yield, whereas how CF responds to climate change remains poorly understood. Here, we evaluate the global climate sensitivity of caloric yields and CF at national scale. We find a robust negative association between warming and both caloric yield and CF. By the 2050s, projected CF increases in cold regions are offset by larger decreases in warm regions, resulting in a net global CF reduction (−4.2 ± 2.5% in high emission scenario), suggesting that climate-driven decline in CF will exacerbate crop production loss and not provide climate adaptation alone. Although irrigation is effective in offsetting the projected production loss, irrigation areas have to be expanded by >5% in warm regions to fully offset climate-induced production losses by the 2050s.

How to cite: Zhu, P.: Warming reduces global agricultural production by decreasing cropping frequency and yields, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11585, https://doi.org/10.5194/egusphere-egu24-11585, 2024.

EGU24-13284 | ECS | PICO | BG8.10

Assessment and comparison of crop growth models for estimating wheat production in a semi-arid region of Morocco 

Oumaima Kaissi, Salah Er-raki, Elhoussaine Bouras, Salwa Belaqziz, and Abdelghani Chehbouni

Faced with growing food security challenges influenced by global factors such as population growth, climate change, and soil erosion, the need for sustainable agricultural practices is particularly relevant in Africa. In Morocco, wheat is the most dominant crop, but its production is highly dependent on rainfall. In this research, we evaluate several crop growth models, including AquaCrop, among others, focusing on their ability to effectively improve crop production predictions and yield gap analysis in Morocco. This evaluation is essential to develop adaptive agricultural practices that can mitigate the adverse effects of climate change on crop yields. This study employs AquaCrop-OSPy (ACOSP), an open-source Python version of the AquaCrop model, to simulate various indicators of crop growth such as canopy cover (CC), actual evapotranspiration (ETcact), biomass, and grain yield (GY) for wheat under drip irrigation in the semi-arid Chichaoua region of Marrakech in Morocco. The model was first calibrated by using the field data collected over two wheat fields during the 2016/2017 cropping season. Key parameters affecting CC, ETcact, biomass, and GY were calibrated by comparing field measurements with the model outputs. Then, model validation was carried out on the same fields but during the 2017/2018 cropping season. The results demonstrated that ACOSP effectively simulates CC, ETcact, biomass, and GY across two growing seasons. The comparative analysis between observed and simulated parameters yielded the following average values: for CC, R²=95%, RMSE=8.5%, and MSE=1.1%; for ETcact, R²=76%, RMSE=0.61 mm/day, and MSE=0.40 mm/day; and biomass, R²=87%, RMSE=0.22 t/ha, and MSE=0.05 t/ha during the calibration season. GY recorded was 3.87 t/ha. In the validation season, the model achieved similar accuracy for CC R²=95%, RMSE=8.0%, MSE=1.0 %; and biomass R²=91%, RMSE=0.15 t/ha, MSE=0.05 t/ha; with a GY of 3.29 t/ha. These results confirm the model's reliability in simulating key growth parameters of wheat in a semi-arid environment. Two main aspects are addressed through this study: firstly, to provide valuable information for agricultural policy and decision-making in Morocco, and secondly, to enrich the international conversation on sustainable agricultural practices, particularly in arid and semi-arid regions. Leveraging the findings of efficient simulation of wheat growth and production using the ACOSP model, this research provides a solid basis for local, national, and international key actors in developing robust strategies to improve wheat production, thus enhancing the sustainability and resilience of Moroccan agriculture.

How to cite: Kaissi, O., Er-raki, S., Bouras, E., Belaqziz, S., and Chehbouni, A.: Assessment and comparison of crop growth models for estimating wheat production in a semi-arid region of Morocco, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13284, https://doi.org/10.5194/egusphere-egu24-13284, 2024.

EGU24-13421 | ECS | PICO | BG8.10 | Highlight

Exploring the Opportunities and Challenges of Using Large Language Models to Represent Institutional Agency in Land Use Modelling 

Yongchao Zeng, Calum Brown, Mohamed Byari, Joanna Raymond, Ronja Hotz, and Mark Rounsevell

Institutional agencies play a crucial role in land use change, but modelling their decision-making processes is challenging due to the complexity of the environment they operate within and the bounded rationality of human organizations. Large Language Models (LLMs) offer a novel approach to simulating human decisions. This paper aims to investigate the challenges and opportunities that LLMs bring to land use change modelling by integrating LLM-powered institutional agents with the CRAFTY land use model, in which land users produce a range of ecosystem services. The study develops a structured prompt development approach for coupling LLM-powered agents with existing large-scale simulations. Four types of LLM-powered agents are examined, which use taxes to steer meat production toward a prescribed policy goal. The agents provide reasoning and policy action output in each simulation iteration. The study also uses a technique called quasi-multi-agent to simulate multiple roles involved in the policy processes. Unlike authentic multi-agent simulation, the LLM-powered quasi-multi-agent leverages the LLM's ability to generate contextually coherent text and allows the agents to work as a scriptwriter who composes conversations between different roles. This approach conserves computational resources and has the potential to manage conversational dynamics in policy discussions. The efficacy of these agents is benchmarked against two baseline scenarios: one without any policy intervention and another implementing optimal policy actions determined through a genetic algorithm.

The findings show that while LLM-powered agents perform better than the non-intervention scenario, they fall short of the performance achieved by optimal policy actions. However, LLM-powered agents demonstrate human-like decision-making, marked by policy consistency and transparent reasoning. The agents also generate real-world policymaking strategies, including incrementalism, considering delayed policy influence, proactive policy adjustments, and balancing multiple stakeholder interests. Agents equipped with experiential learning capabilities excel in achieving policy objectives through progressive policy actions. The order of reasoning and proposed policy actions in the prompts has a notable effect on the agents' performance. The research points to both promising opportunities and significant challenges in integrating LLMs into large-scale land-use simulations. The opportunities include exploring naturalistic institutional decision-making and its impact on land use change, using LLM's information retrieval to handle massive institutional documents, modelling institutional networks, and human-AI cooperation. However, challenges mainly lie in the scalability and reliability of LLMs due to the dependence on LLM providers, the paradox of pursuing realistic institutional behaviours versus abstraction and simplification in existing models, and the effectiveness and efficiency in scrutinizing massive textual output, detecting illogical content in prompts, and inaccurate formatting.

How to cite: Zeng, Y., Brown, C., Byari, M., Raymond, J., Hotz, R., and Rounsevell, M.: Exploring the Opportunities and Challenges of Using Large Language Models to Represent Institutional Agency in Land Use Modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13421, https://doi.org/10.5194/egusphere-egu24-13421, 2024.

EGU24-13942 | ECS | PICO | BG8.10

Future changes of Climate Suitability of Global Rainfed Food Crops under different CMIP6 scenarios 

Lucia Mumo, Christian Franzke, and June-Yi Lee

Achieving the second sustainable development goal, “Zero Hunger”, is challenging due to climate change, weather extremes and an unabated human population growth. The consequent increase in global food demand has put additional pressure on agricultural systems. Understanding spatial crop suitability alterations, yields and calories of the four major staple food crops around the globe is imperative for sustainable agricultural optimization, climate mitigation, and food security. This study uses three downscaled and bias-corrected shared socioeconomic scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) from the latest state-of-art climate models in Coupled Model Intercomparison Project phase 6 (CMIP6) courtesy of Worldclim: an ecological crop requirement model (Eco Crop) and a machine-learning extreme gradient boosting model (XGBoost) to estimate future crop suitability and yields. Our results elucidate a northward spatial shift in climate suitability and shrinkage of optimal crop-growing regions as the unsuitable and marginal areas expand. Notably, more reduction of suitable regions is observed for all the crops under the highest emission and in far-future climate (2061-2100) scenarios as compared to the SSP1-2.6 and during the near-future period (2021-2060). Nevertheless, gain in suitable areas for soybeans and wheat has been observed at high latitudes, while the tropics are projected to experience a significant loss of arable land. The optimal zone for maize is projected to significantly reduce by approximately 75% in all emission scenarios. This translates to a maize yield loss of 17.3%, and 8.5% in near and far-future climate periods respectively under SSP5-8.5 scenario. Spatial consistency shows that most of the suitable and optimal zones for soybeans are currently not been used. This study sheds light on crop production optimization as farmers are advised to shift to more suitable climate regions for a given crop rather than agricultural extensification that triggers desertification. Due to the considerable loss of climate-suitable regions for rainfed agricultural systems, global efforts should be directed to irrigation systems to ensure global food security and peace.

 

Keywords: Eco crop, Climate suitability, CMIP6, Food security, Crop Yield, XGBoost

How to cite: Mumo, L., Franzke, C., and Lee, J.-Y.: Future changes of Climate Suitability of Global Rainfed Food Crops under different CMIP6 scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13942, https://doi.org/10.5194/egusphere-egu24-13942, 2024.

EGU24-14354 | ECS | PICO | BG8.10

Comparison of developing WOFOST to model growth between typical fruit (chili pepper) and leafy (Chinese cabbage) vegetables 

Ruoling Tang, Iwan Supit, Ronald Hutjes, Fen Zhang, Xiaozhong Wang, Xuanjing Chen, Fusuo Zhang, and Xinping Chen

Most existed crop modelling studies are mainly cereal crops. Vegetables, the most economical and nutrient-dense crops, recieves insufficient attention, particularly on nutrient-uptake predictions. In open-field vegetable systems with shallower roots, shorter lifespan, and higher nutrient requirements, it is even more challenge to minize water pollution from fertilizers. To ensure both food and environment security, there is an urgent need of precise vegetable models to optimize productivity against fertilizer usage.

We adapted the WOrld FOod STudies (WOFOST) crop growth simulation model for chili pepper (Capsicum annuum L.)  and Chinese cabbage (Brassica rapa L.) to support better fertilizer management under various climate and soil conditions. We conducted field experiments with six various fertilizer strategies (etc., mixed synthetic and organic fertilizers, denitrification products, and slow-control-release fertilizers) in southwestern China from 2019 to 2021. In total about 20 parameters relevant to physiological development, dry matter accumulation, photosynthesis, and nutrient uptake were measured and used in model adaptation.

Our study shows that it is possible to model chili pepper’s growth without changing much from the WOFOST-generic model structure. We provide solutions by adapting user-defined developmental stages to mimic the growth from transplanting to fruiting and subsequently ripeness. As for WOFOST-Chinese cabbage, we further modify the phenological module to mimic the special vernalization habits of Chinese cabbage. Additionally, we design a new data re-analyzation method for accurate biomass partitioning predictions. Overall, both WOFOST-Chili and WOFOST-Chinese cabbage models show good model performance on biomass assimilation (rRMSE = 0.23/0.17 for chili/cabbage leaf dry weight; rRMSE = 0.06/0.17 for chili/cabbage storage organ dry weight) and nutrient uptake (rRMSE = 0.46/0.29 for chili/cabbage leaf N amount; rRMSE = 0.12/0.41 for chili/cabbage storage organ N amount). Besides, an improved leaf area index (LAI) simulation is found in WOFOST-Chinese cabbage (rRMSE = 0.11) than WOFOST-Chili (rRMSE = 0.76).

These findings improve our understanding of yield-nutrient interactions within crop models, provide insights on expanding application of original-designed-for-field crop models to different vegetable versions, also call for a refined dynamic nutrient simulation flow within soil module to evaluate mitigation effect of expanded fertilizer strategies under climate change.

How to cite: Tang, R., Supit, I., Hutjes, R., Zhang, F., Wang, X., Chen, X., Zhang, F., and Chen, X.: Comparison of developing WOFOST to model growth between typical fruit (chili pepper) and leafy (Chinese cabbage) vegetables, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14354, https://doi.org/10.5194/egusphere-egu24-14354, 2024.

EGU24-14402 | ECS | PICO | BG8.10

Model-based drought indicators improve the reliability of crop yield simulations with a statistical model in Poland 

Mamad Eini, Tobias Conradt, and Mikołaj Piniewski

Various inputs can be selected to establish a robust crop yield simulation based on statistical models. Typically, weather variables such as precipitation, temperature, relative humidity, etc., are used as inputs in these models. It is well known that drought is a major limiting factor for crop yield in Central Europe, as manifested in recent years. This study aimed to assess whether adding model-based drought indicators derived from a nationally calibrated and validated process-based agro-hydrological model (Soil and Water Assessment Tool - SWAT) could help increase the predictive power of crop yield prediction. The secondary objective was to assess future projections of crop yield. We considered two drought indicators: the Standardized Precipitation Index (SPI) and the Soil Moisture Index (SMI) with the following accumulation periods: 1970-2019. The ABSOLUT v1.2 (Assessing Best-predictive Sets fOr multiple Linear regressions throUgh exhaustive Testing) model was applied for the prediction of yield of major crops in Poland: winter wheat, spring barley, potatoes, sugar beet, and maize for 16 provinces of the country for the time period 1999-2019. ABSOLUT v1.2 is an adaptive algorithm that utilizes correlations between time-aggregated weather variables and crop yields for yield simulation. Future yield projections were derived based on bias-corrected EURO-CORDEX simulations driven by two Representative Concentration Pathways (RCPs), RCP4.5 and 8.5, corresponding to the radiative forcing levels of 4.5 W/m−2 and 8.5 W/m−2 in the year 2100, respectively. Our results indicate that incorporating drought indicators as predictors in statistical crop yield simulations slightly enhances the reliability of yield prediction in Poland. Projected crop yields reveal that in western parts of Poland, crop yields could experience a decrease of 8%, but in eastern parts, crop yields remain mostly unchanged.

How to cite: Eini, M., Conradt, T., and Piniewski, M.: Model-based drought indicators improve the reliability of crop yield simulations with a statistical model in Poland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14402, https://doi.org/10.5194/egusphere-egu24-14402, 2024.

EGU24-15603 | ECS | PICO | BG8.10

Assessing the Vulnerability of Agricultural Areas under Climate Change in Europe through a Heat Stress Index Approach  

Lioba Martin, Andrew Smerald, Edwin Haas, Tatiana Klimiuk, Antonio Sánchez-Benítez, and Clemens Scheer

Climate change poses a significant threat to agriculture, primarily through yield losses due to droughts and heat waves. The flowering phase of most crops is a critical period during which they are highly susceptible to heat, resulting in long-term damage and substantial yield reduction. Significant heat-induced yield cuts have already been observed in Europe, especially during the frequent and widespread heat waves occurring in the years 2018 to 2022.

By imposing the large-scale atmospheric circulation of the 2018 to 2022 heatwaves onto CMIP6 projections, the impact of such a multi-year event within future climate is made tangible as a storyline (Sánchez-Benítez et al., 2022). The +4K storyline, which gives a flavour of possible atmospheric conditions in the 2090s in the ssp370 scenario, indicates a potential increase of up to 7°C during the flowering phase of major crops in Europe. Using these storylines, we evaluated the impact of such a heatwave on cereal production in Europe under a warmer climate.

To achieve this, we developed a heat stress index, which gauges the amount of stress experienced by crops due to heat exposure during flowering relative to unstressed conditions. This index was then applied to the dynamically downscaled nudged storylines over the European domain and evaluated for major cereal crops (maize and wheat). As part of this evaluation, we modelled how a changing climate would affect planting dates and the area suitable for growing winter cropsand investigated the potential impact of heat on different crop cultivars.

In 2021, we estimate that approximately 4% of cropland in Europe experienced severe heat stress (i.e., yield losses of up to 50%) due to heat waves during flowering. Extrapolating to a scenario with global warming of +4 K, we show that almost 80% of the total European crop area for maize could be affected by heat stress, with 30% of the area experiencing a severe heat stress. This could lead to a 20% yield reduction across Europe. In south-eastern Europe, where the 2021 heatwave was particularly intense, 40% of the harvested area would be severely affected, leading to a yield loss of 32% relative to current conditions.

Our investigation of different stress vulnerabilities shows that some crop varieties may exhibit minimal stress while others face severe damage, leading to considerable intra-crop variability in yield reduction. Planting date plays a major role in the impact of heat stress, since an earlier planting shifts the sensitive window during which the plant is flowering to earlier in the year. For winter crops, such as winter wheat, the increased temperatures in winter could lead to a reduction of the winter wheat growing area of 50% by 2093. Addressing these challenges will require proactive management changes, including strategic decisions on planting dates, crop, and variety selection.

Sánchez-Benítez, A., Goessling, H., Pithan, F., Semmler, T., Jung, T., 2022. The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate.

How to cite: Martin, L., Smerald, A., Haas, E., Klimiuk, T., Sánchez-Benítez, A., and Scheer, C.: Assessing the Vulnerability of Agricultural Areas under Climate Change in Europe through a Heat Stress Index Approach , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15603, https://doi.org/10.5194/egusphere-egu24-15603, 2024.

EGU24-17998 | ECS | PICO | BG8.10

Viticulture suitability for specific oenological objectives through machine learning integration in a multicriteria analysis: the case of Cannonau terroir in Sardinia (Italy) 

Emanuele Serra, Marta Debolini, Serena Marras, Luca Mercenaro, Giovanni Nieddu, Costantino Sirca, Antonio Trabucco, Pierfrancesco Deiana, and Donatella Spano

The projected warmer temperatures, together with the expected increase in seasonal dryness, frequency, and intensity of extreme climate events during sensitive phenological phases, may have strong effects on the regions’ suitability for grapevine cultivation determining a shift from currently suitable areas toward new ones. Furthermore, shortening phenological advancement is expected to affect the ripening period negatively, by affecting biochemical and physiological processes and thus impacting berry sugar-acid and flavonoid levels, colour, and aroma, especially for early ripening varieties. In this research, multiple climate, soil, topography, and land use data are analyzed and integrated into a multi-criteria evaluation (MCE) to classify suitable areas for grapevine according to FAO classification under actual and future climate conditions. In particular, through the adoption of machine learning techniques, some specific qualitative targets (BRIX, acidity, polyphenol content), functional to obtaining specific oenological objectives will be analyzed. The analysis is focused on the Cannonau terroir, in the region of Sardinia (Italy), and in particular the qualitative target data for land suitability model calibration and validation will be acquired from three wine cellars collecting production from single farmers located in three bioclimatic areas that can be considered as representatives of the whole Sardinia region (Nurra, Barbagia and Parteolla, located respectively in North-west, Center and South of Sardinia). A set of 8 bioclimatic, 5 pedological, and 3 topographic indicators with 1 land cover classification was selected and then divided into a range of values, according to the literature, each of which was associated with a suitability class (FAO). Bioclimatic indicators are obtained by the analysis of current and future climate scenarios from the regionalized climate models downscaled for the whole of Italy at 2.2 km spatial resolution. Considering main and secondary relevant and explanatory criteria with a hierarchical structure, after statistical autocorrelation analysis, different weights will be assigned, calculated, and associated with each factor using the analytical hierarchy (AHP) process and machine learning methods, depending on the importance of each factor in achieving specific production targets according to expert knowledge and literature. The performance of machine learning and statistical inference to define suitability as a function of environmental and bioclimatic characteristics (ANN, Random Forest, MaxEnt, Support Vector Machines), will be subsequently compared to GIS-based results to assess its applicability. The field measurements will be carried out in the pilot sites located in the north, center, and south of Sardinia and will be useful for obtaining pedological, phenological, and qualitative data for the calibration and validation of the model. This work aims to provide an assessment of the spatial variability of the environmental factors that drive terroir distribution, to preserve vineyard production and quality in a changing climate. The research is also a methodological contribution, with the integration of a machine learning approach to the multicriterial land suitability analysis techniques.

How to cite: Serra, E., Debolini, M., Marras, S., Mercenaro, L., Nieddu, G., Sirca, C., Trabucco, A., Deiana, P., and Spano, D.: Viticulture suitability for specific oenological objectives through machine learning integration in a multicriteria analysis: the case of Cannonau terroir in Sardinia (Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17998, https://doi.org/10.5194/egusphere-egu24-17998, 2024.

EGU24-18078 | PICO | BG8.10 | Highlight

An exploration of using large language models to integrate farmer behaviour into an agricultural systems model of the Peruvian Andes 

Joy Singarayer, Richard Bailey, Patrick McGuire, Francisco Araujo- Ferreira, Nicholas Branch, Fernando Gonzalez, Diana Santos Shupingahua, Douglas Walsh, Alexander Herrera, Andrew Wade, Harvey Rodda, Martin Timana, and Kevin Lane

The implications of climate change on agro-pastoral farming systems in the Peruvian Andes are not fully understood. There is already a significant impact on agricultural productivity from current climate variability and extreme weather in the region. This is exacerbated by chronic poverty in many rural areas and the need for improved government-led strategic planning. Tools to assist with policy planning for climate change adaptations that achieve environmental and social resilience are vital, and these require collaboration with rural communities to incorporate the complexities of behavioural responses to climate change, market dynamics, and policy shifts in agricultural and water management. 

In this study we further develop a recent agricultural systems model (the TELLUS model; Pilditch et al., in review). The model is an agent-based simulation focussed on the behaviour of interacting populations of individual farming agents. TELLUS offers the opportunity to analyse the impact of interventions/policies in light of key scenarios and conditions of interest, with potential to uncover unforeseen emergent behaviours within farming systems (e.g., tipping points, amplifiers, system adaptations) and potential unintended consequences of scenarios and policies (e.g., increasing in equalities; increased system fragility). A difficulty in applying such models to specific case studies is in choosing valid parameter values, especially for model behaviour associated with human behaviour and decision-making.

Our work over recent years includes extensive fieldwork in the Cordillera Negra and Cordillera Blanca, involving interviews and workshops with farming communities, and collaboration with regional NGOs. These interactions have been instrumental in understanding local challenges and priorities. The challenge in terms of modelling this system is turning information gained from qualitative methods (e.g. interviews) into parameter values for the model. Our novel approach is to assess the extent to which modern AI systems, specifically, Large Language Models (LLMs) can help perform this task.  We leverage the reasoning abilities of LLMs to directly estimate relevant model parameters from automated interview transcription/translations. We will discuss the extent to which this integration has aided the creation of a TELLUS model tuned specifically to the Peruvian Andes context. Our approach will hopefully serve as a novel tool, combining empirical research, community involvement, and advanced computational modelling, to explore future climate scenarios and the potential effects of policy interventions.

How to cite: Singarayer, J., Bailey, R., McGuire, P., Araujo- Ferreira, F., Branch, N., Gonzalez, F., Santos Shupingahua, D., Walsh, D., Herrera, A., Wade, A., Rodda, H., Timana, M., and Lane, K.: An exploration of using large language models to integrate farmer behaviour into an agricultural systems model of the Peruvian Andes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18078, https://doi.org/10.5194/egusphere-egu24-18078, 2024.

EGU24-18816 | ECS | PICO | BG8.10

Assessing the impacts of future climate scenarios on soil management practices and their hydraulic proprieties 

Edberto Moura Lima, Kristin Böning, Friederike Ding, Christine Stumpp, Annelie Holzkämper, and Bano Mehdi-Schulz

Soil management practices influence soil physical parameters and crop productivity. No-till farming, which is a key component of conservation agriculture, is considered a sustainable alternative to conventional agriculture. The extent to which soil conservation management practices can mitigate the impacts of extreme events (heavy precipitation events and drought) remains unknown, and is examined as part of the SoilX project. This study focuses on two different tillage management practices and their effects on soil hydraulic properties, soil structure, and crop yields under current and future climate conditions. An experimental study site that is a Long-Term Field Experiment (LTE) since 2006 located in Hollabrunn, Lower Austria, was used for soil sampling and crop modelling. The site is located in a Pannonian climate, with average annual (1991-2020) precipitation of 493 mm and a mean air temperature of 9.8 °C. The soil is classified as a silt loam calcareous Chernozem under the WRB or as Typic Vermudoll under the US Soil Taxonomy. The experimental layout comprised two soil tillage treatments (conventional tillage (CT) and no-tillage (NT), both with annual crops and winter cover crops) arranged in a randomized block design. The crop model APEX (Agricultural Policy/Environmental eXtender) model was set up for both treatments to assess the impacts of CT and NT on soil physical properties and their respective hydrological properties. Field soil samples were taken from both treatments (up to 50 cm depth) and analyzed for soil bulk density, soil organic matter (SOC), water stable aggregates (WSA), unsaturated infiltration rates (determined with TDI), water retention curves, and oxygen isotopes in soil pore water. These field measurements were used to parameterize the APEX model. Field operations between 2009 and 2023 also provided model inputs on crop cultivation cycles, tillage, fertilization, sowing, crop protection, and harvesting. The yield (dry matter Mg ha-1) per plot was used for model calibration. From the soil samples obtained in 2023 differences between CT and NT were determined with respect to bulk density and soil water content, i.e. at 10 cm, the unsaturated infiltration rates were higher in CT. The future climate simulations (2050-2100) derived from regional climate models (RCMs) with different representation pathways (RCPs) were input in APEX to assess the impacts of climate change on the soil physical and hydraulic properties (SOC, infiltration rates, soil water storage) under CT and NT. The research results quantify differences in soil physical and hydraulic properties in a future climate, particularly focusing on the extreme events. The findings provide information on soil management strategies to potentially mitigate the adverse impacts of heavy precipitation events and droughts in agricultural cropping systems.

How to cite: Moura Lima, E., Böning, K., Ding, F., Stumpp, C., Holzkämper, A., and Mehdi-Schulz, B.: Assessing the impacts of future climate scenarios on soil management practices and their hydraulic proprieties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18816, https://doi.org/10.5194/egusphere-egu24-18816, 2024.

EGU24-18994 | ECS | PICO | BG8.10

Multiple cropping in global-scale Land-Use Models and the role of Irrigation 

Felicitas Beier, Jens Heinke, Benjamin Leon Bodirsky, Christoph Müller, Sebastian Ostberg, Kristine Karstens, Gabriel Abrahao, Alexander Popp, and Hermann Lotze-Campen

Multiple cropping practices, i.e. planting and harvesting crops several times a year at the same plot of land, may increase global food production without further expanding cropland (Wu et al. 2014). Especially the combination of irrigation in the dry season to facilitate multiple harvests a year potentially facilitates more food production on the same amount of land. Global dynamic gridded vegetation models that inform global land-use models usually only model one growing season a year. Neglecting the yield that can be achieved in the second or third season leads to an underestimation of yields and irrigation water requirements and biased projections of the spatial allocation of rainfed and irrigated cropland.

With an update of our hydro-economic model (Beier et al. 2023), we are able to estimate multiple cropping potentials and model multiple cropping and irrigation expansion. It is the tandem of these two intensification measures that facilitates production gains without expanding cropland. We estimate multiple cropping potentials considering their interaction with irrigation and water availability limitations to determine how much cropland area can be managed in a multiple cropping system given local crop growth conditions (suitability for multiple cropping), the associated water requirements and locally limited water availability for irrigation. We obtain multiple cropping and irrigation potentials at a 0.5° spatial resolution using biophysical inputs from the global vegetation model LPJmL (Schaphoff et al. 2018, von Bloh et al. 2018). LPJmL provides crop-specific (irrigated and rainfed) crop yields and crop water requirements for the main growing season for 12 crop functional types and gross primary production (GPP) of grass for the entire year at a 0.5° spatial resolution. To derive a metric on the yield increase through multiple cropping, we need an aggregated approach that abstracts from the very high set of potential combinations of crops in multiple cropping. We therefore use the main-season-to-whole-year ratio of grass GPP to obtain the grid-cell-specific potential multiple cropping effect. This ratio is used to scale main season crop yields and crop water requirements. In terms of irrigation water availability, the spatial allocation of irrigation water takes upstream-downstream relationships into account and considers the monetary yield gain through irrigation to determine the location of potentially irrigated areas (Beier et al. 2023).

With this, we address the research question: What is the biophysical and economic multiple cropping production potential under consideration of local (spatially explicit) irrigation water availability constraints on current cropland?

References

Beier, F. et al. (2023a). Technical and Economic Irrigation Potentials within Land and Water Boundaries. Water Resources Research

Beier, F., et al. (2023b) ‘Mrwater: MadRat Based MAgPIE Water Input Data Library’. 10.5281/zenodo.5801680.

Schaphoff, S. et al. (2018). ‘LPJmL4 – a Dynamic Global Vegetation Model with Managed Land – Part 1: Model Description’. Geoscientific Model Development 11 (4)

Wu, W., et al. (2018) Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76 (2018)

von Bloh, W. et al. (2018). Implementing the Nitrogen Cycle into the Dynamic Global Vegetation, Hydrology, and Crop Growth Model LPJmL (Version 5.0). Geoscientific Model Development 11 (7)

How to cite: Beier, F., Heinke, J., Bodirsky, B. L., Müller, C., Ostberg, S., Karstens, K., Abrahao, G., Popp, A., and Lotze-Campen, H.: Multiple cropping in global-scale Land-Use Models and the role of Irrigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18994, https://doi.org/10.5194/egusphere-egu24-18994, 2024.

EGU24-20735 | ECS | PICO | BG8.10

Testing for adaptation in the observed corn and soy yields in the US Midwest 

Adarsh Raghuram and Ethan Coffel

The positive effects of warm temperatures on crop yields reverses beyond a critical temperature threshold, where sharp decrease in yields is observed for all crops. In the light of warming trends observed globally, adaptation of crops to extreme climatic conditions could be crucial for ensuring a stable food supply in the future. While numerous studies have shown the potential positive impact of adaptation on food security, there is limited evidence showing observed changes in the sensitivity of major food crops to high temperatures at national and global levels. In this study, we use regression models to examine the spatiotemporal variations in critical temperature threshold for corn and soy in the US Midwest. Further, we also examine changes in yield response to exposure to temperatures beyond the critical temperature threshold. Overall, our work tests for the presence of adaptation in the observed yield trends of corn and soy in the US Midwest. 

How to cite: Raghuram, A. and Coffel, E.: Testing for adaptation in the observed corn and soy yields in the US Midwest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20735, https://doi.org/10.5194/egusphere-egu24-20735, 2024.

EGU24-20927 | PICO | BG8.10

Simulating future Food Value Chain components through the integration of biophysical and techno-economic spatial models 

Edmar Teixeira, Sylvain Leduc, Shubham Tiwari, Florian Kraxner, Jing Guo, Sam McNally, Richard Yao, Xiumei Yang, Paul Johnstone, Thomas Sowersby, Richard Edmonds, Shane Maley, Abha Sood, James Bristow, and Derrick Moot

We describe the methodological development and preliminary results of a new spatial modelling framework to support the evaluation and design of novel Food Value Chains (FVC). The sustainability of future FVCs will depend on how effectively these can be adapted to environmental (e.g., climate change) and socio-economic (e.g., resource access and dietary preferences) changes projected for coming decades. Our approach aims to account for the spatial and temporal complexity inherent to both biophysical (e.g., climate, genotypes and soils) and techno-economic (e.g., processing technologies and markets) components of FVCs to optimise supply- (e.g., production areas) and demand- (processing-plant locations) across landscapes. For that, we integrated georeferenced biophysical outputs of a process-based agricultural model (Agricultural Production Systems sIMulator, APSIM-NextGeneration) into a spatial techno-economic model (IIASA-BeWhere). We test the approach through a case-study to evaluate a novel (hypothetical) FVC to produce plant-based proteins from lucerne crops (Medicago sativa) across New Zealand’s agricultural landscapes. Results highlighted spatial protein production patterns driven by changes in crop canopy expansion and net carbon assimilation, with lower yields estimated in cooler and dryer environments, particularly when water supply was limited under rain-fed (non-irrigated) conditions with soils of low water holding capacity. Spatial variability in protein yields, production costs and emissions estimated by APSIM-NG running in the ATLAS framework were then used as inputs by BeWhere to optimise the location of production areas and protein-processing plants. We discuss potentials, limitations, and future development areas of this approach.

How to cite: Teixeira, E., Leduc, S., Tiwari, S., Kraxner, F., Guo, J., McNally, S., Yao, R., Yang, X., Johnstone, P., Sowersby, T., Edmonds, R., Maley, S., Sood, A., Bristow, J., and Moot, D.: Simulating future Food Value Chain components through the integration of biophysical and techno-economic spatial models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20927, https://doi.org/10.5194/egusphere-egu24-20927, 2024.

Particulate matter (PM) originating from agricultural practices poses a significant concern due to its potential adverse effects on the environment and human health. PM is typically categorized into two primary classes based on the particle size: PM10 (with an aerodynamic diameter of ≤ 10 µm) and PM2.5 (with an aerodynamic diameter of ≤ 2.5 µm).

The concentration of PM in the atmosphere is a crucial parameter determining air quality in both urban and rural areas. Numerous studies have demonstrated that short-term PM exposure is harmful to the respiratory and cardiovascular systems, highlighting a relationship between air particle pollution and hospital admissions due to respiratory and cardiovascular diseases.

In Italy, PM concentration is monitored daily, and public administrations have set a specific atmospheric concentration threshold equal to 40 µg m-3 and 25 µg m-3 for PM10 and PM 2.5 respectively.

PM pollution is also highly present in rural and agricultural areas. Estimates suggest that agricultural activities contribute approximately 17% and 3% to global PM10 and PM2.5 emissions, respectively. Primary PM emissions from agricultural activity arise from animal husbandry and open-field crop operations, including land preparation, field fertilization, and crop management.

In this context it is of crucial importance to understand and quantify PM emissions from agricultural activity, directing efforts towards the choice of a proper micrometeorological model to assess reliable emission rates.

This study aimed to measure PM10 emissions from three different field fertilization strategies: liquid slurry injection and two types of synthetic fertilizer spreading (potassium chloride - KCl and superphosphate - P2O5). The experiment was carried out on a farm located in Carmagnola (Province of Turin, Northern Italy) in a maize-cultivated soil. The selected field was divided into two main plots, which differed in the soil tillage technique, having one ploughed and one strip-tilled plot. The main plots were divided into three sub-plots, corresponding to the different fertilization strategies.

PM10 concentration was measured during each tractor passage using a PM monitor (TSI, DustTrackTM II model 8530), and emission factors (EFs) were assessed with the backward Lagrangian stochastic model, by using a 2D sonic anemometer to monitor the wind field.

Experimental results revealed significant variations in PM10 emission among the different field fertilization strategies. The average EFs were significantly (P<0.05) higher for liquid slurry injection (72.63 mg m-2) compared to KCl (0.43 mg m-2) and P2O5 (2.6 mg m-2) spreading.

How to cite: Dela Pierre, F., Rollé, L., and Dinuccio, E.: Assessment of PM10 emissions from agricultural field fertilization, comparison between mineral fertilizer and animal slurry spreading operations., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9517, https://doi.org/10.5194/egusphere-egu24-9517, 2024.

EGU24-12673 | Posters on site | BG8.11 | Highlight

Quantification of methane emissions from outdoor manure storage tanks using the tracer dispersion method. 

Nathalia Thygesen Vechi and Charlotte Scheutz

Methane (CH4) emissions from outdoor manure storage tanks, from cattle and pig production, are complex and difficult to predict, therefore, the development of methods to monitor these emissions is needed. The mobile tracer gas dispersion method (TDM) has been used to quantify CH4 emissions from entire facilities and can be used to discriminate emissions from different operations within a farm, although challenged by road limitations. To increase the use and flexibility of the TDM in quantification of CH4 manure tank emissions, an alternative is to instead of measure concentrations using a mobile platform, the CH4 and tracer gas concentrations can be sampled by using stationary sampling points. In this method (stationary TDM), a few parameters need to be examined to decrease the error in the emission quantification, for example, by considering the position of the sampling points within in the measured concentration plume. In comparison, by following methods’ best practices, the stationary TDM produced results like the mobile TDM, with relative errors of approximately 5 and 7%, respectively (Vechi & Scheutz, 2023). 

The mobile and stationary TDM methods were further used to quantify CH4 emissions from outdoor manure tanks at pig and cattle farms and identify the factors affecting these emissions. Quantifications (6 to 14 measurements per tank) were done over several months, covering the entire year. In total, eight tanks were investigated, two of them stored cattle manure and six stored pig manure. The manure tanks measured emissions varied from 0.01 to 14.3 kg h−1, which when normalized by the amount of manure stored corresponded to a range of 0.01 to 11.0 g m−3 h−1. In a yearly average, cattle farm manure tanks emitted 0.63 ± 0.09 g m−3 h−1, while pig emissions were higher, averaging 1.56 ± 0.93 g m−3 h−1 (Vechi et al., 2023). Seasonal variation patterns were clear and similar among the different tanks, with emissions peaking between July to September and lower during winter and spring. The manure temperature was a significant factor correlated to the CH4 emission fluctuations, followed by type of manure stored (cattle or pig) and tank cover (covered and uncovered). When comparing the amount of CH4 emissions from the outdoor storage tanks to emissions from the entire farm, emissions from cattle manure tanks corresponded to 14 % of the total farm emissions, whilst, in pig farms, outdoor manure tanks covered from 21 to 64 % of the total emissions. There was a large variability in CH4 emissions among pig manure storage tanks, likely caused by different management practices. To support further investigation, other factors such as microbial and chemical composition, combined with emissions quantification by TDM, which showed to be a simple and reliable method for CH4 emissions measurements from manure storage tanks.

 

References:

 

Vechi, N. T., & Scheutz, C. (2023). Measurements of methane emissions from manure tanks, using a stationary tracer gas dispersion method. Biosystems Engineering.

Vechi, N. T., et al. (2023). Methane emission rates averaged over a year from ten farm-scale manure storage tanks. Science of the Total Environment.

How to cite: Thygesen Vechi, N. and Scheutz, C.: Quantification of methane emissions from outdoor manure storage tanks using the tracer dispersion method., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12673, https://doi.org/10.5194/egusphere-egu24-12673, 2024.

To address the growing demand for environmental and animal-friendly housing with outdoor space, there is a need for reliable techniques to quantify gaseous emissions. However, there is limited research on measurement methods to determine gaseous emissions from these housing systems. Therefore, this study focuses on developing measurement techniques to assess gaseous emissions from a novel concept of a welfare-friendly pig housing system with an outdoor run in the Netherlands. This concept employs measures like an optimal pen design and a daily excreta removal system where urine and faeces are directly separated. Within this concept new-born piglets stay in the same pen until slaughter weight is reached, promoting better excretion behaviour. The outdoor yard is designed with both slatted and solid flooring, aiding pigs in distinguishing between excretion and lying areas. This design feature is intended to contribute to the reduction of emissions and enhance animal welfare.

In the current study, to measure emissions and assess the potential for emission reduction, diverse techniques are outlined. Measurements are conducted at both barn and pen levels, employing the micro-meteorological technique coupled with inverse dispersion modeling, and N (and P/K) balance methods at the barn level. The micro-meteorological method measures gas concentrations upwind and downwind as well as the wind parameters, utilizing a modelling approach, i.e. the backward Lagrangian stochastic model, emission rates are computed. The N (and P/K) balance method estimates nitrogen emissions by measuring inputs, animal discharge, and nitrogen content in feces and urine during a balance period. At the pen level, local measurements are conducted to identify sources of ammonia emissions and quantify the emissions from the surface source by using an enclosure method, the fast box measurement system. The urine composition of all pig categories is assessed for NH4-N and urea-N content, as well as pH, through the collection of fresh urine. Urease activity on the solid floor inside and outside the pig house is determined using standard methods. Ammonia emissions from the urine-contaminated solid floor and solid floor with straw are measured at various temperatures and air velocities in the measurement box. Additionally, the urine-soiled area of the inside and outside solid floor, along with the frequency of urine discharges in different locations of the pen is determined using (heat) cameras. This information is then utilized to calculate ammonia emissions through an existing model.

The study comprises two phases: development and optimization, followed by implementation. Overall, this research aims to formulate a protocol for emission measurements and determination of the emission factors, contributing to a more comprehensive understanding of emissions from pig housing systems with an outdoor run, and promoting more sustainable and eco-friendly housing systems.

How to cite: Sefeedpari, P., Xie, F., and Aarnink, A. J. A.: Determining Gaseous Emissions from a Novel Pig Housing System with Outdoor Space: Comparison of Different Measurement Approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15496, https://doi.org/10.5194/egusphere-egu24-15496, 2024.

EGU24-15965 | Posters on site | BG8.11

Continuous monitoring of ammonia (NH3) concentrations with Cavity Ring-Down Spectroscopy 

Magdalena E. G. Hofmann, Jan Woźniak, Peter Swinkels, Siqin He, and Keren Drori

Ammonia is a hazardous air pollutant with detrimental impacts on both health and the environment. The primary sources of NH3 emissions into the atmosphere are associated with agricultural activities and processes, including fertilizer utilization, decomposition of organic matter, and animal excretions. The characterization and quantification of NH3 emissions in livestock environments are pivotal to comply with regulations and in assessing mitigation options. However, accurate monitoring of NH3 emissions can be challenging due to the high reactivity of NH3 and its tendency to adsorb to surfaces.

Here we present performance data for two new Cavity Ring-Down Spectroscopy (CRDS) ammonia analyzers that allow to accurately determine ammonia concentrations over a wide dynamic range: The SI2103 analyzer is the successor of the G2103 analyzer and the ideal solution for air quality monitoring at ambient concentrations as well as close to ammonia sources, and the newly released G2509 analyzer is the ideal solution to monitor ammonia concentrations along with CO2, CH4 and N2O.

Key features of the SI2103 and the G2509 are: (i) excellent response time, (ii) low calibration requirements, (iii) field deployable, (iv) negligible interference (‘interference-free’) [1] , (v) long term unattended operation, and (vi) the possibility to measure multiple species. We will compare the performance of the SI2103 and the G2509 and discuss best practices for accurately measuring ammonia concentrations.

[1] Kamp, J. N., Chowdhury, A., Adamsen, A. P. S. & Feilberg, A. Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy. Atmos. Meas. Tech. Discuss. 1–20 (2019). doi:10.5194/amt-2018-377

How to cite: Hofmann, M. E. G., Woźniak, J., Swinkels, P., He, S., and Drori, K.: Continuous monitoring of ammonia (NH3) concentrations with Cavity Ring-Down Spectroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15965, https://doi.org/10.5194/egusphere-egu24-15965, 2024.

Gaseous emissions from slurry storage tanks represent significant environmental and climate challenges. Accurate measurements of these emissions are essential for understanding their impact and developing effective mitigation strategies. However, measuring emissions of methane, ammonia, and nitrous oxide from full-scale slurry storage tanks can be challenging and it is practically impossible to obtain replicate measurement of the same slurry or test treatments under identical conditions.

To overcome this challenge, Computational Fluid Dynamics (CFD) modeling was used to investigate suitable dimensions for small-scale tanks. A tank diameter of 2.4 m and a height of 1 m was found suitable for emission measurements. As a method for measuring the emissions the Micrometeorological Mass Balance (MMB) method, where concentration and wind speed is measured at multiple heights above the tank, is a promising candidate as it has been proven to work on full-scale tanks for methane (Kariyapperuma et al., 2018; Park et al., 2010).

The plan was to validate the use of MMB on the small-scale tank while measuring in parallel with the backward Lagrangian Stochastic (bLS) method that have previously been used on full-scale slurry tanks (Lemes et al., 2022). Concurrent measurements with MMB and bLS were not useful as the concentration differences used for bLS were too small to estimate emissions. The measurement on pig slurry showed MMB emissions for methane and ammonia comparable to baseline emission in a recent review (Kupper et al., 2021), but the concentration response for ammonia indicated that it is questionable using a closed path instrument to measure ammonia emissions with MMB. In another validation experiment with IDM and MMB a known quantity of gas was released from a grid with 24 critical orifices inside the small-scale tank. In this case, bLS had a good recovery whereas MMB did not. The discrepancy was likely caused by the gas being released from discrete points and not uniformly from the entire surface. In a third validation experiment, MMB was compared to the Tracer Gas Method (TGM), where a known quantity of gas was released at three positions just below the slurry surface. The TGM and MMB emissions from methane agreed well in some intervals, but differed greatly in others, highlighting the challenges of measuring emissions from a small tank.

The observed issues emphasize the complexity of validating emissions from small-scale slurry tanks. Downscaling the tank also downscales emissions, which can be an issue using some methods and thereby making it difficult to do cross validation with different methods in parallel.

Downscaling provides opportunities to investigate natural variations and emissions of different slurry types under the same weather conditions in replicates, but the choice of an appropriate micrometeorological method is a complex challenge. 

References:
Kariyapperuma et al.: Agric. For. Meteorol., 258, 56–65, doi:10.1016/j.agrformet.2017.12.185, 2018.
Kupper et al.: Biosyst. Eng., 204, 36–49, doi:10.1016/j.biosystemseng.2021.01.001, 2021.
Lemes et al.: ACS Agric. Sci. Technol., 2(6), 1196–1205, doi:10.1021/acsagscitech.2c00172, 2022.
Park et al.: Agric. For. Meteorol., 150(2), 175–181, doi:10.1016/j.agrformet.2009.09.013, 2010.

How to cite: Kamp, J. N. and Feilberg, A.: Absolute emissions from slurry storage tanks with micrometeorological methods: Challenges of downscaling and method validation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17263, https://doi.org/10.5194/egusphere-egu24-17263, 2024.

EGU24-17745 | Posters on site | BG8.11

Hydrogen sulphide in a fattening pig barn operated with inhouse acidification 

Thomas Kupper, Alex C. Valach, Mathias Juch, and Thomas Bachmann

With in-house acidification treatments, the pH value of slurry is reduced to a target level of approximately 5.5. It is a promising option for ammonia emission abatement since an emission reduction can be achieved over the entire manure chain which includes housing, manure storage and application. Acidification is done through addition of sulfuric acid (H2SO4) to slurry in a reactor outside of the livestock housing. The acidified slurry is returned to the channels in the house. The excretions of the animals immediately end up in an acidified environment where the equilibrium between NH4+ and NH3,l is shifted towards NH4+. Through the addition of H2SO4, further sulphur is available which can be potentially converted to H2S. This induces concerns for enhanced formation of H2S that is highly toxic to humans and animals. Long-term workplace exposure limits given as 8-h time-weighted averages is 5 ppm with a 15 min exposure threshold of 10 ppm in the EU. The aim of this study is to present data from H2S concentration measurements in a fattening pig housing with 400 animal places in 16 pens littered with straw pellets with a partly slatted floor before and after installation of an in-house acidification method.

In 2021, H2S concentrations were measured in the barn using portable gas detectors "PAC 6500 and Multiwarn II" from Dräger and with electrochemical sensors (range of 0.1 - 100 ppm). Four measurement campaigns were conducted. One of them was conducted before the acidification was operative and three campaigns with acidification in summer and winter with and without ventilation of the slurry channels. The number of measurement periods was 5 for the reference measurement and 6 to 14 for the measurement with acidification. The duration of a measurement period was 10 to 104 min, with less than 20 min occurring only in the summer campaign with 14 measurement periods.

H2S was exclusively detected when channels were flushed. Outside of periods with flushing, H2S concentrations were below the detection limit of 0.1 ppm. The maximum average over 15 minutes value was 20.2 ppm which was obtained without acidification. With slurry acidification, no exceedance of the 15 Min threshold of 10 ppm occurred, as the maximum H2S concentration was 4.8 ppm. Overall, the mean H2S concentrations with slurry acidification (0.14 ppm) were lower than without acidification (1.44 ppm). The mean values of measured H2S concentrations in winter (0.16 ppm) were higher than in summer (0.06 ppm) due to higher barn ventilation rate in summer. The use of the ventilation system in slurry channels reduced H2S concentrations to 0.16 ppm compared to 0.30 ppm without ventilation. This can be explained by the inhibition of sulfate reduction by microorganisms at a pH of 5.5.

Overall, in-house slurry acidification did not enhance H2S concentrations in the investigated pig barn which agrees with previous studies.

How to cite: Kupper, T., Valach, A. C., Juch, M., and Bachmann, T.: Hydrogen sulphide in a fattening pig barn operated with inhouse acidification, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17745, https://doi.org/10.5194/egusphere-egu24-17745, 2024.

EGU24-18101 | ECS | Posters on site | BG8.11 | Highlight

Ammonia emission measurements from agricultural and industrial structures using an inverse dispersion method accounting for deposition loss 

Alex Valach, Christoph Häni, Marcel Bühler, Joachim Mohn, Sabine Schrade, and Thomas Kupper

Ammonia emissions produce negative environmental and human health impacts with largest emissions originating from agriculture. Especially in countries with high livestock density, the majority originate from animal housing and application to fields. Measuring total emissions from multiple heterogenous source structures such as farms and waste treatment facilities can be challenging due to losses from transport, deposition, and chemical transformation. Previous studies have shown that quantifying net fluxes at this scale can be achieved by combining concentration measurements up- and downwind of the structures with inverse dispersion modelling to calculate the emissions from a defined source area. However, this method underestimates total emissions, as it does not account for deposition loss, which must be modelled and can introduce large uncertainties (<40%).

Here we present results from several emission measurements of ammonia from cattle housing and the first such measurements from a wastewater treatment plant in Switzerland using miniDOAS concentrations and a backward Lagrangian Stochastic model. Instead of applying a complex resistance model which relies on parameterizations with high uncertainties, we instead constrained the upper and lower limits of deposition loss to correct the modelled emissions using a simplified resistance approach. Compared with a reference in-house tracer ratio method conducted at the dairy housing, mean corrected emissions differed <20 %, while the overall uncertainty of the corrected emissions was approx. 25%.

Reducing the high uncertainty of deposition corrections for the inverse dispersion method will promote its application to determine emission factors from buildings. Moreover, it will improve capabilities to assess and implement much needed emission reducing methods on farms and industrial plants.

How to cite: Valach, A., Häni, C., Bühler, M., Mohn, J., Schrade, S., and Kupper, T.: Ammonia emission measurements from agricultural and industrial structures using an inverse dispersion method accounting for deposition loss, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18101, https://doi.org/10.5194/egusphere-egu24-18101, 2024.

EGU24-19295 | Posters on site | BG8.11

Floor heating and heat exchanger as an ammonia mitigation technique for broiler housing 

Stefan Gfeller, Alex C. Valach, Christoph Häni, Simon Bowald, and Thomas Kupper

Ammonia (NH3) volatilization from broiler housings is an increasing source of ammonia emissions due to the growing demand of chicken meat. Since modern broiler housings represent mostly larger operations with several thousands of animals, deposition of NH3 in nearby natural or semi-natural ecosystems can be significant and often exceeds critical levels for reactive nitrogen. Therefore, mitigation techniques for NH3 volatilization are crucial. Emissions are strongly influenced by the consistence and the moisture of the litter. Techniques which keep the litter dry such as floor heating and heat exchangers are promising options.

We conducted a campaign over an entire production cycle at a farm with parallel emission measurements at two identical broiler housings with 9000 animals each. One building had no mitigation techniques and served as reference, while the other one was operated with floor heating and a heat exchanger (FH-HE). The production cycle in each housing was slightly offset with the Ref cycle lasting from 30th of October until 1st of December 2023 and the FH-HE cycle from 2nd of November until 6th of December 2023. We measured the inflow concentrations of NH3 and CO2 at each of the six air inlet channels and at all of the outlets (3 at the Ref and 4 at the FH-HE housings) using Dräger X-node sensors. The air exchange rate was determined with measuring fans placed at all of the outlets. After the measurement campaign, all sensors were exposed side by side in a nearby cattle barn during 20 days for intercomparison and subsequent correction of the individual sensors.

In-house concentrations ranged up to 18 ppm for Ref housing and up to 5 ppm for the FH-HE housing. Highest concentrations and emissions were measured at the end of the production cycle. The emissions over the entire production cycle was 16.9 kg NH3 (Ref) and 1.8 kg for the FH-HE. The emissions were lower by a factor of approximately 9 for the FH-HE house as compared to the Ref. The litter was considerably drier in the FH-HE housing presumably due to the floor heating and the lower ventilation rate which was possible due the heat exchanger, which also led to a lower relative humidity. Additional measurement campaigns covering the winter and the summer seasons will include additional analyses of the moisture content and chemical composition of the litter to further elucidate the emission reduction achieved by the FH-HE. The absolute emission numbers of the present campaign will be evaluated based on an intercomparison with a wet chemical method. The ventilation rate based on a CO2 balance calculation will be compared with the ventilation rate determined from the measuring fans. It will also be analyzed whether a simpler measurement setup based on fewer sensors can be employed to optimize the acquisition of reliable measurement data at reduced costs.

How to cite: Gfeller, S., Valach, A. C., Häni, C., Bowald, S., and Kupper, T.: Floor heating and heat exchanger as an ammonia mitigation technique for broiler housing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19295, https://doi.org/10.5194/egusphere-egu24-19295, 2024.

EGU24-21998 | ECS | Posters on site | BG8.11

Fucosidase as a feed additive to influence methane emission from pig slurry 

Ali Heidarzadeh Vazifehkhoran and Michael Jørgen Hansen

This study was carried out to investigate the impact of fucosidase as a feed additive on mitigation of methane emission from fresh pig slurry in reactors mimicking housing and storage conditions. The study contained three treatment groups where fucosidase was added to the pig diets, 1) for two weeks after weaning, 2) for seven weeks after weaning, and 3) from weaning until slaughter. The treatments were compared to a control group without fucosidase. Fresh urine and feces were collected from three pigs in each treatment group at a bodyweight of ca. 30, 70, and 100 kg. Fresh feces and urine were added every second day to the housing reactors and after four weeks the slurry was moved to the storage reactors and kept at 15°C for twelve weeks. Cavity ring-down spectroscopy (CRDS) was used to measure methane concentration in the headspace air of the reactors. The results showed that there was no clear effect of the treatments at 30 and 70 kg. However, at 100 kg there was a significantly lower emission from the treated groups compared to the control. In the storage reactors there was no significant effect of the treatments. In conclusion, fucosidase as a feed additive can influence the methane emission from slurry under in-vitro conditions, but more research is needed to investigate the effect of dosage and if the same results can be obtained under real housing conditions.

How to cite: Heidarzadeh Vazifehkhoran, A. and Hansen, M. J.: Fucosidase as a feed additive to influence methane emission from pig slurry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21998, https://doi.org/10.5194/egusphere-egu24-21998, 2024.

EGU24-22103 | Posters on site | BG8.11 | Highlight

Modelling and measuring aerobic and anaerobic carbon loss from pig slurry storage 

Frederik Dalby, Sasha D Hafner, Anders Feilberg, Herald Wilson Ambrose, and Anders Peter Adamsen

Greenhouse gas emission from liquid livestock manure storage is a considerable contributor to global warming and accurate farm-scale models for predicting emission are needed for estimating effects of manure management strategies. In this study we measured degradation of organic matter components of pig slurry with anaerobic and aerobic manure surface and at 10℃ and 20℃. Simultaneously, methane and carbon dioxide emission were measured and carbon emission from both anaerobic and aerobic processes was determined. Carbon dioxide loss due to surface respiration, did not limit methane emission during the incubation experiment at 10℃ and 20℃, but limited production of methane during subsequent anaerobic digestion at 38℃. Surface respiration rates varied between 10 - 80 g CO2 m-2 day-1 and temperature dependent rate equations describing surface respiration was implemented in a farm-scale methane emission model (ABM). ABM simulations suggested that ca. 10% of carbon loss from typical slaughter pig barns and < 2% from outdoor pig manure storage was as carbon dioxide from surface respiration. Simulations also indicated that slurry filling level and seasonal variation in temperature considerably influenced methane to carbon dioxide emission ratio. This combined experimental and modelling study suggest that farm-scale models must reflect carbon loss from both aerobic and anaerobic process to accurately capture carbon emission dynamics and the farm-scale greenhouse gas emission.

How to cite: Dalby, F., Hafner, S. D., Feilberg, A., Ambrose, H. W., and Adamsen, A. P.: Modelling and measuring aerobic and anaerobic carbon loss from pig slurry storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22103, https://doi.org/10.5194/egusphere-egu24-22103, 2024.

EGU24-59 | ECS | Posters virtual | BG8.13

Scaling relations between leaf and plant water use efficiencies in rainfed Cotton – Role of environmental and biophysical parameters 

Syam Chintala, Arun rao karimindla, and Phanindra kbvn

Water use efficiency (WUE) relates two important processes of the plant atmosphere continuum namely net carbon assimilation (via photosynthesis) and water utilization (via evapotranspiration). Our desire to trade-off WUE between accurate measurement at leaf level (WUEL) and effective implementation at plant level (WUEP) demands accurate scaling relations. Conventional mid-day, fully expanded, single-leaf measurements of WUEL are found to be poorly correlated with WUEP, thus questioning the applicability of scaling relations. This research is aimed at obtaining optimal time-window and leaf canopy position to characterize and upscale WUEL for effective field level implementation. Leaf gas exchange parameters were monitored in a rainfed Cotton field at five canopy positions for one crop cycle, and further correlated with WUEP considering individual measurements as well as their spatial averages. Optimal time-window showing highest correlation with WUEP has occurred during 15:00 to 16:00 hours irrespective of canopy leaf position and growth stage. Deviation with mid-day measurements of WUEL low during boll bursting stage (7.38 ± 4.69 %) and high during germination and seedling emergence stage (17.27 ± 5.37 %). These changes are largely attributed to stomatal regulation of water vapour via unregulated water stress conditions. Scaling relations between WUEL and WUEP are linear with correlation strengths ranging from 0.52 (west bottom) to 0.80 (plant top). At leaf level, WUE is controlled by variations in photosynthetic photon flux density (ρ = 0.80) and vapour pressure deficit (ρ = 0.78), whereas at plant level, WUE is controlled by relative humidity (ρ = 0.77) and net solar radiation (ρ = 0.85). Our findings can help in developing alternate water management strategies to improve WUE in rainfed Cotton fields of tropical humid climate.

How to cite: Chintala, S., karimindla, A. R., and kbvn, P.: Scaling relations between leaf and plant water use efficiencies in rainfed Cotton – Role of environmental and biophysical parameters, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-59, https://doi.org/10.5194/egusphere-egu24-59, 2024.

EGU24-1265 | Posters on site | BG8.13

Pioneering Direct Flux Measurements for Immediate Societal Benefits: Latest Tools, Developments, and Community of Practice 

George Burba, Stefan Metzger, and CarbonDew Community

The Carbon Dew Community of Practice is an international non-profit representing carbon and climate experts from over 160 organizations. Our vision is to anchor fair and equitable climate solutions in direct atmospheric measurements of GHG transfers to or from the atmosphere. Our mission is to facilitate technology transfer by providing a medium for public and private entities to work together towards common goals. We strive to translate surface-atmosphere science into real-world impacts and innovate industry practices with the best available science. To achieve this, we support the integration and coordination of existing capabilities and resources for enhancing the measurement and quantification of GHG emissions and removals.

Initial Endeavors:

  • Formation of a well-rounded community representing all pertinent stakeholders and experts in climate solutions and GHG emissions trading.
  • Launching collective contributions to workshops and conferences aimed at educating on the significance of direct GHG measurements for equitable climate solutions and emissions trading.
  • Collaborative creation of responses to government policy and funding proposals, co-authoring publications, and piloting projects to test the efficacy of specific methodologies.
  • Future phases will involve efforts towards comprehensive recommendations or protocols, ensuring a balance across environmental, economic, financial, and regulatory aspects to achieve practical and fair climate solutions globally.

Key Stakeholders:

  • Natural and managed ecosystems contributing to global-scale carbon sequestration and storage services.
  • Growers, ranging from small-scale farmers to large farm corporations, with substantial potential for reducing carbon emissions.
  • Industries across food, oil, and gas sectors, holding significant potential for carbon emission reduction.
  • Municipalities and local governments empowered to curtail carbon emissions through regulations and community-focused incentives.
  • For-profit entities like financial consultants, carbon traders, and tech innovators capable of incentivizing emission reduction while generating profits.
  • National governments and global non-profits serving as regulators and facilitators to drive societal improvements and incentivize emission reduction.

This presentation offers a progress report on the latest available tools and other developments in practical technology transfer of flux tools from academia to wider society, the latest adoption examples from FAO to the oil and gas sector, and a progress report on the latest activities by the CarbonDew Community.

How to cite: Burba, G., Metzger, S., and Community, C.: Pioneering Direct Flux Measurements for Immediate Societal Benefits: Latest Tools, Developments, and Community of Practice, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1265, https://doi.org/10.5194/egusphere-egu24-1265, 2024.

EGU24-1551 | Orals | BG8.13

Progress in forecasting carbon, water and energy fluxes in improved and degraded pastures: data-model comparison near Sydney Australia  

Elise Pendall, Juergen Knauer, Nick Wright-Osment, Catriona Macdonald, Craig Barton, Manju Chandregowda, Sally Power, and Belinda Medlyn

Livestock grazing contributes to greenhouse gas (GHG) emissions, soil degradation and erosion, and loss of biodiversity. Regenerative pasture management includes improvements such as sowing high-diversity seed mixtures with legumes and other deep-rooted forbs in addition to C3 and C4 grasses, alternating intensive grazing with rest periods, bio-based fertilizers, etc. These improvements may alleviate degradation and restore multiple ecosystem services, including soil carbon sequestration and heat wave mitigation. Predictive understanding of management impacts requires process-based models that accurately simulate herbaceous growth and allocation in response to grazing and irrigation events. Moreover, accurate and timely model forecasts depend on well-validated data collected at appropriate temporal and spatial scales, delivered with low latency.

We used four years of eddy covariance data in combination with vegetation indices and a process-based model to improve estimates of Net Ecosystem Production (NEP) and energy balance in response to livestock and wildlife grazing in an area with fluctuating soil moisture availability. The enhanced vegetation index (EVI) for the degraded pasture, grazed mainly by native wildlife (kangaroos), demonstrated wide seasonal variations of 0.2 to 0.6, whereas EVI was maintained more consistently close to 0.5 for an improved pasture, grazed intermittently by cattle or sheep. Across three wet years, NEP for the improved pasture averaged 12% higher compared to the degraded one (153 vs. 137 g C m-2 y-1), associated with average 20% greater gross primary production (GPP; 1822 vs. 1521 g C m-2 y-1). However, NEP on the improved pasture was lower than on the degraded pasture in two of those three years, possibly due to grazing-related differences in biomass removal. Sensible heat fluxes were higher from the degraded pasture, especially during hot/dry periods. Ongoing analyses are evaluating soil C storage for benchmarking flux data. Model predictions are also being improved by validating representation of productivity by C3 and C4 species and carbon allocation to roots and crowns. This work contributes to enhancing environmental sustainability in managed grasslands with near-real-time forecasting ability for grazing and irrigation management.

How to cite: Pendall, E., Knauer, J., Wright-Osment, N., Macdonald, C., Barton, C., Chandregowda, M., Power, S., and Medlyn, B.: Progress in forecasting carbon, water and energy fluxes in improved and degraded pastures: data-model comparison near Sydney Australia , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1551, https://doi.org/10.5194/egusphere-egu24-1551, 2024.

EGU24-1654 | ECS | Orals | BG8.13 | Highlight

The eLTER Research Infrastructure: Current Network Design and Fitness for Research Challenges 

Thomas Ohnemus, Thomas Dirnböck, Veronika Gaube, Hannes Mollenhauer, Jaana Bäck, Michael Mirtl, and Steffen Zacharias

The distributed Integrated European Long-Term Ecosystem, critical zone and socio-ecological Research Infrastructure – eLTER RI – comprises ecosystem research sites and socio-ecological research platforms. The in-situ facilities are designed to measure standardized observation variables for each of the five ecosystem spheres – sociosphere, atmosphere, hydrosphere, geosphere, biosphere. Optimisation of the spatial distribution of in-situ facilities within a research infrastructure is often based on analyses of transferability or representativity revealing under-, well or overrepresented conditions and locations. However, these current conditions shift dramatically due to Global Change, posing fundamental research challenges. For eLTER RI, land use change (LUC) and climate change manifesting as climatic pressures on ecosystems were identified as important emerging research challenges.

Therefore, we investigated both the current coverage of environmental and socio-ecological gradients by the eLTER RI as well as its fitness for research challenges. To investigate the current state, we (i) conducted a survey to describe the emerging eLTER RI and (ii) identified the most critical gaps in its coverage of six Reference Parameters. To investigate the suitability of the eLTER RI to address the two key research challenges, we iii) derived metrics that reflect said research challenges, iv) estimated eLTER RI’s fitness for these future research challenges, and v) compared the eLTER RI's coverage of current environmental and socio-ecological gradients with its fitness for future research challenges. Finally, we vi) derived recommendations for the further development of the eLTER RI.

In its current state, three distinct geospatial gaps were identified: the Iberian Gap, the Eastern Gap, and the Nordic Gap. These gaps resulted mainly from the underrepresentation of agricultural lands, regions with low economic density, mesic and dry regions as well as the Mediterranean, Continental and Boreal biogeoregions. The patterns of underrepresentation appeared to be driven by access to funding resources. Several sites that responded to the survey but do currently not fulfil the infrastructural requirements of the eLTER RI bear potential to contribute to gap closure. Additionally, incorporating research facilities from other research infrastructures or monitoring networks into the eLTER RI could cost-efficiently counteract gaps. Regarding the fitness for research challenges, the derived metrics depicted the relevant research challenges well and spatial patterns of the emerging research challenges were consistent between scenarios. The eLTER RI covers all facets of emerging research challenges, but is tremendously spatially biased. Climatic hotspots regarding biotemperature and the seasonality of water availability will be overemphasised by the eLTER RI, while precipitation and LUC hotspots are underrepresented. Gaps that were assumed to be stable for a variety of potential futures manifested in the Southern Iberian Peninsula, Poland, Finland, Sweden and Norway.

Closing gaps regarding the current coverage of environmental and socio-ecological gradients is of highest priority for the spatial network development. Primarily, regions where overlap to gaps in the Fitness for Research Challenges exists should be targeted. Consequently, this work suggests that the development of the eLTER RI and other research infrastructure should be adapted based on current and anticipated future conditions, since the spatial design can and should be optimised for both simultaneously.

How to cite: Ohnemus, T., Dirnböck, T., Gaube, V., Mollenhauer, H., Bäck, J., Mirtl, M., and Zacharias, S.: The eLTER Research Infrastructure: Current Network Design and Fitness for Research Challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1654, https://doi.org/10.5194/egusphere-egu24-1654, 2024.

EGU24-2039 | Orals | BG8.13 | Highlight

Harmonizing Data Across Continents and Networks to Address Ecological Drought 

Henry W. Loescher, Michael SanClements, Jaana Bäck, Tommy Borman, Gregor Feig, Mark Grant, Werner L. Kutsch, Christine Laney, Paula Mabee, Michael Mirtl, Beryl Morris, Timothy Ohlert, Benjamin Ruddell, Alex Siggers, Melinda Smith, Pamela Sullivan, Xiubo Yu, and Steffen Zacharias

Despite the influence of drought on ecosystem functions and human well-being, there are significant uncertainties in our understanding of the impacts of drought for ecosystems and humanity. Over the past decade, large Environmental Research Infrastructures (ERIs) have been implemented around the world to advance our understanding in the responses of the biosphere to environmental change. These emergent ERIs now provide a unique opportunity to advance our understanding of ecological processes, such as drought, across continents, decades, and disciplinary boundaries. Against this backdrop, 6 ERIs (SAEON/South Africa, TERN/Australia, CERN/China, NEON/USA, ICOS/Europe, eLTER/Europe) have established an international network-to-network collaboration – the Global Ecosystem Research Infrastructure (GERI). To date, GERI activities have focused on garnering support, establishing baseline pathways for communications across continents and cultures and an initial mapping of each ERI’s data availability to facilitate future research. 

With recent funding from a U.S. National Science Foundation AccelNet award, GERI is poised to begin harmonizing key drought-related data. Working with stakeholder partners in the The Drought-Net Research Coordination Network’s and International Drought Experiment, we have identified key baseline data products for harmonization capable of driving new discoveries across continents. These data include soil moisture, precipitation, soil texture, and aboveground biomass, water balance, etc. As we advance this project, these harmonized data will be open, findable, searchable, and accessible, and made available to the broader community for research and discovery and stakeholder networks including the International Drought- Network to test and model. Data contributions from these new and emerging networks will be encouraged and streamlined through accessible metadata and standards. Lessons learned from the intersection of global drought data will be applied to the expanding set of environmental data collected by research networks around the world.

How to cite: Loescher, H. W., SanClements, M., Bäck, J., Borman, T., Feig, G., Grant, M., Kutsch, W. L., Laney, C., Mabee, P., Mirtl, M., Morris, B., Ohlert, T., Ruddell, B., Siggers, A., Smith, M., Sullivan, P., Yu, X., and Zacharias, S.: Harmonizing Data Across Continents and Networks to Address Ecological Drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2039, https://doi.org/10.5194/egusphere-egu24-2039, 2024.

EGU24-6214 | ECS | Orals | BG8.13

Advances in Urban Greenhouse Gas Monitoring: Integrating Slow-Response Atmospheric Towers and Wavelet-Based Techniques for Flux Measurements and Attribution 

Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, Matthias Mauder, Bernard Heinesch, Jonathan Bitton, and Michel Ramonet

Global surface temperatures continue to rise, with projections indicating over 2°C warming by 2100, primarily attributed to anthropogenic greenhouse gas emissions. Urban areas, responsible for 70% of global emissions, are focal points for climate change mitigation. The PAUL Cities project aims to monitor emissions reduction in megapoles. Current monitoring infrastructures like ICOS focus on atmospheric, oceanic, and ecosystem measurements. This study explores the potential of using slow-response analyzers on tall atmospheric towers for Eddy Covariance flux computations, addressing technical challenges and height-induced complexities. Additionally, a novel wavelet-based method is proposed for attributing fluxes to biogenic and anthropogenic sources, using carbon monoxide as a distinctive tracer. Results from sites near Paris demonstrate the feasibility and versatility of these approaches, offering valuable insights for urban emission monitoring strategies worldwide.

How to cite: Herig Coimbra, P. H., Loubet, B., Laurent, O., Bignotti, L., Lozano, M., Mauder, M., Heinesch, B., Bitton, J., and Ramonet, M.: Advances in Urban Greenhouse Gas Monitoring: Integrating Slow-Response Atmospheric Towers and Wavelet-Based Techniques for Flux Measurements and Attribution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6214, https://doi.org/10.5194/egusphere-egu24-6214, 2024.

EGU24-7413 | Orals | BG8.13

Addressing forest canopy decoupling in eddy covariance flux measurement networks 

Georg Jocher, Natalia Kowalska, Heping Liu, Sonia Wharton, Leonardo Montagnani, and Dario Papale

The eddy covariance (EC) method is the standard technique for determining forest ecosystem-atmosphere turbulent exchange, however, it encounters a significant challenge: the air masses below the canopy often become decoupled from the air masses above it. Consequently, the EC measurements of scalar fluxes (e.g. H2O and particularly CO2) above the canopy can be biased due to missing signals from below-canopy processes. This decoupling is strongly site dependent and influenced by atmospheric conditions, canopy properties and tower-surrounding topography. Multiple approaches have been developed in the recent decades to address decoupling (e.g. u* filtering, quality flags for flux measurements, storage change evaluations, direct advection measurements), however, all of them appeared to be insufficient to fully tackle the problem. A promising additional approach is based on subsequent EC measurements below and above the canopy. Specifically, examining the correlation of the standard deviation of vertical wind (obtained via sonic anemometers) below and above the canopy provides insight into the coupling state, as this correlation remains linear during fully coupled periods.

To date, there is no standardized approach to address decoupling yet, hence, it is commonly not explicitly considered in EC measurement networks and infrastructures such as FLUXNET or ICOS (Integrated Carbon Observation System). A specialized working group within ICOS strives for addressing this by initiating an extensive multi-site experiment. This multi-site experiment aims to i) evaluate the performance of different types of sonic anemometers below canopy for decoupling investigations, ii) explore the spatial heterogeneity of below canopy processes in relation to decoupling, iii) develop a robust procedure to integrate decoupling investigations in the standard processing of EC measurement networks.

The anticipated experimental design involves three testing sites chosen to represent a broad range of canopy characteristics. These sites consist of a deciduous broadleaf forest in flat terrain (Lanžhot, Czech Republic), a coniferous forest in mountainous terrain (Renon, Italy), and a tall evergreen needleleaf forest in moderately complex mountain-valley terrain (Wind River, USA). The working group, in collaboration with industry partners, plans to deploy approximately 30 sonic anemometers across these sites. While around 10 sonic anemometers of the same type will be installed at the Wind River site, the rest, comprising different types, will be set up at Lanžhot and Renon. Installations, arranged in an array below the canopy around the primary EC measurement tower, are scheduled to commence in spring 2024, with the goal of year-long data collection to cover all seasons.

This presentation will set the proposed experiment on a solid theoretical background, introduce the measurement design and discuss the experiment aims.

How to cite: Jocher, G., Kowalska, N., Liu, H., Wharton, S., Montagnani, L., and Papale, D.: Addressing forest canopy decoupling in eddy covariance flux measurement networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7413, https://doi.org/10.5194/egusphere-egu24-7413, 2024.

EGU24-10322 | ECS | Posters on site | BG8.13

Analysing airborne CO2 flux measurements in relation to spatiotemporal characteristics of drained fen meadows in the Netherlands with machine learning 

Laura van der Poel, Wietse Franssen, Laurent Bataille, Ronald Hutjes, and Bart Kruijt

Worldwide, peatlands have been transformed from carbon sinks to carbon sources due to years of intensive agriculture and livestock farming, requiring low water tables. In the Netherlands, emissions from drained organic soils mount up to around 3% of all national greenhouse gas emissions, and account for 4.6 to 7 Mt CO2 annually. As part of the 2019 national climate agreement, the Dutch government set a specific mitigation target for these emissions of 1 Mt per year by 2030. In light of this target, the Netherlands Research Progamme on Greenhouse gas dynamics in Peatlands and organic soils (Dutch: NOBV) investigates the efficiency of proposed mitigation measures, and aims to contribute valuable scientific findings to the politically and socially sensitive debate around this issue. The focus of our study aligns with the NOBV's objective to enhance the understanding and quantification of drivers of regional emissions.

To research regional fluxes, NOBV incorporates a new approach: Eddy Covariance (EC) measurements are taken from a low-flying ultra-light aircraft. Fluxes of CO­2, momentum, sensible and latent heat are measured, as well as meteorological variables. Weather permitting, the airborne surveys are done twice a week since 2020, over the three main fen meadow areas in the Netherlands. The crosswind, parallel flight tracks ensure that the footprints overlap, thus cover the full area. Additionally to the airborne data collection, a large EC tower network has been established with both stationary and mobile systems, encompassing 25 measurement sites.

In this study, we combine airborne and tower flux data, to make use of their different strengths: spatial heterogeneity and temporal continuity, respectively. We use footprint analysis to extract the corresponding spatial information from maps, remote sensing, and a daily soil-water information product. Using this data, we train a boosted regression tree (BRT) machine learning algorithm. Feature selection and hyperparameter tuning are applied as model optimization techniques, and subsequently Shapley values and various simulations are used to interpret the model’s outputs.

Related to the public debate and other studies on emissions from organic soils, we specifically investigate the influence of water table dynamics. A first analysis shows that during nighttime and at high incoming photosynthetically active radiation, every 10 centimeters lowering of efficient water table depth leads to 3.7 tonnes CO2 ha-1 yr-1, which corresponds to current estimates. We will present these, and further results, showing what and how determines the CO2 fluxes from drained fen meadows in the Netherlands.

How to cite: van der Poel, L., Franssen, W., Bataille, L., Hutjes, R., and Kruijt, B.: Analysing airborne CO2 flux measurements in relation to spatiotemporal characteristics of drained fen meadows in the Netherlands with machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10322, https://doi.org/10.5194/egusphere-egu24-10322, 2024.

EGU24-12579 | ECS | Posters on site | BG8.13

Eddy Covariance and Artificial Intelligence: a review 

Arianna Lucarini, Mauro Lo Cascio, Serena Marras, Donatella Spano, and Costantino Sirca

The Eddy Covariance (EC) method allows for the monitoring of carbon, water, and energy fluxes between Earth’s surface and atmosphere. Due to it’s varying interdependent data streams and abundance of data as a whole, EC is naturally suited to Artificial Intelligence (AI) approaches. The integration of AI and EC will likely play a crucial role in the climate change mitigation and adaptation goals defined in the Sustainable Development Goals (SDGs) of the Agenda 2030.

To aid this, we present a scoping review in which the novelty of various AI techniques in environmental science from the past two decades has been collected. Overall, we find a clear positive trend in the quantity of research in this area, particularly in the last five years. We also find a lack of uniformity in available techniques, due to the diverse technologies and variables employed across environmental conditions and ecosystems.

We suggest that future progress in this field requires an international, collaborative effort involing computer scientists and ecologists. Modern DL techniques such as Transformers and generative AI must be investigated to find how they may benefit our field. A forward-looking strategy must be formed for the optimal utilization of AI combined with EC to define the future actions in flux monitoring in the face of climate change.

 

Keywords: eddy covariance, artificial intelligence, flux monitoring, machine learning, deep learning, climate change.

How to cite: Lucarini, A., Lo Cascio, M., Marras, S., Spano, D., and Sirca, C.: Eddy Covariance and Artificial Intelligence: a review, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12579, https://doi.org/10.5194/egusphere-egu24-12579, 2024.

EGU24-12677 | Orals | BG8.13 | Highlight

Empowering local Climate Change mitigation policies through Eddy Covariance flux measurements 

Marta Galvagno, Gianluca Filippa, Luca Tuzzi, Edoardo Cremonese, Alessio Collalti, Roberto Colombo, Daniela Dalmonech, Giacomo Grassi, Mirco Migliavacca, Enrico Tomelleri, and Jacob Nelson

According to the IPCC and the Paris Agreement, the imperative to limit global warming to 1.5°C, or well below 2°C, compared to the pre-industrial era, necessitates achieving a balance between anthropogenic emissions by sources and removals by sinks (net-zero anthropogenic CO2 emissions) by the second half of this century. In this context, a prerequisite for credible climate action is an accurate estimation of both these large fluxes. Recent initiatives have focused on improving the quantification of the land sector mitigation potential and reducing the discrepancies between models and observations at a global level. However, the implementation of climate mitigation policies often takes place at the local level, where entities like local authorities (e.g., cities and regions) often wield more impactful roles in the transition to a sustainable economy than higher-level bodies such as Nations. Conversely, the assessment of CO2 removals from forests and other land uses is traditionally lacking at the local compared to the national level. 

Following a support request from the local administration for the definition of a long-term climate mitigation plan, we tested a data-driven method relying on eddy covariance (EC) data to quantify the carbon sink of the Aosta Valley Region in northwestern Italy for the period 2010-2022. Our model integrates various approaches, incorporating eddy covariance measurements of CO2 fluxes, MODIS NDVI data, daily gridded meteorological variables, and a 250m spatial resolution land cover map to calculate the net carbon uptake of the regional ecosystems. A Random Forest model was used to up-scale the eddy covariance data to the regional level, by testing different sets of drivers (air temperature, VPD, Snow (presence/absence), NDVI, solar radiation,...). Furthermore, global models developed in the framework of the FLUXCOM initiative were fine-tuned with the local predictors and applied at a regional scale. Finally, we compared our findings with independent data derived from the National Greenhouse Gas Inventory.

Preliminary results revealed that forests and other ecosystems in the region currently offset on average nearly 70% of anthropogenic emissions in the region, also depending on the interannual variation of air temperature and the occurrence of extreme events. We will delve into the discrepancies among various methods, exploring their respective advantages, limitations, and spatiotemporal variability. This evaluation of the regional carbon budget and associated uncertainties represents an important step toward the benefit of using flux observations for implementing climate-smart land management—a pivotal component in meeting carbon neutrality targets.

How to cite: Galvagno, M., Filippa, G., Tuzzi, L., Cremonese, E., Collalti, A., Colombo, R., Dalmonech, D., Grassi, G., Migliavacca, M., Tomelleri, E., and Nelson, J.: Empowering local Climate Change mitigation policies through Eddy Covariance flux measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12677, https://doi.org/10.5194/egusphere-egu24-12677, 2024.

The Mobile-Tensaw Delta comprises one of the United States most important urban-influenced coastal systems. Known as the “North America’s Amazon”, the Mobile-Tensaw Delta has experienced significant anthropogenic disturbance such as from logging, land- cover change, and hydrologic modification. This region is also extremely susceptible to the consequences of climate change. On the land, these consequences include temporal trends and variability in temperature, precipitation, evapotranspiration and primary productivity. Whereas from the water, stressors include sea level rise, increasing salinity, changing period and frequency of wetland inundation, and changing sedimentation regimes. In combination, trends and variability in the environment are expected to increase plant water stress and alter water and carbon cycling processes in the Mobile-Tensaw Delta. Eddy covariance is of great use to several regulatory and commercial applications, related to environmental and water management, industrial monitoring, agricultural production, and other areas where directly measured energy, water vapor or gas exchanges, emissions and budgets are of interest. Major flux measurement networks exist to provide global synthesis, which allows interpretation of one particular site in the context of world-wide observations. Automated and semi-automated technical tools are now also available to expand the use of automated flux stations, individually and as a part of cross shared flux networks, into modelling and remote sensing with global coverage and local resolution. In the JAGFLUX network, we are designing and implementing a structure of eddy covariance towers throughout the Mobile-Tensaw Delta in order to understand the responses of different terrestrial ecosystems on releasing/absorbing water to and from the atmosphere and emitting/absorbing carbon to and from the atmosphere. The idea is to create a network of eddy covariance flux towers over hardwood evergreen forests, wetlands, marshes and also agricultural areas in the surroundings. These towers, together with remote sensing (satellite) data and modeling we will be able to investigate, e.g., how different ecosystems in the Delta are behaving, both spatially and temporally, in terms of acting a sink or source of carbon. Moreover, the measurements will help to improve fundamental, process-level understanding of the vegetation structure across the Mobile-Tensaw Delta, serving as a basis for future studies addressing the future link between forest degradation, water-use efficiency, and climate change in the region.

How to cite: de Oliveira, G., Hellenkamp, S., and Lehrter, J.: Development of JAGFLUX: An eddy covariance flux tower network in the Mobile-Tensaw Delta, the second largest delta in the United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13042, https://doi.org/10.5194/egusphere-egu24-13042, 2024.

EGU24-13492 | Orals | BG8.13

Using flux networks to discover long term controls of ecosystem productivity 

David Moore, Wen Zhang, Angie Abarzua, and Charles Devine

Climate, potential biota, topography, geological parent material, and time. The state factor-interactive-controls hypothesis is a pervasive concept in ecosystem ecology that could explain long term controls of eddy covariance estimates of gross primary productivity. The hypothesis is adopted by ecologists whenever a gradient analysis is used (a chrono-sequence or a climate gradient). In this framework the state factors of climate, potential biota, topography, geological parent material, and time control ecosystem processes but are not themselves influenced by ecosystem processes at local scales. Interactive controls like realized plant functional types, soil resources, microclimate and disturbance frequency influence and are influenced by ecosystem processes. Flux networks represent whole ecosystem process measurements and while much has been learned from analyzing short term controls, longer term controls have been investigated less often. The last two decades have seen the growth of the Ameriflux network in North America; similar measurements of ecosystem carbon, water and energy exchange made across a wide range of ecosystem types. We tested whether gross primary productivity, estimated using the eddy covariance method across more than 40 ecosystems in North America conformed to the State-Factor-Interactive-Controls hypothesis. To estimate state factors we combined satellite observations, digital elevation models, geological and soil maps and climate re-analysis. By limiting our analysis to sites with more than 10 years of data we were able to remove the effect of short-term direct controls (light, temperature, moisture etc) on gross primary productivity. We found significant interactive effects of climate and geological substrate and a strong direct effect of climate on average gross primary productivity. We also found a strong effect of biota on the variation that was not explained by state factors. Comparing these patterns to predictions from an Earth System Model we found contrasting results. These findings provide support for the state factors-interactive-controls hypothesis and suggest new opportunities for ecological synthesis using networks of ecological data.

How to cite: Moore, D., Zhang, W., Abarzua, A., and Devine, C.: Using flux networks to discover long term controls of ecosystem productivity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13492, https://doi.org/10.5194/egusphere-egu24-13492, 2024.

EGU24-13899 | Posters on site | BG8.13 | Highlight

Estimating CO2 Flux at 30 Meter Resolution Using Machine Learning 

Robert Granat, Andrey Dara, Oleg Demidov, and Geza Toth

We present an approach to using a machine learning based regression model to estimate CO2 fluxes at 30 meter spatial resolution. The method uses eddy covariance measurements of CO2 obtained from in situ stations (FLUXNET) as primary reference data.  Multispectral satellite observations collected by Landsat are combined with meteorological information to form feature vectors that are used as predictor variables. The XGBoost machine learning algorithm is used to train the regression models on a per-land cover basis. The resulting models can be used to estimate CO2 fluxes wherever Landsat satellite imagery is available.  Moreover, the approach provides a framework that is extensible to other satellite imagery types and will improve in accuracy as more primary reference data becomes available.  We present results of the method as applied to examples in the agricultural sector.

How to cite: Granat, R., Dara, A., Demidov, O., and Toth, G.: Estimating CO2 Flux at 30 Meter Resolution Using Machine Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13899, https://doi.org/10.5194/egusphere-egu24-13899, 2024.

EGU24-14226 | Orals | BG8.13 | Highlight

An Integrated Observatory for Redwood Forest Health and California Carbon Neutrality  

Kosana Suvocarev, Housen Chu, Lily Klinek, Matthew Miksch, Holly Oldroyd, Troy Magney, Stephen Chan, Sebastien Biraud, and Kyaw Tha Paw U

Coastal redwood forests are among California’s most productive and largest carbon-storing natural ecosystems. However, there is a gap in knowledge on their water and carbon fluxes due to the lack of direct flux measurements. We received funding and advisory support from the State of California in order to address the water and carbon fluxes from redwood forest under declining fog conditions, different forest floor management, increasing droughts and other climate change threats during the period when the State is preparing for carbon neutrality goals (to be accomplished by 2045). Two tall eddy covariance towers will be installed in summer of 2024 to continuously monitor forest health at early and mid-seral growth stages (91 % of the coastal redwood forest ). Due to the complexity of terrain, we will equip the towers with the additional profile measurements throughout the canopy and downslope from the main towers to address the advection and  flux drainage. Occasional ancillary forest inventory surveys will be conducted within the flux footprint for improved data interpretation.  The study results will be uploaded to AmeriFlux and FLUXNET data repositories, and regularly communicated to the State agencies, advisory board and local communities through meetings and cooperative extension events. We invite suggestions for collaboration for continuing this project beyond the current timeline for long-term study and broader impact.  

How to cite: Suvocarev, K., Chu, H., Klinek, L., Miksch, M., Oldroyd, H., Magney, T., Chan, S., Biraud, S., and Paw U, K. T.: An Integrated Observatory for Redwood Forest Health and California Carbon Neutrality , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14226, https://doi.org/10.5194/egusphere-egu24-14226, 2024.

EGU24-14485 | Posters on site | BG8.13

Global FLUXNET Datasets: Past Usage, Opportunities, and New Data 

Gilberto Pastorello, Jason Beringer, David Durden, Carlo Trotta, You-Wei Cheah, Peter Isaac, Cove Sturtevant, and Dario Papale

Widely used in studies ranging from ecophysiology dynamics to global estimates using models and remote sensing data, FLUXNET datasets have become key to scientific research and applications. More frequently updated and high-quality FLUXNET data collections are ever more pressing, serving opportunities with new technologies and new real-world applications including nature-based and technological climate solutions, carbon credit verification, support to agriculture decision systems, and ecological forecasting. The three major FLUXNET releases (FLUXNET2015, LaThuile in 2007, and Marconi 2000) have been widely used by the scientific community, academia and industry. Nonetheless, release cycles of 7-10 years have become a major limiting factor, given the demand for continuously updated collections for anchoring remote sensing (calibration and validation), models (from hindcasts to forecasting), and real-world applications requiring near-real-time data. Regional flux networks have sought to expand the datasets by increasing the number of sites, variables and metadata shared, by improving data quality, and by moving toward open data principles via the recent adoption of the CC-BY data license. New network-level data products are being released, either regularly (e.g., AmeriFlux, ICOS, NEON, TERN datasets), or in response to specific demands (e.g. Drought2018 and WarmWinter2020 in ICOS). These data are processed using the shared and jointly maintained ONEFlux pipeline, making data products fully compatible and interoperable. However, mechanisms for global access to regional network data at a global scale are still challenging for users. The continuous development of the FAIRness and related data discovery tools further supports new strategies to create, maintain, and continuously update FLUXNET datasets. At the same time, inequity in data use, credit, recognition, and contribution is still a significant challenge that must be highlighted and solved. Here, we present a roadmap for how future FLUXNET synthesis datasets can be constructed and shared. We demonstrate a data discovery and access tool, look into benefits for data providers and users, and highlight data usage and availability. Open discussion of these challenges and solutions is encouraged.

https://shuttle-demo.fluxnet.org/

How to cite: Pastorello, G., Beringer, J., Durden, D., Trotta, C., Cheah, Y.-W., Isaac, P., Sturtevant, C., and Papale, D.: Global FLUXNET Datasets: Past Usage, Opportunities, and New Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14485, https://doi.org/10.5194/egusphere-egu24-14485, 2024.

EGU24-16121 | Orals | BG8.13 | Highlight

Accounting for spatial variability when combining fluxes and proximal sensing techniques. 

Tommaso Julitta, Andreas Burkart, Sam Bower, and Stefan Metzger

The continuous observation of ecosystems fluxes between the biosphere and atmosphere provides a much-needed foundation for effective real-world management of our geo-ecological life support systems. Over a thousand flux measurement sites globally use sophisticated eddy-covariance (EC) instruments and are organized in international monitoring networks, e.g. FLUXNET, NEON, ICOS. The integration of automated spectrometers measuring irradiance, reflectance and sun-induced chlorophyll fluorescence (SIF) adds valuable optical proxies for photosynthesis and carbon fixation at top-of-canopy level:  field spectroscopy provides  a powerful tool for understanding measurements of plant carbon uptake, thus providing a link between fluxes and satellite remote sensing and enabling local information to be scaled up to the globe. In the last years many efforts have been made for merging these two types of measurements. Nevertheless, when combining these two sources of information one major limitation is to match the different areas seen by the EC flux measurements and field spectroscopy. Typically the proximal sensing instruments have a fixed field of view (FOV) which limits the measured area to a portion of the underlying canopy. The FOV depends on the set up defined and can vary between a few degrees and 180 degrees, and, alongside the mounting height, determines the size of the monitored area. On the contrary, classical EC flux measurements provide data that typically refer to a larger and variable FOV, also referred to as footprint. The footprint of EC data varies spatially according to meteorological conditions, so – unless a site is perfectly homogenous – the comparison between proximal sensing and EC is always flawed by the footprint mismatch. Additionally, the results of a classical EC time series are difficult to attribute to individual sources and sinks within an upwind source area due to spatial aggregation. Recently the FluxMapper EC approach has been shown to transcribe high-frequency temporal information onto half-hourly Flux Maps around the tower which resolve fluxes spatially through signal disaggregation. Analogous to the proximal sensing techniques, the spatial resolution of the Flux Map depends on the sensor distance from the canopy. In this contribution, for the first time, we provide preliminary results of combining field spectroscopy techniques and Flux Mapper EC, and evaluate spatial heterogeneity effects on the interpretability relative to classical EC. Broader impacts include cost-effective measurement, reporting, and verification of nature-based and technological climate solutions in support of the Glasgow Climate Pact and the Dubai Climate Summit net-zero commitments.

How to cite: Julitta, T., Burkart, A., Bower, S., and Metzger, S.: Accounting for spatial variability when combining fluxes and proximal sensing techniques., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16121, https://doi.org/10.5194/egusphere-egu24-16121, 2024.

EGU24-16993 | Posters on site | BG8.13

Taking stock of observing capabilities for designing a pan-African atmospheric and climate research infrastructure (KADI): Lessons learnt from Kenya and best practices. 

Jörg Klausen, Sarina Danioth, Patricia Nying’uro, Joyce Kimutai, Kennedy Thiong’o, Martin Steinbacher, Lutz Merbold, Niina Käyhkö, Matthew Saunders, Theresia Bilola, Emmanuel Salmon, and Werner L. Kutsch

Climate change is having an accelerating global impact through the increased frequency, magnitude and duration of droughts, fires, floods and other extreme climatic events. The most vulnerable populations bear the greatest brunt of these impacts. The societal solutions to this crisis depend also on how scientific research can address the air quality-climate-health nexus. Observations are needed as a foundation for air quality and climate services to address UN Sustainable Development Goals (SDGs). The atmospheric observing capabilities in most countries in Low- and Middle Income Countries (LMIC) remain often sketchy and heterogeneous, are established based on opportunities, and often not designed for integration into the operational infrastructures of the National Meteorological and Hydrological Services. As a result, operation often lacks sustainability and compatibility, and data are not easily and widely available. This is true for meteorological and climatological observations, but is even more pronounced for the complex instrumentation required to monitor greenhouse gases and short-lived climate pollutants. The development of standardised observations in sustainable research infrastructures (RIs) can overcome some of these issues.

The Horizon Europe funded KADI project (Knowledge and climate services from an African observation and Data research Infrastructure) aims to provide the conceptual framework for the future implementation of an All-African RI that delivers the science-based services to fully address the requirements of the Paris agreement and the SDGs.

The KADI project works towards the development of a comprehensive design for a pan-African climate observation system and research infrastructure using the climate services identified and required by key stakeholders as a guiding design principle. Knowledge is compiled and gaps identified through the SEACRIFOG collaborative inventory tool, the OSCAR/Surface, OSCAR/Space and OSCAR/Requirements tools, as well as a comprehensive survey and other stakeholder engagement. A pilot project focused on Kenya collects and integrates information on user requirements, existing and past observing capabilities, and services. Based on extensive engagement with stakeholders who use or provide weather, climate and atmospheric composition services, lessons-learnt and best practices for future endeavours will be distilled. The outputs from this will further inform the strategic design of the long-term observational and data infrastructures required.

The results so far suggest that services need to cover diverse requirements of a wide range of stakeholders. Sustainable standardized observations are a critical foundation. Sustainability requires long-term commitment of the operating institution at various organizational levels. Information derived from observations is often required with short lead times. Twinning programs and personnel exchange between new and established stations or laboratories can be effective to advance and transition new monitoring capabilities into full operation. 

The presentation will introduce the approaches and first results.

How to cite: Klausen, J., Danioth, S., Nying’uro, P., Kimutai, J., Thiong’o, K., Steinbacher, M., Merbold, L., Käyhkö, N., Saunders, M., Bilola, T., Salmon, E., and Kutsch, W. L.: Taking stock of observing capabilities for designing a pan-African atmospheric and climate research infrastructure (KADI): Lessons learnt from Kenya and best practices., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16993, https://doi.org/10.5194/egusphere-egu24-16993, 2024.

EGU24-18742 | Orals | BG8.13

Designing a pan-African climate observation system to deliver societal benefit through climate action: The KADI project 

Karlina Ozolina, Theresia Bilola, Matthew Saunders, Emmanuel Salmon, Ingunn Skjelvan, Tommy Bornman, Jörg Klausen, Gregor Feig, Lutz Merbold, and Werner Kutsch

Climate change is having a global impact through the increased frequency, magnitude and duration of droughts, fires, floods and other extreme climatic events. The societal solutions to this crisis depend on the ability of policy makers, private enterprise, and society at large to access and utilise scientific research into climatic variables and carbon/greenhouse gas dynamics across scientific domains. This will also require connecting, exchange and collaboration between these stakeholders. One of the most suitable approaches that supports the needs of all parties is the development of standardised observations in sustainable research infrastructures (RIs), that can facilitate both basic and applied scientific analyses and produce the data products needed.

The Horizon Europe funded KADI project (Knowledge and climate services from an African observation and Data research Infrastructure) aims to provide the conceptual framework for the future implementation of a pan-African RI that delivers the science-based services to fully address the requirements of the Paris agreement and the UN SDGs. The project aims to  have direct societal benefit through facilitating inter-disciplinary cooperation between African and European Partners and conceptualising the requirements for climate change observations in Africa.

The project  works towards the development of a comprehensive design for a pan-African climate observation system using the climate services identified and required by key stakeholders as a guiding design principle, and further building on the knowledge compiled and gaps identified through the SEACRIFOG collaborative inventory tool, the OSCAR/Surface, OSCAR/Space and OSCAR/Requirements tools. The project  connects scientists, data and knowledge users at local, national and global levels, to develop a community of practice in climate services. These networking and knowledge exchange activities allow for the development of an RI design study and the identification of the key players who can implement the conceptual design as sustainable funding for long-term observations becomes available.

The main activities in the project  utilise a co-design approach to identify the climate services required by key stakeholders and  explore these through a series of climate service pilot projects that  focus on the impacts of climate change on terrestrial ecosystems, coastal areas, urban developments and national GHG budgets. The outputs from this will inform the strategic design of the long-term observational and data infrastructures required. A knowledge exchange platform will facilitate pan-African and European innovation, linking the science-based concept design and the policy cooperation required to develop a functional and collaborative RI, and provide long-term sustainable support for the integration of African climate-services into global observation systems.

How to cite: Ozolina, K., Bilola, T., Saunders, M., Salmon, E., Skjelvan, I., Bornman, T., Klausen, J., Feig, G., Merbold, L., and Kutsch, W.: Designing a pan-African climate observation system to deliver societal benefit through climate action: The KADI project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18742, https://doi.org/10.5194/egusphere-egu24-18742, 2024.

EGU24-19586 | ECS | Posters on site | BG8.13

Estimation of CO2 fluxes across different biomes using machine learning approaches 

Basile Goussard, Gaétan Pique, and Sarah Dussot

Quantifying CO2 fluxes over terrestrial land is crucial to better understand the global carbon cycle and the contribution of ecosystems to climate change. In addition, ecosystems such as croplands and forests have the potential to sequester carbon in the soil and vegetation. Robust tools to simulate CO2 fluxes with high accuracy are needed to identify best practices and management for carbon sequestration.
In this study, the Net Ecosystem Exchange (NEE) from different networks (ICOS, NEON) is used to develop machine learning (ML) approaches to simulate daily CO2 fluxes. These biome specific approaches use as input high spatial and temporal resolution optical remote sensing products combined with meteorological data. The biomes considered are cropland, deciduous forest, evergreen forest and grassland. Different ML models were tested and the ExtraTreesRegression model seems to be better suited for all biomes except grassland where an SVR model was more appropriate. The features identified as most important among the remote sensing products are NDVI and NDMI while among meteorological variables, global radiation, air temperature and fraction of diffuse radiation appears as more relevant.
The predicted results show good agreement with daily observations, with R2 of 0.82 over cropland. The performance of the model in simulating CO2 fluxes over forests is more contrasted with good accuracy over deciduous forests (R2 of 0.72) but low confidence over evergreen forests (R2 of 0.29). Finally the model was also applied to grassland, but the small size of the dataset combined with the high heterogeneity of soil and climatic conditions of grassland sites led to low correlation with observations (R2 of 0.44).
This work demonstrates the potential of a machine learning-based method to assess CO2 fluxes across different biomes, and should be further explored due to its ease of use and application.

How to cite: Goussard, B., Pique, G., and Dussot, S.: Estimation of CO2 fluxes across different biomes using machine learning approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19586, https://doi.org/10.5194/egusphere-egu24-19586, 2024.

In March of 2022, AP News and other news outlets reported that the Earth's poles were experiencing simultaneous heatwaves.  Portions of the Arctic were more than 30 degrees Celsius warmer than expected, while some locations in Antarctica were  40 degrees Celsius warmer than average.  While some suspect this freakish outcome results from human-induced climate change, others have scoffed at this suggestion.  With this attribution uncertainty in mind, this paper seeks to understand the drivers in hourly temperatures at the Ny-Ålesund station (NYA) in Svalbard (Latitude: 78.9227,  Longitude: 11.9273)  and the Neumayer Station (GVN) in Antarctica (Latitude: -70.6500, Longitude: -8.2500).

 Based on one-minute data from the Baseline Surface Radiation Network (BSRN), the hourly temperature data for NYA and GVN from January 1, 1999, through December 31, 2019, were calculated.  Hourly averages of the following radiation variables were also calculated: Short-Wave Downward (SWD), Long-Wave Downward(LWD),  Short-Wave Upward (SWU), and  Long-Wave Upward (LWU).   The hourly net radiation flux at the Earth's surface was then calculated as SWD + LWD – SWU – LWU.  This variable is of interest because it is recognized as an important driver of the weather and climate system.  The analysis also uses the hourly CO2 concentration data for Svalbard reported by the  Integrated Carbon Observation System (ICOS) from January 1, 2004 through December 2019.

The analysis proceeds by employing the Vector Autoregressive Regression (VAR) method.  The general approach considers K variables specified as linear functions of p of their lags and p lags of the other K - 1 variables.  Using this methodology, one can subsequently test for Granger Causality.  The methodology is based on whether the lagged values of some variable X are useful in predicting the current value of some variable Y. Because of its focus on the lagged values, the methodology does not contest the truism that the correlation between two contemporaneous variables does not imply causation.

The VAR/Granger methodology is first applied here to model the possible relationship between hourly CO2 concentrations and the hourly net radiation flux levels at  NYA.      In this case,  there is strong statistical evidence that hourly CO2 concentrations at NYA have Granger Causal implications for the hourly net radiation flux at NYA.  Consistent with this finding, the out-of-sample hourly net radiation flux predictions for NYA are more accurate than a persistence forecast when the lagged CO2 concentrations are included in the analysis.   

The following evidence is also presented: the hourly net radiation flux at NYA has Granger Causal implications for the hourly temperature at NYA, the hourly net radiation flux at NYA in the Polar region has  Granger Causal implications for the net radiation flux at the GVN station in Antarctica, and the hourly temperatures at NYA and GVN exhibit two-way Granger Causality.  In short, the analysis in the paper supports the view that the atmospheric and meteorological conditions at any location are highly interrelated with conditions elsewhere and that the pace of freakish weather conditions is likely to increase as CO2 concentrations continue to rise.

How to cite: Forbes, K.: CO2 Concentrations and the Freakish Heatwaves at the Poles: A Preliminary Analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19726, https://doi.org/10.5194/egusphere-egu24-19726, 2024.

EGU24-2264 | ECS | Posters on site | BG8.16 | Highlight

Potential of land-based terrestrial carbon sinks to mitigate climate change 

Ang Wang, Yunting Fang, and Geshere Abdisa Gurmesa

Enhancing terrestrial ecosystem carbon sinks is one of the effective strategies to achieve carbon neutrality targets for climate change mitigation. However, efforts to enhance the carbon sink mainly focused on natural climate solutions, including protecting, restoring, and managing terrestrial ecosystems. The contributions of artificial measures, such as rock weathering, urban alkaline material weathering, and desert saline alkali soil water to terrestrial ecosystem carbon sinks have often been overlooked by previous estimates of terrestrial carbon sinks. To account for major carbon sink measures, we proposed a new concept of “four-color” terrestrial carbons based on their formation/sink mechanisms, i.e., green carbon (the carbon sequestered by forest, grassland, and inland wetland), black carbon (carbon sink through the addition of carbon-rich materials, such as straw, organic fertilizers, and biochar to the soil), blue carbon (the carbon stored in coastal ecosystems), and white carbon (carbon sink by chemical processes). We reviewed the potential measures for enhancing the different carbon sinks to provide a framework for achieving carbon neutrality targets.

We identified 15 measures for enhancing the sink of the different carbon groups. The enhancement approaches for green carbon sinks mainly include protecting, restoring, and managing forest, grassland, and inland wetland ecosystems. Adding carbon-rich materials to cropland soil is the major measure to enhance black carbon sink. The enhancement of blue carbon sink mainly focuses on ecosystem protection and restoration. We proposed enhancing silicate and carbonate rock weathering, irrigation and salt washing in arid regions, and utilizing urban alkaline materials as measures to enhance white carbon sink. With proper implementation of the above measures, we estimated C sequestration of 16.7 Pg CO2 yr-1 for green carbon, 5.8 Pg CO2 yr-1 for black carbon, 1.1 Pg CO2 yr-1 for blue carbon, and 7.7 Pg CO2 yr-1 for white carbon. Our results showed the potential to enhance the “four-color” carbon sinks globally by 31.4 Pg CO2 yr-1, higher than the estimate in the IPCC AR6. However, large uncertainties still exist in the estimation of current and future carbon sink potential in terrestrial ecosystems due to the different approaches used in different studies, large spatiotemporal variation, and insufficient data of carbon storage and sink. Therefore, we emphasize the need for strengthening monitoring and basic data acquisition and establishing rapid and accurate quantification techniques for terrestrial carbon sinks. Furthermore, future research should focus on the potential and multiple enhancement measures of white carbon under different climates and its response to global change.

How to cite: Wang, A., Fang, Y., and Gurmesa, G. A.: Potential of land-based terrestrial carbon sinks to mitigate climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2264, https://doi.org/10.5194/egusphere-egu24-2264, 2024.

Between 2000 and 2020, global wildfires emitted approximately 7.32 billion metric tons of CO2, constituting about 18.5% of fossil fuel-related emissions. Despite a decrease in the global burned area, wildfire carbon emissions showed no significant trend. This is because carbon emission of forest fires is increasing, and thus compensates for the reduction in carbon emission from savanna fires. Forest fires is about 5% of global burned area but contribute roughly 20% (1.5 billion metric tons) of these emissions. Increases in forest fire carbon emissions, particularly in the northern high latitudes, are attributed to climate change and human activities. In recent years, the rise in extreme wildfire emissions affects over 40% of global vegetated lands, often linked to extreme fire weather conditions. Addressing this requires the development of advanced forest fire risk identification and prevention technologies.

How to cite: Liu, Z.: Spatial patterns and drivers of wildfire carbon emission since 2000, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2408, https://doi.org/10.5194/egusphere-egu24-2408, 2024.

EGU24-2440 | ECS | Orals | BG8.16 | Highlight

Global Ecosystem Restoration and Carbon Neutrality Programme 

Ruiyang Zhang, Shuli Niu, Werner L. Kutsch, and Guirui Yu

Currently, 25% of global terrestrial ecosystems are degraded, expected to rise by 75% by 2050, threatening 3.2 billion people worldwide. The United Nations launched “UN Decade on Ecosystem Restoration” to promote restoration efforts from 2021-2030. Additionally, achieving carbon neutrality has become an international consensus to combat climate change and protect the human living environment. However, there is a lack of existing international scientific programs for ecological restoration and carbon neutrality, coupled with insufficient long-term observations and experimental data, particularly in developing countries facing ecosystem degradation and management challenges. Therefore, it is crucial to integrate global efforts and establish monitoring and assessment systems for global ecological restoration and carbon neutralization. In this talk, we will introduce the Global Ecosystem Restoration and Carbon Neutrality (Global-ERCaN) program, which aims to promote global ecosystem restoration and carbon neutrality through monitoring and assessing the restoration process, exploring changes in carbon sinks and related processes, and summarizing sustainable ecosystem management models. Global-ERCaN plans to establish international cooperation for 1) sharing carbon neutral research methods and technologies, 2) assessing the role of ecological restoration in carbon neutrality, 3) proposing management and policy options for sustainable development of degraded ecosystems, ultimately accelerating carbon neutrality goals.

How to cite: Zhang, R., Niu, S., Kutsch, W. L., and Yu, G.: Global Ecosystem Restoration and Carbon Neutrality Programme, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2440, https://doi.org/10.5194/egusphere-egu24-2440, 2024.

EGU24-2500 | Posters on site | BG8.16

Soil GHGs Emission response to Landuse Change in Tropics, Southwest China 

Wenjun Zhou, YIping Zhang, Liqing Sha, Qinghai Song, Jingo Gao, Xunhua Zheng, Junhui Zhang, Dan Xi, and Yunting Fang

To explore the response of soil greenhouse gas emissions(GHGs) from tropical forest to landuse change in Yunnan, Southwest China, we have conducted a series of studies based on the GHGs monitoring platform established since 2003 in tropical rainforest (TRF) and rubber plantation(RP). The research results indicate that 1) TRF transplanted to RP did not change the annual soil CO2 emissions (TRF, 359 ±91 and RP 352 ±41 mg CO2 m-2 h -1) but decreased soil CH4 uptake significantly (TRF, -0.11 ± -0.18 mg CH4 m -2 h -1; RP, -0.020 ± -0.087 mg CH4 m-2 h-1). (2) The most important influence on soil CO2 and CH4 emissions in the RP was the leaf area index and soil water content, respectively, whereas the soil water content, soil temperature, and dead fine roots were the most important factors in the TRF. Variations in the soil CO2 and CH4 caused by landuse transition were individually explained by soil temperature and fine root growth and decomposition, respectively. (3)  The N2O emissions from the fertilized and unfertilized plots in RP were 4.0 and 2.5 kg N ha−1 yr−1, respectively; Annual N2O emissions from the control and no litter input treatments were 0.48 and 0.32 kg N2O–N ha-1 year in TRF, respectively.(4) When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming. (5) And further, land use change alter the structure and sources of soil organic matter, which in turn feedback to the microbial processes involved in soil greenhouse gas production and alter the mechanisms of soil greenhouse gas emissions.(6) The 15N isotope tracing experiment used isotope tracing technology to distinguish the microbial process of N2O production in tropical rainforest soil, proving that the microbial process of N2O production in tropical rainforest soil during the dry season is a nitrification process; In the future, we will use 13C,14C and 15N isotope and qPCR to study the microbiological mechanisms of land use change on soil greenhouse gas production in the context of climate change, providing scientific basis for quantifying the underground processes of soil greenhouse gas production; Provide mechanism support for accurately estimating soil greenhouse gas emissions to achieve the dual carbon goals in the context of climate change.

How to cite: Zhou, W., Zhang, Y., Sha, L., Song, Q., Gao, J., Zheng, X., Zhang, J., Xi, D., and Fang, Y.: Soil GHGs Emission response to Landuse Change in Tropics, Southwest China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2500, https://doi.org/10.5194/egusphere-egu24-2500, 2024.

Terrestrial ecosystems sequester about a third of anthropogenic CO2 emissions by natural processes and, thus, play a critical role in mitigating climate warming. As climate change become more aggravated, the need to remove CO2 from the atmosphere to the terrestrial and aquatic ecosystems becomes more urgent over time. A score of new techniques of carbon dioxide removal (CDR) have been recently proposed based on a notion of actively managing land carbon cycle processes to increase carbon sequestration and/or reduce greenhouse gas (GHG) emissions. These actively managed climate solutions by human (i.e., human-based) should be complementary to the nature-based climate solutions to combat climate change together with concurrent and dramatic economy-wide decarbonization. However, what are ecological principles behind the terrestrial CDR techniques? How can the ecological principles identified from these removal techniques be used to guide the design of more effective, future CDR techniques? These questions remain unanswered.

 

This presentation will show ecological principles we identified from our analysis of these existing CDR techniques and propose more effective techniques for carbon dioxide removal. We analyzed a dozen of existing CDR techniques, such as afforestation and reforestation, biochar from crop residues or slashed woods, and peatland restoration. All these existing CDR techniques manage carbon residence time more than carbon input. As carbon storage is jointly determined by carbon input and residence time, elongation of residence time or increase in carbon input or both all result in increased carbon sequestration (i.e., increased carbon dioxide removal from the atmosphere).  It appears that there are more rooms to manage carbon residence time than carbon input as carbon residence time can change from a few months or years to thousands of years. Thus, we can evaluate and design CDR techniques using methods that can substantially elongate carbon residence time. 

How to cite: Luo, Y.: Terrestrial carbon dioxide removal from the atmosphere: Ecological Principles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2943, https://doi.org/10.5194/egusphere-egu24-2943, 2024.

The carbon sequestration potential of forest ecosystems is influenced by various factors, including climate change and forest management. Climate change directly impacts the rate of forest growth and the accumulation of biomass. Effective forest management measures could enhance the structural integrity of forests, thereby improving the carbon sequestration capacity and adaptability to climate change of forest ecosystems. However, the impacts of these factors on future carbon sequestration and its potential of forests remain unclear. There is a pressing scientific need to focus on whether future climate change will increase carbon sequestration potential, and how forest management should be carried out in the future, as part of the current efforts to develop nature-based climate solutions. This study focuses on the forests of Northeast China, located in a mid-latitude zone sensitive to global climate changes, possessing abundant forest resources and serving as one of China's primary carbon reservoirs, where extensive forest management has been implemented over the past decades. We assessed the carbon sequestration potential of Northeast China's forests under future climate change and forest management strategies. Specifically, we utilized multi-source data (such as forest inventory and remote sensing data), coupled with ecosystem process-based model LINKAGES and forest landscape model LANDIS PRO, to predict the forest succession and carbon storage dynamics of Northeast China during the 21st century. The study conducted multi-scale validation of the simulation results through multi-source data, thereby enhancing the accuracy of the model simulations. Then, we estimated the future forest above-ground carbon sequestration potential and quantified the impacts of climate change and forest management. The results suggested: (1) The simulation of the current spatial distribution of above-ground carbon storage and age structure in Northeast China's forests aligns closely with remote sensing products and inventory data; (2) Considering only forest succession, the above-ground carbon sequestration is projected to peak in 2060, with the rate of carbon sequestration reaching its apex in 2025-2030 at 0.08Pg C·a-1; (3) Climate change is likely to enhance the carbon sequestration potential and rate of Northeast China's forests, but to a limited extent, with an increase of 7.3% and 13.6% under the SSP245 and SSP585 scenarios, respectively; (4) It remains essential to continue forest management practices in the future to address the challenges posed by climate change.

How to cite: Liang, Y.: The effects of climate change and forest management on forest carbon sequestration potential, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3276, https://doi.org/10.5194/egusphere-egu24-3276, 2024.

EGU24-3350 | Orals | BG8.16

Responses of soil organic carbon to wetland restoration—A global meta-analysis 

Yanan Wu, Ruiyang Zhang, and Shuli Niu

Wetlands are an important part of the terrestrial carbon pool in the global carbon cycle, and exploring the impact of wetland restoration on soil organic carbon (SOC) is of great significance for implementing effective wetland restoration measures to mitigate global warming. We conducted a global meta-analysis to analyze the response of SOC content to different wetland restoration approaches by comparing restored wetlands with degraded and natural wetlands, respectively. We also aimed to identify their temporal evolution, driving factors and potential mechanisms of wetland restoration. The results of this study showed that natural restoration methods, such as farmland abandonment and grazing prohibition, were effective in increasing wetland SOC. Specifically, the SOC contents of wetlands restored using these methods were significantly higher than those of degraded wetlands. Wetland restoration initially caused SOC to show a rapid growth trend, peaking in years 10-20, before levelling off over a longer period of time. After 40 years of restoration, wetland SOC levels were able to approach those of natural wetlands. Important factors driving wetland SOC restoration include total nitrogen, mean annual temperature, and mean annual precipitation. This study would provide insights for mitigating climate change through wetland SOC restoration.

How to cite: Wu, Y., Zhang, R., and Niu, S.: Responses of soil organic carbon to wetland restoration—A global meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3350, https://doi.org/10.5194/egusphere-egu24-3350, 2024.

Separating soil organic carbon (SOC) into particulate (POC) and mineral-associated organic carbon (MAOC) fractions has provided fundamental knowledge on the structure and protection of SOC. However, the global distribution and key drivers of POC and MAOC remain elusive. Here, we compiled a global database of POC and MAOC with 2744 observations across six continents. Initial analysis showed that the mean POC was 2.73 kg m-2 and MAOC was 3.85 kg m-2 at 0-30 cm. At the global scale, POC and MAOC accounted for 39.98 % and 63.48 % of SOC, respectively. The global distribution of POC and MAOC was driven collectively by vegetation, climatic, and soil attributes. The lowest POC and MAOC stock were observed in cropland, suggesting the possibility of increasing C sequestration in soils by using management practices that increase POC and MAOC in croplands. Despite this great potential, we predicted the largest reduction in MAOC in cropland under future climate change, highlighting the high vulnerability of SOC stock in cropland. Understanding the role of environmental controls in the global distribution of POC and MAOC could help designing terrestrial carbon sequestration strategies.

How to cite: Chen, J., Cotrufo, M. F., and Sun, S.: Global soil carbon storage and stability informed by the particulate and mineral-associated organic carbon fractions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7373, https://doi.org/10.5194/egusphere-egu24-7373, 2024.

EGU24-7904 | Posters on site | BG8.16

Limited future carbon sink in China as forests become mature 

Wei Li and Yi Leng

China has experienced large land-use and land-cover changes (LULCC) over recent decades, resulting in a complex, mostly young, forest age structure. However, the impact of forest age dynamics on China’s terrestrial ecosystem carbon sink remains unclear. Here, using a process-based ecosystem model with an explicit representation of forest age cohorts, forced by satellite- and inventory-based maps of LULCC, we estimate China’s terrestrial carbon sink as 198 ± 54 Tg C yr-1 in the 2010s. The forest carbon sink represents 124 ± 25 Tg C yr-1, being predominantly (71.7%) contributed by middle-aged (16~50 year-old) forests. Following the national re/afforestation target of reaching 30% forest coverage by 2060 and assuming constant wood harvest rates in the future equal to present-day levels, the forest carbon sink is projected to be 181~217 Tg C yr-1 during 2041-2060 but to decrease to 142~212 Tg C yr-1 during 2081-2100 under Representative Concentration Pathway (RCP) 2.6, 4.5, 6.0 and 8.5. The carbon sink in established forests that were planted or existed before 2020 is the largest contributor to the future total carbon sink, but this contribution will decrease significantly (p<0.05) each year by -1.1 ~ -0.35 Tg C yr-1 until 2100 due to forest aging and the slowdown of CO2 concentration growth. New re/afforestation after 2020 will enhance the carbon sink in China by increasing forest area and rejuvenating forest demography. Our study emphasizes the importance of forest age dynamics on the carbon sink and implies that realizing China’s carbon neutrality target should not rely excessively on the ecosystem carbon sink.

How to cite: Li, W. and Leng, Y.: Limited future carbon sink in China as forests become mature, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7904, https://doi.org/10.5194/egusphere-egu24-7904, 2024.

To help achieve carbon neutrality and mitigate climate change, vegetation restoration and wildlife conservation have recently been promoted as two key natural climate solutions. Although ecological studies have widely reported the profound top-down impacts of wildlife on the structure and function of vegetation, vegetation restoration and wildlife conservation are often viewed and implemented as two independent natural climate solutions. Combining field experiments in degraded coastal wetlands and meta-analyses of experimental studies from vegetated ecosystems globally, we explore the impacts of wildlife on vegetation restoration and related carbon cycling processes. In the field experiments, we find that vegetation restoration through planting alone failed to lead to vegetation recovery due to grazing by herbivores and did not increase plant and soil carbon stocks. In contrast, co-restoring threatened predators or simulating their consumptive or nonconsumptive effects facilitated the establishment of planted seedlings, led to successful recovery of vegetation, and increased plant and soil carbon stocks. These effects of herbivores and predators on vegetation restoration were generally supported in our global syntheses of experimental studies from all vegetated ecosystems, although these effects were context-dependent and often varied with biotic and climatic factors such as herbivore density, temperature, and precipitation. Taken together, these results suggest that vegetation restoration, if synergized with wildlife conservation, can be more promising for enhancing carbon sequestration in many ecosystems. We conclude by outlining possible ways to achieve synergies of vegetation restoration and wildlife conservation and by highlighting their policy implications.

How to cite: He, Q.: Synergizing vegetation restoration and wildlife conservation to enhance natural climate solutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8586, https://doi.org/10.5194/egusphere-egu24-8586, 2024.

EGU24-12484 | ECS | Orals | BG8.16

Identifying success factors for the recovery of Andean tropical forests using observational and experimental plots 

Franklin Marín, Marijn Bauters, Selene Báez, Ximena Palomeque, Michael Perring, Susana León-Yánez, and Hans Verbeeck

The Andean tropical forests (ATF) are a well-known biodiversity hotspot, and they provide numerous ecosystem services such as carbon storage and water regulation. However, human activities including establishing pastures, cultivating crops, and fires, have significantly reduced the area covered by tropical forests and altered their structure, composition, and function. To counter forest degradation, various active restoration programs have been conducted. However, there is limited understanding regarding what factors influence the success of Andean forest recovery. Using a network of observational and experimental plots, that allow an understanding of recovery pathways across time and over environmental conditions, we address the question: what are the driving factors influencing establishment success in reforestation efforts? We established 118 observational plots along different environmental conditions (e.g. climate and soil types), and 96 experimental plots across an elevation gradient in Ecuador. The observational plots were established in 18 different young reforested sites (5 -10 years) to assess carbon productivity. On the other hand, the experimental plots were installed at three elevations (2200, 2800, and 3200 m a.s.l.) to evaluate the effects of pasture competition and artificial shading, in a factorial design, on survival and growth rate of five native tree species. Our findings from the observational plots revealed that grazing exclusion, precipitation, planted species richness, and soil properties significantly influence carbon productivity in reforested sites. Preliminary results from the experimental plots revealed that the effect of grass competition and shade on seedling performance varied tremendously according to species and elevation. In summary, our results suggest that land management practices, planted species richness and species type, and climate conditions are determining factors in regard to successful forest recovery.

How to cite: Marín, F., Bauters, M., Báez, S., Palomeque, X., Perring, M., León-Yánez, S., and Verbeeck, H.: Identifying success factors for the recovery of Andean tropical forests using observational and experimental plots, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12484, https://doi.org/10.5194/egusphere-egu24-12484, 2024.

Forest ecosystems are large carbon sinks, that absorb around 50% of the carbon in terrestrial ecosystems. Forests are being destroyed by a variety of factors, including climate change, human activities, and natural disturbances. Especially, forest fires cause catastrophic damage to forest ecosystems. This destruction of forest ecosystems negatively affects carbon uptake and creates uncertainty in achieving carbon neutrality.
In Korea, nature-based solutions are being applied in forest restoration projects in areas damaged by forest fires. As forest restoration projects cause further ecosystem instability, it is uncertain how much they will change carbon uptake in achieving carbon neutrality.
We analyze the stability period of forest ecosystem recovery using the BFAST algorithm for forest damage recovery areas in Korea, and estimate the change in carbon uptake using the CASA model. Based on this, we will examine the effectiveness of nature-based solutions and discuss the stabilization period that can be recognized as carbon credits and the possibility of carbon neutrality.

How to cite: Kim, S. and Park, C.: Impact of forest ecosystem restoration project on achieving carbon neutrality :  A case study of Post-Wildfire Restoration areas, South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16178, https://doi.org/10.5194/egusphere-egu24-16178, 2024.

Increasing water stress on forests is emerging as a global phenomenon, resulting in the episodes of tree mortality, canopy die-offs and declines in ecosystem resilience, threatening the progress of global carbon neutrality. The role of tree functional strategies is pivotal in regulating forest ability to cope with water stress. To date, the species-level water stress strategies including closing leaf stomatal early, investing in stronger water transport structures, dropping leaves, storing water and developing deeper roots are well documented. However, how strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-documented. By combining eight water stress-related functional traits with forest inventory data from the USA and Europe (219,518 plots), we investigated the community-level trait coordination and the biogeographic patterns of water stress strategies for woody plants, and analysed the relationships between the strategies and climate factors. We found that the range of water stress strategies which dominated at community-level were consistent with those available at species-level. Traits associated with acquisitive-conservative strategies formed one dimension of variation, while leaf turgor loss point, associated with stomatal water strategy, loaded along a second. Surprisingly, spatial patterns of local water stress strategies were better explained by temperature than by aridity, suggesting a greater selective pressure on water demand over supply. These findings provide a basis on which to build predictions of forest response under water stress which are grounded in the dominant functional strategy, with particular potential to improve understanding of forest carbon sink potential in a changing climate.

How to cite: Liu, D.: Integrating functional strategies to optimize temporal forest carbon sink potential, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16305, https://doi.org/10.5194/egusphere-egu24-16305, 2024.

EGU24-377 | ECS | PICO | BG8.17

Nature-based solutions to capture atmospheric pollutants in urban ecosystems 

Angélica Montserrat Azpeitia García, Marjan Jose Eggermont, and Claudia Inés Rivera Cárdenas

Atmospheric pollution is a social problem reflected in cities due to pollutants contributing to various adverse effects on society.

Over the last few years, experts have been arguing that cities may play a positive role in the resilience and adaptation strategies against atmospheric pollutants and climate change effects. Recently, Nature-based Solutions (NBS) started to be implemented, focusing on solving environmental problems in place of sole human intervention. The main purpose of this contribution is to apply NBS solutions in Mexico City and the City of Calgary, as well as to compare their effectiveness in both countries.

Our contribution begins with previous research conducted about the most feasible NBS to be applied to those cities. The selected solution was the Ecosystem-based adaptation through pocket parks. Consequently, six pocket parks were visited in both cities and a database was created with descriptions of each park. In addition, a historical air quality database of those cities was created too, with the purpose of studying if NBS positively contributes to the decrease of atmospheric pollutant concentrations especially in the areas where pocket parks are placed.

These databases were processed through data visualization software, which concluded that the area of the pocket parks, the quantity, and the species of trees in each park may have an important influence on pollutant reduction through the studied NBS.On the other hand, pocket parks have additional features that maintain their importance on the NBS since they have social benefits and contribute against the effects of climate change on cities. This study concludes by recognizing the importance of creating as many recreational spaces as possible that include features that address the needs of cities and citizens in building a better urban environment.

How to cite: Azpeitia García, A. M., Eggermont, M. J., and Rivera Cárdenas, C. I.: Nature-based solutions to capture atmospheric pollutants in urban ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-377, https://doi.org/10.5194/egusphere-egu24-377, 2024.

EGU24-583 | ECS | PICO | BG8.17

Canopy-based Classification of Urban Vegetation from Very High-Resolution Satellite Imagery 

Fatimatou Coulibaly and Pierre Sicard

Urban trees are essential as they provide services in terms of air pollution mitigation, freshness, biodiversity, and citizens’ well-being. Accurate data on location, species, and structural characteristics are essential for quantifying tree benefits. For a realistic and proper quantification of the benefits of urban vegetation in terms of providing ecosystem services at city scale, a consistent inventory of vegetation within residential and public areas, is needed. However, the cost of measuring thousands of individual trees through field campaigns can be prohibitive and reliable information on domestic gardens is lacking due to difficulties in acquiring systematic data.

 

The main objective of this study was to investigate the suitability of very-high resolution satellite imagery for detecting, delineating, and classifying the dominant plant species in both public and private urban areas. The detection of individual trees and species differentiation are challenging in cities, as trees can be isolated, lined up or grouped in patch, with a wide range of plant species, high spectral similarity of vegetation types, and high-density stands, trees in the shade, trees with low spectral contrast, and due to the complexity of the urban environment (buildings, shadows, open courtyards). To overcome these constraints, a canopy-based classification was developed with the selection of new relevant spectral and texture-based features for each tree species and herbaceous areas.

 

A pan-sharpening approach and stepwise masking protocol from WV-2 imagery were used to separate vegetated and non-vegetated areas, tree, and non-tree canopy, over the study areas prior to tree species mapping. The shadows of the trees, but also the shadows of the objects (e.g., buildings) were correctly removed within residential yards. Then, we performed a multispectral procedure of object-based classification using Random Forest classifier with different textural features extracted from tree canopy and grassland (lawn/turf) to identify and map dominant types of vegetation. Four spectral bands (blue, green, yellow, red) and four texture features (i.e., energy, entropy, inverse difference moment, Haralick correlation) were found to be the most efficient attributes for canopy-based classification from WV-2 images.

In both study areas, about 420,000 and 555,000 canopies were successfully classified in Aix-en-Provence and Florence with about 85% in private lands and not under municipalities supervision. We also detected 1,157 and 5,438 herbaceous areas in Florence and Aix-en-Provence, respectively. The number of canopies not classified is very low, i.e., 66 out of 419,399 tree canopies were not classified in Aix-en-Provence (< 0.02%) and 4,030 out of 554,603 tree canopies in Florence (< 0.7%). In the two study areas, Aix-en-Provence (France, 50km²) and Florence (Italy, 80km²), 22 and 20 dominant species were identified and classified with an overall accuracy of 84% and 83%, respectively. The highest classification accuracy was obtained for Pinus spp. and Platanus acerifolia in Aix-en-Provence, and for Celtis australis and Cupressus sempervirens in Florence.

How to cite: Coulibaly, F. and Sicard, P.: Canopy-based Classification of Urban Vegetation from Very High-Resolution Satellite Imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-583, https://doi.org/10.5194/egusphere-egu24-583, 2024.

Air pollution has become a prime concern globally due to the escalation of anthropogenic activities and adverse meteorological conditions in recent years. The significant consequences of air pollution, manifesting in adverse ecosystem health effects and economic losses, highlight the urgency of assessing its impact on a regional to global scale. However, there is a lack of systematic investigations, particularly in the context of information deficiency on air pollution in Bangladesh. Therefore, this study aims to investigate the seasonal variations in air quality over Dhaka and Kolkata, with a specific focus on the summer monsoon (May-July). While winter pollution in these cities has been extensively explored in several studies, less attention has been given to understanding the dynamics of monsoon season. This study incorporates Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data to evaluate the influences of both regional and global factors on air quality. Specific emphasis has given on determining the correlation between air pollutants (PM2.5, carbon monoxide, black carbon, sulfur dioxide, ozone, nitrogen dioxide) and meteorological parameters (temperature, humidity, wind components, atmospheric pressure, boundary layer height and precipitation). This understanding is crucial as it forms a strong foundation for developing effective control and prevention strategies of air pollution for this region. In addition, by correlating metrological conditions between Dhaka and Kolkata, the study aims to evaluate the transboundary effects on pollutant dispersion. The potential impact of Sahara fires on air quality of these two cities is investigated using concentration-weighted trajectory analysis (CWT), extending the geographical domain to include the entire South Asian region. The findings not only contribute to the scientific understanding of local air quality but also have broader implications for regional and global atmospheric interactions. The study's insights provide a basis for informed policymaking and facilitate more effective nature based mitigation and control management strategies during the summer monsoon season in these densely populated urban areas.

How to cite: Faruk, T. and Khan, F.: Monsoonal Transboundary Impact on Air Quality over Dhaka and Kolkata Region , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-710, https://doi.org/10.5194/egusphere-egu24-710, 2024.


The significant transformations from rural to urban living encompasses substantial challenges related to climate action and sustainable development. Gaseous pollutants that were traditionally associated with rural livelihood are now also a challenge to urban ecosystems with CO being a prime example. Despite an overall decline in CO across the globe, the rate of decrease has actually slowed down in several regions of the world raising concerns of a global reversal. The trends in CO are found to be heterogeneous over urban regions of the world and concentrations do not always tally with emission inventories. Further, it is not only the trends that are changing over decades but also the global hotshots of several air pollutants, SO2 being a key example with the high values in Eastern China during the 2000s to enhanced values in Eastern India during the 2010s. Interestingly, when it comes to SO2, driven by the burning of coal, the hotspots in India are not in the Indo-Gangetic Plains (IGP) unlike CO or NH3, which are though driven by different sources e.g. combustion technologies and agricultural activities, respectively. Further, pollutants that were associated with indoor air studies with ramifications to human health are now increasing significantly at several locations in outdoor air, HCHO being a prime example. While the concentration of CO in India occurs in the IGP, unexpectedly enhanced formaldehyde levels were seen in certain pockets of India, away from the IGP, with trends that are higher than reported HCHO values across several parts of the globe. Apart from primary sources, HCHO is also an oxidation product of atmospheric volatile organic compounds (VOCs) and the high trend in HCHO observed during the summer months, generates interest on possible implications of atmospheric chemistry on ozone formation regimes in urban ecosystems. The changing temporal and spatial patterns necessitate mitigation strategies that do not completely depend on emission control and reduction but use alternate strategies like nature based solutions (NBS), particularly for urban ecosystems that harbor a larger population.

How to cite: Mallik, C.: The see-saw relationship of air pollution with climate: novel challenges to urban ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-745, https://doi.org/10.5194/egusphere-egu24-745, 2024.

EGU24-856 | ECS | PICO | BG8.17

Exploring the dynamics of the Atmospheric Boundary Layer over the Western-Indian region: Insights and Implications. 

Dharmendra Kamat, Som Sharma, Sourita Saha, Prashant Kumar, and Niranjan Kumar

The Atmospheric Boundary Layer (ABL) represents the critical interface between the Earth's surface and the free atmosphere, playing a pivotal role in shaping weather patterns, air quality, and the dispersion of pollutants. This study comprehensively investigates the ABL dynamics over the Western-Indian region during 2019-2023. Continuous observation of ABL is made over the Western-Indian region's three locations: Ahmedabad, Mount Abu, and Udaipur. Ahmedabad (23.02° N, 72.57° E) is a highly polluted urban location in the Indian state of Gujarat with a hot, semi-arid climate, while Mount Abu (24.59° N, 72.71° E) is a high-altitude location in the Aravalli range of mountains in Rajasthan. On the other hand, Udaipur (24.58° N, 73.71° E) is close to the desert region in Rajasthan, surrounded by lakes and having a hot semi-arid climate. The ABL is continuously monitored over these stations using a ground-based Ceilometer lidar. By analyzing observational data collected from diverse geographical locations, we seek to identify regional variations in ABL characteristics and their consequences on local weather systems. Results indicated a large winter-summer difference in ABL over Ahmedabad, with summer Boundary Layer Height (BLH) exceeding winter BLH by 1–1.5 km. These differences were less over the Mount Abu and Udaipur region. The ABL usually collapses over all three study regions during monsoon and is thicker during the pre and post-monsoon. Ground-based observation of ABL using lidar has been compared with the radiosonde, satellite, and reanalysis datasets. The ERA5 reanalysis underestimated the BLH, especially the nocturnal boundary layer height. Due to the proximity to the Thar desert, the study sites witness dust storms. The study also investigated the impact of dust storms on the ABL. Through a combination of advanced measurement techniques, such as lidar and satellite observation, we aim to provide a nuanced understanding of the spatiotemporal variability of key ABL parameters. In conclusion, this study aims to contribute to understanding how the ABL responds to changing climate conditions and its role in modulating the Earth's energy balance. By enhancing our understanding of ABL dynamics, we can improve the accuracy of weather predictions, refine climate models, and develop strategies for mitigating the impact of air quality issues on human health and the environment.

How to cite: Kamat, D., Sharma, S., Saha, S., Kumar, P., and Kumar, N.: Exploring the dynamics of the Atmospheric Boundary Layer over the Western-Indian region: Insights and Implications., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-856, https://doi.org/10.5194/egusphere-egu24-856, 2024.

EGU24-964 | PICO | BG8.17

Meeting clean air targets could reduce the burden of hypertension among women of reproductive age in India 

Taruna Singh, Sagnik Dey, Ambuj Roy, Santu Ghosh, and Ekta Chaudhary

Objective: Air pollution is a prominent cardiovascular risk factor globally and poses a significant concern in low- and middle-income countries. This study shows the association between hypertension among women of reproductive age (WRA, 15–49 years) and exposure to PM2.5, a key pollutant. The aim of this study is to bridge the gap in epidemiological evidence, particularly within the context of India's hypertensive demographic. Aligned with Sustainable Development Goal (SDG) 3 which promotes good health and well being.

Materials and Methodology: Utilizing data from the National Family Health Survey-5 (NFHS-5) and satellite-driven PM2.5 exposure, we examined the links between hypertension and PM2.5 constituents. Logistic regression, adjusted for socioeconomic indicators, including age, smoking, residence, education, and cooking fuel. Multiplicative interactions explored the moderating effects of variables such as smoking,BMI, and residence on PM2.5.

Results: The adjusted odds ratio for hypertension increased by 1.05 (95% CI: 1.04–1.06) per 10 μg/m³ rise in ambient PM2.5, derived from satellite and MERRA-2 reanalysis (OR 1.04, 95% CI: 1.01-1.09). Notably, smokers exhibited a higher risk (OR 1.11, 95% CI: 1.10–1.16) compared to non-smokers (OR 1.05, 95% CI: 1.04–1.06). The economically vulnerable showed increased susceptibility (OR 1.07, 95% CI: 1.06–1.08). Dust and black carbon displayed stronger associations with hypertension (ORs 1.27 and 1.21, respectively). District-scale analysis suggested a potential 2.42% reduction if districts meet NCAP air quality targets, and a 4.21% reduction in prevalence of hypertension if WHO guidelines are met.

Conclusion: Addressing SDG 3, the study emphasizes a positive association between PM2.5 exposure and hypertension in WRA, shedding light on critical health challenges in developing countries. Dust and black carbon emerge as key contributors, emphasizing the need for targeted interventions. Achieving air quality targets and stricter adherence to WHO guidelines could substantially reduce hypertension prevalence, showcasing the study's relevance to global health and well-being goals. From the perspective of the Indian Hypertension Control Initiative, emphasizing the potential impact of policy interventions in mitigating cardiovascular risks associated with air pollution in India.

How to cite: Singh, T., Dey, S., Roy, A., Ghosh, S., and Chaudhary, E.: Meeting clean air targets could reduce the burden of hypertension among women of reproductive age in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-964, https://doi.org/10.5194/egusphere-egu24-964, 2024.

EGU24-1147 | PICO | BG8.17

Changes in ambient concentrations of monoterpenes during the winter-summer transition period in an urban site of India 

Lokesh Sahu, Tanzil Malik, Mansi Gupta, and Nidhi Tripathi

In the earth’s atmosphere, volatile organic compounds (VOCs) are emitted from natural (biogenic) and anthropogenic sources. VOCs are important components of photochemical processes with strong significance to atmospheric chemistry and climate change through the formation of ozone and organic aerosols. Despite their large biogenic emissions and strong photochemical cycling under the tropical conditions, the speciated measurements of biogenic-VOCs (BVOCs) over the South Asia region are extremely rare. Recently, a project “Network of Volatile Organic Compounds (VOCs) Measurements in India: Biosphere-Atmosphere Exchange” has been implemented for the measurements of BVOCs over different environments of India and surrounding oceanic regions. We have conducted ambient air measurements of C6-C12 compounds at an urban site of Ahmedabad in western part of India during January-May 2020. The well time resolved continuous measurements provided excellent dataset to characterize the diurnal, day-to-day, and seasonal variations of VOCs originated from both biogenic and anthropogenic sources. The mains scientific focus of this study is to characterize the ambient air variations of α- and β-pinene, which are the main representatives of the monoterpene group. Unlike the large reductions in concentrations of anthropogenic VOCs during summer also coinciding with COVID-19 lockdown, the mixing ratios of α- and β-pinene showed a strong increasing trend from winter to summer. The monoterpenes showed clear diurnal patterns with higher night-time and daytime concentrations during winter and summer season, respectively. The monthly mean mixing ratios of α-pinene and β-pinene varied n the ranges of 10-22 and 3-16 pptv, respectively. Despite minimum anthropogenic influences and intense photo-oxidation loss in summer of 2020, the huge enhancements of monoterpenes in ambient air indicate the strong biogenic emissions from local vegetation. Our analysis indicate the combined effect of the northwest wind flow and higher air temperatures leading to high emissions of BVOCs from local vegetation.

How to cite: Sahu, L., Malik, T., Gupta, M., and Tripathi, N.: Changes in ambient concentrations of monoterpenes during the winter-summer transition period in an urban site of India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1147, https://doi.org/10.5194/egusphere-egu24-1147, 2024.

Sundarbans is a biodiversity hotspot sprawling across eastern India and Bangladesh, often subject to various biospheric research. Despite being one of the keys to coastal resilience building and climate change mitigation,  it remains one of the most vulnerable areas in terms of environmental degradation and economic instability. This multi-dimensional study aims to look into the temporal evolution of air pollutants like nitrogen oxides (NOx), particulate matter (PM), Sulfur dioxide (SO2), carbon monoxide (CO) and carbon dioxide (CO2) along with the urbanization of the highly sensitive biodiversity hotspots of Sundarban Deltaic Region by using long-term satellite and reanalysis datasets. The time series analysis of the air pollutants, including PM, NOx, CO, and CO2 showed an increasing trend of the pollutant concentrations, mostly owing to anthropogenic sources and climate change. The enhancement of air pollutants along with climate parameters like temperature indices within densely vegetated regions such as the Sundarbans, a biodiversity hotspot, raises considerable concern especially when the region’s socio-economic statistics have also deteriorated over the years.

This study also aims to assess the effectiveness of NBS in carbon sequestration through mangrove plantations implemented by diverse stakeholders over time. Further, the socio-economic dynamics of communities depending on mangrove resources were studied by utilizing various district-level surveys, plantation statistics, field surveys and stakeholder consultations. It was found that the communities have been most dependent on the mangrove species for firewood even after the advent of LPG which does undermine the Government’s efforts for clean fuels in homes. Though the households continue to graze cattle and use firewood, the awareness amongst the vulnerable populations regarding the importance of mangroves has improved. The planting of mangrove trees has not only contributed to ecological benefits but also brings in economical benefits for the communities involved. The initiative carried out in areas identified as vulnerable under the Panchayat's Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) 100-day work scheme, aims to provide employment opportunities to rural households by guaranteeing at least 100 days of wage employment per year, and in the context of mangrove plantation, it aligns both environmental conservation, economic development goals and women participation. Women's participation is actively observed in the plantation and maintenance of mangroves, which gives them economic benefits at the same time aligning with the goals of habitat preservation and climate mitigation. This symbiotic relationship proves to be the key to several potential environmental initiatives that positively impact the livelihoods of local populations.

How to cite: Ganguly, V. and Mallik, C.: Multi dimensional Assessment of Air Pollution Evolution in the Sundarban Deltaic Region in context of Climate Change and Socio-Economic Dynamics., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1195, https://doi.org/10.5194/egusphere-egu24-1195, 2024.

EGU24-1514 | PICO | BG8.17

Enhanced cooling efficiency of urban trees on hotter summer days in 70 cities of China 

Limei Yang, Jun Ge, Yipeng Cao, Yu Liu, Xing Luo, Shiyao Wang, and Weidong Guo

Increasing the urban tree cover percent (TCP) is widely recognized as an efficient way to mitigate urban heat. However, in the context of global warming, the response of urban trees’ cooling efficiency to ambient temperature remains largely unknown due to the complicated influences of ambient temperature on the physiological state of urban trees. In this study, we quantify the response of urban trees’ cooling efficiency to ambient temperature in 17 summers from 2003–2019 in 70 economically developed cities of China. The results show that the cooling efficiency of urban trees is enhanced with increasing ambient temperature, with values ranging from 0.002 to 0.055  per 1 ℃ increase in ambient temperature across the selected cities. This suggests additional cooling benefits provided by urban trees on hotter days, especially in cities with lower TCP levels. In addition, under the same TCP level, the additional cooling benefits are larger in warmer and wetter cities, as these cities have a sufficient water supply for urban tree transpiration. Finally, this study further confirmed that the enhanced cooling efficiency of urban trees on hotter days can additionally mitigate 3.64% of population exposure to urban heat stress. These results are expected to provide guidance for urban planners to alleviate urban heat risk by utilizing urban trees in a warming world.

How to cite: Yang, L., Ge, J., Cao, Y., Liu, Y., Luo, X., Wang, S., and Guo, W.: Enhanced cooling efficiency of urban trees on hotter summer days in 70 cities of China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1514, https://doi.org/10.5194/egusphere-egu24-1514, 2024.

Trees have a pivotal role in mitigating heat island effects and several studies analyzed temperature differences of various species. However, the potential of trees to decrease temperatures during heat waves, drought and extreme events is inadequately studied, particularly at the city scale. Therefore, we present a remote sensing based approach that evaluates surface temperatures of trees in the urban environment of Forchheim (Germany) during the heatwave 2022. To provide an example of extreme conditions, we conducted measurements on July 20, 2022, the day with the current absolute daily heat record of the region since temperature measurements started in 1949. The three-month period before the survey flight (May-July) was the second warmest and third driest May-July period ever measured, leading to an ideal setting to assess the role of trees in urban regions during projected climate extremes. Analyzing such situations is highly relevant for city planning as existing research showed that sap flow is only reduced after several weeks of drought. We performed a low-altitude flight campaign (350 meters above ground) during the daily maximum temperature period (2-4 pm) with a thermal camera (Optris PI 450) for surface temperatures and a multispectral camera (Micasense RedEdge M) for vegetation parameters and land cover. We compared derived surface temperatures at field mapped locations of more than 3000 trees covering more than 30 species (n ≥ 20) to assess species patterns and the influence of urban parameters such as imperviousness. We show differences between species and interrelationship with vegetation parameters (e.g. NDVI) to provide insights into mitigation effects and patterns of urban trees during extreme events.

How to cite: Zandler, H. and Samimi, C.: Remote sensing based analysis of urban tree temperatures during extreme heat and drought, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5086, https://doi.org/10.5194/egusphere-egu24-5086, 2024.

EGU24-5790 | ECS | PICO | BG8.17

Utilising Terrestrial Laser Scanning (TLS) for urban tree structure characterization and its impact on modelled human thermal comfort 

Todi Daelman, Hans Verbeeck, Frieke Vancoillie, and Matthias Demuzere

Urban green infrastructure plays a pivotal role in climate regulation by offering various ecosystem services. One crucial metric in understanding human thermal exposure is the mean radiant temperature (Tmrt), which encompasses the spatial and temporal variations of radiation exposure. In the context of urban microclimate models such as SOLWEIG, the accurate characterization of urban trees is essential, whether incorporating existing trees or assessing the cooling effects of new greenery. Currently, urban tree structures are usually generalised in urban climate models due to the lack of detailed measurements and scientific knowledge about urban tree growth and functioning.

Various vegetation types exhibit distinct effects on the attenuation of direct shortwave radiation through shading. Variations in tree shading are influenced by the configuration, optical and structural properties of planted tree species. Leaf Area Index (LAI), tree height, and trunk height significantly determine shade patterns and solar attenuation. We use state-of-the-art Terrestrial Laser Scanning (TLS) techniques to parameterize these structural properties for the precise implementation of existing trees within urban microclimate models. This enhanced structural understanding of urban trees will facilitate the creation of more realistic tree models, allowing for a comprehensive assessment of their impact on human thermal comfort. 

SOLWEIG operates as a 2.5-dimensional model, where x and y coordinates and associated attributes (e.g. height, emissivity or reflectivity) are utilised for the calculation of Tmrt. Greenery such as trees and bushes are represented in separate Digital Elevation Models (DEMs). TLS allows for the highest degree of parameterisation of urban trees within the given raster environment. By conducting a sensitivity analysis on the modelled Tmrt, we explore the impact of tree and trunk height, canopy area and volume, and radiation transmissivity of vegetation.

The result of our sensitivity analysis provides valuable guidance on the TLS data collection of tree parameters essential for evaluating current cooling effects. Which in turn leads to the identification of tree species with significant cooling potential, and determining the size at which a tree substantially contributes to human thermal comfort. 

How to cite: Daelman, T., Verbeeck, H., Vancoillie, F., and Demuzere, M.: Utilising Terrestrial Laser Scanning (TLS) for urban tree structure characterization and its impact on modelled human thermal comfort, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5790, https://doi.org/10.5194/egusphere-egu24-5790, 2024.

Increasing tree canopies is one of the effective measures to reduce heat at different spatial scales in cities. From a human-biometeorological perspective, tree canopies cool the trunk space below by reducing solar radiation, thus providing shade and lowering the net radiation overall. They also reduce the air temperature above them through transpiration, but this process also increases the water vapor pressure, which slightly counteracts a lowering of human heat stress. However, these two effects mainly affect the layer above the tree canopies. Therefore, they are less likely to promote the lowering of outdoor human heat stress at the pedestrian level below the tree canopies.

As a valuable benefit for the enhancing of human thermal comfort in urban areas, the cooling potential of tree canopies depends on their dimension, shape and leaf density. Even if trees have comparable physical states, they may influence the micrometeorological variables that control local human thermal comfort differently in various climate zones. In this context, the study shows the human-biometeorologically significant cooling potential of street trees at two exemplary selected urban sites in different climate zones. According to the Köppen and Geiger climate classification, the Jeju site (N 33˚ 49'00'', E 126˚ 50'00''), Republic of Korea, is in the Cfa climate zone, whereas the Stuttgart site (N 48˚ 46'38'', E 9˚ 10'30''), Germany, is in the Cfb climate zone.

Based on the validated version of the ENVI-met v5.0.2 software, systematic simulations were conducted on typical summer days to show the effect of various tree canopy characteristics, which refer to two tree dimensions, two values of the leaf area index (LAI), and three shapes of tree crowns (ellipsoid, triangle, and inversed triangle), on the level of outdoor human thermal comfort at both sites.

In the simulation results for sunny conditions, it is noticeable that tree canopies in the shape of ellipsoids exhibit the highest reduction in mean radiant temperature (Tmrt), which is considered a key factor in human thermal comfort. In Jeju it varies between 6 and 25 K and in Stuttgart between 11 and 27 K. The remarkable reduction of Tmrt leads to a maximum cooling potential of the physiological equivalent temperature (PET), as quantitative measure for human thermal comfort, of 12 K in Jeju and 14 K in Stuttgart. Assuming that the PET classification applies to both climate zones, the result is that the level of PET classification at both locations in different climate zones decreases from “very hot” to “warm”. 

This research forms the basis for complementary studies on the human-biometeorologically significant cooling effect of tree canopies with various characteristics that extend to other different climate zones.

How to cite: Lee, H., Park, S., Mayer, H., and Kim, J.: Tree canopy characteristics influence human heat stress reduction: comparative case study for two sites in different climates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6879, https://doi.org/10.5194/egusphere-egu24-6879, 2024.

EGU24-7823 | PICO | BG8.17

Vegetation to cool cities: a synthesis based on eddy covariance measurements in European cities 

Gabriele Guidolotti, Sundas Shaukat, Marco Ciolfi, Michele Mattioni, Giacomo Nicolini, Simone Sabbatini, Carlo Calfapietra, and Dario Papale and the Sites PI

Global warming and urbanization growth are accelerating and fuelling typical urban stressors including microclimate alterations with an intensification of urban heat islands (UHI). UHI areas are characterized by warmer temperatures with respect to the surrounding rural areas, affecting human health and mortality. Trees and urban green areas (UGAs) have been shown to be crucial in reducing the UHI because of the canopy transpiration-induced cooling: by turning liquid water to vapor absorbing heat energy from the surrounding environment, solar radiation is converted into latent heat flux, which lowers air temperatures surround. In this study conducted over 10 European cities we investigated if and how much UGAs impact latent heat fluxes and the related ambient air cooling, and how UGAs could be used to develop more habitable and sustainable urban environments. Specifically, the objectives of the study are to: 1) assess the impact of the green areas in cooling down the air temperature in summer months using in situ eddy covariance (EC) measurements and 2) assess the role of the environmental factors driving the latent heat fluxes and, consequently, the related cooling of urban microclimate. Results confirm that green areas within urban environments are key elements for enhancing the summer air cooling and thus the well-being of local inhabitants.

How to cite: Guidolotti, G., Shaukat, S., Ciolfi, M., Mattioni, M., Nicolini, G., Sabbatini, S., Calfapietra, C., and Papale, D. and the Sites PI: Vegetation to cool cities: a synthesis based on eddy covariance measurements in European cities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7823, https://doi.org/10.5194/egusphere-egu24-7823, 2024.

EGU24-8878 | ECS | PICO | BG8.17

Digital Tree Twins: Detailed Reconstruction from Point Clouds using a Skeletonization Approach 

Helen Alina Pabst, Andreas Bærentzen, Aidan Morales, David MacFarlane, and Ebba Dellwik

Trees have a strong effect on the local wind climate. To better understand their impact, an accurate and detailed reconstruction of botanical trees into digital twins from terrestrial LiDAR scan point clouds is important. However, capturing the complex, multi-scale nature of tree structures poses significant challenges. Issues such as gaps in the model due to occlusion in the point cloud data and inaccuracies in branch thickness estimations — especially for smaller branches — are prevalent limitations. Most advanced reconstruction methods today, such as TreeQSM (Raumonen et al., 2013), have been primarily designed for forestry applications, such as volume and biomass estimation. However, numerical flow simulations pose additional requirements including the need for a closed and continuous surface.

This study introduces a different approach, building upon the work of Bærenzten et al., 2023, using tools from the field of computer graphics. The proposed method initially creates a graph from the point cloud by connecting nearby points. Subsequently, a highly detailed skeleton of the tree is generated using the so-called local separators approach (Bærenzten et al., 2021). Local separators are defined as collections of vertices that are contained within a sub-graph of the original graph. The removal of a local separator splits the sub-graph into multiple smaller sub-graphs. The branch diameters are subsequently determined using a hybrid method that blends data-driven estimates derived from the point cloud data with the Da Vinci rule for trees, which defines a relationship between the diameters of a mother branch and its daughter branches. Additionally, species-specific data obtained from direct diameter measurements is incorporated in the estimation process. The tree’s surface is then reconstructed by first generating an implicit representation from which a closed mesh is extracted as an iso-surface.

Through a parameter study, the two main parameters for the generation of the skeleton, as well as the two main parameters influencing the branch thickness estimation, were studied in detail. The algorithm effectively handles occlusion in the point cloud, producing fully connected branching structures. The combined approach notably enhances the branch thickness estimation compared to using only one approach. We demonstrate the robustness of the method by applying it to three trees of very different dimensions, complexities, and point cloud characteristics and outline how the finally reconstructed tree will be used in atmospheric flow simulations.

 

 


References

Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., & Lewis, P. (2013). Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sensing, 5, 491-520. https://doi.org/10.3390/rs5020491

Bærentzen, J. A., Villesen, I. B., & Dellwik, E. (2023). Reconstruction of a Botanical Tree from a 3D Point Cloud. In E. Christiani, M. Falcone, & S. Tozza (Eds.), Mathematical Methods for Objects Reconstruction: From 3D Vision to 3D Printing (Vol. 54, pp. 103-120). Springer. https://doi.org/10.1007/978-981-99-0776-2\_4

Bærentzen, A., & Rotenberg, E. (2021). Skeletonization via Local Separators. ACM Transactions on Graphics, 40(5), Article 187. https://doi.org/10.1145/3459233

How to cite: Pabst, H. A., Bærentzen, A., Morales, A., MacFarlane, D., and Dellwik, E.: Digital Tree Twins: Detailed Reconstruction from Point Clouds using a Skeletonization Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8878, https://doi.org/10.5194/egusphere-egu24-8878, 2024.

EGU24-11301 | ECS | PICO | BG8.17

Assessing water status of two urban tree species : Acer Platanoides and Tilia Euchlora by very high spatial resolution imagery and field micro-dendrometers measurements 

Lola Canovas, Nadège Martiny, Thomas Bur, Nicolas Marilleau, and Christian Hartmann

Urban areas are faced with issues of particulate air pollution and urban heat islands, in a context of a growing number of their inhabitants. Ecosystem services provided by urban trees are impacted by the health and functioning mechanism of the trees, in particular the evapotranspiration process. The impact of urban specificities on tree functioning has yet to be fully studied. In recent years, improvement in remote sensing and the availability of very high spatial resolution imagery offer new perspectives and working methods for urban tree. The aim of this study is to explore how Pleiades imagery and field micro-dendrometer measurements can assess the health and water status of the two main tree species present in the city of Dijon: Acer Platanoides and Tilia Euchlora. The work has been leaded in 3 steps. First, the very high spatial resolution Pleiades imagery has been used to identify tree canopy in Dijon city. Generalist and empirical approaches are compared, for instance NDVI, MSAVI2 and EVI vegetation indices. Then, tree canopy, tree species (based on field records), morphological parameters (from topographic data and digital elevation model) and proximity to pollutant emissions are used to select six sites in Dijon. In each site, one or two mature trees (six Tilia Euchlora and five Acer Platanoides overall) are finally equipped with the micro-dendrometer (PepiPIAF system) to record daily stem diameter variations. Variables reflecting the water status of the trees, like the maximum daily shrinkage, are then calculated from these field measurements. The first results are encouraging, a marked response of vegetation indicators to precipitation is observed, with high values after heavy rainy episodes. The next step is to establish the link between vegetation indices obtain via remote sensing and micro-dendrometers measurements. This could in turn be a step forward the modelling of trees’ water status at a high spatial resolution at the scale of the city. 

How to cite: Canovas, L., Martiny, N., Bur, T., Marilleau, N., and Hartmann, C.: Assessing water status of two urban tree species : Acer Platanoides and Tilia Euchlora by very high spatial resolution imagery and field micro-dendrometers measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11301, https://doi.org/10.5194/egusphere-egu24-11301, 2024.

EGU24-11630 | ECS | PICO | BG8.17

Isolating and comparing the cooling effects of trees and short vegetation in large cities across the globe 

Xueyan Cheng, Jianquan Dong, Yanxu Liu, Jian Peng, and Rene Orth

Increasing vegetation cover is regarded as a nature-based solution to mitigate urban heat. Satellite-derived land surface temperature (LST) data at high spatial resolution can indicate comparatively warm and cold places within cities. This offers the opportunity to analyze the cooling effect of vegetation cover, and to separate it from other drivers. Further, it is possible to compare the cooling effects of different urban vegetation such as meadows and trees. 

Here, we use daily high-resolution LST data jointly with land cover information from >100 cities worldwide during their warmest three months in 2013. We train random forest models to predict LST patterns from land cover information for each day and city. As a first result we find that random forest models generally outperform linear regression models in predicting LST, and are therefore better suited to study the relative roles of individual drivers. Then, we estimate the influence of tree cover and short vegetation cover on LST by calculating SHapley Additive exPlanations (SHAP) values. We find that trees contribute to decreasing urban LST in most cities and days while only half samples indicate decrease of LST caused by short vegetation. Thereby trees have a much larger cooling effect than short vegetation. This is probably related to sustained transpiration during warm and dry conditions thanks to deep rooting systems, which is typically not the case for short vegetation. Also for trees, the cooling effect varies across climate regimes, with the largest effects in cities with temperate climate.  Moreover, we find that the cooling effect of trees is particularly large during the hottest days while it is limited by high relative humidity. This probably reflects the impacts of radiation and vapor pressure deficit on tree transpiration. Overall, our analysis demonstrates how remote sensing data and machine learning methods can inform urban vegetation cooling to deal with more frequent hot extremes.

How to cite: Cheng, X., Dong, J., Liu, Y., Peng, J., and Orth, R.: Isolating and comparing the cooling effects of trees and short vegetation in large cities across the globe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11630, https://doi.org/10.5194/egusphere-egu24-11630, 2024.

EGU24-12297 | ECS | PICO | BG8.17

Modelling water fluxes from urban trees using ECOSTRESS and sap-flow data 

Sophia T. Cunningham, Robert G. Bryant, Muhammad S. Khan, Robert S. Caine, Jill Edmondson, Eleanor CP Absalom, Anthony Turner, Raoul Blackman, and Holly Croft

Urban trees experience a unique combination of stressors and environmental benefits from urban environments, which affect their physiological health and ability to deliver ecosystem service benefits. Understanding which tree species are resilient or vulnerable to extreme climatic events is crucial to managing a sustainable urban forest.

This study investigates species-specific variations in water fluxes of three popular urban tree species (Acer pseudoplatanus, Tilia europaea, and Betula pendula) in response to a high temperature event. We used sap-flow data from 12 trees in an urban woodland, collected from TreeTalker sensors within the University of Sheffield Urban Tree Observatory (UTO), a state-of-the-art urban tree sensor network in Sheffield, UK. Data were collected every hour over a 2-year period (2021-22), which included an extreme heatwave characterized by high atmospheric evaporative demands and lower rainfall. A significant decrease in sap-flow of ~30% was observed for A. psedoplatanus and T. europaea respectively in 2022 compared to 2021, following a 4-day extreme weather event with temperatures reaching 38.9oC and Vapour Pressure Deficit (VPD) values of 5.8 kPa. B. pendula exhibited greater resilience to extreme climatic events with a ~5% decrease in sap-flow due to its low water demand. At the woodland scale, transpiration derived from sap-flow data was strongly correlated to evapotranspiration (ET) values from the ECOSTRESS Level 3 Instantaneous Evapotranspiration (ETinst) satellite product under non-stressed conditions (R2 =0.86; p<0.001). However, under stressed conditions during the heatwave event the relationship was much weaker (R2 =0.38; p<0.05), which may be attributed to uncertainties in underlying ET algorithm.

This research elucidates the differing impacts of extreme weather conditions on three urban tree species and provides an assessment of their ability to continue to deliver ecosystem services. Whilst some caution should be exercised in interpreting ECOSTRESS ET data under temperature/water stress conditions, satellite technologies offer an exciting opportunity to remotely monitor water fluxes from trees in urban woodland at city-scales.

How to cite: Cunningham, S. T., Bryant, R. G., Khan, M. S., Caine, R. S., Edmondson, J., Absalom, E. C., Turner, A., Blackman, R., and Croft, H.: Modelling water fluxes from urban trees using ECOSTRESS and sap-flow data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12297, https://doi.org/10.5194/egusphere-egu24-12297, 2024.

EGU24-13161 | PICO | BG8.17

An experimental study of the tree canopy-urban surface system optical and thermal signatures  

Christos Halios, Yasaman Haghparast, Stefan Smith, Brian Pickles, Li Shao, and Hugh Mortimer

Remote sensing for vegetation monitoring can involve mixed pixels with contributions from vegetation and background surfaces, causing biases in signals and their interpretations. This is especially so in cases when remote sensing applications are deployed in conditions with sparse vegetation, such as trees in urban areas, where multiple components within a pixel need to be considered; in such cases, the contained spectral information can be difficult to interpret.

A ground-based experimental layout consisting of a spectrometer and a thermal camera mounted on a portable crane for assessing the optical and thermal signatures of the tree canopy - underlying surface system, was deployed in a controlled field experiment. Two groups of five identically arranged containerised Acer platanoides 'Columnare' were placed into two adjacent built and non-built local microenvironments. Using the obtained thermal signatures, the relative contribution of the underlying surface and tree canopy to the overall spectral reflectance variation was examined.

A moderate correlation between the canopy-background temperature difference and the spectral reflectance for the built local microenvironment indicates that the synergy between thermal and spectral measurements in the fine scale is a promising method for disentangling the combined signal components. Further results will be presented in the conference.

How to cite: Halios, C., Haghparast, Y., Smith, S., Pickles, B., Shao, L., and Mortimer, H.: An experimental study of the tree canopy-urban surface system optical and thermal signatures , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13161, https://doi.org/10.5194/egusphere-egu24-13161, 2024.

The literature extensively discusses the potential of trees to enhance urban air quality by removing particulate matter (PM), highlighting it as one of the numerous advantages of trees in urban settings. To optimize the layout of green spaces in urban and peri-urban areas with restricted open space, it is crucial to choose appropriate tree species capable of maximizing PM removal. Regarding the PM absorption capacity in leaves, recent findings have primarily focused on establishing connections with complex leaf shapes, large surface areas, trichome shapes or other associations. Depending on which tree species were tested, factors that had a major influence on the adsorption capacity of PM used to show differently. So, we evaluated the relationship between leaf anatomical traits (microstructural properties) and PM adsorption capacity in 150 species in Korea. As a result of our study, a weak relationship was observed between microstructures (trichome density located in the main vein, lateral vein, lamina, stomatal density, roughness, leaf length, leaf area) and the PM adsorption capacity in 150 tree species. We suggest that the microstructures associated with PM adsorption capacity are likely a combination of complex factors rather than a single major factor. To gain clearer insights, we plan to conduct analyses on the same genus with similar microstructure characteristics but varying morphological differences, such as density and length. Additionally, we intend to analyze two to three composite characteristics of microstructure. 

How to cite: Je, S. M., Jeong, S. G., Chang, H., and Son, J.-A.: Analyzing the relationship between the leaf anatomical traits and PM adsorption capacity of 150 major landscape tree species in Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14199, https://doi.org/10.5194/egusphere-egu24-14199, 2024.

EGU24-15395 | ECS | PICO | BG8.17

Urban trees phenology and local climate feedbacks of a residential area in Berlin. 

Dimitris Tsirantonakis, Dana Looschelders, Daniel Fenner, Fred Meier, Nektarios Chrysoulakis, Andreas Christen, Sue Grimmond, and Joern Birkmann

The role of vegetation in urban climate has been in the spotlight in recent years, as it can play significant roles in carbon sequestration through photosynthesis as well as in the urban energy balance, mainly through evapotranspiration and shading. Based on these, the green infrastructureof cities is considered as a potential solution to lower the urban net CO2 exchange and lower air temperatures, improving the resilience of cities in the context of climate change.Being part of the general physiological responses of trees, the abovementioned mechanismshave been excessively studied in natural environments. However, the quantification of the different effects of these processes in complex and heterogeneous urban landscapes is challenging. In this study, we demonstrate initial results of a year-long observation period of tree vegetation in a residential area in Berlin, Germany, using PhenoCam and flux-tower observations. The phenology curves were extracted from half-hourly PhenoCam images of trees from the Acer, Aesculus, Fagus, and Pinus genera and analysed in combination with comprehensive observations of  thesurface energy balance components, including net radiation, turbulent sensible and latent heat fluxes as well as CO2 fluxes and standard meteorological variables. We showcase the agreement between the gradual development of tree foliage fordeciduous vegetation (which dominates the area) with: a) the upward latent heat flux seasonal maxima observations; and b) the decline of upward CO2 flux values. In particular, the timing of the start of season (SOS), peak of season (POS) and end of season (EOS) is assessed and compared to changes detected in the flux trends. Our data indicates a strong connection of the green-up period of deciduous vegetation with the largest rate of decrease of the CO2 fluxes, leading to a change from CO2 source to sink for a constrained time period. These observations highlight the measurable effect of vegetation-related carbon sequestration that can take place in urban areas with significant vegetation cover under specific/average meteorological conditions.

How to cite: Tsirantonakis, D., Looschelders, D., Fenner, D., Meier, F., Chrysoulakis, N., Christen, A., Grimmond, S., and Birkmann, J.: Urban trees phenology and local climate feedbacks of a residential area in Berlin., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15395, https://doi.org/10.5194/egusphere-egu24-15395, 2024.

EGU24-15678 | PICO | BG8.17

A transdisciplinary approach to improving urban air pollution 

Erika von Schneidemesser, Sean Schmitz, Alexandre Caseiro, and Andreas Kerschbaumer

In Berlin, Germany, new laws have been passed in the past 5 years seeking to transform the city’s mobility infrastructure to be climate neutral and environmentally friendly. Given Berlin’s size, history, and diverse governance structures, these new mobility measures (e.g. new bike lanes, temporary street closures) are typically implemented piecemeal in heterogeneous districts that makes measuring their individual environmental impacts challenging. Using the transdisciplinary research approach of the Research Institute for Sustainability of the Helmholtz Centre Potsdam (RIFS), the planning and execution of several measurement campaigns, and the subsequent uptake of results into policymaking, was conducted with local stakeholders in the Berlin Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action (SenUMVK). To assess individual measures’ impacts on local air quality, a metric important to policymakers’ assessments of their success, before and after measurements of nitrogen oxides (NOx) and particulate matter (PM) were conducted. This talk will focus on the transdisciplinary approach to research and how such an approach can address air pollution and climate change synergies, but also how such an approach facilitates uptake of research results by decision-makers.

How to cite: von Schneidemesser, E., Schmitz, S., Caseiro, A., and Kerschbaumer, A.: A transdisciplinary approach to improving urban air pollution, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15678, https://doi.org/10.5194/egusphere-egu24-15678, 2024.

EGU24-15857 | ECS | PICO | BG8.17

The Hidden Potential of Gardens: Lidar-based Assessment of Urban Tree Benefits  

Kelly Wittemans, Valerie Dewaelheyns, Stien Heremans, and Ben Somers

Gardens are companions of urbanization worldwide. Over 12% of Flanders' total surface area is garden, more than forests (10%) and nature reserves (2.9%). More than one third of urban areas worldwide exist out of garden. Despite their extensive area, gardens are often overlooked in research and their potential contribution to enhance living quality is un(der)explored. In our study, we delve into the potential of urban trees within gardens, examining their contribution within the broader framework of ‘OneHealth’.

Trees offer diverse ecosystem services that play a crucial role in optimizing the health of people, animals, and ecosystems. These services encompass carbon storage and sequestration, mitigation of the urban heat island effect, reduction of stormwater runoff, provision of habitat, and various additional health benefits. The extent to which garden trees contribute to these services in comparison to other urban green spaces across different typologies is a critical question we aim to address.

Light Detection and Ranging (LiDAR) data was used to create a canopy height model on which automated individual tree segmentation was performed. Tree height and crown width were derived directly from LiDAR data, while crown base height and diameter at breast height (DBH) were estimated based on empirical regression models. Tree genus allocation was based on a survey of garden professionals combined with garden inventories, which quantified tree genus abundance in Flemish gardens. Lastly, i-Tree ECO software was applied to calculate various ecosystem services. In the next steps of our research we will focus on quantifying the contribution of urban trees to landscape connectivity as well as to health benefits.

Preliminary results already show a high potential of garden trees in certain urban areas. For the study area of Leuven, Belgium, garden trees are estimated to store 31.64 tonnes carbon (per ha), 0.20 ton carbon sequestration per year (per ha), 5.81 m3 avoided runoff per year (per ha). They can contribute between 11 and 33% of the total provided ecosystem services of urban trees. In areas characterized by open high-rise buildings and dense forest there is no contribution of garden trees. However, in areas with higher garden area, garden trees can contribute up to 81% of the total carbon storage, 65% of the total carbon sequestration and 86% of the overall reduction in runoff.

How to cite: Wittemans, K., Dewaelheyns, V., Heremans, S., and Somers, B.: The Hidden Potential of Gardens: Lidar-based Assessment of Urban Tree Benefits , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15857, https://doi.org/10.5194/egusphere-egu24-15857, 2024.

EGU24-16601 | ECS | PICO | BG8.17

" Assessing The Impact of Land Use Changes on Pm2.5 Concentrations: A Geographically Weighted Regression Approach "  

Rahul Jaiswal, Himanshu Shekhar, Siddhant Gupta, Swagata Payra, Manish Kumar Pandey, and Sunita Verma

ABSTRACT

The increase in urbanization and migration has led to the unprecedented growth in anthropogenic pollutants especially the pollution caused by PM2.5. The effects of the land surface changes on these pollutants are significant. Research in the past indicates a close link between PM2.5 pollution and land use patterns at the micro-scale. The association of land and pollutants could be utilized as a proactive measure for reducing PM2.5 pollution and that’s what the current work proposes to do by taking Land use and land cover changes (LULCC) into consideration as one of the crucial and important factors influencing air quality. This study delves into the effects of different LULC categories and changes in land use on PM2.5 concentrations over Dehradun, Uttarakhand using a geographically weighted regression model.
Between 2000 and 2020, the LULCC analysis shows that the Built-up area has increased by 249.25% while in the same time interval, the highest recorded PM2.5 value increased by 17%, surging from 41.6 µg/m³ to 50.1 µg/m³, the agriculture area is increased by 371.86% over the study area. The built-up area exhibits the highest PM2.5 concentrations, while the densely vegetated area shows the lowest levels. The GWR analysis represents the significant relationship between PM2.5 and LULCC. These findings provide valuable insights for making informed decisions concerning regional environmental conservation, health, and local ecological well-being.

 

Keywords: PM2.5, Land use, Land cover, Remote Sensing, Geographically Weighted Regression, 

 

How to cite: Jaiswal, R., Shekhar, H., Gupta, S., Payra, S., Kumar Pandey, M., and Verma, S.: " Assessing The Impact of Land Use Changes on Pm2.5 Concentrations: A Geographically Weighted Regression Approach " , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16601, https://doi.org/10.5194/egusphere-egu24-16601, 2024.

EGU24-18803 | ECS | PICO | BG8.17

Remote sensing data (LiDAR, Sentinel-2) to detect individual urban trees and determine a vitality index 

Nilraj Shrestha, Sebastian Preidl, and Burkhard Golla

Urban trees are essential for cities as they reduce the risk of flooding and provide shade and coolness in the summer months. However, these trees are exposed to environmental stresses, e.g. due to limited soil resources and unfavorable hydrological conditions caused by impervious surface and drought. As part of the CliMax project, our research aims to develop a method that uses LiDAR (light detection and ranging) and Sentinel-2 to monitor and estimate the vitality of urban trees in Braunschweig and Brandenburg a.d.H. Estimating urban tree vitality by conducting ground measurement requires a huge number of work force and resources, which is expensive and time consuming. Remote sensing enables continuous monitoring of trees within the urban area.

In this research, we implemented a four-step methodology to detect individual urban trees based on airborne LiDAR data. Firstly, a pre-classified subset of the upcoming digital twin LiDAR data (harmonized Germany-wide data) was used to train a machine-learning model. This model is designed to distinguish between trees and buildings by relying on geometric features describing the three-dimensional LiDAR point distribution, such as planarity, sphericity or verticality. Secondly, the LiDAR data was rasterized into a Canopy Height Model (CHM) to delineate single trees by applying the slope break technique. We modified the conventional slope break computation to counteract the underestimation of the crown diameters. Third, the slope break values defined the different window sizes for the Local Maximum Filter (LMF) used to determine the spatial position of the treetops. Fourth, the extracted treetops were used as seeds in a watershed segmentation to partition a CHM into individual tree polygons based on the topology of its intensity surface.

We tested our method on a subset with heterogeneous landscape elements (park, building, and street) in Braunschweig and used tree cadastral data – provided by city authorities - for validation. The tree cadastre documents the location, height and crown diameter of each tree based on on-site surveys. With that, we evaluated the performance of our individual tree detection procedure and achieved a commission error of 36.72% and an omission error of 5.41%. A comparison of the cadastral data with the remotely sensed derived parameters results in an R2 of 0.246 and 0.7452 for the crown diameter and tree height respectively.

Sentinel-2 data from June 2023 served as the basis for calculating the Normalized Difference Vegetation Index (NDVI), which we initially used as proxy for tree vitality. Additionally, we calculated the percentage of fraction tree cover per Sentinel-2 pixel. We found that pixel’s tree cover correlates with the average NDVI values, but individual observations are often influenced by the tree's understory, resulting in higher NDVI values. In the next step, we will evaluate NDVI time series for the vitality analysis of urban trees and investigate pixel’s spectral components in more detail.

How to cite: Shrestha, N., Preidl, S., and Golla, B.: Remote sensing data (LiDAR, Sentinel-2) to detect individual urban trees and determine a vitality index, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18803, https://doi.org/10.5194/egusphere-egu24-18803, 2024.

EGU24-18978 | PICO | BG8.17

Vegetation role in urban atmospheric dynamics and chemistry: comprehensive assessment in two Italian cities  

Mihaela Mircea, Gino Briganti, Felicita Russo, Sandro Finardi, Camillo Silibello, Massimo D'Isidoro, Maria Gabriella Villani, Andrea Cappelletti, Mario Adani, Ilaria D'Elia, Antonio Piersanti, Lina Vitali, Andrea Bolignano, Nicola Pepe, Rossella Prandi, and Giuseppe Carlino

Cities and towns have become the primary human living space as they offer many opportunities for people, such as employment, educational opportunities, medical assistance, cultural and recreational activities.  According to the United Nations studies, the level of urbanization is expected to increase all over the world. Planning a sustainable rapid urbanisation becomes therefore crucial, and it requires scientific based evidence also regarding the effects of vegetation on urban atmosphere considering the urban built structure and all emission sources. This information is also important for urban regeneration making use of nature-based solutions (NBS) and aiming at improving air quality and reducing the impact of climate changes.

It is largely recognised that vegetation contributes to reduce the air temperature and to remove air pollutants in cities, but the impact of its emissions on air quality, together with its effects on the dispersion capacity of the atmosphere, are less known. Biogenic volatile organic compounds (BVOC) that vary with specie and with meteorological conditions, are continuously emitted by vegetation in the atmosphere contributing to the generation, destruction, and transformation of atmospheric pollutants such as gases (O3 and its precursors) and aerosol particles (PM10).

Here, a comprehensive assessment of vegetation effects on urban atmosphere will be shown for two Italian cities, Bologna and Milan, using the approach proposed in the European project Life VEG-GAP (https://www.lifeveggap.eu/). Specifically, the role of vegetation on urban meteorology is investigated, followed by an evaluation of its impact on air quality. Thus, the direct effects of vegetation on pollution through removal and emission processes are distinctly evaluated from its “indirect” effect acting through meteorology.

The assessments are based on numerical simulations carried out with a state-of-the-art air quality modelling system that uses the chemical transport model FARM and the meteorological model WRF. The BVOC emissions were produced with the species-specific model PSEM and the urban trees inventories provided by the Municipalities.

The outcomes show: 1) the contribution of vegetation ecosystems both as a source and a sink of air pollution in urban areas; 2) the urban vegetation ecosystems' effects on air temperature (urban heating and cooling patterns) and 3) its impact on air quality for the most relevant pollutants (O3, NO2, PM10). They also show the relationship between the presence of vegetation and temperature, pollutants’ concentrations, and depositions, according to land-use classes and vegetation fraction.

The intercomparison of vegetation effects on urban atmosphere for Bologna and Milan shows that their magnitude, pattern, and space/time variability are city dependent for both meteorological and chemical quantities. In addition, the continuous changes of large-scale meteorological conditions lead to a high variability in the ecosystem services of vegetation that can be realistically assessed only using a VEG-GAP-like approach and cannot be resumed in a simple quantification at city-scale.

How to cite: Mircea, M., Briganti, G., Russo, F., Finardi, S., Silibello, C., D'Isidoro, M., Villani, M. G., Cappelletti, A., Adani, M., D'Elia, I., Piersanti, A., Vitali, L., Bolignano, A., Pepe, N., Prandi, R., and Carlino, G.: Vegetation role in urban atmospheric dynamics and chemistry: comprehensive assessment in two Italian cities , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18978, https://doi.org/10.5194/egusphere-egu24-18978, 2024.

EGU24-20833 | ECS | PICO | BG8.17

Green Urban Equity: Analyzing the 3-30-300 Rule in UK Cities and Its Socioeconomic Implications 

Andres Zuñiga-Gonzalez, Anil Madhavapeddy, and Ronita Bardhan

Green spaces in cities have been demonstrated to offer multiple benefits to their inhabitants, including cleaner air, shade in sunny periods, and a place that contributes to mental well-being. In addition, trees in cities are home to several species of animals and work as a nature-based solution that can sequester CO2 and regulate water storage in urban ecosystems. The 3-30-300 rule space rule has been suggested as a strategy for city planners regarding urban forestry. This rule states that every resident’s home or workplace should be close to at least three trees, every neighbourhood should have a 30% canopy cover, and every citizen should have access to a public green space within a 300 m radius. Following this rule guarantees that all citizens obtain all the benefits of urban vegetation; however, this is not the case for all areas, particularly those impoverished ones where access to green spaces is limited, further contributing to social inequality. This study delves into the implementation of this rule across major UK urban areas, employing a blend of remotely sensed imagery, census data, ordnance surveys and machine learning methods. Our findings offer vital insights for city planners, emphasizing the need for a strategic approach to urban green space distribution that fosters social equity and environmental sustainability.

How to cite: Zuñiga-Gonzalez, A., Madhavapeddy, A., and Bardhan, R.: Green Urban Equity: Analyzing the 3-30-300 Rule in UK Cities and Its Socioeconomic Implications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20833, https://doi.org/10.5194/egusphere-egu24-20833, 2024.

EGU24-1562 | ECS | Posters on site | AS3.38

Radiocarbon Inventories of Switzerland (RICH): Investigations into fossil CO2 emissions from cement factories and urban areas 

Dylan Geissbühler, Thomas Laemmel, Philip Gautschi, Lukas Wacker, and Sönke Szidat

The RICH (Radiocarbon Inventories of Switzerland) project aims to build the first database and model of the distribution and cycling of 14C at a national scale across the atmosphere, soils, rivers and lakes C pools. The subproject presented here (RICH-Air) will serve to construct complementary monitoring and snapshots approaches of atmospheric 14CO2 measurement in this larger scope.

Radiocarbon measurements of atmospheric CO2 provide unique information on its sources and subsequent transport. It allows the apportionment between biogenic and fossil sources, which are close to the contemporary atmospheric background and 14C-free, respectively. The determination of the fossil CO2 fraction in air samples, can be used to identify fossil fuel emission patterns from a local to a regional scale. These efforts can then be used to plan and enforce future CO2 emissions mitigation steps.

Presented here are preliminary results from investigations regarding the fossil factor in emissions of 3 Swiss cement factories and the urban area of Bern, Switzerland. The radiocarbon content of emissions were studied in multiple ways:

  • Direct and downwind measurement of 14CO2 emissions at cement factories
  • Measurement of 14C content in tree leaves around cement factories and the urban area of Bern

The 14CO2 results show that downwind emissions from cement factories are only accurate if the choice of local background is appropriate. Measured values, both direct and indirect, show that the fossil fraction of emissions is at least of 2/3, which is within the theoretical range for cement production. Also, different facilities seem to have contrasting mean fossil content in their emissions, probably due to their individual fuel mix. Finally, leaf samples show a gradient in 14C values, more depleted closer from the source, both for cement factories or the urban area, which is consistent with previous studies.

How to cite: Geissbühler, D., Laemmel, T., Gautschi, P., Wacker, L., and Szidat, S.: Radiocarbon Inventories of Switzerland (RICH): Investigations into fossil CO2 emissions from cement factories and urban areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1562, https://doi.org/10.5194/egusphere-egu24-1562, 2024.

EGU24-3664 | ECS | Posters on site | AS3.38

Quantifying Methane Emissions Using Satellite Data: Integrated Methane Inversion (IMI) Model Application for Denmark 

Angel Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina Nascimento

After decades of steady growth, even reaching a growth rate of approximately zero from 2000 to 2006, the atmospheric methane (CH4) has returned to values observed in the second half of the twentieth century, and in recent years it has increased at a faster rate (Palmer et al., 2021). In this context, major initiatives involving the use of satellite-based inversion approaches have been implemented to respond to a growing demand from the climate community. One of this initiatives is the Integrated Methane Inversion (IMI, Varon et al., 2022). IMI is a cloud-based facility developed to infer regional CH4 emissions at 0.25° × 0.3125° resolution, with dynamic boundary conditions from a global archive of smoothed TROPOspheric Monitoring Instrument (TROPOMI) data. Three monthly IMI simulations were conducted over Denmark to estimate CH4 emissions before (June 2018), during (June 2020), and after (June 2021) the COVID-19-related lockdowns. The calculated a posteriori emissions for these periods were 0.579 Tg yr-1, 0.396 Tg yr-1, and 0.553 Tg yr-1, respectively. The approximately 31% emission reduction in June 2020 was almost swiftly reversed in June 2021, with a reduction of emissions in June 2021 by less than 5% compared to the same period in 2018. As many months other than June do not frequently meet the IMI preview configuration (a model feature to rate the quality of a proposed inversion without actually performing the inversion), multi-period simulations are being conducted to characterize CH4 emissions across the country. The new CH4 emissions data set will serve as a benchmark to evaluate the model performance of the Aarhus University Methane Inversion Algorithm (AUMIA, Vara-Vela et al., 2023). Currently under development, AUMIA is a satellite-based tool designed to quantify CH4 emissions over Europe, with a specific focus on anthropogenic activities.

References

Palmer, P. L., Feng, L., Lunt, M. F., Parker, R. J., Bosch, H., Lan, X., Lorente, A., and Borsdorff, T.: The added value of satellite observations of methane for understanding the contemporary methane budget, Philos. T. R. Soc. A., 379, 2210, https://doi.org/10.1098/rsta.2021.0106, 2021.

Vara-Vela, A. L., Karoff, C., Benavente, R. N., and Nascimento, J. P.: Implementation of a satellite- based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data, Geosci. Model Dev., 16, 6413-6431, 2023.

Varon, D. J., Jacob, D. J., Sulprizio, M., Estrada, L. A., Downs, W. B., Shen, L., Hancock, S. E., Nesser, H., Qu, Z., Penn, E., Chen, Z., Lu, X., Lorente, A., Tewari, A., and Randles, C. A.: Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high- resolution methane emissions from TROPOMI satellite observations, Geosci. Model Dev., 15, 5787-5805, 2022.

How to cite: Vara-Vela, A., Karoff, C., Rojas Benavente, N., and Nascimento, J.: Quantifying Methane Emissions Using Satellite Data: Integrated Methane Inversion (IMI) Model Application for Denmark, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3664, https://doi.org/10.5194/egusphere-egu24-3664, 2024.

EGU24-4894 | ECS | Orals | AS3.38

Indonesia's Multifaceted Approach to Navigating the Challenges of Greenhouse Gas Observations  

Alberth Nahas, Muhammad Rezza Ferdiansyah, and Ardhasena Sopaheluwakan

In Indonesia, the monitoring of Greenhouse Gases (GHGs) is a vital part of the nation's planning strategy, primarily spearheaded by the Meteorological, Climatological, and Geophysical Agency (BMKG) in response to the World Meteorological Organization's (WMO) mandate through the Global Atmosphere Watch (GAW) program. This initiative is of paramount importance as it aims to provide comprehensive and robust GHG monitoring to support global and national efforts in understanding and combating climate change. Despite existing efforts, there remains a pressing need to expand these services to ensure more accurate and extensive data collection, which is crucial for informing government policies and international climate negotiations. Indonesia's approach to GHG monitoring is multifaceted, encompassing global, national, and sub-national strategies to provide a comprehensive understanding of GHG dynamics and contribute effectively to global efforts. At a global and regional level, Indonesia boasts the longest GHG dataset in Southeast Asia, as well as in the equatorial region, from Bukit Kototabang. This data is invaluable, feeding into the WMO GAW international network and providing insights that aid in refining GHG inventories worldwide. It represents a significant contribution to the global understanding of GHG trends and helps position Indonesia as a critical player in international climate dialogues, especially concerning carbon budgeting and emission reduction strategies. Additionally, the implementation plan for the Global Greenhouse Gas Watch (G3W) program, a WMO initiative for a GHG monitoring effort worldwide,  is incorporated in the nation’s GHG monitoring plan, aiming for a more inclusive and extensive GHG monitoring network. Nationally, Indonesia's strategy leverages the potential of satellite-driven information.  This approach can be considered as complementary as it offers an advantage in providing better spatial resolution, and fully representing the differences in land-cover types. At a sub-national level, the focus is on atmospheric-based monitoring to provide localized GHG estimates through a roadmap for the adoption of the Integrated Global Greenhouse Gas Information System (IG3IS). This ambitious program aims to monitor atmospheric GHGs in an integrated manner, combining this with atmospheric modeling to yield a range of benefits. It enables the estimation of carbon emissions across various sectors and complement in calculating carbon sequestration, particularly in forestry initiatives. Together, these strategies illustrate Indonesia's nuanced and robust approach to GHG monitoring. By continuously enhancing its GHG monitoring plans, adopting advanced satellite technology, and focusing on localized atmospheric monitoring, Indonesia not only contributes valuable data to the global scientific community but also strengthens its own capacity to address climate change. This integrated approach is crucial for developing a comprehensive understanding of GHG dynamics, informing policy and international negotiations, and ultimately guiding the nation towards a sustainable and resilient future in the face of global environmental challenges. 

How to cite: Nahas, A., Ferdiansyah, M. R., and Sopaheluwakan, A.: Indonesia's Multifaceted Approach to Navigating the Challenges of Greenhouse Gas Observations , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4894, https://doi.org/10.5194/egusphere-egu24-4894, 2024.

EGU24-5069 | ECS | Posters on site | AS3.38

Development of Bayesian inverse modeling framework to verify CO2 emissions in Seoul 

Sojung Sim and Sujong Jeong

The Bayesian inverse method, combined with measurements of atmospheric carbon dioxide (CO2) and a transport model, can serve as an independent verification approach to improve the precision of emission estimates. This study utilized the Bayesian inverse model, along with ground- and space-based measurements, to validate CO2 emissions in Seoul. A Bayesian inverse modeling framework was developed, integrating crucial input data such as anthropogenic CO2 emissions, biogenic CO2 fluxes, atmospheric CO2 measurements, a Lagrangian transport model, and error covariances for both prior emissions and observations. The averages of posterior emissions decreased after the inversion run, with a correction of approximately -8.69%. This suggests that the prior emissions were overestimated. There was an average 9.7% reduction in posterior emission uncertainties compared to prior uncertainties. The most substantial reductions in uncertainty were observed in areas with concentrated observation sites. The performance of the inverse model was thoroughly investigated through sensitivity analysis, encompassing different background representations, prior uncertainty levels, temporal and spatial uncertainties, and observational network configurations. Additionally, we quantified spatiotemporal changes in CO2 emissions due to COVID-19. The abundance of ground and space observations in Seoul provided robust constraints on urban CO2 emissions, allowing for an objective evaluation of the effectiveness of carbon reduction policies.

This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through "Project for developing an observation-based GHG emissions geospatial information map", funded by Korea Ministry of Environment(MOE)(RS-2023-00232066).

How to cite: Sim, S. and Jeong, S.: Development of Bayesian inverse modeling framework to verify CO2 emissions in Seoul, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5069, https://doi.org/10.5194/egusphere-egu24-5069, 2024.

EGU24-5221 | ECS | Orals | AS3.38

Design, operation, and insights from Zürich city's mid- and low-cost CO2 sensor network 

Stuart K. Grange, Pascal Rubli, Andrea Fischer, Christoph Hueglin, Nikolai Ponomarev, Dominik Brunner, and Lukas Emmenegger

As a part of the ICOS Cities project, a dense CO2 sensor network was deployed across Zürich city in July 2022 that will remain operational until July 2024. The network comprises 250 NDIR (nondispersive infrared) CO2 sensors from three manufacturers (Senseair, Vaisala, and Licor) at 87 monitoring sites. The sensors can be classified into low- and mid-cost groups (~€500 and ~€7000 respectively). Most mid-cost sensors were installed with rooftop inlets, while most low-cost sensors were deployed near ground level, i.e. near sources of biogenic activities, human respiration, and fossil fuel burning. All data are transferred using LoRaWan and Picarro CRDS (cavity ring-down spectroscopy) gas analysers with traceable reference gases are used for calibration and the assessment of the sensors’ performance before field deployment.
The mid-cost CO2 sensors run on mains power, are placed inside maintenance rooms or measurement cabins, and make use of two calibration gases that are tested daily. After accounting for air pressure, humidity and the reference gas tests, the mid-cost CO2 sensors achieve an accuracy of 1.5 ppm of root mean square error (RMSE) and a mean bias that is within ± 1 ppm when considering hourly means in field conditions. The low-cost sensors are battery-powered and require an initial calibration period to address potential deficiencies with their factory calibration. During field deployment, an algorithm for drift correction is applied that considers meteorological conditions and data provided by the mid-cost sensors in the network. The low-cost sensors achieve a mean RMSE of 15 ppm under field conditions when compared to pseudo-reference time series provided by mid-cost sensors, and on average, they show no systematic bias.
The sensor measurement performance is adequate to resolve site-specific differences and interesting source-sink processes – especially those related to traffic and the biosphere. Mean CO2 dry air mole fractions ranged between 432 and 460 ppm across the network with some sites displaying large CO2 diurnal ranges (up to 70 ppm) due to confinement of biogenic emissions in the very early hours of the morning. The network’s background CO2 is highly variable, indicating that Zürich’s ambient CO2 levels are strongly influenced by regional scale processes as well as emissions and sinks within the city’s boundary. In a first attempt to quantify CO2 emissions, the rooftop sensors are combined with inventory data and simulations of biogenic activity using ICON-ART at a spatial resolution of 600 m. In contrast, the low-cost sensors will be employed in combination with highly-resolved urban emission data and GRAMM/GRAL, a building-resolved transport model. In collaboration with the city government, we expect this to become a long-term, actionable contribution to address urban emissions and the city's net-zero commitment.

How to cite: Grange, S. K., Rubli, P., Fischer, A., Hueglin, C., Ponomarev, N., Brunner, D., and Emmenegger, L.: Design, operation, and insights from Zürich city's mid- and low-cost CO2 sensor network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5221, https://doi.org/10.5194/egusphere-egu24-5221, 2024.

EGU24-5321 | ECS | Orals | AS3.38

Towards CO2 emission estimation in urban areas using a dense sensor network and the high-resolution GRAMM/GRAL model 

Anna Sommani, Maximilian May, Alexander J. Turner, Ronald C. Cohen, and Sanam N. Vardag

Urban areas are responsible for about 70% of anthropogenic CO2 emissions and are therefore an important system in which to develop mitigation strategies to reduce emissions. To assess these strategies and monitor mitigation efforts, independent knowledge of urban CO2 sources is required. A measurement-based estimation of emissions can be obtained using CO2 measurements, along with prior information on emissions from inventories and a high-resolution transport model.

Here we use the forward model system GRAMM/GRAL. This consists of two nested models, a prognostic mesoscale model (GRAMM), and a microscale computational fluid dynamics and Lagrangian dispersion model (GRAL). We run GRAL on a 15 km x 15 km grid over the city of Oakland, California, at a horizontal resolution of 10 m x 10 m. This resolution of 10 meters is sufficient to resolve street canyon effects. We utilize the Berkeley Atmospheric CO2 Observation Network (BEACO2N), a unique high-density network of CO2 monitoring stations consisting of mid-cost sensors. To optimize computational time, GRAMM/GRAL is run in a steady-state mode where we compute hourly steady-state wind and concentration fields, corresponding to different synoptic meteorological situations. To infer the temporal evolution of the simulated CO2 concentration over a whole year we then use a match-to-observation algorithm that for each hour chooses the hourly steady-state wind field which minimizes the difference between the simulated wind and the observed wind time series from an urban network of wind measuring stations (May et al. 2024).

In our study, we assess the performance of the GRAMM/GRAL model in Oakland and compare the modelled and measured wind and concentration fields over a year. In general, we find a good agreement between modelled and observed wind fields. Comparing the time series of simulated CO2 concentration to the observed CO2 concentration from the BEACO2N network, we analyze the agreement and difference between the modelled and simulated CO2 concentration and propose possible improvements in the modelling framework. Finally, we propose an inversion set-up to infer emission estimates at high resolution given the observations and discuss remaining challenges and limitations.

How to cite: Sommani, A., May, M., Turner, A. J., Cohen, R. C., and Vardag, S. N.: Towards CO2 emission estimation in urban areas using a dense sensor network and the high-resolution GRAMM/GRAL model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5321, https://doi.org/10.5194/egusphere-egu24-5321, 2024.

EGU24-5727 | Posters on site | AS3.38

The U.S. Greenhouse Gas Center: Extending Accessible and Integrated GHG Information from U.S. Government and Non-Public Sources to meet user needs 

Shanna Combley, Argyro Kavvada, Lesley Ott, Kevin Bowman, Manil Maskey, Robert Green, William Irving, Melissa Weitz, Vanda Grubisic, Ariel Stein, James Whetstone, Annmarie Eldering, Erin McDuffie, and Alix Kashdan

The newly established United States Greenhouse Gas Center (U.S. GHG Center) is a multi-agency partnership between the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) that aims to accelerate the production and delivery of actionable, trusted greenhouse gas (GHG) information from the federal government and non-public sector to a variety of users through a coordinated data system, reflecting transparency and open source science principles in both data and methods. The US GHG Center acts as an enabler of collaboration with networks of interagency, international, intergovernmental and private sector partners to increase confidence in setting, assessing, and meeting climate change mitigation goals, with a preliminary focus on carbon dioxide and methane. The US GHG Center is also a critical element in the implementation of the “National Strategy to Advance an Integrated US Greenhouse Gas Measurement, Monitoring, and Information System”.  Initial focus areas include 1) Gridded anthropogenic greenhouse gas emissions, 2) Natural sources and sinks, and 3) New Observations for tracking large emission events. The US GHG Center web portal includes a prototype data catalogue, exploratory data analysis capabilities, a collaborative science environment for data analysis and exploration, as well as an interactive visual interface for storytelling. Examples of products currently available on the GHG Center portal include methane and carbon dioxide concentration anomalies and emissions from airborne and space-based instruments, including from NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer in orbit on the International Space Station, EPA’s gridded U.S. anthropogenic methane greenhouse gas inventory data, gridding methodologies and visualizations, NOAA’s Observation Package (ObsPack) data products that bring together atmospheric greenhouse gas observations from a variety of sampling platforms, as well as multi-model land flux and ecosystem exchange estimates. 

How to cite: Combley, S., Kavvada, A., Ott, L., Bowman, K., Maskey, M., Green, R., Irving, W., Weitz, M., Grubisic, V., Stein, A., Whetstone, J., Eldering, A., McDuffie, E., and Kashdan, A.: The U.S. Greenhouse Gas Center: Extending Accessible and Integrated GHG Information from U.S. Government and Non-Public Sources to meet user needs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5727, https://doi.org/10.5194/egusphere-egu24-5727, 2024.

EGU24-6185 | ECS | Orals | AS3.38

Using TROPOMI observations to derive methane emissions and its driving factors over Lake Chad 

Mengyao Liu, Ronald van der A, Ruoqi Liu, Michiel van Weele, Geli Zhang, Jos de Laat, and Pepijn Veefkind

Wetland methane emissions are an important source of uncertainty in the methane budget due to their significant spatial and temporal variabilities. The Lake Chad Basin is located in central Africa and comprises a number of transboundary waters, which exhibit dramatic expansion and contraction. However, methane emissions from Lake Chad seem not to be properly captured in bottom-up emission inventories. An improved divergence method has been developed to estimate gridded methane (CH4) emissions from satellite observations of the TROPOspheric Monitoring Instrument (TROPOMI). Significant annual methane emissions over the Lake Chad Basin are identified by both the official reprocessed (S5P_RPRO_L2__CH4) and WFM-DOAS (TROPOMI/WFMD v1.8) XCH4 products. The maximum methane emissions appear from December to February while the minimum emissions are found during June to August. We further extract the monthly surface water areas using Landsat satellite imagery and wetland areas based on the MODIS vegetation index. The monthly variations of methane emissions are consistent with monthly surface water areas and wetlands areas but in contrast to the monthly rainfall. The seasonal emissions during the period of 2018 to 2022 over the Lake Chad Basin have been studied to better understand the role of driving factors such as rainfall, temperature, and waterlogged soils.

How to cite: Liu, M., van der A, R., Liu, R., van Weele, M., Zhang, G., de Laat, J., and Veefkind, P.: Using TROPOMI observations to derive methane emissions and its driving factors over Lake Chad, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6185, https://doi.org/10.5194/egusphere-egu24-6185, 2024.

EGU24-6957 | Orals | AS3.38

Greenhouse gas and short-lived pollutants in the Baltimore, MD and Washington, DC area: Coordinated measurements and models 

Russell Dickerson, Xinrong Ren, Anna Karion, Paul Shepson, Phil Stratton, Jiayang Sun, Sahu Sayatan, Hao He, and Hannah Daley

The cities of Baltimore, MD and Washington, DC generate substantial amounts of air pollutants with adverse effects on health and climate, but the magnitude and origins of these contaminants remain uncertain.  The State of Maryland has committed to reducing statewide greenhouse gas emissions by 60% (relative to 2006 levels) by the year 2031. A team of scientists from the Maryland Department of the Environment (MDE), the National Institute of Standards and Technology (NIST), the National Oceanic and Atmospheric Administration (NOAA), the University of Maryland, and Stony Brook University have established a coordinated program of measurements and models to quantify and allocate emissions.  These include observations from aircraft, a mobile laboratory, a tower array, and surface monitors as well as Lagrangian and Eulerian models.  Results thus far indicate that methane emissions substantially exceed initial, traditional, bottom-up, inventory data and that leakage from the natural gas delivery system and landfills are major sources.  Urban methane emissions show a strong seasonality, consistent with natural gas usage – the flux in winter was 44% greater than in summer.  Model inversions suggest urban methane emissions in Washington and Baltimore decreased by 4-5%/yr between 2018 and 2021.  Mobile laboratory measurements of GHGs and air pollutants such as black carbon with high temporal and spatial resolution reveal a variety of sources in densely populated urban residential areas related to traffic and industry and with implications for environmental justice.  Analysis of long-term monitoring data with clustering of trajectories identified dominant transport pathways and sources in upwind states that likely contribute in a major way to ambient methane concentrations in the Baltimore/Washington area – these include the Marcellus oil and gas plays in Pennsylvania and West Virginia as well as swine production in North Carolina.  Ongoing and future work includes developing a landfill as a testbed for emissions quantification and control and use of carbon and hydrogen isotopes to partition fossil and biogenic emissions and biogenic losses.  The combination of State, federal, and university resources makes for a powerful tool to tackle air quality and climate problems. 

 

How to cite: Dickerson, R., Ren, X., Karion, A., Shepson, P., Stratton, P., Sun, J., Sayatan, S., He, H., and Daley, H.: Greenhouse gas and short-lived pollutants in the Baltimore, MD and Washington, DC area: Coordinated measurements and models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6957, https://doi.org/10.5194/egusphere-egu24-6957, 2024.

Quantifying methane emissions in Gippsland, Victoria, Australia is challenging due to the presence of multiple emission sources, resulting in overlapping emissions and considerable uncertainty in estimation. To address this challenge, our study investigates the potential to reduce uncertainties in methane emissions in Gippsland through the combination of in-situ data, models, and prior information using a Bayesian inverse modeling and variational approach. We employ a four-dimensional variational in-situ data assimilation technique built around the Community Multiscale Air Quality (CMAQ) model at 2 km resolution for four months in 2019.

Initially, we used the Emission Database for Global Atmospheric Research (EDGAR) as a baseline but identified a number of shortcomings in capturing local emissions. To address this issue, we introduced prior estimates from the "openmethane" prior at https://openmethane.org/. We evaluated the underlying Weather Research and Forecasting Model (WRF) meteorological predictions against nearby weather station data, revealing good performance at most times. We validated the performance of our concentration model by comparing it with observational data at the three sites used in the study.

We will discuss the results and present the reductions in emission uncertainties. Next steps in the study will integrate these findings to further rectify biases and improve the accuracy of methane emission estimates in the Gippsland region, especially during the intense fire period of 2019-2020.

How to cite: Aghdasi, S., Rayner, P., Deutscher, N., and Silver, J.: Investigating high-resolution methane emission uncertainty reduction in Gippsland using in-situ data: A Bayesian inverse modeling and variational assimilation approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7180, https://doi.org/10.5194/egusphere-egu24-7180, 2024.

EGU24-7288 | ECS | Orals | AS3.38

Satellite-based monitoring of methane emissions from China's rice hub 

Ruosi Liang and Yuzhong Zhang

Rice cultivation is one of the dominant anthropogenic methane sources in China and globally. However, it is often challenging to accurately quantify national and regional rice methane emissions. Conventional bottom-up methods often rely on a small number of ground-based flux measurements to derive emission factors or to calibrate process-based models, despite of inherently high heterogeneity in rice methane emission intensities. Satellite observations provide an independent regional-scale constraint on the magnitude of rice methane emissions. We apply atmospheric methane observations from the Tropospheric Monitoring Instrument (TROPOMI) to a high-resolution (0.625° × 0.5°) inversion to estimate monthly methane emissions for 2021 from Heilongjiang province in Northeast China, which is the country’s largest rice province. Our optimal estimate of annual rice methane emissions is 0.89 (0.57 – 1.04) Tg a−1, a factor of 2 or more higher than various bottom-up estimates. The results show that rice methane emissions in Heilongjiang peak during the tillering stage in June, consistent with intermittent flooding as the primary practice of water-regime management. This one-peak seasonality differs from the two-peak pattern in the prior estimate of the inversion (EDGAR v6.0) but agrees with flux measurements taken at a site in the region. Finally, our results are used to evaluate and improve process-based models of rice methane emissions.

How to cite: Liang, R. and Zhang, Y.: Satellite-based monitoring of methane emissions from China's rice hub, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7288, https://doi.org/10.5194/egusphere-egu24-7288, 2024.

EGU24-7594 | Orals | AS3.38

The Integrated Greenhouse gas Monitoring System (ITMS) for Germany: Update on recent progress 

Christoph Gerbig, Andrea Kaiser-Weiss, Heinrich Bovensmann, Ralf Kiese, Clemens Scheer, Rachael Akinyede, Beatrice Ellerhoff, Maximilian Reuter, Hannes Imhof, Christian Plaß-Dülmer, and Andreas Fix

The Integrated Greenhouse Gas Monitoring System for Germany (ITMS) is a national initiative to establish an operational service for the provision of independent estimates of GHG fluxes for Germany. The main aim is to enhance transparency in reporting of emissions and natural fluxes on the path to net zero emissions. ITMS is a highly interdisciplinary project, bringing together diverse scientific communities involved in atmospheric observations, satellite observations, biosphere and agriculture research, inventory experts, and atmospheric transport and inverse modelling. ITMS utilizes observational datastreams from research infrastructures such as ICOS and IAGOS, and tailored remote sensing products, to constrain Germany’s GHG fluxes into the atmosphere using inverse atmospheric transport modelling. Detailed a priori emissions are generated consistent with UNFCCC reported emissions, while priors for natural fluxes are based on various process based as well as diagnostic models. Inverse modelling is deployed at mesoscale resolution, using the CarboScope-Regional (CSR) inversion system operated at the MPI-BGC as a back-bone and reference system, while developing ICON-ART based data assimilation for future operational services. The presentation will give an overview of recent progress and show some research highlights achieved so far.

How to cite: Gerbig, C., Kaiser-Weiss, A., Bovensmann, H., Kiese, R., Scheer, C., Akinyede, R., Ellerhoff, B., Reuter, M., Imhof, H., Plaß-Dülmer, C., and Fix, A.: The Integrated Greenhouse gas Monitoring System (ITMS) for Germany: Update on recent progress, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7594, https://doi.org/10.5194/egusphere-egu24-7594, 2024.

EGU24-8039 | ECS | Posters on site | AS3.38

GHG-KIT project: Inverse modelling of Vienna’s CH4 and CO2 emissions using in-situ and remote observations 

Antje Hoheisel, Christian Maurer, Marie D. Mulder, Peter Redl, Stefan Schneider, Jia Chen, Andreas Luther, Bradley Matthews, Andrea Watzinger, Kathiravan Meeran, and Marcus Hirtl

The Austrian Flagship Project “GHG-KIT: Keep it traceable” aims to prototype an Austrian, Earth Observation-Integrated GHG measurement and modelling system, which can support national GHG emission monitoring. Among other aims, the project is working toward an Austrian inverse modelling framework to produce top-down estimates of national and subnational CO2 and CH4 fluxes that are independent of the current bottom-up system of the Austrian GHG inventory.
This conference contribution will present the GHG-KIT progress on inverse modelling of subnational CO2 and CH4 emissions, using Vienna as a case study. Vienna is the most populated city in Austria with around 2 million inhabitants, corresponding to slightly more than a fifth of the total Austrian population. To estimate the GHG emissions in Vienna the inversion framework FLEXINVERT is used. The atmospheric back trajectories for GHG measurements carried out in Vienna are calculated using the Lagrangian dispersion model FLEXPART-WRF, which is driven by WRF meteorology. The a priori fluxes of GHGs, used in FLEXINVERT, are prepared using WRF-GHG and are based on data from the Copernicus Atmosphere Monitoring Service (CAMS), among others. WRF-GHG is a Weather Research and Forecasting (WRF) model version that is coupled with chemistry modules as well as the GHG flux module and considers urban building features. Atmospheric ground-based observations of CO2 and CH4 mole fractions from the Vienna Urban Carbon Laboratory are included in the inverse modelling. These include in-situ observations from a tall-tower, as well as total column measurements at four locations from a 2022 summer campaign performed by the Technical University of Munich. Furthermore, the usability of satellite measurements over Vienna as an additional observation constraint will be investigated. This includes GHGSat measurements from Vienna that are carried out as part of the GHG-KIT project, as well as synthetic or possibly authentic observations from satellite missions (such as CO2M and MethaneSAT) that will be launched during the course of this project or shortly thereafter.

How to cite: Hoheisel, A., Maurer, C., Mulder, M. D., Redl, P., Schneider, S., Chen, J., Luther, A., Matthews, B., Watzinger, A., Meeran, K., and Hirtl, M.: GHG-KIT project: Inverse modelling of Vienna’s CH4 and CO2 emissions using in-situ and remote observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8039, https://doi.org/10.5194/egusphere-egu24-8039, 2024.

EGU24-8915 | ECS | Posters on site | AS3.38

High-resolution meteorological CO2 enhancements of German metropolitan areas using WRF 

Lukas Pilz, Christopher Lüken-Winkels, Michał Gałkowski, David Ho, Fei Chen, and Sanam N. Vardag

Verifying greenhouse gas (GHG) mitigation efforts of governments using atmospheric observations is a task which is rapidly gaining scientific interest and attention. The United Nations Framework Convention on Climate Change (UNFCCC) requires the compilation of National Inventory Reports and recommends augmenting them with observational data. The joint project ITMS (Integriertes Treibhausgas-Monitoringsystem für Deutschland) is Germany's national contribution to the World Meteorological Organization’s Integrated Global Greenhouse Gas Information System (IG3IS). It will establish the scientific basis and methodology for integrating GHG observations into the national emissions inventories. Our focus within the ITMS joint project is to optimize observation strategies for monitoring fossil CO2 emissions in German urban and metropolitan areas using synthetic studies. Focusing on cities is especially relevant as cities are substantial contributors to total anthropogenic CO2 emissions. 

Our study uses the Weather Research and Forecasting model (WRF v4.3.3) with ECMWF-ERA5 as meteorological input and boundary conditions. As a first step, we have optimized model transport such that our results are representative of real-world conditions as much as possible. Within comprehensive sensitivity studies, we have analyzed the optimal model settings for German urban areas. Our sensitivity studies focus on the Rhine-Neckar region and compare 16 different physics configurations of WRF for 4 months of 2020, representative of the four seasons. Modeled meteorological variables were compared against 19 meteorological observation stations operated by the German Weather Service and 2 radiosonde stations. We found the setup using Mellor-Yamada-Janjic boundary layer, Noah MP land surface, Monin-Obukhov surface layer and BEP urban parametrization scheme has the overall best performance for our use case. 

Using the optimal setup for urban areas in WRF, we have generated a year-long, 1km resolved dataset of German metropolitan areas. This dataset contains meteorological and sector specific CO2 enhancement data for the year 2018. These metropolitan areas include the Rhine-Neckar, Berlin, Rhine-Ruhr, Nuremberg and Munich metropolitan areas. We showcase the usefulness of the dataset by comparison to actual observations in cities.

How to cite: Pilz, L., Lüken-Winkels, C., Gałkowski, M., Ho, D., Chen, F., and Vardag, S. N.: High-resolution meteorological CO2 enhancements of German metropolitan areas using WRF, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8915, https://doi.org/10.5194/egusphere-egu24-8915, 2024.

EGU24-9044 | ECS | Posters on site | AS3.38

Novel source localization method from observed peak emissions in time series using LPDM transfer functions 

Friedrich Klappenbach, Jia Chen, Ronald C. Cohen, Jonathan Franklin, Taylor Jones, Moritz Makowski, and Seven Wofsy

We developed a novel method to estimate from an observations-time series the upwind distance as well as the emission strength of an unknown source, which releases a gas into the atmosphere (top-down). For this purpose, we used LPDM-modeled particle trajectories to infer the transfer function of the source region. The transfer function that matches the observed enhancement best, identifies the potential source region. In a second step, we infer the source strength using the particle ensemble.

We developed this method with a data set obtained during a six-week campaign in the San Francisco Bay Area. Aim was, to infer greenhouse gas emissions, specifically carbon dioxide and methane, from total column abundances.

At the UC-Berkeley site, one particular instrument recorded a strictly periodic peak-enhancement of approximately 10ppb methane within a consecutive 12-minute interval. Co-emitted species showed no correlation with this pattern. Therefore, we assumed a singular, point, and puff-emitting source of methane.

Due to favorable meteorological conditions, we were able to analyze a total of 14 peaks during a three-hour time-span in the forenoon. We estimated the average emission strength during the emission period to be 1.8+/-0.5 g(CH4)/s (equivalent to 6.48+/-1.80 kg/hr). Although we were unable to identify the source in the field, we concluded that methane ventilation from the natural gas supply, a so-called blow-down, could be a plausible explanation.

How to cite: Klappenbach, F., Chen, J., Cohen, R. C., Franklin, J., Jones, T., Makowski, M., and Wofsy, S.: Novel source localization method from observed peak emissions in time series using LPDM transfer functions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9044, https://doi.org/10.5194/egusphere-egu24-9044, 2024.

EGU24-9996 | ECS | Posters on site | AS3.38

High-resolution inversion of Berlin city emissions – A synthetic study using FLEXPART-WRF for network optimization within ITMS 

Christopher Lüken-Winkels, Lukas Pilz, Massimo Cassiani, Ignacio Pisso, and Sanam N. Vardag

Urban areas are significant contributors to anthropogenic carbon dioxide (CO2) emissions, responsible for approximately 70% of the total anthropogenic CO2 emissions. In the years to come, it is expected that urban areas will increase their efforts to mitigate CO2 emissions. To independently verify these reductions, atmospheric measurements of CO2 and other tracers can be used within an inversion framework to estimate emissions. While there are some cities which have established measurement networks for this purpose, many urban centers are still lacking the necessary measurement infrastructure for high-resolution inverse modeling. It is an open question how a measurement network should be designed to maximize the information content of the urban emissions. 

In our study, we conduct Observing System Simulation Experiments (OSSEs) to evaluate the potential of different measurement network configurations for the city of Berlin, Germany. The approach involves utilizing meteorological data at a spatial resolution of 1 km, computed using the Weather Research & Forecasting Model (WRF), to model the relationship between emissions and measured concentrations (footprints). The footprints are calculated using the Lagrangian Particle Dispersion Model FLEXPART-WRF. Concentration enhancements of WRF and FLEXPART-WRF are compared throughout a year. 

We assess various in-situ network configurations, considering both preexisting meteorological networks and a gridded approach for potential measurement locations. Using a Bayesian inversion for the prediction of emissions, different subsets of these networks are selected to constrain total emissions as well as anthropogenic and biogenic CO2 fluxes. The tested measurement configurations encompass variations in the number and quality of stations, allowing for the identification of both efficient and effective networks.  

In conclusion, our findings provide insights into the strategic deployment of CO2 measurement networks in Berlin, supporting ongoing efforts to refine greenhouse gas monitoring. The available meteorological data will additionally enable comparable studies for further German metropolitan areas as planned in the German project “Intergiertes Treibhausgas Monitoring System (ITMS)”. 

How to cite: Lüken-Winkels, C., Pilz, L., Cassiani, M., Pisso, I., and Vardag, S. N.: High-resolution inversion of Berlin city emissions – A synthetic study using FLEXPART-WRF for network optimization within ITMS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9996, https://doi.org/10.5194/egusphere-egu24-9996, 2024.

EGU24-11113 | ECS | Posters on site | AS3.38

A combined dataset of path-averaged and in-situ measurements of greenhouse gases to inform on the sensitivities to localized source patterns and transport effects in the urban atmosphere. 

Tobias D. Schmitt, Lukas Pilz, Robert Maiwald, Maximilian May, Benedikt A. Löw, Ralph Kleinschek, Julia B. Wietzel, Jonas Kuhn, Stefan Schmitt, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz

Urban areas are a major and growing contributor to anthropogenic greenhouse gas (GHG) emissions and are thus an important target for emission reduction efforts. However, measurement-based information for planning, implementing, and monitoring such reduction efforts on city scales is rarely available to policymakers and stakeholders. Such monitoring systems typically rely on three key components: measurements of GHG concentrations (or turbulent fluxes), modeling of the atmospheric transport and prior information on the spatial and/or temporal structure of the emissions. The high spatial and temporal heterogeneity of urban areas and their emissions is especially challenging for atmospheric transport models and gridded inventories, which are currently pushed to resolutions of kilometers and below in an effort to accurately represent these effects. However, GHG concentration measurements are often performed by in-situ systems and are thus not necessarily representative for the kilometer scales on which measurements, transport modeling and prior information are typically compiled. This becomes increasingly important with the ever-improving quality of measurements, models, and inventories themselves.

We present a dataset of urban path averaged concentration measurements of CO2 and CH4 and their comparison to co-located in-situ measurements. The path averaged measurements are taken along a 1.55 km long path over the city of Heidelberg, Germany. The observatory utilizes FTIR spectroscopy and is now in continuous operation since February 2023. Analysis of the path averaged and co-located in-situ measurements reveals differences of up to 20 ppm in CO2 for specific wind directions, which are most likely a result of a local atmospheric transport phenomenon. Further, the two measurements show differences in CH4, which are likely a result of different sensitivities to local emissions. Overall, the data indicate a clear but different sensitivity of either measurement approach to localized source patterns. Thus, the dataset enables the assessment of the representativeness of the different measurement approaches and of the performance of atmospheric transport models and emission inventories in the urban environments.

How to cite: Schmitt, T. D., Pilz, L., Maiwald, R., May, M., Löw, B. A., Kleinschek, R., Wietzel, J. B., Kuhn, J., Schmitt, S., Schmidt, M., Vardag, S. N., Hase, F., Griffith, D. W. T., and Butz, A.: A combined dataset of path-averaged and in-situ measurements of greenhouse gases to inform on the sensitivities to localized source patterns and transport effects in the urban atmosphere., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11113, https://doi.org/10.5194/egusphere-egu24-11113, 2024.

EGU24-11352 | ECS | Orals | AS3.38

Evidence of ongoing SF6 emissions in Germany 

Katharina Meixner, Andreas Engel, Tanja J. Schuck, Thomas Wagenhäuser, Cedric Couret, Frank Meinhardt, Kieran M. Stanley, Alistair J. Manning, Armin Jordan, Xochilt Gutièrrez, Tobias Kneuer, Dagmar Kubistin, Matthias Lindauer, and Jennifer Mueller-Williams

Sulfur hexafluoride (SF6) is a greenhouse gas with an estimated atmospheric lifetime of about 850-1280 years and a global warming potential of 24,700 over 100 years. As this strong greenhouse gas continues to be used in switchgear, circuit breakers, transformers and in other applications; monitoring emissions worldwide is essential. Some global and regional measurement networks, including the AGAGE, NOAA and ICOS programmes, have been measuring surface-based SF6 for several years. Through these measurements and inverse modelling, it has been shown that there are still significant SF6 emissions in western Europe, the largest source estimated to be in southern Germany.

Here we present the first time series of all available SF6 observations in Germany to localise the most important source regions of SF6. Data from the following stations were used: Taunus Observatory (AGAGE), Zugspitze / Schneefernerhaus (UBA Germany, GAW, ICOS), Karlsruhe (DWD, ICOS), Hohenpeissenberg (DWD, GAW, ICOS), Lindenberg (DWD, ICOS), Ochsenkopf (MPI-BGC, ICOS), Steinkimmen (ICOS), Gartow (ICOS) and Schauinsland (UBA Germany, GAW, ICOS). This distribution of observation sites provides good resolution of SF6 emissions in Germany. Despite the annual National Inventory Reports to the UNFCCC suggesting a decline in SF6 emissions in Germany, observations show continued episodes of elevated mixing ratios. This is indicative of continuing local emissions in Germany. Depending on wind direction, the highest levels of SF6 were measured at Zugspitze, Schauinsland, Karlsruhe and the Taunus Observatory, consistent with a source in southern to south-western Germany.  The Karlsruhe station stands out in particular, with maximum mixing ratios of more than 70 ppt. In addition to an analysis of such pollution events, the observations are also used in the top-down inverse model InTEM (Inversion Technique for Emission Modelling) coupled to the atmospheric transport model NAME (Numerical Atmospheric Dispersion Modelling Environment).

How to cite: Meixner, K., Engel, A., Schuck, T. J., Wagenhäuser, T., Couret, C., Meinhardt, F., Stanley, K. M., Manning, A. J., Jordan, A., Gutièrrez, X., Kneuer, T., Kubistin, D., Lindauer, M., and Mueller-Williams, J.: Evidence of ongoing SF6 emissions in Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11352, https://doi.org/10.5194/egusphere-egu24-11352, 2024.

EGU24-11669 | Posters on site | AS3.38

Analytical regional inversion system for CO2 fluxes in Poland – first results from CoCO2 project 

Mirosław Zimnoch, Michał Gałkowski, and Piotr Sekuła

In order to accurately and precisely estimate anthropogenic greenhouse gas (GHG) emissions at different spatial and temporal scales, independent tools based on atmospheric observations are required as a necessary source of information for mitigation climate change efforts to be successful. Bayesian inversion systems utilizing state-of-the-art atmospheric transport models constitute a key element of anthropogenic emissions monitoring and verification systems, allowing for mathematically-grounded method of assessing emissions based on observed mole fractions.

Poland, the fifth largest economy in the EU, is simultaneously the fourth largest emitter of GHGs in terms of CO2 equivalent, owing primarily to only slowly decreasing reliance on coal for power generation.  Here, we present first results of the developmental inversion framework consisting of the WRF-GHG model run at 5 km spatial resolution over Central Europe, coupled with an analytical system in order to explain total emissions of CO2 for selected months (February and July) over Poland and Germany, the largest emitter of CO2 in Europe, for comparison. We also compare results for both 2018 and 2021 in an attempt to capture changes in emission patterns following the implementation of the various policies both before and after Paris Agreement. We also focus on the ability of the inversion system to capture changes in biogenic and anthropogenic emissions and address challenges stemming from the limited ground-based observation network in Poland.

Furthermore, we also discuss the ability of the system to distinguish emissions on the national, voivodeship (admin level 1) and city scale, thanks to the additional high-resolution simulations and in-situ observations in the city of Kraków.

 

The presented work was funded by the CoCO2 project, which has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 958927 and the "Excellence Initiative - Research University" programme at AGH University of Kraków. We also gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centres: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2022/015860.

How to cite: Zimnoch, M., Gałkowski, M., and Sekuła, P.: Analytical regional inversion system for CO2 fluxes in Poland – first results from CoCO2 project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11669, https://doi.org/10.5194/egusphere-egu24-11669, 2024.

EGU24-12782 | ECS | Orals | AS3.38

Pin-pointing and quantifying anthropogenic CH4 emissions from two landfill sites in Madrid, Spain, observed by a combination of passive, active, and in situ airborne measurements during the HALO CoMet 2.0 mission 

Sven Krautwurst, Christian Fruck, Jakob Borchardt, Oke Huhs, Sebastian Wolff, Konstantin Gerilowski, Michał Gałkowski, Mathieu Quatrevalet, John P. Burrows, Christoph Gerbig, Andreas Fix, Hartmut Bösch, and Heinrich Bovensmann

To reduce and mitigate anthropogenic greenhouse gas surface fluxes from industrial sites, their sources must be, firstly, identified or localized and, secondly, accurately quantified. For methane (CH4), the second most important anthropogenic greenhouse gas, the quantification of its diverse emitters is still a challenge. Due to their nature, these emitters can reach dimensions from point sources to hundreds of square kilometres for fossil fuel (gas, oil, coal) exploitation sites or up to several square kilometres in case of waste disposal sites. Although, CH4 emissions from, e.g., waste disposal sites can be computed from activity data combined with landfill models, a high potential for unintended and poorly quantified leakages remain due to, e.g., potential ruptures in the landfill cover. Consequently, the exact localization and quantification of those leakages is a necessary step towards reducing CH4 emissions from waste disposal sites.

To have better knowledge and insights into anthropogenic and natural greenhouse gas emissions, a team of scientists has assembled a comprehensive suite of instruments aboard the German Research aircraft HALO (High Altitude and Long Range Research Aircraft) during the CoMet 2.0 Arctic mission conducted in Canada in August and September 2022. Although the campaign was primarily intended to observe and quantify CH4 and CO2 emissions and disentangle anthropogenic from natural sources at the high northern latitudes of Canada, a test flight over Spain revealed unexpectedly high and still persistent emissions from two landfills in Madrid - Valdemingomez and Pinto, previously also pointed out in an ESA story based on satellite observations. Both were investigated by means of passive and active remote sensing, as well as in situ airborne techniques.

The measurements of the passive airborne remote sensing instrument MAMAP2D-Light, developed at the University of Bremen, delivers atmospheric concentration anomaly maps of CH4 and CO2. Here, its imaging capabilities are used to pin-point the origin of the CH4 emissions across the targeted landfills and to quantify their emissions. MAMAP2D-Light’s concentration maps are combined with highly accurate CH4 column concentration measurements from the integrated-path differential-absorption lidar CHARM-F (CO2 and CH4 Remote Monitoring-Flugzeug), developed by German Aerospace Center (DLR) in Oberpfaffenhofen. Additionally, airborne CH4 in situ mole fractions were measured by the Jena Instrument for Greenhouse Gases (JIG) and supplemented with wind data within the emission plume in order to complement the remote sensing observations.

This contribution will present top-down emission estimates from measurements of all aforementioned instruments, operated quasi-simultaneously, i.e. within a time span of approximate 2 hours, over the targeted area in Madrid in August 2022.

How to cite: Krautwurst, S., Fruck, C., Borchardt, J., Huhs, O., Wolff, S., Gerilowski, K., Gałkowski, M., Quatrevalet, M., Burrows, J. P., Gerbig, C., Fix, A., Bösch, H., and Bovensmann, H.: Pin-pointing and quantifying anthropogenic CH4 emissions from two landfill sites in Madrid, Spain, observed by a combination of passive, active, and in situ airborne measurements during the HALO CoMet 2.0 mission, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12782, https://doi.org/10.5194/egusphere-egu24-12782, 2024.

EGU24-12805 | Posters on site | AS3.38

Comparison of global high-resolution fossil fuel CO2 emissions data products to Vulcan v4.0: sector differences, urban geographies, and methodological guidance 

Kevin Gurney, Pawlok Dass, Huilin Sun, anna kato, Lech Gawuc, and Modeste Nematchoua

New global greenhouse gas emission products have emerged in recent years providing emissions estimation at increasing fine space/time scales. Furthermore, these efforts are moving away from traditional forms of proxy linear downscaling and toward the use of machine learning and integration of some forms of “bottom-up” data. In terms of application, there is interest in applying these data products to the city-scale, assisting and supporting mitigation activities in the global urban governance level.

 

However, it is also acknowledged that developing these very high-resolution efforts at the global scale come with particular challenges associated with data availability, method limitations, and data quality variations. Here we use a very high-resolution data product developed in the United States, the Vulcan version 4.0 emissions, as a point of comparison with two of the new global very high-resolution efforts: Climate Trace, and GRACED. The ‘Vulcan Project’ is an effort to compute bottom-up CO2 emissions from fossil fuel combustion (FFCO2) and cement production for the entire USA. Vulcan v4.0 quantifies emissions from 2010 to 2021 for multiple sectors to the point, line, and polygon spatial scale.

 

We use detailed comparison with Vulcan to illuminate and inform aspects of the global efforts that many warrant further investigation or methodological development. We upscale Vulcan to match the resolution of the global data products and aggregate as necessary to isolate sectoral matches. Using statistical analysis techniques we isolate differences that may be systematic and explainable via alternative methodologies and/or data sources. Our aim is to strengthen and improve all high-resolution efforts at multiple scales and recommend where scale limitation may exist.

How to cite: Gurney, K., Dass, P., Sun, H., kato, A., Gawuc, L., and Nematchoua, M.: Comparison of global high-resolution fossil fuel CO2 emissions data products to Vulcan v4.0: sector differences, urban geographies, and methodological guidance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12805, https://doi.org/10.5194/egusphere-egu24-12805, 2024.

EGU24-14036 | ECS | Orals | AS3.38

Mitigating Methane Emissions: A Comprehensive Measurement Study of Canadian Landfills 

Afshan Khaleghi, Evelise Bourlon, Athar Omidi, Jordan Stuart, Rebecca Martino, Donya Ghasemi, Chelsea Fougere, Andrea Darlington, Sebastien Ars, Lawson Gillespie, Mathias Goeckede, and David Risk

Canada’s waste sector contributes 23% toward national methane emission totals. Recently Canada committed to a 50% reduction in waste sector methane emissions by 2030 from 2020 levels, as part of its Global Methane Pledge action plan. Achieving this ambitious goal will certainty requires that regulators to be armed with an accurate and measurement-informed understanding of landfill methane emissions. In 2022 we carried out a snapshot methane emissions quantification campaign targeting 125 landfills across Canada, followed in 2023 by more detailed source-level measurements across seasons at selected landfills in various climate zones. Snapshot measurements were carried out by vehicle-based surveying coupled with Gaussian and Lagrangian flux inversion, and aircraft mass balance measurements. Repeating source-based measurements were conducted in 2023 across seasons at 12 landfills for 3 climatic regions using vehicle-based surveys, stationary tripod deployments, and drone measurements of plumes, from on-site and off-site locations. Source-specific flux rates were generated based on triangulation, Lagrangian backtrajectory analysis, and a Gaussian dispersion model, and were assessed for magnitude and temporal variability.  In snapshot measurement campaigns across the country, we saw generally good agreement between aircraft mass balance and truck measurements, with a moderate but consistent low bias in the truck emission rate estimates. Lagrangian methods to derive flux rate were comparable as long as input data was limited to exclude highly enriched onsite samples. Throughout a varied population of landfills across Canada, we found that emission rate estimates from measurement campaigns were generally in-line with operator-submitted values to the Canadian Greenhouse Gas Reporting Program, whereas a First Order Decay model used by the federal government for planning purposes tended to over-estimate landfill emissions. Climate zone was a clear predictor of methane generated per waste in place. In more detailed source studies, we found that numerous features on landfill operations could emit methane, most expected, but some unexpected. Management practice was a strong predictor of whether source types emitted significantly, or not. Meteorology and seasonal changes in climate were also strong predictor of emissions over time. These large-scale studies provide a wealth of data upon which Canada can base regulatory development and will be beneficial to countries with similar waste sector patterns and climates.

How to cite: Khaleghi, A., Bourlon, E., Omidi, A., Stuart, J., Martino, R., Ghasemi, D., Fougere, C., Darlington, A., Ars, S., Gillespie, L., Goeckede, M., and Risk, D.: Mitigating Methane Emissions: A Comprehensive Measurement Study of Canadian Landfills, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14036, https://doi.org/10.5194/egusphere-egu24-14036, 2024.

EGU24-14046 | ECS | Orals | AS3.38

Resolving Auckland’s CO2 budget: urban biosphere, diurnal cycle and constraints from isotopes 

Stijn Naus, Sara Mikaloff-Fletcher, Beata Bukosa, Jocelyn Turnbull, Timothy Hilton, Elizabeth Keller, Stuart Moore, Daemon Kennett, Vanessa Monteiro, Gordon Brailsford, Sally Gray, Rowena Moss, and Sylvia Nichol

Carbon dioxide (CO2) is the single largest contributor to anthropogenic radiative forcing, with 70% of global CO2 emissions originating from urban areas. New Zealand has set ambitious greenhouse gas emission reduction targets, and its largest city, Auckland, will play a key role in achieving those reductions as it houses over 25% of the national population. To meet reduction targets, it is vital to understand current emissions and monitor the impact of implemented policies (e.g., planting trees). For these reasons, we are developing the first observation-constrained, urban-scale emission estimation framework for Auckland. This work is part of the New Zealand CarbonWatch-NZ project that also includes emission estimation at the national scale.

A new and developing atmospheric observation network is operated in and around Auckland to measure CO2, 14CO2, CO, CH4, and COS. The combination of trace gases is useful in distinguishing between source sectors, especially biosphere from anthropogenic fluxes. This is important for Auckland: a green city with a year-round growing season. High-resolution bottom-up emission estimates have been developed specifically for anthropogenic (Mahuika-Auckland) and biospheric (UrbanVPRM) CO2 fluxes in Auckland. We combine bottom-up estimates and atmospheric CO2 observations in an inverse emission estimation framework that includes atmospheric transport simulations with the Lagrangian NAME-III model, driven by meteorological data from the 333-m horizontal resolution Auckland Numerical Weather Prediction model. Use of such high-resolution meteorological data is unique and helps interpret atmospheric measurements in the heterogeneous landscape of Auckland, especially when combined with our high-resolution bottom-up estimates. Finally, we explore the value and difficulties of including the full diurnal cycle of CO2 data. The resulting emission product will be a policy-relevant instrument that can help evaluate and meet New Zealand’s emission reduction targets.

How to cite: Naus, S., Mikaloff-Fletcher, S., Bukosa, B., Turnbull, J., Hilton, T., Keller, E., Moore, S., Kennett, D., Monteiro, V., Brailsford, G., Gray, S., Moss, R., and Nichol, S.: Resolving Auckland’s CO2 budget: urban biosphere, diurnal cycle and constraints from isotopes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14046, https://doi.org/10.5194/egusphere-egu24-14046, 2024.

EGU24-16000 | Orals | AS3.38

Improving the spatiotemporal representation of anthropogenic CO2 and co-emitted species to support verification using earth observations 

Marc Guevara, Carles Tena, Oriol Jorba, Stijn Dellaert, Hugo Denier van der Gon, and Carlos Pérez García-Pando

A correct representation of the spatial and temporal distribution of anthropogenic emissions is important for verification of global CO2 emissions through current and future satellite emission monitoring. This work presents the results derived from the CoCO2 and CORSO Horizon Europe projects on improving the spatiotemporal representation of CO2 and co-emitted anthropogenic bottom-up emissions (i.e., CO, NOx) as part of the CO2 Monitoring and Verification Support capacity (CO2MVS) developments. The global CO2MVS system is envisioned to become a part of the European Union’s Copernicus Atmosphere Monitoring Service (CAMS). To improve the emission timing, we built a new set of activity and meteorology based global temporal profiles for the road transport, residential combustion, aviation, shipping and energy industry sectors. Their associated uncertainty is quantified by creating an ensemble of profiles from different years / countries / oceans and seas, so that the full range of possibilities is included. Regarding the improvement of the spatial representation, we constructed a global point source emission catalogue that contains emission information for individual facilities at their exact geographical location. The two developed datasets were compared against state-of-the-art bottom-up emission inventories that are widely used in modelling efforts, including the Emissions Database for Global Atmospheric Research (EDGAR), as well as independent TROPOMI satellite-based estimates for the co-emitted species. Main discrepancies between datasets were found in developing regions where information to derive bottom-up emissions such as energy use or pollution control strategies is still poorly characterized, indicating the need to complement the information with top-down estimates.

How to cite: Guevara, M., Tena, C., Jorba, O., Dellaert, S., Denier van der Gon, H., and Pérez García-Pando, C.: Improving the spatiotemporal representation of anthropogenic CO2 and co-emitted species to support verification using earth observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16000, https://doi.org/10.5194/egusphere-egu24-16000, 2024.

EGU24-16432 | Posters on site | AS3.38

The International Methane Emissions Observatory (IMEO):  Integration of methane data across scales for policy-relevant results 

Cynthia Randles, Daniel Zavala-Araiza, Marci Baranski, Andrea Calcan, Claudio Cifarelli, Meghan Demeter, James France, Luis Guanter, Itziar Irakulis-Loitxate, Marc Watine-Guiu, Stefan Schwietzke, Manfredi Caltigirone, and Steven Hamburg

UNEP’s International Methane Emissions Observatory (IMEO) was established to provide reliable, public, and policy-relevant data to facilitate actions to reduce methane emissions.  IMEO is collecting and integrating diverse methane emissions data streams that will help to fill gaps in knowledge and refine global understanding of the location and magnitude of emissions across sectors.  Together these data streams – which include satellite remote sensing data, detailed analyses from multi-scale measurement campaigns, bottom-up inventory data, and measurement-based industry reporting – complement one another and provide a fuller characterization of the spatial and temporal variability in emissions than they do individually.  Knowledge of this variability is key to understanding the emissions of different populations of emitters and to identifying key mitigation opportunities for specific populations of emitters.  Such data can also be used as cross-verification points for other estimates of population-scale emissions – such as from inverse modelling or elsewhere reported emissions.  In this work, we will summarize IMEO’s efforts to assemble and integrate spatio-temporally dynamic methane emissions data including insights from measurement campaigns across the world, high-resolution methane emissions data from satellites, and developing standards for company-reported, measurement-based source- and site-level emission from the Oil and Gas Methane Partnership 2.0 (OGMP2.0). 

How to cite: Randles, C., Zavala-Araiza, D., Baranski, M., Calcan, A., Cifarelli, C., Demeter, M., France, J., Guanter, L., Irakulis-Loitxate, I., Watine-Guiu, M., Schwietzke, S., Caltigirone, M., and Hamburg, S.: The International Methane Emissions Observatory (IMEO):  Integration of methane data across scales for policy-relevant results, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16432, https://doi.org/10.5194/egusphere-egu24-16432, 2024.

EGU24-16466 | Posters on site | AS3.38

EYE-CLIMA: A Horizon Europe project to support national inventories for emissions of climate forcers 

Rona Thompson, Andreas Stohl, Philippe Peylin, Philippe Ciais, Hartmut Boesch, Tuula Aalto, Antoine Berchet, Maria Kanakidou, Wilfried Winiwarter, Glen Peters, Dmitry Shchepashchenko, Jean-Pierre Chang, Roland Fuss, Ignacio Pisso, Richard Engelen, Almut Arneth, Nina Buchmann, Stefan Reimann, Stephen Platt, and Nalini Krishnankutty

National greenhouse gas inventories (NGHGIs) and Biennial Transparency Reports (BTRs) on emissions and removals are crucial elements of the Paris Agreement and its Global Stocktake. However, NGHGIs are subject to significant uncertainties, owing to uncertain emission factors and/or insufficient activity data, thus there is a need for their independent verification. One method to do this is through atmospheric inversions, which use atmospheric observations in a statistical optimization framework to estimate surface-to-atmosphere fluxes. This method of verification is referred to in the 2006 IPCC Guidelines on national reporting and in their 2019 refinement. However, atmospheric inversions have been hitherto considered too complex and inaccurate at national scales to be widely used for this purpose.

EYE-CLIMA is a Horizon Europe project that aims to develop the atmospheric inversion methodology to a level of readiness where it can be used to support the verification of NGHGIs. The overarching goals are to: i) develop a best practice in atmospheric inverse modelling for estimating emissions at national scale, including a full assessment of the uncertainties, ii) develop the methodology on how to prepare sectorial emission estimates from atmospheric inversions and make these comparable to what is reported in NGHGIs, iii) work together with NGHGI agencies on projects piloting the EYE-CLIMA methodology of emissions verification and iv) develop international best practices for the quality control of NGHGIs. EYE-CLIMA covers CH4, N2O, 5 HFC species, SF6, and the black carbon (BC) aerosol. This presentation will focus on the set-up of the EYE-CLIMA project and provide an overview of the first results in support of NGHGI verification.

How to cite: Thompson, R., Stohl, A., Peylin, P., Ciais, P., Boesch, H., Aalto, T., Berchet, A., Kanakidou, M., Winiwarter, W., Peters, G., Shchepashchenko, D., Chang, J.-P., Fuss, R., Pisso, I., Engelen, R., Arneth, A., Buchmann, N., Reimann, S., Platt, S., and Krishnankutty, N.: EYE-CLIMA: A Horizon Europe project to support national inventories for emissions of climate forcers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16466, https://doi.org/10.5194/egusphere-egu24-16466, 2024.

EGU24-17381 | Posters on site | AS3.38

PARIS, AVENGERS, EYE-CLIMA - Verification and reconciliation of estimates of climate forcers 

Sylvia Walter, Anita Ganesan, Marko Scholze, Rona Thompson, and Thomas Röckmann

PARIS, AVENGERS, and EYE-CLIMA represent initiatives funded under the EU Horizon call focused on "Verification and reconciliation of estimates of climate forcers." Drawing expertise from diverse fields such as atmospheric science, ecology, computer science, systems analysis, climate, and emissions reporting, these projects collaborate with the shared objective of refining estimates of greenhouse gas (GHG) emissions through observation-based methodologies. This collaborative effort not only aims to enhance the precision of GHG emission estimates but also facilitates meaningful exchanges with stakeholders involved in policymaking, national greenhouse gas inventories (NGHGIs), government bodies, and non-governmental organizations.

Utilizing atmospheric inversion models, the projects establish connections between surface-atmosphere GHG exchanges and atmospheric concentrations. The emissions estimates derived through this method directly correlate with atmospheric observations, remaining independent of activity data and emission factors. Consequently, this approach supports the independent verification of NGHGIs. In essence, PARIS, AVENGERS, and EYE-CLIMA strive to reconcile emissions information to contribute to the effective implementation of the Paris Agreement. Beyond atmospheric inversion methods, the projects incorporate land-surface models, which simulate the processes governing GHG exchanges between the land surface and atmosphere, along with data-driven models. 

This presentation will provide a comprehensive overview of the three projects, delving into their individual objectives and highlighting the overarching efforts aimed at verifying and reconciling estimates of climate forcers.

How to cite: Walter, S., Ganesan, A., Scholze, M., Thompson, R., and Röckmann, T.: PARIS, AVENGERS, EYE-CLIMA - Verification and reconciliation of estimates of climate forcers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17381, https://doi.org/10.5194/egusphere-egu24-17381, 2024.

EGU24-18491 | ECS | Posters on site | AS3.38

Improving Consistency in Methane Emission Quantification from the Natural Gas Distribution System across Measurement Devices 

Judith Tettenborn, Daniel Zavala-Araiza, Daan Stroeken, Hossein Maazallahi, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Felix Vogel, Lawson Gillespie, Sebastien Ars, James France, and Thomas Röckmann

Efficient and cost-effective mitigation of methane emissions from local gas distribution systems requires full characterization of leaks across an urban region. Mobile real-time measurements of ambient CH4 provide a fast and effective approach to identify and quantify methane leaks. The objective of such methodologies is to relate emission rates to parameters obtained during mobile measurements. These parameters encompass the maximum methane enhancement detected while crossing a methane plume and the integrated area of the associated peak. The maximum enhancement is currently used for emission quantification in mobile measurements, but was suggested to exhibit inconsistency among various measurement devices. Based on controlled release experiments conducted in four cities (London, Toronto, Rotterdam, and Utrecht), emission estimation methodologies were evaluated. Integrated plume area was found to be a more robust metric across different methane gas analyzer devices than the maximum methane enhancement. A statistical function based on integrated plume area is proposed for more consistent emission estimations when using different instruments. Nevertheless, large temporal variations in CH4 concentration enhancements were observed for the same release rate in line with previous experiments. Evaluation of repeated measurements to address this uncertainty and enable differentiation among various leak sizes was included. This study recommends a minimum of three repeated measurements and an optimal range of 5-7 plume transects for effective emission quantification to prioritize repair actions.

How to cite: Tettenborn, J., Zavala-Araiza, D., Stroeken, D., Maazallahi, H., Hensen, A., Velzeboer, I., van den Bulk, P., Vogel, F., Gillespie, L., Ars, S., France, J., and Röckmann, T.: Improving Consistency in Methane Emission Quantification from the Natural Gas Distribution System across Measurement Devices, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18491, https://doi.org/10.5194/egusphere-egu24-18491, 2024.

EGU24-18574 | Posters on site | AS3.38

A high-resolution European emission inventory of anthropogenic direct and indirect N2O emissions 

Hugo Denier van der Gon, Sophie van Mil, Rianne Dröge, Xinxuan Zhang, and Junjie Wang

Nitrous oxide (N2O) is the third most important long-lived greenhouse gas (GHG) and an important stratospheric ozone-depleting substance. We present the first version of a new high-resolution European emission inventory of anthropogenic direct and indirect N2O emissions. This inventory is developed to achieve one of the special objectives of the AVENGERS project, namely to advance the provision of high-resolution prior emissions by use of innovative activity data. AVENGERS is a Research and Innovation project funded under the Horizon Europe program of the European Union whose objective is to reconcile reported GHG emissions with independent information from atmospheric observations using top-down methods and process-based models, and thereby reduce the most important uncertainties of national emission inventories. To be able to compare national reported emission data against observations and model estimates, these reported emissions need to be available in a gridded form including essential emission characteristics such as emission timing and emission height. Our emission inventory starts from the reporting by European countries in their National Inventory Reports (NIR) to UNFCCC. Emissions are collected at the highest sectoral level. Each (sub)sector is connected to a specific spatial proxy, whereafter a consistent spatial distribution is applied for Europe at a resolution of 0.05 × 0.1 grid resolution (~6x6km). To support inverse modelling over a longer period where measurements are available, the inventory covers the period 2010-2021. Differences in country-specific choices in emission reporting to UNFCCC, e.g., in the waste sector, may lead to inconsistent emission estimates; we provide options for harmonization of these discrepancies. We pay special attention to understanding the role of indirect N2O emissions that may be equivalent to 15-20% of the total anthropogenic N2O emissions. Indirect emissions involve nitrogen that is emitted by anthropogenic activities and/or removed from agricultural soils and animal waste management systems via volatilization, leaching, runoff, or harvest of crop biomass, leading to N2O formation elsewhere. The reported indirect emissions, emitted from natural ecosystems and/or waterbodies are compared against process-model based emission estimates. The ultimate objective of this research is to reduce uncertainties in the key sources of N2O and support the implementation of top-down methods in support of the UNFCCC’s NIR preparation in collaboration between inverse modellers and inventory compilers.

How to cite: Denier van der Gon, H., van Mil, S., Dröge, R., Zhang, X., and Wang, J.: A high-resolution European emission inventory of anthropogenic direct and indirect N2O emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18574, https://doi.org/10.5194/egusphere-egu24-18574, 2024.

EGU24-18939 | ECS | Posters on site | AS3.38

Bridging the gap between plot and continental scale: A landscape scale greenhouse gas observation system based on a tall tower eddy covariance. 

Konstantinos Kissas, Anastasia Gorlenko, Charlotte Scheutz, and Andreas Ibrom

Due to its urgency, curbing greenhouse gas (GHG) emissions as fast as possible is pivotal for all countries. Mitigation measures are being initiated and a need for monitoring verification and reporting (MVR) of their efficacy arises. Currently existing science based MVR strategies are either too fine scale, e.g. traditional eddy covariance, or very coarse scale, e.g., atmospheric model inversion from high precision continental scale concentration fields. Integral methods to estimate GHG budgets of landscapes and cities are in the state of development. One element of such systems are turbulent flux measurements from tall tower platforms. To be able to document the green transition of Denmark in terms of reducing GHG budgets, we proposed a network of tall tower GHG flux measurements covering representative urban and remote landscapes. In the first step of the project, we designed and built a prototype of such system and applied it in a rural area close to the Danish Capital of Copenhagen.

In this presentation, we define criteria for a successful tall tower based GHG flux observation system for MVR of a change in net GHG emissions. We provide a brief overview how we optimized the design to meet these criteria. Finally, we present some key results from the first five months of continuous observation to demonstrate how well we actually met the criteria with our system and conclude on the future prospects of the proposed tall tower GHG observation network.

The results include net fluxes of all major long living GHG (CO2, CH4 and N2O) and two indicator gasses, i.e. carbonyl sulfide (COS) and carbon monoxide (CO). These indicator gases were chosen to represent photosynthesis and to estimate fossil CO2 fluxes from combustion processes. Important results are how accurate the data represent the landscape and what the detection limits for flux estimations of the different GHGs are.

How to cite: Kissas, K., Gorlenko, A., Scheutz, C., and Ibrom, A.: Bridging the gap between plot and continental scale: A landscape scale greenhouse gas observation system based on a tall tower eddy covariance., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18939, https://doi.org/10.5194/egusphere-egu24-18939, 2024.

EGU24-19167 | ECS | Posters on site | AS3.38

Evaluating the national CO2 budgets of East Asian countries (2015-2022) using the top-down approach 

Yeon Bae, Sujong Jeong, and Jeongmin Yun

he precise estimation and verification of country-specific net carbon exchange are growing in importance for meeting greenhouse gas reduction targets outlined in the Paris Agreement. In the East Asian region, carbon dioxide emissions account for more than one-third of global emissions; however, the values remain highly uncertain. This study aims to calculate the country-specific Net Carbon Exchange (NCE) for the years 2015–2022 in three East Asian countries—Korea, Japan, and China—using a top-down assessment approach. We utilize the atmospheric inversion system developed based on Geos-Chem adjoint v35j to assimilate OCO-2 XCO2 retrievals, generating net carbon flux. These values compare with national emission inventory data reported to the IPCC and forest growing stock form the National Forest Inventory. We evaluate the national CO2 budgets for the three East Asian countries and analyze the spatial and temporal variations in carbon fluxes.

How to cite: Bae, Y., Jeong, S., and Yun, J.: Evaluating the national CO2 budgets of East Asian countries (2015-2022) using the top-down approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19167, https://doi.org/10.5194/egusphere-egu24-19167, 2024.

EGU24-19215 | ECS | Orals | AS3.38

Estimates of HFC-134a Emissions over Europe informed by observations show a recent increase 

Saurabh Annadate, Michela Maione, Rita Cesari, Serena Falasca, Umberto Giostra, Barbara Gonella, Federica Moricci, and Jgor Arduini

Hydrofluorocarbons (HFCs) are a class of greenhouse gases (GHGs) primarily used as substitutes for ozone-depleting substances like chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), phased out under the Montreal Protocol. However, HFCs significantly impact global warming due to their high global warming potential. In light of the pressing need to tackle climate change and mitigate the effects of GHG emissions, the United Nations Framework Convention on Climate Change (UNFCCC) has established rigorous commitments on emission reduction. As a commitment to the UNFCCC, Annex-I countries need to report their national emission estimates for regulated GHGs, including HFCs, based on the methodologies reported in the IPCC guidelines (Intergovernmental Panel on Climate Change). According to the guidelines, the comparison of estimates with top-down (models based on atmospheric measurements) is indicated as an effective tool for verifying the accuracy of inventories and there is a growing need for independent verification of these estimates. This study reports the most recent update on emissions of 1,1,1,2-Tetrafluoroethane (CH2FCF3) from 2008 to 2023, employing inverse modelling within the European domain, with a specific focus on Italy. CH2FCF3, commercially known as HFC-134a, stands as the most prevalent HFC on a global scale. Its thermodynamic properties, akin to those of dichlorodifluoromethane (CFC-12), render it an effective refrigerant for the RAC (refrigeration and air conditioning) sector. This study reveals a notable decline in HFC-134a emissions over the past decade, followed by a recent resurgence. Specifically, Italian emissions in 2020 show a 48% reduction compared to the levels of 2011 and a subsequent increase, with emissions rebounding by 25% in 2022. The availability of near real-time validated observations combined with the most recent inversion frameworks -such as Flexpart/flexinvert+ used here, could be a valuable tool to support the Inventories used to track progress and the effectiveness of the mitigation policies adopted by each country for this class of compounds (that could be extended to others major GHGs) to maximise the effectiveness of their investments.

How to cite: Annadate, S., Maione, M., Cesari, R., Falasca, S., Giostra, U., Gonella, B., Moricci, F., and Arduini, J.: Estimates of HFC-134a Emissions over Europe informed by observations show a recent increase, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19215, https://doi.org/10.5194/egusphere-egu24-19215, 2024.

EGU24-19246 | ECS | Orals | AS3.38

Using atmospheric measurements to evaluate recent bottom-up trends and seasonal patterns in U.K. and Swiss N2O emissions 

Eric Saboya, Alistair J. Manning, Peter Levy, Stephan Henne, Kieran M. Stanley, Joseph Pitt, Dickon Young, Daniel Say, Aoife Grant, Tim Arnold, Chris Rennick, Sam J. Tomlinson, Edward J. Carnell, Yuri Artoli, Ann Stavart, T. Gerard Spain, Simon O'Doherty, Matthew Rigby, and Anita Ganesan

Atmospheric trace gas measurements can be used to independently assess national greenhouse gas inventories through inverse modelling. Here, atmospheric nitrous oxide (N2O) measurements are used to derive monthly U.K. N2O emissions for 2013-2022 – using the InTEM and RHIME inverse methods – and Swiss N2O emissions for 2017-2022 – using the ELRIS inverse method. We find mean U.K. emissions of 90.5±23.0 and 111.7±32.1 Gg N2O yr-1 for 2013-2022 and corresponding trends of -0.68±0.48 and -2.10±0.72 Gg N2O yr-2, respectively, derived using InTEM and RHIME. The 2013-2022 mean U.K. N2O emissions as reported by the U.K. National Atmospheric Emissions Inventory were relatively constant at 74 Gg N2O yr-1 across this period, which is 14-33% smaller than the U.K. emissions derived from atmospheric data. Top-down Swiss emissions of 10.8±3.8 Gg N2O yr-1 derived using atmospheric measurements were very comparable to those reported in the Swiss National Inventory: 11.5 (8.3 to 14.9) Gg N2O yr-1 over 2017-2021. Pronounced seasonal N2O emissions cycles are inferred in the U.K. and Swiss data with similar seasonal magnitudes observed in both countries. In the U.K., the primary seasonal peak occurs in the spring with a second smaller peak occurring in the late summer for certain years. The springtime peak has a long seasonal decline that contrasts with the sharp rise and fall of N2O emissions estimated from the bottom-up U.K. Emissions Model (UKEM). Similarly, Swiss seasonal N2O emissions peak during the summer with a second smaller peak also occurring in the late summer/early autumn for certain years. Bayesian inference is used to minimize the U.K. seasonal cycle mismatch between the average top-down (atmospheric data-based) and UKEM bottom-up (process model and inventory-based) seasonal emissions at a sub-sector level. Increasing agricultural manure management and decreasing synthetic fertiliser N2O emissions reduces some of the discrepancy between the average U.K. top-down and bottom-up seasonal cycles. Other possibilities could also explain these discrepancies, such as missing emissions from NH3 deposition, but these require further investigation.

How to cite: Saboya, E., Manning, A. J., Levy, P., Henne, S., Stanley, K. M., Pitt, J., Young, D., Say, D., Grant, A., Arnold, T., Rennick, C., Tomlinson, S. J., Carnell, E. J., Artoli, Y., Stavart, A., Spain, T. G., O'Doherty, S., Rigby, M., and Ganesan, A.: Using atmospheric measurements to evaluate recent bottom-up trends and seasonal patterns in U.K. and Swiss N2O emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19246, https://doi.org/10.5194/egusphere-egu24-19246, 2024.

EGU24-19389 | Orals | AS3.38

The Global Greenhouse Gas Watch 

Gianpaolo Balsamo and Lars Peter Riishojgaard

Greenhouse gas emissions, greenhouse gas concentrations and global mean temperature all continue to rise, and in order to stay within the temperature limits stipulated in the text of the Paris Agreement, mitigation action is becoming increasingly urgent However, the fact that we cannot quantitatively and reliably predict future GHG concentrations – and therefore climate scenarios – from assumed future emission pathways is a complicating factor when designing mitigation action. Even more problematic is the assessment the impact or effectiveness of many current or proposed mitigation activities, since it often has to be based on indirect measures such as avoided emissions with respect to a hypothetical baseline, or carbon stored, e.g. in the land or ocean biosphere, neither of which can be directly linked to atmospheric concentrations.

In order to provide robust, actionable data that will help Parties to the UNFCCC and other stakeholder design and develop mitigation action and monitor its effectiveness, the World Meteorological Congress in May 2023 endorsed the Global Greenhouse Gas Watch (G3W) as an internationally coordinated framework to provide near-real time GHG (CO2, CH4 and N2O) flux estimates based on atmospheric modelling and atmospheric observations.  At COP28 in Dubai, the G3W was formally recognized by the Subsidiary Body for Scientific and Technological Advice (SBSTA-59) to the UNFCCC.

Currently a G3W implementation plan is in development, with the aim of submitting it for approval by the WMO Executive Council by mid-2024. Some of the key elements of the plan are a significant strengthening of the global GHG observing capabilities, improved near-real time exchange of both observational data and flux estimates, and routine intercomparision of model output among all participating flux estimation centers.

The presentation will introduce the overall G3W development timeline which aims for a full operational capability to be ready for the Second Global Stocktake in 2027-28, with the main focus on the near-time activities planned for 2024-25.

How to cite: Balsamo, G. and Riishojgaard, L. P.: The Global Greenhouse Gas Watch, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19389, https://doi.org/10.5194/egusphere-egu24-19389, 2024.

The Po valley, situated in Northern Italy, is a flat region with mountains on the northern and southern ends, characterized by intensive animal farming and agriculture practices (including rice cultivation), all of which are significant sources of methane (CH4) emissions. Although both sources and sinks of strong greenhouse gases are well identified, large uncertainties still remain in estimating the CH4  budget. However, inverse modeling is an observation-based approach that can be used independently to verify existing emission inventories.
The objective is to estimate CH4  surface-atmosphere fluxes in Northern Italy for the year 2019 over a nested grid covering the Po valley at 0.1°x0.1° horiz. grid res. using the atmospheric inversion framework FLexInvert+. The framework integrates atmospheric CH4  mixing ratios from 17 ICOS sites, background mixing ratios using the CAMS inversion product, prior information (with total emissions of 594 Tg y-1), and an atmospheric transport model to optimize surface fluxes to best match the observation. The FlexPart model is used to simulate the source-receptor relationship using ECMWF ERA5 windfields at 0.5°x0.5° horiz. res., and relates the surface fluxes to the changes in CH4  mixing ratios. Modeling the dispersion of particles over complex terrain, i.e. the Alps, is challenging due to processes interacting with the orography, and a coarse model resolution smoothens the slope and elevation of the mountain. Hence, a sensitivity analysis was carried out for the six mountain sites >1000 m a.s.l. located within the nested domain to assess the optimal particle release height using 7-days backtrajectories. The inversion results from three different release heights were examined using 1) the original sampling height of CH4 a.s.l., 2) the pressure-based height, determined by identifying the model-level height that minimized the difference between the modeled pressure and observed pressure at the receptor site, and 3) the potential temperature-based height, determined by matching the modeled potential temperature with observations to identify the model-level height. The hypsometric equation was applied to obtain the release height, and an averaged particle release height was selected for the entire year based on nighttime observations. Initial findings highlight significant differences in posterior estimates among the three release heights and hold promising prospects for achieving improved inversion results.

How to cite: Dahl, L., L. Thompson, R., and Bigi, A.: Estimating methane fluxes in Northern Italy by inverse modeling: Evaluating optimal particle transport release heights in mountainous regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19900, https://doi.org/10.5194/egusphere-egu24-19900, 2024.

EGU24-22504 | Orals | AS3.38

The US global and regional observing and analysis systems strategies for monitoring and delivering GHG natural and anthropogenic emissions estimates 

Colm Sweeney, Vanda Grubisic, Alryn Andrews, John Miller, Lesley Ott, Rik Wanninkhof, Anna Karion, and Sourish Basu

Direct and remote observations of ocean and atmospheric greenhouse gases (GHGs) provide a critical constraint on global atmospheric burden of GHGs as well as the key natural and anthropogenic processes that transfer GHGs between atmosphere and land and ocean reservoirs. The United States (US) has played a large role in providing observations that span global to local scale in both the ocean and the atmosphere relying on both direct measurements of the atmosphere and ocean from ground, tower, ship, balloon and aircraft-based platforms and remote measurements from satellite, upward looking spectrometers, floats and ocean profilers. While these networks have been instrumental in providing a basic understanding of the carbon cycle there are many gaps that need to be filled over the next decade to assess interannual variability in both natural and anthropogenic sources and sinks of GHGs. With no planned US satellite missions for carbon dioxide in this time period there is an urgent need to take advantage of other gap filling opportunities. For methane, the focus on large point sources for satellites also represents a gap that many assumed would be filled in the next decade. These gaps in planned remote sensing satellite missions reinforce the need to focus development of new planforms, networks and tracers for observing atmospheric and ocean GHGs gradients and processes driving these gradients. These processes include climate/carbon feedbacks as well as changes in anthropogenic emissions across multiple scales that allow stakeholders in pursuit of GHG mitigation and carbon capture efforts to be informed and act with the most up-to-date understanding of critical processes in the global and local carbon budgets. We provide an overview of the observing, analysis and information systems that build on "bottom up" systems that currently inform the Global Stocktake. We also will report on efforts to make this information more actionable for emissions mitigation.

How to cite: Sweeney, C., Grubisic, V., Andrews, A., Miller, J., Ott, L., Wanninkhof, R., Karion, A., and Basu, S.: The US global and regional observing and analysis systems strategies for monitoring and delivering GHG natural and anthropogenic emissions estimates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22504, https://doi.org/10.5194/egusphere-egu24-22504, 2024.

EGU24-22506 | Orals | AS3.38

Quantification of CH4 Emissions from the EMIT and AVIRIS-3 Imaging Spectrometers 

Red Willow Coleman, Philip Brodrick, K. Dana Chadwick, Adam Chlus, Michael Eastwood, Clayton Elder, Jay Fahlen, Sergio Gomezbeltran, Francesca Hopkins, David Thompson, Andrew Thorpe, and Robert Green

Spaceborne and airborne imaging spectrometers can identify methane (CH4) plumes and enable emission quantification and direct sectoral attribution necessary to better constrain methane emissions and inform mitigation strategies. We will show CH4 emission quantification results and accompanying uncertainty products for CH4 plume observations from NASA’s Earth surface Mineral dust source InvesTigation (EMIT) imaging spectrometer onboard the International Space Station, as well as the recently developed Airborne Visible/Infrared Imaging Spectrometer 3 (AVIRIS-3). The differing spatial resolution and instrument sensitivity of the EMIT and AVIRIS-3 sensors are highly complementary for tiered CH4 plume detection and quantification. The large spatial coverage from EMIT allows us to identify and quantify previously unknown emissions from CH4 point sources across large regions of the Earth’s surface, while AVIRIS-3 has higher sensitivity and increased spatial resolution for characterizing CH4 emissions below EMIT’s detection limit.

Building on a legacy of greenhouse gas retrievals first developed for airborne imaging spectrometers (e.g., AVIRIS, AVIRIS-NG), we use a matched filter approach to retrieve CH4 enhancements and the per-plume integrated mass enhancement (IME) method with windspeed data to estimate hourly CH4 emission rates. We take a two-pronged approach to validating our CH4 emission detection and quantification method: (1) an AVIRIS-3 CH4 controlled release experiment with multiple flow rates, and (2) evaluation of a simultaneous collection of AVIRIS-3 and EMIT in West Texas’ Permian Basin oil-and-gas producing region. This validation work will help provide confidence in EMIT’s plume quantification approach, which is important as imaging spectrometers are necessary for more comprehensive understanding of global CH4 point source emissions and greenhouse gas budgets, particularly in areas with limited reporting requirements. Lastly, the EMIT greenhouse gas portal (https://earth.jpl.nasa.gov/emit/data/data-portal/Greenhouse-Gases/) is actively distributing methane data products in support of NASA’s Open Source Science Initiative and AVIRIS-3 data will soon be publicly available for interested decision-makers and users (e.g., U.S. Greenhouse Gas Center).

How to cite: Coleman, R. W., Brodrick, P., Chadwick, K. D., Chlus, A., Eastwood, M., Elder, C., Fahlen, J., Gomezbeltran, S., Hopkins, F., Thompson, D., Thorpe, A., and Green, R.: Quantification of CH4 Emissions from the EMIT and AVIRIS-3 Imaging Spectrometers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22506, https://doi.org/10.5194/egusphere-egu24-22506, 2024.

EGU24-22508 | Posters on site | AS3.38

NOAA Carbon Monitoring, Research, and Innovation: Long-Standing Foundation to Support Climate Mitigation 

Vanda Grubišić, Ariel Stein, Monica Kopacz, and Annarita Mariotti

NOAA has over 50 years of experience monitoring global atmospheric levels of greenhouse gasses (GHG) emitted to the atmosphere by human activities and natural sources. This includes most notably measurements of atmospheric abundances of CO2 and other long-lived GHGs at its Global Greenhouse Gas Reference Network (GGGRN). The goal of GGGRN is to provide measurements of GHGs and their large-scale spatial and temporal distributions as precisely and accurately as possible to be able to determine spatial gradients in GHGs and inform changes in emissions and sinks. Success at meeting this goal requires long-term continuity of measurements and measurement quality. To that end, NOAA is largely responsible for the World Meteorological Organization (WMO) standard for CO2 and several other GHG measurements, providing a solid foundation for well-calibrated global atmospheric GHG measurements. The NOAA carbon monitoring covers both the atmosphere and the oceans and its unique multi-platform approach to observing GHGs, includes the ocean observing capabilities of air-sea carbon fluxes and pCO2 measurements, among other key assets. While these networks have been instrumental in providing a basic understanding of the carbon cycle, there are many gaps that need to be filled over the next decade to assess interannual variability in both natural and anthropogenic sources and sinks of GHGs. This presentation will highlight the latest developments in NOAA carbon monitoring, including the development of new planforms, networks, and tracers for observing atmospheric and ocean GHGs gradients and processes driving these gradients. Innovative research supported by NOAA has leveraged long-term GHG monitoring to accelerate the development of global GHG models, and advanced GHG research and accounting on urban, regional, and global scales. NOAA’s GHG capabilities span measurements, process research, modeling, data assimilation and data products such as the Annual Greenhouse Gas Index (AGGI) as well as future climate projections for IPCC reports and the National Climate Assessment. NOAA uniquely includes research and service capabilities under one roof. Decades of experience in carbon cycle research, including GHG monitoring, modeling and data assimilation provide the ideal foundation to accelerate national and international efforts for carbon measurement, monitoring, reporting and verification (MMRV) in support of climate mitigation.

How to cite: Grubišić, V., Stein, A., Kopacz, M., and Mariotti, A.: NOAA Carbon Monitoring, Research, and Innovation: Long-Standing Foundation to Support Climate Mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22508, https://doi.org/10.5194/egusphere-egu24-22508, 2024.

EGU24-1146 | ECS | Orals | ERE1.6

Mitigation of GHG emission from the wastewater treatment plant: Life cycle assessment approach 

Praveen Kumar Vidyarthi, Pratham Arora, Nadège Blond, and Jean-Luc Ponche

The rapid expansion of wastewater treatment plants, aimed at mitigating global water stress, has significantly increased the energy demand. In India, the anticipated rise in sewage generation to treatment ratio from 46% to 80% by 2050 [1]. It is expected to further intensify the energy demand of treatment facilities to meet national standards. This required energy, predominantly in the form of electricity, primarily fulfill from coal-based thermal plants, consequently contributing to air pollution and emissions. Moreover, enhancing the oxygen supply in the biological process to improve treatment efficiency is projected to escalate direct greenhouse gas (GHG) emissions. India's central electricity authority reports that the Indian grid produces around 0.91 kg CO2eq/kWh. A typical wastewater treatment plant (WWTP) demands an average of 185 kWh per million litres per day (MLD), resulting in approximately 168.35 kilograms of CO2 equivalent emissions per MLD [2]. Exploring alternative mitigation measures becomes imperative to address the energy demand from the grid. One approach involves employing mitigation technologies like gasification, anaerobic digestion, or pyrolysis to generate electricity from the sludge process. The study aims to estimate direct and indirect emissions from WWTPs by conducting a comprehensive life cycle assessment of various mitigation technologies. Notably, gasification, anaerobic digestion, and pyrolysis demonstrate potential emission reductions of around 81.8%, 57.2%, and 36.4%, respectively.

How to cite: Vidyarthi, P. K., Arora, P., Blond, N., and Ponche, J.-L.: Mitigation of GHG emission from the wastewater treatment plant: Life cycle assessment approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1146, https://doi.org/10.5194/egusphere-egu24-1146, 2024.

The Ulan Buh Desert, as one of China's eight significant deserts, is situated in the country's northwestern region and encompasses a diverse array of landscapes, including various desert types, vegetation, water bodies, and other landforms. This diversity is crucial for the ecological integrity and safety of the Yellow River Basin. The desert is notably constrained by water availability, and there has been a notable expansion in the degree of human activities, particularly regarding agricultural development, in the area.

Over the past 32 years, studies tracking the temporal and spatial variations of the Normalized Difference Vegetation Index (NDVI) in the Ulan Buh Desert have revealed a consistent increase in vegetative cover. Through the analysis of drivers such as climate change and human activity, it has been determined that temperature exhibits a positive correlation with NDVI, a relationship that has strengthened progressively over the years. Conversely, precipitation's influence on NDVI has been relatively insignificant. On the human activity front, contributions to NDVI changes have grown considerably, with such activities accounting for nearly a 50% increase in the vegetative index, suggesting that human interventions are increasingly aligning with ecological rehabilitation and positive environmental outcomes.

By scrutinizing the ecological consequences of both natural processes and human endeavors on the Ulan Buh Desert, insights gleaned can offer actionable recommendations for ecological restoration efforts, ensuring the sustainable management and recovery of this vital region.

How to cite: Yan, Y. and Cheng, Y.: Study of Changes in the Ulan Buh Desert under the Dual Impacts of Natural and Anthropogenic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1249, https://doi.org/10.5194/egusphere-egu24-1249, 2024.

EGU24-1717 | ECS | Orals | ERE1.6 | Highlight

Air quality improvements can strengthen China's food security 

Xiang Liu, Bowen Chu, Rong Tang, Yifan Liu, Xing Li, Jingfeng Xiao, Ankur Desai, and Haikun Wang

China, with nearly 20% of the world's population, achieves self-sufficiency in major grain production using only about 10% of the global arable land. To further ensure food security in China, it is crucial to gain a deep understanding of the driving factors behind grain production. Climate change, water scarcity, and air pollution pose serious threats to food production. Air quality in China is among the poorest in the world, thus quantifying its impact on grain production not only holds significance for maintaining its food security but also provides valuable insights into future air quality management policies. Here, we conducted a comprehensive analysis of the impact of aerosols and ozone on crop growth by integrating long-term, high spatial-temporal resolution remote sensing SIF data, crop planting information, and nationwide air pollution concentration data using nonlinear functional relationships and a two-way fixed-effects statistical model. The results show a consistent negative impact of ozone pollution on crop growth, while the effect of aerosols is varied by crop type and geographic location. By establishing a quantitative response relationship between crop growth and pollutant concentrations, we found that when China reaches the standard of 35 µg m-3 PM2.5, the average yields of corn, rice, and wheat nationwide will change by 0.45 ± 0.8%, 0.70 ± 0.22%, and −5.28 ± 2.97%, respectively. At the same time, reaching a warm-season ozone concentration of 60 µg m-3 in China will result in average national yield increases of 7.40 ± 1.32%, 3.40 ± 0.56%, and 8.71 ± 1.85% for corn, rice, and wheat, respectively. If China simultaneously meets both air pollution standards, the average daily per capita calorie intake of the three major crops will increase by 4.51%. Finally, our study suggests that, compared to reducing PM2.5, reducing ozone can more effectively increase domestic grain supply and further maintain China’s food security.

How to cite: Liu, X., Chu, B., Tang, R., Liu, Y., Li, X., Xiao, J., Desai, A., and Wang, H.: Air quality improvements can strengthen China's food security, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1717, https://doi.org/10.5194/egusphere-egu24-1717, 2024.

Diversifying cropping systems with grain legumes has been identified as a key measure to achieve the objectives set by European policies in terms of sustainability and protein self-sufficiency. Because grain legumes are sensitive to numerous biotic and abiotic stresses, expanding their production area in the context of climate change will require the implementation of adaptation strategies.

The objectives of this study are to shed light on what knowledge is needed by stakeholders to adapt grain legume cultivation to climate change and to assess matches and mismatches between these needs and crop-climate modelling. To this aim, we performed (i) a systematic literature review (n=83) to summarise recent simulation studies that assessed the impact of climate change and adaptation on grain legume performances in Europe, and (ii) interviews with 30 stakeholders involved in different stages of the value chain in France (cooperatives, seed breeders, extension services) to identify their needs.

Stakeholders’ information needs could be grouped into three categories: (i) information on profitability (including crop yield, pre-crop effect, and economic margin) and risks associated with growing grain legumes (including yield stability and risk of crop failure) and comparison of these variables with major crops like cereals, (ii) agroclimatic indicators such as rainfall distribution, heat waves, and frost days, that can be used to adjust crop management and identify climatic constraints to the introduction of new grain legume species (e.g., chickpea and soybean), and (iii) climate change impacts on diseases, pests, and their natural enemies. The appropriate time and spatial scales at which this information is relevant depend on the stakeholder. Stakeholders supporting farmers (e.g., extension services) expressed a need for short-term (up to 10 years) and local information, whereas cooperatives and stakeholders engaged in R&D were also interested in medium-term (up to 30 years) information at multiple spatial scales (from the cooperative’s supply area to the national and European scale).

When comparing these needs with our literature review, several mismatches were identified. Although stakeholders expressed a need for short to medium-term information, the reviewed studies focused mainly on the second half of the 21st century. The predominance of global-scale studies (63% of studies) contrasted with the need for local and regional data. We also highlight a lack of simulation studies assessing the impact of climate change on yield stability and economic indicators, especially relative to major crops like cereals. The impact of climate change on diseases, pests, and their natural enemies remains a blind spot, even though biotic pressure was identified as a growing concern for the stakeholders. Finally, although the majority of adaptation strategies identified by stakeholders (e.g., irrigation, changes in sowing date and density) have been studied in the literature, options such as substituting spring-sown crops with winter-sown crops and switching grain legume species have hardly been assessed (only one study).

Our results outline priority avenues for further research, considering the needs of stakeholders to support the development of grain legumes in Europe in the context of climate change.

How to cite: Marteau-Bazouni, M., Jeuffroy, M.-H., and Guilpart, N.: Assessing matches and mismatches between modelling and stakeholders’ needs to support the adaptation of grain legumes to climate change in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1992, https://doi.org/10.5194/egusphere-egu24-1992, 2024.

Pathogens are a factor that determines emergency responses for both the public and the safety of first responders due to their life-threatening properties. At the same time, pathogen contamination is difficult to detect, and specialized skills, tools, and procedures are needed to deal with it. Waterborne pathogen contamination accidents can occur anywhere and for a variety of reasons. Earthquakes can cause disruptions to the urban drinking water and wastewater networks, and can also be contaminated by accidents, malicious attacks, and illegal activities.

This study developed a decision support system for pathogen contamination management in disaster situations by utilizing GIS technology. The system will not only enhance the operational capability of early responders (FRs) and strengthen overall management, but also reduce errors when setting up new technologies.

The system integrates various technical means, such as collecting and analyzing satellite and drone-based water quality data and evaluating the severity of water pollution using social media data. This enables rapid and accurate detection and re-response of environmental risks. The system is interconnected with various sources through REST and open APIs, and effectively manages data by utilizing MongoDB and geo-server.

The study is expected to make a significant contribution to protecting the environment and human safety by providing an accurate risk assessment and providing the necessary technical means to respond to pathogen pollution in disaster situations. Industrial accidents can be reduced by increasing the capacity to respond to risks that have not been specifically identified and strengthening the ability to respond to disasters. The study will also provide essential data for policy-making and regulatory development aimed at protecting the environment. 

This research was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE)  (P163300014, 2021 Industrial Technology International Cooperation Project - Horizon2020 Program)

 
 

How to cite: Yoon, H., Son, S., Choi, I., Jo, J., and Kwon, J.: Designing a GIS-based Decision Support System to protect environmental and human health by integrating spatial data, environmental information, and health data for informed decision-making., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3774, https://doi.org/10.5194/egusphere-egu24-3774, 2024.

EGU24-6710 | Posters virtual | ERE1.6

Assessing adaptation strategies for potato cultivation in Morocco: modeling approaches at the field scale 

Assia Lozzi, Amandine Ouedraogo, Nassima Darrhal, Khalid Dhassi, and Saad Drissi

Climate change is set to reshape the environmental parameters governing crop growth, necessitating the implementation of revised management practices at the field scale. This study focuses on the adaptation and evaluation of the APSIM model for simulating the phenological growth, development, and yield prediction of potato (Solanum tuberosum L.) in response to climate variability in Morocco. Recognizing the critical role of potatoes in global food systems, and the increasing pressures of climate change, the research aims to accurately forecast the growth and yield responses of potato crops to these environmental shifts. The calibration phase of the APSIM model was rigorously conducted using local datasets, including climate patterns, soil properties, plant phenological data, and cropping practices. The model's accuracy was demonstrated through its high determination coefficients in simulating key growth stages and biomass accumulation of the potato crop. The findings showcase the model's capability in predicting potato yield and phenological responses to climate variability, providing strategic insights for enhancing agricultural practice efficiency. Overall, this study underlines the APSIM model's efficacy in developing strategies for climate-resilient potato farming, offering a robust tool for adapting agricultural practices under changing environmental conditions.

How to cite: Lozzi, A., Ouedraogo, A., Darrhal, N., Dhassi, K., and Drissi, S.: Assessing adaptation strategies for potato cultivation in Morocco: modeling approaches at the field scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6710, https://doi.org/10.5194/egusphere-egu24-6710, 2024.

EGU24-7063 | Orals | ERE1.6

Current Status of Pre-Calibration Techniques for Enhancing the Positional Accuracy of the Agricultural and Forestry Satellite 

Joongbin Lim, Chaeyeon Kim, Jong-Hwan Son, Taejung Kim, Sooahm RLee, Junghee Lee, Kyoungmin Kim, and Seunghyun Lee

The agricultural and forestry satellite, scheduled for launch in 2025, is a satellite being jointly developed by the Ministry of Science and ICT, the Rural Development Administration, and the Korea Forest Service of South Korea. Prior to its launch, technological developments have been made to ensure the positional accuracy of the agricultural and forestry satellite. For the geometric calibration of the satellite, a total of 4,650 precise image reference points have been established across the Korean Peninsula. These established precise image reference points have been verified to have a positional error of less than 1 meter based on field survey results. Utilizing this, the Rational Function Model (RFM) was corrected, determining the optimal parameters with six coefficients as suitable RFM correction coefficients for the precise geometric establishment of simulated images of the agricultural and forestry satellite. Subsequently, using the Digital Elevation Model for orthorectification, a final positional error of within 1 pixel (less than 5 meters) was confirmed.

How to cite: Lim, J., Kim, C., Son, J.-H., Kim, T., RLee, S., Lee, J., Kim, K., and Lee, S.: Current Status of Pre-Calibration Techniques for Enhancing the Positional Accuracy of the Agricultural and Forestry Satellite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7063, https://doi.org/10.5194/egusphere-egu24-7063, 2024.

EGU24-9018 | ECS | Orals | ERE1.6

Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance 

Georg Goldenits, Kevin Mallinger, Thomas Neubauer, and Edgar Weippl

Abstract

Digital Twins are becoming an increasingly researched area in agriculture due to the pressure on food security caused by growing population numbers and climate change. They provide a necessary push towards more efficient and sustainable agricultural methods to secure and increase crop yields.
Digital Twins often use Machine Learning, and more recently, deep learning methods in their architecture to process data and predict future outcomes based on input data. However, concerns about the trustworthiness of the output from deep learning models persist due to the lack of clarity regarding the reasoning behind their outputs.

In our work, we have developed crop rotation policies using explainable tabular reinforcement learning techniques. We have compared these policies to those generated by a deep Q-learning approach, using both five-step and seven-step rotations. The aim of the rotations is to maximise crop yields while maintaining a healthy nitrogen level in the soil and adhering to established planting rules. Crop yields may vary due to external factors such as weather patterns, so perturbations were added to the reward signal to account for these influences. The deployed explainable tabular reinforcement learning methods perform similarly to the deep Q-learning approach in terms of collected reward when the rewards are not perturbed. However, in the perturbed reward setting, robust tabular reinforcement learning methods outperform the deep learning approach while maintaining interpretable policies. By consulting with farmers and crop rotation experts, we demonstrate that the derived policies are reasonable and that the use of interpretable reinforcement learning has increased confidence in the resulting policies, thereby increasing the likelihood that farmers will adopt the suggested policies.


Keywords: Digital Twin, Reinforcement Learning, Explainable AI, Agriculture, Crop Rotation Planning, Climate Change, Food Security

How to cite: Goldenits, G., Mallinger, K., Neubauer, T., and Weippl, E.: Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9018, https://doi.org/10.5194/egusphere-egu24-9018, 2024.

EGU24-10036 | ECS | Orals | ERE1.6 | Highlight

Effects of enhanced mineral weathering on soil structure and organic carbon storage 

Evelin Pihlap, Noemma Olagaray, Tobias Klöffel, Michael D. Masters, Ilsa B. Kantola, David J. Beerling, and Noah J. Planavsky

Enhanced mineral weathering is a nature-based solution to reduce atmospheric and soil CO2 concentrations in agricultural settings. Spreading finely grained basalt on the soil leads to subsequent chemical reactions that alters soil properties by changing soil pH, nutrient availability and particle-size distribution. Changes in these soil properties activate soil feedback mechanisms such as shifts in soil biogeochemical reactions or plant growth dynamics. Several studies have examined changes in pH and CEC after basalt application; however, basalt application may have an additional influence on the soil’s structural quality and the quantity of soil organic carbon (OC). In this study, we used a long-term field trial of basalt application at the University of Illinois Energy Farm (Illinois, USA) to elucidate changes in soil structure and OC storage. The field study was launched in 2016 using a randomized block design consisting of control (n=4, no basalt application), basalt (n=4), and lime (n=3) treatments. The sampling campaign was conducted in 2022 and in each field, we sampled with stainless steel cylinders (250 cm3) at depths of 1—6 cm and 15—20 cm. All samples were analyzed for nutrient content, OC concentration, pH, CEC and select samples were analyzed for soil water characteristic curves and aggregate-size distribution.

Basalt and lime application had a significant effect on soil pH, Ca concentration and the dominance of Ca2+ as an exchangeable cation, all which reflect evidence of increased soil structural quality. Indeed, soil structure, as quantified from the soil water characteristic curves using the concept of relative entropy (the Kullback-Leibler divergence), showed clear signs of enhancement after lime application. However, this was less evident for the basalt treatment. Despite improvements in soil structure, there were no effects on OC storage in either of the treatments. Aggregate characterization for OC concentration showed that the depth stratification had a greater role in carbon protection than the soil treatment itself, where the highest OC enrichment (EOC>1) was observed at the lower sampling depth of 15—20 cm. The organo-mineral association in the finest fraction was not affected by the treatment because neither the aggregate size class distribution nor OC accumulation in the finest fraction differed among the control, lime, and basalt treatments. Enhanced mineral weathering improves soil nutrient content, pH, and, potentially, soil structure; however, these changes do not directly result in higher OC storage, which underlines the complex nature of OC dynamics.

How to cite: Pihlap, E., Olagaray, N., Klöffel, T., Masters, M. D., Kantola, I. B., Beerling, D. J., and Planavsky, N. J.: Effects of enhanced mineral weathering on soil structure and organic carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10036, https://doi.org/10.5194/egusphere-egu24-10036, 2024.

EGU24-13861 | Orals | ERE1.6 | Highlight

Assessment of Rice Yield Potential changes over Korean Peninsula under climate change with 1-km high resolution SSP-RCP scenarios  

Sera Jo, Yong-Seok Kim, Jina Hur, Kyo-moon Shim, Seung Gil Hong, Min-gu Kang, and Eung-sup Kim

The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation for CYP instead of sunshine duration which is relatively uncommon in the climate prediction field. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benefits of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in future climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. 
This work was supported by a grant (no. RS-2021-RD009055) from the Rural Development Administration, Republic of Korea

How to cite: Jo, S., Kim, Y.-S., Hur, J., Shim, K., Hong, S. G., Kang, M., and Kim, E.: Assessment of Rice Yield Potential changes over Korean Peninsula under climate change with 1-km high resolution SSP-RCP scenarios , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13861, https://doi.org/10.5194/egusphere-egu24-13861, 2024.

EGU24-15122 | ECS | Posters on site | ERE1.6

Linking material cycles and ecosystem services assessment in forest modelling 

Cholho Song, Chul-Hee Lim, Youngjin Ko, Jiwon Son, Hyun-Ah Choi, and Woo-Kyun Lee

In ecosystem services assessment in South Korea, many studies have applied various modelling methods. However, these modelling approaches mainly focused on the statistical growth model based on the national forest inventory, so calculating carbon was the main target of research. Statistical modelling enables annual assessment of the carbon budget in forests, but it was limited to understanding daily ecosystem changes and other material cycles. Therefore, this study tried to set up the linkage of material cycles and ecosystem services using various current modelling schemes in South Korea. Therefore, the process-based model and current forest models were applied to assess carbon and ecosystem productivity. In addition, their possible linkage to ecosystem services was analyzed. From the process-based model, the net primary productivity value was calculated at around 5.17 Mg C ha-1 average, and it indicated around 1.61 Mg C ha-1 in net carbon sequestration during the 2021-2100. Considering the current projection of annual carbon sequestration, this value is similar to the current model projection. In addition, the process-based model calculated evapotranspiration, respirations, and other values which converted ecosystem services, especially climate regulation, supporting ecosystem services, and provisioning ecological materials. Linkage of these models can support to assessment of many other non-assessed ecosystem services, and an ensemble of modelling and expanded modelling in ecosystem services will be required to assess Korean ecosystem services.

How to cite: Song, C., Lim, C.-H., Ko, Y., Son, J., Choi, H.-A., and Lee, W.-K.: Linking material cycles and ecosystem services assessment in forest modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15122, https://doi.org/10.5194/egusphere-egu24-15122, 2024.

Invasive pest species are the most serious threat to the resilience of agroecosystems. They cause direct damage by reducing crop yield and increasing management costs, and indirect damage through agroecosystem disturbances. To mitigate the risks posed by invasive pests, identifying their potential distribution is a crucial prerequisite. This study predicted the climatic suitability of the rice stem borer (RSB), Chilo suppressalis, within Europe using a species distribution model, CLIMEX. RSB first invaded Spain in the 1930s and has since caused significant damage, with reports of its presence in France, Hungary, and near the Caspian Sea in Russia. The overall suitability for RSB in Europe, while lower than its native region in East Asia, is predicted to be habitable across the European mainland. Notably, the climates of Mediterranean countries (e.g., Greece, Italy, France, Spain, Croatia, etc.) are expected to be sufficiently suitable for RSB habitation. Currently, RSB is also reported in Hungary, but the exact route of invasion is unclear; thus, it is necessary to investigate whether these are extensions of the existing populations in Spain and France or the result of accidental introduction through trade. Moreover, in southern Europe, where rice production is high, there is a risk of significant damage similar to that in Spain. Therefore, quarantine and prevention measures against RSB invasion are required.

How to cite: Hong, J. and Cho, K.: Potential Invasion risk of the rice stem borer, Chilo suppressalis, in Europe using CLIMEX., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15677, https://doi.org/10.5194/egusphere-egu24-15677, 2024.

The risk of wildfires is increasing due to rising temperatures and worsening dry conditions resulting from climate change (Westerling et al., 2008; Vilà-Vilardell et al., 2020). Human activities, driven by urbanization and population growth, contribute to the occurrence of wildfires. As wildfires are a consequence of the complex interplay of various factors, an integrated understanding of the social and ecological systems influencing wildfires is crucial for protecting human communities and preserving the natural environment. Particularly, the Wildland-Urban Interface (WUI), an area where urban and natural landscapes and vegetation coexist or are adjacent, represents a space where the interaction between human activities and natural systems is pronounced (Stewart et al., 2007). A specific and clear analysis and management of the WUI’s social-ecological system is necessary due to the severe damage caused by urban wildfires.

There is a growing awareness of the necessity to establish effective prevention and management strategies to protect urban systems. However, there is a lack of research on social-ecological systems over time, such as before and after wildfires in the WUI. Therefore, the objective of this study is to conduct a comprehensive analysis of the socio-ecological system of urban WUI areas, with a focus on identifying and evaluating the factors influencing the resilience of these systems. By examining the interactions within the WUI’s socio-ecological framework, the research aims to propose strategies for enhancing the capacity of urban areas to adapt to and recover from environmental disturbances, thereby contributing to the development of robust and resilient urban social-ecological systems.

To define and categorize socio-ecological systems, a spatial analysis of wildfire-prone areas was employed and to identify and evaluate the factors affecting the resilience of the system in response to wildfires, system analysis tools and models were utilized.

Building upon this study, future research will employ the Urban Resilience Index classification to derive strategies for each type of green infrastructure planning based on the 4Rs of resilience (robustness, rapidity, redundancy, and resourcefulness) to improve urban socio-ecological resilience for wildfire response in urban Wildland-Urban Interface (WUI). The results can be utilized to develop a green infrastructure planning decision support system.

References

Westerling, A. L., & Bryant, B. P. (2008). Climate change and wildfire in California. Climatic Change, 87(Suppl 1), 231-249.

Stewart, S. I., Radeloff, V. C., Hammer, R. B., & Hawbaker, T. J. (2007). Defining the Wildland-Urban Interface. Journal of Forestry, 105(4), 201-207.

Sullivan, A., Baker, E., & Kurvits, T. (2022). Spreading like wildfire: The rising threat of extraordinary landscape fires.

※ This work was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

How to cite: Kang, S. and Lee, J.: Analysis of Influencing Factors to Enhance Resilience of Urban Social-Ecological Systems in Urban Wildfire Response, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16379, https://doi.org/10.5194/egusphere-egu24-16379, 2024.

EGU24-16948 | Orals | ERE1.6

Are There Carbon-Neutral Cities in South Korea: Using Residual Modeling on Different Spatial Scales 

Yujeong Jeong, Sujong Lee, Mina Hong, Youngjin Ko, Hyun-Woo Jo, and Woo-Kyun Lee

To achieve the national carbon neutrality goal by 2050, it is crucial to be spatially strategic. Understanding the spatial distribution of carbon balance in different levels of spatial scales from global/continental scales to urban, and province/state is essential. This paper aims to estimate the spatial distribution of carbon balance in South Korea using an integrated carbon balance estimation model and to identify the disparity of carbon-emission characteristics determined by three different spatial divisions ¾ metropolitan and basic local governments, and town-level (eup/myeon/dong&li). Two-step ridge regression model using residuals was established based on land cover maps, population maps, and energy production data to analyse the distribution of carbon emissions. The distribution of carbon sequestration was calculated using the Korean forest growth model (KO-G-Dynamic model). The results from each model were calibrated and validated by the National Greenhouse Gas Inventory of basic local governments. The carbon balance was quantified by integrating the results of carbon emission and carbon sequestration. Surprisingly, the results showed that several cities, especially along the biggest mountain range in South Korea, have already achieved regional carbon neutrality. This is particularly true when the spatial scale is below a metropolitan government level. Additionally, the study found that the narrower the spatial scale of distribution becomes, the greater the number of urban/provinces with a carbon balance under zero. Obviously, carbon-neutral regions are characterized by low energy and industrial facilities and high forest density and, in most of the top emitting regions, vice versa. This study provides insights into the methodology for researching the spatial distribution of carbon balance. It also highlights the need for constructing carbon reduction pathways and strategies that reflect the regionality of carbon balance in multi-level districts. With further development of the study, the result could be used as scientific evidence for the effective fulfillment of regional carbon neutrality.

How to cite: Jeong, Y., Lee, S., Hong, M., Ko, Y., Jo, H.-W., and Lee, W.-K.: Are There Carbon-Neutral Cities in South Korea: Using Residual Modeling on Different Spatial Scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16948, https://doi.org/10.5194/egusphere-egu24-16948, 2024.

EGU24-17914 | Posters virtual | ERE1.6

Impact of climate change on coffee agrosystems and potential of adaptation measures 

Raniero Della Peruta, Valentina Mereu, Donatella Spano, Serena Marras, and Antonio Trabucco

Coffee is one of the most economically important agri-food systems globally, and is the main source of income for many rural households in several developing countries. Ongoing climate change could cause problems for sustainable coffee production, with greater instability from year to year and lower average yields. To overcome these problems, possible adaptation measures and agronomic practices should be evaluated, such as intercropping with other tree species that can provide more shade for coffee plants and promote resilience and environmental sustainability. To study the effectiveness of such options, the use of process-based models can be very useful.

The DynACof model was developed specifically to simulate coffee agrosystems, including phenological development, physiological processes related to flower and fruit production, carbon allocation, the effect of water availability, light and temperature, and management. We validated the yields modeled by DynACof with productivity data available from some sites and areas included in previous evaluation studies in Mexico, Rwanda, Brazil, Ethiopia, and Costa Rica. We then developed and established a modeling framework in which the model can be applied spatially on a continental or pan-tropical scale, using extended climate projection ensemble and soil geodata.

Our modelling tool was then used to simulate potential yields in Latin America and Africa for both 1985-2014 and 2036-2065, using an ensemble of statistically downscaled and bias adjusted climate projections for two different shared socioeconomic pathways. Comparing the two periods, the model predicts a decrease in yields between 23 and 35 percent in Latin America and between 16 and 21 percent in Africa. The spatial representation of these changes indicates a likely future shift of suitable production areas to higher elevations, possibly impacting fragile mountain ecosystems. We simulated a specific management option, namely increased agroforestry shading, to evaluate its effectiveness in improving resilience to climate risks. The results suggest that increased tree shading could partially reverse the trend of declining yields due to climate change in some lowland areas. However, these preliminary results must be confirmed by further analyses. Impact analysis and adaptation modeling of coffee agrosystems, together with socioeconomic indicators, have the potential to delineate realistic integrated risk assessments and support effective adaptation recommendations.

How to cite: Della Peruta, R., Mereu, V., Spano, D., Marras, S., and Trabucco, A.: Impact of climate change on coffee agrosystems and potential of adaptation measures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17914, https://doi.org/10.5194/egusphere-egu24-17914, 2024.

EGU24-18453 | Orals | ERE1.6

Analysis of South Korea's 3S Forest Management Pathways for Carbon Neutrality Achievement 

Mina Hong, Jinwon Son, Moonil Kim, YoungJin Ko, and Woo-Kyun Lee

In recent years, global climate change has emerged as a critical issue, exerting widespread impacts across various sectors. In response, the Intergovernmental Panel on Climate Change (IPCC) has emphasized the urgency of preparing for a 2℃ temperature rise by focusing on greenhouse gas reduction strategies and the vital role of forests as carbon sinks. Aligning with international efforts, South Korea has formulated the "2050 Carbon Neutrality Strategy" and presented corresponding strategies in the forestry sector. This research utilizes the Korean Dynamic Forest Growth Model to explore forest management pathways aimed at achieving carbon neutrality through the aspects of sequestration, storage, and substitution (3S). The study incorporates climate change scenarios and forest policies to select appropriate management pathways. The assessment of various scenarios revealed that the combination of the SSP1 climate change scenario, clear-cutting, thinning of approximately 200,000 hectares, reforestation with suitable species, and ensuring a maximum forest road accessibility of 1 km produced significant and meaningful results across all three aspects of forest management (sequestration, storage, and substitution). As a result, sequestration of 28.49 million tCO2 yr-1, a storage of 2.1 billion tCO2 yr-1, and the substitution 7.92 million m3 of harvested wood products (HWP) in the 2050. Furthermore, the 3S forest management approach is expected to contribute to mitigating tree-age imbalances and provide resilience against the impacts of climate change. In conclusion, this study is meaningful in that it suggested a spatio-temporal forest management path by reflecting the environmental characteristics of Korea for achieving carbon neutrality. This is considered to be able to contribute to local government carbon neutrality achievement plans and national policies.

 

How to cite: Hong, M., Son, J., Kim, M., Ko, Y., and Lee, W.-K.: Analysis of South Korea's 3S Forest Management Pathways for Carbon Neutrality Achievement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18453, https://doi.org/10.5194/egusphere-egu24-18453, 2024.

EGU24-18916 | ECS | Orals | ERE1.6

Systematic Analysis of the Impact of Mangrove Forest Changes on Ecosystem Services in Vietnam 

Mikyeong Tae, Min Kim, and Jinhyung Chon

Mangroves, a form of blue carbon, encompass approximately 1,054,900 hectares globally, with Vietnam possessing 75,900 hectares, representing around 7% of the total area. Beyond providing essential resources such as food, timber, and habitat, mangroves confer diverse ecosystem services, including coastal erosion mitigation and carbon sequestration while attenuating wave energy. Nevertheless, the pervasive impacts of climate change and anthropogenic activities are precipitating a reduction in mangrove coverage, giving rise to socio-ecological challenges, including biodiversity loss, escalated carbon emissions, and heightened vulnerability to severe flooding. Efforts are underway to address this predicament; however, accurate assessment remains challenging due to the intricate nature of mangrove habitats. Survey-derived data suffers from accuracy limitations, necessitating comprehensive research utilizing satellite imagery for efficient identification within a condensed timeframe, employing a systems thinking approach to understand complex ecosystem services holistically.

This research aims to detect changes in the area of mangrove forests in Vietnam using Landsat satellite imagery from 2010 to 2020, the initial implementation period of the Vietnam Forestry Development Strategy, and to analyze the impact of these changes on ecosystem services.

To achieve this, high-resolution (30cm) satellite images are utilized to calculate specific vegetation indices such as NDVI, NDWI, and SAVI in QGIS software.

 These indices are instrumental in detecting alterations in mangrove coverage throughout Vietnam. Additionally, this study employs systems thinking to construct a causal chain map that illustrates how changes in the mangrove area impact ecosystem services within Vietnam.

Satellite imagery was harnessed for GIS analysis to evaluate the ongoing status of Vietnam's mangrove forest area over time. The alterations in the area were quantified by grid partitioning, and causal loop diagrams were utilized to comprehend how modifications in mangrove areas affect ecosystem services such as coastal protection, water purification, habitat provision, and food supply. These changes engender trade-offs.

This study is significant as it utilizes high-resolution satellite data to quantify the change in Vietnam's mangrove forest area over time. It also underscores the impact of these changes on ecosystem services from a systems-thinking perspective. Moreover, deducing the ecosystem service structure of mangrove forests from causal chain maps can serve as a cornerstone for formulating policies aimed at safeguarding mangrove forests for decision-makers in Vietnam and other countries with similar ecosystems. Additionally, exploring the potential of mangroves as blue carbon sources can contribute significantly to carbon neutrality and planning.

Acknowldegemt

This research was supported by "Development of living shoreline technology based on blue carbon science toward climate change adaptation" of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220526)

How to cite: Tae, M., Kim, M., and Chon, J.: Systematic Analysis of the Impact of Mangrove Forest Changes on Ecosystem Services in Vietnam, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18916, https://doi.org/10.5194/egusphere-egu24-18916, 2024.

Renewable energies, particularly solar and wind power, are gaining prominence in the shift towards a carbon-neutral climate. however, challenges for wind power include ecological disruption, coastal landscape degradation, and visual impact due to offshore turbine installation. Technological limitations currently dictate offshore wind turbines' placement 10 to 30 kilometers inland, raising concerns about light environmental changes affecting nearby coastal areas. This raises concerns about the potential impact of light environmental changes such as the effects of aviation obstruction lights on wind turbines and blade movements on inland areas close to the coastline.  Therefore, developing offshore wind farm plans analyzing the impact of light environment changes and proposing mitigation measures is crucial.
In this study, we analyze the light environmental impact of wind power and propose mitigation measures to minimize its effects on the planned offshore wind farms in the South Sea's Aphae area, surrounded on three sides by sea and offering favorable conditions for marine renewable energy development, and the West Sea's Jangbogo area in South Korea.
The assessment utilized 2022 Day and Night Band (DNB) satellite imagery from the VIIRS sensor to evaluate light pollution. QGIS was subsequently employed to analyze visible frequency, turbine shadow impact range, and distance from the power generation site, resulting in a light environment value assessment map. Key points were identified on the map, and the study further examined the influence of turbine blade movements on aviation obstruction lights and shadow flickering using QGIS and WINDPRO.
As a result of measurements using VIIRS satellite images, the light pollution levels at the Aphae and Jangbogo sites were found to be approximately 0.631542 × 10-9 W/cm²sr and 0.38 × 10-9 W/cm²sr, respectively. In Aphae, the impact of light pollution was generally minimal, less than 0.002 cd/m², but it did have an impact in the northern coastal area. Jang Bogo measured less than 0.002 cd/m², indicating a low impact on island residents.
As a result of light pollution analysis, it was found that shadow flickering occurs for 30 to 60 minutes a day for more than 120 days a year in the northern coastal area of Aphae. Jangbogo showed very limited shadow flickering, less than 10 hours per year and less than 10 minutes per day in certain areas. The impact of light pollution is expected to be minimal in Jang Bogo, and mitigation measures are needed to alleviate pressure damage. Recommendations may include adjustments to the layout of offshore wind farms or changes to the coordination of offshore wind operations.
This study is significant in analyzing the impact of light environmental changes caused by offshore wind power on inland areas and proposing mitigation measures. Furthermore, the findings of this research can be applicable to environmental studies for the development of offshore wind farms in other regions in the future.

Acknowledgement

This research was supported by “Development of Advanced Science and Technology for Marine Environmental Impact Assessment” of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20210427)

How to cite: Choi, H., Kim, M., and Chon, J.: Assessing Light Environmental Impact in Offshore Wind Farm: A Case Study of Aphae and Jangbogo Areas in South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19001, https://doi.org/10.5194/egusphere-egu24-19001, 2024.

Climate change is altering weather patterns around the world, and one notable effect is changes in the jet stream that controls weather systems. As the polar regions warm faster than lower latitudes, the temperature difference that drives the jet stream winds decreases, causing them to become more frequent and the air masses to stagnate. This could lead to prolonged periods of extreme weather, including deadly heat waves, floods and droughts. An example of this can be seen in 2018, when a heat wave broke record high temperatures in Korea due to blocking (a phenomenon in which air flow stagnates in the upper mid-latitudes, weakening westerly winds and causing strong north-south winds) by Rossby waves. Life-threatening heat persists without an increase in low-pressure systems that bring cooling rain.

This study uses a systems ecology approach to examine the interactions between energy and material cycles in interconnected ecosystems in East Asia. The region's rapid urbanization, industrial growth, and high population density have significantly altered heat and material flows and cycles. These anthropogenic changes, together with natural climate variability, have complex and far-reaching impacts on regional climate patterns and ecosystem health.

East Asia's built environment and demographics have fundamentally disrupted natural stability mechanisms. Rapid development has replaced heat-reflecting green spaces with heat-absorbing concrete structures, reducing evaporative cooling capacity. Sprawling road systems filled with vehicle heat exacerbate urban heat islands.

In addition, climate-induced changes in the natural cycles of water, carbon, and nutrients link ecosystems in complex ways. Quantifying changes in cycling by evaluating historical data and models provides a basis for predicting ecosystem stability and resilience in the face of climate change. For example, a decrease in relative humidity in an area increases the risk of wildfires as moisture is removed from dead grass, fallen trees, and leaves. In areas with low relative humidity and abundant fuel-rich vegetation, the risk of wildfires may increase, particularly in winter and spring. A systematic understanding of these dynamics is essential to guide regional climate change adaptation planning.

Finally, the study translates its findings into policy recommendations. By analyzing the positive impacts of increased plant cover on humidity and overall ecosystem water availability, this study provides actionable steps towards a more resilient East Asia.

Acknowledgements: This research was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

How to cite: Park, H., Song, C., and Lee, W.-K.: Impacts of Climate Change on the Energetics and Ecosystem Material Cycles and Extreme Weather Events: An East Asian Case study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19195, https://doi.org/10.5194/egusphere-egu24-19195, 2024.

EGU24-19777 * | Posters on site | ERE1.6 | Highlight

Multi-purpose afforestation scenarios under climate change for carbon dioxide reduction  

Florian Kraxner, Dmitry Schepaschenko, Sabine Fuss, Andrey Krasovskiy, Anatoly Shvidenko, Georg Kindermann, Hyun-Woo Jo, and Woo-Kyun Lee

This study aims at identifying the carbon dioxide reduction (CDR) potential of large-scale and multi-purpose afforestation/reforestation at the global level with special emphasis on the Mid-Latitude Region (MLR). Applying a combined remote sensing/GIS approach coupled with biophysical forest and disturbance modeling under various climate change scenarios, we identify potential afforestation locations, inter-alia on abandoned agricultural land and on areas burnt from wild land fires. With the help of IIASA’s biophysical global forestry model (G4M), we calculate the associated land-based CDR potentials through carbon sequestration in afforested biomass and through climate risk-resilient and sustainable forest management dedicated to the supply of bioenergy plants coupled with carbon capture and storage (BECCS) facilities. Finally, three promising scenarios have been identified including I) afforestation; II) reforestation; and III) BECCS. In all scenarios, priority is put on sustainable forest management and nature/biodiversity conservation. Forest modeling results have been combined with recent data sets which have been overlayed in order to provide a unique basis to estimate the land-based CDR technologies’ potential to mitigate climate change and contribute to reaching the goals of the Paris Agreement. In the case of afforestation, preliminary results indicate a total potential afforestation area greater than 1 billion ha.  The largest area potential for afforestation have been identified in the USA. Given the higher productivity (combined with large area available), Brazil is the country with the highest total CDR potential of close to 500 MtC/yr.

How to cite: Kraxner, F., Schepaschenko, D., Fuss, S., Krasovskiy, A., Shvidenko, A., Kindermann, G., Jo, H.-W., and Lee, W.-K.: Multi-purpose afforestation scenarios under climate change for carbon dioxide reduction , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19777, https://doi.org/10.5194/egusphere-egu24-19777, 2024.

EGU24-20157 | Orals | ERE1.6

A Green Infrastructure Approach through Carbon Cycle Analysis and Decision Support 

Jiangong Bi, Sangchul Lee, and Junga Lee

Due to climate change, abnormal weather conditions such as floods, droughts, heavy snow, and heatwaves are escalating globally. Recent climate observations and model predictions indicate a trend toward more frequent and intense extreme climate events in the near future, attributed to anthropogenic greenhouse gas emissions. When floods occur, they simplify the habitats of ecosystems, leading to a reduction in diversity and water quality pollution. Basin ecosystems play a crucial role in carbon absorption, mitigation, and providing habitats for plants and animals. Therefore, it is imperative that plants, soil, and wetlands within the watershed ecosystem absorb and sequester carbon from the atmosphere to decrease greenhouse gas concentrations. Consequently, there is a necessity for research on decision support tools capable of identifying and analyzing the factors influencing carbon circulation during a flood.

 

The primary objective of this study is to develop a decision support tool for green infrastructure (GI) planning in watershed ecosystems to enhance resilience against climate change. The tool will help identify and analyze factors affecting the carbon cycle during flood events and enable the creation of GIs that support the carbon cycle.

 

The expected results from the study combine positive factors that can lead to various positive and combining factors, so future research can create scenarios through combinations of factors. The scenarios created can result in GIs that can perform ad hoc tasks by choosing more efficient configurations.

 

 

References

Michael W. Strohbach, Eric Arnold, Dagmar Haase. The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning, Volume 105, Issue 4, 30 April 2012, Pages 445

 

※ This work was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

※ This work was supported by Korea Environment Industry &Technology Institute (KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment (MOE) (2022003570003)

How to cite: Bi, J., Lee, S., and Lee, J.: A Green Infrastructure Approach through Carbon Cycle Analysis and Decision Support, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20157, https://doi.org/10.5194/egusphere-egu24-20157, 2024.

Abstract

The expansion of impervious surfaces resulting from urbanization induces alterations in the natural water cycle system, culminating in urban flooding. Persistent flood damage arises from issues such as the failure to designate flood-prone areas despite receiving flood reports or the exclusion from flood-prone zones due to complaints. Both the central government and local authorities are taking measures to designate and manage flood-prone areas, recognizing the necessity to address this issue not only from an ecological standpoint but also considering social aspects, including the real estate value of the region and the effort and cost of flood damage recovery. Furthermore, flood resilience should be a central consideration, aiming to identify existing problems through the virtuous cycle process of flood damage, both upstream and downstream, and working towards recovery or improvement to a state superior to pre-flood conditions.

This study's objective is to redefine the criteria for green infrastructure planning in flood-prone zones, exploring interrelated factors influencing urban water systems and identifying synergistic solutions to enhance resilience. The application of systems thinking involves four integral stages: dynamic thinking, causal thinking, closed-loop thinking, and strategic discovery. These stages collectively establish a systematic dynamic loop. To construct this loop within the complexity of a water circulation system, initial attention must be given to discharge management. Ensuring a robust water cycle necessitates the equitable distribution of runoff across processes such as evaporation, filtration, infiltration, and groundwater recharge. Secondly, green infrastructure design should leverage technologies that harness natural mechanisms, enhancing the cyclical movement of materials within the ecosystem. This involves strategic infrastructure planning that minimizes alterations to topography, preserving the natural functions of the water cycle while allowing for flexible application tailored to ecosystem requirements. These green infrastructure characteristics, effects, and plans are summarized as variables. Thirdly, the dynamic loop is constructed with consideration of the summarized variables. The final stage of the process integrates flood risk management within a community flood resilience framework. By cycling through the stages of learning, prevention, resistance, response, and recovery, the objective is to minimize damage caused by floods and effectively respond to unexpected floods due to climate change.

As a result, seven derived criteria include land use type identification, target site characteristics analysis, detailed survey, water circulation goal selection, design criteria and layout strategy, spatial suitability evaluation, and water cycle change verification. Using these criteria, the ultimate goal of this study is to identify suitable green infrastructure locations and create a monitoring map for a healthy water cycle. The study aims to contribute to flood prevention measures in flood-prone areas by analyzing the impact of green infrastructure on emissions.

Acknowledgements

This work was supported by Korea Environment Industry &Technology Institute (KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment (MOE) (2022003570003).

References

EPA, U. (2007). Reducing stormwater costs through low impact development (LID) strategies and practices. United States Environmental Protection Agency, Nonpoint Source Control Branch (4503T).

How to cite: Lee, W. J., Jeon, S., and Lee, J.: Green infrastructure planning criteria for flood-prone areas to restore water cycle system and improve flood resilience , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20208, https://doi.org/10.5194/egusphere-egu24-20208, 2024.

EGU24-22025 | Orals | ERE1.6 | Highlight

Towards a better integration of the human and biophysical dimensions in global change modelling 

Christian Folberth, Peter Burek, Taher Kahil, Florian Kraxner, Michael Kuhn, Amanda Palazzo, Stefan Wrzaczek, and Dilek Yildiz

Global change encompasses on the environmental side components such as climate change, land degradation and pollution; and in the societal domain socioeconomic changes such as demography, economic development, and equality. This nexus is primarily driven by human activities and affects outcomes relevant for peoples’ well-being and viability through a network of interactions and feedbacks. Due to its strong influence on land surface and land-atmosphere processes and as a basis for food security and income, agriculture and rural livelihoods are at the heart of global change.

Despite the close entanglement of rural populations, livelihoods, and agricultural production, their integrated assessment is so far hardly considered in large-scale and global foresight studies. Instead, most large-scale research on consequences of global change and potential solutions is still monothematic or combines few of the above elements.

Integration across disciplines is taking place only to a limited extent, typically with static combinations of model outcomes. E.g., integrated land use models typically combine yield projections for changing climate with a priori projections of economic and population change. Other examples are the combination of independent projections of crop productivity and water availability to analyze adaptation potentials within the biophysical domain or across scientific domains the estimation of migration driven by changes in crop productivity and water availability. Importantly, both mono- and interdisciplinary studies are most often confined to business-as-usual scenarios or trajectories along shared socioeconomic pathways. Consequently, they do not capture feedbacks involving the human dimension and potentials for adaptation, and therefore lack outcomes that can inform on options for local and regional decision-making covering the water-food-population nexus.

The state-of-the-art highlights a concerning lack of integrated approaches to model global change impacts and feedbacks across environmental and socioeconomic domains. Based on own research and literature that characterizes interactions in the water-food-population nexus under global change pressures and existing model types and approaches, we propose herein a platform for the quantitative integrated modelling and assessment of global change impacts and adaptation covering food and water security, land use, demography, migration, and adaptive capacity.

Applications of such a modelling platform may address a wide range of pressing questions including shocks, their cascading effects and ultimate feedbacks (e.g. food security through output and input trade during and after Ukraine war; other historic shocks such as financial crisis; etc.); slow-onset global change impacts and adaptation; or transversal achievement of SDGs; and eventually serve as a first step towards the modelling of societal catastrophic change scenarios.

How to cite: Folberth, C., Burek, P., Kahil, T., Kraxner, F., Kuhn, M., Palazzo, A., Wrzaczek, S., and Yildiz, D.: Towards a better integration of the human and biophysical dimensions in global change modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22025, https://doi.org/10.5194/egusphere-egu24-22025, 2024.

EGU24-218 | Posters on site | CL3.2.1

Aligning climate scenarios to emissions inventories shifts global benchmarks 

Matthew Gidden, Thomas Gasser, Giacomo Grassi, Nicklas Forsell, Iris Janssens, William Lamb, Jan Minx, Zebedee Nicholls, Jan Steinhauser, and Keywan Riahi

Global mitigation pathways play a critical role in informing climate policies and targets that are in line with international climate goals. However, it is not possible to directly compare modelled results with national inventories used to assess progress under the UNFCCC due to differences in how land-based fluxes are accounted for.

National inventories consider carbon flux on managed land using an area-based approach with managed land-areas determined by nations. Emissions scenarios consider a different managed land area and are calibrated against data from detailed global carbon cycle models that account for natural (indirect) and anthropogenic (direct) fluxes separately by design. 

To disentangle the direct and indirect components of land-based carbon fluxes, we use a reduced complexity climate model with explicit treatment of the land-use sector, OSCAR, one of the models used by the Global Carbon Project. We find the discrepancy between model and NGHGI-based accounting methods globally to be 4.4 ± 1.0 Gt CO2 yr-1 averaged over the 2000-2020 time period, which is in line with existing estimates. We then apply OSCAR to the set of pathways assessed by the IPCC to quantify how this gap evolves over time and estimate how key mitigation benchmarks change.

Across both 1.5°C and 2°C scenarios, LULUCF emissions pathways aligned with NGHGI accounting practices show a strong increase in the total land sink until around mid-century. However, the ‘NGHGI alignment gap’  decreases over this period, converging in the 2050-2060s for 1.5°C scenarios and 2070s-2080s for 2°C scenarios. The convergence is primarily a result of the simulated stabilization and then decrease of the CO2-fertilization effect as well as background climate warming reducing the overall effectiveness of the land sink, which in turn reduces the indirect removals considered by NGHGIs. These dynamics lead to land-based emissions reversing their downward trend in most NGHGI-aligned scenarios by mid-century, and result in the LULUCF sector becoming a net-source of emissions by 2100 in about 25% of both 1.5°C and 2°C scenarios.

Assessing emission pathways using LULUCF definitions from national inventory accounting results in downward revisions to emissions benchmarks derived from scenarios. NGHGI-aligned pathways result in earlier net-zero CO2 emissions by around 2-5 years for both 1.5°C and 2°C scenarios, and 2030 emission reductions relative to 2020 are enhanced by about 5 percentage points for both pathway categories. When incorporating the additional land removals considered by NGHGIs, the assessed cumulative net CO2 emissions to global net-zero CO2 also decreases systematically by 15-18% for both 1.5°C and 2°C scenarios.

We find that increasing removals from direct fluxes in 1.5C scenarios overtake estimated removals using NGHGI conventions in the near term. However, by midcentury, the strengthening of direct removals is balanced by weakening of indirect removals, meaning that, on average, carbon removal on land accounted for using NGHGI conventions in 1.5C scenarios results in about half of the LULUCF removals in current policy scenarios. 

We discuss the implications of our results for future Global Stocktakes and market mechanisms under the Paris Agreement.

How to cite: Gidden, M., Gasser, T., Grassi, G., Forsell, N., Janssens, I., Lamb, W., Minx, J., Nicholls, Z., Steinhauser, J., and Riahi, K.: Aligning climate scenarios to emissions inventories shifts global benchmarks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-218, https://doi.org/10.5194/egusphere-egu24-218, 2024.

EGU24-1645 | ECS | Posters on site | CL3.2.1

Spatial analysis of CDR implications for global biodiversity refugia 

Ruben Prütz, Joeri Rogelj, Sabine Fuss, Jeff Price, Nicole Forstenhäusler, Rachel Warren, Andrey Lessa Derci Augustynczik, Petr Havlík, and Florian Kraxner

Background: Due to ongoing delays in deep global emission reductions, and as more and more countries set national net-zero CO2 targets, carbon dioxide removal (CDR) is continuously gaining importance and attention. Virtually all Paris-aligned AR6 mitigation pathways imply gigatonne-scale CO2 removal even before mid-century, with further upscaling thereafter. Integrated assessment models, used to explore the solution space, currently primarily rely on removals via bioenergy with carbon capture and storage (BECCS) and afforestation, which require massive amounts of land to meet scenario-implied removal scales. This substantial land demand is expected to have severe consequences for biodiversity, which could limit the sustainable scaling potential of these CDR options. Meanwhile, depending on the mode of implementation, afforestation could theoretically benefit habitat conservation in some cases, easing the immense pressure on biodiversity due to ongoing global warming and deforestation.

Objective: By combining spatially-resolved data on biodiversity refugia with spatial time series data from the Global Biosphere Management Model (GLOBIOM) on bioenergy crop plantations and afforestation under different mitigation scenarios, we estimate and compare land use and warming-related pressure on remaining global biodiversity refugia. We compare different biodiversity recovery assumptions after peak warming, consider the land use pressure of ongoing deforestation, and explore additional warming-related refugia loss when excluding CDR from scenarios.

Preliminary results: We show how scenarios with more ambitious temperature outcomes result in higher land use-related pressure on remaining biodiversity refugia areas as more land-intensive CDR is implied in such pathways. Meanwhile, more decisive climate action, including more CDR, substantially reduces the warming-related loss of remaining biodiversity refugia areas. The underlying biodiversity recovery assumptions strongly impact the degree of warming-related refugia loss with considerably less influence on land use-related implications. Generally, the perceived trends are stronger towards 2100 compared to mid-century.

How to cite: Prütz, R., Rogelj, J., Fuss, S., Price, J., Forstenhäusler, N., Warren, R., Derci Augustynczik, A. L., Havlík, P., and Kraxner, F.: Spatial analysis of CDR implications for global biodiversity refugia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1645, https://doi.org/10.5194/egusphere-egu24-1645, 2024.

EGU24-3169 | ECS | Orals | CL3.2.1

Heat impacts during days and nights under climate overshoot: a single hazard multi-impact approach 

Chahan M. Kropf, Kam Lam Leung, and Jamie W. Mc Caughey

Heat stress is a significant threat to human health and well-being, particularly in urban areas, and is expected to worsen in the future due to climate change. This study investigates the impacts of heat stress on human health in Lisbon, Portugal, during both days and nights under climate overshoot scenarios. The study employs a single hazard multi-impact approach to assess the health impacts of heat stress, considering both acute and long-term effects. The results show that the impacts of heat stress on human health are unequally distributed across the population, with some parishes being more affected than others. The study also finds that the impacts of heat stress will increase dramatically under current climate policies. In the daytime, heat stress is primarily driven by heat waves and maximum temperatures, leading to acute effects on human health, such as mortality. These effects are most pronounced in certain parishes and are expected to increase significantly even by 2040. Behavioural adaptation strategies such as adapting working hours have some potential to reduce heat impacts in certain settings. At night, heat stress is primarily driven by minimum daily temperatures, leading to sleep loss and long-term effects on health. Adaptation options for mitigating these impacts might require infrastructure investments. These findings highlight the need for targeted adaptation strategies to address the unequal distribution of heat stress impacts even under climate overshoot.

How to cite: Kropf, C. M., Leung, K. L., and Mc Caughey, J. W.: Heat impacts during days and nights under climate overshoot: a single hazard multi-impact approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3169, https://doi.org/10.5194/egusphere-egu24-3169, 2024.

EGU24-5361 | ECS | Posters on site | CL3.2.1

Implications of biosphere variability for future emission budgets and carbon dioxide removal 

Tom Schürmann, Moritz Adam, and Kira Rehfeld

The biosphere’s first-order response to changing Earth system conditions shifts under future emission pathways. One can anticipate such low-order responses, like rebounding carbon stocks once emissions diminish when forecasting emission budgets. However, the impact of changes in second- and higher-order biosphere variability on emission pathways and the prospective large-scale artificial carbon dioxide removal (CDR) remains unclear. An example of such higher-order responses is the vulnerability of land carbon uptake to more extreme climate forcing. In addition, implementing CDR has notable implications for land use, exerting an influence on spatial and temporal biosphere variability. Thus, constraining the interplay between the biosphere’s variability and the emission pathway could inform future emission accounting.

Here, we leverage state-of-the-art Earth system model simulations to investigate the magnitude and pathway-dependency of interactions between the terrestrial biosphere’s variability and the emission pathway. We characterize biosphere variability under different emission scenarios and with varying degrees of representing CO2 removal. The emission- and concentration-driven simulations cover pathways that reach Paris targets without and with temperature overshoot. CDR is either implicitly represented in emission and land use scenarios or explicitly simulated in the model’s land component to match the respective socio-economic pathway.

To understand the structure of modeled biosphere variability under the different pathways and test the consistency of the joint model system, we investigate regional events like a vegetation expansion event in the Northern Sahara. Here, the objective is to examine the interplay between terrestrial carbon fluxes and CDR utilization in detail on a smaller scale, later expanding to the global level. The following research focuses on identifying and quantifying shifts in biosphere variability over time, their interplay with CDR measures, and their effects on global carbon stocks. We test the model’s sensitivity to design choices (how and where CDR is represented) and pathway (emission target, timing, and duration of temperature overshoot). To this end, we aim to infer the margin of error biosphere variability could cause in emission accounting. Our results will help to evaluate the significance of varying biospheric carbon fluxes for future emission stock-taking in the context of CDR.

How to cite: Schürmann, T., Adam, M., and Rehfeld, K.: Implications of biosphere variability for future emission budgets and carbon dioxide removal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5361, https://doi.org/10.5194/egusphere-egu24-5361, 2024.

EGU24-5522 | Posters on site | CL3.2.1 | Highlight

What does Net Zero mean for reactive gases? 

William Collins

The decrease in carbon dioxide concentrations following a zeroing of emissions leads to a cooling that approximately balances the hidden warming from past emissions, due to the similarity of the timescales of climate response and carbon cycle response. But what are the climate implications of zero emissions of chemically-reactive gases such as nitrous oxide, halocarbons and methane with response timescales that don’t align with those of the climate system?

In this work we invert the analytical formulae used by the IPCC to represent the evolution of climate, to derive the time evolution of radiative forcing needed to stabilise temperatures. We find that stabilising the warming attributable to any gas requires decreases in radiative forcing that depend on the past history of that gas (more rapid historical ramp-up requires stronger future mitigation). We show that for reactive gases the analytically-derived radiative forcing decreases are most closely matched by step-like cuts in emissions, but that even for long-lived gasses such as nitrous oxide the emissions cuts do not need to be 100%. N2O emission cuts of 60-80% are sufficient to stabilise its temperature contribution - depending on the previous emission history.

It has been suggested that a more ambitious goal is to mitigate reactive gases sufficiently that their contribution to temperatures reduces rather than stabilises. We show that the above methodology can equally be applied to a declining temperature profile and so were are able to quantify the cuts in reactive gas emissions consistent with achieving desired cooling goals.

How to cite: Collins, W.: What does Net Zero mean for reactive gases?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5522, https://doi.org/10.5194/egusphere-egu24-5522, 2024.

EGU24-5598 | ECS | Orals | CL3.2.1

Carbon dioxide removal: trade-offs and lags in large perturbed parameter simulations 

Aurich Jeltsch-Thömmes, Giang Tran, Sebastian Lienert, David Keller, Andreas Oschlies, and Fortunat Joos

Carbon Dioxide Removal (CDR) is now widely discussed for offsetting residual greenhouse gas emissions or even reversing climate change. For example, all emissions scenarios of the Intergovernmental Panel on Climate Change that meet the “well below 2°C” warming target of the Paris Agreement include CDR. Ocean alkalinity enhancement (OAE) may be one possible CDR where the carbon uptake of the ocean is increased by artificial alkalinity addition. Here, we apply the Bern3D-LPX and the UVic Earth system models of intermediate complexity in observationally-constrained large perturbed parameter ensembles to investigate the effect of massive OAE on modelled carbon reservoirs and fluxes. OAE is assumed to be technically successful and deployed as an additional CDR in the SSP5-3.4 temperature overshoot scenario. 

Trade-offs involving feedbacks with atmospheric CO2 result in a low efficiency of an alkalinity-driven atmospheric CO2 reduction of -0.35 [-0.37 – -0.33] mol C per mol alkalinity addition (skill-weighted mean and 68% c.i.). The alkalinity-driven ocean carbon uptake is partly offset by the release of carbon from the land biosphere and a reduced ocean carbon sink in response to lowered atmospheric CO2 under OAE.
We further apply the Bern3D-LPX ensemble in idealized simulations, in which ΔSAT increases first to ~2°C and then declines to ~1.5°C, to investigate lags in surface air temperature change (ΔSAT). In these simulations, ΔSAT lags the decline in CO
2-forcing by decades, depending on the equilibrium climate sensitivity of the respective ensemble member.
Finally, we use the Bern3D-LPX ensemble simulations and the, in comparison to earlier studies with the Bern3D-LPX model, updated and longer observational records to assess climate metrics such as the transient climate response to emissions, the transient climate response, and the equilibrium climate sensitivity.
 

Our results suggest that massive OAE, if technically and socio-economically achievable, might be able to lower atmospheric CO2 but considering the trade-offs and lags, not emitting carbon is preferable. 

How to cite: Jeltsch-Thömmes, A., Tran, G., Lienert, S., Keller, D., Oschlies, A., and Joos, F.: Carbon dioxide removal: trade-offs and lags in large perturbed parameter simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5598, https://doi.org/10.5194/egusphere-egu24-5598, 2024.

EGU24-7147 | ECS | Posters on site | CL3.2.1

The variability determining the initial conditions for ensemble spread in the ZEC (CESM2) scenario 

Hyun Seung-Hwon and An Soon-Il

In this study, we analyze the results of a multiple ensemble experiment using a single model (CESM2) for the Zero Emission Commitment (ZEC) scenario, where atmospheric CO2 emissions are initially increased as in a warming scenario and then reduced to zero. We found a significant increase in the ensemble spread of global temperature during the Zero Emission period following the warming phase. 
Ensembles which initially have the relatively higher salinity in the North Atlantic during the early Zero Emission period show the higher North Atlantic temperatures and salinity, along with less Arctic sea ice distribution, in later (ZEC) periods. Conversely, ensembles with initially lower salinity displayed opposite characteristics. We propose that the initial conditions of the Zero Emission period are associated to long-period internal variability that occurred during the previous period of positive CO2 emission fluxes (the warming period). The increase in ensemble spread in the Northern Atlantic is due to the the Atlantic Meridional Overturning Circulation (AMOC) salinity feedback becoming elongated due to strong ocean stratification. This suggests a prolonged period for this feedback mechanism, associated with the internal variability in AMOC.

How to cite: Seung-Hwon, H. and Soon-Il, A.: The variability determining the initial conditions for ensemble spread in the ZEC (CESM2) scenario, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7147, https://doi.org/10.5194/egusphere-egu24-7147, 2024.

EGU24-7826 | ECS | Posters on site | CL3.2.1

How can overshoot risks be included in long-term adaptation planning? 

Emily Theokritoff, Burcu Yesil, Inga Menke, Mariam Saleh Khan, Inês Gomes Marques, Tiago Capela Lourenço, Hugo Pires Costa, and Carl-Friedrich Schleussner

As climate change intensifies, it is essential to take a wide range of climate scenarios and their consequential impacts into account for adaptation planning. Overshoot scenarios, during which global warming will temporarily exceed the 1.5°C Paris Agreement target before it is brought down again in the following decades, are increasingly likely under current emissions trajectories. They would result in complex risks such as limits to adaptation and irreversible impacts and stress the need to prepare long-term adaptation plans under deep uncertainty.

Here, we introduce the latest version of the Overshooting Proofing Methodology, a self-assessment tool designed to guide adaptation planners and policy-makers to integrate overshoot risks into planning processes, and present novel insights from its application with key stakeholders at city and regional levels. We also reflect on how adaptation pathways can allow to adequately plan a sequence of adaptation measures over time based on information collected through this tool. Its initial implementation in selected cities/regions reflects its applicability in varied climatic settings together with a range of climate related challenges. This work provides insights on key data gaps, capacity building needs and avenues for future adaptation planning, policy-making and research.

How to cite: Theokritoff, E., Yesil, B., Menke, I., Saleh Khan, M., Gomes Marques, I., Capela Lourenço, T., Pires Costa, H., and Schleussner, C.-F.: How can overshoot risks be included in long-term adaptation planning?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7826, https://doi.org/10.5194/egusphere-egu24-7826, 2024.

EGU24-10449 | Orals | CL3.2.1

Can ambitious forestation mitigate temperature overshoot? 

Yiannis Moustakis, Tobias Nützel, Hao-Wei Wey, and Julia Pongratz

Even though it has been estimated that country-level commitments on Afforestation/Reforestation (AR) are quite ambitious, amounting globally to 633Mha by 2060, typically modelling studies either apply only moderate levels of AR or are fully idealized, thus not taking into account technoeconomic and biodiversity considerations. Typically, high-end emission trajectories are also employed, yielding strong fertilization of vegetation by elevated CO2 levels and thus enhanced terrestrial carbon stocks, while the CDR potentials over more strongly mitigated pathways remain understudied. This is especially the case for overshoot pathways that are gaining research interest recently, given their relevance for reaching the more ambitious 1.5oC goal.

Here, with the fully coupled MPI-Earth System Model we investigate the mitigation potential of an ambitious yet spatiotemporally plausible AR scenario under an overshoot emission trajectory (SSP5-3.4os). The developed AR scenario employed here is commensurate with country commitments in 2060 and extends to 2100 reaching 935 Mha globally and is constrained by technoeconomic considerations based on a multitude of 1,259 Integrated Assessment Model-generated pathways. To further constrain the scenario, we consider biodiversity and restoration priority maps.

Based on a big ensemble member approach allowing for robust probabilistic analysis, our results demonstrate that ambitious AR can robustly mitigate global temperature in 2100 by 0.2oC, peak temperature by 0.09oC, and reduce temperature overshoot duration by 13 years, while also delaying the land carbon sink-to-source transition by ~10 years, compared to a reference scenario with constant land-use at 2015 levels. Temperature mitigation emerges also at the local scale, where biogeochemically-induced cooling compensates for any biogeophysically-induced local warming.

Overall, ambitious AR should be considered as a useful mitigation tool complementary to drastic emissions reduction even under more strongly mitigated pathways, despite potentially weaker CO2 fertilization.

How to cite: Moustakis, Y., Nützel, T., Wey, H.-W., and Pongratz, J.: Can ambitious forestation mitigate temperature overshoot?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10449, https://doi.org/10.5194/egusphere-egu24-10449, 2024.

EGU24-11759 | ECS | Posters on site | CL3.2.1

Investigating the path dependence of climate changes in a 200-member ensemble of overshoot scenarios 

Mitchell Dickau and H. Damon Matthews

Current policies have global mean temperature (GMT) on track to surpass the temperature thresholds agreed upon in the Paris Agreement. Therefore, if the goals of the Paris Agreement are to be met, there is an increasing likelihood of temporarily overshooting the 1.5°C or well-below 2.0°C thresholds. Using an intermediate complexity global Earth system model, we explore the climate implications of temperature overshoot using ≈100 pairs of multi-gas emissions scenarios from the ENGAGE project, with peak temperatures from ≈1.5°C to ≈2.2°C. For each pair of scenarios, the first is constrained by the remaining carbon budget (RCB) in 2100, which allows for the possibility of overshoot, while the second is constrained by the same RCB irrespective of a time horizon and acts as a baseline scenario. The comparisons of the pairs of scenarios demonstrate that the climate changes that occur at a given GMT are path dependent. In this presentation, we show how the impacts of overshoot vary depending on: 1) peak temperature, 2) the degree of overshoot, 3) the duration of overshoot, and 4) the amount of warming caused by CO2 vs. non-CO2 emissions. Our study expands on the literature by investigating the climate implications of temperature overshoot in an ensemble of ≈200 multi-gas scenarios with a range of temperature targets using a spatially explicit Earth system model.

How to cite: Dickau, M. and Matthews, H. D.: Investigating the path dependence of climate changes in a 200-member ensemble of overshoot scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11759, https://doi.org/10.5194/egusphere-egu24-11759, 2024.

EGU24-12063 | ECS | Orals | CL3.2.1

Long-Term Negative Emissions and Irreversibilities following Temporary Overshoots: An Earth System Model Perspective 

Fabrice Lacroix, Friedrich Burger, Yona Silvy, Regina Rodrigues, Carl F. Schleussner, and Thomas L. Frölicher

Our understanding of impacts and feedbacks associated with temporarily overshooting the Paris Agreement temperature goal - where the 1.5 °C global warming target is exceeded and retraced at a later time period - is currently limited. Such overshoot scenarios are of increasing likelihood and have the potential to be devasting in terms of both their peak impacts and irreversibility, affecting natural and human systems.

Here, we apply the Earth System Model GFDL-ESM2M coupled to the Adaptive Emission Reduction Approach (AERA) in order to perform novel policy-relevant simulations over the 1861 to 2500 period that temporarily overshoot the global warming target of 1.5 °C at various levels of peak global warming (2.0, 2.5 and 3.0 °C), and compare these to a reference scenario that stabilizes at 1.5 °C. We use this framework to isolate features arising from the overshoots, and investigate (1) negative emissions needed to reverse an overshoot and their impacts for cumulative emissions, (2) spatial differences in surface warming and oceanic heat content between overshoot and 1.5°C stabilization case, and (3) impacts that these spatial differences have for precipitation, sea level rise and ocean ecosystem stressors.

Our framework suggests levels of negative carbon emissions of up to 9 Pg C yr-1 to revert the global temperature the most extreme overshoot of 3.0 °C back to 1.5 °C, with less cumulative emissions allowed in the long-term than in the 1.5 °C simulation to maintain global temperature at 1.5°C. We detect long-term high latitude warming of up to 2.1 °C averaged over the North Atlantic and 0.5 °C over the Southern Ocean that persists after the overshoot. We attribute the persistent warming in the high latitudes to the recovery of both Atlantic Meridional Overturning Circulation and Antarctic abyssal overturning, which retrace to even higher levels in the overshoots than in the 1.5 °C stabilization case. These impact the distribution of precipitation, for instance stronger precipitation found in the high latitudes in the overshoots, as wells as the Pacific Walker Cell. The model also shows that due to excess heat storage in the subsurface of low latitudinal oceans, sea level rise does not recover back to 1.5 °C stabilization levels in overshoot scenarios, remaining up to 20 % higher in the strongest overshoot. The persistent long-term changes that the overshoots that we detect imply consequences for regional climates, cryosphere and marine ecosystems lasting for decades or even centuries after the overshoot reversal. 

How to cite: Lacroix, F., Burger, F., Silvy, Y., Rodrigues, R., Schleussner, C. F., and Frölicher, T. L.: Long-Term Negative Emissions and Irreversibilities following Temporary Overshoots: An Earth System Model Perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12063, https://doi.org/10.5194/egusphere-egu24-12063, 2024.

EGU24-12476 | Orals | CL3.2.1 | Highlight

Beyond the Peak: What we know and don't know about temperature overshoot 

Carl-Friedrich Schleussner

Global emission reduction efforts continue to be insufficient to meet the temperature goal of the Paris Agreement. This makes the systematic exploration of so-called overshoot pathways that draw temperatures back down to safer levels in the long term a priority for science and policy.

I will present major insights from the Horizon 2020 PROVIDE project on overshoot pathways. We find that global and regional climate change in a post-overshoot world would be substantially different from a world that avoided overshoot, bearing profound implications for adaptation needs. Irrespective of the peak warming, we find that achieving declining global temperature remains critical for limiting long-term climate risks including sea-level rise and cryosphere changes. Reversal of warming by deploying carbon dioxide removal (CDR) at scale, however, is not guaranteed. In addition to uncertain technical and sustainability limitations of CDR, we find that a preventive CDR capacity of several hundred gigatonnes might be desirable to hedge against strong Earth system feedbacks that amplify warming. Aiming for temperature decline is thus not a robust strategy to achieve a climate objective, but rather one part of a broader approach towards managing long-term climate risks. It is no replacement for stringent near-term emission reductions to limit risks at peak warming in the first place.

How to cite: Schleussner, C.-F.: Beyond the Peak: What we know and don't know about temperature overshoot, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12476, https://doi.org/10.5194/egusphere-egu24-12476, 2024.

EGU24-13448 | Orals | CL3.2.1 | Highlight

Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5 

Andrew King, Tilo Ziehn, Matthew Chamberlain, Alexander Borowiak, Josephine Brown, Liam Cassidy, Andrea Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah Perkins-Kirkpatrick, and Aditya Sengupta

Under the Paris Agreement, signatory nations aim to keep global warming well below 2°C above pre-industrial levels and preferably below 1.5°C. This implicitly requires achieving net-zero or net-negative greenhouse gas emissions to ensure long-term global temperature stabilisation or reduction. Despite this requirement, there have been few analyses of stabilised climates and there is a lack of model experiments to address our need for understanding the implications of the Paris Agreement for the Earth system. Here, we describe a new set of experiments using the Australian Community Climate and Earth System Simulator earth system model (ACCESS-ESM-1.5) that enables analysis of climate evolution under net-zero emissions, and we present initial results. Seven 1000-year long simulations were run with global temperatures stabilising at levels in line with the Paris Agreement and at a range of higher global warming levels. We provide a brief overview of the experimental design and show how these model simulations may be used to understand possible net-zero emissions climates. We find major consequences of delayed attainment of global net-zero carbon dioxide emissions for different aspects of the climate system. As the climate stabilises under net-zero emissions, we identify significant and robust changes in temperature and precipitation patterns including continued Southern Ocean warming and reversal of transient mid-latitude drying trends. Regional climate changes under net-zero emissions differ greatly including contrasting trajectories of sea ice extent between the Arctic and Antarctic. While Arctic sea ice extent is projected to stabilise under net-zero emissions, sustained Southern Ocean warming is associated with continued sea ice decline in the Antarctic. We also examine the El Niño-Southern Oscillation (ENSO) and find evidence of reduced amplitude and frequency of ENSO events under climate stabilisation relative to projections under transient warming. An analysis at specific global warming levels shows significant regional changes continue for centuries after emissions cessation. Our findings suggest substantial long-term climate changes are possible even under net-zero emissions pathways. We hope these simulations will be of use to the community and that they motivate further experiments and analyses based on other earth system models.

How to cite: King, A., Ziehn, T., Chamberlain, M., Borowiak, A., Brown, J., Cassidy, L., Dittus, A., Grose, M., Maher, N., Paik, S., Perkins-Kirkpatrick, S., and Sengupta, A.: Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13448, https://doi.org/10.5194/egusphere-egu24-13448, 2024.

The constant ratio of global warming to cumulative CO2 emissions underpins the use of remaining carbon budgets as policy tools, and the need to reach net zero CO2 emissions to stabilize global mean temperature. One requirement for this proportionality is that the temperature response to a pulse emission of CO2 is independent of the background emissions scenario, and this property has been explained by a balance between the logarithmic dependence of radiative forcing on CO2 concentration, and the saturation of CO2 sinks at higher CO2 levels. Several studies have argued that this proportionality also arises because heat and carbon are mixed into the ocean by similar physical processes, and this argument was echoed in the Intergovernmental Panel on Climate Change Sixth Assessment Report. However, contrary to this hypothesis, atmosphere-ocean fluxes of heat and carbon evolve very differently to each other in abrupt CO2 increase experiments in five earth system models, and changes in the atmosphere, ocean and land carbon pools all contribute to making warming proportional to cumulative emissions. Moreover, an analytical model only exhibits proportional heat and carbon fluxes and proportional warming to cumulative emissions if the land and atmosphere carbon pools are neglected, among other unrealistic assumptions. These results strongly suggest that this proportionality is not amenable to a simple physical explanation, but rather arises because of the complex interplay of multiple physical and biogeochemical processes.

How to cite: Gillett, N.: What explains the proportionality of global warming to cumulative carbon emissions?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13603, https://doi.org/10.5194/egusphere-egu24-13603, 2024.

EGU24-16039 | ECS | Posters on site | CL3.2.1

Regional climate signals in overshoot scenarios 

Peter Pfleiderer, Carl-Friedrich Schleussner, and Jana Sillmann

Global warming levels are politically relevant targets, and therefore, in public discussion and in climate science, these global warming levels are often taken as a reference for climate states. While the focus on global warming levels is a useful simplification in many cases, it becomes misleading when looking at temperature overshoot (or stabilization) scenarios. In temperature overshoot scenarios, greenhouse gas concentrations are eventually reduced leading to a decrease in global mean temperatures. In such scenarios, lagged effects, feedback mechanisms, and tipping points can result in considerably different climate states after the overshoot as compared to before at the same global warming level.

Here we assess to what extent changes in regional climate signals are reversed in the period after peak warming when global mean temperature decreases. We analyze a multi-model ensemble of CMIP6 simulations of two overshoot scenarios, SSP5-34-OS and SSP119. In many regions, climate signals are decoupled from global mean temperatures in the decades after peak warming, leading to differences in regional climate signals between before and after the overshoot at the same global warming level.

More dedicated climate simulations of overshoot scenarios would be required to better evaluate how long the influence of the overshoot would affect regional climate signals and to better understand the mechanisms behind these changes. The presented overview of regional climate signals in overshoot scenarios until 2100 already suggests that considerable implications of temperature overshoots for climate impacts are to be expected and that these implications need to be considered for adaptation planning and policy making.

How to cite: Pfleiderer, P., Schleussner, C.-F., and Sillmann, J.: Regional climate signals in overshoot scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16039, https://doi.org/10.5194/egusphere-egu24-16039, 2024.

EGU24-16992 | ECS | Posters on site | CL3.2.1

Closing in on Zero Emissions Commitment (ZEC) uncertainty 

David Hohn, Estela Monteiro, Giang Tran, and Nadine Mengis

A stabilisation of global temperature can be achieved by reducing anthropogenic CO2 emissions to zero. Delayed warming or cooling, called zero emissions commitment (ZEC), can still occur after emissions have stopped. The magnitude of ZEC has been estimated to be 0±0.3 degrees Celsius, based on multi-model means. The individual models, however, show a wide range of responses from the climate system to the cessation of emissions, furthering the uncertainties regarding future temperature developments.

Therefore, it is crucial to improve our knowledge of the ZEC uncertainty range in multiple aspects. This study contributes to a better understanding of the leading drivers of uncertainty of ZEC by analyzing a perturbed parameter ensemble of key dynamics of ZEC in ambitious mitigation scenarios. Using an Earth system model of intermediate complexity (UVic ESCM), we quantify how model parameters affect ZEC estimates for zero emissions preceded either by idealised constant emissions (20 and 10 PgC/yr) or by net-negative emissions scenarios. Finally, we analyze how the efficiency of Earth system processes relevant to ZEC, like carbon burial and heat uptake, can vary over different timescales after cessation of emissions.

How to cite: Hohn, D., Monteiro, E., Tran, G., and Mengis, N.: Closing in on Zero Emissions Commitment (ZEC) uncertainty, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16992, https://doi.org/10.5194/egusphere-egu24-16992, 2024.

EGU24-17012 | Posters on site | CL3.2.1

Pacific climate variability and its regional impacts in warmer, stabilised climates 

Andrea Dittus, Nicola Maher, Andrew King, and Aditya Sengupta

The El Niño Southern Oscillation (ENSO) in the tropical Pacific is the main mode of inter-annual climate variability and a key driver of regional climate across much of the globe. Future changes in its behaviour are highly policy-relevant as they would have large impacts across many regions and significantly affect ecosystems and livelihoods. In this presentation, we explore how ENSO variability evolves in multi-century experiments under fixed atmospheric concentrations of greenhouse gases, where global mean surface temperatures are slowly stabilising.
We show how ENSO variability and its teleconnections change in a range of climate models and experimental designs. Idealised projections under fixed atmospheric concentrations of greenhouse gases across multiple levels of global warming, from 1.5°C to 5°C, are evaluated for the UK Earth System Model 1 alongside abrupt forcing experiments with the Community Earth System Model 1. We also include closely related experimental designs, such as emission-driven stabilisation experiments with ACCESS-ESM-1.5. The differences in how ENSO and its teleconnections respond to further warming in long, multi-century experiments under constant or slowly declining forcing conditions are compared and contrasted to the expected ENSO changes in rapidly warming, transient climate change projections. 

These differences are important to understand in the context of ambitious mitigation scenarios that aim to stabilise global temperatures at, or below, the Paris Agreement temperature targets. Preliminary results suggest that future ENSO variability is model dependent, but withing a single model framework independent of the level at which warming is stabilised at. 

How to cite: Dittus, A., Maher, N., King, A., and Sengupta, A.: Pacific climate variability and its regional impacts in warmer, stabilised climates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17012, https://doi.org/10.5194/egusphere-egu24-17012, 2024.

EGU24-17377 | Posters on site | CL3.2.1 | Highlight

Early Warning of Crossing the 1.5°C Global Temperature Change Threshold 

Debbie Rosen, Lawrence Jackson, Piers Forster, and Carl-Friedrich Schleussner

With the human induced increase in global temperatures continuing, the question if and how we might exceed the 1.5°C warming level enshrined in the long-term temperature goal of the Paris Agreement has received increased public and scientific interest. Identifying the level of human induced warming at any given year is subject to a range of uncertainty including from short-term natural variability. A single year, or even several consecutive years, above 1.5°C thus does not imply that the human induced warming level is reached but does provide an early warning of the risk of crossing that threshold.

Here we find that under an emission pathway following current policies, a single year above 1.5°C might imply that a crossing of the global warming threshold could materialise within 11 years thereafter (66% or likely range). For a three (5) year consecutive average, this time window decreases to 5 (2) years. If 1.5°C is reached in 2024, according to our analysis it would mark an unusual event (about 1-in-25 years) under a current policy scenario that reaches 1.5°C around 2040 (central estimate). We find that stringent emission reductions in the near-term can increase the chances of never crossing 1.5°C. Under a scenario of stringent emission decline, an exceedance of 1.5°C in one or several years may be observed without the long-term warming level ever being breached.

The occurrence of a single year at or above 1.5°C should therefore be taken as a final warning for the need for very stringent near term emission reductions to keep the Paris Agreement long-term limit within reach.

How to cite: Rosen, D., Jackson, L., Forster, P., and Schleussner, C.-F.: Early Warning of Crossing the 1.5°C Global Temperature Change Threshold, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17377, https://doi.org/10.5194/egusphere-egu24-17377, 2024.

EGU24-17881 | ECS | Posters on site | CL3.2.1

Uncertainties in climate sensitivity and residual carbon emissions permit for a hothouse climate ahead 

Christine Kaufhold, Matteo Willeit, Stefanie Talento, and Andrey Ganopolski

Given the large ‘very likely’ range of equilibrium climate sensitivity (ECS, 2 to 5 K), as reported by the Intergovernmental Panel on Climate Change (IPCC) and additional carbon cycle feedbacks, we investigate whether the current Earth system has the potential to significantly deviate from pre-industrial levels in the long-term towards a “hothouse” state. We use the fast Earth system model CLIMBER-X to generate an ensemble of simulations for the next millennium with interactive CO2 and CH4 for ECS values between 2 and 5 K, and force our simulations using the extended low-to-intermediate emission scenarios of SSP1-2.6, SSP4-3.4, and SSP2-4.5. These scenarios are normally associated with peak global warming levels of 1.5, 2, and 3°C respectively for a standard ECS of approximately 3 K.

In simulations using an ECS of 5 K, we observe that the global mean temperature increase would more than double compared to the standard ECS of 3 K. Roughly half of this warming is propelled by positive carbon cycle feedbacks in the different scenarios, with equal contributions from both CO2 and CH4. In the SSP2-4.5 “middle of the road” scenario, we find that a high ECS could see global mean temperatures which exceed 7 °C within the next millennium, with some regions experiencing temperature increases up to 20 °C via polar amplification. If we consider unavoidable residual carbon emissions of less than 10% of our present-day value, we find that the CO2 concentration in the atmosphere can be sustained, thereby resulting in a continuous temperature rise until the year 3000 A.D. unless carbon is sequestered. Prolonged periods of high temperatures, as seen in this study, could lead to the breaching of critical thresholds within the Earth system, like the stability of the Greenland and Antarctic ice sheets for example. As high ECS values cannot be disregarded as implausible at the present time, these results hint hint that we could be on track towards an extreme “hothouse” climate in the long-term if there is no carbon removal.

How to cite: Kaufhold, C., Willeit, M., Talento, S., and Ganopolski, A.: Uncertainties in climate sensitivity and residual carbon emissions permit for a hothouse climate ahead, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17881, https://doi.org/10.5194/egusphere-egu24-17881, 2024.

EGU24-17980 | ECS | Posters on site | CL3.2.1

Let’s be SMART about climate goals 

Nadine Mengis

Although largely scientifically robust, there are elements within the politically-negotiated Paris Agreement where defined methods deviate from the best available assessment of what is physically required to achieve its set goals. Fundamentally, one such deviation is about the net zero greenhouse gas (GHG) emissions goal: current interpretations and applications thereof in nationally determined contributions deviate from what is actually required to halt human-induced global warming.

Here I show that, while attempting to be comprehensive, most of the nationally declared climate goals are unspecific if not misleading, do not actually deliver on temperature stabilisation and have a problematic treatment of future carbon removal (CDR) expectations. On the one hand, the net zero CO2-eq goals overemphasise the need for CDR deployment to reach climate targets, since net-negative CO2 emissions are required to compensate for non-CO2 GHGs. On the other hand, accounting for natural sinks as CDR within national net-zero goals overestimates current and future CDR potentials and mitigation actions, and will not actually deliver anthropogenic net zero CO2.

I accordingly propose to re-orient national climate action towards Specific, Measurable, Achievable, Relevant and Time-bound (SMART) goals, such as a net zero fossil fuel CO2 emissions target by mid-century.

How to cite: Mengis, N.: Let’s be SMART about climate goals, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17980, https://doi.org/10.5194/egusphere-egu24-17980, 2024.

EGU24-18510 | ECS | Posters on site | CL3.2.1

Temporal dynamics of terrestrial carbon dioxide removal 

Tobias Nützel, Sabine Mathesius, Jens Krause, Sabine Egerer, Conor Ó Beoláin, Daniel Bampoh, Stefanie Falk, Dieter Gerten, Wolfgang Obermeier, and Julia Pongratz

Virtually all future scenarios in the IPCC AR6 keeping climate change well below 2°C include carbon dioxide removal (CDR), often leading to large transformations of global land surface and land use. Re-/afforestation (AR) and bioenergy with carbon capture and storage (BECCS) are the two most prominent CDR measures in those scenarios. The temporal evolution of carbon uptake and storage is very different between bioenergy plants, which are annually harvested to (ideally) permanent storage, and forests, which sequester carbon for decades on site but can be affected by disturbances. Additionally, while AR dominates current CDR deployment as tree seedlings and saplings can be planted right away, BECCS requires further processing and storage infrastructure leading to longer establishment time scales. Thus, BECCS covers only a tiny fraction of existing and announced amounts of CDR. Hence, depending on whether CDR is intended to support rapid, deep reductions of net emissions in the near term (as in the Nationally Determined Contributions of parties to the Paris Agreement) or to counterbalance residual emissions or even reach net negative emissions in the longer term, either AR or BECCS could be more effective. This will also vary across world regions. 

We compare the temporal dynamics of carbon storage efficiency between AR and BECCS with three state-of-the-art terrestrial biosphere models (JSBACH, LPJmL, LPJ-GUESS). We use a global, highly stylized setup where a fixed share per pixel of current agricultural land is replaced by forests or bioenergy plants, respectively. We analyze the effectiveness of the two CDR methods over time and in different world regions depending on the temporal CDR target. Furthermore, we quantify how the temporal dynamics are affected by the chosen start year of CDR (2015, 2030, 2050), background climate and CO2 concentrations (SSP1-2.6, SSP3-7.0),  natural disturbances and assumptions on management and plant parametrizations in the underlying vegetation models. We specifically consider temporal dynamics on current agricultural areas adjacent to biodiversity hotspots, since these could also become relevant for achieving ecosystem restoration targets. There, CDR through restoration of naturally occurring forests or grasslands with support from local communities can bring synergies for multiple ecosystem services, while premature deployment of AR in non-forest areas or crop-based BECCS would likely decrease biodiversity.

How to cite: Nützel, T., Mathesius, S., Krause, J., Egerer, S., Ó Beoláin, C., Bampoh, D., Falk, S., Gerten, D., Obermeier, W., and Pongratz, J.: Temporal dynamics of terrestrial carbon dioxide removal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18510, https://doi.org/10.5194/egusphere-egu24-18510, 2024.

EGU24-18992 | ECS | Orals | CL3.2.1

On the reversibility of Arctic sea ice loss 

Stefanie Rynders, Yevgeny Aksenov, Jörg Schwinger, Timothée Bourgeois, and Chris Jones

It is now expected carbon emissions will follow an overshoot trajectory. A realistic emission-driven overshoot scenario esm-SSP534-over is available from the CMIP6 archive. We analysed the simulations to examine reversibility of the Arctic sea ice cover. Reversibility here means that at the end of the 21st century the sea ice extent is the same as that at the earlier point in the century with the same atmospheric CO2 concentration. Firstly, in an emission driven simulation the system behaves differently on the upward and downward branches of CO2 concentration. We show it is better to use atmospheric CO2 concentration rather than Arctic surface air temperature, as the relation between the two is not linear. Total Arctic sea ice extent shows consistent behaviour in 3 out of 4 models (CNRM-ESM2, MIROC, UKESM1) with a CO2 concentration threshold above which sea ice becomes irreversible. This can be explained by the continued ocean heat transport into the Arctic even though the Atlantic Meridional Overturing Circulation (AMOC) declines. The NorESM model has very different behaviour, sea ice extent is reversible and even overshoots beyond the present-day extent. We suggest this is caused by the known strong AMOC decline in this model. The analysis indicates Arctic air temperature is a result of the changes in sea ice extent rather than the driving factor, as is often assumed, both ultimately controlled by ocean heat transport. From the available simulations we conclude there is large uncertainty in the future Arctic climate state. This uncertainty extends to the future global air temperatures as different models show different inertia on CO2 concentrations, which only materialises in the downward emission branch. This affects many other climate variables with their own time lag. Climate inertia and time delays in the earth system should be investigated further to improve fidelity of future projection. This necessitates the use of emission-driven scenarios instead of concentration-driven ones which do not allow for the full inclusion of internal earth system feedbacks. 

We acknowledge funding from the projects COMFORT (grant agreement no. 820989) and OceanNETs (grant agreement no. 869357) under the European Union’s Horizon 2020 research and innovation programme, and from the EC Horizon Europe project OptimESM “Optimal High Resolution Earth System Models for Exploring Future Climate Changes”, grant 101081193 and UKRI grant 10039429, from the project EPOC, EU grant 101059547 and UKRI grant 10038003. For the EU projects the work reflects only the authors’ view; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains.

How to cite: Rynders, S., Aksenov, Y., Schwinger, J., Bourgeois, T., and Jones, C.: On the reversibility of Arctic sea ice loss, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18992, https://doi.org/10.5194/egusphere-egu24-18992, 2024.

EGU24-19759 | Orals | CL3.2.1 | Highlight

Revising carbon budgets in a 1.5 degree world 

Benjamin Sanderson, Chris Smith, Charles Koven, Zeb Nicholls, Norman Steinert, and Marit Sandstad

The concept of a remaining carbon budget associated with global warming levels has underpinned mitigation efforts since the Paris Agreement.  However, as observed temperatures near 1.5 degrees, a number of challenges have emerged for the continued use of carbon budgets to frame mitigation needs.  Firstly, while the transient response to cumulative emissions describes the temperature response to constant emissions - Paris-compatible pathways require deep emissions cuts and potentially extended periods of negative emissions, the temperature outcome of which is complicated by zero emissions commitments and non-CO2 responses.  Understanding of Zero emissions commitments has been thus far been primarily informed by idealised experiments which terminate emissions during an idealised concentration ramp - but these metrics are subject to unrealistic termination shocks and model-specific emissions pathways.  Second, non-CO2 responses remain highly uncertain, and recent satellite observations of global radiative imbalance raise further questions on the adequacy of current modeling platforms to describe the warming which should be expected due to aerosol phaseout. 

Here, we consider how two novel developments impact carbon budgets beyond estimates presented in the IPCC 6th Assessment.  Firstly, we present an ESM ensemble of climate reversibility experiments which provides a more realistic proxy for non-TCRE carbon dynamics during a net zero transition for use in carbon budgets.  Secondly, we consider how the inclusion of recent global mean temperature measurements and CERES top of atmosphere radiative flux measurements would impacts the calibration of simple climate models - with subsequent impacts on both estimates of both TCRE and expected warming due to non-CO2 effects.  Synthesising this information, we provide an updated estimate of carbon budgets and timing with respect to the 1.5 and 2 degree thresholds.

How to cite: Sanderson, B., Smith, C., Koven, C., Nicholls, Z., Steinert, N., and Sandstad, M.: Revising carbon budgets in a 1.5 degree world, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19759, https://doi.org/10.5194/egusphere-egu24-19759, 2024.

EGU24-20890 | Orals | CL3.2.1

Exploring risks and benefits of overshooting a 1.5 ◦C carbon budget over space and time 

Nico Bauer, David Keller, Julius Garbe, Kristine Karstens, Franziska Piontek, Werner von Bloh, Wim Thiery, Maria Zeitz, Matthias Mengel, Jessica Strefler, Kirsten Thonicke, and Ricarda Winkelmann

Temperature targets of the Paris Agreement limit global net cumulative emissions to very tight carbon budgets. The possibility to overshoot the budget and offset near-term excess emissions by net-negative emissions is considered economically attractive as it eases near-term mitigation pressure. While potential side effects of carbon removal deployment are discussed extensively, the additional climate risks and the impacts and damages have attracted less attention. We link six models for an integrative analysis of the climatic, environmental and socio-economic consequences of temporarily overshooting a carbon budget consistent with the 1.5 ◦C temperature target along the cause-effect chain from emissions and carbon removals to climate risks and impact. Global climatic indicators such as CO2-concentration and mean temperature closely follow the carbon budget overshoot with mid-century peaks of 50 ppmv and 0.35 ◦C, respectively. Our findings highlight that investigating overshoot scenarios requires temporally and spatially differentiated analysis of climate, environmental and socioeconomic systems. We find persistent and spatially heterogeneous differences in the distribution of carbon across various pools, ocean heat content, sea-level rise as well as economic damages. Moreover, we find that key impacts, including degradation of marine ecosystem, heat wave exposure and economic damages, are more severe in equatorial areas than in higher latitudes, although absolute temperature changes being stronger in higher latitudes. The detrimental effects of a 1.5 ◦C warming and the additional effects due to overshoots are strongest in non-OECD countries (Organization for Economic Cooperation and Development). Constraining the overshoot inflates CO2 prices, thus shifting carbon removal towards early afforestation while reducing the total cumulative deployment only slightly, while mitigation costs increase sharply in developing countries. Thus, scenarios with carbon budget overshoots can reverse global mean temperature increase but imply more persistent and geographically heterogeneous impacts. Overall, the decision about overshooting implies more severe trade-offs between mitigation and impacts in developing countries.

How to cite: Bauer, N., Keller, D., Garbe, J., Karstens, K., Piontek, F., von Bloh, W., Thiery, W., Zeitz, M., Mengel, M., Strefler, J., Thonicke, K., and Winkelmann, R.: Exploring risks and benefits of overshooting a 1.5 ◦C carbon budget over space and time, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20890, https://doi.org/10.5194/egusphere-egu24-20890, 2024.

EGU24-594 | Posters on site | SSS7.1

Coupling Leaching-Bioremediation for Petroleum-Contaminated Soils 

Bing Qin and Liming Ren

Petroleum-contaminated soils are difficult to remediate due to a wide range of point/nonpoint sources of pollution and complex components. Here, a new leaching agent system was developed and synthesized, including oligomers, to construct the leaching process and optimize the soil leaching process parameters. The new agent has improved skeleton structure, green bio-based surfactant molecules, and synergists. Based on the characteristics of the leaching soil and its flora structure, more than 60 strains of petroleum degradation bacteria were isolated and screened. Furthermore, suitable bacteria for degradation were cultivated, the nutritional formula and process flow were optimized, and the microbial agent formula for heavy oil, polycyclic aromatic hydrocarbons and other pollutants were established. According to the physical characteristics of different types of oily sludge and soil, an economical and efficient remediation technology system and supporting implementation process were established, and finally, a "leaching-bioremediation" coupling treatment process was formed. The PHs content of the actual contaminated soil after the treatment was lower than 0.45%, and 12,000 t of PHs contaminated soil was remediated. Through the study of the elution-bioremediation process, the establishment of economical and environmentally friendly remediation technology and the process will improve our knowledge to solve the sudden oil pollution in contaminated areas and the environmental protection solution of historical problems.

How to cite: Qin, B. and Ren, L.: Coupling Leaching-Bioremediation for Petroleum-Contaminated Soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-594, https://doi.org/10.5194/egusphere-egu24-594, 2024.

EGU24-1286 | ECS | Orals | SSS7.1

Spatial modelling of Soil Organic Carbon fractions in a degraded coal-mining area through UAV and Sentinel-2 

Lorena Salgado, Rubén Forján, Carlos A. López-Sánchez, María G. Álvarez, Ana M. Díaz, Arturo Colina, and Jose R. Gallego

Traditional methods to acquire (geo)chemical data of Soil Organic Carbon (SOC) in soil rely on manual sampling, time-consuming and laborious chemical analyses, and subsequent mapping by geostatistical interpolation methods. In this study, we propose the use of UAV-RS and Sentinel-2 images, still partially supported by field sampling, for assessing and mapping different fractions of SOC using a regression study through Machine Learning (ML) techniques. This approach is exemplified in the postmining degraded soils of a vast former coal-mining area affected mainly by high degradation of Organic Matter (O.M).

Geochemical analyses by means of a TOC analyzer were conducted to monitor SOC fractions. Soil samples were dried and sieved through a 2-mm mesh to eliminate large particles. Two labile fractions of carbon (CLAB) were obtained through cold-water extraction (CCWE) and hot-water extraction (CHWE); also, two removable carbon fractions (CREM), humic and fulvic acids (CHA and CFA), were extracted; finally, the remaining recalcitrant organic carbon (CREC) was measured in the residue of the previous extractions. TOC was estimated as the sum of CLAB, CREM and CREC.

Spectral data were systematically recorded across a surface area covering 64 hectares within former open pits, involving natural, restored, and degraded zones. A UAV-RS P4-Multispectral platform, equipped with a camera featuring six individual sensors (RGB, blue, green, red, red-edge, and near-infrared), was used; five distinct bands between the visible and near-infrared spectra were obtained. Simultaneously, Sentinel-2 data were employed to acquire spectral information from satellite-borne sensors, thereby obtaining 12 single bands (aerosol, blue, green, red, 3 red edge, 2 NIR, water vapor, cirrus, and 2 SWIR). Given the limitations of information derived from individual bands, spectral indices—combinations of multiple bands through algebraic operations—were employed. Subsequently, two ML algorithms, specifically Random Forest (RF) and Partial Least Square (PLS), were applied to identify the most fitted model for each SOC fraction.

Results revealed that the utilization of non-parametric algorithms, specifically RF, yields a superior goodness of fit compared to parametric algorithms like PLS. The most favourable statistical outcomes were observed for fractions of non-labile organic carbon, with the optimal statistics achieved for CREC, attaining an R2 value of 0.70 and an RPD value of 1.83. When comparing data from UAV and Sentinel-2 sources, better results were found for UAV, this strongly suggesting that, in this study, spatial resolution holds greater relevance than spectral resolution.

This research was funded by the projects NATURESOIL (AEI/Spain, TED2021-130375B-I00) and Atlantic Risk Management Plan in Water and Soil (RiskAquaSoil 272-2016, Interreg Atlantic Area, EU).

How to cite: Salgado, L., Forján, R., López-Sánchez, C. A., Álvarez, M. G., Díaz, A. M., Colina, A., and Gallego, J. R.: Spatial modelling of Soil Organic Carbon fractions in a degraded coal-mining area through UAV and Sentinel-2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1286, https://doi.org/10.5194/egusphere-egu24-1286, 2024.

Oxytetracycline (OTC) is one of the popular antibiotics accumulated in soils and groundwater, posing harmful effects on ecological systems and human health. The objective of this work is to examine the feasibility of OTC degradation using a new catalyst, oxygen-doped graphitic carbon nitride (O-gC3N) for in-situ oxidation remediation. In-situ oxidation system was simulated with column experiments to investigate the performance of PMS activation and OCT removal in saturated porous media. Numerical modeling as HYDRUS 1D was used to analyze OTC's transport behaviors in saturated porous media. The results show that OTC transport in saturated porous media is non-equilibrium. O-gC3N can efficiently activate PMS to degrade OTC and the increase of PMS and O-gC3N can enhance OTC removal. A wide pH range is beneficial for OTC degradation in saturated porous media. EBCT significantly affects OTC degradation and the optimal velocity was 0.4 cm/min. The findings of this work suggest that O-gC3N catalyst can effectively be utilized for the in-situ oxidation of organic pollutants in contaminated sites.

How to cite: Ko, S., Nguyen, T. T., and Kim, D.: Degradation of oxytetracycline in saturated porous media by in-situ chemical oxidation using oxygen-doped graphitic carbon nitride and peroxymonosulfate (PMS), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1305, https://doi.org/10.5194/egusphere-egu24-1305, 2024.

EGU24-1966 | ECS | Orals | SSS7.1

Functional diagnosis of industrial soils: from a cognitive model to in situ implementation 

Caroline Dalquier, Geoffroy Séré, Jennifer Hellal, Nicolas Legay, Laure Santoni, and Pascaline Herbelin

Industrial activities, such as thermal power plants, induce soil degradation on large areas (e.g. soil sealing, contamination related to fuel, coal and ash deposits, soil compaction). After the cessation of activities, landowners of such sites have a huge land heritage that could be considered to promote rehabilitation projects for new land-uses in the frame of the No Net Land Take by 2050. Therefore, there is a need to develop a robust and easy-to-use approach for landowners that could be implemented by soil techniciens/pratitioners to assess soil functions to measure their potential for future uses.

First a cognitive model linking soil functions to a minimum dataset of indicators was established based on chemical, physical and biological properties of soil as well as vegetation cover. This cognitive model includes 6 soil functions (e.g. plant biomass production) and 17 sub-functions (e.g. phytoavailability of nutrients, nutrients storage) and a minimum set of indicators selected among a large list from research studies and attributed to each sub-function and function.

Then two thermal power plants under closure were selected and a documentary survey was carried out for each site to identify contrasted zones in terms of soil cover, mostly based on the nature of the past activities (e.g. coal, slag or ash deposit, building foundations, fuel storage). Twelve zones considered as homogeneous in terms of vegetation and soil type and distinct from each other were selected on these two sites. In total, 12 soil profiles and 164 soil samples were analysed for various biological (plants, nematodes, microbial communities), chemical and physical parameters.

Our results show contrasting situations. Despite the high vegetation cover of the three different ash deposit zones, their plant diversity indices ranged from very low to medium. The same goes for the area where building foundations were located, but they had very little vegetation cover. Also, the enrichment index (EI) and structure index (SI) of the nematode community showed that ash deposits are degraded, nutrient-poor soils and have a high C/N (>12) while the building foundation areas have a "mature and fertile" soil with optimal C/N.  

Whereas some soils could be considered as natural references as they were not affected by industrial activities, others were Technosols made of 100% artefacts. However, the gradient of anthropisation was surprisingly not correlated to the level of functions that were assessed. As an example, technogenic soils developed from fly ash exhibit high soil functions ratings (e.g. carbon storage).

These initial results suggest that the functioning of these soils must be evaluated according to different scales (e.g. plot scale, surface soils), points of view (biological, chemical and physical) and soil functions (e.g. storage and sequestration of GHG, biodiversity reservoir), to establish their functional profiles and suggest possible future uses.

How to cite: Dalquier, C., Séré, G., Hellal, J., Legay, N., Santoni, L., and Herbelin, P.: Functional diagnosis of industrial soils: from a cognitive model to in situ implementation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1966, https://doi.org/10.5194/egusphere-egu24-1966, 2024.

EGU24-2726 | ECS | Orals | SSS7.1

GIS-based approach to generate the bioaccessibility of soil heavy metals for human risk assessments: case study in Changhua farmlands, Taiwan 

Yen-Tzu Fan, Ying-Lin Wang, Ming-Chien Tsou, Zeng-Yei Hseu, Hsing-Cheng Hsi, and Ling-Chu Chien

Considering the bioaccessibility of soil heavy metals for human health assessment can prevent overestimation for policymakers. However, the complexity of soil properties and heavy metal concentrations makes it challenging to establish a general dataset for bioaccessibility in assessments. Soil heavy metals commonly occur in agricultural regions due to both agricultural and industrial activities, posing high health risks for residents through soil exposure. In the past 10 years, the government in Taiwan has actively promoted soil remediation for agricultural heavy metal-polluted soils, completing remediation for more than 99% of polluted sites. However, conducting health risk assessments for remediated soils remains difficulty due to a lack of a general dataset for the bioaccessibility of common soil heavy metals. In this study, we conducted soil sampling from 98 sites located in agricultural regions with various soil properties. We first established regression relationships for the bioaccessibility of six common heavy metals: cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), copper (Cu), and zinc (Zn), based on measured soil properties and heavy metal concentrations. Second, we performed GIS analysis to generate the bioaccessibility of heavy metals from a previous soil survey across all agricultural regions in Taiwan, using our established equations. Then, we conducted health risk assessments for residents at different stages of life (infants, children, teenagers, adults, and seniors) living in agricultural regions (i.e., Changhua farmlands) after soil remediation. Our results revealed high non-carcinogenic risks (hazard index > 1) for infants and children but high carcinogenic risks (total cancer risk index > 1e-4) for seniors. Our study established a GIS-based approach for estimating the bioaccessibility of soil heavy metals based on actual measurements, providing an easier way for health risk assessments of soil heavy metal pollution.

 

Keywords: SBET, human health, farmland, heavy metal pollution, GIS

How to cite: Fan, Y.-T., Wang, Y.-L., Tsou, M.-C., Hseu, Z.-Y., Hsi, H.-C., and Chien, L.-C.: GIS-based approach to generate the bioaccessibility of soil heavy metals for human risk assessments: case study in Changhua farmlands, Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2726, https://doi.org/10.5194/egusphere-egu24-2726, 2024.

EGU24-6389 | ECS | Orals | SSS7.1

Plant biomass for energy and phytoremediation purposes: three-year analysis of Phalaris arundinacea production on contaminated lands in central Italy 

Riccardo Alemanno, Leonardo Bianchini, Richard Lord, Benjamin Nunn, and Andrea Colantoni

Energy production is one of the main challenges that continues to unsettle nations. The cultivation of plant species as biomass for energy purposes is an option but raises the issue of taking land away from food production. A solution to this controversy has been identified by exploiting those soils that cannot be used for food production, namely contaminated soils. The present study focuses on the evaluation of the biomass productivity of Phalaris arundinacea (Reed Canary Grass) in three different fields in Central Italy, which present potentially toxic element (PTE) contamination. The experiment was conducted over three consecutive years. This study is part of the CERESiS (ContaminatEd land Remediation through Energy crops for Soil improvement to liquid biofuels Strategies) Project which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101006717, which started in November 2020 and is set to end in 2024. P. arundinacea is a species that lends itself to biomass production and to the phytoremediation and phytostabilisation of contaminated soils. The three cultivated areas with different textures (EA: sandy loam, B1: clay loam and B2: clay) were prepared with a minimum tillage system in late winter 2021 and sown in spring 2021. Annually, the crop received urea-based nitrogen fertilisation (100 kg ha-1) in late spring and sprinkler irrigation in dry periods. In the “EA” area, additional tests were conducted with different amounts of nitrogen fertiliser (0 - 50 - 100 kg ha-1) and seed treatment with biostimulant based on Trichoderma spp.  Production was estimated by sampling the biomass at different annual times. In areas B1 and B2 through two annual mowings (August and November). In EA, on the other hand, the sampling method allowed for the estimation of a single and/or double mowing at different times (August, mid-September and November). This experimental design allowed assessment of biomass growth, regrowth, and bioaccumulation capacity. At harvest time, a chemical-physical characterisation of the biomass was carried out.

The sandy loam texture did not favour the development of P. arundinacea. Dry biomass production over the three years averaged between 4.0 t ha-1 and 5.1 t ha-1. Generally, the second mowing did not provide enough yield to justify harvesting. P. arundinacea showed limited phyto-extraction of heavy metals. This is compensated by the positive result of the low concentration of PTE in the plant with abundant biomass production. As a fuel, the biomass showed good qualities, with average HHV and LHV values of over 18.8 and 16.1 MJ kg-1 respectively. One aspect that could have a negative impact is the exceptionally high ash content, which over the years has averaged around 14.5 %.

This experiment highlights the manifold benefits of using this plant species. The simultaneous capacity for phytoremediation and energy use of the derived biomass are environmental, economic, and social winning points.

How to cite: Alemanno, R., Bianchini, L., Lord, R., Nunn, B., and Colantoni, A.: Plant biomass for energy and phytoremediation purposes: three-year analysis of Phalaris arundinacea production on contaminated lands in central Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6389, https://doi.org/10.5194/egusphere-egu24-6389, 2024.

EGU24-6709 | Posters on site | SSS7.1

The comprehensive concept for the management of post-industrial sites based on natural processes 

Gabriela Wozniak, Agnieszka Kompała-Bąba, Agnieszka Hutniczak, Wojciech Bierza, and Agnieszka Błońska

There are many theories and concepts concerning ecosystem development in natural and semi-natural habitat conditions. The study of spontaneous processes on human-disturbed habitats such as post-excavation mineral habitats provided data revealing that the impact of the specific abiotic factors on any aspect of biotic elements of the developing ecosystems does not follow most of the mechanisms known from the natural and semi-natural habitat conditions. The feedback relations become more complex when the spontaneous vegetation patches and the developing ecosystem start to cover mineral oligotrophic habitats, particular in respect to the biomass soil organic matter and soil substratum parameters. The fundamental process of the biomass and further soil organic matter in mineral soil substratum is based on the non-analogous species composition of the developing vegetation assemblages.

The de novo formed unusual mineral habitats are colonized by not-known plant species vegetation communities. The relationships between the plant species, particularly the dominant plant species, and the abiotic substrate parameters are frequently different than expected. The differences in ecosystem functioning observed in the disturbed habitats led the researcher to use a separate term novel ecosystem.

The crucial observed process is the colonization of the best-adapted plant species individuals. The individuals of the commonly represented species are adapted to extreme drought, salinity,  texture, and pH. The same is true regarding the microorganisms of the colonizing plant's root system. These natural processes provide an opportunity to investigate the relationships between the plant species, particularly the dominant plant species, and the associated organisms and the abiotic substrate parameters. Differences in the chemical and physical properties of the disturbed post-mineral excavation substrates have resulted in unknown, non-analogous species compositions of the vegetation and animal organisms. These differences are reflected in the soil substratum enzymatic activity, the bacteria functional diversity, and soil substratum respiration rates.

The vegetation, biomass, the matter flow beginning, growing on the mineral material of the post-coal mine heaps consists of a mosaic of patches dominated by various species assembled in a variety of microhabitats. This mosaic reflects the diversity of abiotic habitat conditions. The taxonomic species diversity is followed by the functional vegetation diversity and the variety of plant individual's responses to environmental stressors.

Post-mineral excavation sites deliver an example of newly established habitats that differ from the natural ecosystems current in the surrounding landscape. These findings brought us to present a comprehensive concept for the management of post-industrial sites based on natural processes, that is necessary to be applied to recover the ecosystems after disturbance. This concept enables the application of the natural processes, in a site-specific approach in the disturbed or de novo established sites. The return to previous ecosystems should not be considered. The enhancement of the novel ecosystem development in urban and industrialized landscapes is the prerequisite of the modern economy.

How to cite: Wozniak, G., Kompała-Bąba, A., Hutniczak, A., Bierza, W., and Błońska, A.: The comprehensive concept for the management of post-industrial sites based on natural processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6709, https://doi.org/10.5194/egusphere-egu24-6709, 2024.

EGU24-7200 | Posters on site | SSS7.1

Immobilization mechanisms of Hexavalent Chromium When Reduced by Fe2+-Bearing Clay Minerals Depending on solution pH 

Changyu Moon, Hee-sun Moon, and Kyoungphile Nam

 Structural iron (Fe3+)-bearing clay minerals, when they are reduced, can mediate electron transfer through the Fe3+/Fe2+ coupling reaction and transform hexavalent chromium (Cr6+) into less toxic Cr3+, which in turn can be removed from the solution by the clay minerals. Two types of clay minerals with different structural iron (Fe3+) contents, montmorillonite (2.3 wt%) and nontronite (22.3 wt%), were subjected to reaction with 50 mM dithionite at pH 9 for 48 hours, resulting in Fe2+ bearing clay minerals, with measured Fe2+ ratios of 0.68 and 0.49, respectively. Subsequently, the Fe2+ bearing clay minerals were reacted with Cr6+ solution with varying pH ranging from 2.5 to 11 in an anaerobic chamber. Results show that the reduction of Cr6+ was observed at all pH conditions, consistent with the stoichiometric ratios with structural iron (Cr6+:Fe2+/1:3). At pH 7 and below, over 99% of the structural iron (Fe2+) participated in the reduction reaction. At pH 9 and 11, however, the reaction exhibited a shortfall, with approximately 7-27% and 20-32% of unutilized structural iron remaining in montmorillonite and nontronite, respectively. According to the Visual MINTEQ model and DTPA extraction experiments conducted on solids obtained, Cr3+ is immobilized through sorption onto the clay mineral surface at pH 4.5 and below, and through precipitation and deposition on the clay mineral at pH 7 and above. SEM-EDS analysis, the presence of precipitated Cr at pH 7 and above was identified, and XPS analysis confirmed its precipitation in the form of Cr(OH)3

How to cite: Moon, C., Moon, H., and Nam, K.: Immobilization mechanisms of Hexavalent Chromium When Reduced by Fe2+-Bearing Clay Minerals Depending on solution pH, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7200, https://doi.org/10.5194/egusphere-egu24-7200, 2024.

EGU24-7435 | ECS | Posters on site | SSS7.1

Growing perennial rhizomatous grasses on contaminated land: a strategy for combining phyto-management with sustainable biomass production? 

Benjamin Nunn, Keith Torrance, Ben Wright, Andrea Colantoni, Leonardo Bianchini, Riccardo Alemanno, Oleksandra Tryboi, Maico Severino, Wilson Leandro, and Richard Lord

To investigate this strategy, 15 field scale trials were implemented in five countries [1].  These have evaluated the performance of Phalaris, Miscanthus, 2 x Saccharum and 2 x Pennisetum species for combined energy crop production, phyto-remediation and or phyto-management of contaminated land in Brazil and Europe.  Reed canarygrass (Phalaris arundinacea) is a native perennial rhizomatous C3 species suitable for non-agricultural or marginal lands and climatic zones such as Scotland (where C4 Miscanthus x giganteous cannot be grown effectively).  Our phytoremediation trials using Phalaris in Italy and Ukraine are the first we are aware of.

Given the wide variety of non-agricultural marginal lands [2], species selection must combine significant biomass production on marginal land with acceptable levels of biomass contamination for subsequent use or energy conversion.  Whereas specialist hyperaccumulator plants may achieve higher absolute concentrations of contaminants and exhibit greater bioconcentration and translocation factors, their inherently lower biomass productivity means that both biomass, energy yield and total mass of contaminants removed per unit area will be relatively small.  In contrast, high yielding, low contaminant uptake characteristics, such as for conventional energy crop species, would result in greater energy production, economic viability and greater potential for biomass utilisation.

In the UK the CERESiS project has utilised long-term field trials originally established during the BioReGen (Biomass, Remediation, re-Generation: Reusing Brownfield Sites for renewable energy crops) EU Life demonstration Project (LIFE05 ENV/UK/000128) in 2007.  These allowed direct comparison of the actual contaminant removal rates of three crop species:  Although the biomass of Miscanthus and short-rotation coppice Salix contained higher concentrations of certain elements, Phalaris far out-performed these in terms of biomass, ease and economy of production [3].  Surprisingly, despite lower contaminant concentrations in Phalaris, such was the increased biomass yield that the total mass removed was still greater than for Miscanthus or Salix.  Likewise Pennisetum (Napier and Capiaçu grasses) shows similar promise in Brazil as the most productive, resulting in the highest offtake of Cr from soils contaminated with this element.  This suggests that low-uptake phyto-excluding plants which can tolerate contaminated soils and grow productively might still represent the best and most economically viable option for clean-up of contaminated sites. Meanwhile this nature-based solution can simultaneously deliver a variety of wider societal and environmental benefits, such as greening-up derelict land or the enhanced storage of carbon in soil [4].

This paper will investigate this strategy by comparing biomass yield, biomass contamination and the calculated offtake of contaminants for a wide range of generic contaminants across all of the CERESiS trial sites.  This will be used to evaluate the potential trade-offs between biomass suitability for use and phyto-management of contaminated land.

 

 [1] This study is part of the CERESiS (ContaminatEd land Remediation through Energy crops for Soil improvement to liquid biofuels Strategies) Project which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101006717, www.ceresis.eu

 [2] Mellor et al 2020, RaSER 135, 110220

 [3] Lord, 2015, BioBE 78, 110-125

 [4] Lord & Sakrabani, 2019, STotEn 686, 1057-68

 

How to cite: Nunn, B., Torrance, K., Wright, B., Colantoni, A., Bianchini, L., Alemanno, R., Tryboi, O., Severino, M., Leandro, W., and Lord, R.: Growing perennial rhizomatous grasses on contaminated land: a strategy for combining phyto-management with sustainable biomass production?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7435, https://doi.org/10.5194/egusphere-egu24-7435, 2024.

EGU24-8557 | Posters on site | SSS7.1

Simultaneous immobilization of several heavy metals in naturally contaminated soils using waste and recycled materials 

Takeshi Saito, Yoshishige Kawabe, and Naoki Watanabe

The water leachable amounts of heavy metals including arsenic (As), lead (Pb), and cadmium (Cd) can be found in relatively higher concentrations in surplus soils from construction activities. There is a potential risk to human health and negative impacts on the soil and water environment. One of the cost-effective and efficient strategies for remediation techniques is the immobilization of heavy metals based on natural and artificial materials. The objective of this study is therefore to use five waste and recycled materials such as fly ash and recycled concrete. It tries to achieve simultaneous immobilization of several heavy metals in naturally contaminated soils. Two representative natural soils containing relatively higher concentrations of water leachable As, Pb, and Cd were selected and tested for a simple batch immobilization experiment in the laboratory. The weight percent of each waste and recycled material added to each soil was 2.5%, 5%, and 10%. After 24 hours of curing at 20oC, 10 times the volume of ultrapure water was added and shaken for 6 hours. The supernatants were filtered through a 0.45 µm filter and the concentrations of heavy metals were measured by ICP-MS. Generally, the immobilization rate of As, Pb, and Cd increased with increasing additive weight of waste and recycled materials. Recycled concrete especially demonstrated simultaneous immobilization of these heavy metals above with its addition of 2.5% to 5%, suggesting a better immobilization performance compared to other waste and recycled materials.

How to cite: Saito, T., Kawabe, Y., and Watanabe, N.: Simultaneous immobilization of several heavy metals in naturally contaminated soils using waste and recycled materials, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8557, https://doi.org/10.5194/egusphere-egu24-8557, 2024.

EGU24-11675 | ECS | Orals | SSS7.1

Understanding the influence of postfire oak afforestation on soil properties 

Luis Filipe Lopes, Erika S. Santos, Leónia Nunes, Paulo M. Fernandes, and Vanda Acácio

The Mediterranean is a fire-prone region where fires have occurred for millennia. Since the late nineteenth century, restoration techniques like tree planting have been widely implemented following fire events. However, at soil level, postfire measures have been mostly focused on soil erosion processes. Depending on several factors, fire can cause more or less significant impacts on soils, such as changes in soil structure and in the availability of element concentrations, or loss of organic matter. Understanding fire impacts on soil is not only crucial for developing effective postfire rehabilitation strategies, but also to mitigate the long-term consequences on soil health and ecosystem functioning.

In our study, we evaluated the effect of postfire afforestation projects on soil characteristics in the long term. We studied 15 afforestation projects implemented in North-Centre Portugal in the period 1994-2006, in deciduous oak stands dominated by Quercus pyrenaica (including seven projects with pure oak stands and eight projects with mixed oak stands). For each project, we established a sampling plot and selected a nearby control area, affected by the same fire event but without oak afforestation or evident management. Fieldwork was conducted in 2021, when most projects (10) were between 12 and 17 years old, while the remaining projects (5) had been implemented between 21 and 25 years ago. One composite sample of superficial soil (0-5 cm of depth) was collected per plot, performing 15 soil samples in project areas and 15 samples in control areas. Each soil sample was characterized physicochemically for: proportion of fine/coarse fraction; pH(H2O); organic Carbon (Corg); total N content; and available nutrients concentration. Posteriorly, we calculated two proxy variables: Soil Quality Index (SQI), which allows to evaluate the overall soil health condition; and the C/N ratio, as an indicator of organic matter mineralization process.

For both afforested and control areas, soils (mostly classified as Cambisols) presented pH values of approximately 5 (slight acidity), fine particles (< 2 mm) averaged between 67% and 69%, and no trace elements of enrichment. Soils from afforestation plots displayed higher K concentrations, while soils from control plots exhibited higher fertility levels based on Corg, N, and available P. No significant differences were observed in C/N ratios between afforested and non-afforested areas (14.9 vs 16.6), which indicates a relatively fast decomposition and N mineralization. Similarly, no significant differences were observed in the SQI. The lower Corg contents of afforested soils can be attributed to soil management (soil mobilization and management of the understory), which can contribute to the degradation of organic matter when the ecosystem is sensible due to the fire perturbation. Soil mobilization with disc harrowing was the predominant technique (40%). Further research should focus on understanding the effects of different postfire management options on soil properties over time, including in areas without evident enrichment/contamination problems, to improve postfire soil rehabilitation and sustainable forest management.

Acknowledgment: This research was supported by UID/AGR/04129/2020, UID/BIA/50027/2019, PD/BD/142963/2018 and PD/00157/2012.

How to cite: Lopes, L. F., Santos, E. S., Nunes, L., Fernandes, P. M., and Acácio, V.: Understanding the influence of postfire oak afforestation on soil properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11675, https://doi.org/10.5194/egusphere-egu24-11675, 2024.

EGU24-11896 | Posters on site | SSS7.1

Soil restoration for urban areas: Exploring water-related ecosystem services and hydrological functionality  

Vesna Zupanc, Anna Zeiser, Sebastian Rath, Peter Strauss, Helena Grčman, Marko Zupan, Anja Gantar, Urša Pečan, Matjaž Pirnat, and Thomas Weninger

The challenge of restoring degraded landscapes or ecosystems and recultivating them in a way that maximizes the multifunctionality of the artificial soil depends on the extent of soil degradation and its causes. The process of land restoration is expensive, time-consuming and requires careful planning and collaboration between different stakeholders and sectors. In densely populated regions such as Central Europe, there are two major types of artificial soil ecosystems: restoration of landfills or mining pits and urban green infrastructure (e.g. urban tree sites, stormwater retention areas). To compensate for the increasing scarcity of arable land, soils with unfavorable properties must be improved and degraded land must be rehabilitated in order to fulfill soil functions and promote agricultural production.

Engineered soils offer a solution for construction the top layer that allows the restored ecosystem to function. Such soils are made from excavated material and other mineral or organic waste and are composed to provide suitable conditions for plant growth and other ecosystem services provided by the soil.

As the need for green spaces in urban areas is also increasing, e.g. to adapt and mitigate the urban heat island effect, soil is needed as a habitat for plants and engineered soil mixtures are required depending on the target location and purpose. Soil mixtures with suitable chemical, physical, biological and geotechnical properties (i.e. physical structure) are needed, which are suitable for the restoration of topsoil for various purposes (e.g. mining reclamation, urban greening) and can be used for the near-natural composition of functional soil layers suitable for reclamation and plant growth. Soil structural properties such as infiltration rate, pore volume and water retention capacity are crucial for the functionality of restored soils in the water cycle, especially in view of the increasing challenges posed by ongoing climate change.

The aim of this study is to provide a comprehensive overview of the experiences made at research sites in Slovenia and Austria with the application of engineered soils for the restoration of degraded areas. The focus of the contribution is set on different regulatory requirements and methods to ensure the proposed soil hydrological functionality.

This research has been financed by ARIS BI-AT-22-23-019, LIFE20 IPE/SI/000021 ReStart and OEAD WTZ SI 01/2023.

How to cite: Zupanc, V., Zeiser, A., Rath, S., Strauss, P., Grčman, H., Zupan, M., Gantar, A., Pečan, U., Pirnat, M., and Weninger, T.: Soil restoration for urban areas: Exploring water-related ecosystem services and hydrological functionality , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11896, https://doi.org/10.5194/egusphere-egu24-11896, 2024.

EGU24-12080 | ECS | Orals | SSS7.1

Boosting CO2 sequestration potential of a degraded soil by hydrochar from sewage sludge 

Álvaro Amado-Fierro, Rubén Forján, Erika S. Santos, José Luis R. Gallego, and Teresa A. Centeno

A dramatic loss of healthy soils is occurring worldwide due to degradation and desertification by both natural and anthropogenic processes. Such actions accelerate the depletion of soil organic carbon (SOC), turning soil from a major CO2 sink to a source of CO2 emissions.

On the other hand, global overpopulation is causing an unprecedented generation of sewage sludge. The high water content of sewage sludge makes it ideal for hydrothermal carbonization (HTC), a novel thermochemical conversion technology in which water acts as a reagent and catalyst to obtain a C-enriched solid known as hydrochar.

In this study, the impact of a hydrochar (H) obtained from sewage sludge (HTC at 195 °C for 3 hours) and a biochar (B) produced by standard carbonization of holm oak (500 °C) on the capacity of a degraded soil for capturing carbon is evaluated. The soil under study comes from a landfill of industrial origin that over time was mixed with natural sandy soil, resulting in a technosoil with a low SOC content and incapable of supporting stable vegetation.

The experiment was carried out in 60-l IBC containers, thus constituting a larger scale variation of the classic pot tests. Containers with only original soil (S) and those amended with 10 wt.% hydrochar (SH) and biochar (SB), after 15 days of stabilisation of the amendments, were vegetated with Lolium perenne and left for 12 months outdoors.

At a depth of 0-10 cm, both treatments increased the concentration of labile fractions of SOC, extracted respectively with cold water and hot water. In contrast, in the 10-20 cm layer, this effect was also relevant in the container SH. This could be attributed to the migration of the hydrochar along the profile, facilitated by its finer particle size. Both materials, B and H, contributed positively to enhancing the amount of recalcitrant organic carbon (R) in the soil, although the impact was greater with the use of biochar. Average values of R~30 g·kg-1 have been detected for both 0-10 and 10-20 cm depths in the container with SB. In the case of SH, the migration of hydrochar led to R concentration of 13.08 g·kg-1 in the upper 10 cm and 27.40 g·kg-1 at 10-20 cm layer.

Biochar and hydrochar efficiently managed to store organic carbon in soil, but the former caused a higher increase in reserves due to a greater contribution of recalcitrant carbon (Pearson correlation between R and SOC stock of 0.96, P < 0.01). The stock in SB reaches 48.13 and 32.10 tC·ha-1 at 0-10 and 10-20 cm, respectively, whereas the corresponding values in SH were 20.53 and 32.13 tC·ha-1.

On the other hand, it was found that the 197 g of biomass generated in SC was reduced to 165 g when biochar was added, suggesting the capacity of B to fix certain nutrients and make them less accessible to vegetation in the short term. In contrast, hydrochar application increased the amount of vegetation to 478 g, thus favouring greater carbon sequestration.

How to cite: Amado-Fierro, Á., Forján, R., S. Santos, E., R. Gallego, J. L., and A. Centeno, T.: Boosting CO2 sequestration potential of a degraded soil by hydrochar from sewage sludge, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12080, https://doi.org/10.5194/egusphere-egu24-12080, 2024.

EGU24-12514 | ECS | Posters virtual | SSS7.1

Post-fire restoration impacts on soil microbial communities in a Mediterranean region 

Beatriz Roncero Ramos, Montserrat Romero, Pedro Antonio Plaza Álvarez Plaza Álvarez, Manuel Esteban Lucas-Borja, and Miriam Muñoz-Rojas

Fire is a natural element of the landscape; however, it can also have serious effects on the environment. Although the effect of fire on plant communities has been broadly studied, we lack information on the effect of fire on soils. Several types of post-fire treatments have been applied in Mediterranean areas for soil protection and potential regeneration of soil fertility, i.e. logging or mulching. Yet, the effect of these treatments on the soil biodiversity are not fully understood.

Here, using different soil physical and biological approaches methods, we analysed the impacts of different post-fire treatments on the composition and diversity of microbial communities (bacteria and fungi) in a Mediterranean forest. Our results showed substantial differences in the responses of the fungal community to the different post-fire treatments, i.e. straw mulching and salvage logging . Opposite, the soil bacterial community was not affected by the post-fire treatments. Overall, soil fungi were more sensitive than bacteria to fire, but the recovery of this taxa following the fire event was faster. Our results can provide useful information for restoration of fire-impacted areas in the Mediterranean region.

How to cite: Roncero Ramos, B., Romero, M., Plaza Álvarez, P. A. P. Á., Lucas-Borja, M. E., and Muñoz-Rojas, M.: Post-fire restoration impacts on soil microbial communities in a Mediterranean region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12514, https://doi.org/10.5194/egusphere-egu24-12514, 2024.

EGU24-12662 | ECS | Posters virtual | SSS7.1

Indigenous soil microbial inoculants promote restoration of arid plants in saline soils 

Fred Dadzie, Nathali Machado, and Miriam Muñoz-Rojas

Salinity is one of the challenges affecting seed germination and establishment in dryland restoration projects. Seeds must overcome the osmotic pressure present in saline soils before they can germinate. An ideal method is to reduce the osmotic potential through continuous irrigation to flush out the excess salts from the soil to enable seeds to germinate. However, such a system is impractical at scale and would exponentially increase restoration budgets. Research has shown that bacteria and cyanobacteria individually improve seedling germination. However, it is unclear whether bacteria and cyanobacteria improve seedling germination individually and as combined entities under dryland conditions. In this glasshouse study, we test the hypothesis that, inoculating seeds with bacteria, cyanobacteria and the combination of both will increase seed germination outcome compared to their none inoculated counterpart. We also examined which microbial inoculation would yield the greatest seedling germination and biomass. We found that all inoculated seeds with microorganisms significantly increased seedling emergence and biomass production compared to the non-inoculated seeds. The highest seedling emergence was found in the cyanobacteria treatment followed by the combined bacteria and cyanobacteria treatment. Similarly, the highest biomass production occurred when seeds were inoculated with cyanobacteria treatment followed by bacteria treatment. Our results suggest that, cyanobacteria can be used as a potential tool to overcome seedling germination challenges in saline dryland ecosystems during restoration.

How to cite: Dadzie, F., Machado, N., and Muñoz-Rojas, M.: Indigenous soil microbial inoculants promote restoration of arid plants in saline soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12662, https://doi.org/10.5194/egusphere-egu24-12662, 2024.

EGU24-13763 | ECS | Posters on site | SSS7.1

Removal of strontium and cesium from soil using ion-based washing agents with similar hydrated radii 

Hojae Song, Gunwoo Shim, and Kyoungphile Nam

The environmental hazards associated with nuclear power plants, specifically the release of fission byproducts such as strontium (Sr) and cesium (Cs) are highlighted for their harmful attributes, even in non-radioactive forms owing to their physicochemical characteristics and potential health risks. Sr and Cs exhibit significant physicochemical resemblances to calcium (Ca) and potassium (K), respectively. These similarities are so pronounced that the human body often confuses Sr and Cs with Ca and K, leading to their accumulation. This accumulation can give rise to detrimental health conditions, including leukemia, thyroid cancer, bone marrow cancer, and general paralysis. In this study, a soil washing method was employed to eliminate Sr and Cs contaminants from the soil. We hypothesize that the efficiency of Sr and Cs removal is influenced by the resemblance in physicochemical properties. Physicochemical properties such as atomic radius, hydrated radius, electronegativity, and electron affinity of Sr, Cs, Na, Mg, K, Ca, Ba, and Al were carefully studied and summarized for the investigation. Subsequently, solutions with Na, Mg, K, Ca, Ba, and Al at concentrations of 0.1 and 0.01 M, with a pH of 7, were tested for their efficacy in removing Sr and Cs from the soil. The results showed that the greater similarity in hydrated radius between heavy metals and ions appears to be responsible for increased removal efficiencies. For example, both Ca and Sr share the same hydrated radius of 0.412 nm. Interestingly, Ca exhibited the highest efficiency in removing Sr compared to Na, K, Mg, Ba, and Al. Additionally, Ba, with a hydrated radius of 0.404 (the second closest to Sr), demonstrated the second-highest efficiency in Sr removal. Examining results for other heavy metals (i.e., Cd, Co, Cu, Ni, Pb, and Zn), a heightened resemblance in hydrated radii between the heavy metal and ion corresponded to increased removal efficiency, indicating a strong positive correlation. Overall, this study contributes valuable insights into effective strategies for mitigating the environmental impact of nuclear power plant activities on soil contamination.

How to cite: Song, H., Shim, G., and Nam, K.: Removal of strontium and cesium from soil using ion-based washing agents with similar hydrated radii, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13763, https://doi.org/10.5194/egusphere-egu24-13763, 2024.

EGU24-16797 | Posters virtual | SSS7.1

 Soil microbial based strategies and seed enhancement technologies reconnect plant-soil biodiversity and improve restoration outcomes  

Miriam Muñoz-Rojas, Frederick Dadzie, and Nathali Machado de Lima

Soil microorganisms control important ecosystem functions such as nutrient cycling, plant productivity and climate regulation. Thus, microbially assisted conservation and restoration has the potential to reconnect above and belowground dynamics, creating functional ecosystems that are more resilient to climate change impacts. In this research, we (i) assessed the responses of soil microbial communities to disturbance, e.g., severe fire, and extractive activities such as mining, and (ii) developed bioinoculants composed of locally sourced soil bacteria from the rhizosphere and biocrust cyanobacteria, to promote plant growth and soil fertility and enhance ecosystem capacity for global change adaptation. This presentation will showcase some key findings of these studies conducted in contrasting Australian ecosystems (shrubland-grassland in the arid zone, and subtropical/temperate forests). These outcomes include the successful translocation of whole-soil communities for inhibiting weeds, and the effective use of indigenous microbes (rhizobacteria and cyanobacteria combinations) for soil carbon sequestration, nitrogen fixation, and growth promotion of key arid and temperate plant species.

Overall, our research demonstrates the benefits of using native microbial communities as bioinoculants in ecosystem restoration. The emerging technologies used in our research, i.e. seed enhancement through seed biopriming and biopellets, have a large potential for landscape-scale conservation and restoration programs in the context of global change.

How to cite: Muñoz-Rojas, M., Dadzie, F., and Machado de Lima, N.:  Soil microbial based strategies and seed enhancement technologies reconnect plant-soil biodiversity and improve restoration outcomes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16797, https://doi.org/10.5194/egusphere-egu24-16797, 2024.

EGU24-16991 | Orals | SSS7.1

Anticoccidia presence in slurries/manures and agricultural soils in Galicia (NW Spain) 

Ana Barreiro, Raquel Cela-Dablanca, Ainoa Míguez-González, Debora Casagrande Pierantoni, Carolina Nebot, Avelino Núñez-Delgado, María J. Fernández-Sanjurjo, and Esperanza Álvarez-Rodríguez

Coccidiosis is one of the most important parasitic diseases, responsible for significant damage affecting animal production worldwide. It is caused by different protozoan species belonging to the genera Eimeria and Isospora. To treat and prevent this disease ionophore antibiotics are widely used in veterinary medicine especially in food-producing animals as food additives. Ionophore coccidiostats, such as monensin, salinomycin, lasalocid or narasin have been a key tool in the fight against coccidiosis for more than 40 years. Non-ionophore coccidiostats, such as robenidine, toltrazuril and decoquinate are also widely used to treat coccidiosis. All these compounds are toxic to humans, which explains why they are not used as pharmaceuticals in human medicine and are only used in veterinary medicine. Release of these anticoccidiostat in agricultural soils, through the application of manures and slurry from treated animals, poses a risk as crops could uptake coccidiostats and start entering the food chain, risking human health. The objective of this study was to perform a survey of the presence of anticoccidial in slurries from medicated animals and the soils where these manures were applied, to assess the risk of soil pollution.

A total of 66 slurries/manures from different animals were collected: poultry (16), veal (17), cow (10), pig (10), rabbit (12), and one sample which was a mixture of cow and pig slurry. Likewise, the soils that were amended with those slurries (76 in total) were also sampled by collecting samples at two different depths: 0-5 cm and 5-20 cm. The presence of ionophore antibiotics, non-ionophore and compounds from various therapeutic groups were analysed in all the samples (slurries/manures and soils) by HPLC-MS/MS. The results showed that 53% of the slurry/manure samples and 25% of the soil samples presented some pharmaceutical product. Focusing on ionophore antibiotics in slurry/manure, 21% and 4.5% of the samples presented narasin and salinomycin, respectively; these two antibiotics were not detected in the soils, but other ionophore, such as monensin, was detected in 4% of the soil samples in the 0-5 cm soil depth. Ionophore antibiotics were not detected in the soil depth of 5-20 cm, indicating a low mobility of these compounds, possibly related to a strong adsorption by soil components. The non-ionophore anticoccidial robenidine and decoquinate were present in 8% of manure/slurry and 1% and 11% of soil samples respectively; meanwhile toltrazuril appeared in 2% of manures/slurries. Moreover, 15 other pharmaceutical compounds were detected:  one corticosteroid (dexamethasone), one anti-inflammatory (diclofenac), one antifungal (griseofulvin) and 12 antibiotics from different groups (tylosin, trimethoprim, sulfadiazine, sulfamethazine, sulfachloropyridazine, enrofloxacin, ciprofloxacin, levofloxacin, lincomycin, doxycycline, oxytetracycline, tetracycline). In summary, narasin was the most frequent present in slurries/manures and the decoquinate in soils.

Even though the focus of our project was the anticoccidial compounds, the fact that we detected a wide array of other pharmaceutical products highlight the risk that suppose the overuse of these compounds in animal farms for both environmental and human health.

How to cite: Barreiro, A., Cela-Dablanca, R., Míguez-González, A., Casagrande Pierantoni, D., Nebot, C., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., and Álvarez-Rodríguez, E.: Anticoccidia presence in slurries/manures and agricultural soils in Galicia (NW Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16991, https://doi.org/10.5194/egusphere-egu24-16991, 2024.

EGU24-17992 | Posters on site | SSS7.1

Adsorption and desorption of the ionophore antibiotics narasin and monensin in soils and bioadsorbents from Galicia (NW Spain) 

Esperanza Alvarez-Rodríguez, Raquel Cela-Dablanca, Ana Barreiro, Ainoa Míguez-González, Avelino Nuñez-Delgado, and María J. Fernández-Sanjujo

Ionophore antibiotics, such as narasin and monensin, are widely used in the poultry industry and are the only type of antibiotics that the EU allows to incorporate as feed additives, and use them without veterinary prescription, with the consequent risk of favouring antibiotic bacterial resistance. In the case of the narasin it has been proved that, in poultry, the use of this antibiotic may increase the number of enterococci bacteria that are resistant to the human antibiotic vancomycin; meanwhile ruminal Prevotella strains might become resistant to monensin. Furthermore, these drugs are very toxic to humans. For these reasons, the entrance of antibiotics in the environment due to the use of manure and slurry as fertilizers in agricultural soils is an important environmental problem and a risk for human and animal health. The soil can adsorb these antibiotics and prevent their entry into the food chain, but sometimes its retention capacity is low and could be improved by incorporating residues that can act as contaminant adsorbents. The objective of this study was to analyse the adsorption and desorption processes in three soils and four different biadsorbents for narasin and monensin. The study was perform using one forest soil under Eucalyptus and two crop soils, and four different by-products as bioadsorbents (wood ash, pine bark, mussel shell and olive residue). Different concentration (5, 10, 20, 50, 100, 200, 400, 800, 1000 µmol L-1) of both antibiotics were added to both soils and bioadsorbents and adsorption / desorption test were performed by means of HPLC.

The results showed that the soils adsorbed 100% of the added monensin at low concentrations, and this percentage decrease to 80-86% when 1000 µmol L-1 of antibiotic were added. The adsorption was irreversible for the low concentrations and the desorption increase up to a maximum of 1-12% for the higher ones. Regarding the bioadsorbents, for the higher concentration of monensin added, the olive residue and wood ash adsorbed 99 and 98% of the antibiotic, respectively. On the other hand, the pine bark and mussel shell adsorbed a maximum of 64 and 48%, respectively, for the lower concentrations and these percentages decreased to 25 and 34% when 1000 µmol L-1 were added, with generally small desorption values. For the antibiotic narasin, the soils adsorbed 100% of the added antibiotic, and only decreases to 99% when 1000 µmol L-1 are added; and they desorbed less than 1% of the absorbed at that concentration. Regarding the bioadsorbents, the olive residue adsorbs irreversibly 100% of the narasin added for all concentrations, meanwhile the mussel shell, wood ash and pine bark adsorbed 86, 89 and 96%, respectively, for the highest narasin concentration, with no desorption for any antibiotic concentration.

The soils, olive residue and wood ash were good bioadsorbents for both antibiotics, due to their high adsorption capacity, irreversible in most cases. The pine bark and mussel shell were as well good bioadsorbents for naransin, but that´s not the case for monensin.  

 

How to cite: Alvarez-Rodríguez, E., Cela-Dablanca, R., Barreiro, A., Míguez-González, A., Nuñez-Delgado, A., and Fernández-Sanjujo, M. J.: Adsorption and desorption of the ionophore antibiotics narasin and monensin in soils and bioadsorbents from Galicia (NW Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17992, https://doi.org/10.5194/egusphere-egu24-17992, 2024.

EGU24-18570 | ECS | Posters on site | SSS7.1

Salinomycin and lasalocid adsorption/desorption by different soils and bioadsorbents from Galicia (NW Spain). 

Raquel Cela Dablanca, Ana Barreiro, Ainoa Míguez González, Avelino Núñez Delgado, María J. Fernández Sanjurjo, and Esperanza Álvarez Rodríguez

Salinomycin and lasalocid are polyether ionophore antibiotics commonly used in animal production as anticoccodia. These antibiotics are partially metabolised and excreted at least partially in the active form. Therefore, these drugs enter the environment mainly by direct deposition of urine and faeces on soil, or when manure is applied to soils as fertilizer, facilitating their subsequent entry into the food chain, as well as the development of bacterial resistance and risks to human and animal health. Soils can potentially reduce environmental risks related to these antibiotics through the adsorption on their components, which implies its immobilization. Adsorption depends on the antibiotic characteristics and physicochemical soil´s properties. Some soils have a low capacity to retain antibiotics, for this reason is necessary to investigate low-cost strategies to increase the adsorption capacity of the soils, minimizing environmental pollution. Pine bark, oak ash, mussel shell and olive residue could be used as bioadsorbents of these contaminants, since they have a high adsorption capacity for other antibiotics and are produced in large quantities in several countries. The objective of this work was to investigate the adsorption/desorption capacity of salinomycin and lasalocid of three soils from Galicia (NW Spain) with different properties, and also that of the four residues previously indicated, which could be added to soils to improve the adsorption capacity of these antibiotics. To carried out this work, batch experiments were performed, adding different concentrations (5; 10; 20; 50; 100; 200; 400; 800 and 1000 µmol L-1) of these antibiotics at 2 grams of soil or 0.5 grams of bioadsorbent samples; the antibiotic concentration in equilibrium solution was measured by HPLC-UV

The results obtained showed that lasalocid was adsorbed completely by the soils in all cases, whereas salinomycin was adsorbed totally by soils when the concentration added was between 5-200 µmol L-1, however when the concentration added increased (1000 µmol L-1), adsorption decreased up to 68%.  The results showed that soil with a high pH value (pH=7.97), presented slightly lower adsorption values. In the case of the bioadsorbents, pine bark (pH=3.99), olive residue (pH=5.95) and ash (pH= 11.31) adsorbed 100% of salinomycin in all added concentrations, therefore, these residues could increase the capacity of the soil to adsorb this antibiotic. However, in the case of lasalocid the adsorption by ash was 75%, by olive residue was 94% and 95% by pine bark, when the maximum concentration of antibiotic was added. Mussel shell (pH= 9.39) was the bioadsorbent that presented the lowest adsorption for both antibiotics, 87% for salinomycin and 22% for lasalocid, when 1000 µmol L-1 was added. Desorption results of salinomycin showed that this is always less than 10% for soils and less than 5% for bioadsorbents. In the case of lasalocid, desorption was less than 3% for soils and bioadsobents.

In conclusion, soils adsorbed 100% of lasalocid, however, salinomycin adsorption was lower. To retain this antibiotic, the use of bioadsorbent would be interesting, specially, pine bark, olive residue and ash, which adsorbed all the added salinomycin.

How to cite: Cela Dablanca, R., Barreiro, A., Míguez González, A., Núñez Delgado, A., Fernández Sanjurjo, M. J., and Álvarez Rodríguez, E.: Salinomycin and lasalocid adsorption/desorption by different soils and bioadsorbents from Galicia (NW Spain)., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18570, https://doi.org/10.5194/egusphere-egu24-18570, 2024.

EGU24-20237 | ECS | Posters virtual | SSS7.1

Experience of a two-year phytoremediation field trial in the “Phy2Climate” project: Lithuanian case 

Zygimantas Kidikas, Mantas Rubezius, and Alfreda Kasiuliene

Phytoremediation is considered as an environmentally friendly and cost-effective technology for the treatment of contaminated soil. Recently, there has been an increase in large-scale phytoremediation projects, one of the key moments of which is the transition from a pot experiment to large-scale field research under real conditions. The “Phy2Climate” project aims to provide clean biofuel production and phytoremediation solutions from contaminated lands worldwide, and field trials under real conditions was a focal point in this project. The trials were established in countries like Serbia, Spain, Argentina, and Lithuania, to cover different climatic conditions and differently polluted areas.

In Lithuania, the field trials were established in a site that was formerly used as oil base in Soviet times and up-until-today exhibits contamination with petroleum hydrocarbons. Main method for phytoremediation of petroleum-contaminated soil is the rhizodegradation, which focuses on stimulating the population of organic-degrading microorganisms through the plant rhizosphere. Thus, contaminated soil in the site was amended with organic and mineral fertilizers to promote plant development and increase biomass outputs. Furthermore, microbial  additive applied to ensure rhizodegradation. Two monocultures (amaranth (Amaranthus caudatus) and Jerusalem artichoke (Helianthus tuberosus) and a mix of herbaceous plant species were grown on different subplots in the prepared soil for two consecutive years. The key parameters used to assess the efficiency of phytoremediation included biomass output, crucial for ensuring an adequate amount for biofuel production, and the phytoremediation factor, indicating changes in petroleum hydrocarbon concentration in the soil.

How to cite: Kidikas, Z., Rubezius, M., and Kasiuliene, A.: Experience of a two-year phytoremediation field trial in the “Phy2Climate” project: Lithuanian case, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20237, https://doi.org/10.5194/egusphere-egu24-20237, 2024.

EGU24-21208 | Orals | SSS7.1

Development of technical possibilities to restore the ecosystems of quarry heaps 

Annely Kuu and Merrit Shanskiy

The increased global demand for energy has led to the opening of large mining areas worldwide. The largest commercially exploited oil shale deposit in the world (total amount of resources 7x109 tons) is located in North-East Estonia. Mining is essential to provide the resources for industries but can result in a destruction of pre-mining and post-mining ecosystem. Restoring ecosystems is one of the most important aspects of contemporary environmental conservation. Naturally, vegetation and soil develop slowly in quarry areas, and so far, quarry reclamation has been in use. One of the primary challenges encountered in the reclamation of mined areas is the low water retention of the soil, known as hydrophobicity, which hinders the establishment of vegetation and soil development. The aim of current work is to find out the suitable technique and technology for the crust material to cover the planting surface that retains moisture and nutrients, which can be used in plant cultivation and ecosystem restoration when covering quarry areas. The goal is to promote plant growth and thus accelerate forest ecosystem establishment. Four test areas were selected: a technically reclaimed oil shale quarry, an unrecultivated sand quarry, a reclaimed gravel quarry, and an unrecultivated gravel quarry.The tree species used were pine (Picea abies), spruce (Pinus sylvestris), and hybrid aspen (Populus tremula × Populus tremuloides Michx). Planting density was calculated according to the recommendations of the Estonian State Forest Management Centre. In each quarry, 100 pines, 100 spruces, and 100 hybrid aspens were planted. The experimental design included a control variant, biochar, sheep wool pellets, sheep wool discs (that are used as mulching material), and two types of biodegradable mulch film, in two replications. The trees were planted in May 2023, and the monitoring of their survival is still ongoing. However, based on the preliminary results, it can be stated that biochar, sheep wool discs, and various biodegradable mulch films had a positive impact on the survival of forest trees. This research is supported by the Circular Economy program of the Environmental Investment Centre through a project with the number RE.4.09.22-0034 and by developmental project of Estonian University of Life Sciences “Valorization of sheep wool for agricultural utilization”.

How to cite: Kuu, A. and Shanskiy, M.: Development of technical possibilities to restore the ecosystems of quarry heaps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21208, https://doi.org/10.5194/egusphere-egu24-21208, 2024.

EGU24-21714 | Orals | SSS7.1

Phytoremediation of pesticide- and mineral oil-contaminated soils with perennial grasses in Ukraine 

Oleksandra Tryboi, Ludmila Romantschuk, and Nataliia Matviichuk

The most frequent contaminants of soil in Europe are heavy metals and mineral oil [1]. There are more than 5000 pesticide-contaminated in Ukraine that require cleanup [2]. In Ukraine before Russian invasion, according to the State Service of Ukraine for Geodesy, Cartography and Cadastre (StateGeoCadastre) there were around 125.44 thousand hectares of lands, contaminated by industrial and other waste as of January 1, 2019 [3]. Areas contaminated with explosives and mineral oil as a result of military activities after Russian invasion are under assessment, but can amount at least 5 million hectares of agricultural lands [4].

Phytoremediation with perennial grasses can be a solution to large areas of contaminated lands in Ukraine, as it can be used to extract heavy metals and speed up degradation of organic contaminants [5].

During 2021-2023, field trials performing phytoremediation approach were conducted at two contaminated sites in Ukraine within CERESiS (ContaminatEd land Remediation through Energy crops for Soil improvement to liquid biofuels Strategies) H2020 Project (GA 101006717). First site with fuel and mineral oil contamination and the second - with pesticides contamination, located in the north-western region of Ukraine. Pesticide contamination of the site occurred through minor leaks as a result of a long-term use of pesticides warehouse. Contamination with the fuel oil occurred through small leaks as a result of over 40 years of use and storage of fuel and lubricants by refuelling agricultural machinery. Both contaminated sites represent historical contamination as neither pesticides, nor fuel have been used or stored on the farm for more than 10 years. Baseline soil characterization showed that sites had significant chromium contamination, as well as high quantities of antimony, cadmium, hexachlorocyclohexane and petroleum products.

For phytoremediation, trial sites were planted with Miscanthus x giganteous and Phalaris arundinacea. Both plants showed good performance, but Phalaris presented strong dependency on water availability. The second year harvest showed Miscanthus yield around 20 t of dry matter per hectare, and Phalaris more than 5 t of dry matter per hectare at both contaminated sites. Soil characterization after 2 years of growing showed promising phytoremediation potential of both crops with Miscanthus showing better results with decontamination from HCH, Chromium, Cadmium, Antimony and Stanum, and Phalaris performing more efficiently regarding decontamination from petroleum products and phenols.

[1] Pérez & Eugenio (2018).

[2] Moklyachuk et al. (2010).

[3] Information of State Service of Ukraine for Geodesy, Cartography and Cadastre №6-28-0.21-4979.2-19 from 07.06.2019.

[4] https://www.pravda.com.ua/eng/news/2023/03/3/7391820/

[5] https://www.bbc.com/future/article/20230221-the-toxic-legacy-of-the-ukraine-war

 

How to cite: Tryboi, O., Romantschuk, L., and Matviichuk, N.: Phytoremediation of pesticide- and mineral oil-contaminated soils with perennial grasses in Ukraine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21714, https://doi.org/10.5194/egusphere-egu24-21714, 2024.

EGU24-21724 | Orals | SSS7.1

A novel method for reforestation of desertified areas using composites for encapsulating moisture 

Merrit Shanskiy, Jüri Liiv, Annely Kuu, Jordi Escuer Gatius, Catherine Githuku, and Marclus Mwai

Soil has stored organic carbon in the form of humus for thousands years. One of the main problems in the near future is agricultural land degradation due to excessively intensive farming. The aric and semi-arid lands in Kenya constitues about 80% (467,200 sq.km) of total land mass. Thus, the arid and semiarid land hosts 35% of Kenyas population (13 million people). The objective of the project was to explore the feasibility of restoring vegetation in desertified areas by implementing individual, isolated moisture reservoirs for each plant, filled with a water-binding composite material. The ultimate goal of this study includes the rapid reforestation of desertified areas, accompanied by the restoration of the region's moisture regime to mitigate climate change. Additionally, it aims at carbon dioxide sequestration in emerging forest areas, as well as C binding in a solidifying composite material. The study also seeks to create conditions for the regeneration of the natural ecosystem and reduce the pressure on the remaining forests by providing additional wood resources.

It is essential to acknowledge that the experimental plantation, situated at Kenyatta University, would remain part of the permanent landscaping according to the university's agreement. The eucalyptus sp. was excluded, and more widely used plant species for the region were chosen. After careful deliberation —Grevillea robusta, Casuarina equisetifolia, and Jacaranda mimosifolia—were chosen as commonly used species for local agroforestry systems. The plantation was established after dry season in september, 2023. The local resource based biomaterials were used for composites mixtures and planting materials were created. For some variants hydroinsulation with bioplymer designed biofilm was used.

How to cite: Shanskiy, M., Liiv, J., Kuu, A., Escuer Gatius, J., Githuku, C., and Mwai, M.: A novel method for reforestation of desertified areas using composites for encapsulating moisture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21724, https://doi.org/10.5194/egusphere-egu24-21724, 2024.

EGU24-21834 | Posters on site | SSS7.1

The use of coal as ameliorant for soils with constraints for plant growth 

Thomas Baumgartl, Nima Baghbani, and Franziska Bucka

Increasing global population demands an increased intensity of use of agricultural land, but also to an extension of the use of land previously not suited for agriculture. Likewise, the stabilisation of degraded or reclaimed land e.g. from mining often requires intervention to create conditions which allow soil stabilisation by vegetation.

Mine rehabilitation is often challenged by hard setting or clay rich substrates as the available substrate for shaping the final landform and amelioration is necessary. While chemical amelioration has time limited benefits, long-term physical/mechanical property improvements may lead to better outcomes above all in water limited environments.

In this study we investigated the amelioration of clay substrate with coal with the objective to improve the physical, and potentially also chemical conditions for plant growth. Clay substrate was amended with up to 20%-wt lignite-type coal. The addition of coal occurred in two ways, as fine coal and as crushed coal, still containing aggregates. The clay and clay/coal mixtures were filled into boxes at a height of approximately 0.15m and a total volume of approx. 60 liters. Hydraulic properties were measured following consolidation of the substrate in multiple wetting-drying cycles until the substrate reached a constant height. Samples were extracted to characterise the substrates for their hydraulic and mechanical properties and their biotic activity potential. The test is based on quantifying the production of CO2 through the microbial oxidation of organic carbon compounds in the soil.

The water retention curve tests and analysis (using HYPROP) showed in general an increase of the total pore volume with increase in coal content. The amount of plant available water increased with increase in coal content and was higher with the addition of fine coal, compared to the aggregated coal. The shear strength and cohesive strength decreased with addition of coal. The microbial activity tests showed only small increases in CO2 production and respiration, along with a low mineralisation rate of the added coal based carbon source. The results show, that the addition of a stable carbon source can be beneficial for the improvement of substrate properties.

How to cite: Baumgartl, T., Baghbani, N., and Bucka, F.: The use of coal as ameliorant for soils with constraints for plant growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21834, https://doi.org/10.5194/egusphere-egu24-21834, 2024.

EGU24-605 | ECS | Posters virtual | ERE1.5

Disentangling social perspectives on the use of reclaimed water in agriculture using Q methodology 

Cintya Villacorta Ranera, Irene Blanco Gutiérrez, and Paula Novo Nunez

Water scarcity due to climate change and increased water demands is driving the use of non-conventional water sources, including reclaimed water, particularly in agriculture. In many EU countries affected by droughts, reclaimed water has become an important component of the overall water mix. For example, in Spain, Europe’s most arid country, reclaimed water is 560 hm3/year (nearly 10% of the treated wastewater).

The use of reclaimed water has many advantages, but it also faces significant barriers. The lack of social acceptance has been described as one of the major obstacles. However, understanding how different stakeholders perceive the use of reclaimed water has not been addressed in depth the literature so far. Existing studies are scarce and fragmented. They focus on a single type of stakeholder (farmers or consumers), ignoring the perceptions and eventual acceptance of different stakeholder groups directly or indirectly impacted by reclaimed water.

This study attempts to fill this gap by exploring the plurality of perspectives on the use of reclaimed water for irrigation in Spain. To do so, we applied Q-methodology and conducted twenty-three interviews with key stakeholders, including representatives of public administration, environmental groups, farmer associations, food retailers, consumer organizations, water treatment companies and water reuse experts. As part of the Q study, stakeholders were asked to sort according to their level of relative agreement 36 statements related to different socio-economic, technical, environmental, institutional and political aspects of reclaimed water. The results were analysed using principal component analysis in R ('qmethod' package).

Our study found three discourses: 1- Reclaimed water is a guarantee for water supply in agriculture, 2- Reclaimed water has the potential to be a sustainable water resource and 3- Reclaimed water has a negative impact on the environment. These discourses show different ways of understanding reclaimed water. Although stakeholders had diverse perceptions, there is a certain agreement that the public administration has the will to promote the use of reclaimed water and therefore it is key to promote reclamation projects in agriculture.

They also agree that most consumers are not informed about the quality of reclaimed water and its benefits in the agricultural sector, which leads to a certain social reluctance to use it, and to avoid this, awareness campaigns would be necessary to increase the social acceptance of reclaimed water.

Therefore, some discourses conclude that it is possible that reclaimed water may have pollution problems, but it is also true that the potential for improvement in reclamation technology can avoid them. Regarding the reduction of ecological flows, it is important to study this on a case-by-case basis, as this problem tends to occur in inland areas, although not always.

Finally, the question of who should pay for water regeneration is very controversial and the best solution is to share the costs between the different stakeholders, with the purification and reclamation being carried out tipping fee, and the farmers, with the help of the administration, bearing the costs of the infrastructure and controls from WWTP.

How to cite: Villacorta Ranera, C., Blanco Gutiérrez, I., and Novo Nunez, P.: Disentangling social perspectives on the use of reclaimed water in agriculture using Q methodology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-605, https://doi.org/10.5194/egusphere-egu24-605, 2024.

EGU24-1342 | ECS | Orals | ERE1.5 | Highlight

Increasing water footprints of flex crops 

Oleksandr Mialyk, Markus Berger, and Martijn J. Booij

Flex crops—crops with multiple end-uses that can be flexibly interchanged—play an important role in our society. Due to high nutritional and energy contents, they became widely used in various industries, providing food, animal feed, biofuels, and other chemical components. However, a limited number of studies exists on the environmental pressures of such crops, specifically concerning water resources.

Here, we aim to quantify the water footprints of main flex crops—namely maize, oil palm, soya beans, sugar cane, coconut, cassava, rape seed, and sunflower—using a recently published database on gridded water footprints of the world’s major crops in the 1990–2019 period. Our study reveals three key developments:

  • All flex crops experienced large water-productivity gains in response to increasing crop yields (less water is needed per tonne).
  • The global water footprint of flex crops has increased by more than one trillion cubic metres as productivity gains were insufficient to meet rapidly growing demand.
  • The production of flex crops has been concentrating around main exporting regions, most notably in Latin America and South-eastern Asia.

As demand keeps increasing, this raises a need for further research addressing the sustainability of flex crops. In particular, regarding the potential links to green and blue water scarcity, exposure of global supply chains to socio-economic and climatic risks, and the role of flex crops in our society.

How to cite: Mialyk, O., Berger, M., and J. Booij, M.: Increasing water footprints of flex crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1342, https://doi.org/10.5194/egusphere-egu24-1342, 2024.

EGU24-1481 | ECS | Posters on site | ERE1.5

Overcoming Barriers to Sustainable Rice Production: A Remote Sensing-Enabled Approach 

Nick Kupfer, Carsten Montzka, and Tuan Quoc Vo

In Vietnam, conventional rice cultivation is under strong economic and ecological pressure. Against this backdrop, there is a rising demand for organic products both domestically and globally. In response, OrganoRice aims to facilitate the transition to organic farming in the model provinces of Vinh Long, Dong Thap, and An Giang in the Mekong Delta through a collaborative effort between German and Vietnamese partners. The initiative encompasses not only addressing physical challenges such as soil and water pollution reduction, optimal fertilization, and ecological plant protection but also delves into critical socio-economic dimensions, including enhancing the income of rice farmers and product marketing. The project acknowledges the intricate task of integrating cultural identity and individual farmers into the social fabric of the village community as a crucial factor for success in the conversion process. Direct communication with the rural population is prioritized, and key local stakeholders and scientific institutions, such as Can Tho University, play pivotal roles in ensuring the project's sustainable success.

The Mekong Delta's agricultural landscape is being explored through advanced tools such as remote sensing and hydrological simulations to map, predict, and optimize crop types, agricultural practices (both conventional and organic), and irrigation water pathways. Leveraging European Copernicus satellites Sentinel-1 and Sentinel-2, alongside PlanetScope equipped with radar and multispectral sensors, allows for monitoring plant growth conditions at a high spatial resolution. The analytical process involves examining remotely sensed data through phenological metrics, quantile mapping, and Fourier transform, complemented by conceptual simulations of irrigation flow paths. The initial phase comprises a comprehensive high-resolution time-series analysis of land use and land cover (LULC) dynamics to identify all potential LULCs influencing organic rice farming. Subsequently, irrigation flow path modeling is employed to estimate complex water dependencies. Ultimately, data fusion of LULC and irrigation analysis, combined with crop-specific pesticide data, results in an opportunity map highlighting suitable areas for organic rice farming. This interdisciplinary approach underscores the importance of integrating technological advancements with socio-economic considerations for a comprehensive and sustainable organic farming transition in the Mekong Delta.

How to cite: Kupfer, N., Montzka, C., and Quoc Vo, T.: Overcoming Barriers to Sustainable Rice Production: A Remote Sensing-Enabled Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1481, https://doi.org/10.5194/egusphere-egu24-1481, 2024.

EGU24-1491 | ECS | Orals | ERE1.5

Modelling Agrivoltaics in a climate perspective for water-energy-food nexus analysis 

Lia Rapella, Philippe Drobinski, and Davide Faranda

Renewable energies (REs) are increasingly important in addressing the challenge of climate change. Their development and widespread use can significantly reduce greenhouse gas emissions from fossil fuels and help mitigate the effects of climate change. To achieve a "net-zero" carbon economy, the transition to a RE system must occur alongside a profound transformation of the agri-food sector. Agrivoltaics (AVs) offers an opportunity to achieve both of these goals simultaneously. AVs provides clean energy and it is an important tool for realizing a sustainable and circular food economy in rural and farming communities. Additionally, by placing photovoltaic (PV) panels over crop fields, AVs can avoid the competition between solar energy and agriculture for land-use. This can also help to mitigate the impact of climate change on crop productivity, which is expected to be negatively affected by a warmer and drier future climate.
In our study, we developed a large-scale sub-grid AVs model to explore the inter-links between climate, the AVs system, and crops. This model enables a comprehensive evaluation of the effectiveness and efficiency of an AVs configuration within the context of the climate-water-energy-food nexus. Our approach involves coupling a PV model with the soil-vegetation-atmosphere-transfer model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) to construct the AVs module. The PV layer simulates the effects of PV panels, altering solar radiation and wind speed taken from atmospheric forcings. Subsequently, these altered variables, along with other key atmospheric variables like air temperature and precipitation required by ORCHIDEE, are used as inputs to the hydro-vegetation layer. Leveraging ORCHIDEE capability to quantify terrestrial water and energy balances at the land surface, this integration allows for a comprehensive simulation of crop ecosystem behavior within an AVs system. Net Primary Production (NPP), Water Use Efficiency (WUE), and PV power potential (PVpot) are finally computed as ultimate outputs of our model, representing key indicators for the water-energy-food nexus. Focusing on the Iberian Peninsula and the Netherlands, we apply our model to assess three AVs configurations (fix-tilted array, sun tracking, sun antitracking) across three specific years (2015, 2018, 2020) for two types of crops. Specifically, we compare the performance of different configurations among themselves and against the situation without AVs systems to analyze different behaviors depending on climate conditions, crop type, and location and to explore the potential benefits of the AVs systems.

How to cite: Rapella, L., Drobinski, P., and Faranda, D.: Modelling Agrivoltaics in a climate perspective for water-energy-food nexus analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1491, https://doi.org/10.5194/egusphere-egu24-1491, 2024.

The escalating threat of water scarcity presents a dual challenge to both food production and water-related systems. The degradation of conventional water resources (e.g., surface water and ground water), coupled with insufficient investment in infrastructure, has compelled the water sector to seek alternative sources such as Non-Conventional Water Resources (NCW), encompassing reclaimed water reuse and desalination of brackish and seawater, as a long-term strategy, particularly in arid and semi-arid environments where irrigation is a vital component.
Recognizing the substantial potential of NCWs, this research presents the outcomes of an extensive study [1]. The study adopts a multidisciplinary approach, specifically employing Multi-Criteria Decision Making (MCDM), to assess the effectiveness of smart city water management strategies within the framework of NCWs. Utilizing representative criteria, our analysis involves objective judgment, assigns weights through the Analytic Hierarchy Process (AHP), and scores strategies based on their adherence to these criteria.
Our findings underscore the pivotal role of the "Effectiveness and Risk Management" criterion, carrying the highest weight at 15.28%, in shaping strategy evaluation and ensuring robustness. Criteria with medium weight include "Resource Efficiency, Equity, and Social Considerations" (10.44%), "Integration with Existing Systems, Technological Feasibility, and Ease of Implementation" (10.10%), and "Environmental Impact" (9.84%), focusing on ecological mitigation. Recognizing the importance of community engagement, "Community Engagement and Public Acceptance" (9.79%) is highlighted, while "Scalability and Adaptability" (9.35%) address the dynamics of changing conditions. Balancing financial and governance concerns are "Return on Investment" (9.07%) and "Regulatory and Policy Alignment" (8.8%). Two low-weight criteria, "Data Reliability" (8.78%) and "Long-Term Sustainability" (8.55%), emphasize data accuracy and sustainability.
Strategies with higher weights, such as "Smart Metering and Monitoring, Demand Management, Behavior Change," and "Smart Irrigation Systems," prove highly effective in enhancing water management in smart cities. Notably, medium-weighted strategies (e.g., "Educational Campaigns and Public Awareness," "Policy and Regulation," "Rainwater Harvesting," "Offshore Floating Photovoltaic Systems," "Collaboration and Partnerships," "Graywater Recycling and Reuse," and "Distributed Water Infrastructure") and low-weighted strategies (e.g., "Water Desalination") also contribute significantly, allowing for customization based on each smart city's unique context.
This research is of significance as it addresses the complexity of urban water resource management, offering a multi-criteria approach that enhances traditional single-focused methods. It comprehensively evaluates water strategies in smart cities and provides a criteria-weight-based resource allocation framework for sustainable decision-making, thereby boosting smart city resilience. It is essential to acknowledge that results may vary depending on specific smart city needs and constraints. Future studies are encouraged to explore factors such as climate change's impact on water management in smart cities and consider alternative MCDM methods like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Elimination and Choice Expressing the Reality (ELECTRE) for strategy evaluation.

[1] Bouramdane, A.-A., Optimal Water Management Strategies: Paving the Way for Sustainability in Smart Cities. Smart Cities 2023, 6, 2849–2882. https://doi.org/10.3390/smartcities6050128

 

 

How to cite: Bouramdane, A.-A.: Sustainable Management Strategies for Non-Conventional Water Resources: Enhancing Food and Water Security in Arid and Semi-Arid Regions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2856, https://doi.org/10.5194/egusphere-egu24-2856, 2024.

EGU24-3533 | Posters virtual | ERE1.5 | Highlight

Challenges and opportunities of using reclaimed water for agricultural irrigation in Spain: A hydro-economic analysis.  

Paloma Esteve, Irene Blanco-Gutiérrez, Marina RL Mautner, Samaneh Seifollahi-Aghmiuni, and Marisa Escobar

Growing pressure on water resources and climate uncertainty are driving the need for alternative water sources. In countries with severe water stress, such as Spain, the reuse of water from urban wastewater treatment plants has become a promising opportunity to secure and improve agricultural production. The use of reclaimed water in agriculture offers many significant economic and the environment benefits. In addition to preserving freshwaters, it increases the reliability of water supplies and provides a source of nutrients needed for crop growth and soil fertility. In recent years, the European Union and the Spanish government have promoted the reuse of reclaimed water for irrigation as part of their circular economy strategies. However, the uptake of this practice is still limited and so far deployed below its potential.

This study uses a hydro-economic model to investigate the potential for reclaimed water reuse in agriculture and effective water resource management in the Western La Mancha aquifer in Spain. In this region, groundwater abstraction for irrigation exceeds aquifer recharge, leading to conflicts between rural socio-economic development and water conservation. In this context, reclaimed water reuse is seen as an alternative source to groundwater that can contribute to reduce over-exploitation. An economic optimization model is linked to the hydrology model WEAP (Water Evaluation And Planning system) to analyse management alternatives, that include full compliance with the current water abstraction regime and different levels of reclaimed water reuse from the region’s urban wastewater treatment plants (current level and full potential). Climate uncertainty is also simulated and represented by projected precipitation and temperature changes from a selection of global climate models under different representative concentration pathways (4.5 and 8.5).

The results show that compliance with the abstraction regime can help to mitigate aquifer overexploitation. Reclaimed water reuse represents an additional effort for aquifer recovery, resulting in improved groundwater storage levels. Its effect is particularly relevant under climate change scenarios, although groundwater levels would show a downward trend. However, reusing reclaimed water for irrigation reduces effluent flows to rivers and has a negative impact on meeting the environmental needs of downstream wetlands. At the same time, water reuse could mitigate the negative impact of water scarcity on farm incomes, especially in municipalities with high-capacity treatment plants (> 1Mm3/year) where high value crops (vineyards, olives and horticultural crops) are grown. 

Overall, this research evidence uneven impacts of reclaimed water reuse across the basin. Its contribution to reversing groundwater depletion is limited and should be understood as part of the solution, but not as the solution itself. Our results provide valuable insights into the economic and environmental implications of reclaimed water reuse and can support policy decisions for the adoption of such alternatives for integrated and sustainable water resource management in semi-arid regions.

How to cite: Esteve, P., Blanco-Gutiérrez, I., Mautner, M. R., Seifollahi-Aghmiuni, S., and Escobar, M.: Challenges and opportunities of using reclaimed water for agricultural irrigation in Spain: A hydro-economic analysis. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3533, https://doi.org/10.5194/egusphere-egu24-3533, 2024.

EGU24-3941 | ECS | Orals | ERE1.5 | Highlight

Do non-conventional water resources lead to a better performance of irrigation communities? A comparative analysis between the regions of Murcia (Spain) and Apulia (Italy) 

Mario Ballesteros-Olza, Sarah Stempfle, Irene Blanco-Gutiérrez, Almudena Gómez-Ramos, Giacomo Giannoccaro, and Bernardo De Gennaro

In a context of growing global water demands, plus climate change affecting water resources availability, non-conventional water sources (like reclaimed water and desalinated seawater) are emerging as promising water supply alternatives. Given that agriculture is the major contributor to water withdrawals, this study analyzes if the use of non-conventional water for irrigation leads to a better performance of irrigation communities (ICs). To do so, the research includes several ICs from the Segura River Basin (southeast of Spain), a region with structural water deficit, which is pioneer regarding the use of non-conventional water; as well as ICs from the Apulia region (southeast of Italy), which also suffers from water scarcity problems, but is less experienced regarding the use of non-conventional water. A benchmarking analysis was carried out, based on a set of Key Performance Indicators (KPIs), such as irrigation efficiency, guarantee of water supply, energy costs or gross margin, among others. This methodology has been previously used in the framework of the water and drainage sector. Also, a Principal Component Analysis and Clustering Analysis were applied to explore potential dissimilarities between the studied ICs and their causes. Finally, a regression analysis was carried out to observe if the use of non-conventional water has any effects on the performance of the studied ICs. The results of this research may help to increase knowledge regarding the pros and cons of using these non-conventional water resources, depending on the socioeconomic, environmental and geographical context. This way, this study would contribute to promoting the use of non-conventional water in other regions, leaning towards a more sustainable use of water resources and, consequently, protecting and preserving water ecosystems.

How to cite: Ballesteros-Olza, M., Stempfle, S., Blanco-Gutiérrez, I., Gómez-Ramos, A., Giannoccaro, G., and De Gennaro, B.: Do non-conventional water resources lead to a better performance of irrigation communities? A comparative analysis between the regions of Murcia (Spain) and Apulia (Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3941, https://doi.org/10.5194/egusphere-egu24-3941, 2024.

EGU24-4136 | ECS | Orals | ERE1.5 | Highlight

The economic and environmental impacts of UK meat imports post-Brexit 

Kaixuan Wang, Lirong Liu, Jonathan Chenoweth, and Stephen Morse

The United Kingdom (UK), a high consumer of meat, has traditionally relied heavily on the European Union for its meat imports. However, with the advent of Brexit, the UK now faces the imperative of identifying potential meat-importing nations. The choices of different meat import countries not only impact the economy and environment of the UK but also other countries around the world. This study builds the UK Meat Trade-centred World Input-Output Model (UK-MTWIO), incorporating diverse import data within various scenarios. With different scenarios considering costs, GHG emission and animal welfare, this study analyzes the economic, environmental and animal welfare impacts on the UK and other countries worldwide. The novelty involves the comprehensive consideration of scenario setting, the application of RAS method as well as the animal welfare analysis with the method of world input-output model. The study reveals that beef imports have the most significant impact on the imports of the lamb and pork. Meanwhile, the changes in the UK's meat trade may change the trade partners of some major meat-importing countries. In terms of environment, some import scenarios have the potential to contribute to GHG emissions reduction in the global agricultural sector: CHN, MEX, and JPN are typical countries that are significantly impacted. The results of this study provides valuable insights for policymakers making meat trade decisions post-Brexit.

How to cite: Wang, K., Liu, L., Chenoweth, J., and Morse, S.: The economic and environmental impacts of UK meat imports post-Brexit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4136, https://doi.org/10.5194/egusphere-egu24-4136, 2024.

EGU24-5637 | ECS | Orals | ERE1.5

Balancing food system greenhouse gas emissions reduction and food security in China 

Hao Zhao, Haotian Zhang, Petr Havlik, and Jinfeng Chang

China's increasing food consumption, particularly for animal products, presents a substantial challenge to mitigating greenhouse gas (GHG) emissions, not only within China but also extending to its trading partners. In this study, we employ the well-established food system integrated assessment model (GLOBIOM-China) to comprehensively investigate GHG emissions within the context of China's future food consumption. Our study indicates that in the baseline scenario (BAU), GHG emissions from China's food consumption side are projected to be 965 million tonnes of CO2 equivalent (Mt CO2 eq) by 2060, similar to the current level. Domestically, ruminant production accounts for a substantial 44% of total consumption-based emissions. Meanwhile, livestock-related methane emissions take prominence in terms of different gas categories, comprising a significant 45%. Virtual GHG emissions import is expected to decrease due to the deceleration of land use change, while the GHG emissions attributable to livestock product imports are projected to incrementally rise, eventually constituting 17.2% of the total food consumption-based emissions. Striving for food self-sufficiency (SS scenario) offers a pathway to diminishing China's food system GHG emissions and virtually imported emissions by 6% and 43%, respectively. However, this scenario presents an increase of domestic emissions by 2% and simultaneously poses challenges to domestic land use and other related indicators. Maintaining basic food self-sufficiency, and reducing calorie intake from animal sources and improving production practices contribute to a 216 Mt CO2eq reduction of total GHG emissions. This approach not only holds promise for emission reduction but also brings broader benefits such as decreased agricultural commodity prices (by -28%), reduced nitrogen fertilizer uses (by -13%), diminished agricultural land requirement (by -10%), and only 2% decline in per capita calorie intake. Our study reconciles GHG mitigation strategies and food security within China's food system, thereby contributing significantly to global sustainable development.

How to cite: Zhao, H., Zhang, H., Havlik, P., and Chang, J.: Balancing food system greenhouse gas emissions reduction and food security in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5637, https://doi.org/10.5194/egusphere-egu24-5637, 2024.

EGU24-7331 | ECS | Orals | ERE1.5

Agricultural pollution in Indian Interstate Trade Network 

Shekhar Goyal, Raviraj Dave, Udit Bhatia, and Rohini Kumar

Humanity’s contemporary challenge in achieving global food security is sustainably feeding the rising global population. Intensive agricultural practices have powered green revolutions, helping nations attain self-sufficiency. However, these fertilizer-intensive methods and exploitative trade systems have created unsustainable agrarian systems. To probe the environmental consequences on production hubs, we map the fate of Nitrogen and Phosphorus in India’s interstate staple crop trade over the recent decade. Here, we analysed the spatiotemporal evolution of physical and virtual nutrient flow within India's interstate agricultural trade network, examining the environmental load on key production regions, assessing the sustainability of domestic wheat and rice trade systems in light of nutrient surplus, and providing policy recommendations for environmentally sustainable food security. Our examination of the cereal crop trade reveals that the Nation's food bowls contributing significantly towards domestic food security are sacrificing their environmental goals by becoming pollution-rich and water-poor. Our study emphasises policies focusing on redistributing funds from agricultural subsidies that aggravate environmental disparity to those incentivising sustainable production. The findings could offer a foundation for designing and exploring alternate trade network configurations that aim for environmental sustainability without compromising food security goals.

 

How to cite: Goyal, S., Dave, R., Bhatia, U., and Kumar, R.: Agricultural pollution in Indian Interstate Trade Network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7331, https://doi.org/10.5194/egusphere-egu24-7331, 2024.

EGU24-7380 | ECS | Orals | ERE1.5

Removal of favipiravir and oseltamivir in domestic wastewater effluents using ozonation and catalytic ozonation 

Nasim Chavoshi, Serdar Dogruel, Nilay Bilgin-Saritas, Zeynep Karaoglu, Irem Ozturk-Ufuk, Ramazan Keyikoglu, Alireza Khataee, Emel Topuz, and Elif Pehlivanoglu-Mantas

The surge in pharmaceutical use during global pandemics, like SARS-CoV-2, has led to increased antiviral concentrations in wastewater treatment plant influents. The low biodegradability of certain antivirals poses a challenge for wastewater treatment, threatening aquatic and soil ecosystems. This study aimed to optimize ozonation and catalytic ozonation processes for removing two anti-COVID-19 drugs (namely, favipiravir and oseltamivir) and assess their ecotoxicological effects in the context of potential wastewater reuse.

In this study, samples with 50 µg/L of favipiravir and oseltamivir were added to synthetic wastewater with approximately 50 mg COD/L, mirroring a typical domestic effluent. Experiments involved three ozone doses (0.2, 0.6, and 1 mg O3/mg DOC) at pH levels of 7 and 10. Adding 0.1 g/L of ZnFe layered double hydroxide as a catalyst aimed to improve the ozonation efficiency. Samples with 0.1 mg/L polyethylene microplastics were prepared to explore the efficiency of the applied processes in the presence of microplastics. The target drugs were quantified by LC-MS/MS. E. crypticus was used to understand the ecotoxicological impact of the treatment techniques on the potential reuse of treated wastewater for irrigation.

Regardless of the ozone dose used, ozonation at pH=7 resulted in removal efficiencies of 84% and 64% for favipiravir and oseltamivir, respectively. Increasing the pH value to 10 did not improve favipiravir elimination, yet an additional removal of 21% was recorded for oseltamivir at all three ozone doses. During catalytic ozonation, an approximately 30% decline in the abatement of drugs was observed when compared with ozonation alone, which could be attributed to either adsorption of ozone on the catalyst’s active-sites (blockage of active-sites and reduction in the availability of ozone radicals) or production of refractory by-products (enhancement in the competition between radicals and active-sites). In the presence of microplastics, ozonation experiments at pH=7 provided an average decrease of about 30% in the removal efficiency for both drugs whereas ozonation at pH of 10 resulted in an approximately 15% fall in the elimination level. Catalytic ozonation in the absence of microplastics, however, showed positive effects on the reduction rates of the examined drugs since the applied process yielded an improvement in the abatement of 14 and 7% for favipiravir and oseltamivir, respectively. Both in the presence and absence of microplastics, ozonation and catalytic ozonation of antivirals at pH=7 did not lead to any toxic effects for the reproduction of E. crypticus; instead, an increase in the reproduction performance was found, possibly due to the formation of more biodegradable organic intermediates. The experimental data obtained revealed that ozonation or catalytic ozonation could be viable alternatives for upgrading the existing wastewater treatment plants as they functioned well as a complementary treatment process not only to reduce the release of antivirals from domestic effluents, but also to substantially increase the reuse potential of treated wastewater for irrigation purposes.

This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project #121Y383) and Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU-BAP, Project # MYL-2023-44496).

How to cite: Chavoshi, N., Dogruel, S., Bilgin-Saritas, N., Karaoglu, Z., Ozturk-Ufuk, I., Keyikoglu, R., Khataee, A., Topuz, E., and Pehlivanoglu-Mantas, E.: Removal of favipiravir and oseltamivir in domestic wastewater effluents using ozonation and catalytic ozonation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7380, https://doi.org/10.5194/egusphere-egu24-7380, 2024.

EGU24-7458 | ECS | Orals | ERE1.5 | Highlight

Leveraging renewable energy solutions for distributed urban water management: The case of sewer mining 

Athanasios Zisos, Klio Monokrousou, Konstantinos Tsimnadis, Ioannis Dafnos, Katerina Dimitrou, Andreas Efstratiadis, and Christos Makropoulos

As urban populations swell and infrastructure demands escalate, managing resources sustainably becomes increasingly challenging. This paper focuses on the energy challenges inherent in distributed water management systems, using sewer mining as an example. Sewer mining is a distributed water management solution involving mobile wastewater treatment units that extract and treat wastewater locally. In this context, we examine the integration of renewable energy sources, specifically solar photovoltaics, to reduce reliance on traditional power grids, highlighting a pilot implementation at the Athens Plant Nursery in Greece since 2021. The study evaluates various system configurations, balancing performance with landscape integration, to propose a scalable and robust model for distributed water management. This approach not only addresses the direct energy requirements of water treatment systems but also contributes to the broader agenda of circular economy, by enhancing the sustainability and resilience of urban water infrastructure.

This work is supported by IMPETUS research project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101037084

How to cite: Zisos, A., Monokrousou, K., Tsimnadis, K., Dafnos, I., Dimitrou, K., Efstratiadis, A., and Makropoulos, C.: Leveraging renewable energy solutions for distributed urban water management: The case of sewer mining, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7458, https://doi.org/10.5194/egusphere-egu24-7458, 2024.

EGU24-7880 | ECS | Orals | ERE1.5

Crop switching in the Indo-Gangetic Plain of India can improve water and food sustainability with increased farmers’ profit 

Ruparati Chakraborti, Kyle Frankel Davis, Ruth DeFries, Narasimha D. Rao, Jisha Joseph, and Subimal Ghosh

Water and food security in the Indo-Gangetic Plain (IGP) is severely affected due to the intensive irrigated agriculture, growing population, and changing climate. Agricultural intensification with the water-intensive rice-wheat system has increased the water demand in India. The declining monsoon rainfall and increased irrigation with more reliance on groundwater sources have resulted in groundwater depletion over India’s fertile region, the Indo-Gangetic Plain (IGP), with high energy usage. Despite several agricultural technology developments, no improvement is found in calorie production from cereal crops per unit of water consumption in the IGP. Crop switching from water-intensive rice and wheat to climate-resilient nutri-cereals can be a potential solution for water sustainability, but other dimensions i.e. food supply, and farmers’ profit need to be considered for implementation. So, a multi-objective optimization framework is needed to address the social, economic, and environmental sustainability objectives which are conflicting in nature, to find the optimal cropping pattern. In this study, an optimization model is developed and applied for crop switching with objectives to maximize calorie production, and farmers’ profit and to minimize water consumption by reallocating the cropped areas between cereals at the district level. Application of the model suggests switching from rice to millet and sorghum in the Kharif Season (monsoon), and wheat to sorghum and barley in the Rabi season (winter), which could potentially decrease water consumption by 32%, increase calorie production by 39%, and elevate farmers' profits by 140%. Water and energy savings (with the replaced cropping pattern are higher than changing irrigation practices (i.e. from flood to drip). So, crop switching coupled with efficient irrigation practices (drip) contributes to saving more energy and water. These findings suggest the potential of crop switching to address the multidimensional sustainability challenges in agricultural practices in the IGP, with a scope of application to other regions grappling with similar issues. The implementation of crop switching is driven by multiple factors such as the willingness of farmers, incentives, and other strategies for farmers to shift crop practice, procurement of nutri cereals through Minimum Support Price, subsidized supply through the Public Distribution System, and consumer demand; thus, leaving an opportunity to explore these aspects in future studies for policy framing towards sustainable agricultural practices.

How to cite: Chakraborti, R., Davis, K. F., DeFries, R., D. Rao, N., Joseph, J., and Ghosh, S.: Crop switching in the Indo-Gangetic Plain of India can improve water and food sustainability with increased farmers’ profit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7880, https://doi.org/10.5194/egusphere-egu24-7880, 2024.

EGU24-9881 | ECS | Posters on site | ERE1.5

Comparison of different interpolation techniques for sub-basins located in Madrid. 

Blanca Cuevas, Elena Pascual, Carlota Bernal, and Sergio Zubelzu

Soil hydrophysical properties can be very spatially and temporally heterogeneous even in small areas. Due to this spatial and temporal variability, it is impossible to obtain real data for each point of interest. Therefore, the possibility to obtain the optimal estimated value, at any desired point, is decisive. The aim is to evaluate different methods to minimise the error made in this measurement.

Two basins were selected in the Autonomous Community of Madrid (Spain), where hydraulic conductivity data were taken at different points. All sampling point in both basins were georeferenced. For each basing different interpolation methods were tested. The methods used are Spline, Inverse Distance Weighted Interpolation (IDW), Kriging, and Thiessen Polygons. With the help of the Matlab program, the values for each method were obtained. Finally, the error is used for the analysis.

Differences among the obtained data by each method are expected to be found. In addition to the differences between the number of samples and the error, and the location in the basin of the samples.

In conclusion, it is hoped to find the most appropriate method for obtaining a value as close to reality as possible. Furthermore, it is expected to be able to use this methodology in other situations.

Acknowledgements: This research Project has been funded by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Politécnica de Madrid

How to cite: Cuevas, B., Pascual, E., Bernal, C., and Zubelzu, S.: Comparison of different interpolation techniques for sub-basins located in Madrid., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9881, https://doi.org/10.5194/egusphere-egu24-9881, 2024.

EGU24-11353 | ECS | Orals | ERE1.5

Agroforestry management practices as nature-based solutions for climate change adaptation in the Galapagos Islands 

Ilia Alomia, Yessenia Montes, Rose Paque, Jean Dixon, Armando Molina, and Veerle Vanacker

Small tropical islands in the Pacific Ocean are highly vulnerable to climate change. Nature-based solutions can help local communities adapt their local agricultural systems. Through a comparative analysis, we evaluated the effects of agroforestry management practices on soil temperature, soil water availability and storage, and carbon stocks in Santa Cruz Island (Galapagos Archipelago). We installed six monitoring sites that consist of two replicates per agroforestry management practices: (i) conservation of native forest, (ii) traditional agroforestry, and (iii) abandoned farmland in passive restoration. After pedological characterization of the sites, the soil physicochemical and hydrological properties were determined in the laboratory. Over 30 months (July 2019 to December 2021), the environmental sensors captured the hydrometeorological and soil physical and hydrological properties of the sites. This was done by a dense network of rain gauges, air temperature and relative humidity sensors, and time-domain reflectance probes that registered volumetric water content and soil temperature.

We measured differences in soil temperature, moisture availability and soil organic carbon content between soils under forest, traditional agroforestry and passive restoration. Forest soils are protected from direct solar radiation, and trees keep the soil 12% cooler than soils converted to agricultural land. Soil moisture is 20% higher under forest than under traditional agroforestry or abandoned farmland, and forest soils have a lower dry bulk density, lower saturated hydraulic conductivity and higher water retention capacity. The forests and sites under passive restoration store more than 377 Mg C. ha-1 (1 m depth), about 50% more than under traditional agroforestry. The study shows that conserving forest patches in an agricultural landscape might be a promising strategy to mitigate increasing soil temperatures, agricultural drought, and decline in soil organic carbon content. However, more studies on landscape scale are needed to corroborate those results.

How to cite: Alomia, I., Montes, Y., Paque, R., Dixon, J., Molina, A., and Vanacker, V.: Agroforestry management practices as nature-based solutions for climate change adaptation in the Galapagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11353, https://doi.org/10.5194/egusphere-egu24-11353, 2024.

EGU24-11369 | ECS | Orals | ERE1.5

Expert-based global database of sand dams dimensions and distribution across drylands 

Jessica Eisma, Luigi Piemontese, Giulio Castelli, Ruth Quinn, Bongani Mpofu, Doug Graber Neufeld, Cate Ryan, Hannah Ritchie, Lorenzo Villani, and Elena Bresci

Sand dams are water harvesting structures built across ephemeral sandy rivers to increase water supply in drylands. Despite their effectiveness in reducing water scarcity for local communities and their recent traction in research and development, information on their distribution and characteristics are sporadic and largely unreported. This gap represents a major barrier for understanding the large-scale potential of such a Nature-based Solution for drylands and planning for new infrastructure. This paper presents a global database of sand dam locations and dimensions developed within a collaboration between research and development experts on the topic. We collected sand dam information on location from several sources, ranging from research reports to databases provided by practitioners. We then reviewed and enriched them based on visual inspection from Google Earth images. The georeferenced information provided by the database can support research development on the effectiveness of sand dams and support practitioners with science-based criteria for sand dam development across global drylands.

How to cite: Eisma, J., Piemontese, L., Castelli, G., Quinn, R., Mpofu, B., Graber Neufeld, D., Ryan, C., Ritchie, H., Villani, L., and Bresci, E.: Expert-based global database of sand dams dimensions and distribution across drylands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11369, https://doi.org/10.5194/egusphere-egu24-11369, 2024.

Pumping energy is a key component of the groundwater governance challenge. Yet it is largely missing in the discourse on agricultural use of groundwater. A sub-category of literature studying groundwater-energy nexus tends to focus on groundwater depletion hotspots where entrenched interests and long-standing history restrict the range of feasible energy models. We simulate expected impacts of expanding groundwater irrigation under five different energy provision models in a region with among the lowest irrigation coverage, and therefore, free of path dependent policies. We find aquifer properties play a crucial role in mediating the groundwater-energy nexus. On average, the maximum volume of water that can be pumped from a well of a specific depth in an alluvial aquifer is approximately 150 times the volume that can be pumped from a well in a hard-rock aquifer. Therefore, managing uncertainty in groundwater consumption is a far greater challenge in alluvial than hard-rock aquifers. Uncertainty in groundwater consumption can be limited in hard-rock aquifers if the number of wells and depths of wells can be controlled - capital subsidies for well construction could be a potential policy. Our results imply that while solar pumps are a risky alternative in alluvial aquifers for maintaining current and future groundwater levels, they are relatively safe and among the most economical for expanding irrigation in hard-rock regions. Using a novel dataset comprising of biophysical and socioeconomic data, we find hard-rock regions to have limited irrigation coverage, high availability of annually replenishable groundwater, and high concentrations of marginalized farmers. Therefore, groundwater irrigation expansion in hard-rock areas could have dual benefits of ensuring future food security and targeting poverty reduction.

How to cite: Ray, S.: Balancing groundwater access and sustainability through energy pricing in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13972, https://doi.org/10.5194/egusphere-egu24-13972, 2024.

EGU24-14721 | Posters on site | ERE1.5

Silage  production from olive mil wastes  

Ioannis Manariotis, Styliani Biliani, Maria Varvara Manarioti, and Nikolaos Athanassolpoulos

Within the European Union, approximately 129 Mtons of food waste were generated in 2011, and about 52% of them derived from post-processing activities. The most common by-products originated from the food industry are spent coffee grounds, sugar cane waste, and fruit peels, while the main agricultural wastes are livestock slurry, manure, crop residue, and woodland pruning and maintenance wastes. The olive tree is cultivated worldwide, and more than 90% of the cultivated area is located in the Mediterranean basin. The olive oil extraction is carried out using two- or three-phase centrifuge systems. The olive mill wastes can be incorporated into the diets of productive animals, especially ruminants, due to their high fiber content. The aim of this work was to investigate the optimum conditions for silage production for animal food using olive oil wastes from a diphasic olive mill facility. Olive mill waste and straw were the base materials for silage composition: 53 to 55% and 45 to 47%, respectively (dry weight basis). Different mass ratios of molasse (0 to 4%) and urea (0 to 1%) per olive mill mass (dry weight) were used. The presence of urea and the absence of molasses turned out to be inhibitory factors for the silage process. The highest molasses rates the highest efficiency of silage production.

How to cite: Manariotis, I., Biliani, S., Manarioti, M. V., and Athanassolpoulos, N.: Silage  production from olive mil wastes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14721, https://doi.org/10.5194/egusphere-egu24-14721, 2024.

EGU24-14983 | ECS | Orals | ERE1.5 | Highlight

Reducing climate change impacts and inequality of the global food system through diet shifts 

Yanxian Li, Pan He, Yuli Shan, Yu Li, Ye Hang, Shuai Shao, Franco Ruzzenenti, and Klaus Hubacek

How much and what we eat and where it is produced can create huge differences in greenhouse gas emissions. Bridging food consumption with detailed household-expenditure data, this study estimates dietary emissions from 13 food categories consumed by 201 expenditure groups in 139 countries, and further models the emission mitigation potential of worldwide adoption of the EAT–Lancet planetary health diet. We find that the consumption of groups with higher expenditures generally creates larger dietary emissions due to excessive red meat and dairy intake. As countries develop, the disparities in both emission volumes and patterns among expenditure groups tend to decrease. Global dietary emissions would fall by 17% if all countries adopted the planetary health diet, primarily attributed to decreased red meat and grains, despite a substantial increase in emissions related to increased consumption of legumes and nuts. The wealthiest populations in developed and rapidly developing countries have greater potential to reduce emissions through diet shifts, while the bottom and lower-middle populations from developing countries would cause a considerable emission increase to reach the planetary health diet. Our findings highlight the opportunities and challenges to combat climate change and reduce food inequality through shifting to healthier diets.

How to cite: Li, Y., He, P., Shan, Y., Li, Y., Hang, Y., Shao, S., Ruzzenenti, F., and Hubacek, K.: Reducing climate change impacts and inequality of the global food system through diet shifts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14983, https://doi.org/10.5194/egusphere-egu24-14983, 2024.

EGU24-15307 | ECS | Orals | ERE1.5

Tracking real-time impacts of climate variability and trade disruptions on water and food security  

Marijn Gülpen, Christian Siderius, Ype van der Velde, Jon Cranko Page, Jan Biermann, Ronald Hutjes, Lisanne Nauta, Samuel Sutanto, and Hester Biemans

Food insecurity results from a complex interplay of climate, socio-economic and political drivers, with local food security being frequently influenced by events elsewhere. Recent unprecedented climate events and economic disruptions such as Covid-19 and the resurgence of large intra- and inter-state conflict, show the diverse and unpredictable nature of risk, which can suddenly impacting food production and supply chains.

Here, we present a coupled hydrology-crop production-trade model that is able to simulate, in real time, current and near-future risks to water and food security. The model combines an operational process-based simulation of global crop production and hydrology with an ML-powered trade module, trained on FAOs detailed trade matrix dataset. It is updated monthly with the latest ERA5 climate data from the Copernicus Data Store to assess current risk, and can be forced with seasonal forecasting and long term climate projections up to 2100. The model explains about 50% of yield variability in major growing regions - a critical characteristic for nowcasts or seasonal forecasts – and the majority of food trade and trends therein, but generally still underestimates the variability. As a first step to better reproduce observed crop yield anomalies we improved the simulation of growing seasons in the production model.  

By combining production with trade, we are able to estimate the impact of climate-related yield anomalies elsewhere, and to assess risks for water- and food security at the country, regional or global scale. Derived indicators provide a real-time insight into, for example, food production and storage per capita, crop water productivity, or crop or export specific water stress. Through continued evaluation and learning, we expect to be able to better identify emerging stresses in the food system and its drivers, and support early anticipation of potential future food security risks. This should ultimately lead to a better understanding of the complexity of the global food system and eventually result in a more sustainable food system.

How to cite: Gülpen, M., Siderius, C., van der Velde, Y., Cranko Page, J., Biermann, J., Hutjes, R., Nauta, L., Sutanto, S., and Biemans, H.: Tracking real-time impacts of climate variability and trade disruptions on water and food security , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15307, https://doi.org/10.5194/egusphere-egu24-15307, 2024.

EGU24-15345 | ECS | Orals | ERE1.5

Atrazine Removal in Constructed Wetlands: Efficacy of Monocultures versus Polycultures 

Sai Kiran Pilla, Mahak Jain, Partha Sarathi Ghosal, and Ashok Kumar Gupta

The Green Revolution in India, from 1967-68 to 1977-78, led to a significant shift in the country's agricultural landscape, transforming it from an insufficient food production country to a global agricultural power. This led to an increase in the use of pesticides, such as atrazine, which can pollute water sources and endanger aquatic habitats. This research aims to find sustainable and practical techniques for atrazine remediation within aquatic habitats. Literature suggests that macrophyte richness enhances the functionality of constructed wetlands (CWs), but the predominant practice is monocultures. The functional diversity within macrophyte communities is crucial for optimal performance of CWs for contaminant remediation. CWs with diverse growth forms exhibit enhanced plant growth and superior nutrient removal capabilities. The study evaluates atrazine removal efficacy of polyculture and monoculture plantation, monitoring the efficiency of various individual macrophyte, such as Canna indica and Phragmites Australis for atrazine detoxification. The findings could guide the formulation of sustainable and efficacious atrazine remediation strategies, safeguarding water quality and the integrity of aquatic ecosystems.

How to cite: Pilla, S. K., Jain, M., Ghosal, P. S., and Gupta, A. K.: Atrazine Removal in Constructed Wetlands: Efficacy of Monocultures versus Polycultures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15345, https://doi.org/10.5194/egusphere-egu24-15345, 2024.

EGU24-16795 | ECS | Posters on site | ERE1.5 | Highlight

Food loss & waste of staple crop products: mapping environmental impacts within the Nexus paradigm 

Francesco Semeria, Giacomo Falchetta, Adriano Vinca, Francesco Laio, Luca Ridolfi, and Marta Tuninetti

Over the last decade, a combination of economic uncertainty, supply shocks, and extreme climate events has led to a renewed prevalence of undernourishment, posing a serious threat to the realization of the Zero Hunger Sustainable Development Goal. Future scenarios are likely to be even more challenging to its accomplishment, based on projected trends of population growth and human-induced climate change impacts. There is urgent need for the development and implementation of sustainable transformation pathways to make agri-food systems worldwide more resilient and capable to sustain these pressures. These pathways should include a wide range of actions, targeting all stages of the value chain. Reducing food loss and waste (FLW), which currently accounts for approximately one-third of the food produced, is considered among those with the largest potential, with significant environmental co-benefits on the Water-Energy-Food-Ecosystem Nexus. The presence of complex and tele-coupled trade networks however, together with the lack of robust and granular datasets, make it difficult for researchers to run detailed analyses on this issue.

In this work we estimate the FLW associated to the consumption of a wide range of staple crops globally, disaggregating between the single food commodities and the different stages of the value chain. Moreover, we investigate the associated impacts on the water, land, and energy resources. The methodology applied allows us to trace the environmental impacts from the countries of production and manufacturing, where resources have been used, to the countries of consumption (from farm to fork) and backwards (from fork to farm), offering a dual perspective on the complex system. Our preliminary results show that over 20% of the quantities cultivated are wasted through FLW, globally. Transnational flows of FLW – and of associated virtual resources – compose a vast multi-layered network involving most of the countries worldwide. Differentiated impacts are observed, depending on the countries’ role in the network: while large exporters bear substantial impacts of FLW occurring abroad on their resources, net-importing nations transfer large portions of the environmental effects of the FLW associated with their consumptions onto foreign stocks. The ability to discern between the single food commodities, without aggregating primary and derived products, increases the level of specificity from past research. This detailed data is valuable for informing public policies, providing a more fine-grained approach to prioritize efforts in reducing FLW and its associated impacts.

How to cite: Semeria, F., Falchetta, G., Vinca, A., Laio, F., Ridolfi, L., and Tuninetti, M.: Food loss & waste of staple crop products: mapping environmental impacts within the Nexus paradigm, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16795, https://doi.org/10.5194/egusphere-egu24-16795, 2024.

EGU24-18001 | ECS | Orals | ERE1.5

Adsorptive removal of humic acid from water by magnesium oxide 

Rupal Sinha and Partha Sarathi Ghosal

Disinfection is a critical drinking water treatment procedure to guarantee water safety in urban water supply systems. However, an inevitable consequence is the generation of secondary pollutants, referred to as disinfection byproducts (DBPs). Toxicological researches have linked the ingestion of DBPs to harmful human health consequences like a higher risk of bladder cancer, reproductive problems, etc. Subsequently, the water authorities face immense challenges due to their existence in the drinking water. The foremost approach to limiting their generation in the drinking water is to eliminate their precursors prior-to disinfection. Humic acid (HA), a significant constituent of the natural organic matter in surface water, has been acknowledged as the primary precursor of DBPs. Thus, the present work aims to reduce humic acid content in water by magnesium oxide (MgO) adsorbent. To ascertain the mechanism of humic acid removal, characterizations of the adsorbents were conducted both before and after. At neutral pH level, the impacts of various process parameters are examined, including contact time, adsorbent dosage, initial humic acid concentration, and temperature. Moreover, studies were performed to assess the effects of different solution pH on the elimination of humic acid. The removal of humic acid was found to be increased at low pH. At pH 3, over 85% elimination was obtained. Furthermore, the role of several anions, including nitrate, sulfate, and chloride, in the adsorption of humic acid has also been evaluated. Overall, the present study would be conducive to proving the applicability of MgO for the reduction of HA and other organic matter from water and, hence, reduce the generation of DBPs.

How to cite: Sinha, R. and Ghosal, P. S.: Adsorptive removal of humic acid from water by magnesium oxide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18001, https://doi.org/10.5194/egusphere-egu24-18001, 2024.

Life Cycle Assessment (LCA) is a systematic approach used to evaluate the environmental impacts of products, services, or activities throughout their life cycle, from raw material acquisition and production to use and final disposal or recycling stages. The goal of LCA is to comprehensively assess environmental impacts across the entire life cycle, including energy consumption, greenhouse gas emissions, water and land use, and more. The execution of LCA primarily involves four stages: "goal and scope definition," "life cycle inventory," "life cycle impact assessment," and "life cycle interpretation." This method helps identify and improve environmental hotspots in products or activities, aiming to reduce adverse impacts on the environment.

This study references the "Packaging Lunch Box Product Category Rules" published by the Environmental Protection Administration of the Executive Yuan in Taiwan. Using a vegetarian lunch box manufacturer in Taiwan as a data source, a "Vegetarian Lunch Box Carbon Footprint Calculation Tool" was developed using SimaPro. Users can input first-tier data for each stage of the product life cycle (such as raw material input, energy, transportation distance, and output products), enabling the calculation of the carbon footprint of the vegetarian lunch box.

However, during the "life cycle interpretation" stage, this study found that the "raw material acquisition stage" contributes 80% of the carbon footprint throughout the entire life cycle of the vegetarian lunch box. This indicates significant negative environmental impacts during the "agricultural production" process. As a result, the study traces the environmental impacts of upstream agricultural production processes for grains and vegetables and proposes an improvement strategy: regenerative agriculture.

Regenerative agriculture practices include protective tillage to reduce physical soil disturbance, increasing biodiversity in fields, cover cropping to enhance soil carbon and prevent erosion, crop rotation for balanced soil nutrient use, and refraining from using chemical fertilizers and pesticides. The goal of regenerative agriculture is to sequester carbon in the soil and above-ground biomass, reducing greenhouse gas emissions, increasing crop yields, enhancing resilience to unstable climates, and improving the health and vitality of rural communities.

This study will also employ the life cycle assessment method to collect inputs and outputs for both conventional farming practices and regenerative agriculture, comparing their environmental impacts.

How to cite: Chen, C.-K. and Tung, C.-P.: Application of Life Cycle Assessment in Vegetarian Lunch Box: Environmental Impact Hotspot Analysis of Whole Grain and Vegetable Production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18099, https://doi.org/10.5194/egusphere-egu24-18099, 2024.

EGU24-20605 | ECS | Posters on site | ERE1.5

Exploring the potential of cowpea inoculation in Namibia for improved resource use and human nutrition 

Jihye Jeong, Kerstin Jantke, and Uwe. A Schneider
  • Motivation, problem statement and aim

Cowpea is an important source of protein in the semiarid parts of sub-Saharan Africa. Even under water or temperature stress, cowpea can produce grain and fix nitrogen. The robustness of cowpea makes them a good choice especially for smallholder farmers with limited resource. Inoculated cowpea is not only more resilient against many plant diseases, but also can fix nitrogen more effectively.

Located in sub-Saharan region, water supply is a constant struggle of Namibia. In addition, due to dry climate and soil characters, only 1% of the country is arable. In contrast to harsh natural condition, over 70% of population depends their livelihoods on agriculture. For insufficient production, food supply in Namibia is highly dependent on imports. This combination of natural and societal condition puts Namibian population into nutrition hazard.

Thereby, the study aims to investigate the potential of cowpea inoculation in Namibia by answering the following questions:

1) How much can inoculation increase cowpea production in Namibia?

2) How much land and water resource can be saved by introducing inoculation in cowpea cultivation?

  • Methodology

Environment Policy and Integrated Climate (EPIC) model is adopted for crop simulation. It is calibrated specifically to the Namibian agricultural environment. Different climate scenarios and agricultural management systems are simulated in EPIC. The simulation result is used in optimisation modelling using General Algebraic Modelling System (GAMS). The model is simulated under objective of maximum food production given the current population.

  • Result

Primarily, potential cowpea production is depicted in both inoculated and non-inoculated scenarios. The simulation considers the total arable land of the country and subsistence farming as the only farming management. Cowpea production increases by 26% with inoculation.

The land and water use of inoculated cowpea cultivation is shown in relative to non-inoculated cowpea cultivation. In the perspective of current resource availability, the relative resource use is elaborated. Inoculation saves up to 23% of land and 79% of water use.

  • Conclusion

By introducing inoculation in cowpea cultivation, Namibia is expected to have meaningful increase in production and decrease in both land and water use. Since cowpea is already well integrated in smallholder farmers’ practice, the adoption of inoculation can penetrate the positive effects into remote and vulnerable areas.

How to cite: Jeong, J., Jantke, K., and Schneider, Uwe. A.: Exploring the potential of cowpea inoculation in Namibia for improved resource use and human nutrition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20605, https://doi.org/10.5194/egusphere-egu24-20605, 2024.

EGU24-21484 | Orals | ERE1.5

Sustainable and digitalized water management in rural environments in the SUDOE area (GestEAUr project) 

Jose Luis Molina, Victor Monsalvo, Angel Encinas, and Engracia Lacasa

The rural areas of the SUDOE present many common challenges related to the integrated water cycle: the scarcity of water resources (aggravated by climate change), the impact of agricultural and livestock activities on water quality (and the consequent difficulty of reconciling compliance with the European directive, the continuity of economic activity and the availability of water) and the lack of efficiency and profitability in management (with obsolete facilities and few human resources).
It is essential to strengthen collaboration networks between the many stakeholders involved in water resources management in order to implement efficient, sustainable and cost-effective techniques for water purification, reuse and treatment. To this end, it is necessary to create a new governance system based on territorial cooperation. Water is a common good and, as such, it does not understand borders.
The project will develop a strategy to improve water efficiency and quality in rural SUDOE areas in a context of climate change, 5 action plans for 4 organizations to improve water supply and treatment services, 3 pilot tests of cost-effective and sustainable solutions for water purification, purification and reuse, and a digital tool for 2 organizations to improve water management. In addition, it will improve the capacities of public authorities in 3 countries and the knowledge of water purification, treatment and reuse techniques like water treatment, reuse and purification techniques of 3 scientific institutions.
GestEAUr will adopt an innovative approach, addressing the integrated water cycle holistically (taking into account all its stages) and will go beyond existing practice, which tends to apply the same solutions whatever the characteristics of the territory where they are implemented.
Consequently, it will analyze and test cost-effective, cutting-edge and nature-based techniques (and combinations of techniques) (SBN) specific to the needs of rural areas in the SUDOE. It will also provide digital tools to optimize and facilitate their management and planning.

How to cite: Molina, J. L., Monsalvo, V., Encinas, A., and Lacasa, E.: Sustainable and digitalized water management in rural environments in the SUDOE area (GestEAUr project), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21484, https://doi.org/10.5194/egusphere-egu24-21484, 2024.

EGU24-286 | ECS | Posters on site | OS3.5

Non-equilibrated ocean alkalinity enhancement influences nitrogen retention and export  

Philipp Suessle, Kai Schulz, and Ulf Riebesell

Ocean alkalinity enhancement (OAE) has been proposed as a carbon dioxide removal technology (CDR) allowing for long-term storage of atmospheric carbon dioxide (CO2) in the ocean. By changing the carbonate speciation in seawater, OAE may alter plankton communities and the particle export they drive. Using mesocosms in the mesotrophic Raunefjord, Bergen (Norway), we employed five different alkalinity levels for each, a lime- and olivine-based OAE scenario. Total alkalinity (TA) was raised in increments of 150 µmol kg-1­ (ΔTAmax = 600 µmol kg-1) using NaOH solutions. Seawater pCO2 was left to equilibrate with the atmosphere, leading to strong (pHmax = 8.80) but transient changes in carbonate chemistry. In concert with TA, CaCl2 (lime-based) or MgCl2 (olivine-based) was added to simulate the respective cation increase during mineral application. Additionally, equal amounts of Na2SiO3 (75 µmol L-1)was added to all olivine-based mesocosms to simulate the release of silicate whilst separating it from TA effects. Here, we provide insights of the two different OAE approaches on the flux and attenuation of sinking particles. After 49 days of non-equilibrated OAE, the community-mediated cumulative export flux of major elements (POC, PON, POP, BSi) was higher in the olivine- compared to the lime-based application. Preferential remineralization of nitrogen over carbon within the export flux decreased with TA, suggesting a potential nitrogen loss to the surface ocean, potentially shortening productive bloom periods and thus decreasing export production of carbon. This potential negative feedback on atmospheric CO2 levels under OAE warrants further investigation, specifically with respect to its dependence on plankton community composition, heterotrophic nitrogen remineralization, and the chosen alkalinity enhancement approach.

How to cite: Suessle, P., Schulz, K., and Riebesell, U.: Non-equilibrated ocean alkalinity enhancement influences nitrogen retention and export , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-286, https://doi.org/10.5194/egusphere-egu24-286, 2024.

EGU24-300 | ECS | Orals | OS3.5

Assessing the impact of Ocean Alkalinity Enhancement on the zooplankton community 

Amrita Bhaumik, Merle Henning, Giulia Faucher, Leila Kittu, Julieta Schneider, Cédric L. Meunier, Ulf Riebesell, and Maarten Boersma

Ocean alkalinity enhancement (OAE) can help mitigate climate change impacts by increasing the carbon storage capacity of the ocean. The technique involves addition of alkaline substances to the seawater to accelerate the natural rock weathering process. However, this will lead to sudden seawater chemistry changes, such as increased pH that might directly and/or indirectly (through trophic pathways) affect zooplankton, an important trophic link, by altering its metabolic state and community composition. In addition, varying dilution times of alkaline substances might impact organisms differently. To date, the possible influences of OAE on zooplankton communities are largely unexplored. To bridge the knowledge gap, we conducted mesocosm and laboratory experiments in simulated non-equilibrated, calcium-based (Ca(OH)2) OAE setups. An incrementally enhanced alkalinity gradient from 0 to 1250 µmol kg-1 in steps of 250 µmol kg-1 was used in all experiments. The wide-ranging enhanced total alkalinity (∆TA) was selected to assess the safety threshold. In addition, we compared immediate versus delayed dilution scenarios in our mesocosm study, where each scenario ended up with the same ∆TA gradient after mixing. We examined the multitrophic community response by monitoring twelve mesocosms for 39 days including the natural spring bloom community of Helgoland roads waters in the North Sea. Subsequently, the direct effect of alkalinity enhancement on the physiology (i.e., respiration and grazing) of Temora longicornis (predominant copepod in the mesocosms) was evaluated in the laboratory. The species-specific bottom-up effect was examined by culturing Rhodomonas salina in aforementioned ∆TA gradient and feeding them to the T. longicornis. We observed relatively lower zooplankton abundance, and growth rate in mesocosms with ∆TA1000 and 1250 µmol kg-1, which might be a bottom-up effect. In our lab experiments, though, we observed a negative impact on R. salina growth rate and nutritional quality from ∆TA750 µmol kg-1, we did not detect any substantial direct or indirect impact on the physiological performance of T. longicornis. Overall, our laboratory study provided a preliminary understanding of the direct and indirect effects of OAE on a key copepod species, and the mesocosm study gave insight into the zooplankton community response.

How to cite: Bhaumik, A., Henning, M., Faucher, G., Kittu, L., Schneider, J., Meunier, C. L., Riebesell, U., and Boersma, M.: Assessing the impact of Ocean Alkalinity Enhancement on the zooplankton community, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-300, https://doi.org/10.5194/egusphere-egu24-300, 2024.

EGU24-436 | ECS | Orals | OS3.5

Assessing the Influence of OAE on Particulate Matter Stoichiometry in the North Sea – Insights from a Mesocosm Study 

Juliane Tammen, Leila Richards Kittu, Giulia Faucher, Kai G. Schulz, and Ulf Riebesell

The natural dissolution of calcium- or silicate-based rock minerals in the ocean increases the alkalinity and enhances the uptake of atmospheric CO2. Deliberate large-scale addition of such minerals to the surface ocean has been proposed as a promising method to drive negative CO2 emissions through ocean alkalinity enhancement (OAE), mitigating climate change. However, the environmental safe and sustainable implementation of OAE requires a comprehensive understanding of the potential ecological implications of this marine-based Carbon Dioxide Removal technology. In contributing to this understanding, a 39-day mesocosm experiment was conducted in the temperate-eutrophic waters of the German North Sea off Helgoland, during the spring of 2023. The primary objective was to examine how the intensity of alkalinity and the duration of alkalinity exposure before dilution in a calcium-based non-equilibrated OAE application (elevated pH) affects the pelagic ecology and biogeochemistry during a phytoplankton spring bloom. We simulated alkalinisation via calcium hydroxide through the addition of calcium chloride and sodium hydroxide in total alkalinity (∆TA) increments of 250 µmol kg-1 (∆TA = 0, 250, 500, 750, 1000, 1250 µmol kg-1) in one set of six mesocosms (each with a volume of 6 m³). This treatment intended to represent the successful dilution of OAE application through ship-deployment. A second set of six mesocosms was used to simulate a delayed dilution of alkalised waters from a point source. For this, the top layer of these mesocosms was manipulated with twice the amount of TA and mixed with the untreated bottom layer after 48 hours, ultimately leading to the same ∆TA gradient as the immediate dilution treatment. Here, we report on the influence of OAE on phytoplankton bloom dynamics and particulate matter stoichiometry, which are key characteristics of marine ecosystems and carbon cycling. The first results indicate a delay in phytoplankton bloom timing with increasing alkalinity and pH, with no discernible impact of dilution type. Surprisingly, significant differences in Chlorophyll a dynamics at the lowest ∆TA level of 250 were observed in both dilution types. Furthermore, peak concentrations of particulate organic carbon (POC) exhibit a significant decrease with increasing ∆TA and pH in the delayed dilution treatment, particularly evident in the two highest ∆TA treatments. Conversely, the immediate dilution treatment displays a positive trend in POC with increasing ∆TA and pH, indicating the influence of alkalinity intensity and duration of alkalinity exposure before dilution on bulk POC build up by phytoplankton. Given that changes in phytoplankton bloom dynamics and particulate organic matter can alter the ocean’s CO2 uptake and sequestration potential, our results address significant knowledge gaps to determine an ecologically safe operating space for OAE implementation under nutrient rich conditions.

How to cite: Tammen, J., Kittu, L. R., Faucher, G., Schulz, K. G., and Riebesell, U.: Assessing the Influence of OAE on Particulate Matter Stoichiometry in the North Sea – Insights from a Mesocosm Study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-436, https://doi.org/10.5194/egusphere-egu24-436, 2024.

EGU24-438 | ECS | Posters on site | OS3.5

Ocean Alk-Align: an international research project to assess the potential of Ocean Alkalinity Enhancement for marine Carbon Dioxide Removal 

Jessica Oberlander, Dariia Atamanchuk, Lennart Bach, Katja Fennel, Jens Hartmann, David P. Keller, Boriana Mihailova, Ruth Musgrave, Andreas Oschlies, Ulf Riebesell, Kai G. Schulz, and Douglas Wallace

Of the various marine Carbon Dioxide Removal (CDR) technologies proposed to date, ocean alkalinity enhancement (OAE) has, arguably, the largest carbon removal potential. OAE has several advantages over other approaches: it does not compete for nutrient use, it is applicable to large regions of the coastal and open ocean, it can mitigate ocean acidification, and it has a high potential for permanence. Consequently, a growing number of private-sector innovators are actively pursuing OAE, leading to the potential risk that independent, non-profit-oriented research will fall behind in providing a balanced assessment of OAE.

The Ocean Alk-Align project is a multi-year research effort involving an international consortium of researchers from Canada, Germany, and Australia. The project seeks to increase knowledge on three key research topics essential for OAE implementation: (1) efficiency and durability of CO2 removal; (2) environmental safety; (3) monitoring and verification. This will be done through the development and application of state-of-the-art experimental research, real-world observations, and near-field to Earth system modeling.

The Ocean Alk-Align project will use a multi-scale combination of laboratory and field experimentation in addition to turbulent-, regional-, and large-scale modelling. This presentation will provide an overview of ongoing and planned activities as well as some early results.

How to cite: Oberlander, J., Atamanchuk, D., Bach, L., Fennel, K., Hartmann, J., Keller, D. P., Mihailova, B., Musgrave, R., Oschlies, A., Riebesell, U., Schulz, K. G., and Wallace, D.: Ocean Alk-Align: an international research project to assess the potential of Ocean Alkalinity Enhancement for marine Carbon Dioxide Removal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-438, https://doi.org/10.5194/egusphere-egu24-438, 2024.

EGU24-655 | ECS | Posters on site | OS3.5

Development of an Autonomous On-Site Dissolved Inorganic Carbon Analyzer using Conductometric Detection Technique 

Sayoni Bhattacharya, Mario Esposito, Toste Tanhua, and Eric P. Achterberg

Gradual increase of anthropogenic CO2 concentration in the Earth's atmosphere changes the CO2 uptake capacity by seawater, leading to alteration of ocean carbon chemistry and therefore resulting in ‘Ocean Acidification’. Dissolved Inorganic Carbon (DIC) is one of the key parameters among the four primary variables (i.e., pH, partial pressure of CO2 (pCO2), Total Alkalinity (TA), and DIC) along with temperature, salinity, and macronutrients to fully characterize the seawater carbonate system. To improve our quantitative and mechanistic understanding of the marine carbonate system, high-quality and high spatial-temporal resolution observations of DIC are required. To meet these expectations, an autonomous DIC analyzer is needed which is cost-effective, offers high sampling frequency, low reagent as well power consumption. Here we present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection technique. The presented DIC analyzer employs a gas diffusion flow injection approach in a “Tube In A Tube” configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane (Teflon AF2400) into a stream of alkaline solution (NaOH). The change in conductivity in the alkaline medium is measured using a detection cell with 4-hollow brass electrodes and the change in conductivity is directly proportional to the DIC concentration of the sample. Physical and chemical optimizations of the analyzer yielded sample acidification to pH < 4, a NaOH concentration of 7 mM with a flowrate of 300 µL min-1, and an inner diameter of the gas permeable tube of 0.6 mm, allowing DIC measurements in both freshwater and marine systems between 500 and 3000 µmol kg-1. The analyzer can measure 4 samples hour-1 and it requires 0.2 mL of H3PO4, 0.75 mL of NaOH, and 2 mL of sample for each measurement. Temperature and salinity effects were characterized over the ranges 5-35°C and 0-35 in the laboratory, respectively, with the formulation of a mathematical T-S correction for accurate DIC determination. Measurements of a DIC reference material (RM) over four days yielded an analytical precision of ±4.89 µmol kg-1 (n=6) and an accuracy of +1 µmol kg-1. The operational robustness of the system has been demonstrated through a field deployment in the southwest Baltic Sea, yielding an analytical precision of ±9.69 µmol kg-1 (n=6). This study describes an autonomous, on-site, cost-effective DIC analyzer capable of measuring DIC in seawater at a high temporal resolution with an ultimate aim to develop an underwater DIC sensor. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer in CO2 leakage monitoring and detection in the context of Carbon Capture and Storage.  

How to cite: Bhattacharya, S., Esposito, M., Tanhua, T., and Achterberg, E. P.: Development of an Autonomous On-Site Dissolved Inorganic Carbon Analyzer using Conductometric Detection Technique, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-655, https://doi.org/10.5194/egusphere-egu24-655, 2024.

EGU24-657 | ECS | Orals | OS3.5

Impact of decarbonated and high pH seawater on the physiology of intertidal mussels 

Guy Hooper, Helen Findlay, Thomas Bell, and Paul Halloran

Marine-based electrochemical Carbon Dioxide Removal (mCDR) is a rapidly evolving subject area. Technology is being developed that facilitates atmospheric CO2 removal by extracting Dissolved Inorganic Carbon (DIC) from seawater. Decarbonated seawater, that also has a high pH, is released into the marine environment, facilitating the drawdown of atmospheric CO­2 into the surface ocean. Chemical perturbations also include low levels of carbon dioxide (CO2) and bicarbonate (HCO3-),and increased levels of carbonate (CO32-). There is no literature that investigates the impact of low carbon seawater with elevated pH on marine ecosystems. Understanding and cataloguing the effect of mCDR is fundamental for: i) determining potential impact on vulnerable systems; ii) supporting the development of any necessary mitigating actions; iii) confirming overall mCDR effectiveness; and iv) engaging the public and harnessing their support.

This work presents results from laboratory experiments that examine the physiological response of keystone organisms to decarbonated and high pH seawater. Decarbonated high pH seawater released into the environment will be diluted by mixing with ambient seawater, such that the chemical perturbations become less extreme with distance from source. Intertidal mussels (Mytilus edulis) are a keystone species that utilize DIC for major cellular functions and have poor acid-base balance. Mussels were exposed to three different dilutions of decarbonated high pH seawater (generating pH values of approximately, 10, 9.2 and 8.7). Mortality, oxygen consumption rate and filtering rate were measured after short-term (48 hr) exposure and then 48 hrs after returning to ambient seawater. Initial experiments indicate that undiluted decarbonated high pH seawater has a significant short-term impact on the physiological response of Mytilus edulis, but the species shows signs of recovery following a week in ambient seawater. Data from these and other experiments will be used to generate a risk gradient that illustrates how physiological response(s) change with dilution of low carbon, high pH seawater discharge.

How to cite: Hooper, G., Findlay, H., Bell, T., and Halloran, P.: Impact of decarbonated and high pH seawater on the physiology of intertidal mussels, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-657, https://doi.org/10.5194/egusphere-egu24-657, 2024.

EGU24-812 | ECS | Orals | OS3.5

Evaluating Mg(OH)2 as an ocean alkalinity agent in tropical river, estuary and saline water 

Xuechao Wang, Jiajia Shi, Xin Huang, Ruqin Bai, Yifan Qi, Ruoyu Niu, and Mark Hopwood

Ocean Alkalinity Enhancement (OAE) is a proposed mechanism of atmospheric CO2 removal, or negative emission technology. The addition of mineral particles to natural waters is one potential method of achieving OAE, yet there are substantial uncertainties concerning the efficiency of this process in terms of total alkalinity (TA) generation under natural conditions. Laboratory incubations are generally conducted under standardized conditions with filtered, deionized or sterile water which, whilst necessary to conduct reproducible mechanistic studies, is clearly not representative of most natural waters in which OAE might be deployed. In order to assess how variation in natural water properties affects the dissolution of minerals proposed as OAE agents, here we test the conversion of Mg(OH)2 to total alkalinity (TA) in river water, estuarine water, coastal seawater and offshore seawater. We found that when added as milk of magnesia, a 10 g/L (final concentration) Mg(OH)2 dose was efficiently converted to TA (>95% efficiency) in river water with low initial TA (mean TA = 239.44), river water with medium initial TA (mean TA = 1636.13), high salinity estuarine water (salinity 27), low salinity estuarine water (salinity 5.3), and seawater. However, when Mg(OH)2 was applied to high TA river water as a single dose (10 mg/L), the TA increase was only 60% of the calculated addition. The effect of multiple small doses (2.5 mg/L) was also tested, with no significant difference in the TA conversion in most cases. Dry additions of Mg(OH)2, rather than pre-mixed suspensions of milk of magnesia, were found to be inefficient TA sources, sometimes leading to negative TA changes- especially when using small incubation bottles (2 L). Overall it was demonstrated that Mg(OH)2 can be used as an efficient TA source in most natural waters for final doses in the range 2.5-10 mg/L.

How to cite: Wang, X., Shi, J., Huang, X., Bai, R., Qi, Y., Niu, R., and Hopwood, M.: Evaluating Mg(OH)2 as an ocean alkalinity agent in tropical river, estuary and saline water, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-812, https://doi.org/10.5194/egusphere-egu24-812, 2024.

EGU24-944 | ECS | Orals | OS3.5

Responses of phytoplankton community to silicate-based and calcium-based ocean alkalinity enhancement 

Xiaoke Xin, Leila Richards Kittu, Joaquin Ortiz Cortes, Anna Wiebke Groen, and Ulf Riebesell

Ocean alkalinity enhancement (OAE) has been proposed as a strategy to sequester carbon dioxide (CO2) from the atmosphere by adding alkaline substances to seawater. In addition to alkalinity, various dissolution products could be released under OAE, depending on the choice of alkali mineral used. These products such as silicate and changes in carbonate chemistry can impact the competitive fitness of phytoplankton species, which could directly or indirectly affect the compositions of the phytoplankton community. Currently, there are knowledge gaps pertaining to the potential ecological impacts of alkalinisation on natural phytoplankton communities, which hamper a comprehensive evaluation of OAE for its large-scale implementation.

To address these gaps, we carried out an in situ mesocosm experiment examining the response of a natural plankton community over 53 days in the temperate mesotrophic waters of the Raunefjord south of Bergen, Norway to two alkali mineral applications. We simulated two mineral types, a calcium-based (quicklime) and silicate-based (olivine) alkalinisation in a non-equilibrated approach. NaOH was used in both mineral treatments to establish a gradient of six alkalinity levels ranging from ambient (~2400 µmol kg-1) to ~3000 µmol kg-1 in steps of 150 µmol kg-1. Silicate-based and calcium-based alkalinisation were simulated through the addition of MgCl2 and CaCl2, respectively. Additionally, the treatment simulating olivine-based OAE received 70 µmol L-1 of Si(OH)4. Since phytoplankton was nutrient limited from the onset of the experiment, nutrients (nitrate, phosphate) were added halfway through the study to allow for an explicit detection of responses.

Here we report on the responses of the phytoplankton community to the simulated OAE scenarios. Our results indicate that phytoplankton abundances remained largely unaffected across the alkalinity gradient and between mineral types during the oligotrophic phase of the experiment. However, significant differences in the phytoplankton community response were observed post nutrient addition. Here, coccolithophores exhibited a negative response to increasing alkalinity in the silicate-based treatment, whereas the correlation was relatively weak in the calcium-based treatment. We attribute these responses, in part, to changes in carbonate chemistry such as low pCO2, which may limit coccolithophore growth and the out-competition by diatoms favoured by added silicate.

Overall, our findings suggest minimal risks associated with OAE under oligotrophic conditions over a 20-day period. However, the potential for species-specific negative impacts of increasing alkalinity should be carefully considered under high nutrient availability. These results represent a crucial first step towards understanding the ecological responses of phytoplankton communities, helping to define the safe operating space in non-equilibrated OAE implementations. 

How to cite: Xin, X., Kittu, L. R., Ortiz Cortes, J., Groen, A. W., and Riebesell, U.: Responses of phytoplankton community to silicate-based and calcium-based ocean alkalinity enhancement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-944, https://doi.org/10.5194/egusphere-egu24-944, 2024.

EGU24-1429 | ECS | Orals | OS3.5

A global efficiency map of ocean alkalinity enhancement (OAE) for CO2 removal 

Mengyang Zhou, Michael D. Tyka, Scott Bachman, Elizabeth Yankovsky, Alicia R. Karspeck, David T. Ho, and Matthew C. Long

To limit global warming to below 2°C by 2100, carbon dioxide removal (CDR) from the atmosphere will be necessary. Ocean alkalinity enhancement (OAE) is a promising approach to achieving CDR at a large scale. However, OAE deployments are subject to slow or incomplete air-sea CO2 exchange, reducing the efficiency of carbon removal, defined as the excess CO2 uptake per mol of alkalinity addition. We used a coupled ocean circulation-biogeochemistry model to generate the first global, time-resolved map of OAE efficiency across four different seasons and investigated its controlling factors. An ensemble of alkalinity pulse injections in the global ocean were simulated with the global 1-degree ocean component of the Community Earth System Model version 2 (CESM2). Alkalinity was added to the surface ocean for 1 month in a total of 690 patches and in 4 different seasons of a year. Each simulation was run for 15 years for each patch and season to compute OAE efficiency, residence time of excess alkalinity retained in the mixed layer, and CO2 re-equilibration timescales - all referenced to the geographic location of the induced perturbation. OAE efficiency showed large spatial and seasonal variations. The highest seasonal mean OAE efficiency achieved after 15 years, ranging from 0.7 to 0.9, were found in the subpolar oceans, the semi-closed regions, such as the Gulf of St. Lawrence and the North Sea, as well as the coastal zones along the Pacific and South Atlantic. The lowest seasonal mean, ranging from 0.3 to 0.5, was found in the high latitudes Atlantic and Southern Ocean where deep water forms. The intermediate values, ranging from 0.5 to 0.7, were found predominantly in the subtropical gyres, as well as western and eastern boundary currents. Seasonally, higher maximum OAE efficiency could generally be achieved when alkalinity is released in the summer rather than in winter. Accurate understanding of the CO2 response curves, as provided by our maps, is critical for choosing suitable OAE deployment sites and is central to the MRV (Measurement, Reporting & Verification) challenge faced by all marine CDR methods. 

How to cite: Zhou, M., Tyka, M. D., Bachman, S., Yankovsky, E., Karspeck, A. R., Ho, D. T., and Long, M. C.: A global efficiency map of ocean alkalinity enhancement (OAE) for CO2 removal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1429, https://doi.org/10.5194/egusphere-egu24-1429, 2024.

Bringing carbon dioxide (CO2removal approaches from the laboratory to the industrial scale in the following years is imperative to reaching Net Zero goals. Ocean Alkalinity Enhancement (OAE) is a promising approach that introduces alkalinity into surface waters, slightly modifying the carbonate equilibrium and thus increasing the seawater’s CO2 removal capacity. The co-location of OAE with existing coastal industries (e.g., desalination plants) is a way to accelerate their deployment.

Recognizing the importance of balancing climate mitigation strategies with environmental stewardship, our study focuses on the outcomes of comprehensive ecotoxicity tests conducted to discern the effects of return flows from desalination plants (concentrated seawater or brine) enriched with alkalinity (carbonates). To simulate real conditions, we investigated three scenarios: (i) brine alone, (ii) alkalinity alone, and (iii) brine with added alkalinity. The ecotoxicity tests were designed to capture the responses of key marine organisms across various trophic levels. Bacterial assays illuminated the microbial community's sensitivity to different scenarios, while diatom assessments provided insights into primary producers' adaptive capacity. Copepod and crustacean tests explored the cascading effects on higher trophic levels, elucidating potential ramifications for marine food webs.

Our findings shed light on the intricate interplay between alkalinity-enhanced brines and local ecosystems, providing valuable insights into potential stressors and their implications for marine biota. The ecotoxicity results at different dilutions are combined with the knowledge of mixing zones for ocean outfall technologies, putting forward the environmental impact at different distances from the alkalinity addition.

By addressing the specific challenges posed by integrating OAE with desalination, this research contributes to the ongoing dialogue on responsible and sustainable climate mitigation strategies. It offers a nuanced understanding of the potential trade-offs and synergies between addressing climate change and preserving or benefitting local marine environments. At a time when environmental testing at scale is needed, this study assesses the potential risks of such research. Ultimately, this work facilitates dialogue among OAE companies, desalination experts, policymakers, and organisms for environmental control and protection.  

How to cite: Buceta, J. and Sdez, N.: Integration of Ocean Alkalinity Enhancement Processes with Coastal Industries: Ecotoxicity Assessment for Local Environmental Impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2483, https://doi.org/10.5194/egusphere-egu24-2483, 2024.

Dark inorganic carbon fixation (DCF) by chemoautotrophs is thought to play a significant role in marine systems, especially in oligotrophic marine ecosystems where photosynthesis is typically low. We investigated DCF and its contribution to the total primary productivity (PP) in the ultra-oligotrophic eastern Mediterranean Sea (2021-2024) and the meso/oligotrophic northern Red Sea (2010-2023). Our results show that DCF is indeed substantial, and corresponds to ~25-40% of the annual primary productivity rates in both areas. The contribution of DCF to PP was high during the summer and increased from the coast to the offshore water. During wintertime, the contribution of DCF to PP was typically low, without clear spatial or vertical trends. Additionally, aphotic DCF rates were similar to those found in the photic zone. Lastly, our results show that organic nutrient amendments significantly elevate dark inorganic carbon fixation, whereas the addition of inorganic nutrients elevates photosynthesis and to a lesser extent DCF. These results suggest that DCF may be an important biochemical process throughout the water column of oligotrophic seas, and thus should be incorporated into oceanic carbon production estimates.

How to cite: Rahav, E., Reich, T., and Berman-Frank, I.: Chemoautotrophic and photoautotrophic inorganic carbon fixation rates in marine oligotrophic systems; The Mediterranean and Red seas as case studies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3015, https://doi.org/10.5194/egusphere-egu24-3015, 2024.

EGU24-6487 | ECS | Orals | OS3.5

Numerical dye tracer experiments in Bedford Basin in support of Ocean Alkalinity Enhancement research 

Bin Wang, Arnaud Laurent, and Katja Fennel

Ocean Alkalinity Enhancement (OAE) is considered as a potential technique to mitigate ocean acidification and remove carbon dioxide (CO2) from the atmosphere. In this study, a suite of numerical tracer experiments was conducted using a high-resolution nested model to support ongoing OAE field trials in Halifax Harbor and Bedford Basin. We first estimated the residence time, which provides an overall description of the circulation, for different seasons over the past 20 years (2003-2022). Results show a clear seasonal pattern in residence time which is longest in July and shortest in January. Particles with different dissolution rates and sinking velocities were then added continuously through the cooling outfall of a local power plant for three months to simulate the dissolution, dispersion, and movement of different alkaline mineral feedstocks. To account for inter-annual variability, the years with the longest and shortest residence time in each season were selected to perform these simulations. Furthermore, tracer simulations will be compared with ongoing Rhodamine WT field trials. Results obtained thus far show that the surface alkalinity signal due to OAE is most likely to be detected near the cooling outfall but depends on the tidal stage and the local circulation and weather conditions. Detectability is highest in July because the residence time is longest. In addition, the detectability increases with faster dissolution rate and slower sinking velocity.

 

How to cite: Wang, B., Laurent, A., and Fennel, K.: Numerical dye tracer experiments in Bedford Basin in support of Ocean Alkalinity Enhancement research, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6487, https://doi.org/10.5194/egusphere-egu24-6487, 2024.

EGU24-6536 | Orals | OS3.5

A high-resolution nested model to study the effects of alkalinity additions in a mid-latitude coastal fjord 

Arnaud Laurent, Bin Wang, Qiantong Pei, Kyoko Ohashi, Jinyu Sheng, Edmundo Garcia Larez, Caroline Fradette, Subhadeep Rakshit, Dariia Atamanchuk, Kumiko Azetsu-Scott, Chris Algar, Doug Wallace, Will Burt, and Katja Fennel

Surface ocean alkalinity enhancement (OAE), through the release of alkaline materials, is an emerging carbon dioxide removal (CDR) technology that could increase the storage of anthropogenic carbon in the ocean. Although essential, evaluating the effects of alkalinity additions on the carbonate system and ultimately on air-sea CO2 fluxes is not straight forward. Observations, even with autonomous platforms, are inherently sparse and limited, and therefore cannot provide a comprehensive quantification of the effects of OAE. Numerical models are important complementary tools. They can help guide fieldwork design, provide forecasts of the ocean state, and simulate the effects of alkalinity additions on the seawater carbonate system. Here we describe a coupled physical-biogeochemical implementation of ROMS in a nested grid configuration that reaches a very high spatial resolution in Bedford Basin (51m), a coastal fjord in eastern Canada that is chosen as a test site for OAE. The biogeochemical model simulates oxygen dynamics and the carbonate system, including air-sea gas exchange. We present a multi-year hindcast validated against the long-term weekly time series available at the Compass Buoy station in the centre of the Basin as well as recent simulations carried out during alkalinity addition trials. We will discuss the model’s capabilities with respect to OAE and the challenges ahead.

How to cite: Laurent, A., Wang, B., Pei, Q., Ohashi, K., Sheng, J., Garcia Larez, E., Fradette, C., Rakshit, S., Atamanchuk, D., Azetsu-Scott, K., Algar, C., Wallace, D., Burt, W., and Fennel, K.: A high-resolution nested model to study the effects of alkalinity additions in a mid-latitude coastal fjord, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6536, https://doi.org/10.5194/egusphere-egu24-6536, 2024.

EGU24-7748 | ECS | Orals | OS3.5

Quantification of seawater total alkalinity measurement uncertainty to support the evaluation of ocean alkalinity enhancement 

Gaëlle Capitaine, Paola Fisicaro, and Thibaut Wagener

Ocean alkalinity enhancement is one approach being considered to contribute to marine Carbon Dioxide Removal techniques. It relies on the addition of alkalinity to the marine environment, either under the form of crushed-rock feedstocks or under a dissolved form. This conducts to the decrease of seawater partial pressure of CO2 (pCO2) allowing seawater, by equilibrium with air, to absorb more CO2 from the atmosphere.

In order to determine the amount of CO2 removed from the atmosphere, a monitoring, reporting, and verification (MRV) system of marine carbon dioxide removal needs to be designed. The evaluation of ocean alkalinity enhancement will depend on the monitoring of measurable variables of the marine carbonate system, as well as on numerical simulations. In this context, acquiring accurate and robust data of seawater total alkalinity is highly relevant in order to quantify the background state alkalinity and to check that alkalinity has efficiently been added.

In that goal, the application of the three pillars of metrology: metrological traceability, measurement procedure harmonization and validation, and uncertainty estimation, are required. However, up to date, the total alkalinity measurement method lacks of a rigorously established uncertainty budget.

The establishment of measurement results uncertainty can be realised by the mean of two approaches. The “bottom-up” approach is the most rigorous way to thoroughly establish an uncertainty budget. It relies on the identification and quantification of each source of uncertainty involved at every step of the measurement process, as described by the Guide to the expression of Uncertainty in Measurements. The “top-down” approach relies on an experimental assessment of the uncertainty, from repeatability, reproducibility and trueness estimates.

The presentation will focus on the evaluation of the uncertainty of seawater total alkalinity measurement results using the two approaches aforementioned. The sources of uncertainty originating from the potentiometric titration measurement method, and the mathematical model used for data treatment, will be presented and quantified. This study will also allow identifying which sources have the major contribution to the overall uncertainty budget, and thus the ones we should focus on to lower the uncertainty. The estimation of the uncertainty with the “top-down” approach is determined from an inter-laboratory comparison involving five laboratories, conducted on reference solutions. The developed artificial and natural seawater reference solutions, as well as the results of the inter-laboratory comparison, will be presented. Comparison, advantages and limitations of the two uncertainty estimation methods will be discussed. Finally, the level of uncertainty estimated will be discussed in the frame of MRV system in supporting the evaluation of ocean alkalinity enhancement.

How to cite: Capitaine, G., Fisicaro, P., and Wagener, T.: Quantification of seawater total alkalinity measurement uncertainty to support the evaluation of ocean alkalinity enhancement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7748, https://doi.org/10.5194/egusphere-egu24-7748, 2024.

EGU24-10853 | ECS | Orals | OS3.5

Interdisciplinary collaboration to develop a robust and implementable monitoring, reporting, and verification (MRV) protocol for Ocean Alkalinity Enhancement (OAE) 

Sophie Gill, Jing He, Jennifer Yin, Kevin Sutherland, Jonathan Lambert, and Neil Hacker

The marine carbon dioxide removal (mCDR) industry is undergoing rapid growth, with many stakeholders deploying mCDR pilot projects. In order to establish a scientific basis for environmental safety and carbon accounting in mCDR, there is a need for rigorous, transparent and scientifically robust monitoring, reporting, and verification (MRV) protocols. These protocols seek to ensure responsible scaling of mCDR projects that have demonstrable net-negative atmospheric impacts. One of the main MRV challenges facing the mCDR pathway of Ocean Alkalinity Enhancement (OAE) is that direct measurements in the marine environment can be difficult to obtain. Here, we present the highlights of the first version of the Isometric OAE MRV protocol and focus on the process for interdisciplinary collaboration that informed decision-making and iteration towards the current version. We focus specifically on the development of guidelines for quantifying additionality, durability and uncertainty in the open system OAE pathway, and elaborate on our modeling requirements and benchmarks, as well as guidance on how models should be validated with environmental data. Ultimately, we aim to receive feedback on the protocol and our approach in order to apply this method to new versions and additional protocols and modules across mCDR and other CDR pathways. 

How to cite: Gill, S., He, J., Yin, J., Sutherland, K., Lambert, J., and Hacker, N.: Interdisciplinary collaboration to develop a robust and implementable monitoring, reporting, and verification (MRV) protocol for Ocean Alkalinity Enhancement (OAE), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10853, https://doi.org/10.5194/egusphere-egu24-10853, 2024.

Carbon dioxide (CO2) removal (CDR) methodologies have been proposed as essential measures to limit global warming and mitigate climate change. Carbon mineralisation, a natural process that involves the reaction of CO2 in the fluid form with reactive geologic formations to produce water-insoluble carbonates, when accelerated can permanently remove and sequester CO2 from the atmosphere at a scale of gigatons per year. The estimated storage capacity along mid-ocean ridges exceeds anthropogenic CO2 emissions by orders of magnitude but to date no offshore carbon capture storage (CCS) at ocean crust is performed. For offshore CCS, there are challenges in implementing accurate monitoring strategies and in developing robust and cost-effective technologies to support these strategies. Here we compare the sensitivities to leakage attribution and quantification of different approaches considered suitable for monitoring offshore CCS sites. As a proof of concept, we limited our target environment to the water column, specifically ocean waters below 1000 m. The effectiveness of the considered monitoring techniques and technologies was compared in terms of spatial and temporal coverage, reliability, costs and technology readiness level. A theoretical monitoring system design was proposed in order to provide guidelines for prompt detection of CO2 leakages into deep ocean waters. Appropriate monitoring tools and solid protocols for the assessment of potential environmental impacts will enhance public confidence and support efficient management of CCS operations in deep water ocean crust.

How to cite: Esposito, M., Bhattacharya, S., and Achterberg, E.: Monitoring tools and best practice guidelines for attribution and quantification of potential CO2 leakages into deep waters at ocean crust CCS sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10915, https://doi.org/10.5194/egusphere-egu24-10915, 2024.

EGU24-11672 | Posters virtual | OS3.5

Bacterial response to alkalinity enhancement in intertidal environments: results of one-year field experiment  

Isabel Mendes, Julia Lübbers, Joachim Schönfeld, and Alexandra Cravo

Marine Carbon Dioxide Removal (mCDR), in particular alkalinity enhancement, is considered a promising measure to increase oceanic uptake and long-term storage of CO2 from the atmosphere. This may be affected by spreading of fine-grained, mafic minerals and rocks in coastal areas, where the weathering of these substrates produces excess alkalinity and thus increases the CO2 consumption. Before marine alkalinity enhancement can be considered as a large-scale mCDR measure, the biogeochemical and ecological impacts are to be evaluated under natural conditions in field experiments. The response of the bacterial community to alkalinity enhancement is of prime importance, because of their high biomass, low trophic levels, and relevance for the nutrient cycle.

An experiment was installed and monitored for one-year in the intertidal pioneer vegetation zone of the saltmarsh at Ria Formosa Coastal Lagoon, southern Portugal. The experimental plot comprised three replicate deployments of fine and coarse-grained olivine and basalt, and an untreated control site. The pore water properties (e.g., temperature, salinity, pH, alkalinity) of the substrates and the control were analysed every month. Sediment samples were collected from each treatment and the control every three months, starting the day after substrate deployment in September 2022 until June 2023, thus covering a one-year seasonal cycle. Bacterial dynamics were monitored using a metagenomic full-length 16S gene approach conducted by AppGenomics Lda, Faro. DNA was extracted from the sediment samples. The 16S region was amplified and sequenced using the Oxford Nanopore Technologies (ONT) Promethion P2 solo sequencerlibrary and equipments. After quality control and filtering, the generated reads were analysed regarding the taxonomic content using the Kraken2 and Bracken tools coupled with the database RefSeq 16S database of NCBI. The results were analysed using the Phyloseq R package. Proteobacteria (54 to 36%), Bacteroidota (23 to 7%), Cyanobacteria (19 to 3%) and Planctomycetota (16 to 8%) were the most abundant phyla in all samples. Bacteriodota increased in abundance with high alkalinities in the treatments with fine olivine while the Proteobacteria were suppressed by the high pH and ensuing alkalinities in the olivine treatments. There was no response to the basalt treatments, although alkalinity was also increased compared to the control. The bacterial Shannon Diversity Index (H) of the four treatments and the control ranged from 5.66 to 6.44 and no significant differences on the bacterial diversities in the different treatments were found.

Acknowledgement. Research supported by the Portuguese Science Foundation, with the projects RECAP - PTDC/CTA-CLI/1065/2021 (https://doi.org/10.54499/PTDC/CTA-CLI/1065/2021), UID/00350/2020CIMA (https://doi.org/10.54499/UIDP/00350/2020, https://doi.org/10.54499/UIDB/00350/2020), LA/P/0069/2020ARNET and contracts DL57/2016/CP1361/CT0009, CEECINST/00052/2021/CP2792/CT0012.

How to cite: Mendes, I., Lübbers, J., Schönfeld, J., and Cravo, A.: Bacterial response to alkalinity enhancement in intertidal environments: results of one-year field experiment , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11672, https://doi.org/10.5194/egusphere-egu24-11672, 2024.

EGU24-11674 | ECS | Posters on site | OS3.5

Enhanced silicate weathering in permeable sediments from the North Sea – a laboratory study using flow-through reactors 

Male Köster, Alexander Diehl, Wolfgang Bach, and Sabine Kasten

The Earth’s climate is increasingly warming due to ongoing anthropogenic carbon dioxide (CO2) emissions. In order to mitigate the human-made climate change and to meet the Paris Agreement goals of limiting the warming below 2°C, active carbon dioxide removal (CDR) from the atmosphere is of great importance in addition to massive CO2 emission reductions. A possible CDR method is rock weathering and the associated dissolution of silicate minerals in the ocean, which leads to marine alkalinity enhancement and, thus, an enhanced flux of CO2 from the atmosphere into the ocean. In the framework of the project RETAKE, a consortium of the German Marine Research Alliance (DAM) research mission CDRmare, we investigate the potential, feasibility and side effects of silicate mineral dissolution in high-energy coastal environments where strong currents and advection of seawater through permeable sediments have been proposed to accelerate weathering of silicate rocks [1]. Permeable sediments are generally characterized by advective pore-water flow. Under advective conditions, higher weathering rates than those found in diffusion-controlled depositional settings are expected since the reaction products are rapidly removed and the formation of authigenic mineral coatings on mineral grains is prevented. Using flow-through sediment columns, advective pore-water fluxes through the sediment as they prevail in natural permeable beach and coastal deposits can be simulated [2,3].

Here, we present data from laboratory experiments with flow-through reactors that are filled with permeable sandy sediments from the North Sea, Germany, amended with fine-grained dunite (0.063-0.180 mm), mainly composed of olivine (~ 90 %). The flow-through experiments are conducted under oxic conditions whereby air-saturated natural seawater is continuously pumped through the reactors for 160 days. Our results demonstrate an increase in both alkalinity and dissolved inorganic carbon (DIC) of up to 4 mM in the reactors with dunite addition while the alkalinity and DIC concentrations in the control reactors (without dunite addition) are close to background seawater values of 2.3 mM. However, since dunite contains relatively high amounts of nickel (0.3 wt%), enhanced weathering may also be associated with an increased release of this potentially toxic trace metal. Indeed, the nickel concentrations in the effluent water of the dunite-amended sediment columns are increased by up to 900 nM. Silica and phosphate concentrations are elevated compared to the seawater values in both the control and the dunite-amended reactors. While the silica concentrations in the dunite-amended reactors are higher by up to 10 µM compared to the control, the opposite pattern is observed for phosphate. The slightly lower phosphate concentrations in the dunite reactors might be related to the precipitation of authigenic minerals, for example, iron phosphates or to adsorption of phosphate onto mineral grains. To identify possible authigenic minerals as potential sinks for the reaction products, the solid phase will be sampled and the chemical and mineralogical composition is analyzed after the experiments are terminated.

 

[1] Meysman and Montserrat, 2017. Biol. Lett. 13: 20160905.

[2] Ahmerkamp et al., 2020. Sci. Rep. 10: 3573.

[3] Zhou et al., 2023. Sci. Total Environ. 865: 161168.

How to cite: Köster, M., Diehl, A., Bach, W., and Kasten, S.: Enhanced silicate weathering in permeable sediments from the North Sea – a laboratory study using flow-through reactors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11674, https://doi.org/10.5194/egusphere-egu24-11674, 2024.

EGU24-12132 | Posters on site | OS3.5

Detectability of alkalinity plumes during the OAE field trial: A Bedford Basin case study 

Dariia Atamanchuk, Arnaud Laurent, Bin Wang, Katja Fennel, Ruth Musgrave, Douglas Wallace, Caroline Fradette, Robert Izett, and Will Burt

In the Fall of 2023, in collaboration with Dalhousie University researchers, Planetary Technologies completed a first-of-a-kind series of alkalinity releases in the Bedford Basin/Halifax Harbour (Canada) using several alkalinity sources at varying dosing rates. These OAE trials aimed to test the detectability of alkalinity plumes resulting from the addition of varying amounts of alkalinization material and the different types of material - dissolved or particulate. Detectability of the released alkalinity was examined by observing the changes in the carbonate system of seawater measured in the water samples and by the sensor-equipped in situ platforms - fixed and mobile – before, during and after the trials. The collected data was used to test and validate the regional biogeochemical model (ROMS) available for the Bedford Basin, which largely informed the sampling design during the trial.

We will present the challenges encountered, results and insights gained during the field trials in the Bedford Basin/Halifax Harbour in the Fall of 2023, particularly focusing on improvements to the observational component in 2024. We will discuss the utility of the moored and profiling assets, surface and underwater vehicles, and various water sampling methods in tracking and characterizing alkalinity plumes during the OAE trials

How to cite: Atamanchuk, D., Laurent, A., Wang, B., Fennel, K., Musgrave, R., Wallace, D., Fradette, C., Izett, R., and Burt, W.: Detectability of alkalinity plumes during the OAE field trial: A Bedford Basin case study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12132, https://doi.org/10.5194/egusphere-egu24-12132, 2024.

EGU24-12196 | ECS | Posters on site | OS3.5

The use of trace metal-rich Greenlandic glacial rock flour for ocean enrichment experiments 

Clara R. Vives, Jørgen Bendtsen, Kristina Vallentin Larsen, Niels Daugbjerg, Katherine Richardson, and Minik Thorleif Rosing

In order to keep global warming below 2ºC, it is imperative not only to reduce future carbon dioxide (CO2) emissions but also to adopt negative emissions technologies (NETs) to remove approximately 600 Gt of CO2 from the atmosphere by the end of the twenty-first century. Among NETs, ocean alkalinity enhancement and ocean enrichment emerge as promising strategies for Carbon Dioxide Removal (CDR), leveraging the immense carbon-absorbing capacity of oceans.

Glacial rock flour (GRF), an ultra fine-grained silicate mineral originating beneath the Greenland Ice Sheet, holds potential as a contributor to large-scale marine CO2 removal (mCDR). As it is transported into coastal waters, the dissolution of GRF in seawater naturally releases mineral components into the ocean. As a silicate-rich substance with micronutrients like iron and manganese, GRF has the dual capacity to enhance alkalinity and promote phytoplankton growth, presenting a viable avenue for mCDR. In a field study from the Kangerlussuaq fjord and glacier near the Greenland Ice Sheet (summer 2023) we observed that melt- and seawater contained an array of trace metals in high concentrations, including iron, manganese, zinc, copper, and cobalt, and the concentrations increased towards the fjord and away from the source. We explore the response to varying treatments with GRF, iron, manganese and zinc using laboratory incubation experiments with an Arctic phytoplankton diatom species (Coscinodiscus radiatus). We identify the relative mobilization rate of these trace metals in the GRF that can support phytoplankton growth and hypothesise that GRF can alleviate the co-limitation of iron and manganese on phytoplankton growth.

How to cite: R. Vives, C., Bendtsen, J., Vallentin Larsen, K., Daugbjerg, N., Richardson, K., and Thorleif Rosing, M.: The use of trace metal-rich Greenlandic glacial rock flour for ocean enrichment experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12196, https://doi.org/10.5194/egusphere-egu24-12196, 2024.

EGU24-12290 | ECS | Orals | OS3.5

Ocean Alkalinity Enhancement efficiency in the North Pacific under influence of the Pacific Decadal Oscillation 

Andrea van Langen Rosón, Ana C. Franco, Raffaele Bernardello, Jörg Schwinger, David Keller, and Hao-Wei Wey

Carbon Dioxide Removal (CDR) technologies are imperative for achieving net zero emissions, a crucial feat to meet the 2º target set in the Paris Agreement. Ocean Alkalinity Enhancement (OAE) is a marine CDR technology that consists of increasing the Total Alkalinity (TA) of the ocean by depositing alkaline minerals to ocean surface waters. The increase in TA reduces the sea surface partial pressure of CO2 (pCO2), thereby enhancing oceanic CO2 uptake or reducing oceanic CO2 outgassing. Despite the potential of OAE to reduce atmospheric CO2 concentrations, the realistic implementation of OAE faces substantial impediments, including logistical feasibility and the lack of international ocean governance for its deployment in open waters. To address these obstacles and incentivize the development of a policy framework for OAE, we set forward optimal conditions that maximize the efficiency of OAE in the North Pacific Ocean, leveraging natural climatic variability induced by the Pacific Decadal Oscillation (PDO). The addition of TA at high Dissolved Inorganic Carbon (DIC) concentrations has the potential to induce a stronger decrease in pCO2 than at lower DIC concentrations. Therefore, natural temporal increases in surface DIC concentrations could potentially predispose the system for enhanced OAE efficiency. The PDO induces multi-decadal variations in the carbonate system, with the potential to influence the spatiotemporal variability in OAE efficiency. PDO phases have been shown to be predictable up to a decade ahead, thereby providing a practical indication for logistical planning of OAE deployment. We analyze the influence of the PDO on OAE efficiency in the North Pacific Ocean through four Earth System Model simulations under a high emission scenario (RCP8.5) spanning from 2020 to 2100. Using theoretical CO2 uptake efficiencies, as defined by Tyka et al. (2022) and Renforth and Henderson (2017), we describe how PDO states modulate variability in uptake efficiency via their control on DIC and TA concentrations. Subsequently, we analyze the realized uptake efficiency by contrasting oceanic air-water CO2 fluxes (FCO2) in simulations with continuous and homogenous global OAE deployment against simulations without CDR intervention per unit of added TA. Early results show regional differences in OAE efficiency rates during different PDO phases. During positive PDO phases, theoretical CO2 uptake efficiencies decrease in the Northeast Pacific while increasing in the central Western Pacific, corresponding to respectively lower and higher DIC concentrations. The inverse responses are observed during negative PDO phases. We discern differences between theoretical and realized CO2 uptake efficiencies, indicating the role of additional influential variables. Our study provides new insights into the impact of the PDO on OAE efficiency and the potential to optimize CDR strategies by aligning them with natural climatic variations.

How to cite: van Langen Rosón, A., C. Franco, A., Bernardello, R., Schwinger, J., Keller, D., and Wey, H.-W.: Ocean Alkalinity Enhancement efficiency in the North Pacific under influence of the Pacific Decadal Oscillation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12290, https://doi.org/10.5194/egusphere-egu24-12290, 2024.

EGU24-12695 | ECS | Orals | OS3.5

Considering hydrous carbonates for ocean alkalinity enhancement 

Stefan Baltruschat, Laura Bastianini, Rachel Millar, Boriana Mihailova, Spyros Foteinis, Pranav Thoutam, Xuesong Lu, Jens Hartmann, Aidong Yang, and Phil Renforth

Ocean Alkalinity Enhancement (OAE) emerges as a promising strategy capable of sequestering several gigatons of CO2 annually from the atmosphere and store it in the ocean for extended periods (>1000 years). To achieve this objective, artificial alkalinity is introduced into the surface ocean through alkaline solutions or the spontaneous dissolution of alkaline solids. When contemplating alkaline solids for OAE, a primary challenge lies in generating substantial quantities of fine grained (<10 µm), soluble solids at low energy and cost. The hydration of carbonates presents a potentially less energy-intensive method, yielding products that exhibit favorable thermodynamics leading to their spontaneous dissolution in seawater1.

We investigated the stability and dissolution kinetics of two hydrous carbonates, Ikaite (CaCO₃·6H₂O) and water-bearing amorphous calcium carbonate (CaCO3.nH2O), labelled hereafter as w-ACC. Both phases can be created from dissolving limestone at high CO2 pressures. An engineering concept using a CO2 pressure swing in a reactor has been recently published1. Once created,  the hydrous carbonate phases are unstable at temperatures higher than the formation temperature and transform to anhydrous polymorphs after a certain period of time. Thus, we have investigated the temporal stability of either phase at different temperatures in order to contribute to their life cycle assessment. Moreover, the transformation of ikaite and w-ACC to an anhydrous polymorph obliterates the effect of releasing alkalinity during spontaneous dissolution, which needs to be avoided. Our results show that at room temperature both phases dehydrate within hours when stored as wet powders after simple filtration. However, their stability extends to days when the physical adsorbed water is removed e.g. by rinsing with ethanol. A quantitative estimate of the kinetic rate of the hydrous-to-anhydrous phase transformation is currently being analyzed by Raman spectroscopy .

Our results also indicate that w-ACC has a higher dissolution rate than ikaite in seawater due to its higher specific surface area (>90m2/g). However, the efficiency of both hydrated carbonates in releasing alkalinity will be further analyzed to elucidate the effect of particle coagulation, particle sinking, and secondary precipitation phenomena. Nonetheless, our pilot results demonstrate that both ikaite and w-ACC are promising candidates for OAE, considering their potential in augmenting ocean alkalinity and CO2 sequestration.

 

1             Renforth, P., Baltruschat, S., Peterson, K., Mihailova, B. D. & Hartmann, J. Using ikaite and other hydrated carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation. Joule 6, 2674-2679 (2022). https://doi.org/10.1016/j.joule.2022.11.001

How to cite: Baltruschat, S., Bastianini, L., Millar, R., Mihailova, B., Foteinis, S., Thoutam, P., Lu, X., Hartmann, J., Yang, A., and Renforth, P.: Considering hydrous carbonates for ocean alkalinity enhancement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12695, https://doi.org/10.5194/egusphere-egu24-12695, 2024.

EGU24-13093 | Posters virtual | OS3.5

The impact of ocean liming on phytoplankton size-structure and the balance of photosynthesis and respiration in two contrasting environments 

Pablo Serret, Daniela Basso, Paraskevi Pitta, Iordanis Magiopoulos, Paulo Alcaraz, Alejandro Penín, Anastasia Tsiola, Filomena Romano, Arianna Azzelino, Piero Macchi, Silvia Valsecchi, Selene Varliero, and Jose González

Current efforts to reduce CO2emissions are being insufficient to decrease its atmospheric concentration and to avoid exceeding the warming threshold in the Paris agreement. Although reducing emissions remains essential, additional tools to limit global warming are being actively searched. These include methods to reduce the concentration of atmospheric CO2 by capturing it from the air (the so-called Negative Emissions Technologies, NET). Ocean Alkalinity Enhancement (OAE) is a potentially viable NET that consists on the addition of alkaline substances, including slaked lime (calcium hydroxide), to the ocean, which enhances the ocean’s capture of atmospheric CO2 and raises the pH of the seawater, thus countering ocean acidification. Beyond technological challenges to cost-effective OAE methods, a rigorous assessment of potential ecological and geochemical impacts is necessary. Ocean liming on the wake of ships is proposed as one of the most efficient ways for OAE. The discharge of slaked lime as a side activity of maritime traffic avoids the need of dedicated boats thus increasing the efficiency of OAE by reducing the amount of CO2 emitted to perform this technique. Nevertheless, this procedure can cause local pH peaks, which may have temporary and local effects on the pelagic ecosystem, e.g. by selecting less sensitive plankton species and promoting the growth of calcifiers, thus shifting the phytoplankton composition and the functioning of the whole plankton community. The impact of OAE on the structure and functioning of plankton communities is however poorly known.

Here we present results of the impact on phytoplankton biomass and plankton community metabolism (photosynthesis and respiration) of repeated additions of slaked lime (Ca(OH)2) during two mesocosm experiments in two contrasting coastal environments: the highly productive upwelling system of the Ría de Vigo (NW Spain) and the ultraoligotrophic eastern Mediterranean in Crete (Greece). The same experimental design was conducted at the CIM-ECIMAT (University of Vigo) and CRETACOSMOS (Hellenic Centre for Marine Research) facilities. Nine mesocosms were filled with natural coastal seawater. Three served as control, and Ca(OH)2 slurry additions were repeated on days 1,3,5 (Vigo) and 1,3,5,7,9,11 (Crete) to simulate the chronic disturbance expected from repeated discharges from ships. Two different concentrations of calcium hydroxide were used, with three replicates each. pH, O2, salinity, and temperature were recorded with a ten-minutes frequency. Size-fractionated chlorophyll a (0.2-2, 2-20, >20 μm) results indicate a dose-dependent effect on the phytoplankton community, with a differential response depending on the phytoplankton size-fraction. Gross primary production (GPP), community respiration (CR) and net community production (NCP) were determined from in vitro changes in O2 concentration after 24 h light and dark incubations. Preliminary results indicate that the trophic functioning of the plankton community was impacted only by the high slurry addition treatment (H), and more notably in the eutrophic ecosystem of the Ría de Vigo. The response, however, was similar in both experiments, with GPP decreasing to a greater extent than CR, which caused a reduction of NCP in the H with respect to the L and control mesocosms.

How to cite: Serret, P., Basso, D., Pitta, P., Magiopoulos, I., Alcaraz, P., Penín, A., Tsiola, A., Romano, F., Azzelino, A., Macchi, P., Valsecchi, S., Varliero, S., and González, J.: The impact of ocean liming on phytoplankton size-structure and the balance of photosynthesis and respiration in two contrasting environments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13093, https://doi.org/10.5194/egusphere-egu24-13093, 2024.

EGU24-13100 | Orals | OS3.5

Glacial rock flour is a potential source for marine carbon dioxide removal by stimulating phytoplankton growth 

Jørgen Bendtsen, Niels Daugbjerg, Kristina Vallentin Larsen, Clara R. Vives, Rasmus Dyrberg Dahms, Katherine Richardson, and Minik Thorleif Rosing

Glacial rock flour (GRF) is a fine-grained silicate mineral formed below the Greenland Ice Sheet where the bedrock is abraded to a fine powder. GRF is transported by meltwater into fjords and coastal waters and its dissolution in seawater is part of the natural cycling of material between continents and the ocean. It is present in large sedimentary deposits along the coast of Greenland. However, due to the relatively small size distribution of GRF (d50 ~ 2-5 µm) it has a relatively long residence time in the coastal surface layers and significant amounts reach the open ocean as suspended particulate material. As a silicate-rich material, also containing substantial amounts of micronutrients (e.g., iron and manganese), dissolution of GRF has the potential to both increase alkalinity and support phytoplankton growth. Therefore, it may be considered a source for large-scale marine CO2 removal (mCDR). In this presentation we focus on its potential for supporting phytoplankton growth. We present results from incubation experiments in the field with natural phytoplankton communities and from climate-regulated laboratory experiments with a single-species phytoplankton culture. Field-incubations (6 days) with a subtropical phytoplankton community showed a significant increase in photosynthetic activity (Fv/Fm) in treatments with GRF. Similar field-experiments with natural communities from an Arctic fjord in Greenland, with a high natural background concentration of GRF, showed a modest or a neutral response to further addition of GRF. Long laboratory incubation experiments (3 weeks) with an Arctic green alga showed a significant increase in both growth rate and photosynthetic activity in treatments with GRF. The growth increased gradually with increasing concentrations of GRF until saturation was reached. This response was consistent with a simple model of trace-metal limited growth where micronutrients (e.g., iron) is biologically mobilized from GRF during the incubation period. These results show that substances in GRF, likely trace metals, can be biologically mobilized on timescales of days to weeks and thereby support growth of phytoplankton. Thus, GRF may be a source for large-scale mCDR due to its potential for increasing ocean productivity and strengthening the biological pump.

 

How to cite: Bendtsen, J., Daugbjerg, N., Vallentin Larsen, K., R. Vives, C., Dyrberg Dahms, R., Richardson, K., and Thorleif Rosing, M.: Glacial rock flour is a potential source for marine carbon dioxide removal by stimulating phytoplankton growth, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13100, https://doi.org/10.5194/egusphere-egu24-13100, 2024.

EGU24-13685 | Orals | OS3.5

Ocean liming in eutrophic vs. ultraoligotrophic environments and the response of algal calcifiers 

Daniela Basso, Pietro Bazzicalupo, Selene Varliero, Jose González, Pablo Serret, Paraskevi Pitta, Paulo Alcaráz, Alejandro Penín, Piero Macchi, Guido Raos, Eleonora Barbaccia, Iordanis Magiopoulos, Anastasia Tsiola, Filomena Romano, Silvia Valsecchi, and Arianna Azzellino

Our commitments to limit future global warming to below 2°C of the pre-industrial level are clashing with demonstrably insufficient present-day efforts to reduce CO2 emissions. The development and implementation of Negative Emission Technologies (NETs), enabling a massive and fast CO2 Removal (CDR), represent the most promising strategy to support an effective mitigation of the ongoing climate change within the next decade. Marine CDR (m-CDR) encompasses those technologies exploiting the ocean CO2 storage potential, and there is an increasing number of international initiatives aimed at assessing their possible impact on marine communities. Ocean liming consists in spreading alkaline substances, such as calcium hydroxide (slaked lime), on surface ocean waters. Slaked lime reacts with surface marine waters by triggering m-CDR from the atmosphere and ocean alkalinity enhancement, thus contrasting ocean acidification. Although ocean liming has already been assessed as chemically effective and economically sustainable, the scientific scrutiny of its potential impacts on the ocean biota has just started. Previous laboratory and mesocosm experiments showed the occurrence of transient pH peaks, which may impact the pelagic ecosystem by selecting less sensitive species, and runaway precipitation of aragonite particles after concentrated and repeated liming, which reduces the efficiency of CDR and negatively affects both plankton and benthos by mechanical clogging and choking. Nutrients exert a major control on primary producers, and higher salinity may affect the carbonate kinetics by facilitating CaCO3 precipitation. For these reasons, two mesocosm experiments of liming, funded by the EU2020 project AQUACOSM-plus and the OACIS-initiative of the Fondation-Prince-Albert-II-de-Monaco, were conducted with a comparable experimental design at the CIM-ECIMAT (University of Vigo) and CRETACOSMOS (Hellenic Centre for Marine Research) facilities. The aim was to contrasting the response to ocean liming of the eutrophic Ría de Vigo upwelling system (eastern Atlantic) and the eastern Mediterranean ultraoligotrophic and more saline setting. The preliminary results of repeated additions of slaked lime in the two different types of marine coastal waters, and the response of calcareous nannoplankton and benthic calcareous red algae (coralline algae) to the observed chemical changes are presented here, suggesting the need to optimize and modulate the mCDR techniques, in order to meet the specific geochemical and biological characteristics of the different water bodies.

How to cite: Basso, D., Bazzicalupo, P., Varliero, S., González, J., Serret, P., Pitta, P., Alcaráz, P., Penín, A., Macchi, P., Raos, G., Barbaccia, E., Magiopoulos, I., Tsiola, A., Romano, F., Valsecchi, S., and Azzellino, A.: Ocean liming in eutrophic vs. ultraoligotrophic environments and the response of algal calcifiers, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13685, https://doi.org/10.5194/egusphere-egu24-13685, 2024.

EGU24-13727 | ECS | Posters on site | OS3.5

The effects of near-surface turbulence on CO2 flux at the ocean-atmosphere boundary  

Josiane Ostiguy, Ruth Musgrave, Graigory Sutherland, Douglas Wallace, and Anneke ten Doeschate

Ocean alkalinity enhancement (OAE) seeks to store carbon in the ocean as bicarbonate or carbonate ions and thus accelerates CO2 uptake from the atmosphere. Near-surface ocean turbulence is an important driver of CO2 uptake by the ocean as it affects the rate at which air-sea gas exchange occurs. Turbulent mixing can also cause high alkalinity water to sink out of the mixed layer, where it will no longer be in contact with the atmosphere. In this presentation we will show the results of high resolution numerical simulations in which alkalinity and dissolved inorganic carbon are advected in a turbulent mixed layer. By coupling the physics to a simple carbonate system solver, we evaluate the potential impact of surface turbulence on CO2 flux into the ocean. We explore the impact of ocean surface processes on the evolution and downwards diffusion of a surface alkalinity addition as influenced by different wind, temperature and precipitation conditions. The CO2 flux is computed according to both an empirical and a physically derived parameterization, and an estimate of the sensitivity of the total CO2 flux to the choice of parameterization is presented.

How to cite: Ostiguy, J., Musgrave, R., Sutherland, G., Wallace, D., and ten Doeschate, A.: The effects of near-surface turbulence on CO2 flux at the ocean-atmosphere boundary , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13727, https://doi.org/10.5194/egusphere-egu24-13727, 2024.

EGU24-14865 | Posters on site | OS3.5

Model-based assessment of the environmental impact of deployment of captured carbon (wood chips and calcium carbonate) on the bottom biogeochemistry in the Norwegian Sea 

Evgeniy Yakushev, Anfisa Berezina, Nicholas Roden, Andrew King, Tore Waaland, Anna Savage, and Alison Tune

The ocean is the largest natural carbon sink on our planet and provides a range of biological and chemical pathways by which this natural fast-to-slow carbon transfer occurs. This allows the elaboration of carbon removal systems aiming to shift carbon between the fast carbon cycles (years to decades) and slow carbon cycles (100s millions of years). An idea behind this project is to produce the carbon-containing “biomass” consisting of mixtures of sustainably sourced forestry residues (both hardwood and softwood), calcium carbonate, lime kiln dust, and water that is mixed and passively cured. This “biomass” should be deployed to the deep ocean bottom (Norwegian Sea); therefore, containing carbon should be excluded from the fast carbon cycle.

To investigate the spatial and temporal scales of the “biomass” potential negative impact on the water column and benthic biogeochemistry, we used a coupled model consisted from the FABM family C-N-P-Si-O-S-Mn-Fe biogeochemical model BROM and 2-dimensional benthic-pelagic transport model (2DBP), considering vertical and horizontal transport in the water and upper sediments along a transect centered on a impacted region. The model describes in detail the processes of organic matter mineralization in oxygen-depleted conditions that are vitally important for assessing biogeochemical impacts (i.e., denitrification, metal reduction, sulfate reduction). This model was previously used to investigate the impact of fish farming waste on the bottom biogeochemistry (Yakushev et al., 2020). In this study, we evaluated the maximum amount of the “biomass” that can be accumulated on the bottom surface without dramatic changes in the oxygen regime, acidification, and biogeochemistry that can negatively affect the ecosystem.

The work was supported by the Running Tide (https://www.runningtide.com/).

References:

Yakushev E., Wallhead Ph., Renault P., Ilinskaya A., Protsenko E., Yakubov Sh., Pakhomova S. Sweetman A., Dunlop K., Berezina A., Bellerby R., Dale T. 2020.Understanding the Biogeochemical Impacts of Fish Farms using a Benthic-Pelagic Model. Water, 2020, 12, 2384; doi:10.3390/w12092384

How to cite: Yakushev, E., Berezina, A., Roden, N., King, A., Waaland, T., Savage, A., and Tune, A.: Model-based assessment of the environmental impact of deployment of captured carbon (wood chips and calcium carbonate) on the bottom biogeochemistry in the Norwegian Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14865, https://doi.org/10.5194/egusphere-egu24-14865, 2024.

EGU24-15533 | Posters on site | OS3.5

Monitoring, reporting and verification for a marine carbon dioxide removal process: a case study 

Federico Comazzi, Stefano Cappello, Francesco Campo, Mario Grosso, and Stefano Caserini

To achieve ambitious climate change goal as the one set by the Paris Agreement, Carbon Dioxide Removal (CDR) processes should be deployed in addition to rapid emission reductions. The process of Monitoring, Reporting, and Verification (MRV) is pivotal to certifying the effectiveness of carbon removal technologies for a voluntary or regulated CDR market.

The MRV process consists of monitoring the amount of greenhouse gas removed by a CDR activity and reporting the results of the monitoring to a third party. The third party then verifies the reporting of the results.

MRV applied to marine CDR (mCDR) that are facing challenges to precisely count the positive impact of those technologies ensuring the additionality and the long term durability of the CO2 removal.

Here, the development and the application of a new mMRV protocol for a new approach to Ocean Alkalinity Enhancement (OAE) with equilibrated pH. The challenges faced and still to be addressed will be analyzed for all the steps of MRV, and the advantages in the discharge of a pH-equilibrated alkaline solution, compared to the traditional  OAE approach where a reactive substance such as slaked lime is discharged, are discussed.

A specific measuring procedure is established for assessing the net carbon removal through specific sensors for measuring parameters, i.e., pH, Turbidity, Suspended Solid, Conductivity, CO2 detector.

The procedure for the reporting phase, where data will be automatically managed by the process internal software are presented, as well as the Verification procedure, performed by a third-party certifier that will evaluate and verify the compliance of the process to the process’ specs.

How to cite: Comazzi, F., Cappello, S., Campo, F., Grosso, M., and Caserini, S.: Monitoring, reporting and verification for a marine carbon dioxide removal process: a case study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15533, https://doi.org/10.5194/egusphere-egu24-15533, 2024.

EGU24-15549 | ECS | Orals | OS3.5

Assessing the Mitigation Potential and Ecological Impacts of Carbon Dioxide Removal Technologies on Ocean Ecosystems 

Giang Tran, Aurich Jeltsch-Thömmes, David Keller, Andreas Oschlies, and Fortunat Joos

Climate change poses a critical threat to global ecosystems and human well-being, necessitating innovative solutions for carbon dioxide (CO2) mitigation. This study employs the UVic-ESCM, an Earth system model of intermediate complexity, to investigate the potential and possible side effects of two marine-based CO2 removal techniques, namely ocean alkalinity enhancement and macroalgae farming and sinking. Additionally, simulations from Bern3D-LPX for ocean alkalinity enhancement provide a model comparison.

Focusing on not only warming but also acidification and deoxygenation, the research aims to compare the theoretical deployment of these techniques in an emission-driven overshoot scenario (SSP5-3.4).To encompass uncertainty due to model parameters, we analyzed a perturbed parameter ensemble constrained by observations. Preliminary findings indicate that both techniques show promise in mitigating atmospheric CO2 concentrations, with variations in their effects on climate and oceanic conditions. Both techniques show small cooling potential despite the large-scale theoretical deployment. While they do not provide an alternative to emission reductions, they could be beneficial in combating other human-induced stressors in the marine ecosystem. Both techniques demonstrate a potential to counteract ocean acidification, but we find that macroalgae farming and sinking contributes to localized deoxygenation.

This study contributes to the ongoing discourse on so-called ‘nature-based’ solutions for climate change mitigation by offering a nuanced evaluation of the theoretical upper potential in multiple mitigation dimensions as well as side effects of ocean alkalinity enhancement and macroalgae farming and sinking. The outcomes aim to inform future research directions and decision-making processes towards the development of effective and ecologically sustainable carbon dioxide removal strategies.

How to cite: Tran, G., Jeltsch-Thömmes, A., Keller, D., Oschlies, A., and Joos, F.: Assessing the Mitigation Potential and Ecological Impacts of Carbon Dioxide Removal Technologies on Ocean Ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15549, https://doi.org/10.5194/egusphere-egu24-15549, 2024.

EGU24-15887 | ECS | Orals | OS3.5

Experimental studies on the stability of bicarbonate-enriched seawater solutions 

Selene Varliero, Federico Comazzi, Francesco Pietro Campo, Stefano Cappello, Giovanni Cappello, Stefano Caserini, Piero Macchi, and Guido Raos

The deployment of carbon dioxide storage is a challenge that must be overcome in order to reach the net zero emissions objective. Ocean alkalinity enhancement (OEA) is a promising method for removing carbon dioxide from the atmosphere and storing it pemanently in seawater as bicarbonates, with the co-benefit of counteracting ocean acidification. The challenge for future applications is ensuring a stable storage, avoiding adverse side effects on the environment or phenomena that can reduce efficiency, such as degassing of carbon dioxide and precipitation of alkaline minerals.

The work presented in this study investigates the stability of the carbonate system of seawater, after adding alkalinity by two different pathways. One is the simple addition of NaHCO3 to artificial seawater, on a laboratory scale. The other is a test on a more complex system, consisting of a pilot plant that uses natural seawater, CO2 and calcium hydroxide and produces a carbon-enriched solution at the same pH of natural seawater. We suggest safe levels for the increase of alkalinity and considering the dilution of the solution with seawater in natural environments. The results represent important steps towards the achievement of safe and efficient ocean-based carbon storage and OAE.

How to cite: Varliero, S., Comazzi, F., Campo, F. P., Cappello, S., Cappello, G., Caserini, S., Macchi, P., and Raos, G.: Experimental studies on the stability of bicarbonate-enriched seawater solutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15887, https://doi.org/10.5194/egusphere-egu24-15887, 2024.

EGU24-16102 | ECS | Orals | OS3.5

First assessment of the impact of pH equilibrated Ocean Alkanlinity Enhancement technology on marine biota in the Gulf of La Spezia (north-west Italy) 

Davide Calvi, Sara Groppelli, Francesco Campo, Federico Comazzi, Daniela Basso, and Stefano Cappello

Throughout the past decades, the rise of atmospheric carbon dioxide (CO2) levels has been one of the most important global issues. Higher CO2 concentrations contribute to a strengthened greenhouse effect, resulting in elevated temperatures and a severe acidification of the oceans.

Recently, the Intergovernmental Panel on Climate Change (IPCC) highlighted the need to develop CO2 removal approaches, as an essential support to mitigate the ongoing climate change. To this purpose, Negative Emission Technologies (NETs) are capable of extracting CO2 from the atmosphere, keeping it stored in geological reservoirs for long periods.

Among NETs, Limenet s.r.l. is proposing a pH equilibrated Ocean Alkalinity Enhancement (OAE) process which involves the permanent storage of carbon dioxide in seawater in the form of bicarbonates using calcium hydroxide and releasing a carbon enriched solution at the same pH of natural seawater. The life cycle assessment conducted on this process demonstrated that the advantages of CO2 capture and storage outweigh the greenhouse gas emissions produced by the entire process.

Although this technology is economically promising and the chemical analysis has shown that CO2 stored in the form of bicarbonates in the seawater is quite stable, it’s necessary to assess any possible impact of the pH equilibrated OAE on marine organisms. In light of this, the aims of this project are:

1) To assess the short-term response of the biota after the treatment.

2) To study the effects of a prolonged exposure to the treated water on planktonic and benthic communities through mesocosms experimentation.

All experiments are conducted in the Gulf of La Spezia (North-West Italy).

How to cite: Calvi, D., Groppelli, S., Campo, F., Comazzi, F., Basso, D., and Cappello, S.: First assessment of the impact of pH equilibrated Ocean Alkanlinity Enhancement technology on marine biota in the Gulf of La Spezia (north-west Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16102, https://doi.org/10.5194/egusphere-egu24-16102, 2024.

EGU24-17408 | Posters on site | OS3.5

Reactive transport modeling of the effects of seafloor sediment hydrodynamics on ocean alkalinization 

Murugan Ramasamy, Thorben Amann, and Nils Moosdorf

Coastal environments are pivotal in the global carbon cycle. Introducing alkaline materials, like olivine-rich rocks, for enhanced weathering and ocean alkalinity enhancement (OAE) holds promise for atmospheric carbon sequestration. Material weathering is incomplete in the water column but occurs significantly after deposition on the ground. This study elucidates the intricate geochemical processes that occur after deposition of the introduced olivine along coastal seabeds, focusing on the impact of mixing zones between terrestrial groundwater and saltwater in the sediment. These zones, where diverse water compositions converge, may promote rock dissolution, influencing OAE. The collective interaction of these factors with OAE remains insufficiently explored. 
Utilizing a 2D modeling approach with FEFLOW coupled with piChem software, our research comprehensively simulates dynamic coastal systems. The model, incorporating multi-component transport, assesses factors like flow rates, groundwater and seawater composition, alkaline material concentration, and sediment permeability, impacting carbon sequestration efficacy. Results showcase olivine settling dynamics, revealing varying times for different-sized grains to reach the seafloor. Notably, 10 µm olivine grains take about a month to settle in 1000 m water depth, while 100 µm grains settle within days. Preliminary findings highlight substantial mineral weathering on the seafloor, emphasizing hydrological conditions' significant influence. Discussions focus the implications of alkalinity transfer into the sediment, crucial for understanding overall process efficiency. This ongoing research emphasizes the need for a holistic understanding of geochemical dynamics in coastal environments to optimize carbon sequestration through OAE.

How to cite: Ramasamy, M., Amann, T., and Moosdorf, N.: Reactive transport modeling of the effects of seafloor sediment hydrodynamics on ocean alkalinization, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17408, https://doi.org/10.5194/egusphere-egu24-17408, 2024.

EGU24-18243 | ECS | Posters on site | OS3.5

Seasonal Variability in the Ocean Carbonate System under Ocean Alkalinity Enhancement  

Sandy Avrutin, Andreas Oschlies, and David Keller

Limiting global warming to 1.5°C requires comprehensive strategies that combine robust reductions in emissions with carbon dioxide removal techniques, such as ocean alkalinity enhancement (OAE). Ensuring effective implementation of OAE requires a thorough framework for monitoring, reporting, and verification (MRV). However, the natural variability of partial pressure of carbon dioxide (pCO2) in the ocean overshadows the changes anticipated from OAE (Ho et al. 2023), and seasonal variability is expected to escalate with ongoing warming (Gallego et al. 2018). This presents a challenge for MRV, and highlights the need to dissect the influences of both warming and OAE on seasonal carbonate chemistry, particularly in areas undergoing OAE. We examine how OAE alters the amplitude of these seasonal shifts compared to a control scenario with no OAE. Using an Earth System Model (FOCI; Matthes et al. 2020; Chien et al. 2022), We compare the impact on seasonal dynamics of CO2 flux, pCO2, pH, Alkalinity, and Dissolved Inorganic Carbon (DIC) when OAE is implemented in coastal areas vs open ocean and regions of upwelling vs regions of downwelling, with background emissions following either SSP126 or SSP370. In an example of uniformly and continuously deployed OAE on the European coastline, there is a reduction in the seasonal variance of ocean carbonate chemistry in comparison to the baseline, in both scenarios, for alkalinity, DIC, pH and fCO2. The amplitude in the seasonal cycle of air-sea CO2 flux is greater when OAE is implemented (66% difference between baseline and OAE scenarios by 2100 following SSP126, 60% following SSP370). Outside of the region where OAE is implemented, there is minimal difference on the amplitude of seasonal fluctuations in CO2 flux between the baseline and OAE scenarios, implying that in this case, the impacts of OAE are not far-reaching. This has important implications for MRV and national accounting strategies, with influx of CO2(and therefore air-sea flux) being one way of providing the basis to calculate carbon credits for OAE deployment (Bach et al. 2023).

David T. Ho et al. (2023). Monitoring, reporting, and verification for ocean alkalinity enhancement (A. Oschlies, A. Stevenson, L. T. Bach, K. Fennel, R. E. M. Rickaby, T. Satterfield, R. Webb, & J.-P. Gattuso, Eds.). https://doi.org/10.5194/sp-2-oae2023

Angeles Gallego et al. (2018). Drivers of future seasonal cycle changes in oceanic pCO2. Biogeosciences, 15(17), 5315–5327. https://doi.org/10.5194/bg-15-5315-2018

Matthes, K., et al. (2020). The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): Mean state and variability. Geoscientific Model Development, 13(6), 2533–2568. https://doi.org/10.5194/gmd-13-2533-2020

Chien, C. te et al. (2022). FOCI-MOPS v1 - integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model. Geoscientific Model Development, 15(15), 5987–6024. https://doi.org/10.5194/gmd-15-5987-2022

Bach, L. T. et al. (2023). Toward a consensus framework to evaluate air–sea CO2 equilibration for marine CO2 removal. Limnology And Oceanography Letters, 8(5), 685–691. https://doi.org/10.1002/lol2.10330

How to cite: Avrutin, S., Oschlies, A., and Keller, D.: Seasonal Variability in the Ocean Carbonate System under Ocean Alkalinity Enhancement , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18243, https://doi.org/10.5194/egusphere-egu24-18243, 2024.

EGU24-18363 | Orals | OS3.5

CO2 Removal Potential of Two Ocean-based NETs in Earth System Models in a Realistic Deployment Scenario 

Tommi Bergman, Timothée Bourgeois, Jörg Schwinger, Spyros Foteinis, Phil Renforth, Miriam Seifert, Judith Hauck, David Keller, Helene Muri, and Antti-Ilari Partanen

Negative emission technologies (NETs) are an integral part of most climate change mitigation scenarios limiting global warming to 1.5 °C above pre-industrial levels. Several different NETs have been proposed, including ocean alkalinization and direct CO2 removal which have been considered as methods with high carbon removal potential. In ocean alkalinization partial pressure of CO2 sea surface is reduced by spreading alkaline material and in direct removal of CO2 it is extracted from sea water and transported to permanent reservoir. To date, most studies on ocean-based NETs with Earth System Models have been
 based on idealized scenarios where atmospheric carbon is either simply removed by prescribed amount or some NET is deployed at magnitudes that would be extremely challenging to reach if any economic, technical, or political constraints were considered.

In this work, we present Earth System Model simulations using a more realistic global deployment scenario for ocean alkalinization with CaO dispersed at ocean surface in the exclusive economic zones of US, Europe, and China. The dispersion scenario is based on current excess capacities in the lime and cement industries in these three regions, and high-end projections on how they could evolve until 2100. We use the high-overshoot SSP5-3.4-OS as the socioeconomic background scenario. We simulate the deployment scenarios with several Earth System Models. We will show results from simulations with alkalinity enhancement deployment initiated in 2030 and 2040. Furthermore, we compare these results with simulations of direct removal of CO2. Here, the direct removal is calculated from the added alkalinity using approximation for CO2 uptake factor using the relation between alkalinity and dissolved inorganic carbon.

The results show that the CO2 is being removed from the atmosphere to oceans after the alkalinity deployment. Compared to the control simulation the global CO2 concentration is reduced by about 7 ppm in the deployment scenario starting in 2030 and about 4 ppm in the deployment scenario starting 2040 by end of the century. For real life deployment the efficacy and detectability of the alkalinity enhancement is a major concern. We will show that the temperature change in the earlier deployment scenario (higher removal potential) cannot be distinguished from the annual variability illustrating the problem in detectability. Furthermore, the simulations show the deployment must be constrained in regions with low oceanic transport to inhibit the precipitation of CaCO3 to retain the CO2 removal potential.

Using a more realistic scenario for ocean alkalinization we can give a more realistic assessment of its climate effects and explore new research questions such as detectability of local changes in pH or carbon fluxes with slowly increasing deployment rates. In the realistic deployment scenario, ocean alkalinization decreases the CO2 concentration but does not produce a large signal in the temperature. Therefore, this method can be seen as having potential but its role in removing carbon from the atmosphere is limited, according to these scenarios. Furthermore, the wider effects on the Earth system still require more analysis.

How to cite: Bergman, T., Bourgeois, T., Schwinger, J., Foteinis, S., Renforth, P., Seifert, M., Hauck, J., Keller, D., Muri, H., and Partanen, A.-I.: CO2 Removal Potential of Two Ocean-based NETs in Earth System Models in a Realistic Deployment Scenario, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18363, https://doi.org/10.5194/egusphere-egu24-18363, 2024.

EGU24-18538 | Orals | OS3.5

Ocean liming in the oligotrophic Eastern Mediterranean: impact on the planktonic microbial food web 

Paraskevi Pitta, Iordanis Magiopoulos, Filomena Romano, Anastasia Tsiola, Christos Chantzaras, Jose Gonzalez, Pablo Serret, Silvia Valsecchi, Selene Varliero, Daniela Basso, Arianna Azzellino, Eleonora Barbaccia, Claudia Traboni, Ariadna C. Nocera, Justine Courboules, and Manolis Tsapakis

Ocean Alkalinity Enhancement (OAE) allows for active removal of atmospheric CO2, therefore is considered as one of the most promising Carbon Dioxide Removal (CDR) technologies. OAE could be obtained by discharging alkaline material in the wake of ships, however very little is known on potential negative effects on marine communities. We report here the first study focusing on the response of the entire pelagic microbial food web to the addition of calcium hydroxide in real oligotrophic conditions. In a mesocosm experiment performed at the CretaCosmos facility in Crete, Greece, in May-June 2023, we tested the response of the eastern Mediterranean oligotrophic waters to two different treatments of calcium hydroxide slurry addition (SL; High and Low concentrations, three replicate mesocosms each), while three more mesocosms served as Controls (no addition). Mesocosms, filled with natural coastal seawater, were treated with slurry on days 1, 3, 5, 7, 9, 11 to simulate the chronic disturbance, expected from repeated discharge of SL from ships; while the possible precipitation of carbonate crystals was assessed by putting a sediment trap at the bottom of each mesocosm. The carbonate-equilibrium and dissolution-kinetics were monitored by measuring temperature, solution-conductivity, and changes in pH. Photosynthetically-Active-Radiation and visible light were monitored by sensors in each mesocosm. Plankton productions (bacterial, viral, secondary) as well as community composition of all plankton groups from viruses to copepods were assessed by optical microscopy, flow cytometry and metagenomics; chlorophyll was also measured. Although an important alteration of pH was observed in the High lime addition, only heterotrophic bacteria production was found to be negatively affected and only in the second half of the experiment. The rest of the plankton groups presented different patterns and not a clear response to the lime addition. This first attempt to study the effect of lime addition on the complex pelagic food web will serve as a first step to an extensive testing needed before any application of ocean liming at a large scale.

How to cite: Pitta, P., Magiopoulos, I., Romano, F., Tsiola, A., Chantzaras, C., Gonzalez, J., Serret, P., Valsecchi, S., Varliero, S., Basso, D., Azzellino, A., Barbaccia, E., Traboni, C., Nocera, A. C., Courboules, J., and Tsapakis, M.: Ocean liming in the oligotrophic Eastern Mediterranean: impact on the planktonic microbial food web, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18538, https://doi.org/10.5194/egusphere-egu24-18538, 2024.

EGU24-20226 | Posters on site | OS3.5

On the emission-scenario dependence of the efficiency of ocean alkalinity enhancement 

Jörg Schwinger, Timothée Bourgeois, and Wilfried Rickels

Ocean alkalinity enhancement (OAE) deliberately modifies the chemistry of the surface ocean to enhance the uptake of atmospheric CO2. Although it is known that the efficiency of OAE (the amount of CO2 sequestered per unit of alkalinity added) depends on the chemical background state of the surface ocean, the consequences of this dependency for simulated OAE scenarios have never been systematically explored. Here we show, using idealized and scenario simulations with an Earth system model (ESM), that under quadrupling of pre-industrial atmospheric CO2 concentrations, the simulated efficiency of OAE increases by about 30% from 0.76 to 0.98. We find that only half of this effect can be explained by changes in the sensitivity of CO2 sequestration to alkalinity addition itself. The remainder is due to the larger portion of anthropogenic emissions taken up by a high alkalinity ocean. Importantly, both effects are reversed if atmospheric CO2 concentrations were to decline due to large scale deployment of land-based (or alternative ocean-based) carbon dioxide removal (CDR) methods. By considering an overshoot pathway that relies on large amounts of land-based CDR, we demonstrate that OAE efficiency indeed shows a strong decline after atmospheric CO2 concentrations have peaked. Our results imply that methodological choices must be made if carbon credits for OAE are to be allocated based on simulated efficiencies.

How to cite: Schwinger, J., Bourgeois, T., and Rickels, W.: On the emission-scenario dependence of the efficiency of ocean alkalinity enhancement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20226, https://doi.org/10.5194/egusphere-egu24-20226, 2024.

EGU24-3603 | ECS | Posters on site | EOS4.3

Bridging the gap between climate scenarios and law - a roadmap for mutual contributions 

Haomiao Du, Edward Brans, Murray Scown, Hsing-Hsuan Chen, Vassilis Daioglou, Mark Roelfsema, Annisa Triyanti, Dries Hegger, Leila Niamir, Marleen van Rijswick, Liping Dai, Peter Driessen, Yann du Pont, Dennis van Berkel, and Detlef van Vuuren

To bridge the knowledge gap between climate scenarios and law, this presentation is aimed to demonstrate currently demanded mutual contributions by legal professionals and integrated assessment modellers on 1) how legal knowledge can be integrated into climate scenarios and 2) how scientific evidence generated from climate scenarios can better guide climate litigation cases. We expect that this could support judges in making trade-offs in climate-related court cases and could contribute to the acceptance of decisions by judges in such cases. Given the emissions gap and the measures that must be taken to comply with the Paris Agreement, the latter is likely becoming more relevant.

Regarding the first part, the results are based on an empirical research project on Improving the Integration of Legal Knowledge and Scholars in Climate Scenario Assessments (https://www.uu.nl/en/research/sustainability/improving-the-integration-of-legal-knowledge-and-scholars-in-climate-scenario-assessments) and a workshop  (https://www.uu.nl/en/research/sustainability/workshop-report-promoting-the-mutual-understanding-between-legal-and-governance-scholars-and-climate) resulted from this project held in May 2023. Via interviews and focus-group discussions with 24 experts in climate modelling, climate law and politics, and ethics, our research highlights four legal aspects for integration, which are: 1) implementation end enforcement of climate targets, 2) key normative principles, 3) legal uncertainties, and 4) the applicability of scenarios in regional and local legal contexts. Considering the challenges of integration due to epistemic distinctions between disciplines, experts held different opinions on the feasibility of integrating those four aspects. Regarding actionable steps for the short term, revising narratives and a ‘legal reality check’ are the most agreed ones. The former refers to adding legal obligations that safeguard justice, fairness and fundamental human rights - traceable to various treaties - to narratives of the global futures. The latter refers to scrutinising the ‘shared feasibility space’ between law on the one hand and modelled scenarios and emission reduction pathways on the other: it can be the compatibility of legal principles with modelled scenarios based on different assessment criteria (e.g. fair share of burdens), or to compare scenarios with and without regulatory boundary conditions in a specific jurisdiction on a specific mitigation solution (e.g. BECCS scenarios).

Regarding the second part, the currently ongoing research focuses on the adoption of authoritative scientific evidence from climate scenarios - typically the projections referred to in the IPCC reports - in climate litigation cases. First, inspired by the Daubert Criteria, this research explores the possibility of developing guidelines for judges to deal with scientific uncertainties contained in multiple projected futures and determining admissibility of scientific evidence. Second, seeing the increasing reference to ‘open norms’ (e.g. due diligence, fair share) and fundamental human rights (to private life or a healthy environment) in court cases, modelled scenarios could provide information for guiding judges in their interpretation of key concepts such as carbon budgets, fair share, emission gap, appropriate emission reduction obligations, and climate-induced harm and loss and damage. We expect that this could be beneficial to the supportability of judges' decisions in climate cases.

How to cite: Du, H., Brans, E., Scown, M., Chen, H.-H., Daioglou, V., Roelfsema, M., Triyanti, A., Hegger, D., Niamir, L., van Rijswick, M., Dai, L., Driessen, P., du Pont, Y., van Berkel, D., and van Vuuren, D.: Bridging the gap between climate scenarios and law - a roadmap for mutual contributions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3603, https://doi.org/10.5194/egusphere-egu24-3603, 2024.

EGU24-5662 | ECS | Posters on site | EOS4.3

Litigation challenging over-reliance on carbon dioxide removal requires quantitative feasibility assessment 

Oliver Perkins, Peter Alexander, Almut Arneth, Calum Brown, James Millington, and Mark Rounsevell

Carbon dioxide removal (CDR) is an emerging frontier in climate change litigation1. CDR must play an important role in achieving global climate targets, by compensating for hard-to-abate emissions (such as from international transport). Yet, over-reliance on CDR in government and corporate decarbonisation plans may serve as a strategy to commit to climate action on paper, whilst making inadequate present-day emissions’ reductions. Therefore, litigation may be necessary to highlight where CDR commitments contribute to a credible decarbonisation plan, and where they are primarily employed as a delaying tactic. Hence, litigation arguing that a given level of CDR deployment represents an unacceptable risk to the achievement of legal climate targets must have clarity around plausible levels of real-world delivery.

Land-based CDR methods, such as afforestation and bioenergy with carbon capture and storage, frequently appear in both modelled decarbonisation scenarios and government policies. Here, we argue that quantitative assessment of the feasible potential of land-based CDR is vital to the success of CDR-focused litigation. Firstly, we highlight key land system processes that will constrain real-world CDR delivery to levels well-below the techno-economic assessments presented in the IPCC 6th Assessment Report (AR6). These constraining processes include land tenure and food insecurity, monitoring and verification, and impermanence due to biophysical disturbances and policy change. Quantifying the likely impact of such factors can fast-track successful CDR litigation by demonstrating the scale of the gap between CDR pledges and plausible real-world potentials.

Further, after Perkins et al., 2, we outline research frameworks that can deliver a quantified feasible potential for land-based CDR within the IPCC AR7 process, and highlight emerging trans-disciplinary methods making progress towards this goal. These methods include geospatial coupled socio-ecological model ensembles, which can capture interactions and feedbacks between socio-economic and biophysical drivers in the land system at global scale. Typically, such ensembles include coupling of spatial agent-based models of land user behaviour with dynamic global vegetation models and non-equilibrium agricultural trade models - which can represent system shocks such as geopolitical instability and extreme weather events. We conclude by arguing that quantitative feasibility assessment must be made a high priority in CDR research to prevent widespread over-reliance on CDR in decarbonisation policies.

1. Stuart-Smith, R.F., Rajamani, L., Rogelj, J., and Wetzer, T. (2023). Legal limits to the use of CO2 removal. Science 382, 772–774. 10.1126/science.adi9332.

2. Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J.D.A., and Rounsevell, M. (2023). Toward quantification of the feasible potential of land-based carbon dioxide removal. One Earth 6, 1638–1651. 10.1016/j.oneear.2023.11.011.

How to cite: Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J., and Rounsevell, M.: Litigation challenging over-reliance on carbon dioxide removal requires quantitative feasibility assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5662, https://doi.org/10.5194/egusphere-egu24-5662, 2024.

EGU24-8458 | ECS | Posters on site | EOS4.3

Save the Climate but Don’t Blame Us: Corporate Responses to Climate Litigation 

Noah Walker-Crawford

Fossil fuel companies are no longer denying anthropogenic climate change in recent climate litigation but question the validity of climate science for establishing legal responsibility. Past research on social movement legal mobilization has primarily focused on plaintiffs’ perspectives, showing how they use the judicial process as a site of knowledge production. Drawing attention to the other side, I conduct an analysis of scientific disputes in major climate change lawsuits and develop a typology for studying defendants’ evidentiary arguments. Defendants build evidentiary counter-narratives, challenge the substantive quality of plaintiffs’ claims, and attack the scientific integrity of compromising evidence. Litigants’ legal narratives and factual claims are linked to broader normative concerns about how the underlying issues should be resolved. Fossil fuel companies’ legal arguments reflect broader strategies to evade responsibility for climate change.

How to cite: Walker-Crawford, N.: Save the Climate but Don’t Blame Us: Corporate Responses to Climate Litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8458, https://doi.org/10.5194/egusphere-egu24-8458, 2024.

EGU24-12601 | ECS | Posters on site | EOS4.3

Towards Evaluating the Financial Responsibility of Carbon Majors for Climate-Related Damages 

Marina Andrijevic, Carl-Friedrich Schleussner, Jarmo Kikstra, Richard Heede, Joeri Rogelj, Sylvia Schmidt, and Holly Simpkin

In light of the global energy crisis and escalating climate change impacts, the liability of major fossil fuel companies is receiving heightened scrutiny, particularly in the context of climate litigation. This study initially establishes the feasibility of attributing climate damages to these companies. Utilizing the social cost of carbon methodology, we evaluate the damages inflicted by the top 25 oil and gas emitters from 1985 to 2018, comparing these to their financial profits. Our central estimate suggests partial damages of approximately 20 trillion USD, with the companies’ financial gains surpassing this by 50%, totaling around 30 trillion USD. This indicates the potential of carbon majors to cover their attributed damages while maintaining significant profits. In our analysis, we also explore how varying approaches to assigning responsibility and handling uncertainties in climate damages can markedly influence these findings. Additionally, we explore the role of sovereign wealth funds in perpetuating fossil-fuel derived wealth and the ensuing liability questions.

How to cite: Andrijevic, M., Schleussner, C.-F., Kikstra, J., Heede, R., Rogelj, J., Schmidt, S., and Simpkin, H.: Towards Evaluating the Financial Responsibility of Carbon Majors for Climate-Related Damages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12601, https://doi.org/10.5194/egusphere-egu24-12601, 2024.

EGU24-15814 | ECS | Posters on site | EOS4.3

Quantifying the human-induced climate change impact on heat-related mortality events in Europe with Extreme Event Attribution Methods  

Thessa M Beck, Lukas Gudmundsson, Dominik L Schumacher, Sonia I Seneviratne, Hicham Achebak, and Joan Ballester

Numerous Extreme Event Attribution (EEA) studies have consistently shown that human-induced climate change has increased the likelihood of extreme heat events. The increasing relevance of these studies in the context of climate litigation underscores the demand for the quantification of climate change impacts. Heat, as the primary contributor to weather-related mortality on the European continent, has caused more than 61,000 heat-related deaths in Europe during the 2022 summer. We carry out this proof-of-concept study in which we apply Extreme Event Attribution methods combined with epidemiological models to quantify how anthropogenic warming has influenced extreme heat-related mortality events in Europe. In contrast to most health impact studies, we utilize open-access mortality data from Eurostat, which is available in near-real time.

Because of the complex, non-linear relationship between temperature and mortality, we conduct separate Extreme Event Attribution analyses for (i) temperature extremes and (ii) associated heat-related mortality events in 232 distinct administrative regions spanning over 35 European countries. Our findings reveal that the probability of the maximum weekly values observed in 2022 has increased 12-fold [95th CI 3.51-147.15] for temperature and tripled [95th CI 1.02-18.63] for mortality compared to the pre-industrial baseline. Notably, we identify significant geographical disparities, e.g. in Spain the mortality risk is even 30 times higher [95th CI 3.33 – 1218.14] due to anthropogenic warming.

We find a statistically significant trend in 70% [90%] of the regions at the 0.95 [0.90] significance level, and across all age and sex groups, except for women aged 65 years or less, indicating that anthropogenic warming affects almost the entire European population.

This study establishes a foundation for subsequent analyses, not only for heat-related mortality events observed on different temporal and spatial scales but also for enabling an examination of other weather events and associated health impacts. By combining climate sciences and techniques with epidemiology and health data, it is possible to calculate the contribution of climate change to changes in health risks and mortality burdens by sociodemographic categories, such as sex, age, socioeconomic level, or comorbidities, especially in vulnerable groups. This transdisciplinary work has to potential to provide key information for climate-related health lawsuits and opens the door to inter- and transdisciplinary perspectives on how to integrate geoscience and epidemiology insights in litigation.

How to cite: Beck, T. M., Gudmundsson, L., Schumacher, D. L., Seneviratne, S. I., Achebak, H., and Ballester, J.: Quantifying the human-induced climate change impact on heat-related mortality events in Europe with Extreme Event Attribution Methods , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15814, https://doi.org/10.5194/egusphere-egu24-15814, 2024.

EGU24-16721 | ECS | Posters on site | EOS4.3

Does climate change violate children’s rights? Investigating the use of scientific evidence in child and youth-led climate litigation 

Rosa Pietroiusti, Sam Adelman, Annalisa Savaresi, and Wim Thiery

Climate change is already increasing the frequency, intensity and duration of many extreme weather events around the world, as well as driving impacts on communities through slow-onset changes, and will continue to do so with each additional degree of warming. Young and future generations will face an ever-greater number of such events during their lifetimes, raising concerns regarding the intergenerational inequity inherent in climate change. In response to these concerns, child and youth-led climate litigation is emerging as an avenue to push for more ambitious climate policies at national and regional scales, by applying legal duties and obligations in a forward-looking way and presenting courts with  scientific evidence of observed and projected climate risks and impacts. Recent complaints led by young people, including, for example, Sacchi et al. v. Argentina et al., lodged in 2019 with the United Nations Committee on the Rights of the Child and Duarte Agostinho et al. v. Portugal et al., which was heard in 2023 by the European Court of Human Rights, have broken new ground by bringing the rights of children and future generations to the fore. Based on a review of recent and ongoing cases, we will investigate (i) what harms are claimed by youth plaintiffs, and (ii) whether, how and to what extent scientific evidence is used to support their claims. By comparing the cases in relation to their claims, jurisdictional frameworks, reference to human and/or children’s rights, and status, we will shed light on how youth applicants have addressed the main challenges of this specific category of climate litigation, including meeting the victimhood requirement, and what role evidence from the geosciences and other scientific fields has played.

How to cite: Pietroiusti, R., Adelman, S., Savaresi, A., and Thiery, W.: Does climate change violate children’s rights? Investigating the use of scientific evidence in child and youth-led climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16721, https://doi.org/10.5194/egusphere-egu24-16721, 2024.

EGU24-17250 | ECS | Posters on site | EOS4.3

From Glaciers to Courtrooms: Translating Natural Science Concepts into Legal Frameworks for Climate Litigation 

Randy Muñoz, Christian Huggel, Wilfried Haeberli, Martin Mergili, Adam Emmer, Lukas Arenson, and Matthieu Sturzenegger

The integration of natural science concepts into climate change litigation, particularly in cases related to glacier lake outburst floods (GLOFs) in mountainous regions like the Andes, faces significant challenges due to the differing nature of scientific and legal frameworks.

Scientific understanding of climate change impacts on phenomena such as GLOFs relies heavily on scenarios, modeling, and projections that evolve over time with advancements in technology and knowledge. These models need to be comprehensive, and consider an array of factors including glacier retreat, temperature changes and various risk factors. However, legal standards often require definitive proof of causation. There may arise a discrepancy creating  a gap in case of prevailing uncertainties inherent to high-mountain processes which may not always meet the exacting evidentiary requirements of litigation.

An illustrative example of this challenge is the case of a citizen in Huaraz, in the Andes of Peru, using a major German energy producer over the risks of a catastrophic flood from a GLOF at Lake Palcacocha. The German court’s decision to admit this case is groundbreaking in climate litigation. It implies a recognition of legal responsibilities of large emitters for potential losses and damages caused by anthropogenic climate change globally, provided a causal relation between emissions and risk can be established. This case exemplifies the challenge in linking complex scientific causation with legal accountability.

In the Palcacocha case, the German court defined to distinguish between i) the hazard and risk posed to the plaintiff in Huaraz, and ii) the attribution to anthropogenic climate change and the emissions produced by the defendant. Here we report on the geoscientific studies undertaken to analyze the hazard situation posed by potential rock and ice avalanches, impacting the glacial lake and producing potentially devastating floods in the city of Huaraz. Critical among other are concepts and methods to quantify probability of occurrence of an event, and the effect of cascading slope and mass flow processes.

In conclusion, the challenges in adapting natural science concepts for climate change litigation, particularly regarding GLOFs, stem from different concepts, standards of proof, and conceptual understandings in science and law. Bridging this gap is essential for effective climate litigation and requires innovative interdisciplinary approaches that facilitate the translation of scientific findings into legally cogent arguments. The framework, methods and standards we applied in the case of Palcacocha could serve for other litigation cases in similar environments, highly impacted and vulnerable to anthropogenic climate change. 

How to cite: Muñoz, R., Huggel, C., Haeberli, W., Mergili, M., Emmer, A., Arenson, L., and Sturzenegger, M.: From Glaciers to Courtrooms: Translating Natural Science Concepts into Legal Frameworks for Climate Litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17250, https://doi.org/10.5194/egusphere-egu24-17250, 2024.

EGU24-18367 | ECS | Posters on site | EOS4.3

Contributions of carbon majors to historical heatwaves 

Yann Quilcaille, Lukas Gudmundsson, Thomas Gasser, and Sonia I. Seneviratne

While human-induced climate change shows no sign of slowing down, calls to steer to a more sustainable path grow louder. Countries are sued for their lack of ambitious climate action, and high-emitting companies for their responsibilities. However, climate litigation is often impeded by the lack of scientific evidence directly relevant to the legal cases. Available attribution research can provide support for claims, but some key elements are still missing. First, event attribution studies are limited to a few selected events, depending on available researchers’ time and interests. Second, the contributions of high-emitting companies to recent extreme events has not yet been quantified. Here, we fill in both of these gaps. We present the first collective attribution of 149 historical heatwaves reported over the 2000-2021 period. We apply a well-established extreme weather attribution (Philip et al., 2020) to heatwaves reported in the EM-DAT database (EM-DAT, 2023). For each listed heatwave, we identify the event in observational data (ERA5, BEST) and CMIP6 data, then we estimate its occurrence probabilities for present and pre-industrial climate conditions. Subsequently, we calculate the contributions in global mean surface temperature of 110 fossil fuels and cement companies using their CO2 and CH4 emissions (Heede, 2014) and the reduced-complexity Earth system model OSCAR (Gasser et al., 2017). These contributions combined to the collective attribution allow for the calculation of the contributions of these carbon majors to all of the analyzed historical heatwaves. These carbon majors represent 76% of the CO2 emissions over 1850-2021, and half of this 76% is due to only six actors (nation-state of China for coal & cement; nation-state of the Former Soviet Union for coal, oil and gas; Saudi Aramco; Chevron; ExxonMobil; Gazprom). In terms of global mean surface temperature, these six majors contribute to 0.30°C, while the others contribute to an additional 0.34°C. The majority of heatwaves are made substantially more probable and intense due to these six carbon majors. Though, other carbon majors cannot be neglected, as their sole contribution may be enough to make some heatwaves possible. This attribution of a large number of heatwaves and the link to the contributions of the carbon majors will provide useful resources for climate litigation, paving the way towards their legal responsibility.

 

EM-DAT, CRED / UCLouvain: www.emdat.be, last access: 09.01.2024.

Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp, L., and Hauglustaine, D.: The compact Earth system model OSCAR v2.2: Description and first results, Geoscientific Model Development, 10, 271-319, 10.5194/gmd-10-271-2017, 2017.

Heede, R.: Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010, Climatic Change, 122, 229-241, 10.1007/s10584-013-0986-y, 2014.

Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177-203, 10.5194/ascmo-6-177-2020, 2020.

How to cite: Quilcaille, Y., Gudmundsson, L., Gasser, T., and Seneviratne, S. I.: Contributions of carbon majors to historical heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18367, https://doi.org/10.5194/egusphere-egu24-18367, 2024.

EGU24-19683 | Posters on site | EOS4.3

Four roles for geoscientists in climate litigation 

Wim Thiery, Rosa Pietroiusti, Annalisa Savaresi, and Stefaan Smis

The number of climate change lawsuits is exploding,  and so is the need for scientific evidence on climate change in courtrooms. Here we identify four roles that climate researchers can take up in light of these recent developments: expert witness, party support, amicus curiae, and litigation-relevant research. For each role, we highlight recent examples and best practices, as well as pitfalls and their overcoming. These examples overall highlight the urgent need for interdisciplinary research between climate science and legal scholars to bring both research communities closer together. In addition, and in activities where exchange with litigators takes place, it is critical that ingestion of scientific information occurs right from the start of the litigation process.

How to cite: Thiery, W., Pietroiusti, R., Savaresi, A., and Smis, S.: Four roles for geoscientists in climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19683, https://doi.org/10.5194/egusphere-egu24-19683, 2024.

EGU24-20599 | Posters on site | EOS4.3

How stocks judge COPs: market impacts of climate conferences 

Robin Lamboll and Alaa Al Khourdajie

This study investigates the impact of Conference of the Parties (COP) meetings on the stock prices of oil companies and the broader implications for renewable energy sectors to examine the relationship between international climate negotiations and market responses in the energy sector. The analysis focuses on stock price movements and volatility within the oil and renewable energy industries. We look at the data of the 10 largest stocks in each category and investigate their behaviour during COP. The findings indicate that, with the exception of notable negative stock price movements during COPs 20 and 21 (before and during the signing of the Paris Agreement), COP meetings generally do not significantly influence the value of oil companies. There is also no impact on oil prices during COP itself, though some sign of disturbance in the period immediately afterwards. The study also addresses the renewable energy sector, finding no strong effects from most COP meetings but a notable decrease in stocks during COP6's failure. We conclude that the majority of COPs have not produced market signals indicating a green transition, although these signals are potentially detectable.

How to cite: Lamboll, R. and Al Khourdajie, A.: How stocks judge COPs: market impacts of climate conferences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20599, https://doi.org/10.5194/egusphere-egu24-20599, 2024.

The Climate Litigation Network supports national organisations that are taking litigation action against their governments in respect of the adequacy and implementation of national climate policies and targets. This presentation will provide an overview of the role in science in climate cases that challenge governments’ overall emissions reductions (“framework cases”) – of which there are more than 100 globally. Drawing from a litigator’s perspective, it will address common legal questions (i.e., harm, causation, foreseeability and remedies) that arise in such cases, and provide examples of how science has been used in case studies. 

Across framework cases, scientific evidence has been critical to success. For example, many cases, including those based on human rights or tort law, require claimants to show how they have been impacted or have suffered harm. In this regard, supporting studies range widely, depending on the facts of the case. These could include studies concerning extreme weather events, flooding, landslides, impacts on crop production and availability to water, and impacts on health or culture. To establish legal liability, claimants typically must show that the government’s actions can be causally linked to the harm, and that the harm was foreseeable. In this regard, attribution science and climate science generally can play a role in evidencing why government action (or lack of action) is contributing to climate change impacts. In terms of remedies, several cases have sought to push governments to adopt emissions reduction targets that reflect their “fair share” of the remaining global carbon budget. Numerous fair share methodologies have been developed by academics, many of which seek to reflect obligations and principles set out in the United Nations Framework Convention on Climate Change and international environmental law. In some cases, there may also be questions concerning loss and damage, which could require detailed analyses of how much damage has been incurred, or could be incurred in future, due to the impacts of climate change.

Drawing on case studies from specific cases, this presentation will highlight the current deployment of science in climate cases against governments and explore new frontiers.

How to cite: Williamson, A.: Challenging governments’ response to the climate crisis: the role of science in climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21949, https://doi.org/10.5194/egusphere-egu24-21949, 2024.

EGU24-221 | ECS | Orals | SSS5.2

Effects of Contrasting Organic Amendments on Carbon Stability and Soil Carbon Dynamics in Acidic and Alkaline Soils  

Sara M. Pérez-Dalí, Águeda Sánchez-Martín, Jorge Márquez-Moreno, Jose A. González-Pérez, Layla M. San-Emeterio, and José María de la Rosa

The application of organic amendments, both traditionally utilized (e.g., compost) and more recent innovations (e.g., biochar), to degraded agricultural soils is being driven by international initiatives in the current context of global change, such as the "4 per mil initiative". The main goal is to achieve sustainable soil quality restoration, contributing to carbon (C) sequestration, while also providing a practical use and value addition to agro waste products. Despite the generally recognized benefits of such applications on soil productivity and physical properties [1,2], their effects on soil C cycling and sequestration are not as comprehensively understood. Results exhibit considerable variability depending on the type of amendment and the specific soil, emphasizing the need for a more in-depth investigation in this area [3]. Therefore, the aim of this study was to analyze the effects of contrasting organic amendments on soil carbon stability.

To accomplish this, two soils commonly employed in humid grasslands of the northern region and rainfed agriculture in the southern region of the Iberian Peninsula, respectively, were amended in triplicate at 10% (w/w) with wastewater sludge biochar, olive pomace biochar , white poplar wood biochar, rice husk biochar, cow manure digestate, a mixture of cattle manure and straw digestate (CM&SD), green compost (GC), and a mix of GC and OPB. A control was also established for each type of soil. After inoculating all the vessels with 1 mL of a standard microbial solution, respiration rates (CO2 emissions) were measured every 6 h over 100 days using an automated respirometer (Nordgren Innovations, Sweden) under controlled conditions (25°C; 60% water holding capacity). The data obtained were plotted against the incubation time by an exponential curve to discern the C stability through fast and slow C pools.

Our findings revealed significantly enhanced stability of recalcitrant carbon (slow C pool) in both soils treated with biochars, particularly in the case of RHB and WB. These amendments substantially extended the mean residence time of the slow C pool (MRT2) by a factor of six to nine. The overall trend observed for the studied amendments was as follows: biochar >> green compost >> digestates > native soil carbon. In contrast, the alkaline rainfed soil exhibited a faster carbon turnover rate compared to the grassland soil, resulting in a lower C MRT2.

Acknowledgements:  The Spanish Ministry of Science and Innovation (MCIN) and AEI are thanked for funding the project RES2SOIL (PID2021-126349OB-C22). The European Joint programme EJP SOIL from the EU Horizon 2020 R&I programme is thanked for funding the subproject EOM4SOIL (Grant agreement Nº 862695).

References:
[1] De la Rosa, J.M., Pérez-Dalí, S.M., Campos, P., Sánchez-Martín, Á., González-Pérez, J.A., Miller, A.Z., 2023. Agronomy, 13, 1097.
[2] Doblas-Rodrigo, A., Gallejones, P, Artetxe, A., Merino, P., 2023. Sci. Total Environ., 901, 165931.
[3] De la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Sci. Total Environ., 613-614, 969-976.

How to cite: Pérez-Dalí, S. M., Sánchez-Martín, Á., Márquez-Moreno, J., González-Pérez, J. A., San-Emeterio, L. M., and de la Rosa, J. M.: Effects of Contrasting Organic Amendments on Carbon Stability and Soil Carbon Dynamics in Acidic and Alkaline Soils , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-221, https://doi.org/10.5194/egusphere-egu24-221, 2024.

ABSTRACT

Nowadays, due to high population pressure more fragile lands are put into farming which then leads to low crop yield, loss of biodiversity and above all contributing to increased greenhouse gas emissions. This two year study (2020-2021) evaluated the potential of legume green manure (GM) species in improving soil fertility and barley yield, and their ability to effectively sequester soil organic carbon (SOC) towards reducing greenhouse gas emissions. The GM crops; lupine and vetch were planted during the main rainy season on the land that previous barley crop was harvested and left bare and fallow. The green manures crops were chopped and ploughed under at their 50% flowering stage and the main test crop, barley was introduced during the next cropping season. The treatments included (i) vetch GM, (ii) vetch GM + 23N + 20P, (iii) lupine GM, (iv) lupine GM + 23N + 20P, (v) fallow, (vi) fallow + 46N + 20P laid down in RCBD design with three replications. The N rate used was half when integrated with the GM species but full dose with the fallow system, whereas P was full dose. Results showed that barley grain & biomass yields were increased by 3.7 to 39.8% and 10.66 to 38.58%, respectively due to the application of the GM crops. The highest grain yield (4.1 t ha-1) and biomass yield (10.1 t ha-1) were recorded from vetch + NP application while the least grain yield (2.94 t ha-1) & biomass yield (7.24 t ha-1) were registered from the traditional fallow system. Green manure addition has brought 25 to 95.41% SOC relative change in the top 0-20cm soil depth compared with the traditional fallow system. Since both GM species are legumes, they added more N to the soil alongside with storing more C in the soil so that C: N ratio was also not affected. The highest carbon sequestered was from sole application of vetch GM (26.18 t C ha-1 yr-1) followed by vetch + NP applications (22.82 t C ha-1 yr-1). Lupine GM alone sequestered 9.24 t C ha-1 yr-1 and lupine + NP sequestered 6.86 t C ha-1 yr-1. The carbon balance in the fallow and fallow + NP combinations were negative (-0.98 and -1.40 t C ha-1 yr-1, respectively) indicating that there was C loss to the atmosphere. Therefore, application of vetch and lupine GMs with and/or without inorganic fertilizer integration had positively contributed towards improving the yield of barley and sequestering more C as compared to the local fallow practice.

How to cite: Debele, G. G., Kassie, K., and Getachew, T.: Improving Carbon Sequestration and Yield of Barley (Hordeum vulgare) through Combined Application of Green Manure and Mineral Fertilizers under Cambisols in Ethiopian Highlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-802, https://doi.org/10.5194/egusphere-egu24-802, 2024.

EGU24-1004 | Posters on site | SSS5.2

Comparative effect of incorporated and surface spread crop residues, poultry manure and their biochars on soil health indicators along a soil profile  

Tanvir Shahzad, Rummana Basit Mir, Umme Aiman Fiaz, Huma Shahid, Fiza Arshad, and Muhammad Sanaullah

Biochar is being touted as a wonderful amendment for improving soil health. However, its effectiveness for alkaline soils that are poor in organic matter has rarely been evaluated, particularly in long term field experiments. We laid down a field experiment based on wheat-maize crop rotation where we either incorporate or spread on surface the residues of the previous crop (wheat or maize), poultry manure or biochar(s) derived from these organic amendments. They are applied at the rate of 2 tons ha-1 before sowing each crop. It was hypothesized that the organic amendments applied in their feedstock or biochar form will considerably differ in space and time vis-à-vis soil health indicators. Moreover, tillage (incorporation i.e., conventional tillage vs surface spreading i.e., no tillage) would significantly alter the effect of these organic amendments. Over two years and four cropping seasons, the CO2-C emissions from the field were significantly higher (12-17%) when residues or biochar were incorporated. However, the feedstocks (residues/manure) induced significantly higher CO2-C emissions than their respective biochars across the tillage treatments (13-23%). Furthermore, the ammonia emissions were significantly reduced when biochars were added (5-11%) where surface spreading, or incorporation didn’t induce any difference. First soil sampling was done till 75 cm in depth increments of 15 cm, after two years of the experiment (Nb: the experiment is running). Microbial biomass (MBC) was significantly higher in upper layers (0-15 cm, 15-30 cm) in the plots incorporated with residues while all other amendments or tillage treatments showed similar MBC. No change in MBC was observed below 30 cm in any treatment. The soil organic carbon content (& stocks) were slightly but significantly higher (by 5-14%) in upper layers where biochars were incorporated, whereas incorporating residues increased soil organic carbon compared to biochar surface spreading. The extracellular enzymatic activity particularly of β-glucosidase, was significantly altered to 60 cm in some treatments with residue addition (incorporation or spreading) inducing higher activity. The leucine aminopeptidase activity remained unchanged throughout the soil profile in most of the treatments. However, chitinase activity was significantly higher in some biochar amended soils. These preliminary results indicate that residues/manure as well as their biochar significantly improve soil health indicators and that their method of application (incorporation vs spreading) significantly alter their effects. However, it must be noted that both types of amendments have improved different soil health indicators at this stage of the experiment.  

How to cite: Shahzad, T., Mir, R. B., Fiaz, U. A., Shahid, H., Arshad, F., and Sanaullah, M.: Comparative effect of incorporated and surface spread crop residues, poultry manure and their biochars on soil health indicators along a soil profile , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1004, https://doi.org/10.5194/egusphere-egu24-1004, 2024.

EGU24-1152 | ECS | Orals | SSS5.2

Soil moisture determines dead wood effects on soil organic matter in temperate beech forests 

Robin Schäfferling, Lilli Zeh, Patrick Wordell-Dietrich, Alina Azekenova, Alexandra Koller, Kenton Stutz, Karl-Heinz Feger, Stefan Julich, Goddert von Oheimb, and Karsten Kalbitz

Dead wood has important functions in forest ecosystems. It is a biodiversity hot spot, serves as a storage of water and stores 8% (73 +- 6 Pg) of the world’s forest carbon (Pan et al., 2011). The fate of this carbon (C) is still highly debated particularly concerning its influence on soil organic matter (SOM) and its contribution to the forest soil’s C sink. The aim of this research is to investigate how downed beech dead wood affects the stable soil C pool of temperate beech forests, and how this depends on soil moisture.

The research was conducted in a near natural beech forest near Leipzig, Germany (Dübener Heide) and is part of the BENEATH-Project. We sampled three sites representing a soil moisture gradient, i.e. dry, intermediate (i.e. moist) and wet conditions. Undisturbed soil cores were taken from these sites in three depth (0-10 cm, 10-20 cm and 20-30 cm) beneath dead wood at an advanced stage of decay. Reference soils were sampled at a distance of about 2 m. Soil moisture and soil temperature are constantly monitored. We applied a physical fractionation scheme to identify the effects of dead wood on differently stable SOM fractions. The samples were separated in the free light fraction (F-LF), the occluded light fraction (O-LF) and the heavy fraction (HF) via density fractionation using sodium polytungstate solution (ρ =1,6 g cm-³). For each fraction, the organic C and N contents were determined.

Our results indicate a positive influence of dead wood on SOC stocks in the dry and wet regions of our soil moisture gradient. In the intermediate region of the soil moisture gradient, dead wood has no or even a negative effect on SOC stocks. Changes in the SOC content under dead wood compared to the reference soil occurred manly in the F-LF and HF fraction at 0 cm and 10 cm depth. The observed pattern of dead woods effect on SOC along the moisture gradient is suggested to be a result of the relationship between soil moisture and microbial activity. According to the literature, we assume that the microbial activity should be highest in the intermediate moist soil and to some extent inhibited under either wet or dry conditions. In this case, it is not the input but the rate of decomposition that changes with soil moisture, resulting in a different net increase in SOC. To test our hypothesis, we attempt to estimate the theoretical time of effective microbial decomposition per year based on soil moisture and soil temperature data for our three sites. Correlation analysis will be used to test this indicator of microbial activity for the effect of dead wood on SOC.

Our results should sharpen the picture of the dead wood’s role for long-term C stabilization in forest soils and how this process is affected by differences in the soil moisture status. They will give implications for climate mitigating forest management.

How to cite: Schäfferling, R., Zeh, L., Wordell-Dietrich, P., Azekenova, A., Koller, A., Stutz, K., Feger, K.-H., Julich, S., von Oheimb, G., and Kalbitz, K.: Soil moisture determines dead wood effects on soil organic matter in temperate beech forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1152, https://doi.org/10.5194/egusphere-egu24-1152, 2024.

EGU24-1321 | ECS | Posters on site | SSS5.2

A demonstration of the compositional stability of saline-hosted sedimentary carbon in a coastal wetland 

Mollie Lowrie, Mark Schuerch, Jack Lacey, and Daniel Magnone

Tidal wetlands sequester around ~4.8-87.2 Tg of carbon per year1 and represent approximately 25% of the global carbon sink, as a result of high inputs of organic matter and slow below-ground decomposition. The rate of carbon storage is hypothesised to be linked to the composition, particularly the relative oxidation, of soil organic carbon and the relationship with the sediment mineral matrix. The complex and dynamic biogeochemical processes governing tidal wetland carbon are not yet fully understood and therefore, the aim of this research was to understand how the composition of organic material varies across a tidal wetland and how this in turn is related to source, mineralogy and salinity.

Topsoil (0-20cm) and subsoil (20-40 cm) samples were collected from three marshes along a transect representing a salinity, inundation and elevation gradient and were analysed to assess the variations of SOC source, prevalence and composition, as well as the influence of salinity and sediment mineral composition on SOC stabilization.

SOC in the saline environments was highly oxidised with a low oxidation potential and thus had a particularly stable composition. In contrast, the carbon in the freshwater marsh was significantly less oxidised and thus demonstrated a greater potential for CH4 and CO2 emission. Carbon isotope (δ13C) and C:N analysis revealed that the SOC in all sites was produced in-situ by C3 plants, but highlighted differences between the photosynthetic pathway of the vegetation in each marsh. The freshwater marsh carbon was also more δ13C depleted, indicative of methane-consuming organisms and we hypothesise this variation in production pathway links to oxidation state.  

The compositional stability of SOC affected overall concentrations with the highest concentration of SOC in the first 20 cm of sediment in the high saltmarsh (between 0.35% and 5.34% w/w) and the lowest concentration of SOC in the lower 20-40 cm of sediment of the freshwater marsh (0.4% - 2.7% w/w). SOC prevalence is also positively associated with Fe-Al clay minerals, which was the dominant sediment type in the saltmarshes, whereas the freshwater marsh was predominantly siliceous sediment.

We conclude that the relative stability and concentration of SOC is greatest in the saltmarshes compared to the freshwater marsh. This aligns with emerging theory that mineral association is an important pathway of SOC stabilisation, and that salinity may exhibit a positive effect on cation bridging between organic material and mineral surfaces.

Acknowledgements: This project received funding from the National Environmental Isotope Facility (# 2656.0424).

References: Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Frontiers in Ecology and the Environment, 9, 552–560, https://doi.org/10.1890/110004, 2011. 

How to cite: Lowrie, M., Schuerch, M., Lacey, J., and Magnone, D.: A demonstration of the compositional stability of saline-hosted sedimentary carbon in a coastal wetland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1321, https://doi.org/10.5194/egusphere-egu24-1321, 2024.

EGU24-1635 | ECS | Posters on site | SSS5.2

The impact of land use change on soil organic carbon pools: A multi-method assessment 

Marcus Schiedung, Pierre Barré, and Christopher Poeplau

Soil organic carbon (SOC) is significantly affected by land use change (LUC), which can lead to either SOC losses or gains. In consequence, LUC is a major controlling factor of total SOC contents and its dynamics. In general, LUC from forest or grassland to permanent cropland results in losses of SOC, while the reverse can result in long-term gains. Several methods have been developed to assess distinct SOC pools. This includes particle size separation, thermal analysis and soil reflectance spectroscopy. The responses of such defined SOC pools to LUC have rarely been studied comprehensively, while doing so is a straightforward way to reveal their biogeochemical relevance. Here we used 23 sites covering six different LUC (i.e. forest-cropland, grassland-cropland, grassland-forest, cropland-grassland, cropland-forest and cropland-perennial Miscanthus) to assess SOC pool changes. We used particle size fractionation to obtain coarse (>50µm) and fine (<50µm) fractions and Rock-Eval 6 analysis to estimate active and stable SOC pools. Additionally, we used mid-infrared spectroscopy (Diffusive Reflectance Infrared Fourier Transformed Spectroscopy (DRIFT)) on bulk soils and particle size fractions to determine the relative SOC composition.

All methods identified kinetically different SOC pools across all LUC. The fine particle size fraction, representing a stabilized and slow cycling SOC pool, was more responsive to LUC compared to the stable pool estimated using Rock-Eval. Assessing the relative changes of total SOC and organic carbon contents of the fractions across all LUC, showed that the fine particle fraction follows closely the total SOC changes (R2=0.91 with slope of 0.77). In comparison, the stable pool extracted by Rock-Eval was less dynamic (R2=0.72 with a slope of 0.43). Absolute changes in bulk SOC were well described by the absolute organic carbon change of extracted Rock-Eval pools (active: R2=0.99 and stable: R2=0.91), while organic carbon changes of the particle size fractions were less sufficient to describe bulk SOC changes (coarse: R2=0.77 and fine: R2=0.33). The SOC composition, determined by DRIFT, revealed that changes in the relative composition of fast cycling aliphatic to slow cycling aromatic compounds can well explain relative total SOC changes (R2=0.81). This shows that three conceptually different methods (physical, thermal and spectroscopic) are suitable to determine SOC pool changes for a large diversity of LUC, but the sensitivity of the individual pools can differ strongly, depending on the method.

How to cite: Schiedung, M., Barré, P., and Poeplau, C.: The impact of land use change on soil organic carbon pools: A multi-method assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1635, https://doi.org/10.5194/egusphere-egu24-1635, 2024.

Given that microbial mediated input of crop residues and their humification products may be more conducive to the transformation and sequestration of soil organic matter. The study aims to use 13C15N double labeling tracing technology in incubation experiments to quantify the differences in the fate and distribution contribution of the C and N of crop residues and their decomposition products under the mediation of different exogenous microorganisms with different life strategies in soil organic matter (SOM) and dissolved organic matter (DOM). The study utilized exogenous microorganisms, such as Trichoderma reesei, Trichoderma harzianum, and Phanerochaete chrysosporium (K-strategists), as well as Bacillus subtilis (r-strategist). Additionally, a combination microbial treatment comprised of Trichoderma harzianum, Phanerochaete chrysosporium, and Bacillus subtilis was also employed. The study also aims to reveal the variation patterns of soil active organic carbon and humic carbon components in response to different exogenous microorganisms. The main conclusions of the study are as follows:

  • The addition of exogenous k-strategy microorganisms was more favorable than r-strategy microorganisms in mediating the increase in soil SOM contribution of crop residues derived C and N.Trichoderma treatments were more adept at mediating crop residues derived dissolvd organic carbon, and k-strategy microorganisms were more likely to stimulate soil production of dissolved nitrogen. Although the combination microbial treatment was the most effective at translational immobilization of crop residues in SOM, the Trichoderma reesei treatment had the best ability to increase soil organic carbon content by mediating crop residues translational immobilization with the lowest depletion of SOM. In addition, the addition of K-strategy microorganisms was more effective than r-strategy microorganisms in increasing the content of labile organic carbon and humic carbon fractions in the soil.
  • Fungimediated humification products was significantly better than bacterial and no microbe mediated for translational immobilization in soil, and the fungal treatments contributed more to DOM and stimulated soil deriving dissolved nitrogen. The Trichoderma reesei treatment was the most effective in immobilizing the carbon and nitrogen dereived from humification products. Fungi mediated humification products was superior to bacteria in boosting labile organic carbon and humic acid fractions. The Trichoderma reesei treatment was the most effective in boosting contents of easily oxidizable organic carbon, microbial biomass carbon and humic acid carbon, whereas the combination microbial treatments significantly increased fvlic acid carbon and substantially reduced PQ values in the early part of the experiment, and the three fungal treatments were effective in increasing fvlic acid carbon in the later part of the experiment.

In summary, these conclusions provide a theoretical basis for seeking suitable microbial regulation of farmland management measures to improve SOM transformation and humification effects and provide practical reference for scientifically guiding agricultural production and soil carbon sequestration and fertilization.

How to cite: Zhang, Y.: The impact of microbial-mediated crop residues and their humification products on transformation of soil organic matter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2329, https://doi.org/10.5194/egusphere-egu24-2329, 2024.

Soil contains three times more carbon (C) than the atmosphere and biosphere combined. It therefore represents an important tool for removal of carbon dioxide (CO2) from the atmosphere and its long term sequestration. However, in the current climate crisis, C that is already stored in soil reservoir represents a potential threat because different fractions of C in soil have different stability against the rising global temperatures. C is stored in soil in the form of soil organic matter (SOM) which is a mixture of many different organic components. Based on different properties we can divide SOM into two pools. The first pool is represented by small fragments of dead biomass referred to as free particulate organic matter (FPOM). The other pool is comprised of organic matter, usually chemically transformed or converted to microbial necromass, which is in various ways associated with soil mineral matrix. This pool is referred to as mineral associated organic matter (MAOM). It is assumed that MAOM becomes C saturated during soil development because it is limited by the amount of available mineral surfaces. FPOM, on the other hand, does not saturate and can therefore play an important role in later stages of soil development. Beside this some OM is stored in organic horizons in forest floor (Oe layer), which we expect will have similar pattern as FPOM. However, there is scarcity of studies that examine this assumption. In this work we studied the hypothesis that soils in different stages of development will differ in the amount of C stored in FPOM and MAOM fractions. On top of that, we assumed that this difference will be affected by the dominant tree species growing on the soil and the effect of tree species and soil age will not always be additive. We tested this hypothesis by analyzing C storage in soil and amount of C in FPOM and MAOM using two types of soils - recultivated spoil heap (immature soil) and forest soil in the surrounding area (mature soil). Plots with only one type of tree species (spruce or alder) in 3 replications were present on each of these soil types. Our results show that different tree species have different effects on the amount of C stored in mineral soil and Oe layer in immature and mature soils. In mineral soil more, C was sequestered under alder on recultivated heap, while in the surrounding area no difference between tree species was found. In Oe layer more C was sequestered under spruce in both types of soils. Soils did not differ in the amounts of FPOM and MAOM present in soil, but they did differ in the amount of C stored in these fractions. In young soil, MAOM fraction stored more C under alder than spruce. For mature soil the opposite was true. For FPOM fraction no significant effect of tree species or soil age was found but in young soil higher C storage in FPOM was found under alder compared to spruce.

How to cite: Hüblová, L. and Frouz, J.: Sequestration of soil organic matter in broadleaf and coniferous forests in soil at various stages of pedogenesis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2696, https://doi.org/10.5194/egusphere-egu24-2696, 2024.

EGU24-3039 | Posters on site | SSS5.2

Effect of topsoil dilution on stabilization of plant derived carbon 

Maire Holz, Bryan Salzmann, Rainer Remus, Valerie Pusch, Eva Mundschenk, Mathias Hoffmann, and Jürgen Augustin

Soil tillage often results in tillage erosion in hilly croplands, i.e. to subsoil incorporation into topsoil. However, up to now effect of tillage erosion on the turnover and stabilization of freshly added plant material remains poorly understood. We therefore conducted an incubation experiment comparing topsoil, diluted topsoil and subsoil from an erosion effected field site in north-east Germany. (14)CO2 respiration was traced over a period of 33 days after addition of 14C labelled plant residues and (14)C incorporation into several C fractions was studied. The topsoil showed increased C turnover compared to subsoil, however, topsoil dilution resulted in slightly higher C fluxes than in the topsoil, indicative of a more diverse microbial community. The addition of plant residues induced increased decomposition of native soil organic matter, resulting in a priming effect of similar magnitudes in all treatments ranging around 20%. This indicated that C might not be preferentially stabilized in the studied diluted topsoils or in the subsoil. In terms of carbon fractionation, topsoil dilution primarily affected the POM and MAOM (< 20 µm) fractions, with a decline in the order of topsoil > diluted > subsoil. Freshly assimilated carbon was preferentially stabilized in the MAOM fraction (<20µm), especially in subsoils, indicating potential for carbon stabilization in these soils. Overall we observed small effects of topsoil dilution on soil C storage, however, it's important to note that this study used shoot material, which is less intensively retained in soil compared to root material. Topsoil dilution seems to be a promising way to enhance C sequestration but further research is needed to assess its effectiveness for long-term soil carbon sequestration and to evaluate the role of root-derived carbon in these processes.

How to cite: Holz, M., Salzmann, B., Remus, R., Pusch, V., Mundschenk, E., Hoffmann, M., and Augustin, J.: Effect of topsoil dilution on stabilization of plant derived carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3039, https://doi.org/10.5194/egusphere-egu24-3039, 2024.

EGU24-3492 | Orals | SSS5.2

Microbial and mineral interactions decouple litter quality from soil organic matter formation  

Jeanette Whitaker, Kelly Mason, Ashley Taylor, Pengzhi Zhao, Tim Goodall, Rob Griffiths, Niall McNamara, and Dafydd Elias

Mineral-associated organic matter (MAOM) forms from plant or microbial-derived compounds and comprises the largest reservoir of soil organic carbon (SOC) globally.  Most SOC is associated with soil minerals and mineralogy is considered a primary control on SOC persistence due to variations in mineral reactivity. However, most mineral-associated SOC is microbial in origin thus microbial residue formation, through the processing of plant inputs, may also control SOC dynamics. Current understanding suggests that litter quality controls the formation of MAOM with high-quality litter producing more microbial residues which are then stabilised on mineral surfaces. We hypothesized that inputs of high-quality litter would lead to a net increase in MAOM stocks, relative to low-quality litter, through more efficient formation of MAOM and less priming of existing SOC.  We also hypothesised that soil mineralogy would act as the primary control on the formation of MAOM relative to litter quality. To test our hypotheses, we amended an agricultural soil with common soil minerals (Kaolinite, Montmorillonite and unamended control) and incubated these amended soils in the laboratory with two surface-applied 13C labelled litters of contrasting qualities (high quality - White Clover and low quality - Winter Wheat). During the incubation, litter decomposition and priming were quantified by δ13CO2 analysis. After 4 months, mineral stabilisation of litter-C, the amounts of particulate organic matter (POM) remaining and litter-C assimilated into microbial biomass were all quantified, along with characterisation of the soil microbial communities. Soil mineralogy strongly influenced the efficiency of MAOM formation, with Montmorillonite-amended soils respiring less litter-C and stabilising more as MAOM. High quality litter led to less (not more) efficient production of MAOM due to soil microbial community shifts associated with lower carbon-use efficiency. Low-quality litter enhanced priming of pre-existing SOC, counterbalancing the effect of litter quality on MAOM stocks.  Taken together, our findings demonstrate that soil mineralogy was the primary control on MAOM formation and that litter-microbial interactions determine the effect of litter quality on MAOM.  These findings refute the hypothesis that high-quality plant litters form MAOM most efficiently and demonstrate that mineral and microbial interactions regulate the formation of stable SOC.

How to cite: Whitaker, J., Mason, K., Taylor, A., Zhao, P., Goodall, T., Griffiths, R., McNamara, N., and Elias, D.: Microbial and mineral interactions decouple litter quality from soil organic matter formation , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3492, https://doi.org/10.5194/egusphere-egu24-3492, 2024.

Most of the organic carbon (C) in soil is linked to various degrees with the mineral matrix, which includes the formation of aggregates and the association of organic C with clay minerals and Fe and Al hydro(oxides). Both mechanisms ensure the physical stabilization of organics against microbial decomposition and the stability of the soil system. The present work analyzed the processes of C stabilization, and C flows between the aggregate size classes of macro- and macroaggregates and density fractions (free and occluded light (FL, OL), occluded dense (OD) and mineral (MF)) based on the 13C natural abundance approach using 73 published works and looked at the two groups of factors: i) internal (edaphic soil properties) and ii) external (type of land use and climate).

The global pattern showed the relative enrichment of 13C in silt + clay fraction for 0.4‰ and MF for 0.25-0.6‰ compared to bulk soil. In contrast, organics in micro- and macroaggregates and FL and OL fractions were 13C depleted, reflecting the fast decomposition of these pools and input of fresh plant-derived organics. The difference in 13C enrichment between the OL and MF fractions was 1.3‰, whereas between macroaggregates and silt+clay fraction 0.6‰, showing that density fractionation could more accurately reflect the intensity of organic C processing by microorganisms and fractions are more homogeneous in composition than aggregates.

The 13C enrichment in silt + clay and MF increased with the clay content; the difference between the 13C enrichment for OL and both dense fractions and macroaggregates and silt + clay fractions rose. Forests, grasslands, and croplands showed the same trend of increasing 13C enrichment with decreasing aggregate size classes; grasslands and croplands showed higher enrichment of silt+clay associated C (~0.3‰ relative to bulk soil) than forests. Under grasslands and forests, 13C enrichment in OD and MF was higher than in agriculture, showing deep microbial processing of organic matter without structure disturbance. The differences in 13C enrichment of organic matter between the aggregate size classes (0.6-0.9‰) and density fractions (2.5-3‰) were higher under subtropical and tropical climates, compared to temperate and Mediterranean, reflecting more intensive recycling of organic matter by microorganisms.

C flows between the aggregates followed the trend from macroaggregates to silt+clay fraction and from large macro- to microaggregates, reflecting the well-known sequential formation of soil structure and macro aggregates' role in stabilizing plant residues. More intensive C flows were found from FL to MF, compared to the C flow from OD to MF, pointing to the importance of plant-derived organics and microbial metabolites for the formation of MF. Thus, the global pattern of organic C transformation identified that the 13C natural abundance approach could be used for a broad range of automorphic soil types and can open a new perspective for the estimation of processes of C recycling and reveal the intensity of microbial processes depending on the land use, soil edaphic factors and climate.

How to cite: Gunina, A., Wang, Y., and Kuzyakov, Y.: 13C natural abundance approach for analysis of steps of organic carbon transformation in soil: application for various ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4695, https://doi.org/10.5194/egusphere-egu24-4695, 2024.

EGU24-5359 | ECS | Orals | SSS5.2

Cover Crops Affect Pool Specific Soil Organic Carbon in Cropland – a Meta-analysis 

Julia Fohrafellner, Katharina Keiblinger, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, Heide Spiegel, and Elena Valkama

Cover crops (CC) offer numerous benefits to agroecosystems, particularly in the realm of soil organic carbon (SOC) accrual and loss mitigation. However, uncertainties persist regarding the extent to which CCs, in co-occurrence with environmental factors, influence SOC responses and associated C pools. We therefore performed a weighted meta-analysis on the effects of CCs on the mineral associated organic carbon (MAOC), the particulate organic carbon (POC) and the microbial biomass carbon (MBC) pool in arable cropland. Our study summarized global research of comparable management, with a focus on climatic zones representative of Europe, such as arid, temperate and boreal climates. 
    In this meta-analysis, we included 71 independent studies from 61 articles published between 1990 and June 2023 in several scientific and grey literature databases. Sensitivity analysis was conducted and did not identify any significant publication bias. The results revealed that CCs had an overall statistically significant positive effect on SOC pools, increasing MAOC by 4.8% (CI: 0.6% - 9.4%, n = 16), POC by 23.2% (CI: 13.9% - 34.4%, n = 39) and MBC by 20.2% (CI: 11.7% - 30.7%, n = 30) in the top soil, compared to no CC cultivation. Thereby, CCs feed into the stable as well as the more labile C pools. The effect of CCs on MAOC was dependent on soil clay content and initial SOC concentration, whereas POC was influenced by moderators such as CC peak biomass and experiment duration. For MBC, e.g., clay content, crop rotation duration and tillage depth were identified as important drivers. 
    Based on our results on the effects of CCs on SOC pools and significant moderators, we identified several research needs. A pressing need for additional experiments exploring the effects on CCs on SOC pools was found, with a particular focus on MAOC and POC. Further, we emphasize the necessity for conducting European studies spanning the north-south gradient. 
    In conclusion, our results show that CC cultivation is a key strategy to promote C accrual in different SOC pools. Additionally, this meta-analysis provides new insights on the state of knowledge regarding SOC pool changes influenced by CCs, offering quantitative summary results and shedding light on the sources of heterogeneity affecting these findings.

How to cite: Fohrafellner, J., Keiblinger, K., Zechmeister-Boltenstern, S., Murugan, R., Spiegel, H., and Valkama, E.: Cover Crops Affect Pool Specific Soil Organic Carbon in Cropland – a Meta-analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5359, https://doi.org/10.5194/egusphere-egu24-5359, 2024.

EGU24-6188 | ECS | Posters on site | SSS5.2 | Highlight

Transformation and backfilling of peatland soils and effect on CO2 emissions 

Ciriaco McMackin, Luisa Minich, Wiesenberg Guido, Burgos Stéphane, and Egli Markus

Peatlands are the Earth's largest natural terrestrial carbon reservoir, storing more than 40% of all soil organic carbon. Despite their significance, damaged peatlands emerge as a major source of greenhouse gas emissions, contributing to nearly 5% of global anthropogenic CO2 emissions.

Peatlands have been drained in the Three Lakes region (Switzerland). These drainage efforts were initiated to develop agricultural land use and enhance the overall quality of life in the region. While the drainage improved living conditions, it also accelerated peat decomposition. This accelerated decomposition gave rise to a loss of soil, reaching up to 4 meters at specific locations, and drastically increased CO2 emissions.

Various strategies have been developed to reduce CO2 emissions from degraded peatland. Backfilling—the deposition of a mineral layer on the soil— is one promising method to mitigate CO2 emissions. Backfilling disconnects the peat from the surface soil by a mineral layer. CO2 emissions from the peat are diminished, while the surface soil can still be used for agricultural purposes.

Peatlands contain very old carbon preserved by water-logged conditions that limited carbon decomposition. We measured rates and radiocarbon (C14) signals of the CO2 emissions at three locations in the Three Lakes Region to compare the amount and age of carbon emitted from drained and drained-backfilled peatland soils. First results show that the backfilled peatland soils emit less and younger CO2 than peatland soils having no backfilling. The covered peatland still continues to degrade, however at a slower pace. The overed peat contributes to about 50% of the measured CO2 emissions from the transformed sites. Further investigation will be needed to identify the spatio-temporal variability and the influence of other factors such as the groundwater table level.

How to cite: McMackin, C., Minich, L., Guido, W., Stéphane, B., and Markus, E.: Transformation and backfilling of peatland soils and effect on CO2 emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6188, https://doi.org/10.5194/egusphere-egu24-6188, 2024.

EGU24-7874 | ECS | Posters on site | SSS5.2

Rapid analysis using Diffuse Reflectance Spectroscopy can enhance Soil Carbon Monitoring 

Sean Adam and Conrad Jackisch

To gain a better understanding of changes in soil carbon stocks and composition it is essential to have data on relevant soil properties with high temporal and spatial resolution. However, traditional laboratory analysis can be both time-consuming and expensive, ultimately limiting data availability. Mid-DRIFTS (Diffuse Reflectance Infrared Fourier Transformed Spectroscopy in the mid-IR range) is a cost-effective alternative to conventional analytical methods. It enables the simultaneous inference of multiple soil properties, such as soil organic carbon, nitrogen and phosphorus content, soil texture, and cation exchange capacity, from measured spectra. This makes it a valuable analytical tool for soil monitoring.

To successfully integrate mid-DRIFTS into a soil monitoring concept, a spectral library representative of the target is required as the basis for multivariate or machine-learning-based calibration models. Here, we want to present the initial results obtained using the BDF-SSL, a soil spectral library we created as the foundation for integrating mid-DRIFTS in agricultural soil monitoring in Saxony, Germany. The library's core consists of nearly 300 spectra obtained from retention samples from agricultural soil monitoring sites in Saxony, which were collected over the past 20 years.
We focused on the inference of soil carbon content, including three thermally derived carbon fractions (TOC400, ROC, TIC900) we measured according to DIN19539 by combustion. Additionally, we calibrated models for a wide range of other soil properties, such as soil texture, nitrogen and phosphorus content, elemental concentrations and cation exchange capacity. We used both Partial Least Squares Regression (PLSR), Cubist, and the Memory Based Learner (MBL) to calibrate the models.

Both Cubist and MBL consistently outperformed PLSR. Our models show high predictive accuracy for the carbon fractions, total nitrogen and phosphorous contents, cation exchange capacity and texture. In addition, we are also able to predict several elemental concentrations, such as Fe, Al, or Ni contents with high accuracy. Our results show that mid-DRIFT can be used to enhance spatial and temporal coverage of soil monitoring, allowing not only for more accurate estimations of soil carbon stocks and sequestration rates, but also for the rapid estimation of several other soil properties.

How to cite: Adam, S. and Jackisch, C.: Rapid analysis using Diffuse Reflectance Spectroscopy can enhance Soil Carbon Monitoring, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7874, https://doi.org/10.5194/egusphere-egu24-7874, 2024.

EGU24-8770 | ECS | Orals | SSS5.2

Influence of initial soil carbon content on the stabilization of new carbon: a 2-year lab incubation study 

Neha Begill, Axel Don, and Christopher Poeplau

The hotly debated concept of carbon (C) saturation in mineral soils not only affects our understanding of soil organic matter (SOC) dynamics but also holds critical implications for negative emissions strategies. Many recent studies have indicated that soil’s capacity to store and stabilize C in mineral form depends on the initial SOC content, i.e., the soil C saturation deficit. According to these studies, low-C soils are suggested to have a higher potential for SOC storage compared to high-C soils. In light of these considerations, our hypothesis presents a different viewpoint, suggesting that initial C content in soils mainly affects the absolute loss of old carbon (following first-order kinetics), while it will not significantly impact the soil’s ability to stabilize new C. To investigate this experimentally, we selected soils from the first German Agricultural Soil Inventory with varying C contents (0.7–14.5%) and three different soil textures (light to heavy). These soils were then incubated in air-tight glass jars, where the same amount of 13C labeled litter was added, along with an unamended control of each sample. After two years, soils were dried and physically fractionated into mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) using a size-cutoff of 20µm to find and δ13C as well as total SOC was measured. Here, we will present the first results from this lab incubation experiment, providing further systematic insights into whether the amount of initial carbon content or the ‘saturation C’ deficit truly affects the SOC dynamics with varying amounts of C contents in it.

How to cite: Begill, N., Don, A., and Poeplau, C.: Influence of initial soil carbon content on the stabilization of new carbon: a 2-year lab incubation study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8770, https://doi.org/10.5194/egusphere-egu24-8770, 2024.

EGU24-8970 | Orals | SSS5.2

Coupling scales in process-based soil organic carbon modeling including dynamic aggregation 

Alexander Prechtel, Simon Zech, and Nadja Ray

Background: Carbon storage and turnover in soils depend on the interplay of soil architecture, microbial activities and soil organic matter dynamics. For a fundamental understanding of the mechanisms that drive these processes, not only the exploitation of advanced experimental techniques down to the nanoscale is necessary, but also spatially explicit and dynamic image-based modeling at the pore scale.
We present a modeling approach which is capable of transferring microscale information into macroscale simulations at the profile scale. This enables the prediction of future developments of carbon fluxes and the impact of changes in the environmental conditions linking scales.
We consider a mathematical model for CO2 transport across soil profiles (macroscale) which is informed by a pore-scale (microscale) model for C turnover. It allows for the dynamic, self-organized re-arrangement of solid building units, aggregates and particulate organic matter (POM) based on surface interactions, realized by a cellular automaton method, and explicitly takes spatial effects on POM turnover such as occlusion into account. We further include the macroscopic environmental conditions water saturation, POM content, and oxygen concentration.

The coupled simulations of macroscopic transport and pore scale carbon and aggregate turnover reveal the complex, nonlinear interplay of the underlying processes. Limitations by diffusive transport, oxygen availability, texture dependent occlusion and turnover of OM drive CO2 production and carbon storage.

Zech, Prechtel, Ray (2024): Coupling scales in process-based soil organic carbon modeling including dynamic aggregation. J. Plant Nutr. Soil Sci.

How to cite: Prechtel, A., Zech, S., and Ray, N.: Coupling scales in process-based soil organic carbon modeling including dynamic aggregation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8970, https://doi.org/10.5194/egusphere-egu24-8970, 2024.

EGU24-9176 | Posters on site | SSS5.2

Carbon Sequestration and Mitigation of Agricultural Greenhouse Gas Emissions through management: Insight from an incubation experiment 

Sobia Bibi, Hassan Ahmad, Wolfgang Wanek, Mohammad Zaman, Magdeline Vlasimsky, Maria Heiling, Reinhard Pucher, and Gerd Dercon

Climate change poses a significant threat to soil quality and global food security, with projections indicating potential crop yield declines of 17% by 2050. Simultaneously, agriculture contributes to an estimated 24% of all greenhouse gas (GHG) emissions. The dynamics of carbon (C) and nitrogen (N) play a pivotal role in GHG emissions and soil C sequestration, yet further research is needed on how management practices influence these dynamics.

 

To address these challenges and provide data can facilitate efficient resource utilization in agricultural production, an incubation experiment was conducted to provide data on the impact of management options on C sequestration and GHG emissions from agricultural soils. The experiment took place in 850 mL glass jars under controlled conditions at 60% water-filled pore space and a temperature of 25°C. Composite soil samples, derived from a moderately fertile soil (2-3% SOC) from Grabenegg, Austria, at a depth of 0-15 cm, were subjected to five treatments: 1) control, 2) labeled urea, 3) inhibitor and labeled urea, 4) biochar + 15N labeled urea, and 5) inhibitor and biochar and labeled urea.

 

The 15N-labeled urea (5% atom excess) was applied at a rate of 150 kg N ha-1, while biochar was applied at 2% of the soil by dry mass basis. A neon inhibitor which includes NBPT to limit nitrogen loss into the atmosphere as ammonia and DCD to reduce leaching, were applied at a rate of 4 mL per 100g urea as instructed by the manufacturer. All treatments were replicated four times. Soil and gas samples were collected on days 1, 3, 8, 15, 24, 31, 38, 45, 52, and 59 after treatment application. Gas samples were collected over a two hour period each day. Soil samples were analyzed for pH, soluble organic C, and mineral-N (NH4+, NO3-), while gas samples were analyzed using a gas chromatograph (GC) for NO2, CO2, and CH4.

 

Preliminary results indicate that the addition of biochar increased soil C content, aligning with expectations from prior studies and that the addition of the inhibitor had a discernible impact on the pathways of nitrogen in the study samples. The use of isotopic methods and GHG measurements can furnish critical data supporting the most efficient use of resources for both climate mitigation and adaptation.

 

How to cite: Bibi, S., Ahmad, H., Wanek, W., Zaman, M., Vlasimsky, M., Heiling, M., Pucher, R., and Dercon, G.: Carbon Sequestration and Mitigation of Agricultural Greenhouse Gas Emissions through management: Insight from an incubation experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9176, https://doi.org/10.5194/egusphere-egu24-9176, 2024.

EGU24-9202 | ECS | Posters on site | SSS5.2

Assessing inert pool models for estimating long-term biochar stability in soil 

Haichao Li, Elias S. Azzi, Cecilia Sundberg, Erik Karltun, and Harald Cederlund

Estimating the long-term stability of biochar in soil often relies on extrapolating mineralization data from short-term laboratory incubations. Various models such as single first-order (SFO), double first-order (DFO), triple first-order (TFO) and the power model have been employed for this purpose, all of which have an inherent assumption that biochar is completely biodegradable. However, recent insights challenge this assumption by highlighting that biochar consist largely of highly condensed aromatic structures, which have been proposed to be essentially inert. If biochar were resistant to microbial degradation it would make sense if this was reflected in the choice of model used. Therefore, our aim was to assess whether the proposed inert pool models (SFO+I and DFO+I) fit the data better compared to existing models (SFO, DFO, TFO and power model) using a recently compiled extensive dataset. We hypothesized that models incorporating an inert pool would fit better (or at least comparably well) to incubation data compared to the existing models and give more reliable long-term predictions. As a way of assessing the model’s predictive ability, we fitted them to progressively shortened incubation times derived from the longest biochar incubation data sets available, and then evaluated how well they extrapolated to the full measured range. Our results indicated that the proposed DFO+I model did indeed fit better than the both DFO and TFO models. Moreover, predictions of BC100 (% of carbon remaining after 100 years) by the inert pool models and by the power model displayed stronger correlations with the biochar stability indicator (H/C ratio) than both SFO and DFO models, which aligns with our initial hypothesis. However, the power model in general outperformed all other models, including the inert pool models, with the highest number of best fits. From our extrapolation exercise, it is clear the DFO model, which has been most widely used to date, substantially underestimated biochar stability in the longer term while the inert pool models tended to overestimate it. This uncertainty appears to be quite severe when fitting inert pool models to incubation data from non-pyrolysed materials. By comparison, the power model appeared to be more robust when estimating biochar persistence in soils. From these results we cannot conclusively confirm nor reject the idea of inert pool models. It is possible that an inert-pool model is the more suitable choice for extrapolating biochar decomposition data. However, it is clear from their tendency to overestimate stability of biodegradable materials. Our current understanding is hampered by the fact that the incubation data set available contains a high proportion of biochars produced at relatively modest temperatures and by a lack of chemical/structural characterization of the incubated biochars. Future research could remedy this by providing better information on the degree of aromatic condensation/proportion of inertinite in incubated biochars samples. For now, we recommend the power model as the most robust option.

How to cite: Li, H., Azzi, E. S., Sundberg, C., Karltun, E., and Cederlund, H.: Assessing inert pool models for estimating long-term biochar stability in soil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9202, https://doi.org/10.5194/egusphere-egu24-9202, 2024.

EGU24-9216 | Orals | SSS5.2 | Highlight

Net primary production rather than saturation of mineral surfaces limits soil carbon sequestration  

Christopher Poeplau, Rene Dechow, Neha Begill, and Axel Don

Accrual of soil organic carbon (SOC), and especially the formation of mineral associated organic carbon (MAOC), has a large theoretical potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors need to be understood. The positive correlation between the content of fine mineral particles (silt + clay) and the content of MAOC is widely used to estimate a general maximum MAOC storage capacity of soils, based on the notion that mineral surfaces get C saturated. However, recent literature raised doubts about the concept of C saturation and it remains unclear, if and to what extent the mineral capacity of soils to stabilise C limits SOC accrual. Here, using large scale soil datasets and the model RothC, we provide two independent lines of evidence, that the upper boundary line of the correlation between MAOC and silt and clay does not resemble a maximum mineralogical SOC stabilisation capacity. 1. In coarse-textured soils, the C loading of the silt and clay fraction was found to strongly overshoot the mentioned upper boundary line and thus exceed previous C saturation estimates. 2. A global modelling exercise revealed that only for 28.8 % of all soils, local net primary production (NPP) would be sufficient to reach a C loading of 80 g C kg-1 silt and clay, which is currently assumed to be the maximum capacity of soils to stabilise C. This proportion decreased strongly with increasing silt and clay content, which revealed that high C loadings can hardly be reached in more fine-textured soils. We conclude that SOC accrual is mainly limited by C inputs and strongly modulated by texture, mineralogy and climatic conditions. Taken together, those factors could be used to be formulate an ecosystem capacity to stabilise SOC. However, a potential C saturation point of MAOC appears still unknown and of no relevance for strategies of climate mitigation via SOC sequestration.

How to cite: Poeplau, C., Dechow, R., Begill, N., and Don, A.: Net primary production rather than saturation of mineral surfaces limits soil carbon sequestration , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9216, https://doi.org/10.5194/egusphere-egu24-9216, 2024.

EGU24-9335 | ECS | Posters on site | SSS5.2

Andosol genesis: Transition from silandic to aluandic properties and the related changes in organic carbon storage 

Antonia Zieger, Klaus Kaiser, and Martin Kaupenjohann

Andosols are commonly subdivided according to silandic and aluandic features. Both subgroups are considered to be end members of the Andosol genesis. Silandic Andosols are characterized by organic matter (OM) strongly bound to imogolite-type material (ITM), while Aluandic Andosols mainly consist of aluminium-OM complexes (Al-OM complexes). According to current theory, silandic and aluandic properties are direct results of primary weathering, assuming two separate lines of genesis.

Our previous results, however, suggest that silandic horizons can transform into aluandic over time, resulting in additional carbon accumulation. This is likely caused by dissolved organic matter (DOM) entering the subsoil with the percolating soil solution, masking dissolved aluminium as soluble Al-OM complexes. This promotes the dissolution of ITM, releasing aluminium. The latter reacts with DOM, inducing the formation of insoluble, Al-OM complexes, which then precipitate.

To test this hypothesis, we conducted a long-term percolation experiment with material of an Ecuadorian Andosol formed in a homogeneously tephra deposit. This soil exhibits aluandic properties in the topsoil and silandic properties in the subsoil. Ions, pH, and DOC in the feed and eluate solution were monitored over a period of 18 months. The convection-dispersion-equation as implemented in HYDRUS-1D was used to model the percolation experiment as a one-dimensional standard reactive solute transport.

Our results revealed a strong carbon accumulation of 14 g·kg-1 in the silandic material after 18 months, with the vertical transport of Al-OM complexes only explaining up to 33 % of the carbon accumulation. The HYDRUS-1D model revealed that sorption of DOM dominates at the beginning of the experiment and explains up to 40 % of carbon accumulation (including vertically transported Al-OM complexes). For the silandic material, the results indicate that up to 91% of the carbon accumulation are due to ITM dissolution and subsequent formation of insoluble Al-OM complexes.

In summary, our findings support the hypothesis, that ITM dissolution and the subsequent formation of Al-OM precipitates significantly contribute to the increase in carbon concentration in the silandic material, while the above aluandic material did not change.

How to cite: Zieger, A., Kaiser, K., and Kaupenjohann, M.: Andosol genesis: Transition from silandic to aluandic properties and the related changes in organic carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9335, https://doi.org/10.5194/egusphere-egu24-9335, 2024.

EGU24-9389 | ECS | Orals | SSS5.2 | Highlight

Cover crop´s carbon inputs to soils via aboveground and root biomass as affected by species, mixtures and sowing date 

Laura Reinelt, Nicole Christin Maack, Henrike Heinemann, and Axel Don

An increased use and optimised management of cover crops is a promising way to promote soil organic carbon accrual in agricultural soils. However, data is lacking on aboveground and especially root biomass of important cover crop species depending on the length of their cultivation window and on climatic conditions. We sampled aboveground and root biomass in a German field trial covering twelve common cover crop species and eight commercially available seed mixtures in 2021, a year with a rather wet summer, and 2022, a year with a rather dry summer. Each species and mixture were sown at three different dates and were sampled in early November, after having grown for 8 to 14 weeks.

Root and shoot biomass differed significantly between species, years and sowing dates. Oil radish, Phacelia, Bristle oat and Italian rye-grass had the highest root biomass. Cover crop mixtures did not have significantly higher aboveground or root biomass than single species. Aboveground biomass was 60% lower in 2022 compared to 2021 and root biomass on average 52% lower. Biomass generally decreased substantially with later sowing dates, by up to 80%. In 2021, the root to shoot ratio decreased by on average 41% from the earliest to the latest sowing date.

Based on the results of our study, management recommendations can be given regarding the selection and management of cover crop species for soil carbon accrual. Our data is also useful for more accurate mechanistic modelling of the soil carbon dynamics under different agricultural management scenarios. We conclude that there is a large optimisation potential for cover crop cultivation in Europa that could reveal a significant soil carbon sequestration potential.

How to cite: Reinelt, L., Maack, N. C., Heinemann, H., and Don, A.: Cover crop´s carbon inputs to soils via aboveground and root biomass as affected by species, mixtures and sowing date, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9389, https://doi.org/10.5194/egusphere-egu24-9389, 2024.

EGU24-10155 | ECS | Posters on site | SSS5.2

Impact of cover crops and conventional and reduced tillage on plant productivity in a bicultural maize-oat cropping system 

Giulia De Luca, Eszter Sugar, Nándor Fodor, Tamás Árendás, Péter Bónis, and Renáta Sándor

Agricultural crop production plays a key role in satisfying the increasing food demand of our ever-growing population. However, continuous production and certain land use practices often result in the depletion of soil quality. This revelation developed a need to improve soil fertility by enhancing carbon sequestration and storage in our cultivated fields using different methods.

Even though the application of green manure crops can significantly increase the amount of carbon stored in the soil while improving its water storage capacity and protecting the surface from erosion, it is still not a widespread method in Hungary due to usual water shortage during their sowing and germination periods. Furthermore, different soil management techniques can also alter the quality and carbon sequestration potential of our soils. The objective of our study is to determine how soil management and the usage of catch crop cover may affect crop productivity.

A maize-oat bicultural field trial with two different soil management techniques (conventional ploughing and reduced tillage) combined with four types of cover crops (fallow, trefoils-buckwheat mixture, phacelia and oilseed radish) was established in 2020. Changes in soil water content and temperature were continuously monitored at three depths (5, 25 and 45 cm), while leaf area index (LAI) and chlorophyll content (SPAD) were measured periodically. At the end of the vegetation periods measurements regarding crop quality and quantity were executed as well. Furthermore, soil respiration and additional (soil penetration resistance, SWC, VIgreen index) measurements were carried out during the study period, these results will be presented in a separate poster (Effect of cover cropping and soil tillage on soil CO2 emissions).

Our results showed that differences between treatments regarding management techniques and cover crops are more characterized in maize than in oat.

How to cite: De Luca, G., Sugar, E., Fodor, N., Árendás, T., Bónis, P., and Sándor, R.: Impact of cover crops and conventional and reduced tillage on plant productivity in a bicultural maize-oat cropping system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10155, https://doi.org/10.5194/egusphere-egu24-10155, 2024.

EGU24-10379 | Orals | SSS5.2

Climate conditions control the SOC sequestration potential of agricultural terraces 

Pengzhi Zhao, Daniel Fallu, Sara Cucchiaro, Ben Pears, Andreas Lang, Paolo Tarolli, Sebastian Doetterl, Jeanette Whitaker, Tony Brown, and Kristof Van Oost

Agricultural terraces, being among the volumetrically largest and most common man-made landforms, have been widely implemented to support essential soil ecosystem services, e.g., erosion control, soil nutrient, and water retention, and have had an essential impact on soil organic carbon (SOC) stock and its exchange with the atmospheric C. However, the direction and magnitude of this impact remain highly uncertain. By integrating the broad-scale field observations of 14 terrace sites across the EU with a global data synthesis, we demonstrate that the effectiveness of terracing-driven SOC sequestration potential is intricately controlled by climate conditions that govern in-return soil properties.

Our findings reveal that the terracing practices represent a promising land management strategy for enhancing SOC sequestration, but also that risks of SOC loss exist when building terraces under arid climate, where they could be potentially very beneficial to crop productivity and SOC storage. We recommend that future terrace construction should integrate water and nutrient recycling techniques to ensure soil moisture and nutrient availability, enhancing land productivity and maximizing SOC sequestration potential. Our data suggest that promoting the recovery of the lost topsoil C during terrace construction through increasing C inputs and C use efficiency, i.e., straw return and nutrient amendment is an efficient way to counteract initial SOC losses.

How to cite: Zhao, P., Fallu, D., Cucchiaro, S., Pears, B., Lang, A., Tarolli, P., Doetterl, S., Whitaker, J., Brown, T., and Van Oost, K.: Climate conditions control the SOC sequestration potential of agricultural terraces, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10379, https://doi.org/10.5194/egusphere-egu24-10379, 2024.

EGU24-10695 | Posters on site | SSS5.2

Effect of cover cropping and soil tillage on soil CO2 emissions 

Györgyi Gelybó, Giulia De Luca, János Balogh, Nándor Fodor, Szilvia Fóti, Eszter Sugár, and Renáta Sándor

It has long been in the focus of research interest how cover cropping affect water regime of the soil. However, its simultaneous effect on CO2 emission, i.e. soil respiration is not so widely reported. We examined an agricultural experiment set up as a maize-oat rotation under conventional and reduced tillage tillage and four different cover-cropping treatments (fallow, oilseed radish, mixture, phacelia) in Martonvásár (Hungary). Soil respiration measurements were carried out using infrared gas analyzer in 5 replicates per treatment plot (tillage-main-crop-cover crop combinations). Measurements covered two years in the different main crops and also in cover crops. A total of 10 measurement campaigns were organized in 2021 and 2022, which covered both main crops and cover crops. Meteorological parameters were measured in a nearby automatic meteorological station.

Besides soil respiration measurements ancillary measurements have been carried out to better characterize soil status. Using a penetrologger soil penetration resistance, using handheld sensors, soil water content measurements and soil temperature was recorded. Also, point scale continuous soil water content profile measurements were carried out. At each plot, vegetation was characterized using the VI green index derived from RGB imagery and periodically chlorophyll content (SPAD) and leaf area index was recorded. Here we analyze soil respiration, VI green soil temperature and soil water content measurements. The results showed differences between tillage treatments and between main crops. For further results please see abstract “Impact of cover crops and conventional and reduced tillage on plant productivity in a bicultural maize-oat cropping system”.

How to cite: Gelybó, G., De Luca, G., Balogh, J., Fodor, N., Fóti, S., Sugár, E., and Sándor, R.: Effect of cover cropping and soil tillage on soil CO2 emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10695, https://doi.org/10.5194/egusphere-egu24-10695, 2024.

EGU24-11164 | ECS | Orals | SSS5.2 | Highlight

Areas available for potential carbon sequestration in European agricultural soils 

Florian Schneider, Daria Seitz, Felix Seidel, and Axel Don

In order to estimate a feasible carbon (C) sequestration potential in European agricultural soils, we need to know the area where additional measures that increase soil organic carbon (SOC) can be implemented and the corresponding SOC accrual rates. In this study, we focus on the former and identify areas where promising SOC increasing practices can be implemented on European agricultural soils.

The practices considered include a higher share of agroforestry, cover crops replacing bare winter fallows, reduced tillage instead of ploughing and the integration of perennial legumes and leys into crop rotations. Open-access data of European Farm Structure Surveys as provided by EUROSTAT at NUTS2 level serve as a reference for the intensities at which the measures are already implemented in Europe. It was assumed that only the further spread of these measures could potentially sequester additional C in soils.

We argue that the adoption of reduced tillage is the practice that covers by far the largest area relevant for potential C sequestration in soils under current food, feed, and fibre demands. The replacement of bare winter fallow with cover crops is restricted to regions with sufficient growing degree days to allow a second crop after harvest. The introduction of more woody features like hedgerows and alley cropping to agro-ecosystems, as well as the integration of more perennial legumes or leys in present crop rotations creates the need for land reallocation and likely compromises agricultural productivity.

Overall, we conclude that reduced tillage may emerge as the most promising practice for atmospheric C sequestration in European agriculture despite its reported relatively low SOC accrual rate per hectare. Trade-offs between C sequestration in soils, agricultural production and agricultural demand warrant further inter-disciplinary attention.

How to cite: Schneider, F., Seitz, D., Seidel, F., and Don, A.: Areas available for potential carbon sequestration in European agricultural soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11164, https://doi.org/10.5194/egusphere-egu24-11164, 2024.

EGU24-11742 | ECS | Orals | SSS5.2 | Arne Richter Awards for Outstanding ECS Lecture

Digging into the Future: The transition between bedrock and soil as an underexplored frontier zone in geoscience 

Daniel Evans

Terrestrial environments and their ecosystems demand healthy, sustainable, and resilient soils. Over the past couple of decades, significant efforts have been made to safeguard global soils, yet the materials and resources responsible for soil formation have been widely overlooked.  The transition from bedrock to soil – a zone often described as ‘soil parent material’ – holds an exciting yet untapped potential for helping us address some of the largest environmental challenges, including climate change and the biodiversity crisis. In this award lecture, I will present a strand of my research programme ‘Building Tomorrow’s Soils’ which seeks to establish how soil parent materials enhance the sustainability, health, and resilience of soil systems. First, with a focus on carbon sequestration, I will highlight how the bedrock–soil transition zone has the potential to be a long-term store of organic carbon. I will then present research which shows that some soil parent materials release petrogenic (i.e. rock-derived) organic carbon into soils. These understudied inputs of organic carbon to soils are currently absent from most, if not all, soil carbon models, which threatens our ability to optimize soil carbon management in the long-term. Finally, I will argue that developing a mechanistic understanding about this transition zone – this underexplored material which is neither rock nor soil in structure and function, but a blend of both – requires a similarly cross-disciplinary approach.

How to cite: Evans, D.: Digging into the Future: The transition between bedrock and soil as an underexplored frontier zone in geoscience, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11742, https://doi.org/10.5194/egusphere-egu24-11742, 2024.

EGU24-12025 | ECS | Posters on site | SSS5.2 | Highlight

Enhancing soil carbon sequestration in the parks of the city of Barcelona  

Sílvia Poblador, Lucía Álvarez, Bárbara Díaz, Marc Felip, Francesc Sabater, Arthur Vienne, and Sara Vicca

Climate change is progressing at an alarming pace. In order to limit global warming to the agreed-upon 2°C in the United Nations Paris Agreement, we require both rapid decarbonization and the implementation of negative emissions technologies (NETs), that actively remove carbon dioxide (CO2) from the atmosphere and ensure stable long-term carbon storage. In this context, enhanced silicate weathering (ESW) has been proposed as a NET based on a nature solution. ESW aims to accelerate the natural uptake of atmospheric CO2 during the weathering of silicate rocks by grinding them, increasing their reactive surface and speeding up the process. This NET is particularly interesting as it does not compete for space with other economical activities. For instance, in agroecosystems, ESW is already considered a promising NET, offering multiple co-benefits for crop production when spreading silicate minerals on arable soils (i.e. increase in crop yields, restoration of soil base cations and micro- and macronutrient stocks). Besides agricultural land, urban soils can also be suitable for ESW. The application of ESW in city parcs and gardens presents an opportunity to increase the capture of atmospheric CO2, while also favoring vegetation growth (lawn, shrubs and flowers) and potentially enhancing resistance to drought and pests.

EMBARCARB is a pilot project that aims to increase soil carbon sequestration and improve the vegetation status in two parcs of the city of Barcelona (SE Iberian Peninsula), during an extremely dry year. Moreover, the project also aims to compare the carbon sequestration capacity of soils with weathering of silicate rocks and concrete demolition fines, thus reusing construction debris and strengthening the circular economy of the region. Here, we explore the preliminary results of the project and give a first estimation of the weathering rates and the capacity of such NETs to enhance soil carbon sequestration in the green areas of the cities.

How to cite: Poblador, S., Álvarez, L., Díaz, B., Felip, M., Sabater, F., Vienne, A., and Vicca, S.: Enhancing soil carbon sequestration in the parks of the city of Barcelona , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12025, https://doi.org/10.5194/egusphere-egu24-12025, 2024.

EGU24-12698 | ECS | Orals | SSS5.2 | Highlight

The centennial legacy of land-use change on organic carbon stocks of temperate agricultural soils 

David Emde, Christopher Poeplau, Axel Don, Stefan Heilek, and Florian Schneider

Land-use change (LUC) in agricultural settings is common both historically and under more recent climate-smart agriculture guidelines aimed at reducing the impact of agriculture on the climate. Recognising that conversion of perennial grasslands to annual cropland results in a large, but potentially reversible, loss of soil organic carbon (SOC) such guidelines often call for increasing the overall area under grassland. To date, the magnitude and direction of SOC change following LUC has been fairly well accounted for, but the time it takes to reach a new SOC equilibrium is not well understood. While broad scale emission reporting best practices (e.g. IPCC) suggest that SOC equilibrium is reached approximately 20 years after LUC, there is a growing body of knowledge that supports a centennial timescale in temperate or boreal climates. With data from the first German Agricultural Soil Inventory alongside extensive per-site land-use histories, we established SOC change timelines that show that not only does SOC take much longer than 20 years to reach equilibrium but it reaches equilibrium at vastly different rates depending on the direction of LUC. Sites converted from cropland to grassland took 83 years (95 % CI: 79 to 90 years) to reach SOC equilibrium whereas sites converted from grassland to cropland took 180 years (95 % CI: 151 to 223 years). In order to map the effects of historic LUC on SOC stocks in temperate agroecosystems with similar grassland and cropland SOC stocks to Germany, we applied these timeline models to comparable sites from the HILDA+ global LUC database (Winkler et al., 2020); a global reconstruction of annual land use and land cover at a 1 km spatial resolution from 1899 to 2019. Compiled from a range of open data sources (remote sensing, reconstructions, and census data) the HILDA+ dataset offers insights into relatively fine scale LUC dynamics that follow known socioeconomic drivers over the past 120 years. Using this dataset, we determined that 112 Million ha, or 3.5 % of the total agricultural area worldwide, was comparable to German agriculture in terms of SOC and growing conditions, and 11 % of that land (12.6 Million ha) had undergone LUC from cropland to grassland or vice versa since 1899. After accounting for duration on a per-cell basis, areas having undergone LUC from cropland to grassland (7.5 million ha) accounted for a 86.2 million Mg C increase over the past 120 years. Conversely, areas having undergone LUC from grassland to cropland (5.1 million ha) accounted for a -55.0 million Mg C decrease in SOC. The overall net increase of 31.2 million Mg C corresponds to about 5‰ of total SOC stocks across all agricultural land with pronounced regional differences. We conclude that land-use change histories of at least one century should be considered when interpreting present-day, and predicting future, SOC dynamics.


Winkler, K., Fuchs, R., Rounsevell, M. D. A., & Herold, M. (2020). HILDA+ Global Land Use Change between 1960 and 2019 [dataset]. PANGAEA. https://doi.org/10.1594/PANGAEA.921846

How to cite: Emde, D., Poeplau, C., Don, A., Heilek, S., and Schneider, F.: The centennial legacy of land-use change on organic carbon stocks of temperate agricultural soils, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12698, https://doi.org/10.5194/egusphere-egu24-12698, 2024.

EGU24-13751 | ECS | Posters on site | SSS5.2

Assessing the environmental benefits of biochar application in agriculture: Insights from lifecycle assessment 

Sirjana Adhikari, M A Parvez Mahmud, Ellen Moon, and Wendy Timms

Organic waste-derived biochar has been proven to have a significant potential for soil improvement, with recent results from this group showing evidence for improved water holding capacity, carbon stability and exchangeable cations. However, to contextualise these benefits it is important to consider environmental impacts during each stage of life cycle for the product.

In this study, a cradle-to-gate life cycle assessment (LCA) was performed, comparing a common use for garden organics (composting) to two alternative scenarios. One involved converting over-sized compost screenings (otherwise considered waste) to biochar as a supplementary product from the process, and the other involved converting garden organics directly to biochar as an alternative product.

LCA was conducted using ReCiPe2016 impact assessment method in OpenLCA software. Data for assessment were collected from the participating industries and Ecoinvent database. Sensitivity analysis considering different transport distances was carried out and finally an optimum transport distance with the lowest environmental impacts was recommended. Additionally, physico-chemical characterisation and carbon stability assessment were conducted to provide a comprehensive idea about the overall benefits of organic waste-derived biochar for soil and climate.

Our results revealed that global warming was increased from 675 kgCO2eq during composting of garden waste to 1017 kgCO2eq where over-sized screenings of compost is converted to biochar as a value-added product. Direct conversion of organic waste to biochar showed reduced global warming impact of 428 kgCO2eq compared to the previous two scenarios. Among 16 environmental impact indicators studied, the magnitude of 10 impact indicators increased with transport distance, while the remaining six indicators were not influenced by transport distance.

Soil application of biochar from organic waste has multiple co-benefits, that can be short and/or long term. Nevertheless, this study emphasises that research focused on agricultural application of biochar needs to be coupled with LCA or other holistic assessments for a comprehensive evaluation of net environmental impacts and benefits that consider the processes involved in sourcing of feedstock, biochar production, transport, and application.

How to cite: Adhikari, S., Mahmud, M. A. P., Moon, E., and Timms, W.: Assessing the environmental benefits of biochar application in agriculture: Insights from lifecycle assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13751, https://doi.org/10.5194/egusphere-egu24-13751, 2024.

The process of organic horizon formation is reflected in the quantity and quality of the mineral materials contained. In the highland of mountains in northern Japan, thick organic horizons develop due to heavy snowfall. The organic horizons are rich in 2:1 clay minerals from Asian dust originating from the Eurasian Continent and active Al and Fe derived from volcanic ash. Organic matter in the organic horizons is present in separation or associations with these clay minerals or active Al and Fe. These organo-mineral associations make different biogeochemical properties between relatively free and mineral-associated organic matter in its dynamics, even in the organic horizons, because minerals can protect organic matter from microbial decomposition. Evaluating the biogeochemical arrangements of organic matter and minerals is valuable to understanding organic matter dynamics in the organic horizons containing rich minerals. The objective of this research is to evaluate the organo-mineral associations in the organic horizons in the snowy mountains of northern Japan using density fractionation.

The organic horizon samples were collected from three mountains. Two selected mountains (Mt. Chokai and Mt. Kurikoma) are volcanoes, and the other is a non-volcanic mountain (Mt. Makihata). Samples in Mt. Chokai were taken from each soil horizon from two soil profiles of snow meadow soils and one of dwarf bamboo and dwarf pine soil. In Mt. Kurikoma, one soil profile of a snow meadow was selected. One soil profile and two surface soils (5-15 cm) of snow meadow were collected in Mt. Makihata. Freeze-dried organic horizon samples were shaken with 1.6 g cm-3 SPT and grass beads at 16 h and 120 rpm. Recovered floating materials were sieved at 0.5 mm to remove coarse, fresh plant roots. The fraction larger than 0.5 mm was termed course light fraction (cLF), and the smaller fraction was termed small light fraction (sLF). The residue heavier than 1.6 g cm-3 was  heavy fraction (HF). Isolated fractions were freeze-dried and observed by SEM. Organic carbon and total nitrogen of isolated fractions were measured by an elemental analyzer.

The mass recovery ranged from 91.5 to 97.0%. A lower recovery rate was observed in the upper horizons, presumably due to losses attributable to higher dissolved organic carbon contents. Each isolated fraction separated by density and size showed different physicochemical properties. cLF mainly consisted of fresh roots. Decomposed plant residue was found in sLF. In HF, structures of highly decomposed plant residues combined with minerals were observed. Lower C/N of HF compared to cLF and sLF in Mt. Chokai indicated more decomposed organic matter associated with minerals. These results showed that even in organic horizons, organic matter had different physicochemical properties depending on their associations with minerals. This study highlights the importance of focusing on minerals in evaluating organic matter dynamics in organic horizons affected by aeolian dust. The stability of organic matter bound to minerals in organic horizons needs further evaluation.

How to cite: Kobayashi, K., Asano, M., and Tamura, K.: Organic matter characteristics in density fractionation of organic horizons with Asian dust and volcanic ash in snowy mountains of northern Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13777, https://doi.org/10.5194/egusphere-egu24-13777, 2024.

EGU24-14590 | ECS | Posters on site | SSS5.2

Improving Biochar Suitability for Arid-Land Use: Impact of Elemental Sulfur and Compost on Acidification and Biological Activation 

Ahmed Al Rabaiai, Daniel Menezes-Blackburna, Said Al-Ismailya, Rhonda Janke, Ahmed Al-Alawi, Mohamed Al-Kindi, and Roland Bol

This study aimed to enhance the quality of biochar for applications in arid lands by employing elemental sulfur (S, 0.013%) as an acidifying agent and compost (10%) as a biological activator. The addition of elemental sulfur significantly reduced the biochar pH, with the most substantial decrease from 8.1 to 7.2 observed when co-amended with vermicompost was used. Elemental sulfur markedly increased the water-soluble concentrations of calcium (Ca) by 147% and 105%, as well as magnesium (Mg) by 929% and 447% in compost and vermicompost, respectively. This suggests a decline in biochar basicity due to acid mineral dissolution and desorption. Sulfate (SO42-) levels showed the greatest increase when compost was co-applied with sulfur, indicating more efficient oxidation in this treatment. FT-IR analysis revealed increased carbonyl groups (C=O) and decreased alkyne (C≡C) groups in compost and vermicompost-treated samples, while sulfur treatment resulted in the decrease of hydroxyl groups, but only in the presence of vermicompost. SEM-EDX analysis demonstrated changes in the elemental composition and microscale pore structure of biochar samples after incubation with sulfur. Sulfur amendments stimulated substrate-induced respiration, particularly in biochar amended with sulfur (BS, 0.011 ug CO2- C/g/h) and biochar with vermicompost (BV, 0.18 ug CO2- C/g/h) treatments. Microbial diversity (Shannon H) significantly increased in compost treatments with sulfur amendment from 3.08 to 4.52, while it decreased in vermicompost from 4.25 to 4.02. Vermicompost treatments (BV, BVS) exhibited higher microbial evenness (0.27 and 0.28) and equitability (0.67) diversity indices. The bacterial community structure was significantly influenced by all treatments, with sulfur reducing the abundance of Proteobacteria by 30% in the presence of compost and 8% with vermicompost, while increasing the abundance of Actinobacteria by 18% and 4% for compost and vermicompost treatments, respectively.Multivariate principal component analysis (PCA) indicated that soluble sulfate was associated with specific sulfur-oxidizing bacterial clusters, which were differentially expressed under different compost treatments. Integrating biochar with sulfur and compost emerges as a promising sustainable technology for managing alkalinity, enhancing soil fertility, and improving agricultural productivity in arid regions.

 

How to cite: Al Rabaiai, A., Menezes-Blackburna, D., Al-Ismailya, S., Janke, R., Al-Alawi, A., Al-Kindi, M., and Bol, R.: Improving Biochar Suitability for Arid-Land Use: Impact of Elemental Sulfur and Compost on Acidification and Biological Activation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14590, https://doi.org/10.5194/egusphere-egu24-14590, 2024.

Crop residues play a key role in supplying renewable carbon for the envisioned future greenhouse gas-neutral economy. However, their harvest is often limited below their technical potential to avoid soil organic carbon (SOC) stock losses. Nevertheless, the use of crop residues in the bioeconomy often involves the generation of a coproduct rich in recalcitrant carbon that can be reintegrated into soils to maintain SOC stocks. Yet, the environmental implications of such a strategy beyond those on climate change remain uncertain and contingent on specific contexts. Here, we present a novel framework that integrates a recalcitrance-adapted SOC model with a consequential life cycle assessment (LCA) to comprehensively evaluate the spatially explicit long-term SOC evolution and environmental impacts associated with returning various bioeconomy coproducts to croplands. The study spans diverse contexts, including temperate (France) and tropical (Ecuador) regions and five environmental impact categories, assessing the conversion of crop residues into maritime fuels, here hydrodeoxigenated pyrolysis oil (HPO) and cryogenic liquefied biomethane (bio-LNG), generating biochar and digestate as coproducts, respectively. The simulations were performed for >60,000 and >15,000 simulation units in France and Ecuador, employing adapted versions of AMG and RothC, respectively, under the RCP4.5 climate pathway in both regions. Results revealed that after 100 years, compared to a reference scenario where crop residues are directly incorporated into soils, biochar allows harvesting 100% of crop residues without any SOC losses in both French and Ecuadorian contexts. In contrast, digestate demonstrates a more limited potential, reaching 50% in France and 0% in Ecuador. This is referred to as the C-neutral harvest rate, which allows a surplus potential of 71-125 PJ in France and 113 PJ in Ecuador. The LCA revealed environmental benefits for all five impact categories for HPO and three categories for bio-LNG, per tonne of crop residues. Despite bio-LNG representing higher net avoided emissions (946 MgCO2e) than HPO (563 MgCO2e) per tonne of crop residues, the scaled results for the national C-neutral harvest rate showed the opposite trend with net avoided emissions of 11,912 MgCO2e for HPO and 10,707 MgCO2e for bio-LNG. Further, the scaled results revealed increased eutrophication impacts in marine water in the bio-LNG case, reflecting the nitrogen emissions associated with digestate, which is responsible for N2O, NH3, and nitrate losses to water. Yet, these can be mitigated with simple solutions such as treating digestate with nitrification inhibitors, microbial enrichment, or acidification at spreading. Moreover, biochar could be applied in tandem with digestate to create synergies from the nutrient-fertilizer effect of digestate and reduced C and N mineralization properties of biochar. In conclusion, defining a C-neutral harvest rate emerges as a pivotal strategy, ensuring a harmonious balance between SOC maintenance and net environmental impacts across diverse scenarios, emphasizing the potential of integrating bioeconomy practices with soil carbon management.

 

How to cite: Andrade Diaz, C. and Hamelin, L.: Tradeoffs between long-term SOC storage and overall environmental impacts of supplying crop residues to the bioeconomy: where, when, how and what does it depend on? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17426, https://doi.org/10.5194/egusphere-egu24-17426, 2024.

Examining soil carbon losses across various time scales is essential for understanding the potential of soil carbon stabilization. It allows for considering these losses in estimating the net changes in carbon stocks. The soil's intrinsic physical and chemical properties, particularly those associated with the mineral phase, have been suggested to regulate soil organic carbon (SOC) losses. However, the relationship between these properties and SOC losses remains to be determined in long-term experiments. A 600-day incubation experiment was conducted on sieved soil samples (<2 mm) and intact cores (volume=~200 cm3) collected from an arable field in Bjertorp in southwest Sweden with large variations in soil texture and SOC to determine the respiration rate through chamber alkali trap respirometry using a Portable conductivity meter. After the incubation experiment, soil properties (carbon, nitrogen, and pH) were also measured. In addition, previously determined soil texture, oxalate extractable aluminum (Alox), and iron measurements were used to explain the results of the incubation experiment. The ratios between Alox and SOC and Alox and clay content were used as proxies for the protection of SOC. Preliminary results from the sieved soil samples indicate that the respiration rate (µg C-CO2 g-1 SOC h-1) was positively correlated to the Alox:SOC  and clay:SOC ratio. These findings can be interpreted as the absence of SOC protection by Alox and/or clay complexes or interactions. The conclusions drawn from this study suggest the need for additional exploration into the intricate dynamics that influence the fate of soil organic carbon (SOC) associated with mineral phases when assessing carbon stocks.

How to cite: Chilipamushi, M., von Brömssen, C., Colombi, T., Kätterer, T., and Larsbo, M.: The role of oxalate-extractable aluminum in regulating soil organic carbon decomposition in agricultural topsoil in humid continental climates: Insights from a long-term incubation field-scale study., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17497, https://doi.org/10.5194/egusphere-egu24-17497, 2024.

EGU24-17654 | ECS | Orals | SSS5.2

Distribution of soil organic carbon across contrasting fractionation techniques - results from a long-term field trial with increasing shares of leguminous cover crops 

Ferdinando Binacchi, Murilo Veloso, Cimélio Bayer, Christopher Poeplau, Carsten Mueller, Franz Buegger, and Andreas Gattinger

Diversification of no-till cropping systems through the inclusion of leguminous crops can be a sustainable means for enhancing both the bioavailability as well as the persistence of soil organic carbon (SOC). Therefore a comprehensive assessment of long-term soil organic matter (SOM) dynamics is crucial to realize the potential of sequestering atmospheric carbon dioxide, while concomitantly restoring the productivity and functionality of degraded soils. In the current study, soil samples were taken from a 39 years old subtropical trial at seven soil increments until one meter depth. Treatments included five maize-based cropping systems, with increasing shares of leguminous cover crops, with or without nitrogen (N) fertilizer applications to the maize plants. Varying degrees of labile and recalcitrant SOC were distinguished by means of thermal analysis as well as through physio-chemical fractionation, yielding contrasting results in shares of carbon accumulation across conceptual pools. While thermally recalcitrant SOC (combusted at temperatures between 400˚C and 800 ˚C) represented a small percentage of total C accrual, chemically recalcitrant SOC (silt and clay fraction resisting sodium hypochlorite oxidation) reported both a large share of total C content, as well as a high C accumulation. Although limited overlap among C pools from the two fractionations was found, irrespective of C detection method, systems with higher shares of leguminous cover crops reported highest SOC stocks. Interestingly, including additional leguminous cover crops contributed in storing as much SOC as systems with N fertilization, but the depth at which SOC sequestration occurred varied between fertilized and non-fertilized systems. While SOC stocks in the 0-30 cm depth correlated positively to total C inputs from crop residues in both fertilized and unfertilized systems, SOC stocks in the subsoil (30-100 cm depth) only correlated (p<0.05) to inputs from leguminous cover crops in non-fertilized systems.

Moreover, shifts in δ¹³C signatures across the five physically separated C fractions (silt+clay, recalcitrant SOC , stable aggregates + sand, dissolved organic carbon and particulate organic matter), were used to calculate contributions of C₃ leguminous C inputs in mixed C₃/C₄ cropping systems and study pathways of SOC dynamics.  

Overall, the study reports high potential of leguminous cover crops to contribute to SOC build-up in subtropical Oxisols, especially through the association of labile organic matter to soil minerals.

How to cite: Binacchi, F., Veloso, M., Bayer, C., Poeplau, C., Mueller, C., Buegger, F., and Gattinger, A.: Distribution of soil organic carbon across contrasting fractionation techniques - results from a long-term field trial with increasing shares of leguminous cover crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17654, https://doi.org/10.5194/egusphere-egu24-17654, 2024.

EGU24-18070 | ECS | Posters virtual | SSS5.2

Stability of microbial necromass in soil is controlled by necromass chemical composition 

Sam Walrond, Jeanette Whitaker, Caroline Peacock, and Nick Ostle

Reversing the trend of decreasing soil carbon stocks is important to help mitigate current environmental challenges. Improving knowledge on the mechanisms that control the stabilisation and persistence of soil organic carbon will provide a foundation to tackle the issue. This includes the mechanisms controlling the stability of organomineral associations, considered to be the most persistent pool of soil carbon. Uncertainties remain in how the composition of carbon involved in mineral associations can control the persistence of this soil organic carbon (SOC) pool.

With the mineral associated pool being dominated by soil carbon derived from microbial necromass, composition of microbes and their cell components will have a significant impact on organomineral stability. This study aims to investigate whether differences in cell wall composition between fungi, gram-positive and gram-negative bacteria, contribute to contrasting stability of the organominerals synthesised using necromass of these microbial groups.

Organominerals composed of ferrihydrite and montmorillonite minerals and three types of necromass were synthesised and tested for their stability. This was done using chemical washes that bring about desorption (NaOH) and oxidation (NaOCl) of the necromass C. Solid fraction C and N were measured before and after chemical wash treatments to determine the extent of organic carbon (OC) destabilisation, and Fourier transform infrared (FTIR) spectroscopy was used to semi-quantitatively assess changes in OC functional groups before and after destabilisation.

Results indicate that organominerals containing fungal necromass have greater stability compared to organominerals containing gram-positive and gram-negative bacterial necromass. The most stable fraction within organominerals was C rich and did not comprise N-containing necromass components. The results imply that necromass derived from soil fungi could enhance the persistence of the mineral-associated pool of SOC.

How to cite: Walrond, S., Whitaker, J., Peacock, C., and Ostle, N.: Stability of microbial necromass in soil is controlled by necromass chemical composition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18070, https://doi.org/10.5194/egusphere-egu24-18070, 2024.

EGU24-18494 | ECS | Posters on site | SSS5.2

Modelling priming effect to explain the effect of DOC input quality on soil C turnover 

Olga Vindušková, Gaby Deckmyn, Kateřina Jandová, and Veronika Jílková

Even though priming effects (PE) could reduce soil organic C gains from enhanced ecosystem productivity under global change, the PE has been introduced to few models only recently. Both particulate organic matter (POM) and mineral-associated organic matter (MAOM) decomposition may be increased by DOC (dissolved organic carbon) inputs via the priming effect (PE) which is stronger in less-protected fractions (i.e., POM) and is also influenced by the DOC input quality. In our previous study, we showed that spruce litter leachates induced a higher PE than root exudates and could track their utilization by fungi and bacteria using isotope labelling, 13C-PLFA and 13C in respired CO2 and soil C fractions (Jílková et al. 2022)

Here we use components from the KEYLINK model to develop a model that can be optimized using data from the experiment of Jílková et al. (2022) and used to predict outcomes of ongoing follow up incubation experiments using 13C-labelled spruce and beech litter leachates and root exudates on soils and fractions alone. We use this approach to test our understanding of the mechanisms of the microbially-driven soil C turnover under contrasting quality of DOM inputs.

How to cite: Vindušková, O., Deckmyn, G., Jandová, K., and Jílková, V.: Modelling priming effect to explain the effect of DOC input quality on soil C turnover, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18494, https://doi.org/10.5194/egusphere-egu24-18494, 2024.

EGU24-18626 | ECS | Posters on site | SSS5.2 | Highlight

Combining remote sensing products with crop and soil models to estimate changes in soil organic carbon on cropland 

Gaétan Pique, Basile Goussard, and Andréa Géraud

Agricultural land is a major contributor to human greenhouse gas emissions, but it is also affected by climate change. At the same time, the recent 4p1000 initiative has identified cropland as having important the potential to sequester atmospheric carbon in the soil.
However, there is currently a lack of robust and accurate tools to assess the carbon budget of cropland at plot level and over large areas. This lack is due to the heterogeneity of the landscape, characterised by a wide range of soil and climatic conditions and many agricultural practices. However, these tools are needed to better understand the contribution of cropland to greenhouse gas emissions and to properly identify the most efficient levers for sequestrating carbon in the soil.
In this study we propose a modelling framework to estimate carbon budgets at plot scale and over large areas. This approach assimilates optical remote sensing products with high spatial and temporal resolution into a crop model (SAFYE-CO2). This model allows the estimation of CO2 fluxes as well as crop productions (biomass and yield) of the main crops and the cover crops. This information is then used as input to a soil model (RothC) to estimate the carbon storage following the introduction of the cover crops into the soil.
This framework is validated using CO2 flux measurements from the ICOS network and cover crop in situ biomass data.
This approach is in line with the search for the 'monitoring, reporting and verification' tools that is needed today to drive the agricultural transition, to enable sustainable agriculture that provides sufficient production in a changing climate, while identifying the best practices to use agricultural land as a way of achieving net zero carbon targets.

How to cite: Pique, G., Goussard, B., and Géraud, A.: Combining remote sensing products with crop and soil models to estimate changes in soil organic carbon on cropland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18626, https://doi.org/10.5194/egusphere-egu24-18626, 2024.

EGU24-19022 | Orals | SSS5.2

Enhanced rock weathering application on sub-tropical agroecosystems for carbon sequestration and sustainable crop production 

Shinya Iwasaki, Kosuke Hamada, Kazutoshi Kinjo, Yudai Yamaura, Yoshifumi Terajima, and Toshihiko Anzai

Achieving increased or sustained crop yields while minimizing environmental impact is a pressing challenge in agricultural science. Enhanced Rock Weathering (ERW) has emerged as a novel negative emission technology that accelerates natural geological processes of carbon (C) sequestration by applying crushed silicate rocks, specifically basalt, to croplands. However, field-scale evaluations to demonstrate carbon sequestration potential and agricultural co-benefits have been limited. This study quantitatively assessed the carbon and nitrogen (N) flow resulting from basaltic rock application in sugarcane and upland rice cultivation in a sub-tropical agroecosystem.

Two types of experiments were conducted on Ishigaki Island, located in the subtropical zone of Japan, where the annual rainfall and annual temperature were 2,500 mm and 24.0 ℃, respectively. Firstly, an outdoor field experiment on sugarcane cultivation was conducted. The following six treatments were applied with four replicates using a completely randomized block design: bare soil (no sugarcane), control without any amendment, lime application, manure application (10 Mg C ha−1), basaltic rock application (10% by weight), and a combination of manure and basaltic rock. Soil water at the 0.6 m depth, which we defined as leaching water, was collected from all plots using the porous cup method and subjected to dissolved C and N analysis. Secondly, an indoor lysimeter experiment was conducted on upland rice cultivation to understand the comprehensive flow of C and N, including greenhouse gas emissions. The following four treatments were assigned with three replicates to 12 concrete lysimeters with 2 m2 and 1 m depth: control without any amendment, torrefied plant residue (1% by weight), basaltic rock application (10% by weight), and a combination of torrefied plant residue and basaltic rock.

In the outdoor field experiment, continuous monitoring of soil volumetric water content and electric conductivity showed that the weathering of basaltic rock was enhanced by solid-liquid contact. Soil pH increased by the basaltic rock application the same as lime application. Similarly, the acidification of leaching water was buffered in the basaltic rock application treatments. Consequently, the inorganic carbon concentration in leaching water was higher in the basaltic rock application treatments than in the control and lime application treatments. Although there were no significant differences in the plant height of sugarcane, the number of leaves and Single Photon Avalanche Diode (SPAD) increased by basaltic rock application. Similarly, the indoor lysimeter experiment observed higher pH and dissolved inorganic C concentrations in leaching water. Although carbon dioxide flux increased by basaltic rock application in the first month, it was decreased in the crop growing period. These results indicated that the ERW application has a C sequestration potential and co-benefit on crop production. The annual C and N budget and further discussion will be presented in the session.

How to cite: Iwasaki, S., Hamada, K., Kinjo, K., Yamaura, Y., Terajima, Y., and Anzai, T.: Enhanced rock weathering application on sub-tropical agroecosystems for carbon sequestration and sustainable crop production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19022, https://doi.org/10.5194/egusphere-egu24-19022, 2024.

EGU24-19605 | ECS | Posters virtual | SSS5.2

Soil carbon storage and greenhouse gas fluxes in forested and grassland ecosystems of Gujarat undergoing anthropogenic and climatic disturbances 

Niharika Sharma, Mohammad Atif Khan, Priyamvada Dubey, Chhavi Nath Pandey, Sanjeev Kumar, and Vikrant Jain

Carbon storage in soils is a significant nature-based solution for adaptation and mitigation of climate change. However, soil carbon storage varies with the change in land cover and the association of organic matter with differently sized soil aggregates. To compare the effects of these parameters on the carbon cycling of soils, we have analyzed the soil carbon content and greenhouse gas emissions from soils under different land cover in Gujarat, India. We sampled forest soils from regions covered with dry deciduous trees, moist trees, forest fires, and forest conversion to agriculture. We further sampled grassland soils in the areas showing matured grasses, harvested grasses, salinity-affected grasses, grazing-affected grasses, and the grassland region impacted by the invasion by Prosopis juliflora species. We classified some of these land features as a result of climatic disturbances (increase in salinity, invasion by Prosopis, forest fire) and others as anthropogenic disturbances (cattle grazing, harvesting, agriculture). Physico-chemical properties and greenhouse gases emitted from soils were measured using handheld probes and chamber methods, respectively. Laboratory analysis of soil carbon and its isotopes was performed for bulk soils and the soil density-size fractions (particulate fractions, sand-sized fractions, clay and silt size fractions, and recalcitrant organic matter fractions). Our analysis reveals the change in carbon emissions and carbon storage in soils of arid-moist stretch in Gujarat is caused by different land cover and management practices. The presence of aboveground biomass has a significant control on the carbon storage capacity of soils highlighting the importance of afforestation and ecosystem restoration in building up the soil carbon stock. Carbon emissions were also higher in soils with large aboveground vegetation; however, this mainly represents soil microbial respiration and thus indicates healthy soil and rich pedo-biodiversity. Most of the carbon in grassland soils was associated with silt and clay-sized particles whereas the carbon content in forested soils is higher within sand-sized particles. Soils from both grasslands and forests acted as a sink for atmospheric methane except for soils from grazed grasslands, indicating the importance of grazing management in grassland ecosystems. Climatic stressors like an increase in salinity and Prosopis invasion showed no significant impact on soil carbon stock and greenhouse gas emissions and behaved similarly to harvested grasslands or dry-deciduous forests. Forest fire, on the other hand, can change the texture and carbon and nitrogen association in the soils. Conversion of forests to croplands has the most detrimental impact on soil carbon storage and can lead to loss of stored carbon in the form of high greenhouse gas emissions. Forest land conversions should, therefore, also consider this aspect of forest conversion in its management plan.

How to cite: Sharma, N., Khan, M. A., Dubey, P., Pandey, C. N., Kumar, S., and Jain, V.: Soil carbon storage and greenhouse gas fluxes in forested and grassland ecosystems of Gujarat undergoing anthropogenic and climatic disturbances, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19605, https://doi.org/10.5194/egusphere-egu24-19605, 2024.

Improving carbon storage in soils and the biosphere is a promising nature-based solution to combat climate change and is receiving more and more attention with little understanding how this can be achieved globally and in a sustainable way.

Many of our expectations in finding nature-based solutions rely on vast, less developed–but nevertheless populated and rapidly changing– regions of the Global South. At the same time, concepts and assumptions about which solutions work for increasing long-term carbon capture in soil systems are based on knowledge gathered largely from the Global North in often fundamentally different environmental settings and development history. 

In my talk I will illustrate with examples from the socio-ecological context of the African Tropics how these knowledge gaps and our lack of understanding of tropical carbon cycling mislead us into thinking that we can find easy solutions in the Tropics to mitigate climate change. I will highlight how the interactions of weathering and erosional disturbance can influence and dominate biogeochemical cycles in soils and discuss some directions where geochemical proxies that are available at the global scale can be useful for improving the spatial and temporal representation of tropical carbon storage and turnover.

How to cite: Doetterl, S.: Soil carbon sequestration in sub-Saharan Africa – Great expectations, limited potentials?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22139, https://doi.org/10.5194/egusphere-egu24-22139, 2024.

EGU24-998 | ECS | Orals | SSS9.11

Investigation of SOM sequestration and storage in the Southern Transdanubian region of Hungary 

Péter Végh, Pál Balázs, András Bidló, and Adrienn Horváth

Site factors determine the occurrence and growth of forest stands. The climate is one of the most important. In Hungary, several forest stands located near to the Xeric limit, where climate change is more sensitive. Therefore carbon-rich forests and their soils are being prioritized to achieve carbon neutrality as soon as possible. Our research aims to assess and compare the organic carbon stored in oak and beech forest ecosystems of different climate classes.

In the last period, we sampled 2 Beech, 11 Sessile oak and 13 Turkey oak forest stands to determine the amount of soil organic carbon stored in the soil.

The soils were collected by soil boring to 0-110 cm. Besides the soil sampling, the existing forest stand composition assessed on each stand near to sampling points.

Based on the analyses carried out in the 26 selected forest stands, the soils of the sites can be classified as Cambisols and Luvisols (WRB 2023). The soil pH showed slightly acidic to neutral (mean H2O = 6.7), and the texture can be determined as loam. The relative organic matter content (SOM) was 0.67% on average between 0-110 cm. It corresponds to ~8.2 t of carbon per hectare.

With the accelerated rate of climate change (drought), there is an increasing urgency to assess the status of ideal organic matter-rich soils and to develop adaptation strategies to increase the carbon stock.

This article was made in the frame of the project TKP2021-NKTA-43 which has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary (successor: Ministry of Culture and Innovation of Hungary) from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme. This publication was supported by the project GINOP-2.3.3-15-2016-00039.

How to cite: Végh, P., Balázs, P., Bidló, A., and Horváth, A.: Investigation of SOM sequestration and storage in the Southern Transdanubian region of Hungary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-998, https://doi.org/10.5194/egusphere-egu24-998, 2024.

Different climate scenarios predict a clear rise in temperatures and a modest increase in precipitation to high latitudes. In forested peatlands, the consequent lowering of the water table and increasing peat temperature will enhance organic matter decomposition leading to higher nutrient release and CO2 emissions from the peat. These biogechemical changes will fundamentally alter the management schemes of peatland forests. Hydrological and biogeochemical processes in forested peatlands are complicated, interlinked and characterized by different feedback mechanisms. In addition, all these are dependent on weather conditions, peat characteristics, drainage dimensions, and stand structure.  High-resolution geospatial data combined with process-based ecosystem models provides a solution in searching for new forest management schemes that balance between different ecosystem services. We have developed this kind of ecosystem model, peatland simulator SUSI, and applied it to study how manipulation of drain network, ash fertilization and forest management affect tree growth, greenhouse gas balance and nutrient export to water courses under different temperature and rainfall scenarios. We found that without a change in the water management, the stand growth, the soil C emissions and nitrogen export to water courses will increase substantially. However, less intensive drainage together with ash fertilization helped to mitigate the harmful effects of changing climate whilst keeping the stand growth in adequate level. 

How to cite: Laurén, A. and Palviainen, M.: Decreasing carbon emissions in boreal peatland forests using fertilization and less intensive drainage in current and changing climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3103, https://doi.org/10.5194/egusphere-egu24-3103, 2024.

EGU24-3172 | Posters on site | SSS9.11

Is it more conservative to use the crab steering during sugar beet harvesting? A case study from Lower Saxony, Germany 

Katja Augustin, Marco Lorenz, Rainer Duttmann, and Michael Kuhwald

Sugar beet is one of the crops grown in Germany with the highest intensity of traffic on the field. Not only are there very high numbers of passes by the machines during the season, but the sugar beet harvesting vehicles are also among the largest and heaviest machines in use in Germany. The heavy harvesters are also used elsewhere in the world. In order to avoid multiple passes with the heavy wheel loads, the machines can often offset their rear axles parallel to the direction of travel - the so-called crab steering (CS). This distributes the load over a larger area, but also means that more area is covered in the field.

This study examines whether the distribution of wheel loads over a larger area using CS shows a significant difference in soil settlement and deformation compared to traffic without the use of crab steering (wCS). Different moisture contents of the soil are taken into account.

The model named FiTraM was used to model the traffic. The calculation of the soil deformation is based on empirical formulas, which are specially adapted to this field and the harvester.

The subsoil in particular is considered, as soil deformation should be avoided there, since it is difficult and cost-intensive to repair.

The results show that there are no significant differences in the distribution of soil deformation between CS and wCS.  In general, the moisture content of the soil determines the extent of deformation. In moist to very wet conditions (approx. 35 - 37 Vol-%), the first pass already achieves such a high degree of soil deformation that it should be avoided in practice. When the soil is dry (approx. 25-30% by volume), no soil deformation occurs in the subsoil in any of the variants - only slight deformation occurs in the topsoil. There are likewise no significant differences between the two traffic variants between 31 and 34 Vol.-% soil moisture.

In summary, it can be assumed that a wheel or axle of the beet harvester is already so heavy that it makes little difference whether the machine is running in CS or not. The limiting factors are the total weight and the soil moisture content during traffic.

How to cite: Augustin, K., Lorenz, M., Duttmann, R., and Kuhwald, M.: Is it more conservative to use the crab steering during sugar beet harvesting? A case study from Lower Saxony, Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3172, https://doi.org/10.5194/egusphere-egu24-3172, 2024.

EGU24-3244 | Posters on site | SSS9.11

Wetland restoration for the future - ALFAwetlands 

Liisa Ukonmaanaho, Tuula Larmola, Tuula Aalto, Erik Andersson, Kaido Soosaar, Alexandra Barthelmes, Marina Abramchuk, Juraj Balkovic, Emmi Haltia, Iryna Shchoka, Maud Raman, Kris Decleer, Andis Lazdins, Josep Penuelas, Adria Descals, Jose Miguel Sanchez-Perez, Odette Gonzalez, Julien Tournbize, and Francesc de Paula Sabater Comas

The global goal to mitigate climate change (CC) is to achieve net zero greenhouse gas emissions (GHGE) by 2050; the European Union (EU) aim is to cut GHGE at least by 55% already by 2030. These ambition targets require new GHGE mitigation measures across all land use sectors (LULUCF), where wetlands, as carbon (C) rich ecosystem, can effectively contribute to climate targets, biodiversity, and water-related ecosystem services. Natural peatlands accumulate C effectively due to water-logged conditions. However, they can turn into high GHG sources if they are drained, therefore there is still need to enhance knowledge regarding how and/or how much C is sequestered or released by peatlands after their restoration, as well as the socioeconomic effects.

“ALFAwetlands - Restoration for the future” (www.alfawetlands.eu) is a Horizon Europe funded project (2022-2026), which is coordinated by Luke and carried out at local to EU levels with 15 partners across Europe. It’s main goal, in short, is to mitigate CC while supporting biodiversity and ecosystem services (BES) and being socially just and rewarding. This includes, e.g., increasing the knowledge about C storage and release in peatlands, specifically after restoration. While, in terms of C fluxes, focussing on peatlands, the project scope is larger and includes additionally floodplains, coastal wetlands and few artificial wetlands. ALFAwetlands will develop and indicate management alternatives for wetlands including such that have been or will be restored during this project. Measures under this project are not restricted to ecological restoration but include rehabilitation and re-vegetation action to improve ecosystem conditions (e.g., peatland forest: continuous-cover-forestry, cultivated peatlands: paludiculture). Studies are conducted in 9 Living Labs (LL’s) including 30 sites, which are located in wetlands in different parts of Europe (north-south gradient). At the local level, LL’s support and integrate interdisciplinary and multi-actor research on ecological, environmental, economic, and social issues. Experimental data from local sites are scaled-up and will be utilized e.g., by models to gain and understanding the potential impacts of upscaled wetland restoration measures. To achieve ALFAwetlands goals, 5 research workpackages are being implemented, namely: 1)improve geospatial knowledge base of wetlands, 2)co-create socially fair and rewarding pathways for wetland restoration, 3)estimate effects of restoration on GHGE and BES, with the data achieved from field experiments, 4)develop policy relevant scenarios for CC and BES, and 5)study societal impacts of wetland restoration. The project will also encourage stakeholders to utilise outputs and support their active participation in wetland management.

How to cite: Ukonmaanaho, L., Larmola, T., Aalto, T., Andersson, E., Soosaar, K., Barthelmes, A., Abramchuk, M., Balkovic, J., Haltia, E., Shchoka, I., Raman, M., Decleer, K., Lazdins, A., Penuelas, J., Descals, A., Sanchez-Perez, J. M., Gonzalez, O., Tournbize, J., and Sabater Comas, F. D. P.: Wetland restoration for the future - ALFAwetlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3244, https://doi.org/10.5194/egusphere-egu24-3244, 2024.

EGU24-3514 | Posters on site | SSS9.11

Physical characteristics of peat and their influence on peat CO2 emission potential in a drained boreal peatland forest 

Salla Tenhovirta, Marjo Palviainen, Elina Peltomaa, and Annamari Laurén

Peatlands are a significant global storage of carbon (C), but also major sources of nutrients and dissolved organic carbon (DOC) to surface waters. Export of DOC from peatlands to watercourses cause emissions of  carbon dioxide (CO2) due to degradation of DOC, as well as enhances the brownification of surface waters, altering the ecological networks of the aquatic ecosystems. Managed peatland forests are hotspots for DOC export into downstream water bodies due to forestry practices such as harvesting and drainage. Water table, soil oxygen availability and vegetation control the release and transport of DOC.

Drainage of peatlands also alters the physical characteristics of peat (Word et al., 2022). However, the role of these peat characteristics in the processes and release of DOC, as well as their influence on the lateral fluxes of carbon from forested peatlands, remains unknown.

In this contribution, we present results from a laboratory experiment where the physical properties of peat and their relationship to peat decomposition are studied in a minerotrophic, nutrient-rich peatland forest that has been drained for ~80 years. The peat for the study was collected from the field site, located in southern Finland, into 50 cm columns along three transects. The transects  extend from 1 to 30 meter distance from the  ditch. In laboratory, the bulk density and water retention characteristics of the peat will first be determined in relation to distance to the ditch. The CO2 emission potential is then defined as the function of these peat properties. This is done by measuring the CO2 fluxes of the peat with a chamber enclosure method, using a Li-7810 online CH4-CO2-H2O analyser.

The results of this experiment will increase the process-level understanding of the mechanisms that drive the export of DOC from peatlands. The produced data will be further utilized in an ecosystem model, to be used in assessing and evaluating environmental impacts of forest management practises.

 

References

Word CS, McLaughlin DL, Strahm BD, Stewart RD, Varner JM, Wurster FC, Amestoy TJ, Link NT. 2022. Peatland drainage alters soil structure and water retention properties: Implications for ecosystem function and management. Hydrological Processes 36: e14533.

How to cite: Tenhovirta, S., Palviainen, M., Peltomaa, E., and Laurén, A.: Physical characteristics of peat and their influence on peat CO2 emission potential in a drained boreal peatland forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3514, https://doi.org/10.5194/egusphere-egu24-3514, 2024.

EGU24-3804 | Posters on site | SSS9.11

Reforestation based on the ditch-and-embankment technique increased soil carbon stock and alleviated soil salinity in a coastal area subject to land subsidence- a preliminary study 

Chun-Yu Lee, Guan-Ying Lin, Yu-Hsuan Liu, Hsiang-Wua Wang, Chien-Fan Chen, and Li-Wan Chang

The coastal areas are renowned for their exposure to strong winds, salt sprays, and blowing aeolian sands, collectively posing threats to farming and the health of residents. Well-established coastal forests offer protection to alleviate these adverse effects and provide various ecosystem functions, such as carbon sequestration and soil conservation. Soils account for approximately 74% of the carbon stock in terrestrial ecosystems. Consequently, even a subtle increase in soil carbon can lead to significant carbon sequestration. Reforestation is considered a suitable practice to enhance both above- and belowground carbon sequestration. However, the benefits of reforestation in coastal areas are hindered by land subsidence and seawater intrusion due to over-exploitation of groundwater for fish farming or manufacturing. To overcome these obstacles, a reforestation practice known as the "ditch-and-embankment technique (D-E technique)" is adopted. This technique involves reforesting coastal lands suffering from land subsidence by constructing inter-parallel ditches and hills. By applying the D-E technique, soil properties can be improved through salt leaching, and soil organic carbon (SOC) stock can be enriched by organic matter inputs from reforested trees. However, the effectiveness of this technique in terms of soil carbon and soil amelioration lacks sufficient evidence. In this study, we investigated the soil carbon stock and soil salinity of a 15-year-old coastal plantation, consisting of four dominant species (Casuarina equisetifolia, Millettia pinnata, Melaleuca leucadendra, Cerbera manghas) established by the D-E technique on the western coast of Taiwan. Soil samples from hills (O horizon and mineral soil) and ditches were collected using soil cores and a piston sampler. A proximate submerged forest was used as a reference baseline. Soil carbon was determined as organic, inorganic, and elemental carbon with a TOC analyzer. Soil salinity was measured in terms of soil pH and electrical conductance (EC1:5). Our results showed that the D-E technique could increase the total SOC stock (O horizon + 0-50 cm mineral SOC) to an average of 48.38 Mg C ha-1, compared to the submerged forest (12.22 Mg C ha-1). The total SOC stocks of hills ranged from 38.02-60.33 Mg C ha-1, significantly higher than the submerged forest, irrespective of species, although there were no significant differences in total SOC stocks between species. Consistent with total SOC stocks, mineral SOC stocks of hills (13.91 -24.49 Mg C ha-1) were generally higher than the submerged forest, with only those from Cerbera manghas and Millettia pinnata being significantly or marginally higher. The similar amount of total inorganic carbon stock between hills and the submerged forest further supported the contribution of reforestation. Soil pH at the 0-5 cm layer of hills was lower than in the deeper soil layer and soils from the ditch. Additionally, EC generally were lower at soil at 0-5 cm or 5-10 cm layers, suggesting the occurrence of salt leaching. In conclusion, our preliminary study suggests that the D-E technique could be an appropriate reforestation approach to establish coastal plantations in areas subject to land subsidence, meeting multiple objectives, including protecting residents' well-being, soil carbon sequestration, and soil salinity amelioration.

How to cite: Lee, C.-Y., Lin, G.-Y., Liu, Y.-H., Wang, H.-W., Chen, C.-F., and Chang, L.-W.: Reforestation based on the ditch-and-embankment technique increased soil carbon stock and alleviated soil salinity in a coastal area subject to land subsidence- a preliminary study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3804, https://doi.org/10.5194/egusphere-egu24-3804, 2024.

Aim: Anthropogenic compaction is typically assumed to be major threat to soil health in agriculture. Compaction of the subsoil is considered irreversible and therefore more severe than topsoil compaction. To-date, quantitative estimates about the extent and severity of soil compaction are hardly available. This study aims to quantify anthropogenic subsoil compaction in German croplands by reanalyzing data from the German Agricultural Soil Inventory (BZE-LW). Grassland sites, which are assumed to exhibit negligible traffic-induced compaction below 30 cm depth, serve as a reference for the prediction of bulk density in cropland sites before anthropogenic compaction.


Methods: A data-driven reciprocal modelling approach is employed to estimate human-induced increases in bulk density at 1477 cropland sites scattered in a regular 8 x 8 km grid across Germany. The model is trained on data from ~400 grassland sites using information about soil texture, organic C content, soil pH, climate, and geological parent material. The model is then applied to the cropland sites to predict the bulk density of the upper subsoil in 30-50 cm depth prior to anthropogenic compaction. The disparity between modelled and observed bulk density represents the trafficking induced changes in soil compactness. To explain the drivers of this change, another data-driven model, incorporating soil and climate information as well as cropland management data, is trained and interpreted.


Results: Traffic-induced compaction has significantly increased the median bulk density of subsoils under cropland by 0.055 g cm⁻³, corresponding to a 4% increase. The modelled effects ranges from -0.07 g cm-3 to 0.180 g cm⁻³ (10th and 90th quantile), with the largest increases in subsoil compaction observed in eastern Germany. For the 20% most severely affected sites in Germany, the median increase in bulk density was 0.180 g cm⁻³ (0.142 g cm⁻³ – 0.267 g cm⁻³, 10th and 90th quantile), which corresponds to a 12% increase in subsoil bulk density. The anthropogenic increase in soil bulk density was most pronounced in loamy soils with relatively low soil organic carbon content.


Conclusion: This study represents a significant advancement in our ability to quantitatively assess the extent and severity of anthropogenic subsoil compaction at a national scale. The data-driven reciprocal modelling approach employed is promising for broad application in relation to soil health monitoring initiatives across Europe. 

How to cite: Harbo, L. S. and Schneider, F.: Estimating anthropogenic subsoil compaction in Germany using data-driven reciprocal modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5503, https://doi.org/10.5194/egusphere-egu24-5503, 2024.

EGU24-6522 | Orals | SSS9.11

On the impact of timber harvesting on soil water retention and surface runoff 

Max Behringer, Christian Scheidl, Gerhard Markart, Gertraud Meißl, Marcus Froemel, Lisa Gasser, Julian Grünberg, Christoph Haas, Armin Hofbauer, Barbara Kitzler, Martin Kühmaier, Nikolaus Nemestothy, Boris Rewald, Alexandra Wieshaider, and Klaus Katzensteiner

Structural properties of undisturbed soils are critical for water retention and the reduction of peak flows after heavy rainfall events. Forest soils commonly show high infiltration rates that can be attributed to a high organic content and the formation of larger pores through biological activity. Though soil disturbances, especially soil compaction, due to timber logging can be considered a rare event, the impacts may be long lasting. The productive, often fine textured soils of the Alpine Flysch belt are particularly susceptible to compaction, posing a challenge for timber harvesting.

In a controlled experiment in the Flysch zone (Vienna Woods, Austria), we assessed the effects of different timber harvesting technologies – specifically harvester-forwarder (with or without bogie tracks) and chain saw-cable yarder – on soil functions. For the quantification of the surface runoff, we applied rainfall simulation experiments on seven plots of 50 m² each. All rainfall simulation experiments were conducted for one hour with a targeted intensity of 100 mm/h before and after harvesting. Within each irrigation plot, we sampled undisturbed soil cores at up to five depth levels (5, 15, 25, 40, 65 cm) for further analyses in the laboratory. We measured saturated hydraulic conductivity (KSAT device; METER Group, Munich, Germany), as well as soil water retention in the wet and medium soil moisture range using the HYPROP device (METER Group, Munich, Germany). In the dry soil moisture range (pF>4.2) we measured water retention with the dew point method using the WP4C device (METER Group, Pullman, USA). Additionally, soil texture and soil organic carbon were determined from the same soil samples.

Preliminary results suggest a strong impact of the harvester-forwarder system (w/wo bogie tracks) on all hydrologically effective soil properties, while the cable yarder system seems to have lower, yet still noticeable impacts. For the log10 of the saturated hydraulic conductivity (log10KS) the harvester-forwarder treatments cause significantly lower values, with reductions of up to >99% compared to values prior to harvesting. The decline of log10KS in cable yarding systems is only marginally significant (up to -49%). First order analyses of runoff coefficients show a strong effect of the harvester-forwarder system with observed values of up to 0.66. Undisturbed sites had no surface runoff and cable yarding only generated minimal surface runoff. 

How to cite: Behringer, M., Scheidl, C., Markart, G., Meißl, G., Froemel, M., Gasser, L., Grünberg, J., Haas, C., Hofbauer, A., Kitzler, B., Kühmaier, M., Nemestothy, N., Rewald, B., Wieshaider, A., and Katzensteiner, K.: On the impact of timber harvesting on soil water retention and surface runoff, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6522, https://doi.org/10.5194/egusphere-egu24-6522, 2024.

EGU24-6553 | Orals | SSS9.11

Could continuous cover forestry on drained peatlands increase the carbon sink of Finnish forests?  

Aleksi Lehtonen, Kyle Eyvindson, Kari Härkönen, Kersti Leppä, Aura Salmivaara, Mikko Peltoniemi, Olli Salminen, Sakari Sarkkola, Samuli Launiainen, Paavo Ojanen, Minna Räty, and Raisa Mäkipää

Land-based mitigation measures are needed to achieve climate targets. One option is mitigation of currently high greenhouse gas (GHG) emissions of nutrient-rich drained peatland forest soils. Continuous cover forestry (CCF) has been proposed as a measure to manage this GHG emission source; however, its emission reduction potential and impact on timber production at regional and national scale have not been analysed.

To quantify the potential emission reduction, we simulated four management scenarios for Finnish forests: (i) clearcutting of nutrient-rich drained peatlands replaced by selection harvesting (CCF) and (ii) the current prevailing forest management regime (BAU), and both at two harvest levels, namely (i) the mean annual harvesting (2016–2018) and (ii) the maximum sustainable yield. The simulations were conducted with a forest simulator (MELA) coupled with hydrological model (SpaFHy), soil C model (Yasso07) and empirical GHG exchange models.

Simulations showed that the management scenario (CCF) that avoided clear-cutting on nutrient-rich drained peatlands produced approximately 1 Tg CO2 eq. higher carbon sinks annually compared to the BAU at equal harvest level for Finland. This emission reduction can be attributed to the maintenance of higher biomass sink and to the mitigation of soil emissions from nutrient-rich drained peatland sites.

How to cite: Lehtonen, A., Eyvindson, K., Härkönen, K., Leppä, K., Salmivaara, A., Peltoniemi, M., Salminen, O., Sarkkola, S., Launiainen, S., Ojanen, P., Räty, M., and Mäkipää, R.: Could continuous cover forestry on drained peatlands increase the carbon sink of Finnish forests? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6553, https://doi.org/10.5194/egusphere-egu24-6553, 2024.

EGU24-8055 | ECS | Orals | SSS9.11

Soil compaction signatures on electromagnetic and DC-current geophysics 

Alberto Carrera, Luca Peruzzo, Giorgio Cassiani, and Francesco Morari

Monitoring soil structure is of paramount importance due to its key role in the critical zone as the foundation of terrestrial life. Variations in the arrangement of soil components significantly influence its hydro-mechanical properties, and therefore its impact on the surrounding ecosystem. Soil compaction, resulting from inappropriate agricultural practices, not only affects soil ecological functions by reducing soil porosity and water infiltration, but also decreases the yields spoiling the socio-economic aspect.

In this study, we compared the ability of electrical and electromagnetic geophysical methods, i.e. Electrical Resistivity Tomography and Frequency-domain Electromagnetic Method, to monitor the effects of compaction on agricultural soil. The objective is to highlight the electro-magnetic response caused by plastic deformation of the soil generated by both a super-heavy vehicle and the usual interrows surface compaction generated by tractor traffic for common practices. The survey was conducted both on a small scale, covering an area of 1.5 hectares, and in detail on individual targeted transects. This allowed to capture the 2-D and 3-D spatial heterogeneity that is often difficult to obtain with punctual and invasive traditional methods.

This work aims to contribute to the methodological optimization of agro-geophysical acquisitions and data processing, so as to obtain accurate soil models through non-invasive approach. Results, validated with traditional soil characterization techniques (i.e. penetration resistance, bulk density and volumetric water content on collected samples), show pros & cons of both techniques and how differences in their spatial resolution heavily influence the ability to characterize compacted areas with good confidence.

How to cite: Carrera, A., Peruzzo, L., Cassiani, G., and Morari, F.: Soil compaction signatures on electromagnetic and DC-current geophysics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8055, https://doi.org/10.5194/egusphere-egu24-8055, 2024.

EGU24-8649 | ECS,ECS | Orals | SSS9.11

Unearthing the effects of harvesting methods applied in continuous-cover forestry and rotation forest management on soil carbon storage 

Eva-Maria Roth, Kristiina Karhu, Matti Koivula, Heljä-Sisko Helmisaari, and Eeva-Stiina Tuittila

Boreal forests hold about 32% of the global forest carbon (C) stock and the majority of this C is stored in the soil. Forest management affects species composition, microclimate, plant growth, and litter production, and thus affects the soil organic carbon (SOC) storage. Hence, it is important to understand the effects of forest management practices on SOC storage and to adopt management strategies that protect SOC storage.

We aimed to assess how two major forest management approaches differ in their impact on SOC quality and degradability to evaluate their effects on long-term SOC storage. Rotation forest management (RFM) based on clear-cut harvesting is the most common forest management practice worldwide. Continuous-cover forestry (CCF) as an integrated forest management approach has been suggested to enhance SOC storage. It uses repeated partial harvesting and retains a continuous tree cover.

We present our recently published results from a field study in Ruunaa, Lieksa, eastern Finland. We compared the effects of logging methods applied in CCF and RFM on SOC storage and quality in boreal Scots pine (Pinus sylvestris) dominated forests ten years after the logging operations. We sampled gap-cuts as logging method applied in CCF, retention-cuts (20% of tree volume retained), and uncut mature forests and clear-cuts as two opposing stages of RFM. We tested the hypotheses: (1) colder microclimate and continuous litter input lead to higher SOC stocks in CCF plots than in clear-cuts and (2) more labile litter of grass- and herb-rich vegetation typical for clear-cut sites enhances SOC decomposition rates. We analyzed the SOC concentration and stock and modelled annual above- and belowground litter inputs based on stand characteristics (diameter at breast height, basal area, dominant tree height, understory species coverage). We used sequential chemical fractionation of organic layer samples and laboratory incubation to analyze the quality of SOC and its degradability under standardized conditions. To estimate the decomposition rate as impacted by the environment we incubated cellulose bags in situ. We assessed the impact of varying microclimate with field measurements of soil temperature and soil moisture. We analyzed the microbial biomass C pool with chloroform fumigation extraction.

The SOC content and stock did not differ significantly between the treatments, despite the warmer microclimate and lower litter input recorded in clear-cut plots than in CCF plots. However, we detected differences in quality and degradability of SOC. Soils in clear-cut sites held lower proportions of labile SOC compounds than the other treatments. As hypothesized, decomposition rate was elevated in clear-cuts, but was equally high within the canopy gaps of gap-cuts. Accumulation of labile SOC due to cooler microclimate, combined with decreased decomposition rate – both found in uncut forests and retention-cuts – indicate a higher potential for future SOC accumulation in these treatments than in clear-cuts. Our study highlights that forest management affects the quality, degradability, long-term accumulation and storage of SOC. Thus, the chosen logging method can be an important tool in climate change mitigation and the forest management regime needs to be adapted accordingly.

 

Publication in Forest Ecology and Management [2023]: https://doi.org/10.1016/j.foreco.2023.121144

How to cite: Roth, E.-M., Karhu, K., Koivula, M., Helmisaari, H.-S., and Tuittila, E.-S.: Unearthing the effects of harvesting methods applied in continuous-cover forestry and rotation forest management on soil carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8649, https://doi.org/10.5194/egusphere-egu24-8649, 2024.

EGU24-9353 | ECS | Orals | SSS9.11

Restricted root growth caused by traffic induced soil compaction – a field study in wheat and maize 

Elron Wiedermann, Laura Reinelt, Lennart Rolfes, and Axel Don

Soil compaction has adverse impacts on key soil functions and can result in restricted root distribution. However, deep roots provide access to water and nutrient reservoirs and might enhance carbon (C) storage in subsoils. Deep rooting is thus a central element for climate-adapted plant productivity and has potential for climate mitigation. Clarity is missing, to what extent different soil traffic intensities impact root depth distribution and root-derived C inputs at field scale.

The present study was conducted to assess the impact of differing soil traffic intensities (i) on soil physical parameters related to compaction, and (ii) to what extent this affects root length density and depth distribution, as well as (iii) above ground biomass and (iV) SOC-stocks. Negative effects of increasing traffic intensities on soil physical parameters are expected to result in reduced root depth distribution and therefore reduced biomass productivity and root-induced carbon allocation.

Soil and plant biomass were sampled along increasing soil traffic intensities at three field sites in central Germany characterized as Luvisols. Penetration resistance was measured in the field, and undisturbed soil rings of top and sub soils were analyzed for bulk density and air capacity. Undisturbed soil cores were taken up to one meter depth during peak root biomass. Root biomass, depth distribution and root length density were evaluated with the core-break method using an automated root spectroscopy imaging system. Based on the results, root-derived C inputs were estimated and C/N-measurement of soil core samples was conducted.

Preliminary findings indicate higher penetration resistance and bulk density, coupled with reduced air capacity in top and subsoils on the headland, where greater traffic intensity takes place. The complete data set will be presented and discussed at the conference.

The conclusions of this study will provide a better understanding of the interactions between soil compaction, root growth and carbon storage. These findings are relevant to assess how soil management affects soil compaction and thus may hinder climate-adapted agriculture.

How to cite: Wiedermann, E., Reinelt, L., Rolfes, L., and Don, A.: Restricted root growth caused by traffic induced soil compaction – a field study in wheat and maize, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9353, https://doi.org/10.5194/egusphere-egu24-9353, 2024.

EGU24-9810 | ECS | Orals | SSS9.11

Grey alder and birch as an admixture in Norway spruce stands: Effects on soil nitrogen and carbon pools 

Päivi Soronen, Sandra Jämtgård, Mari Myllymäki, and Aino Smolander

Norway spruce monocultures in the boreal region are vulnerable to the effects of climate change and unfavourable in terms of soil fertility. Introducing broadleaved tree species to these forests may increase not only the resilience of the forest ecosystem to climate change but also enhance soil productivity and carbon (C) stock. We studied how grey alder, having symbiosis with N2-fixing Frankia, and birch affect soil nitrogen (N) and carbon pools as an admixture in Norway spruce stands in Southern Finland.

Study sites were three 40–60-year-old Norway spruce (Picea abies (L.) Karst.) -dominated stands with both grey alder (Alnus incana) and birch (both Betula pendula and Betula pubescens) as an admixture and a 20-year-old spruce stand with an admixture of grey alder. The forest type was a relatively fertile Oxalis acetosella – Vaccinium myrtillus type (OMT) on the two older (60 yr) sites and a slightly less fertile Vaccinium myrtillus type (MT) on the two younger sites (20–40 yr), applying the Finnish forest type classification. We took the soil samples at a 50–100 cm distance from 3–8 stems of the different tree species for the determinations of soil C and N stocks from all sites and for additional characterisation of organic matter only from the 60-year OMT sites. Soil diffusive N fluxes were measured using in situ microdialysis sampling and the subsequent laboratory analyses of plant-available N compounds.

On average, forest floor N stock was larger under the canopy of alder versus birch or spruce. C-to-N ratios of forest floor and topmost 10 cm mineral soil layer were lower under alder versus spruce. Soil C stock was affected by tree species only at the 40-year MT site, where alder had a higher forest floor C stock than birch or spruce. Differences in diffusive N fluxes between tree species were non-significant, and we observed inconsistent trends at different sites. C mineralisation rate tended to be lower under alder versus spruce on the two 60-year OMT sites, and the amount of microbial biomass N was lower under alder versus birch. Microbial biomass C-to-N ratio and forest floor thickness were lower under birch than spruce on one of the 60-year OMT sites.

The results point towards complex interactions and dynamics between tree species in mixed forests. Although we observed tree-species-induced spatial variation in soil properties, the distribution of above- and belowground litter and root activities in mixed stands reduces the differences between tree species. We found tree species to affect N stocks and C-to-N ratios most strongly, alder altering soil properties of spruce stands more than birch.

How to cite: Soronen, P., Jämtgård, S., Myllymäki, M., and Smolander, A.: Grey alder and birch as an admixture in Norway spruce stands: Effects on soil nitrogen and carbon pools, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9810, https://doi.org/10.5194/egusphere-egu24-9810, 2024.

EGU24-9895 | ECS | Orals | SSS9.11

Revisiting the relationships between maize root elongation and penetrometer resistance, air-filled porosity and macro- porosity on a clay loam Mollisol 

Shijie Qin, Lingling Liu, W. Richard Whalley, Hu Zhou, Tusheng Ren, and Weida Gao

Analysis of the effects of soil penetrometer resistance (PR) on root elongation and relative classic prediction models mostly ignore the role of macropores, which are important for root to penetrate compacted soils. In this study, undisturbed soil samples were collected from an 11-years tillage experiment (no-tillage and conventional tillage) in Northeast China, and their bulk density (BD), PR, air-filled porosity (AFV), and pore-size distribution were determined. Root elongation of maize seedlings was determined on each soil cores following equilibration at -20 kPa. Our results showed root elongation is significant negatively correlated with BD, PR, and the volume of Pores < 6 µm, while positively correlated with the AFV and macropores (Pores > 60 µm) (P < 0.001). Root elongation rate exhibited a 50% reduction when PR was over 1.3 MPa or AFV was below 10%. A new model has been developed to estimate the rate of root elongation that taken into account the interaction between PR and macropores. The new model had a better performance than previous ones and the root mean square error (RMSE) was 0.13.

How to cite: Qin, S., Liu, L., Whalley, W. R., Zhou, H., Ren, T., and Gao, W.: Revisiting the relationships between maize root elongation and penetrometer resistance, air-filled porosity and macro- porosity on a clay loam Mollisol, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9895, https://doi.org/10.5194/egusphere-egu24-9895, 2024.

Compaction is one of the main types of soil degradation worldwide. The macropores left by ex-plant roots were expected to provide channels to root to penetrate hard soil layers. However, there are few studies to quantitate the relationship between the elongation of maize roots and the root pores, due to complex morphological characteristics of the real root pore systems. In this study, we tried to build an artificial pore with sheath to simulate the effects of root pores on maize root growth in the compacted soil by X-ray CT. Our results indicated that the method for simulating root pores worked well. The sheath width of artificial root-pore was about 2.69 mm. Moreover, sheath of pores had higher organic carbon content and abundance of actinobacteria compared with bulk soil. Compared with artificial macropores, the presence of artificial root-pores diminished the border effects of the pot wall and increased the growth angle of node1 roots and the maximum growth depth of maize roots. However, there were no significant differences in terms of roots spatial distribution (in soil matrix, macropore sheath, macropore), and the ways (crossing or colonizing) of utilization by maize roots to macropores between the treatments with artificial macropores and artificial root-pores. This study provides a new insight into the interactions between root pore, root-pore sheath and maize roots.

How to cite: Gao, W., Liu, L., and Qin, S.: Effects of artificial root-pores on maize roots growth in compacted soil using X-ray computed tomography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10487, https://doi.org/10.5194/egusphere-egu24-10487, 2024.

EGU24-10630 | ECS | Orals | SSS9.11

Effects of timber harvesting techniques on soil biodiversity and greenhouse gas fluxes of temperate forest soils susceptible to compaction 

Armin Hofbauer, Maximilian Behringer, Marcus Froemel, Lisa Gasser, Julian Grünberg, Christoph Haas, Klaus Katzensteiner, Martin Kühmaier, Gerhard Markart, Gertraud Meissl, Nikolaus Nemestothy, Boris Rewald, Christian Scheidl, Matthias Schlögl, Alexandra Wieshaider, and Barbara Kitzler

Temperate forests are a substantial sink for the greenhouse gases (GHG) methane (CH4), carbon dioxide (CO2) and soil emissions of nitrous oxide (N2O) are low. However, most of these forests are managed with ground-based harvesting systems causing severe soil disturbance. Soil displacement and compaction has a long-term effect on the soil microbial community structure and alters soil respiration, CH4 uptake, and nitrogen turnover. This significantly reduces the soil ecosystem services on extraction tracks and landings. Soil disturbance is particularly severe and persistent in compaction-prone silty and loamy soils, emphasizing the urgent need for specific techniques for these sites.

In an empirical Before-After Control-Impact study we compare the effects of harvester-forwarder use with/without tracks (HF/HFt) and cable-yarding with motor-manual-felling (CMM), on the soil chemistry, microbial community, and the soil-GHG balance. Our study is carried out within the project HoBo: Securing the Sustainability of Forest Soil Functions via Optimized Harvesting Technologies (https://dafne.at/projekte/hobo). The study sites are located in the Flysch zone and in the Molasse basin (North Alpine foreland basin). Soil GHG flux rates of CO2, CH4, and N2O are measured with trace gas analyzers (Li-Cor 7810 and 7820), either manually at the recently thinned stands, or continuously with automatic chambers at plots that were thinned in 2016.  For deeper understanding of the effects on soil chemistry and the changes in the microbial community, we determine nitrogen availability, microbial biomass carbon and nitrogen as well as the phospholipid fatty acids (PLFA).

Preliminary results show a significant impact of all applied mechanized timber harvesting systems (HF/HFt/CMM) reducing CH4 uptake rates and increasing N2O emissions of both skid trails and cable yarding corridors, compared to the control plots outside the extraction tracks (thinned stand). Our findings underline that sustainable forest management practices should not only reduce soil compaction. It should also consider additional factors, particularly soil displacement induced by logging activities.

How to cite: Hofbauer, A., Behringer, M., Froemel, M., Gasser, L., Grünberg, J., Haas, C., Katzensteiner, K., Kühmaier, M., Markart, G., Meissl, G., Nemestothy, N., Rewald, B., Scheidl, C., Schlögl, M., Wieshaider, A., and Kitzler, B.: Effects of timber harvesting techniques on soil biodiversity and greenhouse gas fluxes of temperate forest soils susceptible to compaction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10630, https://doi.org/10.5194/egusphere-egu24-10630, 2024.

EGU24-12361 | Posters on site | SSS9.11

Spatio-temporal modelling of wheel load carrying capacity (WLCC) to mitigate soil degradation at regional scale 

Michael Kuhwald, Katja Kuhwald, and Rainer Duttmann

Soil compaction caused by intensive field traffic is one of the main threats to agricultural soils. Soil compaction occurs when the applied soil stress is higher than the soil strength. Both, soil strength and stress, are highly variable in space and time. While soil strength mainly depends on environmental conditions (e.g. weather, soil type, crop type), soil stress results from the used machinery. One key parameter for the applied soil stress is the wheel load which results from the machinery setup. The wheel load carrying capacity (WLCC) approach takes this into account and specifies the maximum wheel load until soil stress does not exceed the soil strength.

The objective of this study is to model and analyse the dynamic variation of WLCC at regional scale for a 5-year period (2016-2020). We selected a study area (~2000 km²) with highly mechanized agriculture in Northern Germany where the main crops are cereals, maize and sugar beets. Sentinel-2 images were used to derive the crops for the 5-year period. We calculated the WLCC using an advanced version of the SaSCiA-model (Spatially explicit Soil Compaction risk Assessment) for each day of the 5 years.

The results show a high temporal dynamic characteristic of the WLCC during the crop rotation at regional scale. The relatively dry years 2016 and 2018 increased the maximum allowable wheel load, especially during harvesting of maize and sugar beets in autumn. In all 5 years, spring was the time with the lowest WLCC. At this time, however, high soil stresses occur due to the application of slurry and digestates, which is associated with high soil compaction risk. The spatial variation of WLCC depends on the one hand on soil properties such as soil texture. On the other hand, the used crop has a high effect on the WLCC due to different soil water utilization.

Based on the spatio-temporal analysis of WLCC at regional scale, an assessment can be performed to reduce the soil compaction risk either by increasing the soil strength or by decreasing the soil stress. We show exemplarily how the adjustment of tire inflation pressure affects the WLCC. Finally, this study may contribute to understand WLCC dynamics in crop rotations at regional scale and may help to mitigate further soil compaction.

How to cite: Kuhwald, M., Kuhwald, K., and Duttmann, R.: Spatio-temporal modelling of wheel load carrying capacity (WLCC) to mitigate soil degradation at regional scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12361, https://doi.org/10.5194/egusphere-egu24-12361, 2024.

EGU24-12523 | Orals | SSS9.11

Correlating tomography structure parameters with physical soil functions in representative sites in Schleswig-Holstein, Germany 

Svenja Roosch, Jocelyn Ormeno, Daniel Uteau, Heiner Fleige, Anneka Mordhorst, Jens Rostek, Conrad Wiermann, Gerrit Müller, and Stephan Peth

Soil structure influences important soil functions like hydraulic conductivity and air permeability, which in turn influence plant growth. The physical structure of soils is thus, besides chemical and biological parameters, one major component of soil fertility. Unfortunately, this physical fertility is often impaired by agricultural practices.

To study the structural status and the relationships between structural and functional parameters, 45 representative arable sites in Schleswig-Holstein, Germany, were sampled at three depths in top- and subsoil. Soil structure was described quantitatively using X-ray computed tomography of soil cores (continuity and size distribution of macropores). Measured soil functions included saturated hydraulic conductivity, air permeability, air capacity, and pore size distribution (via water retention curves).

The results not only help elucidate relations between structural and functional soil parameters. They also give a detailed and comprehensive insight into the structural state and their relation to soil physical functions of typical arable sites across Schleswig-Holstein that has not existed before.

How to cite: Roosch, S., Ormeno, J., Uteau, D., Fleige, H., Mordhorst, A., Rostek, J., Wiermann, C., Müller, G., and Peth, S.: Correlating tomography structure parameters with physical soil functions in representative sites in Schleswig-Holstein, Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12523, https://doi.org/10.5194/egusphere-egu24-12523, 2024.

EGU24-15630 | Posters virtual | SSS9.11

How do land use and land cover changes affect soil properties and nutrients in abandoned agricultural terraces? 

Noemí Lana-Renault, Manel Llena, José Arnáez, Elena Gómez-Eguílaz, Estela Nadal-Romero, and Erik Cammeraat

Agricultural terraces are very conspicuous features of many mountain landscapes in the world. In the Mediterranean region, rural depopulation and farmland abandonment has led to a process of vegetation expansion on former cultivated terraces, either by natural revegetation or afforestation programs. The main objectives of this study were i) to determine land use changes in a representative Mediterranean mountain area dominated by agricultural terraces in the past, and ii) investigate the effect of different land use and land cover (LULC) on soil properties, SOC and N stocks. For this purpose, five different LULCs (cultivated land, dense and sparse shrublands, old Q. ilex forest and P. sylvestris afforestation) were selected in terraced slopes in the Iberian range, in N. Spain. For each LULC, soil samples were collected every 10 cm down to 50 cm. The results showed that in the last 70 years, shrub cover has doubled (from 280 ha in 1957 to 430 ha in 2020) and forest cover has increased from 46 ha to 171 ha. SOC and N contents strongly decreased with depth, except for the cultivated plots, where the values remain similar through the soil profile. In the top layer, SOC contents were higher in Q. ilex, followed by afforested P. sylvestris, dense and sparse shrubland and cultivated plots. N contents presented a similar pattern except for afforested P. sylvestris, which presented the lowest values. SOC and N stocks were higher in Q. ilex, cultivated land, dense and sparse shrubs, and afforested P. sylvestris. Understanding the effects of LULCC on soil properties and nutrients is essential to assess land management practices after farmland abandonment on agricultural terraces.

Acknowledgements: This research was supported by the MANMOUNT project (PID2019-105983RB-100/AEI/10.13039/501100011033), funded by the MICINN-FEDER.

How to cite: Lana-Renault, N., Llena, M., Arnáez, J., Gómez-Eguílaz, E., Nadal-Romero, E., and Cammeraat, E.: How do land use and land cover changes affect soil properties and nutrients in abandoned agricultural terraces?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15630, https://doi.org/10.5194/egusphere-egu24-15630, 2024.

EGU24-16030 | ECS | Orals | SSS9.11

Could tree species be a key factor on soil carbon balance in temperate forest? 

Clément Bonnefoy-Claudet, Mathieu Thevenot, Jean Lévêque, Elodie Cognard, Anne-Lise Santoni, Jean Cacot, and Olivier Mathieu

Soils play a key role in regulating atmospheric concentrations of greenhouse gases notably by their action on organic carbon dynamics (storage vs. release). Forests occupy 31% of the continental surface and store around 40% of the continental organic carbon, half of it in soils. Ongoing climate change could alter the balance of this stock, and the effect of temperature on soil carbon fluxes remains an important question. In this study, we use the Q10 parameter (i.e. increase in CO2 emission for a 10°C rise in temperature) to estimate the temperature sensitivity of soil organic matter in four forest tree species (beech, spruce, douglas fir and silver fir). In addition, soil organic carbon stocks were estimated and compared with Q10 values and forestry data (volume, basal area, density and dead wood).

The mont Beuvray site (Morvan Regional Park, France), a mid-mountain area of around 1,000 ha with a quite homogeneous geology and pedology, was selected. On this site, Beech forests correspond to historical land use, while softwood forests have been gradually introduced over the past 70 years. Thus, 48 soil samples (0-20 cm) were collected (12 per tree species) and the main physicochemical characteristics were determined (bulk density, stone content, pH, organic carbon and total nitrogen contents, water-extractable organic carbon). The Q10 was calculated for a temperature range of 5 to 25°C in the laboratory using a Respicond X (Nordgren Innovations AB, Sweden).

Results show that soil organic carbon and water-extractable organic carbon contents are higher in silver fir and beech stand soils than in Douglas fir stand soils. For soil organic carbon stocks, the average values are slightly higher for beech and silver fir than for Douglas fir and spruce, but there is no statistical difference between the four tree species.  Q10 values range from 2.3 to 3.0, with a statistical higher value for beech (2.8 ± 0.1) than for the other softwood species (2.6 ± 0.1). This last result suggests that, for similar initial soil conditions, CO2 emissions from soil in beech stands would increase more strongly with temperature than in other species.

In conclusion, several decades after the introduction of softwood species, we did not measure in the top soil (0-20 cm) significant difference in carbon stocks. However, CO2 emissions and Q10 values are different and related to forest species. Hence, beech stand soils, corresponding to the historical land cover, could see their CO2 flux increase as they are the most sensitive to temperature. Conversely, silver fir stands, with their lower sensitivity to temperature, could be of interest in mitigating emissions. These results need to be confirmed by field data on soil respiration and compared with above-ground forest biomass and stand health.

How to cite: Bonnefoy-Claudet, C., Thevenot, M., Lévêque, J., Cognard, E., Santoni, A.-L., Cacot, J., and Mathieu, O.: Could tree species be a key factor on soil carbon balance in temperate forest?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16030, https://doi.org/10.5194/egusphere-egu24-16030, 2024.

EGU24-17045 | ECS | Orals | SSS9.11

The legacy of compost and slurry amendments to soil on physical resilience to compaction 

Utibe Utin, Jo Smith, Josie Geris, and Paul Hallett

Organic amendment of soils with composts or slurries affects compaction resistance and resilience, but the longevity of these impacts has not been explored, and few data are available from controlled field studies.  Here we carried out a rapid soil compaction resilience test, where coarsely sieved soil to simulate a freshly prepared seedbed are exposed to controlled compaction and cycles of wetting and drying in the laboratory. Agricultural soils with long history of compost and slurry amendments were sampled from the Lower Pilmore field of the James Hutton Institute, Dundee, UK.  Replicated plots received three levels of compost (35, 100 and 200 Mg ha-1), three levels of slurry (10, 20 and 40 Mg ha-1) and control (no amendment) from 2005 to 2009. Subsequently, normal rates of 35t ha-1 and 10 t ha-1 were applied until 2014. Loose soils sampled in 2023 were sieved to 4mm and then compressed cyclically under uniaxial stresses of (i) 50kPa to simulate a roller, (ii) 200kPa to simulate a tractor, and (iii) again at 200kPa. Between each of these stress cycles the soils were saturated (wetting) for 24 hours and drained (drying) to field capacity (5kPa) for 12 hours on a sandbox. Changes in void ratio during the loading and unloading phases were obtained directly from sample displacement, while the void ratio after wetting and drying was calculated from soil mass-volume relationship. Void ratio increased with increase in organic carbon in both compost and slurry soils. Soil wetting-drying following the first and second 200kPa compression cycles caused significant recovery of void ratio for both compost and slurry. Final void ratio (measured after the wet-dry cycle that followed the second 200kPa compression) was 0.40 m3 m-3 in the control, versus 0.45 m3 m-3 in 35 Mg ha-1 compost and 0.49 m3 m-3 in both 100 and 200 Mg ha-1 compost. For slurry soils, final void ratio was 0.40, 0.41 and 0.45 m3 m-3 for 10, 20 and 40 Mg ha-1, respectively. Organic carbon accounted for a significant percentage (R2 = 0.48; p = 0.00) of variability in the final void ratio for compost soils whilst there was no significant relationship between void ratio and organic C in slurry soils. Compression and recompression indices increased more with increase in compost than with increase in slurry, but overall, they displayed no significant (p≤0.05) relationships with organic carbon. Soils treated with compost are therefore, better able to absorb compressive stresses than their slurry counterparts and could significantly recover their form and capacity to perform their ecological functions following stress withdrawal. Moreover, legacy applications of compost than slurry can affect compaction resilience for several years.

How to cite: Utin, U., Smith, J., Geris, J., and Hallett, P.: The legacy of compost and slurry amendments to soil on physical resilience to compaction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17045, https://doi.org/10.5194/egusphere-egu24-17045, 2024.

EGU24-17138 | Orals | SSS9.11

Increased sensitivity of microbial respiration to soil water content in a fertilized boreal forest 

Boris Ťupek, Aleksi Lehtonen, Stefano Manzoni, Petr Baldrian, Bartosz Adamczyk, and Raisa Mäkipää

Projections of soil carbon (C) models are known to underestimate soil C stocks in boreal soils with higher nutrient status which is likely because they do not account for effects of soil nutrient status on the kinetics of microbial respiration and their sensitivities to environmental conditions. Here we evaluated the effects of long-term N addition (once per decade since 1960 until 2020) on soil heterotrophic respiration (Rh) and its dependence on soil temperature and moisture in an originally N limited boreal Scots pine (Pinus sylvestris) forest.

We measured Rh, soil temperature and soil moisture biweekly during the vegetative seasons of 2021-2023 in both fertilized and control forests. We fitted Rh rates to soil temperature and moisture separately for the control and N fertilization treatment using parametric non-linear regression models and non-parametric machine learning (boosted regression tree) models.

The functional dependencies of Rh were similar between fertilized and control forests for soil temperature but differed for soil moisture. In the N fertilized forest soil, Rh increased rapidly from dry conditions towards a soil moisture optimum followed by a clear reduction in wet conditions. In contrast, in the N limited forest soil, Rh mainly increased with soil moisture.

The models based solely on temperature (assuming identical and non-limiting effect of moisture) predicted higher annual Rh than the models accounting for soil moisture effects. Thus, to avoid overestimation of soil CO2 emissions and underestimation of soil C stocks accumulation in fertile boreal soils, it is crucial to link the soil moisture dependencies in soil C models to nutrient status. The different Rh response to moisture between N limited and N fertilized soils could be related to different levels of enzyme activities and contrasting microbial traits found by other studies.

How to cite: Ťupek, B., Lehtonen, A., Manzoni, S., Baldrian, P., Adamczyk, B., and Mäkipää, R.: Increased sensitivity of microbial respiration to soil water content in a fertilized boreal forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17138, https://doi.org/10.5194/egusphere-egu24-17138, 2024.

EGU24-17507 | ECS | Orals | SSS9.11

Effects of Logging-Induced Soil Compaction on the Abundance and Characteristics of Fine Roots and Mycorrhizal Associations in Forest Soils and their Recovery 

Lisa Gasser, Maximilian Behringer, Marcus Froemel, Douglas Godbold, Julian Grünberg, Christoph Haas, Armin Hofbauer, Klaus Katzensteiner, Barbara Kitzler, Martin Kühmaier, Gerhard Markart, Gertraud Meissl, Nikolaus Nemestothy, Hans Sandén, Christian Scheidl, Alexandra Wieshaider, and Boris Rewald

Soil compaction in forests, often a result of logging activities, poses a significant threat to soil functioning and ecosystem services. Root systems and their symbiotic relationships with mycorrhizae are particularly affected. Given the vital role that sustainably managed forest ecosystems play for climate change resilience and mitigation, understanding the effects of soil compaction on belowground functioning is critical. To address knowledge gaps on the interactions between soil compaction, root growth, and mycorrhizal associations under real-world conditions, it is essential to conduct comparative studies on different harvesting methods. Detailed analyses are required to better understand the spatiotemporal effects of logging on soil as a rooting space. 

To investigate the complex relationships, we implemented different harvesting methods (harvester-forwarder with or without bogie tracks, cable-yarding with motor-manual-felling) and a control treatment between skidding trails in a beech-dominated forest in Lower Austria during the winter of 2022/23. In addition, we sampled ~20-year-old skidding trails (harvester-forwarder) to assess soil recovery.

Using a replicated transect approach across the skidding trails, we studied spatially explicit effects on standing fine root biomass to a depth of ~45 cm in a before-after control-impact design. To allow for upscaling, each transect included areas directly impacted by logging (i.e. skidding trails, cable-yarding corridors) and areas potentially indirectly affected (i.e. between the ruts, bulge area etc.). We conducted comprehensive assessments of fine root biomass depth distribution, and key traits such as anatomy, morphology and fine root nutrient content, as well as mycorrhization rates. 

The data indicate a significant negative influence of both recent and historical timber harvesting on standing root biomass, revealing altered patterns of root distribution with notable differences between and within transects. Our results suggest that different harvesting methods result in very different levels of soil compaction, leading to contrasting effects on fine root traits such as a reduction of absorptive surface area relative to biomass in compacted soil. 

The persistence of negative effects on the old skidding trails highlights the long-lasting impact on root systems and their mycorrhizal symbionts, and thus key ecosystem functions. This emphasizes the importance of conserving forest soils and the need to identify and implement management strategies to minimize soil compaction and promote recovery. These efforts are vital for ensuring the sustainable provision of ecosystem services by the 'hidden half' of forests.

How to cite: Gasser, L., Behringer, M., Froemel, M., Godbold, D., Grünberg, J., Haas, C., Hofbauer, A., Katzensteiner, K., Kitzler, B., Kühmaier, M., Markart, G., Meissl, G., Nemestothy, N., Sandén, H., Scheidl, C., Wieshaider, A., and Rewald, B.: Effects of Logging-Induced Soil Compaction on the Abundance and Characteristics of Fine Roots and Mycorrhizal Associations in Forest Soils and their Recovery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17507, https://doi.org/10.5194/egusphere-egu24-17507, 2024.

EGU24-18128 | Posters on site | SSS9.11

A new measure to mitigate soil compaction: Stabilisation effects of greening headlands 

Carolin Körbs, Michael Kuhwald, Marco Lorenz, and Rainer Duttmann

A new measure to mitigate soil compaction: Stabilisation effects of greening headlands

Authors: C. Körbs1, M. Kuhwald1, M. Lorenz2, R. Duttmann1,

1Working group of Landscape Ecology and Geoinformation, Institut of Geography, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany

2Johann Heinrich von Thünen-Institut (TI), Thünen Institute of Agricultural Technology, Bundesallee 47, 38116 Braunschweig, Germany

 

Submitted 10. January 2024 to the EGU24

Session: SSS9.1- Soil degradation by soil compaction on arable land, grassland and in forests

 

The greening of fields is a common measure in agriculture to prevent soil erosion and often serves as an intercrop. Grass buffer stripes can stabilise the topsoil and thus reduce runoff and promote sediment retention and water infiltration. The existing literature lacks emphasis on examining the stabilising effects specifically related to the greening of headlands. Moreover, there is a need to explore how the implementation of greening practices can mitigate the adverse effects of field traffic and to what extent it can contribute to reducing soil compaction.

As part of the SOILAssist project investigations were carried out on a selected field at the experimental farm in Adenstedt (Lower Saxony, Germany) to study soil structure and functionality. One part of the headland was used to establish a greening with a width of 18m.

To analyse the effects of the greened headland, soil samples were taken in the core field, the greened headland, and the non-greened headland directly after the greening in 2019 and after 4 years in 2023. Disturbed and undisturbed soil samples were taken at 20, 35 and 50cm depth. Afterwards, the soil samples were analysed in the laboratory to provide information on physical soil properties e.g. dry bulk density, air conductivity, air capacity and aggregate stability. In addition, the yield was measured every year in each of the variants.

The results show that the dry bulk density in 2023 was predominantly lower in the core field in 2023 compared to 2019. In contrast, the dry bulk density in the greened headland was generally constant and in the non-greened headland it was slightly lower in 2023 than in 2019 at the depth of 20cm. The lower dry bulk density in the non-greened headland can be explained by the used primary tillage, which lowered the dry bulk density in the topsoil. Since there was no tillage on the greened headland, the effects despite the similar intensity of field traffic remained constant at this part of the field. However, the dry bulk density did not increase in the greened headland which indicates a stabilisation by the vegetation and thus lower the negative impacts of field traffic. At the depth of 35 and 50cm no significant changes were measured, neither for greened nor for non-greened headland.

Whether these effects become more apparent considering the correlation between various soil properties and to which extent a change in soil type plays a role in the stabilisation of headlands through greening will be investigated in the following studies.

How to cite: Körbs, C., Kuhwald, M., Lorenz, M., and Duttmann, R.: A new measure to mitigate soil compaction: Stabilisation effects of greening headlands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18128, https://doi.org/10.5194/egusphere-egu24-18128, 2024.

EGU24-20393 | Posters on site | SSS9.11

Effects of drought and disturbance on the CO2 and CH4 fluxes in a mixed forest and spruce monoculture 

Michal Bosela, Boris Tupek, Peter Marcis, Dominik Poltak, Jergus Rybar, Jaroslav Vido, Paulína Nalevanková, Aleksi Lehtonen, and Raisa Makipaa

Spruce monocultures have been intensively planted across a wide area of Europe to increase timber production and meet the demand from society. However, evidence suggests that species monocultures may not be as resilient to drought spells and heat waves compared to mixtures of two or more species. The advantage of mixed forests over monocultures is particularly evident when the mixed species occupy different niches, reducing inter-specific competition and enabling better growth and increased carbon sequestration. However, it remains unclear how drought events and heat waves affect carbon sequestration in the soil and how this differs between mixed forests and species monocultures. In this study, we conducted two years of intensive monitoring of soil CO2 and CH4 fluxes, measured soil microbial diversity, and assessed long-term (tree ring) and seasonal tree growth to quantify carbon sequestration in a mixed forest and a spruce monoculture. Results showed that severe drought in 2022 significantly reduced the growth of Norway spruce stand and its' forest floor and soil CO2 fluxes but at lesser intensity impacted C fluxes of European beech and silver fir stand. The bark beetle outbreak in 2023 caused rapid tree infestation and die-back only in the spruce stand (followed by salvage clear-cut harvesting) which subsequently increased soil CO2 emissions via a sudden increase in litter input from dead trees, soil temperature and water content from reduction of shade and evapotranspiration.

How to cite: Bosela, M., Tupek, B., Marcis, P., Poltak, D., Rybar, J., Vido, J., Nalevanková, P., Lehtonen, A., and Makipaa, R.: Effects of drought and disturbance on the CO2 and CH4 fluxes in a mixed forest and spruce monoculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20393, https://doi.org/10.5194/egusphere-egu24-20393, 2024.

EGU24-21890 | Posters on site | SSS9.11

Identifying areas of multiple soil degradation processes at regional scale 

Bastian Steinhoff-Knopp, Michael Kuhwald, Katharina Bäumler, Philipp Saggau, and Marco Lorenz

Soil compaction and soil erosion by water are among the top 5 threats to agricultural soils in Europe. Soil compaction has a direct impact on soil erosion, for instance by reducing infiltration rates. Therefore, measures directly addressing soil compaction (e.g. optimized field traffic and reduced wheel load) have an impact on soil erosion by water. In addition, measures such as crop rotation management, including cover crop management, allow combined effects on soil erosion and soil compaction. Currently, no evidence at regional scale is available that indicates which measures can generate this co-benefit and which regions having a high risk of soil erosion and compaction can benefit from those measures. Modelling exercises provide the option for generating this information and are tested here in a regional scale case study.

As a first step, we identified cropland with a combined risk of soil compaction and soil erosion by water in Lower Saxony (northern Germany). To this end, we derived typical crop rotations for 2017 to 2021 based on high-resolution crop type maps for three soil regions in the study area. Depending on the crop rotations and farm size, typical machinery equipment was defined and field work dates were derived according to phenological data. This data was combined with three weather scenarios using real observational data (dry: 2020, wet: 2017, intermediate: 2004). We employed the USLE (Universal Soil Loss Equation) and the SaSCiA-model (Spatially explicit Soil Compaction risk Assessment) to model soil erosion and soil compaction risk for the different weather scenarios and the three typical crop rotations in the soil regions. The results help to identify regions with combined risk for soil erosion and soil compaction. The next step will be the analysis of measures addressing both degradation processes.

How to cite: Steinhoff-Knopp, B., Kuhwald, M., Bäumler, K., Saggau, P., and Lorenz, M.: Identifying areas of multiple soil degradation processes at regional scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21890, https://doi.org/10.5194/egusphere-egu24-21890, 2024.

EGU24-326 | ECS | Posters on site | ITS3.14/BG8.36

Characterization and use of commercial biochar for water purification in real case scenarios 

Lorenzo Animali, Sveva Corrado, Paola Tuccimei, Mattia Bartoli, and Mauro Giorcelli

Biochar has been proven to be a compelling adsorbent for contaminants  in water, however little data are available about real case histories. Moreover, such data are often related to biochar produced solely for the sake of research, this means biochar would not be readily available for actual commercial applications 

The aim of the project is to employ commercial biochar for water purification in a real case study and test its viability as a pollutant adsorber. The chosen study area covers the surroundings of the decommissioned Malagrotta landfill in the Lazio region, Italy. The landfilling site, the largest in Europe, active from 1970 to 2013, has been the subject of numerous social and legal disputes throughout and after its operating period. 

At this stage, a chemical survey of the area’s surface water has been performed to determine its health and to evaluate remediation through biochar. Moreover, nine commercial biochar types produced in Italy and Europe have been characterized before and after experimentation to monitor structural, surface and physical-chemical properties. Post testing analyses are aimed at determining the effects of biochar’s interaction with water. Testing biochar in real case scenarios provides an assessment of its potential in an high added value application such as water purification and provides the constraints to achieve optimal performance.  

Future developments of the project build upon collected data and expertise to identify best practices for the valorisation of biochar as a contaminant adsorber. 

How to cite: Animali, L., Corrado, S., Tuccimei, P., Bartoli, M., and Giorcelli, M.: Characterization and use of commercial biochar for water purification in real case scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-326, https://doi.org/10.5194/egusphere-egu24-326, 2024.

EGU24-3541 | Posters on site | ITS3.14/BG8.36

Non-invasive monitoring of plant root activities in the framework of the Earth’s Critical Zone and soil-plant-atmosphere interactions. 

Giorgio Cassiani, Luca Peruzzo, Matteo Censini, Benjamin Mary, and Veronika Iván

Bio-geophysics is a very broad discipline, including a variety of physical monitoring techniques applied to biological processes. As such, it is inherently very challenging and, at the same time, very promising. A variety of scales are being investigated, from the cellular scale to the ecosystem scale. More relevant to the latter scale is the investigation of the plants root zone, where the majority of mass and (latent) energy balance takes place between the soil and biota and, from there, to the atmosphere. The response of the soil-water-vegetation system and of the Earth’s critical zone (from the top of the canopy to the bottom of the shallowest aquifer) to climate and land-use change is crucial for the preservation of essential ecosystem services such as carbon storage, primary productivity, food and materials availability, and water and erosion regulation. In addition, the interaction between atmosphere and land surface is one of the most critical points to be resolved to reduce epistemological uncertainties in atmospheric models, both for numerical weather prediction (NWP) and global and regional climate models (GCMs and RCMs). The use of geophysical techniques in this context provides dense high-resolution spatial information as well as, potentially, high temporal resolution monitoring. Two different viewpoints can be taken in this form of “bio-geophysical” monitoring: on one hand, the physical signals of the biological (e.g. root presence and signals) activity can be directly sought; on the other hand, the effects of biological activity (e.g. root water uptake) can be sensed by the resulting changes of the soil/water system state (especially in terms of moisture content, but also temperature, etc.). Examples of both types of approaches, and links to eco-hydrological modelling, will be presented in this contribution, urging towards a more frequent and more accurate applications of these techniques, particularly for their potential contribution towards a better definition of Land Surface Models, i.e. the bottom, critical, and poorly known boundary condition for atmospheric models.

How to cite: Cassiani, G., Peruzzo, L., Censini, M., Mary, B., and Iván, V.: Non-invasive monitoring of plant root activities in the framework of the Earth’s Critical Zone and soil-plant-atmosphere interactions., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3541, https://doi.org/10.5194/egusphere-egu24-3541, 2024.

EGU24-3610 | Posters on site | ITS3.14/BG8.36

Identification of long-term irrigation effect on plant water use from geophysical and proximal sensing observations: example of a vineyard 

Luca Peruzzo, Benjamin Mary, Vicente Burchard Levine, Jose Guerra, Miguel Herrezuelo, Raul Lovera, Albert Casas, Giorgio Cassiani, Hector Nieto, and José Pena

This study investigated the influence of long-term irrigation management on plant water use with an emphasis on the development and activity of grapevine root systems in an irrigated vineyard under semi-arid conditions located in the Madrid region (central Spain). The study tested three types of irrigation management, based on the potential evapotranspiration ETp computed with varying crop coefficient Kc (0.2KC, under-irrigated. 0.4KC, control and 0.8KC, over-irrigated). Note that the irrigation water used is considered as highly saline (3890 μS/cm at 20°C).
The interpretation was supported by soil geophysical surveys with electrical resistivity Tomography (ERT), plant physiological traits, and drone-based remote sensing observations. The ERT collected before irrigation showed strong evidence of soil long-term changes, with a gradient of electrical resistivity (ER) increasing with the stress applied, while time lapse ERT before/after the irrigation season showed changes implying deeper root contribution to water uptake in the stressed area. However, uncertainties persisted in interpreting higher ER areas, as it was unclear whether they stemmed from increased soil moisture or were linked to soil salinity caused by soil sodicity.
Insights could be derived from proximal and remote sensing data, revealing patterns consistent with soil responses to the applied irrigation stress. Notably, the higher Normalized Difference Vegetation Index (NDVI), thermal-based actual evapotranspiration rates and stomatal conductance (gs) observed in the over-irrigated area, in contrast to the under-irrigated area, may suggest enhanced plant water accessibility and increased transpiration rates. 
The study paves the way towards the adoption of geophysical methods in combination with remote sensing to control irrigation management particularly in the context of saline water.

How to cite: Peruzzo, L., Mary, B., Burchard Levine, V., Guerra, J., Herrezuelo, M., Lovera, R., Casas, A., Cassiani, G., Nieto, H., and Pena, J.: Identification of long-term irrigation effect on plant water use from geophysical and proximal sensing observations: example of a vineyard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3610, https://doi.org/10.5194/egusphere-egu24-3610, 2024.

EGU24-5746 | Posters on site | ITS3.14/BG8.36

EMI surveys under precision irrigation contexts: an orange orchard-case study and methodological challenges 

Giorgio Cassiani, Ulrike Werban, Marco Pohle, Simona Consoli, Giuseppe Longo-Minnolo, Daniela Vanella, and Luca Peruzzo

Electromagnetic induction (EMI) allows time-lapse profiling of electrical conductivity (EC). In recent years, progress has been made in the study of the intra-field variability and soil-plant correlations at the scale of a few meters. Yet, some methodological challenges still hinder the possibility to resolve the spatiotemporal complexity at the smaller scales typically associated with irrigation and evapotranspiration (ET) dynamics, and thus central to the agroecosystems and precision agriculture, particularly in orchard farming.

This study characterizes the 3D EC variability in an orange orchard in eastern Sicily (Italy). To the best of our knowledge, this is the first 3D investigation capturing both irrigation and ET effects at the meter scale. The characterization successfully distinguishes plant rows and interrows dynamics. The EC in the plant rows increases upwards, from the drier root-water-uptake region to the drip irrigation region above. In the interrows, the EC increases downwards from the drier evaporation-dominated layer to the deeper soil where the irrigation water accumulates without significant ET. The intermediate zones, between the plant rows and interrows, show yet another conductivity profile, homogeneous and relatively conductive. Local effects, such as the plant size, further complicate this conceptual model and add both inter- and intra-row heterogeneity.

While the results confirmed the EMI potential, some methodological challenges were equally important. First, a Geophex GEM-2 and a CMD Mini-Explorer were used, the latter in vertical and horizontal configuration. The choice of instruments and surveys appears now suitable for this field site but it is surely not a priori obvious and/or always possible. We highlight how the use of a single instrument would probably lead to misinterpreting the root water uptake or the evaporation contributions.

Second, the quantitative use of the two instruments required alignment and joint inversion. However, a standard GPS system did not provide a reliable alignment of the surveys. Time-consuming GIS corrections were needed for both intra- and inter-dataset shifts. Third, after GPS alignment, the surveys were interpolated over a common grid to allow the joint inversion. Because of the strong anisotropy of the agroecosystems, this required the careful parametrization of a Kriging algorithm.

Fourth, the individual EMI datasets also differ because of their drift and/or calibration. The lack of convenient alternatives initially motivated an ERT-based calibration, but ultimately two of the twelve datasets were dismissed.

Fifth, noise and instrumental errors required the use of a moving-window median. This common practice poses a trade-off between smoothing and resolution that hinders high-resolution surveys.

Sixth, a sub area of the orchard was investigated at finer resolution. This proved fundamental for the identification of the processes acting at the intermediate zones, between the plant rows and interrows, and other meter-scale details.

Overall, this study presents a state-of-the-art EMI application that focuses on small-scale aspects that were less considered in previous studies. The presented challenges explain the lack of similar studies and should be considered when discussing the EMI convenience and adoption for precision irrigation applications.

How to cite: Cassiani, G., Werban, U., Pohle, M., Consoli, S., Longo-Minnolo, G., Vanella, D., and Peruzzo, L.: EMI surveys under precision irrigation contexts: an orange orchard-case study and methodological challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5746, https://doi.org/10.5194/egusphere-egu24-5746, 2024.

Circular economy requires reliable information about the content of old landfills regarding raw materials worth exploiting. Geophysical electrical methods are standard tools for such investigations; however, they require a galvanic contact between electrodes and the ground. Many landfills are covered by a shallow isolating layer consisting of an electrically resistive material (e.g., a PVC layer), which hinders current flow and significantly decreases the resolution and the signal-to-noise ratio (SNR). Low-induction electromagnetic methods have also been suggested for such investigations; yet these methods have a limited depth of investigation. To overcome these limitations, we investigate the applicability of the transient electromagnetic method to characterize an industrial landfill. The investigation is based on a TEM survey to define the positions of two deep boreholes  The combination of borehole and geophysical data aims at identifying the composition and distribution of waste, a prerequisite to evaluate its potential content of raw materials. We conducted TEM measurements in a large industrial landfill (ca. 500 m long, 200 m wide and 20 m deep) sealed by an impermeable PVC layer. The objectives of the TEM survey are: 1) the delineation of the landfill geometry 2) locating possible changes in waste composition and 3) identifying damages in the isolating PVC layer which might result in leachate migration below the landfill. We obtain TEM data with the TEM-FAST 48 instrument in a 12.5 m square single-loop configuration at 81 sounding locations to cover the entire plateau of the landfill. We demonstrate that the TEM signatures are affected by induced polarization effects, which is likely related to the presence of molybdenum and other relevant raw materials. To evaluate this observation, we conducted complementary measurements with the spectral induced polarization method using a large electrode spacing to enhance the SNR. We validated the TEM results using two 40 m deep boreholes that reach from the top of the landfill into the confining clay-rich layer.

How to cite: Aigner, L. and Flores Orozco, A.: Characterization of an urban landfill with the transient electromagnetic and spectral induced polarization methods to quantify raw materials and map leakages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6124, https://doi.org/10.5194/egusphere-egu24-6124, 2024.

EGU24-7971 | ECS | Posters on site | ITS3.14/BG8.36

Sensing Cr(VI) retention with spectral induced polarization (SIP) in a magnetite-coated sand pack 

Ali Rahmani, Marc Franz, Frederik Bär, Claudia Backes, James M. Byrne, and Adrian Mellage

Removing Cr from contaminated (ground)water is often attempted via active remediation using easily deployable permeable reactive (barrier) materials, such as iron oxide mineral coatings. In particular, magnetite has been shown to be a highly effective and low-cost option for removing redox-active Cr from solution. Magnetite not only binds Cr, but it also reduces Cr(VI) to the less toxic and immobile Cr(III). Monitoring the extent of Cr retention in remediation schemes, however, relies on down-flow concentration sampling. Consequently, detectable levels of Cr must exit remediation barriers in order to detect the decreasing remediation efficiency of reactive materials with the progression of immobilization. Spectral induced polarization (SIP), a non-invasive geophysical technique sensitive to sorption-induced changes in the surface charging properties of mineral surfaces in porous media, offers a potentially powerful monitoring alternative to detect changes in remediation efficiency in situ without the need for down-flow monitoring and contamination hazard. Here, we apply SIP, as a proxy to monitor the extent of Cr retention in a flow-through column experiment, packed with magnetite-coated sand. We observed a rapid increase in polarization upon Cr(VI) adsorption on magnetite coated sand, followed by a strong continuous decrease. Our joint reactive transport modeling and post-column geochemical measurements highlighted a drop in the remaining sorption capacity of the coated sand, thereby linking the reduced sorption capacity to the drop in SIP signal. The excellent agreement between concentration breakthrough curves, our model and SIP measurements suggests that SIP signals can be used as an early warning tool to detect the approaching saturation of reactive materials deployed in remediation schemes.

How to cite: Rahmani, A., Franz, M., Bär, F., Backes, C., M. Byrne, J., and Mellage, A.: Sensing Cr(VI) retention with spectral induced polarization (SIP) in a magnetite-coated sand pack, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7971, https://doi.org/10.5194/egusphere-egu24-7971, 2024.

EGU24-11508 | Posters on site | ITS3.14/BG8.36

Bio-Electrochemical Systems to Monitor Biodegradation around Groundwater Plumes 

Rory Doherty, Panagiotis Kirmizakis, Mark Cunningham, and Deepak Kumaresan

This study introduces a straightforward and cost-effective Bio-Electrochemical System (BES) design that can be easily retrofitted into a borehole. The design uses standard bailers and Granular Activated Carbon (GAC) to create electrodes. These electrodes are connected across redox environments in nested boreholes. The  electrodes were installed in pre-existing boreholes surrounding a groundwater plume at a gasworks site. The BES at the plume fringe had the highest electrical response and showed variations in the bacterial and archaeal taxa between the anode and cathode electrodes. The other BES configurations in the plume center and uncontaminated groundwater showed little to no electrical response, suggesting minimal microbial activity. This approach enables rapid decision-making to effectively monitor degradation at groundwater plumes. 

How to cite: Doherty, R., Kirmizakis, P., Cunningham, M., and Kumaresan, D.: Bio-Electrochemical Systems to Monitor Biodegradation around Groundwater Plumes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11508, https://doi.org/10.5194/egusphere-egu24-11508, 2024.

EGU24-11986 | ECS | Posters on site | ITS3.14/BG8.36

Geophysical investigation of the Soda Lakes at the Seewinkel National Park (Austria) through electromagnetic and electrical methods 

Anna Hettegger, Adrián Flores Orozco, Nathalie Roser, and Arno Cimadom

The Seewinkel National Park in Burgenland (Austria) encompasses the largest inland soda lakes in central Europe. The shallow aquifer in the soda lakes is confined by an impermeable clay-rich layer, which is nourished with salts through capillary upward transport during the summer periods. Sinking groundwater levels are responsible for a decline in the upward transport and a decrease in salt content within the impermeable unit, threatening the ecological state of the lakes and their rich and unique biosphere. Yet, the extension of the hydraulic barrier, its salt content, and changes within the system accompanying seasonal temperature variations are still open to debate due to the lack of subsurface information with high spatial and temporal coverage. Here, we propose the application of geophysical methods to complement existing drill core data. Our research aims at reconstructing the architecture of the lakes, particularly the geometry and composition of the impermeable layer with a higher spatial and temporal resolution. We applied electromagnetic induction (EMI) for contactless rapid mapping of the lateral extent of the impermeable layer, assumed to have higher electrical conductivity due to its clay and salt content, and solving for the mean features in the shallow aquifer. To resolve vertical variations of the electrical conductivity with high resolution, we applied electrical resistivity tomography (ERT) at selected locations.  The initial independent inversion results from EMI and ERT, inherently ambiguous, showed discrepancies in the thickness of the impermeable layer. To permit an adequate interpretation of the geophysical data and harness the strengths of both methods, we employed numerical simulations, including ERT data to constrain EMI inversion and vice versa, as well as borehole electrode data, which allowed us to resolve for a subsurface electrical conductivity model able to explain both EMI and ERT data. Our results permit us to understand the characteristics of the impermeable layer and to develop a suitable technique to apply EMI and ERT to investigate other lakes in the national park.

How to cite: Hettegger, A., Flores Orozco, A., Roser, N., and Cimadom, A.: Geophysical investigation of the Soda Lakes at the Seewinkel National Park (Austria) through electromagnetic and electrical methods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11986, https://doi.org/10.5194/egusphere-egu24-11986, 2024.

EGU24-13784 | ECS | Posters on site | ITS3.14/BG8.36

Multiple benefits of biochar in agrivoltaics including rainfall harvesting and water balance  

Zibo Zhou, Wendy Timms, Sirjana Adhikari, and Stephen Joseph

Biochar as a carbon-negative product from organic waste increases porosity and water availability when deployed and mixed with soil, as one of many benefits for agrivolatics projects. Biochar can mitigate climate change by locking away carbon in concrete and during steel production, supporting food security and a circular economy, producing composites for water treatment and nutrient availability, and restoring soils affected by sodicity or contaminants. However, the utilization of biochar in combined farming and large-scale solar PV projects (i.e., agrivoltaics) provides more opportunities such as credits for carbon dioxide removal (CDR) and increased land-use efficiency. This project at a 7-megawatt solar PV (14-hectare) mixed-use farm at Deakin University in Australia aims to evaluate how biochar could contribute to agrivoltaics, particularly its influence on soil moisture, nutrient availability, and pasture productivity. This presentation focuses on part of the datasets, with initial results for water availability in the soil and pasture for sheep grazing. We applied biochar into a hand-dug trench along the drip line of PV panels, with several reference sampling sites (0.6m deep holes) beyond the pasture that is shaded by the panels. The trench was 0.6 m deep and 0.3 m wide, with 0.1 m of drainage sand at the base, a 0.3 m thick layer of mixed straw-biochar followed by 0.1 m of biochar particles, and 0.1m of soil and grass. Pasture treatments of liquid biochar and fertilisers followed installation. Soil moisture sensors were installed in the trench and sampling sites at 0.1, 0.3, and 0.5 m below ground level, and volumetric soil water content (V-SWC %) was recorded every 15 minutes. The initial results showed that the biochar trench in the mid-depth zone (~0.3m below the ground) can retain ~45% soil moisture after initial rainfall events. The maximum value of V-SWC in the bottom zone of the biochar trench was 47%. Similarly, V-SWC trends at other sites indicated that the middle and bottom zones can hold water for a period of time after rainfall occurs and values were up to 20%. Ongoing analysis will include variations of soil carbon and nitrate and the chemistry of leachate water that is collected from piezometers that were installed in the sand base of the trenches for mini-monitoring. The findings of this project will be useful for wide-scale applications of biochar on agrivoltaics or farming projects in environments sensitive to water balance. Biochar in soils can act as a sponge to store more water, slow down water flows in rivers, and increase groundwater recharge to shallow aquifers. This could ensure local catchments are more resilient to dry periods while benefiting ecosystems, and production of renewable energy and farmland.  

How to cite: Zhou, Z., Timms, W., Adhikari, S., and Joseph, S.: Multiple benefits of biochar in agrivoltaics including rainfall harvesting and water balance , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13784, https://doi.org/10.5194/egusphere-egu24-13784, 2024.

EGU24-16209 | ECS | Posters on site | ITS3.14/BG8.36

Spectral induced polarization imaging applied to map the extension of root systems in Agroforests 

Sophia Keller, Adrián Flores Orozco, Clemens Moser, Theresa Maierhofer, Jorge Luis Monsalve Martinez, Emilian Tietze, and Theresia Markut

In agroforests, trees are planted on agricultural fields, which helps to reduce the risk of crop failure due to climate change, resulting for example from drought severity, as trees can improve the water supply and increase the amount of organic matter in the soil. Geophysical methods are used to non-invasively characterize the root system, including the root density, architecture, and growth as well as to monitor their activity to better understand the interactions between trees and agricultural fields. Electrical methods have demonstrated their potential for assessing the rhizosphere as the root presents a resistive barrier to current flow, resulting in lower conductivity values in the subsurface when roots are present. The spectral induced polarization (SIP) method provides information about the conductive and capacitive properties of the subsurface and its frequency dependence (commonly below 1 kHz). Laboratory investigations of the SIP method have shown that the conductivity of the roots depends on the root mass density, whereas the polarization effect and its frequency dependence is related to the root activity. The effect is due to the accumulation of charges at the electrical double layer (EDL) formed at the interface between roots and water, as well as within the root cells due to the plasma membrane. Consequently, changes in the electrical conductivity and induced polarization values at lower frequencies (< 100 Hz) can be used to delineate the extension of the root system. Moreover, we hypothesize that changes in the SIP data can be used to discriminate between the roots of trees and those from farming crops. In this study, SIP imaging measurements were conducted at four locations in Austria. The objective of the SIP survey is to delineate the geometry of the tree roots and to investigate changes in soil properties due to root activity based on the frequency dependent nature of the induced polarization. Measurements were conducted in a frequency range of 0.5 to 225 Hz at four sites to evaluate changes in the SIP response due to varying tree age and soil properties. We developed 3D geometries consisting of four lines crossing each other at the centre, where the tree under investigation is located. We used different electrode spacings to reach different resolutions and depths of investigation. Our results reveal that conductivity images can delineate the roots of the different trees, which always revealed the lowest conductivity values. In the area of the roots, the highest IP response is observed at lower frequencies (<5 Hz) and close to the surface (within 30 cm depth), which we interpret as the combined response of the organic carbon and roots. At larger depths, the IP response decreases, likely due to the reduced organic carbon and root activity. A few meters away from the tree, we observe an increase in the conductivity and moderate IP values, with the latter increasing with the frequency, indicating the presence of fine textures (i.e., clay and silts).

How to cite: Keller, S., Flores Orozco, A., Moser, C., Maierhofer, T., Monsalve Martinez, J. L., Tietze, E., and Markut, T.: Spectral induced polarization imaging applied to map the extension of root systems in Agroforests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16209, https://doi.org/10.5194/egusphere-egu24-16209, 2024.

EGU24-17693 | ECS | Posters on site | ITS3.14/BG8.36

Enhancing Bioremediation: Insights from a Numerical Modeling Approach 

Noura Eddaoui and Cyprien Soulaine

Bio-remediation of soil contaminated by petroleum hydrocarbon is a highly complex process, requiring coupled interactions and synergistic effects between physical, chemical and biological phenomena. Monitoring and improving the bio-remediation of such system remains a formidable challenge. Our approach involves the development of a comprehensive mathematical and numerical model that couples two-phase flow, bio-reactive transport, and the dynamic of bacterial populations, with the aim of investigating the mechanisms governing pollutant and nutrient transport, bacterial activities and bio-degradation within porous media. Important processes including the effect of biofilm growth on the permeability of the porous media and the interaction between the biofilm matrix and the fluid system, are taken into account. Numerical simulations were carried out to evaluate the effect of biomass accumulation and nutrients availability on the bio-degradation rate, providing new insights into optimizing in-situ bio-remediation processes for effective cleanup. Additionally, key issues such as controlling contaminant mobility and estimating efficiency criteria will be addressed as well.

How to cite: Eddaoui, N. and Soulaine, C.: Enhancing Bioremediation: Insights from a Numerical Modeling Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17693, https://doi.org/10.5194/egusphere-egu24-17693, 2024.

BG9 – Earth System Remote Sensing and Modelling

EGU24-2028 | ECS | Orals | BG9.1

Improving early crop yield and price predictions using satellite imagery with machine and deep learning techniques 

Florian Teste, Hugo Gangloff, Philippe Ciais, and David Makowski

Early and accurate crop yield predictions and prices are crucial for food security management and planning. However, the lack of pre-harvest data poses significant challenges, undermining the reliability and effectiveness of existing methods.
This study introduces an innovative approach that addresses these challenges using satellite data products—specifically, Gross Primary Production (GPP) (0.05° spatial resolution) and dimension-reduction techniques to forecast corn yield and price variation across various regions. We predict national corn yield and price variations by leveraging these satellite-derived products. The value of the approach is demonstrated in three case studies conducted for corn in the US (Corn Belt region), Malawi, and South Africa.
The predictors are derived from GPP year-on-year variation of each region at the peak growing season, i.e., in July for the US Corn Belt (harvest in October) and March for Malawi and South Africa (harvest in May).
We compute the spatial average and Principal Components (PCs) of the GPP year-on-year variations through Empirical Orthogonal Function (EOF) analysis. Additionally, we explore neural network architectures, including Autoencoder (AE) and Variational Autoencoders (VAEs), and extract latent features to reduce the dimension of the GPP data from several thousand to a dozen synthetic features. The PCs, the AE and VAE latent features are used as predictors in Generalized Linear Models (GLM) and Least Absolute Shrinkage and Selection Operator (LASSO) models for predicting year-to-year corn yield and price variation. A neural network is also trained to predict yield and price variations from the latent features for comparison. All models are evaluated using year-to-year cross-validation with three metrics, i.e., Area Under Curve (AUC), the Brier Skill Score (BSS), and the Matthew Correlation Coefficient (MCC).
 Our results demonstrate the superior predictive performance of PCs for US corn yield variations with an AUC of 0.97 (95% CI 0.92-1), a BSS of 0.75, and an MCC of 0.83.
This approach outperforms alternative methods in performance, simplicity, and execution speed. The EOF approach also yields superior results for yield variation prediction in South Africa with an AUC of 0.88 (95% CI 0.75-0.99), a BSS of 0.47, and an MCC of 0.61, while the autoencoder approach is most effective for Malawi with an AUC of 0.98 (95% CI 0.93-1), a BSS of 0.75 and an MCC of 0.83.
For price, our results indicate that the spatial averages of GPP year-on-year July variation in the US Corn Belt can be used to forecast the forthcoming increase or decrease in global corn price at harvest with an AUC of 0.92 (95% CI 0.75-0.99), a BSS of 0.5 and an MCC of 0.66. However, in South Africa and Malawi, the most accurate price predictions are obtained with the VAE approach. With VAE, the AUC is 0.75 (95% CI 0.59-0.92), the BSS is 0.2, and the MCC is 0.27 in South Africa, while these metrics reach 0.94 (95% CI 0.59-0.92), 0.63, and 0.7 in Malawi.
This study highlights the value of combining satellite data with dimension-reduction methods for large-scale prediction of crop yields and price variations several months before harvest.

How to cite: Teste, F., Gangloff, H., Ciais, P., and Makowski, D.: Improving early crop yield and price predictions using satellite imagery with machine and deep learning techniques, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2028, https://doi.org/10.5194/egusphere-egu24-2028, 2024.

EGU24-3056 | Posters on site | BG9.1

A shift in the biodiversity fitness of meta-communities assessed from space 

Guido J. M. Verstraeten and Willem W. Verstraeten

Land surface temperature obtained from remote sensing is a measure of the Earth’s entropy production hypothesizing that the planet’s absorption and emission budget is governed by the Stefan-Boltzmann law for black body radiation. Based on Penrose’s claim, explaining life as the decelerating force of entropy produced at Earth, changing entropy production over time is an indication of shifting forest biodiversity.

In earlier research we have analysed Earth’s entropy production in four regions comprising a subarctic forest in Finland, a deciduous forest in Belgium, a Mediterranean forest in Spain, and a rainforest in Congo. Within the period 2003-2018, the deciduous forest was undergoing a dramatic decay of biodiversity by 5%, the rainforest by 2% while the biodiversity of the subarctic and Mediterranean forest remained pretty stable (Verstraeten & Verstraeten, EGU 2023). The entropy production shift was connected to the Shannon entropy of the lognormal distribution of species amount as claimed by Hubbel in his Unified Neutral Theory of Individual Migration of Life (Hubbel, 2001). The latent heat production, however, was not included in the earth surface energy budget.

Here we refine our results by focusing on the deciduous forest as pilot ecosystem for applying the Hubbel’s Unified Theory between three interacting communities in Flanders, Belgium. In this study we have included the Sonian forest (south of Brussels), Meerdal forest (east of Brussels) and the Houwaart area (north-east of Brussels). During the period 2003-2018 the refined local entropy changes by including monthly rainfall data of Sonian and Meerdal forest increased substantially (1.7-1.9%/decade), while the entropy change of the Houwaart area remains stable (0.5%/decade).

In addition, we have analysed the shift in biodiversity of the Meerdal forest by considering the Sonian forest and Houwaart area as its meta-community using the method of Hubbel. The Meerdal and Houwaart forests follow Preston’s lognormal distributions of species, while the Sonian forest follows the Fisher’s lognormal distribution due to the mono dominant biodiversity. The shift of the total number of species of the central community follows from the Arrhenius species area power law that connects the total number of species in the central community by its biodiversity number.

How to cite: Verstraeten, G. J. M. and Verstraeten, W. W.: A shift in the biodiversity fitness of meta-communities assessed from space, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3056, https://doi.org/10.5194/egusphere-egu24-3056, 2024.

EGU24-4589 | ECS | Orals | BG9.1

Retrieving leaf area index in wheat fields using unmanned aerial vehicle (UAV)-based LiDAR and hyperspectral imagery 

Gabriel Mulero, David Bonfil - Jacques, and David Helman

Leaf Area Index (LAI) is a dimensionless measure representing the total leaf area per unit ground area. As such, LAI is a key parameter in crop models, as it directly influences the photosynthetic activity of crops, affecting their growth, development, and yield predictions. It also reflects the canopy structure, which plays an essential role in how the plant responds to environmental stresses. In this study, we used UAV-based light detection and ranging (LiDAR) data and hyperspectral imagery (HSI) as two modalities to predict LAI in a total of 60 plots within 10 wheat fields of various cultivars in the dryland areas of Israel. Field LAI was assessed via two methods – destructive (Li3100C, Licor, Nebraska, USA) and optical (Li2200C, Licor, Nebraska, USA). The LAI in the wheat fields ranged from 0.25 m2 m–2 to 7.7 m2 m–2 (average LAI over the dataset was 1.5 m2 m–2). To predict LAI, we used LiDAR-derived metrics such as height-related metrics (height percentiles and bi-centiles, canopy relief ratio (CRR), max, average, and mode height), and 3-D variables (3-D profile index (3DPI), 3-D voxel index (3DVI), and convex hull volumes), as well as spectral vegetation indices, in five machine learning (ML) algorithms – simple linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Single metric SLR resulted in R2 ranging from 0.32 to 0.55. More complex algorithms showed that the LiDAR-derived metrics were useful for estimating LAI at the plot level with a higher R2 > 0.81 and an RMSE of less than 0.16 m2 m–2 (c. 10%) for the ML algorithms. The 3-D variables were shown to be the most important and robust variables in the ML models for predicting LAI at the plot level, with some height-related variables showing great potential as well. This study is a unique first-step effort to evaluate UAV-LiDAR sensors in collecting high-quality, non-destructive, repeatable measurements of LAI. Such remote sensing information could be highly useful to calibrate and evaluate crop models while resolving the upscaling limitation from leaf to canopy.

How to cite: Mulero, G., Bonfil - Jacques, D., and Helman, D.: Retrieving leaf area index in wheat fields using unmanned aerial vehicle (UAV)-based LiDAR and hyperspectral imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4589, https://doi.org/10.5194/egusphere-egu24-4589, 2024.

EGU24-5146 | ECS | Posters on site | BG9.1 | Highlight

EST-LEAF – new tool to measure and determine leaf inclination angle distribution (LIAD) information with your phone 

Oleksandr Borysenko and Jan Pisek

Leaf angle distribution is a crucial structural trait in plants, influencing aspects such as radiation interception, biomass production, rainfall interception, and evapotranspiration. However, there is a limited number of reported measurements for leaf inclination angle distributions across various plant species in existing literature and databases such as TRY. Frequently, modellers rely on assumptions due to the scarcity of data on leaf angle distribution, making it a major source of uncertainty in ecological models.

To try to alleviate this issue, we present EST-LEAF, a mobile application designed for the intuitive measurement of angles and instantly obtaining leaf angle distribution using a mobile phone. Leaf inclination angles are measured using the phone placement. The application promptly calculates essential distribution parameters, including mean, standard deviation, Campbell, beta distribution parameters, G-function, and deWit type. The measurements and results can be stored and exported for future analysis.

We validated EST-LEAF's performance against alternative, more time-consuming methods commonly used in the field (a protractor, digital levelled photography). EST-LEAF can be an affordable and valuable tool suitable for verifying various ecological hypotheses and supporting canopy modelling approaches. It is important to note that the tool can contribute to ecophysiological and educational projects, given its affordability and user-friendly nature, making it accessible to institutions, researchers, and students worldwide. The EST-LEAF app is available for free under a Creative Commons license (CC BY-NC-SA 4). It can be downloaded from the Google Play Market onto devices with Android systems.

How to cite: Borysenko, O. and Pisek, J.: EST-LEAF – new tool to measure and determine leaf inclination angle distribution (LIAD) information with your phone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5146, https://doi.org/10.5194/egusphere-egu24-5146, 2024.

EGU24-5834 | ECS | Orals | BG9.1

Tracking the dynamics of paddy rice cultivation practice through MODIS time series and PhenoRice algorithm. 

Nirajan Luintel, Weiqiang Ma, Yaoming Ma, Binbin Wang, Jie Xu, Binod Dawadi, Bhogendra Mishra, and Wouter Dorigo

Monitoring paddy rice cultivation is essential for ensuring food security and for land resource management in agrarian countries of South Asia. In this presentation, we investigate the spatial and temporal variation of rice cultivated area and phenological metrics in Nepal between 2003 and 2018 using the time series MODIS data and PhenoRice algorithm (Luintel et al., 2021). Comparisons of PhenoRice outputs with ancillary data show that implementation of PhenoRice with the MODIS data can be used for long-term change analysis of rice cultivation. Results on spatial distribution illustrate that rice cultivation is concentrated in the low elevation belt in the south of Nepal. The phenological mapping shows that the cultivation begins earlier in the western region compared to the eastern region and begins earlier in the hilly region compared to the plains. The inter-annual trend analysis found a statistically significant decrease of rice cultivated area at the rate of 19130 hectares per year after 2008, and the loss of rice fields was more prominent in the eastern plains while rice farming expanded in the mid-hills in the western region. Our study provides insights regarding timely and cost-efficient monitoring of rice farming at a large scale in a mountainous region. 

Luintel, N, Ma, W., Ma, Y, Wang, B. Xu, J., Dawadi, B., Mishra, B. (2021). Tracking the dynamics of paddy rice cultivation practice through MODIS time series and PhenoRice algorithm. Agricultural and Forest Meteorology, 307, 108538. https://doi.org/10.1016/j.agrformet.2021.108538 

How to cite: Luintel, N., Ma, W., Ma, Y., Wang, B., Xu, J., Dawadi, B., Mishra, B., and Dorigo, W.: Tracking the dynamics of paddy rice cultivation practice through MODIS time series and PhenoRice algorithm., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5834, https://doi.org/10.5194/egusphere-egu24-5834, 2024.

EGU24-6294 | Posters on site | BG9.1

Multispectral and SAR satellite data to assess drought impact on the productivity of mountain grasslands in the European Alps 

Mariapina Castelli, Caroline Göhner, Mohammad Alasawedah, Abraham Mejia-Aguilar, Alice Crespi, Gabriel Sicher, Alexander Dovas, Laura Stendardi, Paulina Bartkowiak, Giovanni Cuozzo, Roberto Monsorno, and Giovanni Peratoner

Drought events occur more and more often in the Alps, endangering the welfare of mountain agriculture. In this context, risk management instruments, like insurance, can help agricultural systems cope with production shortcomings and thus increase their economic resilience, prevent land abandonment, and maintain their functioning over time. In this work, we focus on Trentino-South Tyrol, in north-eastern Italy, where mountain grasslands play an important economic role as they provide forage for livestock farming and a place of recreation for tourists. In addition, they contribute to many ecosystem services including climate regulation, biodiversity and landscape conservation, and soil protection. In collaboration with stakeholders from the agricultural sector, we developed an index of productivity, the Grassland Production Index (GPI), which can be used at the end of the growing season to assess yield losses due to drought events. GPI is estimated from meteorological data and leaf area index (LAI) derived from Sentinel-2 multispectral data. LAI and GPI are validated by field measurements of LAI and dry matter yield covering two growing seasons at eight test sites per year. This is achieved by a well-established and replicable data collection protocol. The validation of the Sentinel-2 LAI with ground measurements showed an RMSE of 0.92 [m2 m−2] and an R2 of 0.81 over all the measurement sites. A comparison between GPI and yield showed, on average, an R2 of 0.56 at the pixel scale and an R2 of 0.74 at the parcel scale. Based on these promising validation results, the index was applied to estimate the insurance payments for four farms. An advanced version of GPI is under development in which we improve the Sentinel-2 LAI time series by a data fusion approach. Here, missing LAI values due to cloud coverage are estimated by machine learning algorithms with input features calculated from backscattering and soil moisture derived from Sentinel-1 SAR data. The application of the enhanced GPI for insurance purposes at the regional scale is foreseen at the end of the 2024 growing season. This work presents a real case study using GPI for drought impact assessment and investigates the potential of fusing optical and SAR data to improve the estimation of GPI.  

How to cite: Castelli, M., Göhner, C., Alasawedah, M., Mejia-Aguilar, A., Crespi, A., Sicher, G., Dovas, A., Stendardi, L., Bartkowiak, P., Cuozzo, G., Monsorno, R., and Peratoner, G.: Multispectral and SAR satellite data to assess drought impact on the productivity of mountain grasslands in the European Alps, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6294, https://doi.org/10.5194/egusphere-egu24-6294, 2024.

EGU24-6519 | ECS | Orals | BG9.1

Improving the Interpretation of Sun-Induced Chlorophyll Fluorescence under Stress: Insights from Leaf- and Canopy-Scale Measurements 

Sebastian Wieneke, Javier Pacheco-Labrador, Miguel D. Mahecha, Sílvia Poblador, Sara Vicca, and Ivan A. Janssens

Sun-Induced chlorophyll Fluorescence (SIF) stands out as a promising remote sensing signal for monitoring photosynthesis over time and space. However, its interpretation becomes intricate under stress conditions due to factors such as light absorption and plant adaptations. To derive the quantum yield of fluorescence (ΦF) at the photosystem from canopy measurements, the escape probability (fesc) must be considered.

This study compares ΦF measured at leaf- and canopy-scale to assess the impact of stress responses, using a potato mesocosm heat-drought experiment as a basis. Initially, we evaluated the performance of reflectance-based approaches for estimating red and far-red fesc through simulations with the radiative transfer model SCOPE. Findings revealed that existing fesc models inadequately predicted the correct value range for red fesc especially at canopy level. In this presentation, we will discuss modifications to address this limitation.

Subsequently, modified models for red fesc and an existing model for far-red fesc were employed to analyze the dynamics of leaf and canopy red and far-red fluorescence under increasing drought and heat stress. Incorporating fesc led to a closer agreement between simultaneously measured leaf and canopy SIF signals, with improved r2 values for red fesc (0.3 to 0.49) and far-red fesc (0.36 to 0.52). Comparing the quantum yield dynamics of red and far-red fluorescence (ΦF,687 and ΦF,760) under increasing stress revealed a significant decrease in both leaf and canopy ΦF,687, as well as leaf ΦF,760, as drought and heat intensified. Contrarily, Canopy ΦF,760 did not exhibit the same trend, displaying wider spread and lower median under low stress conditions. We performed a sensitivity analysis of ΦF,687 and ΦF,760 to changing leaf-to-sun angle by comparing measurements with and without mesocosm rotation. It revealed a notable increase in the coefficient of variation of ΦF,760, especially under unstressed conditions. Our findings underscore the necessity for further research to unravel the causes of discrepancies in leaf and canopy-scale ΦF,760. Conversely, the underutilized ΦF,687 demonstrates significant potential for evaluating plant responses to drought and heat stress.

How to cite: Wieneke, S., Pacheco-Labrador, J., Mahecha, M. D., Poblador, S., Vicca, S., and Janssens, I. A.: Improving the Interpretation of Sun-Induced Chlorophyll Fluorescence under Stress: Insights from Leaf- and Canopy-Scale Measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6519, https://doi.org/10.5194/egusphere-egu24-6519, 2024.

EGU24-8351 | ECS | Orals | BG9.1

Integrating Sentinel-2 information into a growth model for assessing Alpine grassland dynamics under climate change 

Kevin Kramer, Fabio Oriani, Manuel Schneider, Helge Aasen, and Pierluigi Calanca

In the Alpine region, as in other mountainous areas of the World, grasslands dominate the agricultural landscape, providing key ecosystem services to human societies. Ongoing climate change is already altering their seasonal growth patterns. Monitoring these responses and predicting future shifts is therefore of great importance for identifying suitable adaptation measures.

Recent studies have demonstrated the potential of remote sensing for the observation of grassland dynamics. Satellite data, however, can also be used to inform grassland growth models, which in turn are key tools for translating climate change scenarios into manageable information.

In this contribution we discuss the integration of information derived from Sentinel-2 data into a mechanistic model of grass growth that has been validated for low-altitude sites but never systematically applied to grasslands at high Alpine locations. We use satellite inferred growing season start and snow cover information to calibrate and validate the model across the region of the Swiss National Park (Grisons, Switzerland), a biodiversity-rich ecosystem encompassing dry and wet pastures, wetlands and shrubs.

The thus established model is then employed in conjunction with the national climate change scenarios for Switzerland to explore possible responses of alpine grasslands to mid-century climate change under the assumption of a business-as-usual emission pathway. In these simulations we account both for the effects of altered temperature and precipitation patterns as well as for the effects of elevated CO2 concentrations.

Contributing to the activities of the Swiss National Centre for Climate Services, our work shows how remote sensing products coupled with mechanistic models can provide advanced predictive capabilities for developing scientific baselines needed to underpin climate change adaptation.

How to cite: Kramer, K., Oriani, F., Schneider, M., Aasen, H., and Calanca, P.: Integrating Sentinel-2 information into a growth model for assessing Alpine grassland dynamics under climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8351, https://doi.org/10.5194/egusphere-egu24-8351, 2024.

EGU24-9180 | ECS | Posters on site | BG9.1

Adaptation of satellite-based vegetation indices for different land use types 

Tibor Zsigmond and Agota Horel

Remote sensing is an important data collection method for farmers and researchers to obtain up-to-date information on the state of vegetation. Due to efficiency and low cost of method, the satellite-based remote sensing also allows analysis at the catchment level. The aim of present study was to investigate the usability of satellite-based vegetation indices for different land use types while using ground-truth measurements for comparisons. The study area was a small agricultural catchment in Balaton Upland, Hungary. Four different land use types (forest, grassland, vineyard and cropland) were investigated, located on different angled slopes. In the vineyard there were three different inter-row managements investigated.

In 2023 the field measurements were taken in every two weeks during vegetation period. Hand-held (H) sensor set was used to measure vegetation indices on the slopes of grassland, cropland, and the three vineyard sites. The Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI) sensors were used to measure leaf reflectance. A hemispherical sensor set was used for each measurement. Additional handheld instruments were used for Leaf Area Index (LAI), and soil water content (SWC) measurements. The source of satellite-based data was Sentinel-2 (S2). At the same time as the field measurements 8 out of 13 available spectral bands were collected from S2 and used to calculate different spectral indices (e.g. NDVI or green chlorophyll index - GCI).

The vegetation of different land use types varies considerably, which also affects the applicability of the vegetation indices. In 2023, the strongest correlation between NDVI of field measurement and satellite NDVI was for grassland (r=0.76). The highest overall NDVI values for both methods were observed in the vineyard with cover crop inter-row (H NDVI: 0.76, S2 NDVI: 0.56). PRI values for all land use types were most strongly correlated with the Red Edge 2 band (e.g. r=0.65 for grassland, r=0.69 for Cropland, r=0.70 for Vineyard C). The highest average leaf area index was measured for the forest (3.36), and the lowest in grassland (0.86). LAI showed good correlation with cropland GCI (0.86), moderate correlation with forest and tilled inter-row vineyard (0.50 and 0.55, respectively). PCA analysis showed that the cover crop and grassed inter-row did not, but most other land use types grouped distinctly.

Acknowledgments: This material is based upon work supported by the Hungarian National Research Fund (OTKA/NKFI) project OTKA FK-131792. The research presented in the article was carried out within the framework of the Széchenyi Plan Plus program with the support of the RRF 2.3.1 21 2022 00008 project. The research was funded by the Sustainable Development and Technologies National Programme of the Hungarian Academy of Sciences (FFT NP FTA).

How to cite: Zsigmond, T. and Horel, A.: Adaptation of satellite-based vegetation indices for different land use types, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9180, https://doi.org/10.5194/egusphere-egu24-9180, 2024.

Grasslands cover a significant portion of Switzerland’s landscape, primarily serving for livestock production, but also providing many ecosystem services like safeguarding biodiversity, habitat provision, carbon storage or water purification. Yet, through exposure to climate change, but also intensive land use such as frequent mowing and intensive grazing grasslands are increasingly threatened.

To evaluate the state of grasslands and optimize sustainable management practices, it is necessary to understand their ecological state, the management strategies and use intensity they're exposed to. A reliable data basis is a prerequisite for an accurate assessment. However, the acquisition of ground-field data is a costly and time-consuming process, and often requires financial resources and human capacity.  

Satellite data may provide a cost-effective alternative. The derivation of physical based quantities like the Leaf Area Index (LAI) through Radiative Transfer Models (RTM) has shown great potential to estimate several biophysical and biochemical plant traits from spectral data. This contribution presents a method to estimate grass growth using satellite data time series along with an RTM inversion-based LAI retrieval approach. The results are compared to in-situ observations and results from a mechanistic model. The methodology includes 1) suitable parameterization of the RTM for grasslands and generation of a spectral library, 2) training of the retrieval algorithm (neural network/random forest), and 3) the extraction of LAI time series from satellite images to compute LAI progress over time. We evaluate this method by comparing the results to a grass growth curve computed by the mechanistic model ModVege as well as in-situ data from multiple sites in Switzerland.  

The investigation of LAI retrieved from satellite data and RTM inversion for grassland growth assessment provides valuable insights into optimizing grassland management practices. These findings are further utilized to improve the long-term sustainability of grasslands in the face of changing environmental conditions.

How to cite: Larcher, D., Ledain, S., and Aasen, H.: Comparing radiative transfer model-based LAI retrieval with in-situ observations and mechanistic modelling for grassland growth assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10212, https://doi.org/10.5194/egusphere-egu24-10212, 2024.

EGU24-10600 | ECS | Posters on site | BG9.1

UAV-based imagery for monitoring and predicting vegetation water stress across landscape-scale gradients 

Yousra El-Mejjaouy, Koen Hufkens, Lorenz Walthert, Julian Schoch, and Benjamin Stocker

The extreme summer droughts across Central Europe (i.e., 2003, 2015, and 2018), driven by anthropogenic climate change, emphasized the urgency of understanding and predicting ecosystem responses to extreme droughts.

Water limitation during severe drought limits photosynthesis and respiration by closing stomata, induces xylem cavitation, and reduces plant carbon balance, which leads to seasonal decreases in productivity and long-term increases in tree vulnerability to major disturbances and mortality. Drought-induced stress can be measured by remote sensing as it influences physical leaf properties and alters leaf spectral responses in both the visible and thermal part of the spectrum.

The physiological responses to drought events not only depend on their timing, i.e. recurrence and duration, but also on their geography (landscape-scale heterogeneity). For example, large gradients in soil depth, slope, and exposition in mountainous landscapes can therefore cause differential vegetation responses to drought across scales of 101-104 m. Combining both vegetation (spectral) indices, and a highly variable geography, offers a non-destructive and rapid method for investigating plant physiological processes under a wide range of drought stress.

Our research maps temporal variations and landscape-scale heterogeneity in vegetation water stress using UAV-based multispectral remote sensing. To investigate landscape-scale heterogeneity of drought impacts, the study is carried out at various sites in Valais, Switzerland, with different elevations, soil and plant rooting depths, slopes, and various species exhibiting varying responses to drought stress. All sites are part of a larger tree monitoring network and provide co-located plant and soil-point measurements of water stress. Here we outline the heterogeneity in the study locations, the methodological approach, as well as tree responses during recent summers at these sites. The collected data will be used to develop predictive models for water stress using UAV imagery, aiming to upscale the effects of water stress on vegetation functioning across a heterogeneous landscape.

 

How to cite: El-Mejjaouy, Y., Hufkens, K., Walthert, L., Schoch, J., and Stocker, B.: UAV-based imagery for monitoring and predicting vegetation water stress across landscape-scale gradients, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10600, https://doi.org/10.5194/egusphere-egu24-10600, 2024.

EGU24-10773 | Orals | BG9.1

Airborne surveys for the detection of Flavescence Dorée in vineyards 

Virginia Strati, Matteo Alberi, Alessio Barbagli, Stefano Boncompagni, Luca Casoli, Enrico Chiarelli, Ruggero Colla, Tommaso Colonna, Michele Franceschi, Fabio Gallorini, Enrico Guastaldi, Nicola Lopane, Andrea Maino, Gian Lorenzo Mazzoli,, Fabio Mantovani, Filippo Mantovani, Federica Migliorini, Dario Petrone, Silvio Pierini, Kassandra Giulia Cristina Raptis, and Rocchina Tiso

Flavescence Dorée (FD) is one of the most severe diseases affecting the main viticultural areas of Europe primarily due to a vine-specific leafhopper, Scaphoideus titanus, which indirectly transmits the pathogen to the plant's phloem. In infested grapevine areas where the disease is epidemic and is allowed to spread uncontrolled, epidemic flavescence dorée had catastrophic consequences on yield. Once infected, plants are beyond cure; the only options are severe pruning or total removal. This devastating disease compromises plant growth and can damage entire wine-producing regions, causing substantial economic losses. Delayed symptom recognition contributes significantly to the spread of FD, making early detection strategies essential to effectively manage and mitigate the disease's impact on vineyards.

In this context, remote sensing marks a paradigm shift compared to traditional ground-based surveys. The acquisition of high-resolution images from aircrafts or drones enables efficient scanning of large vineyard areas and detecting subtle changes in leaf color or vigor, enabling faster responses and precise interventions.

In this case study the Radgyro, an experimental aircraft designed for environmental monitoring, surveyed during the initial stages of the disease onset a vineyard of Sangiovese grape variety located in the Emilia-Romagna region (Italy), covering collectively approximately 19 ha with a single 17 min-flight. The centimeter-level resolution of the images acquired by the optical sensors mounted on the Radgyro were automatically processed off-line through a tailored software. The analysis pipeline includes the processing of RGB index maps, where carefully tuned index thresholds were adopted to identify the pixel groups with leaf color attributable to FD symptoms. Spatial clustering algorithms are applied to eliminate noise and isolate potentially diseased plants. The final outputs of the process are the potentially diseased plants, FD density and incidence maps, i.e. prescription maps which provide direct operational guidelines for the FD containment interventions.

On field validation surveys revealed that the process analysis detected 86% of true positive and only 1% of false negative, underscoring an excellent agreement between the remote and ground surveys. Thanks to the high quality of the acquired images and the automatized process analysis, this methodology revealed effective in identifying FD symptoms in the single leaves with a precision comparable to traditional and time-consuming ground-based surveys.

 

This study was supported by the project PERBACCO (Early warning system per la PrEvenzione della diffusione della flavescenza doRata BAsato sul monitoraggio multiparametriCo airborne delle COlture vinicole) (CUP: E47F23000030002) funded by the Emilia-Romagna Region.

How to cite: Strati, V., Alberi, M., Barbagli, A., Boncompagni, S., Casoli, L., Chiarelli, E., Colla, R., Colonna, T., Franceschi, M., Gallorini, F., Guastaldi, E., Lopane, N., Maino, A., Mazzoli,, G. L., Mantovani, F., Mantovani, F., Migliorini, F., Petrone, D., Pierini, S., Raptis, K. G. C., and Tiso, R.: Airborne surveys for the detection of Flavescence Dorée in vineyards, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10773, https://doi.org/10.5194/egusphere-egu24-10773, 2024.

EGU24-10810 | Posters on site | BG9.1

Linking satellite-derived greening trends and field observations in the high-alpine 

Martin Rutzinger, Mathilde Waymel, Andreas Kollert, Andreas Mayr, Karl Hülber, Harald Pauli, and Stefan Dullinger

An increase in vegetation productivity has been attributed to accelerated warming in different mountain ranges over the last decades by analysis of satellite imagery. Here, we quantify such a greening trend on 767 sampling plots with a high topographic variety in elevation, slope, and aspect in the sub-alpine to nival vegetation belt of Mt. Schrankogel (Tyrol, Austria) over the past four decades by analysing Landsat satellite image time series. We found (i) a good agreement of NDVI with in-situ vegetation cover estimates in a reference year and (ii) a widespread greening trend. Our set of plots has experienced a median greening trend of 0.018 NDVI units per decade, with 98% of the plots showing a positive NDVI trend. These results need to be considered with caution as the detailed analysis of the NDVI time series together with knowledge of the local conditions at the plots reveals potential pitfalls for interpretation. These are related to geomorphological disturbance of soil and vegetation, legacy effects of 20th century glacier retreat, or data scarcity (due to snow and clouds). Nevertheless, our study generally supports the notion that the productivity of cold-limited vegetation has increased which is even detectable from space.

How to cite: Rutzinger, M., Waymel, M., Kollert, A., Mayr, A., Hülber, K., Pauli, H., and Dullinger, S.: Linking satellite-derived greening trends and field observations in the high-alpine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10810, https://doi.org/10.5194/egusphere-egu24-10810, 2024.

EGU24-10882 | ECS | Orals | BG9.1 | Highlight

Satellite-based monitoring of the world’s largest terrestrial mammal migration using deep learning  

Zijing Wu, Tiejun Wang, Ce Zhang, Isla Duporge, Xiaowei Gu, Lacey Hughey, Jared Stabach, Andrew Skidmore, Grant Hopcraft, Peter Atkinson, Douglas McCauley, Richard Lamprey, Shadrack Ngene, and Peng Gong

Accurate, reliable, and up-to-date information on wildlife populations is crucial for biodiversity conservation in the face of unprecedented biodiversity loss worldwide. However, monitoring wildlife populations at large scales remains challenging. Advances in satellite remote sensing, particularly very-high-resolution satellite data, offer new opportunities for monitoring wildlife from space, and new machine learning techniques present great potential for detecting wildlife with remarkable speed and accuracy. Here, we introduce a deep learning pipeline for automatically detecting and counting large migratory ungulate herds (wildebeest and zebra) at the individual level in the Serengeti-Mara ecosystem from submeter-resolution satellite imagery. We apply the pipeline to implement the first-ever population census of large-size ungulates in the Serengeti-Mara ecosystem through a satellite survey and generate the total count of the whole population. The model shows robust performance across diverse landscapes with an overall F1-score of 84.75% (Precision: 87.85%, Recall: 81.86%) on an independent test dataset containing 11,594 animals and achieves good transferability spatially and temporally. This research showcases the capability of satellite remote sensing and deep learning techniques to accurately locate and count very large populations of terrestrial mammals in open landscapes. It provides a new perspective on monitoring wildlife populations and animal migration, which will facilitate the understanding of animal behavior and ecology as well as improve the conservation of the whole ecosystem in the face of rapid environmental changes.

How to cite: Wu, Z., Wang, T., Zhang, C., Duporge, I., Gu, X., Hughey, L., Stabach, J., Skidmore, A., Hopcraft, G., Atkinson, P., McCauley, D., Lamprey, R., Ngene, S., and Gong, P.: Satellite-based monitoring of the world’s largest terrestrial mammal migration using deep learning , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10882, https://doi.org/10.5194/egusphere-egu24-10882, 2024.

EGU24-11025 | ECS | Posters on site | BG9.1

Sensitivity of Sentinel-1 Backscatter Signal to Vegetation Dynamics over Mozambique: A comparison with MODIS data 

Carina Villegas-Lituma, Mariette Vreugdenhil, Samuel Massart, Pavan Muguda Sanjeevamurthy, Bernhard Raml, and Wolfgang Wagner

Sentinel-1, a pair of Synthetic Aperture Radar (SAR) sensors, provides valuable all-weather and day-night imaging capabilities, enabling continuous monitoring of vegetation dynamics even in the presence of cloud cover. SAR sensors excel at penetrating vegetation canopies and providing information on crucial factors like vegetation structure, biomass, and moisture content. However, most remote sensing vegetation studies have primarily relied on optical data, benefiting from longer historical datasets but facing challenges due to atmospheric interference, limited temporal resolution. Moreover, there is no research assessing the sensitivity of optical and radar data to the dynamics of vegetation in Mozambique. This study investigates the sensitivity of the Sentinel-1 (S-1) backscatter signal to vegetation dynamics over Mozambique. We compare it with the Normalized Difference Vegetation Index (NDVI) from MODIS data and explore its relationship with precipitation variability and droughts across different land covers, including forest, cropland, herbaceous vegetation, and herbaceous wetland in Mozambique.
The Sentinel-1 VV and VH polarized images were used to calculate the Cross Ratio (CR=VH/VV). Temporal behaviors of CR S-1 and MODIS NDVI were analyzed from 2017 to 2022, examining seasonal patterns, inter-annual variability, trends, and outliers. NDVI anomalies were calculated to identify the spatial and temporal occurrence of agricultural droughts, while CHIRPS precipitation data was utilized to detect fluctuations in the CR S-1 and NDVI time series relative to precipitation. 
The analysis revealed distinct seasonality in the CR time series data across all land cover types. Notably, croplands, herbaceous vegetation, and herbaceous wetlands exhibited a consistent increase in CR during winter months, followed by a decline during summer months. In contrast, forests displayed an inverse trend, with CR decreasing in winter and increasing in summer. Furthermore, no pronounced CR patterns were observed in herbaceous wetlands during 2019, coinciding with the agricultural drought between 2018 and 2019. Additionally, the seasonality of MODIS NDVI time series remained consistent across all land cover types, with no noticeable differences. It was observed that fluctuations in NDVI time series preceded those in CR for these specific land cover types, suggesting a potential correlation with photosynthetic activity and subsequent biomass production. Significantly, this trend was found to be opposite in forested areas. Overall, the CR trend exhibited a clear correlation with rainfall seasonality across the various land cover types, except for forests where an inverse relationship was observed. On the other hand, NDVI demonstrated a higher sensitivity to changes in precipitation across the different land cover categories.
These findings highlight the unique sensitivity of Sentinel-1 SAR data in capturing the intricate dynamics of vegetation across diverse land cover types in Mozambique, providing valuable complementary information to traditional optical data sources.

How to cite: Villegas-Lituma, C., Vreugdenhil, M., Massart, S., Muguda Sanjeevamurthy, P., Raml, B., and Wagner, W.: Sensitivity of Sentinel-1 Backscatter Signal to Vegetation Dynamics over Mozambique: A comparison with MODIS data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11025, https://doi.org/10.5194/egusphere-egu24-11025, 2024.

Mountain pastures host rich plant biodiversity organized in various distinct habitats. An accurate long-term monitoring, going beyond the sole ground survey, is of primary importance for nature conservation and forage production planning. We develop here a novel analytical framework to identify and monitor plant communities in mountain pastures based on the joint statistical analysis of ground data and satellite imagery. We use commonly available satellite imagery (Sentinel-2) to track, for the first time to our knowledge, spatial and temporal changes of individual habitats composing the mountain pasture ecosystem, in relation to interannual hydroclimatic variations.

We consider as study zone the mid-to-high elevation mountain pastures surrounding the Swiss National Park in the Grisons canton, Switzerland (approx. 100 sq. km), including fertile pastures, wetlands, dry plant communities, and shrubs. We couple the habitat map to the NDVI spectral index (Sentinel-2 images, ESA) to retrieve a proxy for living vegetation and its productivity. Then, by computing statistical parameters of the NDVI curves, we characterize the annual greening season for the different habitats, taking into account elevational changes and interannual variations of snow persistence, depending on autumn and winter rainfall.

The different habitats show a marked difference in their productivity in function of their wetness until 2400 m a.s.l, while they seem to homogenize at higher altitudes. The greening in the 1-st season half is strongly controlled by snow persistence variations and partially compensated by an after-snowmelt quick growth. Conversely, the 2-nd half season greening is mainly linked to the season maximum NDVI. This workflow presents as an effective strategy to monitor the seasonal and long-term evolution of mountain pasture vegetation in the complex alpine domain.

How to cite: Oriani, F., Aasen, H., and Schneider, M. K.: Monitoring the greening of mountain pasture habitats based on satellite image analysis in response to elevation and seasonal weather change., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11269, https://doi.org/10.5194/egusphere-egu24-11269, 2024.

EGU24-12296 | Orals | BG9.1

Modelling Gross Primary Production of a Mediterranean grassland using Sentinel-2 NDVI and meteorological field information  

Victor Cicuéndez, Carlos Yagüe, Rosa Inclán, Enrique P. Sánchez-Cañete, Carlos Román-Cascón, and César Sáenz

Mediterranean grasslands are essential for the development of rural areas in Mediterranean countries since they provide different ecosystem, social and economic services. Specifically, in Spain, pastures occupy more than 55% of the Spanish surface. The Gross Primary Production (GPP) of this ecosystem is subjected to a natural large spatial and temporal variability due to the influence of the Mediterranean climate.

Remote sensing is accepted as the most powerful tool to study grasslands at different spatial and temporal scales. High frequency satellite data, such as Sentinel-2, offer new possibilities to study grasslands with high spatial (10 m) and temporal resolution (5 days).

Hence, the overall objective of this research is to estimate GPP models for a Mediterranean grassland in central Spain using Sentinel-2 Normalized Difference Vegetation Index (NDVI), complemented with meteorological information at the field scale from January 2018 to August 2020. The GPP models are Light Use Efficiency models and will be validated by the GPP obtained from an eddy-covariance flux tower located in the study site, which belongs to the regional Guadarrama Meteorological Network (GUMNET).

The results shows that the footprint estimation of the flux tower is influenced by mesoscale thermally-driven flows (mountain breezes) due to the presence of the Guadarrama Mountains, located quite close to the station. In addition, pasture phenology is linked to the dynamics of Soil Water Content (SWC), being water the main limiting factor during the growing cycle while temperature is only a limiting factor during winter. Thus, the inclusion of the SWC and minimum temperature in the model provides a better adjustment of the model. With this work we show how the estimated models are adequate to monitor the GPP of this Mediterranean grassland and we present the advantages and limitations found.

How to cite: Cicuéndez, V., Yagüe, C., Inclán, R., Sánchez-Cañete, E. P., Román-Cascón, C., and Sáenz, C.: Modelling Gross Primary Production of a Mediterranean grassland using Sentinel-2 NDVI and meteorological field information , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12296, https://doi.org/10.5194/egusphere-egu24-12296, 2024.

EGU24-12555 | Orals | BG9.1

Exploring the feasibility of early stress detection with sun-induced chlorophyll fluorescence from tower to satellite  

Gregory Duveiller, Albin Hammerle, Lorenz Hänchen, David Martini, Mirco Migliavacca, Katherina Scholz, Karolina Sakowska, Daniel Pabon-Moreno, Javier Pacheco-Labrador, and Georg Wohlfahrt

Terrestrial ecosystems are undergoing increasingly frequent periods of stress as the climate is changing. Monitoring ecosystem health efficiently requires global spatial coverage and high temporal resolution, which are assets of satellite-based remote sensing. However, conventional optical remote sensing (RS) approaches offer limited potential for the early detection of ecosystem stress, as changes in ecosystem structure and function often need to be substantial in order to be detectable when using reflectance in the visible and near-infrared range of the energy spectrum. Satellite-based RS of sun-induced chlorophyll fluorescence (SIF) offers much greater promise to that end, but there is still no dedicated SIF mission in-orbit, leaving coarser instruments designed for atmospheric measurements, such as Sentinel-5P TROPOMI, as the only option. The use of SIF from such instruments is challenged by the confounding effects of canopy structure and biochemistry. Furthermore, to correctly diagnose whether plants are under stress, SIF needs to be quantified jointly with the energy that is dissipated as heat. This can be potentially done through monitoring changes in reflectance around the green peak, exploited by the so-called photochemical reflectance index (PRI). Another option may lie in constraining the system with information on land surface temperature (LST), but such measurements should be ideally made at the same time as the instantaneous SIF retrievals. Another challenge is that, combining these measurements requires the proper confrontation of very different spatial footprints over potentially heterogeneous landscapes.

This present work reflects some of the results emerging from the AustroSIF project. The overarching goal of AustroSIF is to make present and future satellite-based SIF measurements a sensitive and reliable means for the early detection of ecosystem stress by combining remotely sensed SIF and PRI. In this project, we have gathered time series of ground-based active and passive chlorophyll fluorescence and hyperspectral reflectance from 7 eddy-covariance flux tower sites. At the same time, we collected respective time series of Sentinel-5P TROPOMI SIF data and MODIS MAIAC PRI data, which we complemented with sub-daily LST measurements from MSG SEVIRI. We also collocated datacubes of Sentinel-2 data to quantify the spatio-temporal heterogeneity within the large TROPOMI and MSG footprints. Finally, we also derived a series of senSCOPE simulations enabling us to place all variables in a synthetic environment to test the strength of the SIF-PRI relationship under stress conditions. By combining together the ground measurements, the satellite measurements, and the simulations, we are able to provide a first glimpse of how well the SIF-PRI relationship can be applied in practice over a variety of  ecosystems.

How to cite: Duveiller, G., Hammerle, A., Hänchen, L., Martini, D., Migliavacca, M., Scholz, K., Sakowska, K., Pabon-Moreno, D., Pacheco-Labrador, J., and Wohlfahrt, G.: Exploring the feasibility of early stress detection with sun-induced chlorophyll fluorescence from tower to satellite , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12555, https://doi.org/10.5194/egusphere-egu24-12555, 2024.

EGU24-14323 | Posters on site | BG9.1

Using satellite images to monitor the spatiotemporal distribution and irrigation dynamic of paddy fields 

Yi-Ting Zhang, Feng-Wei Liu, and Chien-Hui Syu

Rice is the staple crop with the largest cultivation area and water demand in Taiwan. An accurate and rapid understanding of rice planting time, area, and growth period is beneficial for overall planning and improving the efficiency of agricultural water resource management. Remote sensing provides information such as high coverage, real-time, multispectral images, and multi-angle images. Various agricultural monitoring technologies have been developed for crop planting areas, yield estimation, and pest warnings. However, Taiwan, located in the tropical/subtropical region, faces challenges in obtaining high-quality optical satellite images due to rainfall and cloud cover. This leads to reduced accuracy in interpreting planting time and area. Therefore, the purpose of this study is to monitor the spatiotemporal distribution of paddy fields and irrigation dynamics using optical and radar satellite images. The study area is in western Taiwan, where the first rice planting period extends from January to March, with harvesting taking place from May to July, covering an area of approximately 90,000 to 120,000 hectares. Optical (Sentinel-2) and radar (Sentinel-1) image signals, along with the Maximum Likelihood method (supervised classification), were used to interpret the irrigation and rice planting distribution during the early stages of the first rice crop from 2021 to 2023. Finally, the rice planting area in the test area from January to March was calculated based on the irrigation distribution results, and the performance of the rice distribution area interpretation was evaluated. The results indicated that the average Kappa value for paddy field area interpretation was 0.92. The percentage of rice planting from January to March was 48±13%, 32±4%, and 29±14%, respectively. The monitoring process established in this study for rice irrigation and distribution areas contributes to government planning and decision-making regarding overall agricultural water allocation.

How to cite: Zhang, Y.-T., Liu, F.-W., and Syu, C.-H.: Using satellite images to monitor the spatiotemporal distribution and irrigation dynamic of paddy fields, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14323, https://doi.org/10.5194/egusphere-egu24-14323, 2024.

EGU24-15193 | ECS | Orals | BG9.1

Improving ASCAT slope estimation methods for representing vegetation water dynamics 

Paco Frantzen, Susan Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Raphael Quast, and Wolfgang Wagner

Vegetation is a key part of the water and carbon cycle and the interaction between Earth's surface and atmosphere. Understanding water dynamics within vegetation is crucial for improving models that represent vegetation processes. Previous studies have investigated exploiting ASCAT scatterometer data from the METOP satellites to evaluate dynamics in vegetation water content. ASCAT has been operational since 2007 and captures microwave backscatter from multiple angles, revealing the relation between backscatter and the incidence angle. This relation reflects the relative contributions of volume and surface scattering—the former affected by water on and within vegetation, and the latter influenced by water in the top soil layer. Currently, a weighted regression using ASCAT observations from 42 days is used to estimate the parameters representing this relation: the slope and curvature, or the first and second order derivative of a second order Taylor approximation, respectively. This estimation method is implemented in the Soil Water Retrieval Retrieval Package developed by TU Wien.  Adverse artefacts of this estimation method are the aggregation of observations corresponding to varying states of the earth surface, e.g. before and after a forest fire. Here, we present results from a study to improve the estimation method for ASCAT's slope and curvature parameters, tailored to quantification of vegetation processes. Goals include: representing parameters at briefer temporal scales, reducing the impact of interception, and restricting temporal aggregation around instantaneous events of change such as storms. In addition to analysing real ASCAT observations, synthetic ASCAT observations are simulated using a radiative transfer model, enabling a thorough comparison of estimated slope against simulated ground truth values. Preliminary results show that simulated ASCAT slope time series represent the dynamics of real ASCAT slope, indicating that synthetic observations can be used to quantify improvement of the slope estimation method.

How to cite: Frantzen, P., Steele-Dunne, S., Vreugdenhil, M., Hahn, S., Quast, R., and Wagner, W.: Improving ASCAT slope estimation methods for representing vegetation water dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15193, https://doi.org/10.5194/egusphere-egu24-15193, 2024.

EGU24-15267 | Orals | BG9.1

Remote sensing data assimilation for in-season wheat yield predictions 

Maria Quade, Ahmed Attia, Sebastian Preidl, Roland Baatz, Peter Borrmann, and Til Feike

In-season information on expected crop yields is important for farmers' crop management and business planning, as well as for the entire agricultural and food sector. In addition, timely information on possible extreme yield losses in specific production regions allows early decisions in European agricultural policy, e.g. on possible aid payments to producers. Yield losses are mainly caused by adverse and extreme weather conditions such as heat, drought, late frost, heavy rainfall and floods as well as by pests and diseases. Such events are difficult to predict and their actual impact on yields depends on a variety of factors. With ongoing climate change, such adverse conditions and the risk of yield losses are likely to increase (Lüttger and Feike, 2018).

Process-based crop simulation models (CSM) simulate crop growth, development and yield formation, taking into account local soil and weather conditions and potential abiotic stress. For local applications, where actual growth conditions and crop management (e.g., sowing date, cultivar, fertilisation) are known, CSM can be utilized during the season to provide insights into expected crop yields. However, for large-scale applications these information are mostly unknown, which hampers site-specific yield predictions on regional or even national scale. Furthermore, the accuracy of site-specific weather and soil data is limited and actual growing conditions may differ from those assumed in a CSM-based assessment based on such data from national databases.

Point-specific current data on actual crop status derived from remote-sensing can be used to fill those data-gaps and inaccuracies (Guo et al., 2018). Utilizing the newly available high-resolution hyperspectral data from the Environmental Mapping and Analysis Program (EnMAP), a radiation-transfer-model is used to derive pixel-specific state variables of LAI. The actual LAI values are then integrated into a CSM for in-season crop yield predictions on pixel-level. As remote sensing derived crop status data will only be available in the second half of the project phase, we will first use existing observation data from field experiments to mimic the remote sensing data and establish two common data assimilation routines (ensemble Kalman and particle filter) and respective processing pipelines in an ex-post modeling study. After evaluation of the most promising data assimilation technique, the approach will be extended to develop a German-wide winter wheat yield forecast for the current season by using climate forecast data from the DWD. The approach can later be extended to other crops and crop state variables.

How to cite: Quade, M., Attia, A., Preidl, S., Baatz, R., Borrmann, P., and Feike, T.: Remote sensing data assimilation for in-season wheat yield predictions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15267, https://doi.org/10.5194/egusphere-egu24-15267, 2024.

EGU24-15479 | ECS | Posters on site | BG9.1

Vegetation canopy water estimation from optical satellite observations 

Hongliang Ma, Marie Weiss, Daria Malik, Beatrice Berthelot, Marta Yebra, Arnaud Mialon, Jiangyuan Zeng, Rachael Nolan, Torbern Tagesson, and Frederic Baret

Vegetation canopy water (VCW) plays one connecting role in the coupling of terrestrial carbon-water cycles, and together with soil moisture, identifying the main changes of the terrestrial ecosystem. With regard to the remote sensing technologies, microwave-based VOD (vegetation optical depth) has been widely used as the VCW proxy. The feature of coarse resolution especially for microwave passive as well as mixing of vegetation water and biomass together would limit its more precise application. In spite of some efforts for the hyperspectral thermal and Global Navigation Satellite Systems (GNSS) limited in regional areas, as well as optical indices and initial efforts for AVHRR and SNAP from optical remote sensing, there are still no global operational and mature VCW product in the science community.

To bridge the research gap, this study proposed the unified VCW retrieval algorithm for optical satellites, by improving the methodology developed with some first attempts (e.g., machine learning trained on PROSAIL radiative transfer model simulations). The improvements were implemented by comprehensively parametrizing the VCW related variables (i.e., leaf traits and soil background) in PROSAIL model, based on the largest open integrated global plants (TRY) and soil spectral (OSSL) databases, respectively. In PROSAIL, VCW is expressed as the product of green/leaf area per horizontal ground area (LAI, cm2/cm2) and leaf water content per green area (Cw, g/cm2). In the proposed algorithm, we bridge the quantitative relationship between VCW (LAI *Cw) and simulated TOC reflectance using the machine learning model.

The algorithm was assessed for Landsat8 and Sentinel-2, using the ground measurements distributed over diverse climate and biome types worldwide. The results indicate that the developed VCW exhibits satisfactory performance, with R of 0.731 and unbiased RMSE (ubRMSE) of 0.055 g/cm2. Moreover, the proposed VCW achieves reasonable spatial patterns and seasonal changes over diverse vegetation types. The developed VCW product in this study is expected to provide new insights for monitoring global or regional vegetation water variations from optical satellites. With the strength of high spatial resolution compared to the microwave ones in the remote sensing community, the developed VCW would further facilitate the better hydro-ecological applications, especially for the terrestrial carbon-water couplings through vegetation, drought monitoring etc.

How to cite: Ma, H., Weiss, M., Malik, D., Berthelot, B., Yebra, M., Mialon, A., Zeng, J., Nolan, R., Tagesson, T., and Baret, F.: Vegetation canopy water estimation from optical satellite observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15479, https://doi.org/10.5194/egusphere-egu24-15479, 2024.

EGU24-15492 | Posters virtual | BG9.1

Hydrocarbon Microseepage Detection Using Image Analysis Approach for North East Region India 

Nitesh Kumar, Adnan Ahmad, Arnab Kumar Pal, and Archana M Nair

The vertical movement of hydrocarbons such as oil and gas that traverse through fractures and faults zones in rocks and weak planes between geological layers from the Earth’s subsurface to the surface form seepage at the surface, known as microseepage. Hydrocarbon microseepage is a key indicator to detect potential oil and gas reservoirs regions. Hydrocarbon microseepage leads to alterations in geobotanic characteristics and mineral composition resulting change in the concentration of ferrous iron, clay, and carbonate minerals. These mineral alterations are indicative of potential hydrocarbon microseepage locations, suggesting the presence of underlying oil and gas reservoirs. The altered regions exhibit distinctive reflectance spectral characteristics that can be identified through remote sensing imagery. This study is focused on detecting the hydrocarbon microseepage using image analysis in North Eastern regions of India. Sentinel-2 imagery was used to identify surface features associated with microseepage. A fuzzy set-based approach was employed to integrate the outcomes of band indices to determine geobotanic anomalies and mineral alteration.  Each selected band indices were treated as fuzzy sets, with defined membership functions. The membership degree of each pixel, reflecting the likelihood of specific altered minerals, was then calculated. The study demonstrates that areas with healthy vegetation exhibit higher pixel values, while regions experiencing stress due to microseepage display lower pixel values. By comparing the hydrocarbon exploration map (Source - VEDAS GIS ISRO) with the vegetation stress map, it was found that the several places in study area with high stress values, falls under the hydrocarbon prospect area. This analysis allows for the identification and mapping of potential petroleum prospect regions and zones where vegetation is under stress. By observing the variations in pixel values, we can effectively delineate areas with healthy vegetation and those affected by the impact of hydrocarbon microseepage, providing valuable insights into the characterisation of petroleum prospects and stressed vegetation zones within the study area. The analysis can be further improved by incorporating high resolution images followed by ground truthing.

How to cite: Kumar, N., Ahmad, A., Pal, A. K., and Nair, A. M.: Hydrocarbon Microseepage Detection Using Image Analysis Approach for North East Region India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15492, https://doi.org/10.5194/egusphere-egu24-15492, 2024.

EGU24-17362 | Orals | BG9.1

SLAINTE: A sub-daily (In)SAR mission idea to study vegetation water, health and carbon 

Susan Steele-Dunne, Ana Bastos, Wouter Dorigo, Christian Massari, David Milodowski, Diego Miralles, Luca Ciabatta, Domenico de Santis, Emma Tronquo, Luca Zappa, Marc Rodriguez Cassola, Stef Lhermitte, Jalal Matar, Albert Monteith, Christopher Taylor, Stefano Tebaldini, Lars Ulander, and Francesco de Zan

Changes in sub-daily vegetation water content capture the pulse of the Earth's ecosystems. They reflect the interplay between plant function, evaporation, and soil moisture, and underpin land-atmosphere exchange of water and carbon from leaf to global scales. Current and planned microwave missions provide a snapshot every few days. These are adequate to observe inter- and intra-annual variations of above ground biomass (AGB), the slow response in water status over weeks and months, and to map (a-posteriori) biomass loss due to deforestation or mortality. However, they are not sufficient to capture the sub-daily, or even daily, dynamics needed to study ecosystem health.

The SLAINTE (Irish for health) mission aims to fill this critical observation gap at sub-daily scales enabling us to “zoom in” on the fast dynamics associated with water status. Sub-daily observations of VWC are needed to study the vegetation response to the daily cycle in vapour pressure deficit (VPD), the impact of stomatal regulation, and the rate at which vegetation is able to recharge VWC lost during the day. They reveal how ecosystems respond to biotic and abiotic stress (e.g. changing temperature and vapour pressure deficit, soil moisture, insects, disease) and disturbances (e.g. drought, fire). Observing these processes is critical to understand the resilience of terrestrial ecosystems and their water resources in the face of increasing climate variability and extremes, and pressures from human land and water use. The availability of sub-daily SAR data would also fill a critical gap in Earth system knowledge where observations of rapid changes in SSM are essential. For example, they would allow us to observe short-lived wetting/drydown events associated with irrigation, triggering and evolution of flash floods and shallow landslides and the development of hazardous storms.

SLAINTE comprises a small constellation of monostatic L-band Synthetic Aperture Radars (SAR) that will provide sub-daily, ≤1 km scale observations related to ecosystem water status. It has been developed as one of ESA’s New Earth Observation Mission Ideas and was recently submitted in response to ESA’s call for the 12th Earth Explorer. Here, we will provide an overview of the SLAINTE mission idea, our ambitions, and an overview of preliminary science studies. We hope to stimulate discussion with the wider EGU community on how the provision of routine, sub-daily (In)SAR observations could be exploited to address the scientific challenges across the geosciences.

How to cite: Steele-Dunne, S., Bastos, A., Dorigo, W., Massari, C., Milodowski, D., Miralles, D., Ciabatta, L., de Santis, D., Tronquo, E., Zappa, L., Rodriguez Cassola, M., Lhermitte, S., Matar, J., Monteith, A., Taylor, C., Tebaldini, S., Ulander, L., and de Zan, F.: SLAINTE: A sub-daily (In)SAR mission idea to study vegetation water, health and carbon, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17362, https://doi.org/10.5194/egusphere-egu24-17362, 2024.

EGU24-17706 | Posters virtual | BG9.1

NDVI trends observed over 30 years for different land cover types and biogeographical regions in Europe based on the novel TIMELINE NDVI product 

Christina Eisfelder, Sarah Asam, Andreas Hirner, Philipp Reiners, Martin Bachmann, and Stefanie Holzwarth

Remote sensing allows for spatially and timely continuous monitoring of the Earth’s surface. The analysis of remote sensing time-series can help to understand ongoing environmental changes. Especially the monitoring of past and current vegetation status and phenology may allow to identify possible long-term patterns and trends, which might be related to climate change. The availability of multi-decadal remote sensing time-series, such as from the Advanced Very High Resolution Radiometer (AVHRR), can be used to analyze long-term vegetation change over large areas. In the TIMELINE project (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long-Term Dynamics In our Natural Environment) of the German Remote Sensing Data Center (DFD) at the German Aerospace Center (DLR), a time-series of daily, 10-day, and monthly NDVI composites based on AVHRR data at 1 km resolution covering Europe and northern Africa has been generated. In this study, we used the TIMELINE monthly NDVI composites from the 30-year period 1989-2018 to derive long-term vegetation trends using Mann-Kendall trend test and Theil-Sen slope estimator. We analyzed annual and seasonal trends for spring, summer, and autumn for different land cover classes within the individual biogeographical regions in Europe. Our results show different NDVI trends for individual regions and land cover classes in Europe. The novel TIMELINE NDVI product allows to analyze European-wide trends at a spatial resolution of 1 km. The results of this study can thus assist to further understand vegetation dynamics and possible impacts of climate change on different land cover classes and within different regions in Europe.

How to cite: Eisfelder, C., Asam, S., Hirner, A., Reiners, P., Bachmann, M., and Holzwarth, S.: NDVI trends observed over 30 years for different land cover types and biogeographical regions in Europe based on the novel TIMELINE NDVI product, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17706, https://doi.org/10.5194/egusphere-egu24-17706, 2024.

Mangroves play a crucial role in the global carbon cycle as potential sinks of atmospheric carbon. It has been estimated that the average yearly rate of carbon sequestration by mangrove ecosystems is about two to four times higher than global rates observed in mature tropical forests, thereby making them one of the largest oceanic carbon pools. This importance in the global carbon cycle makes it critical to understand the finer dynamics of mangrove forests starting with detecting and mapping the species of mangrove present in the region.

The mangroves in Senegal are distinctively positioned as one of the few global regions showcasing an upward trend in resilience to climate change, emphasizing their ability to adapt positively to environmental challenges. Numerous studies have confirmed and measured the decade-by-decade growth of mangroves in the Saloum delta through the analysis of remote sensing data. In order to precisely estimate the carbon aggregates, recent research endeavors are focussed on mapping the various mangrove varieties in the region through the examination of multispectral data. This exploration has identified three distinct varieties of mangroves  - Rhizophora racemosa, Rhizophore mangle and Avicennia germinans. The current study seeks to employ Pixxel Hyperspectral data to assess its effectiveness in mangrove zonation and to compare the results with Landsat dataset. Additionally, this study explores the significance of specific wavelength bands in the mapping of mangrove species.

Pixxel is a space technology company building several constellations of the world’s highest resolution hyperspectral earth-imaging satellites. Hyperspectral imagery (HSI) was captured with one of Pixxel’s Technology Demonstration satellites (TD-1) over Saloum delta in Senegal on 09 November 2022, with a spatial resolution of 30 m. The image was processed to Level-2A, surface reflectance data, through Pixxel’s image processing pipeline for atmospheric and geometric correction. A Random Forest algorithm was applied to the surface reflectance data to detect the three species of mangroves present in the delta region. An accuracy of 96.51% was attained with the imagery from TD-1 and 88.55% was achieved using the Landsat-8 dataset having the same spatial resolution for the same region. The identification of the three dominant species of mangroves in the region is consistent with the findings from Lombard et al., 2023. The most significant wavelength bands in distinguishing the different species fell within the Green and  Near-Infrared (NIR) range, with the latter accounting to a larger chunk. The higher classification accuracy from hyperspectral imagery is due to the fact that the large number of narrow spectral bands can distinguish the spectral fingerprints of different species within the mangrove forest. This work has potential to extend beyond classification and extract additional characteristics of mangroves by leveraging the greater spectral information of Hyperspectral Imagery and thus helping us to see the unseen intricacies hidden within the spectra.

How to cite: Sivaraj, P., Yeggina, S., Jalluri, C., and Wright, L.: Mapping Mangrove Zonation in the Saloum Delta in Senegal: Leveraging Pixxel's Hyperspectral Imagery and Assessing Performance against Landsat datasets, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17883, https://doi.org/10.5194/egusphere-egu24-17883, 2024.

EGU24-18196 | ECS | Orals | BG9.1

Forest traits from PRISMA spaceborne imagery 

Giulia Tagliabue, Cinzia Panigada, Beatrice Savinelli, Luigi Vignali, Luca Gallia, Rodolfo Gentili, Roberto Colombo, and Micol Rossini

Forest ecosystems, spanning approximately one-third of the Earth's landmass, play a crucial role in providing essential ecosystem services. However, their extension and condition are under threat due to the impacts of climate change. While remote sensing holds the potential to assess the condition and functionality of global forests, challenges in methodology and technology hinder the accurate quantitative estimation of forest traits from spaceborne observations. The emergence of new-generation satellites and advanced retrieval techniques offers the prospect of overcoming these obstacles, yet the potential of both the data and models requires further evaluation. In this contribution, we focused on retrieving forest traits from PRISMA hyperspectral spaceborne imagery employing machine learning regression models as well as hybrid approaches. The area we selected for this study is the Ticino Park, a mid-latitude forest located in northern Italy along the Po river. We conducted an intensive field campaign in the park in the summer of 2022 in conjunction with four PRISMA overpasses to collect trait samples for the calibration and validation of the retrieval schemes. The results obtained highlighted the capability of PRISMA images and retrieval models to precisely quantify Leaf Area Index (LAI) (R2=0.91, nRMSE=8.3%), Leaf Water Content (LWC) (R2=0.97, nRMSE=4.7%) and Leaf Mass per Area (LMA) (R2=0.95, nRMSE=5.6%) in forest ecosystems. Less performing but still promising results were obtained for Leaf Chlorophyll Content (LCC) (R2=0.44, nRMSE=18.3%) and Leaf Nitrogen Content (LNC) (R2=0.63, nRMSE=14.2%). The comparison of the trait values in June and early September revealed a significant decline in both leaf biochemistry and LAI, which can be traced back to the stress induced in the Ticino Park by the severe drought that hit Europe in the summer of 2022. This underscores the valuable role of hyperspectral spaceborne imagery and new generation models for monitoring forest conditions.

How to cite: Tagliabue, G., Panigada, C., Savinelli, B., Vignali, L., Gallia, L., Gentili, R., Colombo, R., and Rossini, M.: Forest traits from PRISMA spaceborne imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18196, https://doi.org/10.5194/egusphere-egu24-18196, 2024.

EGU24-21437 | Orals | BG9.1

Multi-decadal harmonized records of globally gridded spaceborne fluorescence constrain estimates of terrestrial photosynthetic uptake 

Paul Levine, Nicholas C. Parazoo, A. Anthony Bloom, Vineet Yadav, Nima Madani, Joanna Joiner, Yasuko Yoshida, Jiaming Wen, and Ying Sun

Solar-induced fluorescence (SIF) is an important indicator of terrestrial photosynthesis and an increasingly targeted observable in spaceborne remote sensing. Here, we present results from efforts to harmonize data across multiple sensors in order to create long-term records that are suitable for multi-decadal analyses. Nevertheless, discontinuities in harmonized records and non-linearities in the relationship between SIF and gross primary production (GPP) demand the use of model enhanced approaches to bridge the gap between observed SIF and inferred GPP. Bayesian model-data fusion (MDF) provides an increasingly established and effective tool to reconcile different satellite datasets and systematically retrieve otherwise unobserved quantities (i.e., not directly measured by spaceborne sensors) such as biomass, leaf area, and GPP, and more accurately estimate interactions between carbon pools and changing climate.

Here, we apply the CARbon DAta–MOdel fraMework (CARDAMOM) MDF system to (i) optimize the parameters and initial states of a terrestrial ecosystem model against global harmonized SIF datasets and ancillary vegetation products to constrain terrestrial photosynthesis and generate reanalyses of GPP, (ii) propagate uncertainty from SIF observations into the GPP reanalyses, and (iii) diagnose these reanalyses to examine the current and evolving state of photosynthesis with climate. Using two SIF products derived from OCO-2 and GOME-2/SCIAMACHY, respectively, we have produced two twenty-year reanalyses of global GPP at a monthly, 0.5-degree resolution. The variability of GPP in these products is well constrained by their respective SIF observations, and reproduces a significant fraction of the observed spatial and interannual variability from globally distributed flux towers. Our results provide a basis for further investigation of photosynthetic carbon uptake as a data product available for the research community.

How to cite: Levine, P., Parazoo, N. C., Bloom, A. A., Yadav, V., Madani, N., Joiner, J., Yoshida, Y., Wen, J., and Sun, Y.: Multi-decadal harmonized records of globally gridded spaceborne fluorescence constrain estimates of terrestrial photosynthetic uptake, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21437, https://doi.org/10.5194/egusphere-egu24-21437, 2024.

The total quantity of carbon fixed by photosynthesis per unit time in an ecosystem is referred to as gross primary productivity (GPP). This is an important activity in the Earth’s carbon cycle. In near-equilibrium conditions, GPP is calculated as the sum of net carbon exchange during the day plus ecosystem respiration. In our study, we compared the GPP from satellite-based model estimates with the actual GPP calculated by the eddy covariance method available from the FLUXNET database in Borneo, Southeast Asia. We found that the GPP models were unable to capture the actual daily fluctuations of GPP in tropical vegetation in Borneo, although there were moderate correlations when comparing GPP from two different remote sensing models (e.g. the GPP derived from the Vegetation Photosynthesis Model (VPM) has a moderate correlation with GPP products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua for Maludam tropical peat swamp forest vegetation). Parameterization was required to improve the GPP models, which included reanalyzing each model parameter. These parameter include LUI (light use efficiency), which is a challenging model parameter to measure but is critical in determining GPP, and cloud cover on MODIS satellite data, which determines the quality of remote sensing indices such as LSWI (land surface water index), due to the importance of this index as a proxy for Wscalar to estimate VPM GPP.

How to cite: Ginting, Y. R. S. and Esters, L.: How accurately does gross primary productivity derived from remote sensing-based models represent the products from field measurements? Case studies of tropical vegetation in Borneo, Southeast Asia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-405, https://doi.org/10.5194/egusphere-egu24-405, 2024.

EGU24-1029 | ECS | Orals | BG9.2

Consolidated Sentinel-1 SAR-based index provides robust annual forest loss assessment in tropical forests with semi-permanent cloud cover  

Baptiste Delhez, Julien Radoux, François Toussaint, Thibauld Collet, and Pierre Defourny

Tropical moist forests are one of the richest ecosystems on earth and provide multiple ecosystem services, but are also supporting many human activities and thus undergo continuous threats from logging, fire, shifting cultivation, road development or urban expansion. From this perspective, continuous monitoring and mapping those ecosystems keeps emphasize the importance of their preservation for the 21st century.

Satellite remote sensing has proven to be essential to assess the deforestation in wide and remote areas at regional scale. Nevertheless, annual-based assessments using optical images tend to show inconsistency in tropical regions where the semi-persistent cloud coverage prevents steady periodic cloud-free acquisitions. The 8-year-old+ C-band SAR archive from Sentinel-1 provides now robust material to produce consistent yearly-based forest loss assessment.

Previous studies showed that a sudden decrease of the backscattered signal in an intact tropical forest canopy indicates a forest loss. However, SAR-based forest loss detection is sensitive to commission errors due to the speckle, showing their limitations as the thresholding of significant land cover change may include stable targets. Moreover, recent near-real-time detection systems focus on mapping forest loss alerts from a temporal early-warning perspective but are less reliable in providing accurate quantification of the degraded surfaces.

In this study, we introduce an annual index called MinB-Q10, computed pixel-based with a statistical probabilistic approach that combines VV and VH features. The result is represented as a chi-squared distribution based on Euclidean distance. The index is designed to highlight statistical deviation from stable forest distribution. The study has been developed in Democratic Republic of the Congo. It was calibrated in study area surrounding Yangambi (2.000 km²) and validated in a disconnected study area located around Kisangani (12.000 km²). The probabilistic approach and statistical considerations are developed to design an early-warning system as a second step, where the annual index would consolidate spatial assessment.

The preliminary results indicate a marked reduction of the commission errors compared with standard thresholding methods. Object-based accuracy assessment from optical independent imagery (in progress) enables to identify and distinguish the proportion of lost surface from the geometric accuracy of the detections. Moreover, combining pixel-counting with statistical estimates of the false detection rate generates unbiased prediction of the regional forest loss.

How to cite: Delhez, B., Radoux, J., Toussaint, F., Collet, T., and Defourny, P.: Consolidated Sentinel-1 SAR-based index provides robust annual forest loss assessment in tropical forests with semi-permanent cloud cover , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1029, https://doi.org/10.5194/egusphere-egu24-1029, 2024.

EGU24-1633 | ECS | Orals | BG9.2

How Tree Movement Influences Tree Metrics Derived from Laser Scanning Point Clouds 

Hannah Weiser, Alberto M. Esmorís Pena, and Bernhard Höfle

By simulating laser scanning of dynamic tree scenes, we investigate how tree movement during point cloud acquisition affects the accuracy of a range of tree metrics.

Terrestrial laser scanning (TLS) has proven to be an effective surveying method for forestry and ecology, producing highly detailed 3D point clouds of trees. From these point clouds, a variety of metrics can be derived, such as tree and crown dimensions, stem diameter and taper, foliage parameters, and woody volume. In this way, TLS supports traditional forest inventory and monitoring, and provides valuable in-situ data for the calibration of remote sensing approaches.

Typically, TLS point clouds are acquired from multiple scan positions to increase coverage and minimise occlusion. Scans from these positions are then co-registered and merged into a single point cloud. If wind is blowing during data acquisition and branches and leaves are moving, the merged point clouds may show multiple or blurred representations of branches and leaves. This is likely to affect the quality of the tree information derived from the point clouds. Although this problem is well known, few studies have systematically investigated the effect of vegetation movement during the scanning process on the derived tree metrics.

The aim of this work is to quantify the errors induced by vegetation movement during TLS acquisition on a variety of metrics. We also investigate the extent to which point cloud filtering methods and the omission of 'problematic' scan positions can improve metric accuracies.

To enable a systematic and controlled investigation, we use virtual laser scanning (VLS) with the open-source laser scanning simulator HELIOS++ [1, 2]. We first generate synthetic 3D tree models using procedural modelling [3, 4]. These tree models are then animated in different scenarios by simulating different wind conditions. For each wind scenario, the trees are virtually scanned from multiple positions, each scan being performed at a randomly sampled frame of the animation. From the simulated multi-scan TLS point clouds, we estimate several point cloud metrics, both with and without prior point cloud filtering. We compare the metrics with metrics derived from the reference meshes or point clouds.

Performing such an analysis in a simulation environment has several major strengths: a) we can isolate the wind effects from other errors such as co-registration errors, b) we can define arbitrary custom wind scenarios and do not need to carry out real wind measurements, and c) reference data is available in the form of the input 3D tree models and base simulations without wind.

We demonstrate how VLS can be used to investigate wind effects, which are a common source of error and uncertainty in TLS of vegetation. This not only allows us to develop strategies to account for these effects, but also informs us of the importance of modelling these effects when using VLS in other contexts, such as algorithm development or machine learning.

REFERENCES

[1] HELIOS++: https://github.com/3dgeo-heidelberg/helios

[2] Winiwarter, L., et al. (2022): DOI: https://doi.org/10.1016/j.rse.2021.112772

[3] Sapling Tree Gen: https://docs.blender.org/manual/en/latest/addons/add_curve/sapling.html

[4] Weber, J. & Penn, J. (1995): DOI: https://doi.org/10.1145/218380.218427

How to cite: Weiser, H., Esmorís Pena, A. M., and Höfle, B.: How Tree Movement Influences Tree Metrics Derived from Laser Scanning Point Clouds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1633, https://doi.org/10.5194/egusphere-egu24-1633, 2024.

EGU24-2092 | ECS | Orals | BG9.2

Identifying direct deforestation drivers in Cameroon using deep learning and optical satellite data 

Amandine Debus, Emilie Beauchamp, and Emily R. Lines

Deforestation rates have been increasing in the Congo Basin in recent years, especially in Cameroon. To support actions to slow deforestation, Earth Observation (EO) has been used extensively to detect forest loss, but approaches to automatically identify specific drivers of deforestation in a level of detail that allows for intervention prioritisation have been rare. In this paper, we use deep learning to classify direct deforestation drivers in Cameroon and create a country-specific dataset for this task. We also compare the effectiveness of two types of freely available optical satellite imagery: Landsat-8 (pan-sharpened to a 15 m spatial resolution) and NCIFI PlanetScope (4.77 m spatial resolution). Our detailed classification strategy includes 15 direct deforestation drivers for forest loss events taking place between 2015 and 2020. We obtain an overall accuracy of 82% (F1-score: 0.82) with Landsat-8 data and an overall accuracy of 76% (F1-score: 0.76) for NICFI PlanetScope. Despite a coarser spatial resolution, Landsat-8 performs better than NICFI PlanetScope overall, including for small-scale drivers, although results vary by class. With Landsat-8, using only a single-image approach, we achieve an accuracy of at least 70% for all classes except for ‘Hunting’, ‘Oil palm plantation’, and ‘Fruit plantation’. These results show the potential of using this approach to monitor or analyse land-use changes leading to deforestation with more refined classes than before. In addition, our study demonstrates the potential of leveraging existing available datasets and straightforwardly adapting a generalised framework for other tropical locations with a relatively small amount of location-specific data.

How to cite: Debus, A., Beauchamp, E., and Lines, E. R.: Identifying direct deforestation drivers in Cameroon using deep learning and optical satellite data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2092, https://doi.org/10.5194/egusphere-egu24-2092, 2024.

EGU24-2456 | ECS | Orals | BG9.2

Benchmarking remote sensing-based forest recovery indicators for predicting long-term recovery success 

Lisa Mandl, Alba Viana-Soto, Ana Stritih, Rupert Seidl, and Cornelius Senf

Natural disturbances and post-disturbance recovery are principal drivers of forest ecosystem dynamics. While disturbances and their causes and consequences have received considerable attention from the scientific community in recent years, there is – however – a substantial lack of knowledge on post-disturbance recovery, despite its importance for forest resilience, carbon storage and developing effective conservation and management strategies. This is particularly pertinent in mountain landscapes, such as the Alps, where steep topography and frequent climate extremes could hamper natural tree regeneration but closed canopy forests are needed for protecting infrastructure from natural hazards. In our study, we aim to close this knowledge gap by the means of Earth Observation. Specifically, we mapped land cover fractions (treed vegetation, non-treed vegetation and bare soil) annually at 30 m spatial grain and over the period 1990-2021 across the Alps. To do so, we employed a temporally generalized regression-based spectral unmixing approach to dense time series of Landsat and Sentinel-2 data, including more than 73,000 individual scenes. From this dataset, we characterized post-disturbance recovery intervals, that is the time it takes to reach a similar canopy closure than pre-disturbance, across 1.76*106 disturbance patches, including both natural and human disturbances. Results show that disturbed sites close their canopy on average after 10.6 years, with 60% of the disturbances reaching closed canopy after 10 years. We then compared recovery intervals derived from spectral unmixing to existing recovery indicators based on simple vegetation indices (NDVI, NBR), showing that those recovery indicators underestimate post-disturbance canopy closure time by a factor of 1.5 – 2. Finally, we tested whether post-disturbance bare soil fractions and disturbance characteristics (i.e., pre-disturbance tree cover and relative severity) can be used to predict long-term recovery success.  Results show that long-term recovery success (defined as canopy closure at 10 years post-disturbance) could be predicted with > 80% accuracy. From our results we conclude that (i) recovery indicators based on spectral indices are not well suited to characterize post-disturbance recovery in complex landscapes such as mountain forests and (ii) that disturbance characteristics and post-disturbance bare soil fractions are largely sufficient to predict whether a pixel will recover in the future or not. Our approach thus overcomes a major limitation of past remote sensing-based recovery assessments, which required long time series (>10 years) to assess recovery and thus were limited in understanding changes in post-disturbance forest recovery over time.

How to cite: Mandl, L., Viana-Soto, A., Stritih, A., Seidl, R., and Senf, C.: Benchmarking remote sensing-based forest recovery indicators for predicting long-term recovery success, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2456, https://doi.org/10.5194/egusphere-egu24-2456, 2024.

EGU24-4548 | Orals | BG9.2

Estimation of coniferous shoot structures by high precision blue light 3D photogrammetry scanning 

Jan Pisek, Oleksandr Borysenko, and Andres Kuusk

Clumping describes the heterogeneity of forest structure - the spatial arrangement of foliage elements, such as leaves or needles, within a vegetation canopy. Clumping information is essential for assessing radiation transfer through canopies, photosynthesis, and hydrological processes. The challenge in conifer stands arises from the difficulty of measuring gaps between needles within a shoot using traditional optical instruments, or LiDAR. Previous methods for estimating needle-to-shoot-area ratio were often destructive and labor-intensive. In this study, we introduce a highly efficient technique—blue light 3D photogrammetry scanning—to comprehensively characterize the structure of conifer shoots and determine shoot-level clumping. This approach significantly reduces the labor intensity associated with previous methods. To validate our technique, we compared it to the established photographic/volume displacement method for quantifying shoot-level clumping. Here, we present 3D shoot models, shoot-level clumping values, and their seasonal variations for a wide range of European native conifer species.

The demonstrated effectiveness and performance of the blue light 3D photogrammetry scanning method offer the potential for more frequent and accurate measurements of 3D shoot structures. This advancement opens doors to further improvements in measuring and upscaling optical properties for coniferous canopies. In future research, the enhanced understanding of needle shoots, a fundamental yet often overlooked aspect of foliage clumping in canopies, will significantly improve 3D radiative transfer modeling for coniferous forests.

How to cite: Pisek, J., Borysenko, O., and Kuusk, A.: Estimation of coniferous shoot structures by high precision blue light 3D photogrammetry scanning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4548, https://doi.org/10.5194/egusphere-egu24-4548, 2024.

Forests covers 70% of Sweden, and there around 87 billion trees according to Swedish Forest Industries. Norway Spruce (Picea Abies), Scots Pine (Pinus silvestris), and Birch (Betula spp.) represent 92% of the standing timber volume. Developing an efficient country-wide monitoring protocol of this resource is essential for maintaining ecosystem services and economic viability, as well as land management and biodiversity conservation. This presentation shows preliminary results of dimensionality reduction and clustering techniques to detect thresholds of separation between spruce, pine and birch in terms of their spectral reflectance and radar backscatter. This work also evaluates the role of forest properties such as tree height and volume in influencing the spectral reflectance and radar backscatter observed by the satellite sensors. 

How to cite: Abdi, A. M.: Spectral reflectance and radar backscatter of dominant tree species in Swedish forests , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4744, https://doi.org/10.5194/egusphere-egu24-4744, 2024.

Forests are the most complex ecosystem on the planet and and play a crucial role in the exchange of mass and energy between the land surface and atmosphere. India's tropical region encompasses a diverse range of ecosystems, including deserts, mangroves, shrublands, deciduous, and evergreen forests, contributing to its ecological diversity. The varied canopy structural attributes of these vegetation types impact the exchange of carbon and water fluxes between the land surface and the atmosphere. We use high-resolution spaceborne data from the Global Ecosystem Dynamics Investigation (GEDI) to map the variability of vegetation canopy attributes at a synoptic scale. The total canopy height (RH100), foliage density (PAI) and foliage height diversity (FHD) demonstrated wide variability across the country and clearly differentiated the forested regions from the other land covers. The distribution of the canopy structural attributes in the forested regions and biomes also exhibited significant change across the years 2019-2021 with p-value < 0.05 (from the Kolmogorov–Smirnov test). Further, we fitted α and β (shape and scale) parameters of the Beta distribution function to the PAVD data from GEDI to compactly represent the spatial variation of the vertical variability of canopy. The high coefficient of determination (R2 = 0.80) between the fitted beta distribution function and GEDI-PAVD suggests an effective representation of canopy vertical variability. Based upon the fitted parameters α and β, k-means clustering was performed which resulted in six distinct canopy structure classes. Differing canopy structures led to significant variations in radiation regimes throughout the day. Our observations suggest that incorporating Beta distribution-fitted shape and scale parameters into multi-layer canopy models enhances the estimation of flux exchanges over terrestrial ecosystems by capturing vertical variations in canopy structure.

Keywords: GEDI, Canopy structure, Plant area volume density, Beta distribution function

How to cite: Satapathy, T. and Dutta, D.: Characterising the Vertical Canopy Structure of Vegetation and its Impact on Radiation Regimes using Spaceborne LiDAR, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5472, https://doi.org/10.5194/egusphere-egu24-5472, 2024.

Urban development in South America has undergone substantial growth and transformation in recent decades. The development of South American cities is intricately connected with its tree cover, and the presence of trees within urban areas plays a crucial role in shaping sustainable and resilient urban landscapes. Despite this, a comprehensive Urban Tree Canopy (UTC) dataset covering the entire South American continent is currently unavailable. In this study, we used high-resolution remote sensing images and a semi-supervised deep learning method to create UTC data for 888 South American cities. The proposed semi-supervised method can leverage both labeled and unlabeled data during training. By incorporating labeled data for guidance and utilizing unlabeled data to explore underlying patterns, the algorithm enhances model robustness and generalization for urban tree canopy detection across South America, with an average Kappa coefficient of 77.51% and an average overall accuracy of 95% for the tested cities. Based on the created UTC dataset, we conducted several pilot applications, including tree coverage estimation, driving factor exploration, tree-covered space provision assessment, and relationship analysis between UTC coverage and precipitation and urban heat islands. Evidence shows that 1) cities in South America have spatially heterogeneous UTC coverage and inequality in urban tree-covered space provision across South America; 2) natural factors (climatic and geographical) play a very important role in determining UTC coverage, followed by human activity factors; 3) precipitation and seasonal variations in rainfall have a strong impact on tree cover; and 4) tree coverage has the potential to mitigate the effects of urban heat islands. We expect that the created UTC dataset and the findings of this study will help formulate policies and strategies to promote sustainable urban forestry, thus further improving the quality of life of residents in South America.

How to cite: Guo, J. and Zhu, X.: UTCSA: A 0.5-meter resolution urban tree canopy dataset for 888 cities in South America and its pilot applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5477, https://doi.org/10.5194/egusphere-egu24-5477, 2024.

EGU24-5847 | ECS | Posters on site | BG9.2

Feature Selection for Lidar Point-Cloud Classification based on Overlapping Regions 

Max Hess, Bodo Bookhagen, and Aljoscha Rheinwalt

The global availability of dense point clouds provides the potential to better assess changes in our dynamic world, particularly environmental changes and natural hazards. A core step to make use of modern point clouds is to have a reliable classification and identify features of importance for a successful classification. Feature selection routines attempt to minimize the number of features by retaining as much information as possible about the classes. Our new approach attempts to achieve high classification results while being applicable to a wide variety of classifiers. 

We present an approach for classifier independent feature selection based on the overlap of features. The computative-extensive calculation of overlapping regions in multi-dimensional spaces is achieved by an optimized GPU-based Monte Carlo integration. This novel approach is compared against several feature selection routines and the selected features are tested with different classifiers. 

In our application experiments, we compare geometric, echo-based and full-waveform features of lidar point clouds to obtain the most useful sets of features for separating ground and vegetation points into their respective classes. Different scenarios of suburban and natural areas are studied to collect various insights for different classification tasks. In addition, we group features based on various attributes such as acquisition or computational cost and evaluate the benefits of these efforts in terms of a possible better classification result.

How to cite: Hess, M., Bookhagen, B., and Rheinwalt, A.: Feature Selection for Lidar Point-Cloud Classification based on Overlapping Regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5847, https://doi.org/10.5194/egusphere-egu24-5847, 2024.

Forests play a cruical role in global ecosystems, providing habitats for many species, having the potential for high biodiversity and offering substantial carbon storage. Characterizing and monitoring the structural properties of these ecosystems are essential for modeling various ecosystem services and designing management and conservation strategies.
Airborne Laser Scanning (ALS) allows us to acquire comprehensive 3D data due to its ability to penetrate the canopy and provide surface data as well as below-canopy information about vegetation structure. The emerging widespread accessibility of openly available wall-to-wall ALS datasets, in some cases even multi-temporal, increases the possibilities to thoroughly analyze forest structures. However, for large-scale applications, challenges arise from variations of data resolution and quality as a result of differences in sensors, point densities or acquisition dates or the sheer volume of data to process.
In this study, we present a unified, point-density-independent voxel-based approach to address these challenges of high-resolution wall-to-wall ALS data analysis in forest environments. Besides canopy height, we derive structural parameters like height quantiles, fractional cover, vertical complexity, understory height and number of vegetation layers to characterize the structural complexity of the forest landscape on different scales up to a level of detail of 1 m. These data are further combined and utilized for segmentation of structurally homogeneous forest areas.
The study site is the Vienna Woods Biosphere Reserve, located in the federal states of Lower Austria and Vienna (Austria), covering approximately 1056 km² of diverse forest landscape. This region encompasses diverse forest types (a.o. beech, oak-hornbeam, black pine), various topographical and geological conditions as well as different management types and levels of protection. To get full point cloud coverage of the area, it is necessary to combine point clouds from up to ten different scanning campaigns.
Initial test runs show promising results and demonstrate the possibilities of this approach to derive sound, area-wide structure metric and further characterize the forest based on structural varieties, provide easy-to-read maps for further deployment in operational use of stakeholders and show potential for structure-based segmentation of forested areas. These structure-based segments can serve as a base for habitat mapping, monitoring or management.

How to cite: Iglseder, A., Schimpl, L., and Hollaus, M.: From Point Clouds to Forest Complexity: Addressing Challenges of Structural Analysis of Forest Landscapes using Wall-To-Wall Airborne Laser Scanning Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6415, https://doi.org/10.5194/egusphere-egu24-6415, 2024.

EGU24-6773 | ECS | Orals | BG9.2

Estimating Gross Primary Production via Recurrent Neural Networks: A comparative analysis 

David Montero, Miguel D. Mahecha, Francesco Martinuzzi, César Aybar, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Jesús Anaya, and Sebastian Wieneke

Quantifying Gross Primary Production (GPP) is fundamental for understanding terrestrial carbon dynamics, particularly in forests. The overarching question we address here is whether integrating remote sensing (RS) with deep learning (DL) methodologies can enhance the estimation of daily forest GPP on a European scale.

The Eddy Covariance (EC) method, although widely used to infer ecosystem-scale estimates of GPP from in situ CO2 exchange measurements, suffers from limited global coverage. When EC data are not available, RS data are often employed to estimate GPP by establishing statistical relationships with in situ observations. Recently, Machine Learning (ML) strategies, particularly involving RS and meteorological inputs, have been used for estimating GPP continuously in space and time.

However, the potential of DL techniques, particularly those exploiting the sequential characteristics of time series data (i.e. recurrent neural network architectures) in estimating daily forest GPP has not been comprehensively explored. This includes their performance during photosynthetic downregulation (e.g. during climate extremes such as droughts) and an in-depth examination of the importance of the utilised features.

This study presents a comparative analysis of three recurrent neural network architectures—Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), and Long-Short Term Memory (LSTMs)—for daily forest GPP estimation across ICOS ecosystem stations. We assess their performance throughout the entire year, during the growing season, and under photosynthetic downregulation events. This assessment utilises RS inputs —optical data from Sentinel-2, Land Surface Temperature (LST) from MODIS, and radar data from Sentinel-1—, combined with potential radiation data. Furthermore, we analysed the importance of these features to provide insights into the complex interactions and dependencies when estimating GPP.

Our results indicate that all three architectures yield similar accuracy for full period and growing season GPP estimations, with mean NRMSE values of 0.136 and 0.170, respectively. All models exhibit increased errors while estimating GPP during photosynthetic downregulation events and their performance varies notably, with LSTMs showing the best results (NRMSE=0.202), followed by RNNs (NRMSE=0.214), and GRUs exhibiting the least efficacy (NRMSE=0.276). Additionally, our study underscores the importance of potential radiation as a critical feature influencing the GPP response, with LST data proving particularly valuable when estimating GPP during photosynthetic downregulation events, more so than optical or radar data.

These findings suggest that recurrent neural network architectures, especially LSTMs, are effective in daily GPP estimations, with slight performance decreases during climate extreme conditions. The study also reveals the efficacy of combining RS data with potential radiation for accurate forest GPP estimation, with LST data being especially crucial when estimating GPP during photosynthetic downregulation events.

Our research paves the way for further exploration into recurrent models and innovative architectures, with an emphasis on overcoming the challenges in modelling climate-induced GPP extremes.

How to cite: Montero, D., Mahecha, M. D., Martinuzzi, F., Aybar, C., Klosterhalfen, A., Knohl, A., Koebsch, F., Anaya, J., and Wieneke, S.: Estimating Gross Primary Production via Recurrent Neural Networks: A comparative analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6773, https://doi.org/10.5194/egusphere-egu24-6773, 2024.

EGU24-9004 | ECS | Posters on site | BG9.2

An alternative low-cost mobile LiDAR methodology for quantification of urban tree metrics 

Raoul Blackman, Jill Edmondson, Danielle Densley-Tingley, and Holly Croft

Urban trees provide a range of important ecosystem service benefits to society, including carbon storage and sequestration, flood mitigation and improving mental well-being. The delivery of these ecosystem services is largely dependent on the trees’ structural and functional traits. Manual surveys and allometric equations are commonly used to derive tree structural metrics (e.g., tree height, above-ground biomass); however, this approach is time-consuming and based on unsuitable allometric equations derived from rural trees, which will lead to uncertainty.

This study uses a low-cost mobile LiDAR sensor (MLS) system to quantify key structural metrics of urban trees. Using a Velodyne VLP-16 LiDAR scanner and a low-cost GPS unit, 197 transects, totalling 20 miles, were completed in park and street environments in Sheffield, UK. The data was processed using Simultaneous Localization and Mapping (SLAM) algorithms. Tree height and diameter at breast height (DBH) values were extracted utilising rlas (v1.6.2) and conicfit (v1.04) R packages. Quantitative volume metrics were extracted using quantitative structure models (QSM). A total of 80 urban trees and 32 species totalling 430 DBH, height and volume measurements were extracted from the MLS data.

MLS-derived results presented very strong agreement with manual field measurements (R2 = 0.93, p < 0.001 and R2 = 0.84, p < 0.001, for DBH and height, respectively). However, factors such as the slope of the terrain, occlusion and the distance from the tree contributed to varying levels of uncertainty in the results. Results using traditional allometric equations showed discrepancies with MLS-modelled above-ground biomass due to management controls on tree structure. Importantly, these findings point to the lack of transferability of rural allometry to urban trees and the importance of using techniques to repeatedly and accurately quantify the complete volumetric tree structure.

How to cite: Blackman, R., Edmondson, J., Densley-Tingley, D., and Croft, H.: An alternative low-cost mobile LiDAR methodology for quantification of urban tree metrics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9004, https://doi.org/10.5194/egusphere-egu24-9004, 2024.

EGU24-9834 | Orals | BG9.2

Efficient Extraction of Tree Parameters from 3D Point Clouds 

Bernhard Groiss and Markus Handl

In the realm of environmental monitoring and urban planning, the accurate assessment of tree parameters from 3D point clouds is essential for effective resource management and decision-making. This paper introduces a versatile and user-friendly approach designed to streamline the extraction of key tree parameters from 3D point clouds.

The related software employs advanced point cloud processing algorithms to identify and analyze individual trees within a point cloud dataset, acquired through terrestrial laser scanners (TLS), facilitating the extraction of crucial parameters such as tree height, crown diameter, and trunk diameter at breast height (DBH). Leveraging state-of-the-art computer vision techniques, this approach ensures high precision and efficiency in tree parameter extraction, even in complex and densely vegetated environments.

Key features include an intuitive graphical user interface, allowing users to interactively visualize and validate the extracted tree parameters. The ability to adjust the various tree extraction and segmentation settings at any time gives the user complete freedom to modify their analysis to their needs.

The results showcase the software's ability to accurately and efficiently extract tree parameters, making it a valuable tool for researchers, urban planners, and environmental professionals engaged in forestry management, green infrastructure planning, and ecological monitoring.

A reliable database and a procedure suitable for everyday use are enormously important to ensure highly accurate monitoring and to cope with the ever faster changing conditions and their effects on vegetation. Therefore an additional approach to use a terrestrial laser scanner in kinematic mode is presented, which allows the generation of a comprehensive point cloud in a short time.

Overall, the software LIS TreeAnalyzer, a plugin to RIEGL’s RiSCAN PRO, contributes to the advancement of 3D point cloud analysis by providing a robust solution for the extraction of tree parameters, ultimately supporting sustainable urban development and informed decision-making in the field of environmental science and resource management.

How to cite: Groiss, B. and Handl, M.: Efficient Extraction of Tree Parameters from 3D Point Clouds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9834, https://doi.org/10.5194/egusphere-egu24-9834, 2024.

Climate change disrupts ecosystems and increases extreme weather events. Modeling ecosystem functioning is crucial for effective adaptation strategies. This study focuses on quantifiable vegetation properties, including leaf area index (LAI), chlorophyll content (CHL), leaf mass per area (LMA), and equivalent water thickness (EWT). One of the most effective ways to retrieve plant biophysical and structural properties at a large scale is by using multispectral satellite images. However, accurately quantifying plant biophysical variables from such datasets presents several challenges, including understanding the influence of the vertical distribution of such traits within the canopy on the corresponding signal; the impact of sun-view geometry during image acquisition, the use of genotype-specific relationship or instead the use of genotype biophysical traits in the model. This study estimates biophysical variables from a large measurement dataset obtained on forest plantations in Sao Paulo, Brazil, and analyzes the effect of vertical heterogeneity, solar and viewing geometry, and associated biophysical properties.

The dataset comprises in-situ and remote sensing data. In-situ measurements of LAI, CHL, LMA, and EWT were collected from 2019 to 2021 on 25 eucalypt genotypes. Biomass measurements were conducted in 1323 trees, and CHL, LMA, and EWT were measured per vertical third of the canopy. To evaluate the influence of the vertical heterogeneity, we defined a weighted expression of the top and middle thirds of the canopy to average these biophysical variables and relate them to the remote sensing data, which includes Sentinel-2 images acquired from 2019 to 2021, at dates close to the field measurements.  First, 22 vegetation indices (VIs) were used to build regression models, each regressing the weighted target variable to a VI. After determining the optimal weight, we tested the accuracy of the linear models by accounting for sun-sensor geometry and vegetation traits. Both 10-fold cross-validation and an independent test dataset were used to assess model performance together with root mean square (RMSE) and coefficient of determination (R2).

Results show that most models using 70% top and 30% medium canopy produced the best performances in estimating CHL. For both LMA and EWT, the optimal percentage was 50%-50%. These outcomes indicate that shaded parts of the canopy play a significant role in the above-canopy reflectance, especially for LMA and EWT, which are particularly sensitive to spectral domains ranging from 1700 to 2400 nm, which has a higher transmittance rate towards the canopy. Concerning the inclusion of sun-sensor geometry, most models, generated with different VIs, benefitted from these variables to predict the target variable, resulting in lower RMSEs. The use of several canopy traits in the model reduced the error but would require to have previous knowledge of them. These empirical results underline the influence of sensor geometry and other biophysical properties on the prediction of LAI, CHL, EWT, and LMA. We believe that these results advocate for further investigation using radiative transfer model inversion.

How to cite: Barbosa Ferreira, V., le Maire, G., and Féret, J.-B.: Biophysical variables estimation from Sentinel 2 images: emphasizing the importance of vertical heterogeneity, solar and viewing geometry, and associated biophysical properties, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10167, https://doi.org/10.5194/egusphere-egu24-10167, 2024.

EGU24-10217 | ECS | Orals | BG9.2

Exploring the autumn phenology of European beech forests: a comparative analysis of ground-based and satellite observations 

Lorenzo Cesaretti, Carlotta Ferrara, Piermaria Corona, and Sofia Bajocco

Vegetation phenology is closely linked to the functioning of multiple aspects of forest ecosystems and is regulated by a complex interaction between climatic and environmental factors. In particular, the end of the growing season has proven to be very sensitive to extreme weather events, leading to alterations in the regular physiological behaviour of forests. Autumn phenology represents a little-explored season due to the highly variable response of forests to environmental factors. This work aims to investigate late-season dynamics by comparing ground-based and satellite observations in European beech forests. The objectives of this research are: (i) quantify the temporal discrepancy between phenology obtained from ground-based observations (PEP725 stations) and satellite-derived data (MODIS EVI time series); (ii) assess the influence of the main biophysical factors, i.e. latitude, elevation, total annual precipitation and mean annual temperature, on the mismatch. The results identified key end-of-season metrics, distinguishing different stages during the season that were affected differently by biophysical factors, such as temperature and precipitations. This study highlights the complexity of late-season phenology, emphasizing the crucial role of remotely sensed phenometric analysis compared to ground-based observations, revealing a fundamental contribution to understanding of late-season phenology in the context of climate change.

How to cite: Cesaretti, L., Ferrara, C., Corona, P., and Bajocco, S.: Exploring the autumn phenology of European beech forests: a comparative analysis of ground-based and satellite observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10217, https://doi.org/10.5194/egusphere-egu24-10217, 2024.

EGU24-10854 | ECS | Orals | BG9.2

A spectral-spatial-temporal attention network for tree species mapping using DESIS hyperspectral imagery 

Yang Mu, Muhammad Shahzad, and Xiao Xiang Zhu

Accurate mapping and monitoring of forest tree species are crucial for understanding ecosystem dynamics [1], assessing biodiversity [2], and enabling sustainable forest management [3]. Tree species adapt their morphology and phenology to the environment [4], leading to variability in spectral signatures across geographic regions. Furthermore, the spectral reflectance of a given tree species varies significantly with growth stages and seasons [5], making the classification based solely on RGB data extremely challenging. At the local level, spectral variability also closely correlates with stand structure factors such as crown size, stand density, and gap sizes. This results in varying signal reflectance from different parts of the same crown, further complicating tree species classification [6]. Thus, we proposed a spectral-spatial-temporal constrained deep learning method, an end-to-end multi-head attention-based network, to automatically extract deep features for tree species mapping. Employing this model on multi-temporal hyperspectral imagery from the DLR Earth Sensing Imaging Spectrometer (DESIS), we produced a 30 m resolution forest species distribution map of the Harz Forest in Germany. DESIS, a VNIR sensor aboard the International Space Station, captures detailed Earth images upon request, offering extensive spectral data across 235 bands ranging from 400 to 1000 nm [7]. Our methodology leverages the comprehensive spectral information provided by DESIS, enhancing the tree species mapping accuracy. Utilizing the reference data from TreeSatAI Benchmark Archive [8], we prepared 134,886 hyperspectral data patches, each labelled with tree species information. The evaluation involved assessing the F1-score, Jaccard index, Hamming loss, and accuracy for various tree species using National Forest Inventory (NFI) data plots. The results reveal the potential of deep learning using hyperspectral data in the precise and automated mapping of forest tree species distribution, thereby supporting evidence-based decision-making in sustainable forest management.

 

[1] Welle, Torsten, et al. "Mapping dominant tree species of German forests." Remote Sensing 14.14 (2022): 3330.

[2] Grabska, Ewa, David Frantz, and Katarzyna Ostapowicz. "Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians." Remote Sensing of Environment 251 (2020): 112103.

[3] Xie, Bo, et al. "Analysis of regional distribution of tree species using multi-seasonal sentinel-1&2 imagery within google earth engine." Forests 12.5 (2021): 565.

[4] Chuine, Isabelle. "Why does phenology drive species distribution?." Philosophical Transactions of the Royal Society B: Biological Sciences 365.1555 (2010): 3149-3160.

[5] Hesketh, Michael, and G. Arturo Sánchez-Azofeifa. "The effect of seasonal spectral variation on species classification in the Panamanian tropical forest." Remote Sensing of Environment 118 (2012): 73-82.

[6] Ferreira, Matheus Pinheiro, et al. "Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis." ISPRS journal of photogrammetry and remote sensing 149 (2019): 119-131.

[7] de los Reyes, Raquel, et al. "The Desis L2a Processor And Validation Of L2a Products Using Aeronet And Radcalnet Data." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 46 (2022): 9-12.

[8] Ahlswede, Steve, et al. "TreeSatAI Benchmark Archive: A multi-sensor, multi-label dataset for tree species classification in remote sensing." Earth System Science Data Discussions 2022 (2022): 1-22.

How to cite: Mu, Y., Shahzad, M., and Zhu, X. X.: A spectral-spatial-temporal attention network for tree species mapping using DESIS hyperspectral imagery, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10854, https://doi.org/10.5194/egusphere-egu24-10854, 2024.

Remote Sensing (RS) is the most useful tool for monitoring forests at different temporal and spatial scales. The availability of long time series from RS indices, such as the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), and meteorological data makes time series analysis an excellent methodology for studying forest intra-annual or interannual dynamics and their response to meteorological variability.

RS is widely used in developed countries, however, this tool is essential for a sustainable management of the ecosystems also in developing countries of Iberoamerica. The Sierra Gorda Biosphere Reserve is one of the most important forested regions in Mexico, located in the center of the country, mostly in the state of Querétaro. The overall objective of this work is to study forest and shrubland dynamics of the Sierra Gorda in the state of Querétaro and their response to meteorological variability through time series analysis of remote sensing data of the last 23 years. Spectral indices (NDVI and EVI) have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS, spatial resolution = 250 m), precipitation has been obtained from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (spatial resolution=5566 m), and temperature from DAYMET-V4 (spatial resolution=1 km).  Firstly, a univariable time series analysis of spectral indices, precipitation and temperature are made by means of the Buys-Ballot tables, i.e., average year, to study the intra-annual forest dynamics and then, using the autocorrelation function and the periodogram the interannual dynamics are assessed. Finally, the causality between spectral indices and meteorological data are studied by Granger causality tests.

Preliminary results shows that spectral indices monitor adequately the different phenological dynamics of the different main forests and shrublands in the Sierra Gorda. Granger causality tests shows the different response of vegetation to precipitation and temperature. In conclusion, the different response of vegetation to meteorological variability is well represented by the dynamics of spectral indices. In the present, RS time series analysis is a novel technique for making a forest sustainable management and specifically, it allows determining the presence of trends, seasonality, cycles, or structural changes in the intra-annual or interannual forest dynamics.

How to cite: del Rio, M. S., Cicuéndez, V., and Yagüe, C.: Response of forests in the Sierra Gorda of Queretaro to meteorological variability in the 21st century through remote sensing data and time series analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12085, https://doi.org/10.5194/egusphere-egu24-12085, 2024.

EGU24-12259 | ECS | Posters on site | BG9.2

Enhancing the temporal resolution of forest canopy height levels by combining Airborne Laser Scanning and Image Matching point clouds with the help of Machine Learning 

Lorenz Schimpl, Anna Iglseder, Sebastian Mikolka-Flöry, and Markus Hollaus

Airborne laser scanning (ALS) point clouds are employed for the generation of country-wide digital terrain and surface models (DTMs and DSMs) and to derive further information about forested areas. This acquisition method has been established as a state-of-the-art of topographic data acquisition, especially in forested areas. However, as ALS data acquisitions are done on relatively low temporal resolution (e.g. for Austria every 6-10 years), forest parameter extraction with high temporal resolution based on ALS data is limited. In particular, the derivation of dynamic forest information such as biomass or canopy cover changes requires relatively high temporal resolution.

Aerial images, along with their image-matching-based point clouds (IM), provide a further option for the creation of DSMs. Especially in areas with high vegetation such as forests, the ALS and IM data yield different elevation values.

The aim of this study is to systematically quantify these differences and to investigate strategies to approximate IM-based DSMs to the ALS-based DSMs. For this research, a study site within the Vienna Woods Biosphere Reserve in the Eastern part of Austria was selected for the development and evaluation of an approach to minimise the height differences. For this area ALS and IM datasets from the same month are available.

Initially, topographic models, such as the normalised DSM (nDSM), were derived from the available point clouds. Statistical parameters for different kernel sizes of the image matching nDSM were further calculated within a derived canopy mask. These parameters as predictors, along with the known differences of the nDSMS based on ALS and IM as target values, were used to train a random forest regression to further fit the IM to the ALS data.

The validation, conducted on three different areas, showed an approximation of the elevation values to the ALS nDSM utilised as a reference within the canopy mask. This improvement demonstrates a promising approximation of the two models of about 77% in relation to the median of the deviations between the adjusted and the given model compared to the initial situation. The IM data shows its limitations in elongated gaps in the canopy, as the closing effects of small canopy gaps in forested areas pose challenges for the IM-based nDSM. In such instances, the regression function cannot make any improvements.

How to cite: Schimpl, L., Iglseder, A., Mikolka-Flöry, S., and Hollaus, M.: Enhancing the temporal resolution of forest canopy height levels by combining Airborne Laser Scanning and Image Matching point clouds with the help of Machine Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12259, https://doi.org/10.5194/egusphere-egu24-12259, 2024.

EGU24-12375 | Posters on site | BG9.2

3DFin: a software for 3D Forest Inventory in Terrestrial Point Clouds 

Carlos Cabo, Diego Laino, Romain Janvier, Covadonga Prendes, Celestino Ordonez, Tadas Nikanovas, Stefan Doerr, and Cristina Santin

Forest inventory, the systematic collection of data and information on a given forested area, is a key tool for sustainable forest management. Remote sensing technologies, especially terrestrial-based ones, are increasingly used to carry out these inventories, as they provide detailed and precise 3D measurements of the forest in the form of point clouds. Here we present ‘3DFin’, a recently developed software that automatically derives tree metrics from terrestrial point clouds. 3DFin automatically computes key forest inventory parameters, such as tree Total Height (TH), Diameter at Breast Height (DBH), and tree location. To maximize its reach, and make it accessible to wider audiences, 3DFin has been developed as a free, open-source program. It features an user-friendly graphical user interface and is available as a standalone software in Windows and, also, as a plugin in CloudCompare and QGIS. In this presentation we will show the performance of this software, presenting tests carried out in terrestrial, hand-held and photogrammetric point clouds across different forest conditions.

 

How to cite: Cabo, C., Laino, D., Janvier, R., Prendes, C., Ordonez, C., Nikanovas, T., Doerr, S., and Santin, C.: 3DFin: a software for 3D Forest Inventory in Terrestrial Point Clouds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12375, https://doi.org/10.5194/egusphere-egu24-12375, 2024.

EGU24-12947 | Posters on site | BG9.2

Validation of Satellite-Derived Vegetation Indices for Estimating Forest Structural Parameters Using Mobile Terrestrial LiDAR in Aleppo Pine Forest Stands  

Eva Rubio, Wafa Chebbi, Manuela Andrés-Abellán, Francisco Antonio García-Morote, Marta Isabel Picazo-Córdoba, Rocío Arquero-Escañuela, and Francisco Ramón López-Serrano

Remote sensing technologies have been crucial in the monitoring and the assessment of forest carbon sequestration, emphasising the need for implementing Adaptive Forest management (AFM) as a vital strategy to decrease vulnerability to climate change impacts. Within this context, obtaining quantitative information on forest structure becomes necessary because AFM depends on the pre-existing forest structure and involves its subsequent modification. Consequently, this modification of forest structure has an impact on forest carbon sequestration. The main objective of this study is to validate the use of different satellite-based indices and algorithms as reliable quantitative estimators of forest structural parameters associated with its potential photosynthetic activity. Our study relies on the application of mobile terrestrial LiDAR for characterising vegetation structure at both individual tree and plot levels in Aleppo pine (Pinus halepensis L.) forests. As documented in the literature, these satellite-based indices were not consistent predictors of photosynthetic performance in evergreen species for most of the year. This was attributed to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Despite this finding, we hypothesize that the spatial information provided by these remote-based indices remains valid for capturing forest structural parameters relevant for carbon sequestration studies.

To achieve this, we collected LiDAR scans from 21 forest compartments, ranging in size from 8 to 30 hectares, and 24 plots of approximately 0.2 hectares each. Thus, we captured detailed information about diameter at breast height, total tree height, and overall stand structure characteristics per hectare (i.e., number of trees, basal area, total timber volume and crown coverage). By comparing these ground-truth measurements with indices and algorithms derived from satellite imagery (i.e., NDVI, EVI, red edge index, NDWI), we evaluated their efficiency as estimators of forest structural parameters. Here, two spatial scales were considered: the 300-m resolution from Sentinel-3 for the forest compartments, and the 10-m resolution of Sentinel-2 for the plots. Our findings illustrated a good correlation between LiDAR-derived structural metrics and various selected indices. Once the robustness of these indices is confirmed, their application for downscaling satellite images related to gross primary productivity (GPP) or net ecosystem productivity (NEP) can be justified. This validation process will enhance our confidence in the use of remote sensing data to extract quantitative information about forest structure and will support its application for AFM purposes.

How to cite: Rubio, E., Chebbi, W., Andrés-Abellán, M., García-Morote, F. A., Picazo-Córdoba, M. I., Arquero-Escañuela, R., and López-Serrano, F. R.: Validation of Satellite-Derived Vegetation Indices for Estimating Forest Structural Parameters Using Mobile Terrestrial LiDAR in Aleppo Pine Forest Stands , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12947, https://doi.org/10.5194/egusphere-egu24-12947, 2024.

EGU24-13503 | Posters on site | BG9.2

Advancing High-Resolution Surface Aboveground Biomass Modeling through Terrestrial Laser Scanning and Machine Learning in a Southeastern U.S. Pine Forest Ecosystem 

Carine Klauberg, Gabriel Máximo da Silva, Eva Louise Loudermilk, Christie Stegall Hawley, Scott Pokswinski, Yosio Edemir Shimabukuro, Nuria Sánchez-López, Andrew Hudak, and Carlos Alberto Silva

The integration of lidar (light detection and ranging) with machine learning offers a promising method for accurately estimating and mapping various vegetation attributes. This study demonstrated the effective use of terrestrial laser scanning (TLS) and the random forest (RF) machine learning approach to achieve precise total surface aboveground biomass (TSAGB) estimates at high resolution in regularly burned forest ecosystems in the southeastern United States. Our study site is located in the Osceola National Forest (ONF), which is part of the USFS Southern Research Station within the Olustee Experimental Forest, situated a short distance from Olustee, FL, and approximately 15 miles west of Lake City, FL. The site, spanning around 50 acres, was designated by the USFS Southeastern Forest & Range Experiment Station Southern Forest Fire Laboratory in 1957. Its primary purpose is to assess various fire return intervals and their impact on the accumulation of hazardous fuels. A total of 35 pre- burn clip plot (0.5m by 0.5m) samples in 2020 and 35 post-burn clip plot (0.5m by 0.5m) samples in 2022 were established for destructive TSAGB sampling. High-resolution 3D point cloud data were collected using the Riegl VZ 400i terrestrial laser scanner within each 5x5 meter collocated plot. A suite of cloud metrics was computed, and an RF model was fine-tuned for TSAGB, with a bootstrapping approach applied for model validation. The validation results indicated that a model utilizing only six metrics successfully predicted total TSAGB with relative and absolute Root Mean Square Error (RMSE) and bias of 57.59 g/m2 (32.78%) and -3.09 g/m2 (-1.76%), respectively. Our methodology, leveraging TLS lidar and widely used machine learning models, offers efficient solutions for enhancing the accuracy of surface biomass estimates in pine forests subject to frequent burns in the Southeastern U.S.

How to cite: Klauberg, C., da Silva, G. M., Loudermilk, E. L., Hawley, C. S., Pokswinski, S., Shimabukuro, Y. E., Sánchez-López, N., Hudak, A., and Silva, C. A.: Advancing High-Resolution Surface Aboveground Biomass Modeling through Terrestrial Laser Scanning and Machine Learning in a Southeastern U.S. Pine Forest Ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13503, https://doi.org/10.5194/egusphere-egu24-13503, 2024.

Forests are one of the most active terrestrial ecosystems on Earth, especially intact forests, which possess high integrity and biodiversity of flora and fauna. Climate change and human activities are considered crucial environmental factors affecting forests. However, there remains significant uncertainty regarding the universal impact of these environmental factors on the multidimensional structure of global forests and how they will shape future forest structure and functionality. This study utilized a substantial amount of satellite data from the GEDI lidar satellite and multispectral MODIS satellite to quantify forest canopy structure density. It successfully delineated the spatial distribution patterns of the multidimensional canopy structure of global forests, focusing on analyzing the influence of human activity on the structural density of global forests, protected forests, and intact forests. Additionally, it analyzed the relative importance concerning human activities, climate, and other environmental factors. Based on this analysis, the study further investigated the differences in the spatial distribution patterns of multidimensional canopy structure in naturally regrowing forests and plantation forests under various human management types. It also implicated the impact of establishing protected areas and excluding human disturbances on forest ecosystem functioning like carbon storage. This research, from a satellite remote sensing perspective, notably revealed that human pressures extend even into forests traditionally believed to be protected and of higher integrity. It contributes to significant corrections regarding prevailing notions about the driving factors behind forest degradation. Moreover, it underscores the critical importance of better management and sustainable maintenance of protected forests, intact forests, and naturally regrowing forests for restoring and safeguarding forest ecosystem functioning.

How to cite: Li, W.: Remote sensing of multidimensional canopy structure of global forests in human-dominated landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13970, https://doi.org/10.5194/egusphere-egu24-13970, 2024.

EGU24-14345 | ECS | Posters on site | BG9.2

Detection of perceived linear structures by deer based on abrupt vegetation height changes using airborne laser scanning data. 

Sebastian Mikolka-Flöry, Florian Kunz, Ursula Nopp-Mayr, Friedrich Reimoser, and Markus Hollaus

Sudden changes in vegetation height are important natural structures perceived by deer which provide orientation and cover. Hence, these linear structures form potential paths through forested areas used by these animals. Nevertheless, perception of these structures not only depends on the magnitude of the height differences but also on the height of the vegetation itself, their spatial extent and geometrical complexity. Therefore an approach is necessary which not only detects these changes, which would be trivial, but also takes those additional parameters into account.


Hence, we used a normalized digital surface model (nDSM) with a resolution of 1m derived from airborne laserscanning (ALS) data. As these height changes are local phenomena, local filters and morphological operations were used to extract potential pixels. Further aggregating connected pixels into connected components enabled us to prune spurious dangles, close small gaps and describe their geometrical complexity. Splitting the extracted and cleaned connected components at branch points made it possible to represent them as graphs. This opens up new possibilites to analyse these linear structures using graph algorithms which would not have been possible using solely a raster based representation.


Visual analysis of initial results calculated for two provinces in Austria (Styria and Lower Austria) indicate that the extracted linear structures aggree well with prior suggestions and are valid indicators for potential corridors through forested areas. While many extracted structures run along forest borders, additional structures within forest are detected. As the developed approach is only dependent on few easily interpretable parameters it can be quickly adapted to other species or animals. 

How to cite: Mikolka-Flöry, S., Kunz, F., Nopp-Mayr, U., Reimoser, F., and Hollaus, M.: Detection of perceived linear structures by deer based on abrupt vegetation height changes using airborne laser scanning data., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14345, https://doi.org/10.5194/egusphere-egu24-14345, 2024.

EGU24-15016 | Posters on site | BG9.2

Investigating phenological variability of beech forests across Europe using satellite data  

Carlotta Ferrara, Simone Ugo Maria Bregaglio, Francesco Chianucci, Carlo Ricotta, and Sofia Bajocco

Climate change has a major impact on the current environment, with vegetation phenology being the earliest indicator of these effects. Long-term phenological observations, such as those provided by satellite remote sensing, are fundamental for understanding spatio-temporal forest dynamics. Normalized Difference Vegetation Index (NDVI) data represent a well-known proxy for monitoring forest productivity and detecting seasonal variations. The objectives of this work are to identify phenological clusters of beech forests, and to quantify the role of geographic and physiographic variables in the phenological timing of each cluster.  The research focuses also on examining the influence of environmental variables on the mechanisms of phenological response to climate change. To this end, we used the EU-Forest dataset to derive the beech forest location across Europe. Then, for each location, NDVI data were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua sensors, from 2003 to 2023, with spatial resolution of 250 m and temporal frequency of 8 days. To identify groups of different forest types with similar seasonal timing (i.e., pheno-clusters), we carried out K-means Cluster Analysis on the NDVI temporal profiles. Finally, we characterized each pheno-cluster based on latitude, elevation, temperature, and precipitation, to identify gradients and discriminant environmental conditions. Results showed that the obtained pheno-clusters follow a clear elevation gradient, with a high variability at local scale even within the same macroclimatic conditions. This study indicates that characterizing vegetation phenology can provide valuable information about how forests ecosystems respond to both environmental conditions and climate change.

How to cite: Ferrara, C., Bregaglio, S. U. M., Chianucci, F., Ricotta, C., and Bajocco, S.: Investigating phenological variability of beech forests across Europe using satellite data , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15016, https://doi.org/10.5194/egusphere-egu24-15016, 2024.

Urban forests are an integral component of urban ecosystems, which play several critical roles in improving the quality of life in cities and towns. Accurate estimation of urban forest canopy height is pivotal for quantifying forest carbon storage and understanding forest ecosystem processes as well as shaping effective forest management police to mitigate global climate change. Although spaceborne or airborne LiDAR can provide the height information, there is often a trade-off between the spatial resolution and spatial coverage. On the synergism of the above two issues, we aim to fuse the multimodal remote sensing data and digital elevation model (DEM) data for ultra-high spatial resolution vegetation canopy height estimation over large urban area. In this study, we introduce a novel deep learning model, ARFCNet, designed for vegetation canopy height mapping employing unmanned aerial vehicle (UAV) imagery, Sentinel data, and DEM data as model inputs. We compare the potential of vegetation canopy height mapping under two strategies: the first involving RGB imagery, Sentinel-1 data, and DEM data with a spatial resolution of 1m, and the second with DEM spatial resolution of 30m. We assessed the model performance and compared with existing canopy height products and ground-based measurements. Results show that the ARFCNet model, under the first strategy, exhibits superior accuracy in estimating vegetation height across different regions, with the R² and RMSE value of 0.98 and 1.33m, respectively. We also mapped the 1-m vegetation canopy height in Guangzhou, China based on ARCFNet model, and compared it with three existing tree height products in Guangzhou (ETHGCH: Lang et al. (2023), GLIGCH: Potapov et al. (2021) and NNGIFCH: Liu et al. (2022)), with R² of 0.72, 0.61, and 0.45, and RMSE of 3.94, 6.04, and 4.81, respectively. In comparison, our ultra-high spatial resolution (1m) vegetation canopy height provides detailed measurements especially in the land cover type of urban land. It holds promise for national or global vegetation heights monitoring, enhancing biomass mapping accuracy, and contributing to carbon neutrality goals.

How to cite: Sun, Y., Xiao, K., and Xin, Q.: Ultra-high spatial resolution mapping of urban vegetation heights with multimodal remote sensing data and deep learning method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15057, https://doi.org/10.5194/egusphere-egu24-15057, 2024.

EGU24-15159 | ECS | Orals | BG9.2

How forest age impacts on net primary productivity: insights from future multi-scenarios 

Lei Tian, Yu Tao, Mingyang Li, and Joanna Simms

Forest net primary productivity (NPP) constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity, which is closely related to forest age. Despite its significance, the impact of forest age on NPP is often ignored in future NPP projections. Here, we mapped forest age in Hunan Province at a 30 m resolution utilizing a combination of Landsat time series stack (LTSS), national forest inventory (NFI) data, and the relationships between height and age. Subsequently, NPP was derived from NFI data and the relationships between NPP and age was built for various forest types. Then forest NPP was predicted based on the NPP-age relationships under three future scenarios, assessing the impact of forest age on NPP. Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios: under the age-only scenario, NPP peaks in 2041 (133.56 Gg C yr-1), while NPP peaks three years later in 2044 (141.14 Gg C yr-1) under the natural development scenario. The maximum afforestation scenario exhibits the most rapid increase in NPP, with peaking in 2049 (197.95 Gg C yr-1). However, with the aging of the forest, NPP is projected to then decrease by 7.54%, 6.07%, and 7.47% in 2060, and 20.05%, 19.74%, and 28.38% in 2100, respectively, compared to their peaks under the three scenarios. This indicates that forest NPP will continue to decline soon. Optimizing the age structure of forests through selective logging, afforestation and reforestation could mitigate this declining trend in forest NPP. Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development, which will inform the achievement of carbon neutrality goals by 2060.

How to cite: Tian, L., Tao, Y., Li, M., and Simms, J.: How forest age impacts on net primary productivity: insights from future multi-scenarios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15159, https://doi.org/10.5194/egusphere-egu24-15159, 2024.

EGU24-15469 | ECS | Posters on site | BG9.2

Aerial Laser Scanning for Forest Change Assessment: An Evaluation Framework for Forest Change Map Products 

Samuele Capobianco, Matteo Piccardo, Mirco Migliavacca, and Alessandro Cescatti
Accurate mapping of forest cover changes is essential for monitoring the health of the vegetation, evaluating the forests' capacity to store the carbon dioxide absorbed from the atmosphere, and comply with international sustainable forest management goals. In the literature, the Global Forest Change product proposed by Hansen and estimated at a 30 meters spatial resolution from Landsat optical data is a widely used dataset for detecting forest loss. Another widely used approach involves studying how a Land Use/Land Cover (LULC) product changes over time. In this regard, the partnership between Google and the World Resources Institute (WRI) has led to the development of the Dynamic World dataset which provides LULC information at a high spatial resolution of 10 meters and a daily temporal frequency, estimated from Sentinel 2 optical data. These change maps are essential for researchers worldwide monitoring dynamic shifts in forest landscapes.
 
Among various Earth observation (EO) technologies, Light Detection and Ranging (LiDAR) scanning stands out for its potential in obtaining detailed information on forest structures over large geographical areas with high spatial resolution and accuracy. Airborne LiDAR scanning data can be used to measure the height of trees above the ground topography producing Canopy Height Models (CHMs). This work proposes a robust procedure for CHM computation at the desired spatial resolution using the LiDAR point cloud detected by Aerial Laser Scanning (ALS) in the area of interest. The differences between CHMs at different observation times define tree cover change maps with high accuracy in the specified area.
 
The study employs publicly available ALS data covering Estonia to calculate CHMs with a spatial resolution of 5 meters. Utilizing these data, we compute high-definition tree cover change maps in the temporal window between 2018 and 2021 providing an accurate quantification of forest loss. The resulting tree cover change maps play a crucial role in evaluating widely used forest change maps such as Global Forest Change and Dynamic World derivatives. Through the establishment of a robust evaluation framework, including the comparison of common metrics (e.g. commission and omission error) with existing forest change maps, the study contributes significantly to the reliability analysis of forest change map products. The research addresses challenges in quantifying regional forest changes and offers valuable insights for researchers and policymakers engaged in sustainable forest management.

How to cite: Capobianco, S., Piccardo, M., Migliavacca, M., and Cescatti, A.: Aerial Laser Scanning for Forest Change Assessment: An Evaluation Framework for Forest Change Map Products, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15469, https://doi.org/10.5194/egusphere-egu24-15469, 2024.

EGU24-15641 | Posters on site | BG9.2

The effects of a severe storm on forests from the remote-sensing point of view 

Anikó Kern, Hrvoje Marjanović, and Edina Birinyi

On the 19th of July 2023, a severe thunderstorm passed over Croatia, causing remarkable wind damage in the forests along a ~300 km long track of the storm from the country’s western border, at first hitting Mount Medvednica and nearby capital Zagreb, passing along the Sava river lowlands, all the way to Croatia’s eastern border. One of the most affected and largest contiguous areas struck by the storm was the Spačva pedunculate oak forest in the eastern part of Croatia. However, many smaller areas were heavily affected across the country, too. Surveying the affected areas in the field might be a longer process, due to the need for cleaning after the considerable amount of debris and remaining dead wood which obstruct passage. Our aim was to support this survey of the damage by remote sensing measurements. Due to the fact, that the affected area is large, with a country-scale, the uniform detection and assessment of the damage can be made basically only with space-borne remote sensing. While the spatially explicit detection requires datasets with fine spatial resolution, the statistical methods rely on longer time series. 
In our study, to fulfil this need, we used the Harmonized Landsat Sentinel (HLS) v2.0 dataset with 30-meter spatial resolution to detect the damaged areas and with that the exact track of the storm along a 300 km long path and assess the magnitude of the caused damage. The main advantage of this dataset is its fine temporal resolution, which facilitated accurate temporal detection of the forests with damage related changes in their phenology. The damaged areas were identified based on the drop of vegetation indices (NDVI and EVI) after the storm, while to the damage assessment we used data for the whole joint Landsat & Sentinel era (2016‒2023) as well. As validation, the daily data of the commercial Planet satellites with 3-meter resolution were utilized. Beyond the remote sensing data, forestry data was also used as information on the species, age, wood volume stocks, and management operations (thinning or harvesting). Our results showed that the free HLS dataset is quite appropriate for the detection of storm damage in a wider area, but in the assessment of the damage the data from the existing forestry management plans and/or surveys are highly beneficial. Also, the detected areas are under the effects of several other factors as well, such the spreading invasive oak lace bug, making the detection more challenging.
Funding: The research has been supported by the Hungarian Scientific Research Fund (OTKA FK-146600), by the Croatian Science Foundation project MODFLUX (HRZZ IP-2019-04-6325), and by the TKP2021-NVA-29 project of the Hungarian National Research, Development and Innovation Fund. Project no. 993788 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the KDP-2020 funding scheme.

How to cite: Kern, A., Marjanović, H., and Birinyi, E.: The effects of a severe storm on forests from the remote-sensing point of view, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15641, https://doi.org/10.5194/egusphere-egu24-15641, 2024.

EGU24-16131 | ECS | Posters on site | BG9.2

Investigating remotely sensed spectral indicators of tree vitality across scales and forest types 

Dominic Fawcett, Petra D'Odorico, Christian Ginzler, and Arthur Gessler

Environmental stresses exacerbated by climate change create increasing pressure on forest ecosystems, challenging their resilience and functioning. As part of the Forestward Observatory to Secure Resilience of European Forests (FORWARDS) we seek to bridge the gap between ground-based measurements of tree vitality and remote sensing methods. Multi- and hyperspectral reflectance data have the potential to map visible damages but also pre-visual vulnerability symptoms (e.g. downregulation of photosynthesis) due to their relation to leaf pigment contents (D’Odorico et al., 2021). However, the interpretation of spectral indicators such as vegetation indices can vary at leaf, crown and stand level, as well as between species and forest structure (Gamon et al., 2023).

We make use of multiple scales of remote sensing observations to investigate how indicators derived from reflectance behave at crown, stand and landscape level and which approaches are promising for operational use in Europe-wide forest vitality monitoring, particularly in the context of the new-generation spaceborne imaging spectrometers.

We present first results from a pilot phase of this project focused on three intensively monitored sites in Switzerland, including a rainfall exclusion experiment for investigating drought stress. For these sites, leaf and tree-level data in the field as well as acquisitions by drone (<0.1 m) and airborne (1 m) multi- and hyperspectral sensors were conducted in August 2023. We supplement remote sensing data with radiative transfer simulations of virtual canopies to demonstrate impacts of forest structure and composition on vitality indicators related to leaf pigment changes.

Preliminary results show that, aggregated to crown-level, shadow masked drone and airborne data reproduce similar variations of the investigated index values between species and individual crowns. Indices normalised for structure (e.g. PRInorm, Zarco-Tejada et al., 2013) appear promising for monitoring stress across species and structural types.

Insights from this work will allow for the improved integration of data from existing forest monitoring networks with airborne and satellite data towards maps of European forest vitality and stress.

 

REFERENCES 

D’Odorico, P., Schönbeck, L., Vitali, V., Meusburger, K., Schaub, M., Ginzler, C., Zweifel, R., Velasco, V. M. E., Gisler, J., Gessler, A., & Ensminger, I. (2021). Drone‐based physiological index reveals long‐term acclimation and drought stress responses in trees. Plant, Cell & Environment, 44(11)

Gamon, J. A., Wang, R., & Russo, S. E. (2023). Contrasting photoprotective responses of forest trees revealed using PRI light responses sampled with airborne imaging spectrometry. New Phytologist, 238(3), 1318-1332.

Zarco-Tejada, P. J., González-Dugo, V., Williams, L. E., Suarez, L., Berni, J. A., Goldhamer, D., & Fereres, E. (2013). A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote sensing of Environment, 138, 38-50.

How to cite: Fawcett, D., D'Odorico, P., Ginzler, C., and Gessler, A.: Investigating remotely sensed spectral indicators of tree vitality across scales and forest types, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16131, https://doi.org/10.5194/egusphere-egu24-16131, 2024.

EGU24-17511 | ECS | Posters on site | BG9.2

Using Solar-Induced Chlorophyll Fluorescence in a Combined Index to Estimate Tree Productivity and Physiology in the 2018 and 2022 European Droughts 

Ross Brown, Anja Rammig, João Paulo Darela-Filho, and Allan Buras

The European heatwaves of 2018 and 2022 led many parts of the continent into record high temperatures and extremely dry conditions compared to mean temperature and precipitation. This resulted in a decrease in forest productivity and an increase in forest fires and tree death in affected areas. As droughts increase in severity and frequency with global climate change, it is important to investigate how tree species respond to water stress, and how these responses affect ecosystem productivity.

Solar-induced chlorophyll fluorescence (SIF) has been useful for estimating gross primary productivity (GPP) and assessing terrestrial carbon fluxes. Even though SIF provides a direct link for energy available for carbon fixation, SIF is heavily affected by canopy structure and sun-sensor geometry. Near-infrared radiance of vegetation (NIRvR) is a recently studied index that provides accurate information about plant canopy structure, solar irradiance, and has a positive, linear relationship with GPP. Mathematically combining SIF, NIRvR, and the enhanced vegetation index (EVI) into one index may consequently better estimate GPP since this method integrates a direct link to photosynthesis, structure, and greenness, respectively. Especially under conditions where water is limited, the combined SIF-NIRvR-EVI index could provide more instantaneous and accurate estimates of productivity and plant health when compared to the individual indices. Indeed, a recent study (Zeng et al. 2021) normalized SIF with NIRvR to calculate fluorescence yield (ΦF), incorporating photosynthesis and plant structure information into one index.  They found that ΦF accurately detects stress-induced limitations in photosynthesis in field-level data, but little is known about how this approach scales up to satellite-level data.

To overcome this research gap, we isolate areas in Germany affected by drought with known dominant tree species and analyze how individual and combined measurements of florescence, canopy structure, and greenness respond to the 2018 and 2022 European droughts, as well as normal precipitation conditions (2019 – 2021). This will provide insights into how water stress affects the physiology of tree species and investigate a new combined SIF-NIRvR-EVI index. A random forest model is applied to examine how well the combined index predicts GPP during drought and non-drought conditions. The resulting model outputs are compared to satellite derived GPP products and separately with FLUXNET sites to ground truth the accuracy of the modeled GPP estimates during the study period.

How to cite: Brown, R., Rammig, A., Paulo Darela-Filho, J., and Buras, A.: Using Solar-Induced Chlorophyll Fluorescence in a Combined Index to Estimate Tree Productivity and Physiology in the 2018 and 2022 European Droughts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17511, https://doi.org/10.5194/egusphere-egu24-17511, 2024.

EGU24-17672 | ECS | Posters on site | BG9.2

Long-Term Trends in Senegalese Dryland Tree Density 

Rene Lee, Stefan Oehmcke, Christin Abel, Gyula Mate Kovács, Martin Brandt, and Rasmus Fensholt

The historical extent and distribution of trees is central to our understanding of the current and future dynamics within the terrestrial biosphere. Typically, trees outside of forests, that characterise drylands, are often left out of coarse-grained analyses as they cannot be reasonably detected. However, 29% of tree cover within drylands is found outside of areas previously classified as forest.

The rapid advancement of remote sensing technology over the last 50 years has seen a paralleled increase in both computational capacity and algorithmic sophistication. However, it is challenging to utilise older data sources with long-term image coverage and a coarser pixel resolution than the phenomenon being observed. There has been little research exploring the potential for modern data science methods, such as deep learning, for extracting more information from older data sources.

Here, we propose a method for creating long-term tree density maps at the 15-meter scale, based on sub-meter resolution tree information. By utilising high resolution imagery to automatically detect and count individual trees, we have produced a deep learning-based method to predict tree density from coarser satellite imagery for Senegal over the past 25 years. Validation of our predictions will be conducted against on-site measurements from national forest inventory sites, facilitating an evaluation of high-resolution trends in dryland woody vegetation across time.

The intricate and nonlinear nature inherent in neural networks renders them adept at managing noise and discontinuities within data sources. Here, we show that common artifacts produced by gap filling which often result from cloud cover and sensor error, can be minimised with the use of a deep learning framework. Such an analysis unlocks the possibility to extract less noisy and more continuous information from poorer image sources.

How to cite: Lee, R., Oehmcke, S., Abel, C., Kovács, G. M., Brandt, M., and Fensholt, R.: Long-Term Trends in Senegalese Dryland Tree Density, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17672, https://doi.org/10.5194/egusphere-egu24-17672, 2024.

EGU24-17857 | ECS | Orals | BG9.2 | Highlight

Plant trait time series from Sentinel-2 to detect drought stress in a mid-latitude forest ecosystem 

Beatrice Savinelli, Cinzia Panigada, Giulia Tagliabue, Luigi Vignali, Rodolfo Gentili, Emilio Padoa-Schioppa, Fabian Ewald Fassnacht, and Micol Rossini

Forest ecosystem conservation is of crucial importance for preserving biodiversity, regulating climate patterns, and providing ecosystem services essential for human well-being. The Ticino Park temperate mixed forest represents the last remaining natural ecosystem of the Po Valley region. Recognized as a UNESCO-MAB Biosphere Reserve, this precious ecosystem has been increasingly affected by natural and human-induced disturbances, including severe drought, exacerbated by climate change.

Remote sensing has proven to be a cost-effective tool for the indirect estimation and mapping of forest characteristics and conditions at different spatial and temporal scales. This study aims to develop a better understanding of the relationship between drought-induced forest stress, spectral changes observed from Sentinel-2 satellite data, and how these relate to functional traits and species composition. We believe this will help to identify spectral indicators and metrics for the early detection of drought-induced forest mortality.

In summer 2022, an intensive field campaign was carried out in the Ticino Park Forest. First, in June, data on functional traits, specifically Leaf Area Index (LAI), Leaf Chlorophyll Content (LCC) and Leaf water content (LWC), were collected within 31 homogeneous 30x30 mforest stands. Secondly, in September, a subset of 19 of the 31 stands initially sampled were revisited (for a total of 52 sampling stations). In addition, vascular plant species composition was analysed in 64 selected stands to define the different vegetation associations and calculate the corresponding Ellenberg indexes in order to ecologically characterise the sites. Meanwhile, the standardized precipitation-evapotranspiration index (SPEI) from 2017 to 2023 was calculated to assess the severity and duration of drought events in the Ticino Park area.

Concerning the remote sensing analysis, the time series of cloud-free Sentinel-2 images collected over the Ticino Park from 2017 to 2023 were processed to compute LAI, Canopy Chlorophyll content (CCC = LCC x LAI) and Canopy water content (CWC = LWC x LAI) maps of each image through the Sentinel Application Platform (SNAP) biophysical processor tool. LAI, CCC and CWC maps were validated using LAI, CCC and CWC field measurements. These plant functional trait time series were used to quantify the deviation of LAI, CCC and CWC at a precise location and time from the 2017-2023 multi-year daily averages, thus obtaining the standard anomalies. Generalized additive models (GAMs) were then applied to examine the correlation between functional trait anomalies and a series of factors expected to influence the response of plant traits to water stress, such as SPEI value, vegetation association, and other environmental characteristics.

This study is a first attempt to analyse by remote sensing-based approaches the vegetation response to extreme weather conditions, accounting for differences in local climatic conditions, species ecology, and environmental variables.

How to cite: Savinelli, B., Panigada, C., Tagliabue, G., Vignali, L., Gentili, R., Padoa-Schioppa, E., Fassnacht, F. E., and Rossini, M.: Plant trait time series from Sentinel-2 to detect drought stress in a mid-latitude forest ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17857, https://doi.org/10.5194/egusphere-egu24-17857, 2024.

EGU24-18495 | ECS | Posters on site | BG9.2

Exploring the application of deep learning techniques to facilitate the management of invasive species  

Arianne Flexa de Castro, Jan Rudolf Karl Lehmann, Tillmann Buttschardt, and Markus Gastauer

Biological invasion threatens biodiversity protection and ecosystem services and is considered one of the major threats to the long-term success of mineland restoration projects. Especially due to the unrestrained growth and significant dispersal capacity of invasive species that jeopardize not only the recovery areas but also pose risks to neighboring environments. Despite the urgency, combating invasive species is still conducted in a manner incompatible with the need for effective large-scale monitoring. A significant challenge has been developing methods capable of detecting these species during the early stages of invasion and monitoring the population on a large scale.

The utilization of refined data, particularly those collected with multi and hyperspectral sensors, has been a focal point for species detection in ecological research, particularly in environments with higher diversity. However, the adoption of such approaches is not yet widespread among environmental monitoring companies, primarily due to challenges associated with costs and the complexities of data collection. Using deep-learning algorithms can than facilitate species detection with simple RGB images providing more possibilities to ecological studies in this field, while improves application as simplifier the process of data acquisition to ecosystems managers. For this purpose, this work used a deep-learning model using RGB images to detect two invasive species Melinis minutiflora Beauv. (Poaceae) and Muntingia calabura L. (Muntingiaceae) in mining restoration sites in the eastern Amazon. Unoccupied aerial systems image data of a waste pile was collected with a total size of approximately 108 ha.

The applied methodology was able to differ invasive species in our study site and the spatial distribution map generated revealed hotspots of M. minutiflora and M. calabura in the restoration area. The detection of these species using RGB images underscores the potential of deep learning to map invasive species and provides a more accessible way for monitoring on a larger scale. In conclusion, our results contribute to improve efficiency of large-scale monitoring of invasive species in restoration projects. By facilitating data collection and highlighting the potential for economically viable management, our findings provide a valuable perspective for stakeholders engaged in enhancing invasive species management practices.

How to cite: Flexa de Castro, A., Lehmann, J. R. K., Buttschardt, T., and Gastauer, M.: Exploring the application of deep learning techniques to facilitate the management of invasive species , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18495, https://doi.org/10.5194/egusphere-egu24-18495, 2024.

EGU24-18885 | Posters on site | BG9.2

Object- and Image Endmember-based Riparian Forest Classification of Narrow-Band UAS Image Data: A Case Study of the River Gail and River Drau, Austria 

Anthony Filippi, İnci Güneralp, Cesar Castillo, Andong Ma, Gernot Paulus, and Karl-Heinrich Anders

Studies that directly compare classification accuracies of object-based image analysis (GEOBIA) and endmember-based algorithms for the exploitation of very-high-spatial-resolution (VHR) images (e.g., unmanned aircraft systems (UAS) images) are quite limited. We employ an endmember-extraction algorithm in conjunction with an endmember-mapping method, and we separately utilize a multiresolution segmentation/object-based classification algorithm. We then classify riparian forest and other land covers and compare the classification accuracies obtained from the application of these respective classifiers to narrow-band, VHR UAS images acquired over two river reaches (of the River Gail and River Drau, respectively) in Austria. We determine the effect of pixel size on classification accuracy and assess performances associated with multiple image-acquisition dates. Our results indicate markedly higher classification accuracies for the GEOBIA approach, relative to those of the endmember-based method, where the former generally entails overall accuracies in excess of 85%. Poor endmember-mapping classification accuracies are most likely a function of: the very small pixel sizes associated with the UAS images; the large number of information classes; and the relatively small number of (albeit narrow) bands available for analysis.

How to cite: Filippi, A., Güneralp, İ., Castillo, C., Ma, A., Paulus, G., and Anders, K.-H.: Object- and Image Endmember-based Riparian Forest Classification of Narrow-Band UAS Image Data: A Case Study of the River Gail and River Drau, Austria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18885, https://doi.org/10.5194/egusphere-egu24-18885, 2024.

EGU24-19325 | ECS | Orals | BG9.2

Unveiling the Canopy: Insights, Definitions, and Outcomes from a LiDAR Data Fusion Review for Forest Observation 

Mattia Balestra, Suzanne Marselis, and Martin Mokroš

Many LiDAR remote sensing studies over the past decades declared data fusion as a potential avenue to increase accuracy, spatial and temporal resolution of the final datasets. LiDAR data fused with other datasets such as multispectral, hyperspectral and radar has proven beneficial for various applications, including the segmentation processes, the above ground biomass (AGB) assessments, the tree height estimation and the tree species identification. Despite progress in data fusion techniques and opportunities, the proliferation of scientific papers has given rise to questions within the scientific community. What is ‘data fusion’ and how should this term be used in our community? What opportunities does it provide and are these approaches as good as promised? What are the main challenges in LiDAR data fusion for forest observations? In this paper, we performed a structured literature review to analyse relevant studies on these topics published in the last decade (2014-2023). We used a specific query in the Web of Science database, selecting only papers published in English language with a publication status of “article” or “review article”. These limitations in the query resulted in 407 papers. The abstract were screened by two independent reviewers, following these criteria: (1) The paper must assess some aspect of trees/forests relevant to forestry applications, with the exclusion of those solely focusing on crops or human-made structures (such as infrastructure or buildings). (2) The fusion process must include LiDAR data. A significant portion of excluded papers did not actively engage in data fusion; instead, they merely discussed it as a potential solution to identified limitations in their analyses. Alternatively, these papers did not use data from a LiDAR sensor in their application. The screening process resulted in 153 papers. From our findings, there is a slight general upward publication trend over the last 10 years, with an increasing trend in the use of spaceborne LiDAR sensors. The predominant form of fusion observed in this study was airborne LiDAR with other airborne data types, accounting for 45.4% of the total papers. Following closely was the fusion of airborne LiDAR data and spaceborne devices, constituting 29.8%. Equally represented, each with 11.3%, were spaceborne LiDAR-data with other spaceborne sensors and airborne-terrestrial fusion. The least commonly encountered method was the fusion of terrestrial LiDAR with other data from terrestrial platforms, representing only 2.1%. 27.2% of the papers are dealing with an individual tree detection approach, 49.7% with an area-based approach and 17.2% with both. 6% are reviews with no defined study area/application. Our review indicated that, generally, all common applications are improved using data fusion. The benefits include improved accuracy, particularly noticeable in tree species composition classifications, and advancements in spatial or temporal resolution, especially for canopy height assessments. However, a critical consideration arises regarding whether the incremental improvements, at times marginal, justify the additional economical and computational investment.

This abstract is based upon work from COST Action 3DForEcoTech, CA20118, supported by COST (European Cooperation in Science and Technology).

How to cite: Balestra, M., Marselis, S., and Mokroš, M.: Unveiling the Canopy: Insights, Definitions, and Outcomes from a LiDAR Data Fusion Review for Forest Observation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19325, https://doi.org/10.5194/egusphere-egu24-19325, 2024.

EGU24-19456 | ECS | Posters on site | BG9.2

UAV-based LiDAR and Multispectral images for forest trait retrieval 

Luigi Vignali, Cinzia Panigada, Giulia Tagliabue, Beatrice Savinelli, Roberto Garzonio, Roberto Colombo, Sergio Cogliati, Rodolfo Gentili, Sandra Citterio, and Micol Rossini

Woodlands cover 41% of the surface of the European Union and contribute to human well-being through the ecosystem services they provide. However, their extension and condition are under threat due to the impacts of climate change. Forest traits are commonly used in ecological and climate studies for the assessment of plants health status. In this contest, the use of unmanned aircraft vehicles (UAVs) is rapidly developing for forest monitoring and inventory. UAVs allow to acquire high spatial resolution data using different sensors, as LiDAR or optical sensor, with low operational costs. The main focus of this contribution is integrating LiDAR and multispectral data to detect and classify single trees and retrieve forest traits at tree scale employing machine learning approaches. The study area is a natural reserve located in the Ticino Valley Regional Park, in eastern Lombardy along the Po river (Italy). An intensive field campaign was conducted in the summer of 2022 to collect forest traits (leaf chlorophyll concentration - LCC and leaf area index - LAI) and UAV data. The UAV mounted a DJI L1 LiDAR sensor and a MAIA S2 multispectral camera. First, the individual trees were identified using the “lidR”, “rLidar” and “ForestTools” R packages. Each tree was then classified using a Random Forest classifier with an accuracy of 84% (Kappa coefficient =0.74). For the retrieval of the forest traits of interest, different machine learning regression algorithms (MLRAs) were tested. LAI was best estimated by the Gaussian Processes Regression (GPR), (R2=0.903, nRMSE=8.66%) and the Canopy Chlorophyll Content (CCC = LAI x LCC) by the Support Vector Regression (SVR) (R2=0.8327, nRMSE=9.1684%). MLR algorithms showed satisfactory performances in plant trait retrieval in forest ecosystem from UAV, opening interesting perspectives for forest monitoring, both at leaf and canopy level except for the LCC.

How to cite: Vignali, L., Panigada, C., Tagliabue, G., Savinelli, B., Garzonio, R., Colombo, R., Cogliati, S., Gentili, R., Citterio, S., and Rossini, M.: UAV-based LiDAR and Multispectral images for forest trait retrieval, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19456, https://doi.org/10.5194/egusphere-egu24-19456, 2024.

EGU24-20778 | Orals | BG9.2 | Highlight

The BIOMASS Mission Algorithm & Analysis Platform (MAAP) and Related Open-Source Developments (BioPAL and GEOTREES) 

Tamara Queune, Clément Albinet, Iris Dion, Cristiano Lopes, Muriel Pinheiro, Björn Rommen, and Klaus Scipal
 

Selected as European Space Agency’s seventh Earth Explorer in May 2013, the BIOMASS mission will provide crucial information about the state of our forests and how they are changing. This mission is being designed to provide, for the first time from space, P-band Synthetic Aperture Radar measurements to determine the amount of biomass and carbon stored in forests. The data will be used to further our knowledge of the role forests play in the carbon cycle.

In this context of an innovative sensor, the concept of Mission Algorithm and Analysis Platform dedicated to the BIOMASS, to the NASA-ISRO SAR (NISAR) mission  and to the NASA Global Ecosystem Dynamics Investigation (GEDI) mission mission is proposed. Developed in a collaborative way between ESA and NASA, this Mission Algorithm and Analysis Platform will implement, as part of the payload data ground segment, a virtual open and collaborative environment. The goal is to bring together data centre (Earth Observation and non- Earth Observation data), computing resources and hosted processing, collaborative tools (processing tools, data mining tools, user tools, …), concurrent design and test bench functions, accounting tools to manage resource utilisation, communication tools (social network) and documentation. This platform will give the opportunity, for the first time, to manage the community of users of the BIOMASS mission thanks to this innovative concept.

To best ensure that users can collaborate across the platform and to access needed resources, the MAAP requires all data, algorithms, and software to conform to open access and open-source policies. As an example of best collaborative and open-source practices, most of the BIOMASS Processing Suite (BPS) will be made openly available within the MAAP. This Processing Suite contains all elements to generate the BIOMASS upper-level data products and is currently in development under the umbrella of the open-source project called BioPAL. BioPAL is developed in a coherent manner, putting a modular architecture and reproducible software design in place. BioPAL aims to factorize the development and testing of common elements across different BIOMASS processors. The architecture of this scientific software makes lower-level bricks and functionalities available through a well-documented Application Programming Interface (API) to foster the reuse and continuous development of processing algorithms from the BIOMASS user community. This API will greatly simplify the use of the BIOMASS Processing Suite (BPS) on the MAAP.

In addition to open satellite data and open-source algorithms, open reference data is needed for Calibration and Validation. GEOTREES is composed of Biomass Reference Measurement sites that are in situ forest measurement sites with a common standard for high-quality data acquisition, transparent measurement protocols, long-term monitoring, and measurements traceable to SI units. GEO-TREES will be established through collaboration with existing international networks of high-quality forest plots that use standard forest monitoring protocols.

How to cite: Queune, T., Albinet, C., Dion, I., Lopes, C., Pinheiro, M., Rommen, B., and Scipal, K.: The BIOMASS Mission Algorithm & Analysis Platform (MAAP) and Related Open-Source Developments (BioPAL and GEOTREES), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20778, https://doi.org/10.5194/egusphere-egu24-20778, 2024.

EGU24-21242 | Orals | BG9.2

Remotely sensing fruit presence and nutritional content in complex landscapes 

Kate Tiedeman, Chase L Núñez, Shauhin Alavi, Andreas Schuerkmann, and Meg Crofoot

An animal’s survival depends on its ability to successfully navigate a dynamic resource landscape that varies in space and time. To study animal cognition in ecologically-relevant scales and settings, there is a need for reliable and efficient measures of nutritional resource distribution and quality. Hyperspectral imagery leverages the differential surface reflectance to estimate the relative chemical composition of a pixel, and may therefore enable remote sensing the distribution of nutrients at the landscape-scale. To explore the potential of this method in wild settings, we used airborne hyperspectral imagery with ground-based field spectroscopy and high-throughput wet chemistry data to predict nutrients present across an apple orchard landscape in Ravensburg, Germany. In this pilot study, we collected data on 24 apple trees over a four week period preceding harvest. We used spectral samples taken on the ground with a field spectrometer to create a spectral library of leaf and fruit samples. Simultaneously, we flew a hyperspectral drone (Headwall CoAlign) to collect hyperspectral voxels that were then spectrally unmixed to determine the endmember abundance in each pixel. After predicting the presence of fruit in a pixel, we then used the relationship between fruit reflectance and the sugar content to predict the amount of sugar available within a pixel. Our results indicate that apple sugar content is correlated with lower reflectance of the fruit in the near infrared. We are able to predict fruit presence on a pixel basis with 85% accuracy, and to predict sugar content using individual fruit reflectance with 80% percent accuracy. From this information, we can then extrapolate to create a prediction of nutritional elements on a landscape. Our approach demonstrates strong potential for use as a means of remotely sampling the nutritional landscapes in which wild animals live. This will open exciting opportunities for ecological studies at the landscape scale, including animal behavior researchers and movement ecologists to test detailed hypotheses related to animal movement and decision-making.

How to cite: Tiedeman, K., Núñez, C. L., Alavi, S., Schuerkmann, A., and Crofoot, M.: Remotely sensing fruit presence and nutritional content in complex landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21242, https://doi.org/10.5194/egusphere-egu24-21242, 2024.

EGU24-22280 | Posters on site | BG9.2

Tree Detection in Point Clouds Using Geometric Algorithms 

Mosab Arbain, Ján Tuček, and Milan Koreň

The compelling role of tree identification and measurement spans ecological and socio-economic domains and emphasizes its importance for environmental studies and forest management. The accuracy of tree detection and parameter estimation is crucial, which has led to the use of advanced technological methods in recent research. In this study, geometric algorithms for tree detection in point clouds from terrestrial laser scanning (TLS) are evaluated to contribute to forest inventory and geographic information systems. Conventional tree measurement methods are based on manual inspection, which, despite its widespread use, has disadvantages such as high cost, labor and human error, which reduces accuracy. Our study explores geometric algorithms for automated and precise solutions. The circle fitting method automates the detection of tree trunks in horizontal cross-sections at certain heights and proves its efficiency in processing point cloud data. However, in certain cases, the method is affected by the irregular shapes of tree trunks that deviate from a circular shape, resulting in inaccurate estimates of both tree position and diameter at breast height DBH. The circular Hough transform, which is known to refine and eliminate unwanted shapes, is beneficial for circle detection and noise reduction in point clouds. It improves tree detection compared to manual methods, especially in terms of processing speed and error reduction, but is limited in complete denoising. The Random Sample Consensus (RANSAC) algorithm closes this gap and excels in removing outliers and accurately detecting cylindrical shapes of tree trunks. The basic methodology of the RANSAC algorithm involves applying ellipses to incomplete datasets and fitting lines to collections of 3D points to solve problems in locating cylinders in range data. We also investigate the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, which is effective in detecting stems and eliminating irrelevant data. DBSCAN divides the data into clusters based on point density and removes regions of low density and noise but requires a minimum number of cluster points. It is effective in identifying and segmenting stems in complex high-density forest stands and complements another algorithm, such as Hough circle fitting, to better remove noise and avoid the impact on stem detection accuracy by the DBSCAN method in some cases. Our analysis highlights the utility of geometric algorithms in detecting trees and improving measurements in point clouds. These algorithms refine the shapes and filter the noise, which contributes to a more accurate estimation of tree parameters. However, each method has its advantages and limitations, with the choice of algorithm depending on specific requirements such as the type of point cloud data, the desired accuracy and the application purpose. In summary, our study provides a comprehensive evaluation of geometric algorithms for tree detection in point clouds and demonstrates the potential for the development of more sophisticated algorithms and methods. These results make an important contribution to forest inventory, especially in the application of terrestrial laser scanning in forestry.

How to cite: Arbain, M., Tuček, J., and Koreň, M.: Tree Detection in Point Clouds Using Geometric Algorithms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22280, https://doi.org/10.5194/egusphere-egu24-22280, 2024.

EGU24-22372 | Orals | BG9.2 | Highlight

ForestMap: The next generation of forest maps - adapting a Nordic success story 

Johan E. S. Fransson, Shafiullah Soomro, Anton Holmström, Mats Nilsson, Jari Salo, Maurizio Santoro, Elif Sertel, Jörgen Wallerman, Cem Ünsalan, and Juris Zariņš

Building on the positive experiences with open forest map data in Scandinavia, it is evident that extending a similar solution globally has the potential to revolutionize forest management and business on a worldwide scale. While forest management in the Nordic countries can certainly be enhanced, the most rapid solution for climate change mitigation involves providing other nations with opportunities akin to those that have benefited the forestry sector in Sweden during the initial stages of digitalization.

In the proposed project, we aim to create a novel hierarchical decision-making system for efficient forest mapping, leveraging a diverse range of remote sensing data sources with varying resolutions. This hierarchical system will be developed using state-of-the-art AI methods, complemented by results from traditional computer vision techniques such as texture analysis, saliency, and probabilistic object representation. A significant strength of the project lies in using the forest data and maps of Sweden and Finland as test beds to benchmark the methodology developed.

We are confident that this project will make substantial contributions to climate change mitigation, biodiversity enhancement, and other societal values. Moreover, it aims to foster the creation of new business models by developing an innovative methodology for the next generation of forest maps. Our vision is to adapt the success story of open forest map data from the Nordic region globally, harnessing the power of advanced AI technology and integrated use of remote sensing and field data.

How to cite: Fransson, J. E. S., Soomro, S., Holmström, A., Nilsson, M., Salo, J., Santoro, M., Sertel, E., Wallerman, J., Ünsalan, C., and Zariņš, J.: ForestMap: The next generation of forest maps - adapting a Nordic success story, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22372, https://doi.org/10.5194/egusphere-egu24-22372, 2024.

The assessment of species diversity in relatively large areas has always been a challenging task for ecologists, mainly because of the intrinsic difficulty to judge the completeness of species lists and to undertake sufficient and appropriate sampling. Since the variability of remotely sensed signal is expected to be related to landscape diversity, it could be used as a good proxy of diversity at species level. It has been demonstrated that the relation between species and landscape diversity measured from remotely sensed data varies with scale. In this talk, I aim at providing a theoretical and emipircal background of the mostly used diversity indices stemmed from information theory that are commonly applied to quantify landscape diversity from remotely sensed data.

How to cite: Rocchini, D.: Feeling the rhytm of Nature: challenges and prospects of biodiversity prediction from space, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1449, https://doi.org/10.5194/egusphere-egu24-1449, 2024.

EGU24-5445 | ECS | Posters on site | BG9.3

Distinguishing natural and planted riparian forests by the Natural Numerical Network and the graph-Laplacian 

Aneta Alexandra Ožvat, Karol Mikula, Michal Kollár, Mária Šibíková, and Jozef Šibík

Our study focuses on identifying and classifying Natura 2000 habitats using Sentinel-2 multispectral data. The Natural Numerical Network is a deep learning algorithm for the classification of complex structures such as plant communities. It is based on the optical information from Sentinel-2 satellite bands and the basic statistical characteristics calculated from that information. Using the Natural Numerical Network, desired areas are classified, and relevancy maps are created. The relevancy map tells us about the relevancy of the classification of the segmented area into the chosen habitat. Our research is putting emphasis on the riparian forests along the Danube River. We construct the mean graph-Laplacian and show its application in distinguishing the natural riparian forests of the Natura 2000 system with high biodiversity from the planted monodominant forests with a similar species composition. The basic idea is that the natural forests are represented by much higher variability of the optical data from satellites than the planted ones. Using the relevancy maps calculated by the Natural Numerical Network, we find the potential Natura 2000 habitat-riparian forest areas, and the mean graph-Laplacian eliminates the planted forests from the relevancy maps by assigning the low or zero values to the areas with low optical data variability.

How to cite: Ožvat, A. A., Mikula, K., Kollár, M., Šibíková, M., and Šibík, J.: Distinguishing natural and planted riparian forests by the Natural Numerical Network and the graph-Laplacian, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5445, https://doi.org/10.5194/egusphere-egu24-5445, 2024.

EGU24-6746 | Posters on site | BG9.3

BOSSE: The Biodiversity Observing System Simulation Experiment for Remote Sensing 

Javier Pacheco-Labrador, Ulisse Gomarasca, Ulrich Webber, Wantong Li, Zayd Hamdi, Daniel Pabon, Daniel Loos, Martin Jung, and Gregory Duveiller

Climate change and human activities jeopardize ecosystems’ biodiversity, functions, and services. However, biodiversity monitoring is resource-intensive and unable to provide the coverage and resolution necessary to understand biodiversity responses to these drivers. Remote sensing can contribute to monitoring plant biodiversity status and change by exploiting the variability of the spectral imagery acquired from space platforms. Still, several gaps must yet be solved regarding what approaches, metrics, sensors, and techniques can provide reliable biodiversity maps. One of the main challenges is the generation of field datasets with the spatial coverages and temporal resolutions necessary to determine the best methods.

To overcome this problem from a theoretical point of view, we have developed BOSSE, a biodiversity observing system simulation experiment. BOSSE simulates dynamic scenes in time where vegetation properties change as a function of meteorological conditions and adopt different spatial patterns. High-spatial resolution scenes can be used to quantify plant functional diversity from plant traits. Moreover, BOSSE can simulate hyperspectral reflectance factors, sun-induced chlorophyll fluorescence, and land surface temperature that are coherent with plant traits of meteorology. Spectral imagery can be generated at different spatial and temporal resolutions, allowing us to test different approaches, metrics, and methods to estimate plant functional diversity.

We have used BOSSE to determine the best approaches to characterize plant functional diversity of large areas, which is a fundamental step prior to assessing the links between remote sensing and ecosystem functions. Additional analyses have compared the capability of different spectral signals to capture plant functional diversity, the role of spatial resolution, and the role of seasonality in those estimates. We expect BOSSE to contribute to solving hypotheses and test methods and help determine what field datasets would be necessary to validate remote sensing biodiversity products.

How to cite: Pacheco-Labrador, J., Gomarasca, U., Webber, U., Li, W., Hamdi, Z., Pabon, D., Loos, D., Jung, M., and Duveiller, G.: BOSSE: The Biodiversity Observing System Simulation Experiment for Remote Sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6746, https://doi.org/10.5194/egusphere-egu24-6746, 2024.

EGU24-8583 | Orals | BG9.3

Advancing Biodiversity Exploration and Habitat Monitoring: Utilizing the NaturaSat Software for ecosystems from temperate lowland wetlands to Arctic tundra vegetation. 

Mária Šibíková, Jozef Šibík, Marek Šlenker, Aneta A. Ožvat, Michal Kollár, and Karol Mikula

Remote sensing plays a crucial role in ecology and nature conservation by allowing for effective monitoring of spatio-temporal changes in ecosystems. The NaturaSat software, developed by a multidisciplinary team of botany fieldwork scientists, nature protection managers, mathematicians, and software developers (Mikula et al., 2021), is a recent tool that focuses on vegetation exploration. This software offers solutions to challenging questions, such as accurately estimating the areas and boundaries of Natura 2000 habitats and tracking their spatio-temporal changes using an evolving curves approach. It also enables the monitoring of biodiversity and habitat quality through the use of a graph-Laplacian function. Additionally, the software utilizes a novel deep learning method called the Natural Numerical Network to classify habitats on the most detailed scale represented by vegetation units.

 

Within this talk, we will present how NaturaSat software has been extensively tested in various habitats, ranging from temperate lowland wetlands along the Danube River to riparian forests, broadleaved deciduous forests, ancient montane woodlands of the Carpathian Mountains, and even the arctic tundra vegetation in the Alaska region. The results have demonstrated the software's capability to accurately identify habitat borders and detect shifts in these borders due to changes in water regimes or climate. Furthermore, it has proven effective in distinguishing between species-rich natural forests and planted forests dominated by the same tree species. The software also enables the classification of habitats and the automatic detection of new habitats in previously undiscovered areas. In conclusion, the NaturaSat software complements detailed ground-based approaches in biodiversity exploration and habitat monitoring. The presented methods can be repeated over long time periods, ensuring temporal consistency, and they offer a cost-effective means of identifying trends in vegetation changes and biodiversity.

How to cite: Šibíková, M., Šibík, J., Šlenker, M., Ožvat, A. A., Kollár, M., and Mikula, K.: Advancing Biodiversity Exploration and Habitat Monitoring: Utilizing the NaturaSat Software for ecosystems from temperate lowland wetlands to Arctic tundra vegetation., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8583, https://doi.org/10.5194/egusphere-egu24-8583, 2024.

EGU24-10104 | ECS | Posters on site | BG9.3

Multitemporal and Multispectral Drone Data for Classifying Tree Species in an Austrian Riparian Forest 

Noah Mihatsch, Michael Lechner, Ardalan Daryaei, Markus Immitzer, and Clement Atzberger

The climate crisis is threatening native forests all over Europe and a change in the composition of species can be expected in the future. Diversity of tree species is one key aspect of resilience against the climatic stress caused by the climate crisis. To maintain one of the last huge floodplains in Europe – the Danube Floodplain – for future generations, it is necessary to monitor the change of the species distribution and the development of eco-systems. Remote sensing is widely used for establishing a constant monitoring of forests, including tree species classification (TSC). Currently, Unmanned Aerial Vehicles (UAVs) offer very high-resolution data together with temporal flexibility and cost efficiency which can be used in the management practice of forests and national parks in particular. However, due to the extensive diversity inherent in different forest types and tree species, the results obtained in the state-of-art research in TSC via very high-resolution optical data cannot be generalised. As there is still a gap in research in the field of TSC in riparian forests, this study aims at filling this gap with preliminary results of TSC in a riparian forest, namely the Danube Floodplain National Park (Austria). Therefore, three drone flights were conducted during October, September, and May spanning the years 2021 and 2022 together with a simultaneous collection of reference data in the field. Tree crowns were delineated manually in two different ways: point-buffered and exact delineation of the crown shape. Multiple object-based Random Forest models were performed, comparing mono- and multitemporal data as well as two different spatial resolutions (3.0 cm and 6.4 cm) and the two different levels of detail of the delineation of tree crowns. Highest Overall Accuracy (OA) for 12 different tree species and one dead wood class could be reached by the multitemporal model at 82.1 % (kappa = 80.8 %) with the higher spatial resolution (3.0 cm) and the exact delineation of the reference data. Producer’s Accuracy (PA) and User’s Accuracy (UA) varied between 50 % and 100 % for different classes. Promising results from this study showed that the presented method can be used for precise monitoring of tree species diversity in the Danube Floodplain National Park. Further improvement could be reached by merging data from different sensors.

How to cite: Mihatsch, N., Lechner, M., Daryaei, A., Immitzer, M., and Atzberger, C.: Multitemporal and Multispectral Drone Data for Classifying Tree Species in an Austrian Riparian Forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10104, https://doi.org/10.5194/egusphere-egu24-10104, 2024.

EGU24-12380 | ECS | Posters on site | BG9.3

Opportunities and limitations of hyperspectral and multispectral data fusion for monitoring biodiversity 

Nikolina Mileva, Marc Paganini, and Diego Fernandez

The increasing number of hyperspectral sensors have opened the path to more widespread application of imaging spectroscopy. While hyperspectral data is currently not available on a global scale, the upcoming SBG and CHIME missions will fill this gap collecting images with a ground sampling distance of 30m over the globe offering unprecedented abilities to observe biological diversity on Earth. Coupling this data with existing multispectral time series can give us a glimpse into how biodiversity has changed in the last decades marked by the sixth mass extinction. The purpose of our research is to explore the use of hyperspectral and multispectral data for measuring biodiversity indicators, determine their limitations in terms of spatial and spectral resolution and how these affect biodiversity measures. We calculate alpha and beta diversity using the recently developed biodivMapR R package with a set of images from Sentinel-2 and EnMAP. Subsequently, several methods representing the state of the art in fusion are selected to create a compound product with higher spatial and spectral resolution. This new product is used as an input for calculating alpha and beta diversity elaborating on the discrepancies and similarities with the previous estimates. To validate the results, we make a link between “spectral” diversity and the actual number of species observed taking into account in-situ data of well studied biodiversity supersites. The outcome of this study will help us evaluate the feasibility of creating a new Earth observation based product for monitoring biodiversity.

How to cite: Mileva, N., Paganini, M., and Fernandez, D.: Opportunities and limitations of hyperspectral and multispectral data fusion for monitoring biodiversity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12380, https://doi.org/10.5194/egusphere-egu24-12380, 2024.

The agricultural landscape of Central Europe underwent big changes over the last decades, especially between the 1960s and 1980s. Through measures like land consolidation, collectivization and profit-driven agriculture policies the structure of rural areas has changed significantly which affected not only farming activity but also led to the destruction of species habitats and wildlife corridors. In order to quantify these shifts in landscape structure and their impact on biodiversity, we analyzed historic CORONA spy imagery from the years 1965 and 1975 together with digital orthophotos from current years in the German federal state of Saxony. Specifically, we used the presence and absence of agricultural boundaries and field margin strips as a proxy for landscape heterogeneity. By applying a feature detection algorithm, we found a significant decline of field boundaries in all of Saxony between 1965 and 1975 which has either not or partly recovered until the present day. The findings of the analysis are considerably affected by the differences in data quality which complicates comparison between time steps. Research is ongoing with focus on optimizing the workflow and minimizing detection errors as well as assessing ecological records to link the findings to biodiversity trends.

How to cite: Kosczor, E.: Mapping changes in structural diversity of the agricultural landscape of Saxony using historical remote sensing data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13040, https://doi.org/10.5194/egusphere-egu24-13040, 2024.

Earth observation is a key component for the establishment of biodiversity monitoring systems. The increasing number of instruments acquiring information on Earth surface provides opportunities to assess and monitor various properties of vegetated ecosystems, including vegetation biochemical and biophysical traits and associated processes such as photosynthesis, growth and adaptation to environmental stress. Multiple approaches have been developed during the past decades to link forest taxonomic diversity with remotely sensed information, with varying degrees of success. Statistical metrics directly derived from the vegetation reflectance such as spectral variance have shown limitations for the estimation of taxonomic diversity. One reason is that factors intrinsic and extrinsic to vegetation influence reflectance and contribute to this variance. On the other hand, this reflectance can be converted into optically effective plant properties (optical traits) using statistical methods (e.g. spectral transformation, machine learning or spectral indices) or physical methods (e.g. physical model inversion) applied to optical imagery, with an objective to reduce the influence of extrinsic factors. The spatial heterogeneity of a set of optical traits may then be used as a relevant proxy for vegetation diversity. Statistical methods are computationally efficient, but lack generalization ability, while physical approaches show better potential for generalization ability, but show limitations when applied on complex systems. Moreover, the set of optical traits accessible from optical data varies with sensor characteristics: new imaging spectroscopy missions expand the range of variables for which quantitative assessment is possible compared to multispectral imagery.

We introduce a framework taking advantage of physical modelling to assess a set of vegetation traits then used to feed remotely sensed diversity mapping techniques in the context of forest ecosystems. This approach intends to convert the optical information on a physical basis, in terms of vegetation traits related to structural, compositional and functional properties prior to computing diversity metrics. Physical modeling contributes to minimizing the influence of factors extrinsic to vegetation on optical traits, as a way to improve the generalization ability of existing frameworks taking advantage of Earth observation through space and time. To illustrate it, we used the model PROSAIL to assess Leaf Area Index, leaf chlorophyll content, equivalent water thickness and leaf mass per area from imaging spectroscopy acquired over forested areas. The method implemented in the R package biodivMapR was then applied to compute various diversity metrics from these vegetation biophysical properties, including α- and β-diversity metrics usually obtained from species inventories in ecological applications. We illustrate this framework with data acquired over different sites and with various optical sensors, including airborne and spaceborne imaging spectroscopy, and discuss current limitations.

How to cite: Féret, J.-B.: Mapping forest biodiversity from optical imagery: a plant trait-based method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13456, https://doi.org/10.5194/egusphere-egu24-13456, 2024.

Dwarf-shrubs patterns of Sarcopoterium Spinosum (SS) cover wide Mediterranean landscapes. Following Global warming SS is suspected to further spread into areas of disturbed ecosystems due mainly to fires, and into fields abandoned due to decreasing water resources. On one hand, SS patterns may decrease runoff and soil erosion and allow use of these woody shrubs for heating and cooking, but on the other hand, they decrease primary productivity, and slow down natural succession processes and ecological recovery. Despite their wide current extents, their potential future  expansion, and their ecological implications, mapping SS patterns and monitoring their spatio-temporal change received relatively  limited  attention by the environmental remote sensing community. Part of the explanation concerns difficulties in detecting  these plants during the winter due to their spectral similarity to other green plants  and their spectral resemblance  to bare soil and other dry plants  in their vicinity during the summer.

At the Landsat TM resolution (30 meters) there were developed phenological algorithms which allow estimation of dwarf-shrubs coverage based on their slower drying rates compared with herbaceous growth. This method is applicable  in areas  characterized by short rainy season and long dry and hot summer. However, such  mid-resolution phenological techniques are highly affected by the selection of appropriate dates according to rainfall distribution at the end of the winter, and has limitations concerning the density and the size of  individual dwarf-shrubs’ patches. Global and wide regional land cover mappings utilizing diverse sensors in the VIS/NIR/SWIR and SAR spectral regions processed by  different spectral/temporal and spatial techniques disregarded  dwarf-shrubs in general and Sarcoproterium Spinosum in particular.  Yet, there is a possibility that some areas of this cover category are implicitly  included in the broad “shrubs” classification.

High spatial resolution hyperspectral imagery was found to allow detection of few dwarf-shrub species in general and SS in particular. However, hyperspectral  mapping at the required spatial resolution is still expensive and does not allow frequent mapping of wide areas. The current growing availability of high resolution RGB and NIR imagery  (e.g., WorldView) may be instrumental for detecting dwarf-shrubs and SS. The use of spectral indices such as NDVI and  red-edge, of color transformations (such as HIS) and of texture techniques had shown  potential  for serving this purpose. Recent implementation of Deep learning methods  on RGB 30 cm. resolution orthophotographs showed good potential  for discriminating SS patterns at three densities.

During my presentation I will review the different techniques as implemented along a semi-arid to arid gradient at the South-Eastern corner of the Mediterranean Sea. Their results and  limitations will be discussed together with methodological improvements required for achieving better regional spatio-temporal coverage of the SS phenomenon and by that contribute to better understanding their wide regional ecological  implications in the context of Climate Change and Desertification.

How to cite: Shoshany, M.: Mapping and monitoring the wide spread of Sarcoproterium Spinosum across the Mediterranean Basin: Challenges and Opportunities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14141, https://doi.org/10.5194/egusphere-egu24-14141, 2024.

EGU24-15741 | ECS | Orals | BG9.3

Monitoring Grassland Functional Diversity in a Semi-Arid Ecosystem using Multi-Source Close-Range Remote Sensing 

Vicente Burchard-Levine, M.Pilar Martín, Rosario Gonzalez-Cascon, Victor Rolo, Alejandro Carrascosa, Héctor Nieto, Lucia Casillas, David Riaño, and Gerardo Moreno

Vegetation diversity has been found to influence ecosystem function and provide essential ecosystem services, intimately linked to societal wellbeing. However, the relationship between vegetation diversity and function is very complex and still not fully comprehended at different spatial-temporal scales. Indeed, in recent years, remote sensing has shown great promise to better monitor plant diversity at different scales, most commonly through the Spectral Variability Hypothesis (SVH), which links spectral diversity to plant diversity. However, there is still some debate over the generality of the SVH, especially in semi-arid grasslands, which tend to be less studied even though they dominate the trend and inter-annual variability of global water and carbon fluxes. This study focused on examining the relationship between functional diversity (FD) and optical traits of the herbaceous understory of a Mediterranean tree-grass ecosystem (TGE) using field spectroscopy and high resolution imagery from unmanned aerial vehicles (UAVs). Multiple field campaigns were performed from 2021 to 2023 in the Majadas de Tiétar experimental station located in Western Spain to collect in-situ measurements of plant traits (e.g. specific leaf area (SLA), chlorophyll content (Cab)), diversity metrics (functional dispersion (Fdis), Rao’s entropy (Qrao)), hyperspectral field spectroscopy (ASD Fieldspec® 3 portable spectroradiometer) and high-resolution visible-near-infrared (VNIR) and thermal infrared (TIR) imagery onboard UAVs. By applying partial-least-square regression (PLSR) models, high correlations were observed between field spectroscopy and plant traits (r2 > 0.7) with SWIR bands having the most weight in the predictive power of these empirical models, perhaps related to water being the principal limiting factor for herbaceous plants in these semi-arid conditions. By contrast, in-situ PLSR models showed little/no relation to plant diversity metrics (r2 < 0.1). However, preliminary results from the UAV images showed that the spatial heterogeneity of NDVI and land surface temperature (LST), quantified through Qrao using a 5 x 5 pixel window, were positively related to in-situ diversity metrics such as Fdis. Indeed, Qrao based on LST was found to have a more significant relationship to Fdis (p-value < 0.05) compared to Qrao based on NDVI (p-value > 0.05). While the remote sensing of plant functional diversity has concentrated on shortwave reflectances, the use of TIR imagery has large potential as it is more directly related to ecosystem function with its capabilities to act as a proxy for plant transpiration and inform on water use efficiency (WUE). This work is step forward to better understand the optical-diversity relationship in a semi-arid grassland using data acquired at different scales but also from different sources ranging from in-situ hyperspectral measurements to high-resolution TIR imagery. 

How to cite: Burchard-Levine, V., Martín, M. P., Gonzalez-Cascon, R., Rolo, V., Carrascosa, A., Nieto, H., Casillas, L., Riaño, D., and Moreno, G.: Monitoring Grassland Functional Diversity in a Semi-Arid Ecosystem using Multi-Source Close-Range Remote Sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15741, https://doi.org/10.5194/egusphere-egu24-15741, 2024.

EGU24-15919 | ECS | Orals | BG9.3

Innovative Methods in Grassland Monitoring: Integrating UAV Data for Ecosystem Assessment 

Clara Oliva Gonçalves Bazzo, Bahareh Kamali, Murilo Vianna, Dominik Behrend, Hubert Hueging, Farshid Farshid Jahanbakhshi, Inga Schleip, Paul Mosebach, and Thomas Gaiser

Grassland ecosystems play a vital role in biodiversity and carbon sequestration, but assessing these ecosystem services accurately is challenging due to their inherent spatial and temporal variability. Conventional field-based methods are often labor-intensive and may not capture this heterogeneity effectively. Recent progress in assessing grassland ecosystems has utilized a combination of structural and spectral data from Unmanned Aerial Vehicles (UAVs), showing promise for a thorough understanding of vegetation behavior. However, this method frequently overlooks an important factor — the horizontal variability within the vegetation, which significantly influences the precision of estimating plant characteristics, particularly in diverse ecosystems. Our study aims to fill this gap by incorporating texture analysis, a critical but often overlooked element in UAV-based assessments. Our research explored the potential of integrating various UAV-derived features to improve the estimation of above-ground biomass (AGB) and species richness in heterogeneous grasslands, key indicators of ecosystem health and productivity. This research investigated the efficacy of combining UAV-derived canopy height, multispectral data, and texture features for AGB and species richness estimation. The study was conducted in a heterogeneous wet grassland ecosystem, using a UAV equipped with multispectral sensors to capture high-resolution imagery. The imagery was processed to extract a range of features, including spectral indices, canopy height models, and textural information using Grey Level Co-occurrence Matrix methods. These features were then used to develop predictive models for AGB and species richness using advanced machine learning techniques, including Random Forest. Model performance was evaluated based on their predictive accuracy and ability to handle the spatial heterogeneity of grassland ecosystems. The study found that models integrating texture analysis with traditional spectral and structural data significantly improved predictive accuracy. For AGB estimation, the best models achieved an R² value of up to 0.84, with a relative root mean square error (rRMSE) of 26.58%. In predicting species richness, the most effective models reached an R² of 0.54 and a relative rRMSE of 31.95%. These results indicate an enhancement in estimation precision compared to models using traditional structural and spectral data types alone. This research demonstrated that UAV-based remote sensing, combined with a fusion of spectral, structural, and textural data, can improve the assessment of grassland characteristics such as AGB and species richness. The findings underscore the potential of integrated UAV-derived datasets in ecological monitoring and highlight the importance of advanced data processing and machine learning techniques in environmental research. This approach offers a promising avenue for more effective grassland management and conservation strategies, contributing to a deeper understanding of ecosystem dynamics.

How to cite: Gonçalves Bazzo, C. O., Kamali, B., Vianna, M., Behrend, D., Hueging, H., Farshid Jahanbakhshi, F., Schleip, I., Mosebach, P., and Gaiser, T.: Innovative Methods in Grassland Monitoring: Integrating UAV Data for Ecosystem Assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15919, https://doi.org/10.5194/egusphere-egu24-15919, 2024.

EGU24-16335 | Orals | BG9.3

Connecting spectral and functional diversity at the leaf-level in Mediterranean herbaceous species: the DiverSpec monoculture experiment 

M. Pilar Martín, Rosario Gonzalez-Cascon, Vicente Burchard-Levine, Lucía Casillas, Victor Rolo, and David Riaño

Grasslands and tree-grass ecosystems play a fundamental role in the global carbon balance and the subsistence of the population in vulnerable regions. Protecting the entire range of ecosystem services provided by grasslands require assessing the influence of management and environmental drivers on these services and the role of biodiversity in their provision. Remote sensing offers tools that can help monitoring and better understand biodiversity in grasslands and its relationship with ecosystem function. The spectral diversity hypothesis suggests that spectral variations can be related to functional and phylogenetic diversity. Thus, different authors estimate foliar functional traits and validate the relationship between spectral optical properties of vegetation and functional diversity providing a powerful tool to understand the different roles species play in their environments. These studies mainly focus on forests, while functional characterization of grassland ecosystems is still limited (specially at leaf level) and key leaf traits, such as specific leaf area or cellulose and lignin content, remain underexplored. The phenology of grasslands has been also largely overlooked in biodiversity studies due to the challenges associated to field sampling. As a result, most datasets are collected only over short periods and do not represent the seasonality of the species and associated functional and spectral changes.

In this study, a monoculture experiment was implemented with 7 herbaceous species, including C3 and C4 grasses, legumes and forbs typical of Mediterranean grasslands to assess the capacity of hyperspectral data to detect intra- and inter-specific differences in foliar functional traits of pasture species at different phenological stages, and their plastic responses to water shortage. The experiment included 42 plots (1.5x1.5 m), with six replicates of every other species, organized in two blocks. Water regimes were manipulated to simulate typical versus water stress conditions. Leaf level reflectance was measured using a full range spectroradiometer ASD Fieldspec® 3 coupled with a plant probe and leaf clip with internal light source. Five regular measurements were carried out following the main phenological periods in the spring-summer growing season (April to June) 2022. Besides the reflectance data, key functional traits were also measured including leaf water content (LWC in g/cm2), leaf dry matter content (LDMC in %), specific leaf area (SLA in cm2/g), and chlorophyll and carotenoids concentrations (Cab and Car in mg/g). The potential of optical information to estimate foliar functional traits was explored using empirical models based on Partial Least Squares Regression (PLSR) techniques. Best fits (higher R2 and lower normalized root mean squared error (nRMSE)) were achieved for LWC (R2 = 0.94, nRMSE = 0.05) and Ca/Cb (R2 = 0.89, nRMSE = 0.07), with slightly lower values for SLA (R2 0.71, nRMSE = 0.10). To investigate the seasonal dynamics of functional traits and spectral diversity, hierarchical clustering of the analyzed species based on observed and estimated foliar traits was calculated. Results revealed clear effects of phenology on the spectral diversity and the significant role of the LWC. This variable is not typically used for the functional characterization of herbaceous species.

How to cite: Martín, M. P., Gonzalez-Cascon, R., Burchard-Levine, V., Casillas, L., Rolo, V., and Riaño, D.: Connecting spectral and functional diversity at the leaf-level in Mediterranean herbaceous species: the DiverSpec monoculture experiment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16335, https://doi.org/10.5194/egusphere-egu24-16335, 2024.

EGU24-16688 | ECS | Posters on site | BG9.3

Predicting forest structural complexity in Europe through an integration of radar, optical data and machine learning 

Gonzalo Oton, Marco Girardello, Guido Ceccherini, Matteo Piccardo, Mark Pickering, Agata Elia, Mirco Migliavacca, and Alessandro Cescatti

Forests stand as vital components of the Earth's biosphere, comprising a significant fraction of the world's terrestrial biomes. The management of forest ecosystems is pivotal in addressing environmental challenges, including the development of climate mitigation strategies. The three-dimensional architecture of forest ecosystems, defined by canopy height, height heterogeneity, and horizontal canopy distribution, is known to be a major driver of ecosystem processes. Thus, quantifying structural heterogeneity of forest ecosystems is fundamental for predicting their resilience and ability to moderate environmental fluctuations.

Historically, comprehensive data on forest structure at a macro scales have been scarce. However, advancements in spaceborne Light Detection and Ranging (LiDAR), particularly through the Global Ecosystem Dynamics Investigation (GEDI) mission, have revolutionized our capacity to monitor forest structure.

In this study, we integrated various earth observation datasets, including Synthetic Aperture Radar (SAR), along with optical imagery, within a machine learning framework to predict structural complexity. We constructed a forest structural complexity dataset encompassing Europe, including eight structural metrics that characterize the three-dimensional nature of forests. The metrics encapsulate the variability, dispersion and asymmetry in vertical stratification, the dispersion and volume of the canopy in the horizontal plane. Our findings elucidate the multifaceted nature of the structural complexity forest ecosystems. Furthermore we provide a prognostic framework for monitoring changes in this key ecosystem property. By providing a comprehensive picture of forest structural complexity across Europe, our study offers tangible support for the development of effective forest management strategies and climate change mitigation plans.

How to cite: Oton, G., Girardello, M., Ceccherini, G., Piccardo, M., Pickering, M., Elia, A., Migliavacca, M., and Cescatti, A.: Predicting forest structural complexity in Europe through an integration of radar, optical data and machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16688, https://doi.org/10.5194/egusphere-egu24-16688, 2024.

Context :

This work is part of a doctoral thesis being carried out on the marshes of the regional natural park of Brière (France, Loire-Atlantique, 44). The main purpose is to study the changing dynamics of plant formations on the entire sector, in order to enable prospective modeling. The natural park of Brière would like to set up a Biodiversity Observatory in order to gain a better understanding of the functioning of this fast-changing ecosystem. Field sampling efforts are very costly and time-consuming, and are hampered by difficult access to the extensive marsh areas (over 18 000 hectares). As a result, existing maps are not spatially exhaustive and present a simplification of habitats mosaics, making modeling impossible.

Purposes :

The aim of the study is to (1) map the current distribution of plant communities (2) identify their dynamics through the historical evolution of potential habitats in relation with hydrology, invasion by trees, agro-pastoral and traditional practices and (3) deduce the marsh's capacity for stability and resilience in the coming decades.

Materiel and methods :

The first step involves an hyperspectral and LiDAR aerial survey across the whole sector. It is completed by the acquisition of a World View 3 scene, in order to assess the contributions of the different types of data. At the same time, floristic field surveys were carried out to characterize the textural and spectral variability of the images. Automatic classification methods were then applied.
Based on the results obtained from the mapping, we can assess the quality of the biodiversity in the Brière region. Indeed, plant formations differ in terms of stability and resilience.

Main results :

A complete mapping of the 18 000 hectare of marshland has been carried out, according to the Eunis declination, at a spatial resolution of 1.30 meter. This includes areas not yet mapped. In addition to these classic communities, we have also added invasive exotic species, which are very present in the Brière region. The relation between biodiversity loss and human factors from the Middle Ages to the present day has been established.
Standardized data acquisition and processing methods have been set up to enable long-term changes monitoring.

How to cite: Lafitte, T.: Remote sensing for mapping Natura 2000 habitats in the Brière marshes (France, Loire-Atlantique, 44) : setting up a long-term monitoring strategy to understand changes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17576, https://doi.org/10.5194/egusphere-egu24-17576, 2024.

EGU24-17909 | ECS | Posters on site | BG9.3

PRISMA Hyperspectral images for Tree Cover classification with Machine Learning algorithms a comparison with Sentinel-2  

Eros Caputi, Gabriele Delogu, Alessio Patriarca, Miriam Perretta, Lorenzo Boccia, and Maria Nicolina Ripa

Remote sensing (RS) images are fundamental for earth observation and for the analysis of land cover and land cover change providing useful information for agroforestry planning and management. Multispectral data are the most common, such as those provided by the Sentinel-2 satellite, which inherits the legacy of the Landsat satellite. More recently, images from the Italian PRISMA satellite, which provides hyperspectral images, have opened new perspectives in land analysis due to an improved spectral resolution. The study area is situated in the Lazio region (Italy), it was selected for the presence of homogeneous and extensive wooded surfaces of large forest areas and orchards.  In this study an evaluation and a comparison of the results of Tree Cover classes classification obtained using images from different sources has been carried out. The PRISMA and Sentinel 2 images have been downloaded and preprocessed for comparison. The classification based on advanced machine learning techniques was carried out and the results have been compared by evaluating the achieved accuracy metrics with the different images. The study showed that the advantages represented by the higher spectral resolution are at least partially offset by the lower spatial resolution of PRISMA images. Due to the short time since the beginning of the PRISMA mission and the limited availability of images, the study represents one of the early examples of applying the potential of the PRISMA satellite.

How to cite: Caputi, E., Delogu, G., Patriarca, A., Perretta, M., Boccia, L., and Ripa, M. N.: PRISMA Hyperspectral images for Tree Cover classification with Machine Learning algorithms a comparison with Sentinel-2 , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17909, https://doi.org/10.5194/egusphere-egu24-17909, 2024.

The global biodiversity crisis emphasizes the importance of diversity monitoring to examine ecosystem stability and resilience, including regeneration capacity. As a critical driver of change in tropical mountains, landslides alter the structure, composition, and function of landscapes. One possibility to study the large-scale causes and consequences of landslides on diversity is to use remote sensing to characterize ecosystem traits and functions at several spatial and temporal scales. An increasing availability of satellite-borne hyperspectral offers the possibility to capture morphological and physiological traits of vegetation to characterize functional diversity in areas affected by landslides. Using hyperspectral data to characterize functional diversity often involves the removal of bare soil to eliminate background reflectance. Given that landslides of different ages contain a mixture of vegetated and bare soil pixels, the challenge is to incorporate the latter into image processing, and ultimately into metrics that provide an integrative functional characterization of areas undergoing succession. We define landscape diversity as the structural, functional, and historical characteristics of ecosystems and may be useful to expand functional diversity monitoring beyond purely vegetated areas. Using a historical landslide database and the novel PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral data we addressed two questions to assess the role of landslide history on landscape diversity. First, do areas with different landslide histories exhibit distinct functional trait and landscape diversity patterns? Second, which landscape traits distinguish landslides of different recovery stage considering landslide size, age, frequency, and reactivation status?

To address these two questions, we derived two sets of variables that represent landslide history and landscape diversity. To represent landslide history, we processed historic and current remotely sensed data from the Sierra de Las Minas (SLM) mountains in eastern Guatemala to create a geodatabase that includes landslide inventories (1973 – 2021) in which each landslide is characterized by age, size, and shape. In ArcGIS Pro we identified degree of overlap among landslides from all inventories to mark landslide reactivation. Specifically, a model identifying landslide overlap distinguished landslides that occur once from landslides that occur repeatedly. To represent landscape diversity, we processed PRISMA data to create functional indices representative of vegetation and soil traits across the SLM. To include areas across all stages of succession, both traits of vegetation and bare soil three separate indices were created. A first masked out bare ground, a second masked out vegetation, and a third version combined the vegetation and bare ground. Finally, we examined the relationship between landslide history and the three versions of functional indices using geographic Random Forest algorithm. The outcomes of this study could reveal lasting structural, compositional, and functional impacts of landslides in tropical mountains, which serve as critical safeholds for biodiversity and ecosystem services during drastic global change.

How to cite: Kilgore, A.: Landslide history shapes landscape diversity: Applying hyperspectral data for functional diversity monitoring of tropical mountainous ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17915, https://doi.org/10.5194/egusphere-egu24-17915, 2024.

This research investigates the spatiotemporal landscape characteristics within the Mediterranean Basin in the context of climate change in the South-Eastern Mediterranean. Desert-fringe ecosystems in general and the arid margins of Mediterranean regions had undergone numerous cycles of climate and human disturbance which built their resilience. Following current climate change indications, fundamental questions concerning changes in climate conditions and their corresponding surface changes are raised on one hand, there is limited data regarding the spatial distribution of climate parameters and their change in time, and on the other hand, resilient ecosystems may “absorb” climate changes to a certain extent.

Landsat TM offers 35 years, from 1986 to 2021, of monitoring surface conditions. When used in conjunction with corresponding climatic data there is an opportunity to investigate impacts of climate change at desert margins and to better understand relationships between climatic conditions and surface conditions at these important zones. During the time frame of these years, there had been an extreme drought period. Thus, an important aspect of our study concerns the response of Mediterranean ecosystems to such an anomaly.

The research area consists of the climatic gradient between the Judean mountains and the Negev Desert (Beit Shemesh to Lehavim). This area is characterized by notable variations in both precipitation and temperature over a relatively small geographic area and represents diverse desert-fringe ecosystems.

Surface properties are represented by a time series of NDVI corresponding to relative shrubs and dwarf shrubs cover and their photosynthetic activity. Even though numerous remote sensing studies analyzed relationships between spectral vegetation indices and climatic parameters, the uniqueness of this study concerns the differentiation between Primary Productivity (PP) representing the total new herbaceous growth and new shrub leaves at the end of the winter and Woody Growth (WG) representing the greenness of the shrubs at the end of the summer. The PP is obtained as the difference between the end of the winter and the end of the summer NDVI, and WG is represented by the NDVI at the end of the summer. These vegetation forms are affected not only by the immediate yearly rainfall but also by the long-term balance of the water accumulated in the subsoil.

The main goals of the present work are to study the impact of climate shifts on PP and WG patterns across a climatic gradient, spanning three and a half decades and to assess the changes in the geographical extent of aridity based on the PP and WG time series, with a particular focus on locations that had experienced vegetation loss and transitioned to bare soil.

Examining both PP and WG through a temporal lens sheds light on dominant long-term trends in the ecosystem. We suggest that despite fluctuations in the vegetation conditions and their NDVI following droughts and other climatic changes, no definitive northward migration of aridity could be confirmed.

How to cite: Roitberg, E. and Shoshany, M.: Primary Productivity and Woody growth: a 35 years Landsat TM NDVI time series investigation across desert-fringe in the south-eastern Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18067, https://doi.org/10.5194/egusphere-egu24-18067, 2024.

EGU24-18298 | ECS | Posters on site | BG9.3

Benefits of PRISMA hyperspectral data for tree species classification in an area of high forest biodiversity 

Gabriele Delogu, Eros Caputi, Miriam Perretta, Alessio Patriarca, Maria Nicolina Ripa, and Lorenzo Boccia

The Serre Regional Park in the south of Italy (lat. 38.55, long. 16.35) extends over an area of 17900 hectares, largely covered by forests with a high level of biodiversity. The forest cover is mainly composed of about 15 tree species. This type of area is a natural laboratory for experimenting with forest classification techniques. Indeed, this work aimed to test how to use remote sensing (RS) hyperspectral data combined with innovative AI-based classification techniques to classify forest tree species. The potential of RS for monitoring agricultural and forestry conditions is enhanced by the wealth of information provided by hyperspectral imagery (HSI) and new classification techniques. HSI derived from recent satellite missions (e.g. PRISMA or EnMAP) provides information in multiple bands, from visible/near infrared (400-1010nm) to shortwave infrared (920-2505nm). In addition, the last decade has seen renewed interest in Deep Learning (DL) methods. In particular, convolutional neural networks (CNN) have been widely used in the analysis of images.

The study area includes the Park and corresponds to an acquisition of 900 km2 of the PRISMA satellite (taken in July 2023). The PRISMA L2D level cube (Cube 1) used in this study was first processed, for format conversion and georeferencing improvement of the image, with a Python script developed by the authors (www.github.com/LarpUnina/PrismaTool). Next, two different techniques were used to reduce the dimensionality. A second cube (Cube 2) was obtained using a band selection operation and a third cube (Cube 3) was obtained using a PCA technique. For the next classification step, both cubes were used as input. Specifically, a Convolutional Neural Network was selected to classify the data using the open source AVHYAS plugin in the Qgis environment. Ground truths were derived from four SAC site plans provided by the Park Authority, covering approximately 9000 hectares, and were split (70 - 30 %) both to train the network and to test the results. The classes chosen for the classification task includes the most common tree species in the Park area: chestnut (Castanea sativa), larch pine (Pinus nigra), alder (Alnus glutinosa), beech (Fagus sylvatica), silver fir (Abies alba), oak (Quercus ilex) and poplar (Populus alba).  

Cube 2 gave better results than Cube 3 as input data with an OA higher than 90%. The best results with F1 around 90% among tree species were obtained for Fagus sylvatica, Abies alba and Castanea sativa. Populus alba was the species with less accurate results. HSI contributes to a better definition of the trends of the spectral signature of trees and makes it possible to distinguish even between similar species.

How to cite: Delogu, G., Caputi, E., Perretta, M., Patriarca, A., Ripa, M. N., and Boccia, L.: Benefits of PRISMA hyperspectral data for tree species classification in an area of high forest biodiversity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18298, https://doi.org/10.5194/egusphere-egu24-18298, 2024.

EGU24-19757 | Orals | BG9.3

Towards nation-wide individual tree carbon sink and biodiversity mapping utilizing high performance computing 

Eetu Puttonen, Juha Hyyppä, Matti Hyyppä, Xiaowei Yu, Juho-Pekka Virtanen, Mariana Campos, Arttu Kivimäki, and Yunsheng Wang

There exists an urgent need towards forest value chain optimization on societal level. Effective policy making is required to reduce effects of global climate change and or to improve yields in forestry. Unfortunately, these two ecosystem services are competing and even conflicting with each other. To succeed in their joint optimization, precise carbon intake and water balance estimates in different biomes are crucial and require new tools for the task.

Forest data are typically collected with forest inventories. These inventories provide the fundamental information for all decision-making in society and industry that are relevant to human interventions, including harvest planning. Nordic countries have long performed forest inventories on a national level to estimate the country-wide forest averages with area-based inventories (ABA) and at stand level relying on airborne laser scanning (ALS). Current ABA techniques are limited in their spatial resolution and can be improved by focusing on individual tree level. Individual tree level mapping allows to focus not only on the wood material volumes, but also to their quality and health. Computation of this information, especially over wide geographic areas, is a significant computational and data management challenge and requires high-performance computing.

Our goal is to develop the missing mapping technology and demonstrate this in Finland where we will automatically count and characterize all five billion dominant and co-dominant forest trees. We will do this by merging already existing laser scanning technologies on different scales, by developing novel methods as needed, and finally implementing them in the EuroHPC LUMI supercomputer. Each tree will be individually segmented and imputed with wood quality information. All trees and their parameters are collected into the “Metsäkanta” database for interactive mapping and Digital Twinning applications.

We will further enhance the database by computing the CO2 sink potential for each detected tree. The CO2 sink potential is modelled from dense spatiotemporal in-situ laser scanning references collected from individual trees. The results are then imputed to all trees. The outcome of these efforts will be a Digital Forest Replicate (DFR) at individual tree level. The DFR combines the information of individual tree wood quality, growth potential, and near real-time carbon sink reporting. This allows improved country-level carbon stock estimates.

How to cite: Puttonen, E., Hyyppä, J., Hyyppä, M., Yu, X., Virtanen, J.-P., Campos, M., Kivimäki, A., and Wang, Y.: Towards nation-wide individual tree carbon sink and biodiversity mapping utilizing high performance computing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19757, https://doi.org/10.5194/egusphere-egu24-19757, 2024.

EGU24-20068 | Orals | BG9.3

Forest biodiversity mapping based on PRISMA hyperspectral images 

Giovanni Nico and Olimpia Masci

The current availability of hyperspectral images (HS) acquired by the PRecursore Iperspettrale della Missione Applicativa (PRISMA) mission of the Italian Space Agency and the recently launched Environmental Mapping and Analysis Program (EnMAP) mission of the German Space Agency, as well as the planned missions, e.g., the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) of the European Space Agency open unique perspectives for the multi-temporal mapping of forest biodiversity. In this work we use the high spectral resolution of spectral signatures provided by PRISMA images to derive unsupervised maps of vegetation diversity. Study areas are located in the National Parks of Gargano, Alta Murgia, Cilento-Vallo di Diano-Alburni, Appennino Lucano Val D’Agri Lagonegrese and Pollino, all in Southern Italy. Two indexes are used to pre-filter forested areas in HS images: Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). The high spectral resolution of HS images allows to compute the different combinations of NIR and Red bands, for the computation of NDVI, and of NIR and SWIR bands for the computation of NDWI. This gives a more statistical weight to the thresholding of index maps to identify the areas covered by vegetation. The spectral signature profiles at the pixels, selected based on the index maps, are further processed using the Principal Component Analysis to reduce data dimensionality, and clustered using the K-means algorithm. As a result, a map of the vegetation diversity is obtained, with the location of pixels belonging to the different clusters identified by the K-means algorithms. The set of spectral signatures measured at pixels belonging to the same cluster are used to statistically characterize the reflectivity of vegetation.

 

ACKNOWLEDGMENTS

Project carried out using ORIGINAL PRISMA Products - © Italian Space Agency (ASI); the Products have been delivered under an ASI License to Use.

How to cite: Nico, G. and Masci, O.: Forest biodiversity mapping based on PRISMA hyperspectral images, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20068, https://doi.org/10.5194/egusphere-egu24-20068, 2024.

The terrestrial carbon and water cycles can change rapidly in response to extreme events, human management, meteorological drivers, and more. Many established remote sensing-based estimates of terrestrial ecosystem function are not designed to observe such rapid changes. To address this shortcoming, we developed a machine learning (ML) approach trained on eddy covariance measurements to estimate terrestrial carbon dioxide and water vapor fluxes at five-minute intervals using geostationary (“weather”) satellite observations from the Advanced Baseline Imager on the GOES-R satellite series. Our approach, which we call ALIVE (Advanced Baseline Imager Live Imaging of Vegetated Ecosystems), creates a ‘hypertemporal’ view of terrestrial ecosystem functioning over the diurnal cycle and in near-real time.

We will describe the training and testing procedure used to develop ALIVE with a focus on ML model skill and uncertainty estimation. We then compare ALIVE against the historical MODIS eight-day gross primary productivity (GPP) product to demonstrate how ALIVE can estimate the carbon cycle consequences of land management and extreme events to lead to an improved understanding of the carbon and water cycles. Comparisons during seasonal transitions and in response to extreme events including continental-scale wildfire smoke across North America in 2023 highlight the importance of rapid observations of land surface function.

ALIVE is currently limited to the Conterminous United States (CONUS) and surrounding areas. We discuss the steps necessary to expand it, namely the availability of eddy covariance observations across the Americas and opportunities to apply the ALIVE framework to similar geostationary satellites worldwide like the new Meteosat-12 (formerly MTG-I1) which observes Africa, Europe, and parts of western Asia and is currently scheduled to become operational in Spring 2024. We also discuss opportunities to combine ALIVE estimates with other carbon and water cycle products in a remote sensing data fusion framework to help observe terrestrial ecosystems ‘everywhere, all the time’. By quantifying the carbon and water cycle across all of the time scales over which they vary, we hope to improve the ability of satellite remote sensing to understand our changing planet. 

How to cite: Stoy, P., Ranjbar, S., Hoffman, S., and Losos, D.: Estimating terrestrial carbon dioxide and water vapor fluxes from geostationary satellites in near-real time: the ALIVE framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4743, https://doi.org/10.5194/egusphere-egu24-4743, 2024.

We discuss the development of high-resolution (1 km) estimates of terrestrial carbon and water fluxes over the Australian continent by empirical upscaling of a regional network of flux tower measurements (“AusEFlux” v1.1 https://zenodo.org/records/7947265). We detail our ensemble learning approach for estimating the per-pixel epistemic uncertainty in flux predictions.  Our investigations demonstrate that regional or continental upscaling has several advantages over global upscaling, including: the ability to use regionally derived covariable datasets tailored to the regional environmental context; reduced computational constraints allowing for higher-resolution predictions, thus reducing the impacts of sub-cell landscape heterogeneity; ameliorating spatial biases present in global datasets that often have a strong northern hemisphere bias; simpler interpretation of results due the reduced requirement to generalise across vastly different climates, ecosystem types, and plant functional traits; and increased relevance to local stakeholders.  We compare AusEFlux with estimates from nine other products that cover the three broad categories that define current methods for estimating the terrestrial carbon cycle. We argue that consiliences between datasets derived using different methodologies offer alternative value for assessing the quality of an upscaling product than any given cross-validation technique, especially where training datasets have spatial or temporal biases that are difficult to mitigate. Lastly, we discuss the benefits of regularly updating our upscaling product to arrive at a systematic monitoring of terrestrial carbon and water fluxes.

How to cite: Burton, C., Renzullo, L., Rifai, S., and Van Dijk, A.: Empirical upscaling of OzFlux eddy covariance for accurate, high-resolution monitoring of terrestrial carbon and water fluxes in Australia., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4823, https://doi.org/10.5194/egusphere-egu24-4823, 2024.

EGU24-5476 | ECS | Posters on site | BG9.4

Mapping evergreen broad-leaved species spatial cover in Italian forests from Sentinel-2 time series using Deep Learning 

Benedikt Hiebl, Gianmaria Bonari, Nicola Alessi, Alessandro Bricca, Giacomo Calvia, Georg Wohlfahrt, Clemens Geitner, and Martin Rutzinger

Climate change-induced shifts, such as prolonged growing seasons and milder winters, coupled with land-use alterations like forest management abandonment, are reshaping species composition across European forests. A significant spread of evergreen broad-leaved species (EVEs) was observed in southern European forests, driven by global change dynamics. However, large-scale spatio-temporal analysis of these changes are lacking and emphasizes the necessity of mapping these dynamics. The TRACEVE projects (“Tracing the evergreen broad-leaved species and their spread”) primary goal is therefore tracking  EVEs' cover, spread and diversity on a national-scale in Italy. As part of the project, this study focuses on satellite remote sensing, Deep Learning, and forest mapping, aiming at creating seamless maps quantifying the current degree of EVEs cover within forests in Italy.

Challenges arise in the transitional zones between evergreen and deciduous forests, where EVEs initially spread in the understory of a deciduous canopy. Tracking EVEs at the edge of their range, where abundance is rare and in mixed forests is therefore difficult. Leveraging Sentinel-2 remote sensing time series covering the full annual phenological cycle addresses this challenge, utilizing leaf-on and leaf-off canopy conditions. Values of species cover derived from ad-hoc forest plot observations in Italian protected areas across a latitudinal gradient serve as initial training data, although the small sampling size (~1000 plots) poses challenges for the generalizability of time series extrinsic regression models, particularly when employing state-of-the-art Deep Learning architectures.

The main aim of the study is therefore the development of a robust, Sentinel-2 based mapping procedure to track EVEs within Italian forests on a national-scale. A remote sensing time series extrinsic regression model based on a Deep Learning architecture for cover degree mapping will be developed. Sentinel-2 annual time series, along with derived indices serve as predictors for the models, while target cover will be derived from the plot observations. The study is built around exploring selected strategies to address the issue of large-scale model generalizability, given a small training sample size, that is recorded within small representative areas scattered across Italy. This entails assessing the efficacy of self-supervised pretraining methodologies applied to remote sensing time series within forested regions, pretraining on a more extensive forest database, and evaluating the viability of training data augmentation techniques.

To validate and evaluate results on a national scale, an independent forest vegetation database containing around 17,000 forest plots sampled across Italy is employed. This extensive dataset enhances the understanding of EVEs' distribution within Italy's diverse forest ecosystems and can further enhance understanding of complex model results.

In conclusion, the study combines advanced satellite remote sensing technologies, Deep Learning methodologies coupled with vegetation plot datasets to map current distribution of EVEs in Italian forests. The findings contribute to the TRACEVE project's future objectives but also offer insights into the challenges and opportunities of Deep Learning models in large-scale forest mapping applications.

Acknowledgements

This research has been conducted within the project “TRACEVE - Tracing the evergreen broad-leaved species and their spread” (I 6452-B) funded by the Austrian Science Fund (FWF).

How to cite: Hiebl, B., Bonari, G., Alessi, N., Bricca, A., Calvia, G., Wohlfahrt, G., Geitner, C., and Rutzinger, M.: Mapping evergreen broad-leaved species spatial cover in Italian forests from Sentinel-2 time series using Deep Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5476, https://doi.org/10.5194/egusphere-egu24-5476, 2024.

EGU24-5488 | ECS | Orals | BG9.4

Global long-term hourly 9 km terrestrial water-energy-carbon fluxes with physics-informed machine learning 

Qianqian Han, Yijian Zeng, Yunfei Wang, Fakhereh (Sarah) Alidoost, Francesco Nattino, Yang Liu, and Bob Su

In this study, we generate a global, long-term, hourly terrestrial water-energy-carbon fluxes, using model simulations, in-situ measurements, and physics-informed machine learning. The soil-plant model, STEMMUS-SCOPE was deployed to simulate land surface fluxes over 170 Fluxnet sites (STEMMUS – Simultaneous Transfer of Energy, Mass, and Momentum in Unsaturated Soil; SCOPE - Soil Canopy Observation, Photochemistry and Energy fluxes radiative transfer model). The model input and output data were then used as training data-pairs to develop the STEMMUS-SCOPE emulator using multivariate random forests regression algorithm. Here, physics-informed machine learning refers to the fact that the emulator was trained and constrained by the physical consistency represented by the soil-plant model. We compared the physics-informed emulator (RF_S-S) with the one trained using only Fluxnet in-situ measurements (RF_in-situ), and found that the land surface fluxes predicted by RF_S-S are less scattered than that by RF_in-situ.

We estimate six variables simultaneously: net radiation, latent heat flux, sensible heat flux, gross primary productivity, solar-induced fluorescence in 685 nm and 740 nm. Results show that RF_S-S can estimate fluxes with Pearson Correlation Coefficient score (r-score) higher than 0.97 for these six variables. The testing result using independent stations (not included for developing emulators) show a r-score higher than 0.94. The feature importance shows that incoming shortwave radiation, surface soil moisture, and leaf area index are top predictor variables that determine the prediction performance. We further explore the performance of RF_S-S in predicting soil heat flux, root zone soil moisture, and leaf water potential, which assist the understanding of ecosystems’ drought responses to climate change.

How to cite: Han, Q., Zeng, Y., Wang, Y., Alidoost, F. (., Nattino, F., Liu, Y., and Su, B.: Global long-term hourly 9 km terrestrial water-energy-carbon fluxes with physics-informed machine learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5488, https://doi.org/10.5194/egusphere-egu24-5488, 2024.

EGU24-6067 | ECS | Orals | BG9.4

Data-Driven Modelling and Comparative Analysis of CO2 Exchanges in Dutch Peatlands via Eddy-Covariance: Ground-calibrated bottom-up model vs airborne flux measurements 

Laurent Bataille, Ronald Hutjes, Bart Kruijt, Laura van der Poel, Wietse Franssen, Jan Biermann, Wilma Jans, Ruchita Ingle, Anne Rietman, Alexander Buzacott, Quint van Giersbergen, and Reinder Nouta

Peat soil degradation in rural areas contributes to 3% of the annual GHG emissions in the Netherlands. In the 2019 climate agreement, the Dutch government set a goal to cut these emissions by 25% by 2030 and initiated a research consortium to achieve this, the Dutch National Research Programme on Greenhouse Gases in Peatlands (NOBV). The NOBV established a GHG monitoring network to map emissions based on the diversity of peat, edaphic conditions, grassland management, and water table management.

Eddy-Covariance plays an essential role in this monitoring network. More than 20 sites are part of it, including permanent and mobile EC towers, while an intensive airborne measurement campaign co-occurs above the studied areas. The first offers a high-temporal resolution monitoring of flux, covering a limited spatial landscape diversity; the latter provides a comparative map embracing the whole heterogeneity of the landscape during short timeslots.

A data-driven bottom-up model will be implemented. This model will focus on considering site-specific factors and characterizing the heterogeneities of the surroundings through footprint analysis. This approach is a progression from previous efforts that compared annual carbon budgets across various locations based on external data sources, which combined remote sensing and hydrological models and implemented a machine-learning framework to gap-fill time series.

Validation of the model includes a comparison with the airborne datasets. Beyond evaluating the quality of the model, the objective is to assess the strengths and limitations of this bottom-up approach when compared to real, independent datasets describing accurately spatial fluctuation of fluxes in heterogeneous landscapes.

The insights are essential for future developments, including models that leverage ground network and airborne measurements in the training process for more robust and accurate CO2 Fluxes modelling.

How to cite: Bataille, L., Hutjes, R., Kruijt, B., van der Poel, L., Franssen, W., Biermann, J., Jans, W., Ingle, R., Rietman, A., Buzacott, A., van Giersbergen, Q., and Nouta, R.: Data-Driven Modelling and Comparative Analysis of CO2 Exchanges in Dutch Peatlands via Eddy-Covariance: Ground-calibrated bottom-up model vs airborne flux measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6067, https://doi.org/10.5194/egusphere-egu24-6067, 2024.

EGU24-6174 | Orals | BG9.4

TRY - Plant Trait Database 

Jens Kattge, Gerhard Boenisch, Benjamin Dechant, Álvaro Moreno-Martínez, Teja Kattenborn, Sandra Díaz, Sandra Lavorel, Iain Colin Prentice, Paul Leadley, Christian Wirth, and the TRY Consortium

The TRY initiative (https://www.try-db.org) was established in 2007 on request from IGBP and DIVERSITAS to develop a joint database of in-situ measured plant traits supporting vegetation modelling and biodiversity research. Based on the mandate from the two initiatives, TRY has received significant contributions of original and integrated datasets from the global research community and achieved unprecedented coverage. The TRY database is regularly updated, and since 2019, data have been publicly available under a CC BY license. 

Trait data from the TRY database are frequently used to map plant traits at global scales. We here provide an overview of the TRY database, briefly summarise trait mapping approaches highlighting caveats, and provide an outlook on upcoming developments in the context of the TRY database.

How to cite: Kattge, J., Boenisch, G., Dechant, B., Moreno-Martínez, Á., Kattenborn, T., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Wirth, C., and Consortium, T. T.: TRY - Plant Trait Database, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6174, https://doi.org/10.5194/egusphere-egu24-6174, 2024.

The Southern U.S. hosts some of the most productive forests globally, playing a crucial role in the U.S. terrestrial carbon sink and contributing significantly to timber production (over 60% in commercial terms). Despite their importance, these forests face frequent hurricanes, leading to substantial harm to the forest structure and related ecosystem functions. This damage extends to the loss of timber supply, heightened wildfire risk, and diminished recreational opportunities. With an increasing frequency of hurricanes in the region, accurately gauging the harm inflicted on these forests becomes imperative for formulating effective protective measures and comprehending the dynamics of forest recovery.

To address this issue, the study aimed to create a data fusion framework utilizing NASA's ICESat-2 and Landsat 8 OLI for mapping large-scale canopy height. This mapping would then be employed to assess the severity of post-hurricane disturbance damage and monitor forest recovery. The research utilized ICESat-2-derived canopy height estimates to calibrate a Random Forest model, predicting and mapping canopy height both before and after Hurricane Michael. The findings revealed that a combination of spectral bands and vegetation indices from Landsat 8 explained a significant portion of the canopy height variation. In areas heavily affected by Hurricane Michael in 2018, the average canopy height dropped from approximately 18 meters to 12 meters in 2019, experienced a slight increase to around 12.5 meters in 2021, and reached about 13 meters in 2022. Despite three years post-Hurricane Michael, the canopy height did not fully recover to pre-disturbance conditions.

This research introduces an innovative approach to enhance forest structure mapping by integrating ICESat-2 and Landsat 8 data streams. The advancement in data fusion methodology provides an opportunity for more precise and detailed assessments of the impacts of natural disasters, such as hurricanes, on forest ecosystems in the Southern U.S

How to cite: Silva, C. A., Hamamura, C., and Klauberg, C.: Machine Learning-driven Fusion of NASA’s ICESat-2 and Landsat 8 OLI Data for Assessing Forest Recovery Following Hurricane Disturbance in Southern Forests, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6928, https://doi.org/10.5194/egusphere-egu24-6928, 2024.

EGU24-7304 | Posters on site | BG9.4

The GCOM-C/SGLI vegetation indices (NDVI, PRI, Chlorophyll Index) from the viewpoint of leaf optical property 

Tomoko Akitsu, Hiroshi Murakami, Atsushi Kume, Hideki Kobayashi, and Roxanne Lai

For long-term vegetation monitoring, satellite-derived vegetation indices (VI) are important in environmental science and, thus, have been generally used. Toward the contribution of long-term monitoring, the Global Change Observation Mission-Climate (GCOM-C) satellite, launched in 2017, provides the VI of a 250 m spatial resolution. This study aims to inform the characteristics of VI derived from the second-generation global imager (SGLI) on GCOM-C from the viewpoint of leaf optical properties and to propose a new VI sensitive to large chlorophyll content. To obtain a leaf-level VI, we measured the leaf reflectance of 25 species (including major plant functional types (PFT): evergreen needle and broad leaves; deciduous needle and broad leaves) using an integrating sphere and a spectral radiometer in summer and autumn. Each ‘leaf-level satellite VI’ was calculated using leaf reflectance and relative spectral response curves of satellite bands.

As for the normalized difference vegetation index (NDVI), NDVI derived from SGLI and Moderate Resolution Imaging Spectroradiometer (MODIS) was similar to each other but has a discrepancy in soil moisture dependency and absolute value[1]. Therefore, we obtained the leaf-level correction factor between SGLI and MODIS, supposing their concatenated use in long-term research. The leaf-level correlation between SGLI NDVI and MODIS NDVI had no dependence on PFT and seasons.

As for the photochemical reflectance index (PRI), we calculated the following ‘leaf-level satellite PRI’: SGLI PRI (using bands 5 and 6), MODIS PRI (bands 11 and 12), MODIS PRI (bands 11 and 1). Each was compared with the ‘leaf-level definition PRI’ calculated from the leaf reflectance at 531 nm and 570 nm wavelengths. As a result, the SGLI PRI (bands 5 and 6) showed the largest R2 with the definition PRI in summer and throughout seasons (R2=0.94 and R2=0.97, respectively). The MODIS PRI (bands 11 and 1) was better correlated with the definition PRI than MODIS PRI (bands 11 and 12) throughout seasons (R2=0.81 and R2=0.43, respectively) but depended on PFT with no correlation in summer (R2=0.0049).

As for the chlorophyll index (CI), the CI using red edges is popular. However, the satellite-based time series of CI using SGLI bands 8 and 9 adjacent to the red edge (673.5 nm and 763 nm, respectively) saturated in small chlorophyll content in early summer. Thus, we investigated which SGLI bands are sensitive to large chlorophyll content using the SCOPE2.0 model[2][3], which combines radiative transfer in plant leaves, canopies, and soil with photosynthesis. In this study, we propose a new SGLI CI sensitive to large chlorophyll content.

 

References

[1] Bayarsaikhaan U. et al. (2022) Early validation study of the photochemical reflectance index (PRI) and the normalized difference vegetation index (NDVI) derived from the GCOM-C satellite in Mongolian grasslands, Int. J. Remote Sens., 43:14, 5145-5172.

[2] Yang P. et al. (2021) SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals, Geosci. Model Dev., 14, 4697–4712.

[3] Van der Tol, C. et al. (2009) An Integrated Model of Soil-Canopy Spectral Radiances, Photosynthesis, Fluorescence, Temperature and Energy Balance, Biogeosciences, 6 (12): 3109–29.

How to cite: Akitsu, T., Murakami, H., Kume, A., Kobayashi, H., and Lai, R.: The GCOM-C/SGLI vegetation indices (NDVI, PRI, Chlorophyll Index) from the viewpoint of leaf optical property, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7304, https://doi.org/10.5194/egusphere-egu24-7304, 2024.

In land surface monitoring, parameters such as the Leaf Area Index (LAI) have been widely studied to describe the canopy structure, foliage cover, crop yield and growth. Accurate and up to date mapping of such biophysical variables at global scale is thus essential for decision makers and agricultural management, as it can help monitor growth conditions and adapt practices. The retrieval of LAI from remotely sensed data is commonly done through the inversion of a combined leaf and canopy radiative transfer model (RTM). These models relate leaf biochemistry and canopy structure to spectral variation. However, the inversion process is computationally expensive and the ill-posed nature of the problem does not ensure a unique LAI retrieval solution. 

The aim of this research is to accelerate LAI retrieval by exploiting machine learning regression algorithms and thus allow more widespread crop monitoring from remote sensing data. We propose a more operational method for large-scale retrieval by emulating the inversion problem with a machine learning algorithm. These models effectively capture non-linearities, proving particularly pertinent in the context of land surface modeling. Our work focuses on the agricultural land in Switzerland, monitored through Sentinel-2 imagery between 2017 and 2023. We use the PROSAIL RTM to simulate the spectral response of Sentinel-2 to various combinations of biophysical and canopy variables, including LAI. A look-up table (LUT) relating leaf and canopy parameters to reflectance spectra is thus generated and used to train the machine learning algorithm. Methods among Random Forest, Neural Network and Gaussian Process Regression are tested and the best model is selected according to the root mean squared error (RMSE) on in-situ validation measurements of LAI of several fields in Switzerland.

To further improve LAI retrieval, we include phenological a priori knowledge to constrain the underdetermined problem. Specifically, we limit LAI values knowing the general relation of crop development with temperature. Accumulated Growing Degree Days (GDD) represent the cumulative temperature above the base temperature of a plant, where no growth occurs. We thus use GDDs to determine phenological macro-stages and constrain LAI values using physically sound assumptions. With the incorporation of phenological constraints, we additionally enable the customization of the model to suit specific crops or seasons, offering a simple solution to increase model performance according to stakeholder needs.

How to cite: Ledain, S., Stumpf, F., and Aasen, H.: Improval of radiative transfer model-based LAI retrieval from Sentinel-2 data through machine learning and phenological constraints, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8869, https://doi.org/10.5194/egusphere-egu24-8869, 2024.

EGU24-8898 | ECS | Orals | BG9.4

Ecosystem mapping with remote sensing images and ground observations 

Valerie Zermatten, Javiera Castillo-Navarro, Diego Marcos, and Devis Tuia

Natural ecosystem maps are a fundamental tool for describing natural habitats. They are used when analysing ecological networks, for studying ecological connectivity, for conservation planning or for the management of ecosystem services. While remote sensing information is commonly employed for mapping land cover, accurate ecosystem maps require going beyond the classification of the physical surface of the land and attempting to distinguish different communities of living beings. New research directions for ecosystem classification leverage species observations created by citizen scientists on social media or crowd-sourcing platforms, profiting from their extensive spatial and temporal coverage and their low acquisition cost.
In this work, we make complimentary use of crowd-sourced data with remote sensing imagery to produce ecosystem maps in alpine areas. Our study area covers the state of Valais, a territory of about 5, 000km2 in southwestern Switzerland. We retrieve nearly 3 million species observations from the Global Biodiversity Information Facility (GBIF) database that includes governmental, crowd-sourced and scientific observations. We combine the species data with high-resolution aerial remote sensing imagery provided by the Swiss Federal Office of Topography swisstopo. As reference ecosystem maps, we follow the European Nature Information System (EUNIS) at a 100m scale. To solve the task of classifying ecosystems, we propose a multi-modal data fusion approach based on a multi-modal transformer architecture. Such a model can handle redundant and complementary information coming from different data sources and provide an explicit and interpretable decision through the visualisation of its attention scores. Through our preliminary experiments, we observed that the unequal distribution of samples between the classes and also the sampling biases negatively impacted the performance of our approach. We are working towards a more informative inclusion of species observation and a more balanced learning of each ecosystem type.

How to cite: Zermatten, V., Castillo-Navarro, J., Marcos, D., and Tuia, D.: Ecosystem mapping with remote sensing images and ground observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8898, https://doi.org/10.5194/egusphere-egu24-8898, 2024.

EGU24-10504 | ECS | Orals | BG9.4

Downscaling Soil Moisture with Simple Machine Learning Ensembles 

Jeran Poehls, Lazaro Alonso, Sujan Koirala, Nuno Carvalhais, and Markus Reichstein

Soil moisture is a key factor that influences the productivity and energy balance of ecosystems and biomes. Global soil moisture measurements have coarse native resolutions of 36km and infrequent revisits of around three days. However, these limitations are not present for many variables connected to soil moisture such as land surface temperature and evapotranspiration. For this reason many previous studies have aimed to discern the relationships between these higher resolution variables and soil moisture to produce downscaled soil moisture products.

In this study, we test four ensembles of simple machine learning models for this downscaling task. These ensembles use a dataset of over 1,000 sites across the US to predict soil moisture at sub-km scales. We find that all ensembles, particularly one with a very simple structure, can outperform SMAP on  a cross-fold analysis of the 1,000+ sites. This ensemble has an average ubRMSE of 0.058 vs SMAPs 0.065 and an average R of 0.639 vs SMAPs 0.562. However, not all ensembles are beneficial, with some architectures performing better with different training weights than with ensemble averaging. Additionally, we find that although general improvements over SMAP are observed, there appears to be difficulty in consistently doing so in cropland regions with high clay and low sand content.

Key Points:

  • Ensembles of simple ML architectures can downscale SWC predictions to sub 1km resolutions
  • Simpler architectures can outperform these ensembles and may be further enhanced with an improved weighting scheme during training
  • Training the models on temporally padded data provides more benefits than drawbacks in terms of overall performance.
  • The top performing ensemble is unreliable on croplands with higher than average clay and lower than average sand content.

How to cite: Poehls, J., Alonso, L., Koirala, S., Carvalhais, N., and Reichstein, M.: Downscaling Soil Moisture with Simple Machine Learning Ensembles, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10504, https://doi.org/10.5194/egusphere-egu24-10504, 2024.

With the advent of a large number of available satellite imagery for classification, several classification techniques have been developed to classify these images over the years. Each classification method has its own set of challenges that restrict its use. Hence, a novel research method is proposed using hybrid techniques (Machine Learning and Deep Learning) and geospatial techniques for enhancing land use and land cover mapping using satellite images. Furthermore, this study will provide insights into integrated agricultural management to achieve the UN’s Sustainable Development goals. This study uses freely available satellite images, i.e., Sentinel 1 and Sentinel 2, for classifying land use/ land cover over an agricultural area in Hissar, India. The major crops grown in this area include paddy, maize, cotton, and pulses during Kharif (summer) and wheat, sugarcane, mustard, gram, and peas during Rabi (winter) seasons. The datasets for the study area were pre-processed using SNAP and ArcGIS software. After pre-processing, a comprehensive feature set is identified consisting of Polarimetric features such as elements of covariance matrix, Entropy/scattering angle (alpha), and traditional geometric features such as shape, size, and area. After this phase, dimensionality reduction techniques (such as PCA) were applied to reduce the no. of features to the most important ones. Utilizing the feature set, a hybrid machine learning model is constructed using ground truth images by fine-tuning the model. For the best split, the test and train ratio is divided into 70:30. Optical (Sentinel 1) and Microwave (Sentinel 2) datasets are fused and the quality of the fused image was evaluated using several fusion metrics, including Erreur Relative Globale Adimensionnelle de Synthese (ERGAS), Spectral Angle Mapper (SAM), Relative Average Spectral Error (RASE), Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Correlation Coefficient (CC). After obtaining the resultant fused image hybrid technique is used for the final classification. The classification accuracy is represented using overall classification accuracy and kappa value. A comparison of classification results indicates a better performance by the hybrid technique with an overall accuracy of 92%.

How to cite: Shakya, A.: Enhancement of Land Use and Land Cover Mapping using Satellite Imagery through Machine Learning Techniques , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10647, https://doi.org/10.5194/egusphere-egu24-10647, 2024.

EGU24-10962 | ECS | Posters on site | BG9.4

Global vegetation dynamics using multiple satellite observations throughout the past four decades 

Shaopeng Li and Stefan Wunderle

Terrestrial vegetation is a key component of the biosphere, which regulates global carbon, water and energy cycles. Meanwhile, global environmental change is rapidly altering the dynamics of terrestrial vegetation by functioning the Earth system and providing ecosystem services. Therefore, systematically monitoring global vegetation dynamics is critical to understand the basic biogeochemical processes, and their possible feedbacks to the climate system. Besides, characterizing spatial heterogeneity and temporal variation of surface albedo is also great importance to monitor land cover change and to determine energy exchange between ground and atmosphere. 
Remote sensing offers the only effective method for measuring and monitoring the vegetation dynamics, heterogeneity of albedo and its directional signature on regional and global scales. In this study, 4 km × 4 km GAC AVHRR data from extensive satellite data archive collected by the Remote Sensing Research Group at the University of Bern (RSGB) from 1981 to 2022 was applied to analyze albedo coupling with vegetation dynamics over global. The Simplified Method for Atmospheric Correction (SMAC) radiative transfer code was employed to do the atmospheric correction, and Ross-Thick/Li-Sparse-Reciprocal (RTLSR) kernel-driven model was applied using all contemporaneous NOAA and MetOp satellites data for removing anisotropic effects by means of the Bidirectional Reflectance Distribution Function (BRDF). Therefore, it is expected that the new generation of global Normalized Difference Vegetation Index (NDVI) and Albedo products could be produced from 1981 until 2022, which could potentially provide a long-term dataset for global climate change studies. Some preliminary evaluations showed that the new generation of NDVI product follows a generally similar trend to other products such as SPOT VGT, AVH13C1 NDVI, and Terra MODIS NDVI on selected validated sites. 

How to cite: Li, S. and Wunderle, S.: Global vegetation dynamics using multiple satellite observations throughout the past four decades, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10962, https://doi.org/10.5194/egusphere-egu24-10962, 2024.

EGU24-13485 | ECS | Orals | BG9.4

Improved estimation of net ecosystem CO2 exchange for North America in eddy flux upscaling with memory-based deep learning  

Wei He, Chengcheng Huang, Jinxiu Liu, Ngoc Tu Nguyen, Hua Yang, and Mengyao Zhao

Estimation of regional-scale carbon budget still faces considerable uncertainties, whereby reconciling bottom-up estimates and top-down inversions are essential steps towards reducing such uncertainties. Here,  we make full use of available flux tower observations and novel satellite land surface observations (e.g., soil moisture and solar-induced chlorophyll fluorescence) to constrain the spatiotemporal regimes of net ecosystem carbon exchange (NEE) for North America based on the advanced Long Short-term Memory (LSTM) networks. The LSTM-based model is capable of incorporating the memory effects of climate and environments on NEE variations, thus more accurately simulating the interannual variations (IAVs) and long-term trends of NEE. We produced gridded NEE at a spatial resolution of 0.1° × 0.1°and monthly time-step over 2001–2021 for North America.

The annual total NEE during 2001–2021 is -1.74 ± 0.10 Pg C yr-1, which is much closer to the top-down inversions (-0.73 and -0.63 Pg C yr-1 for CarbonTracker2022 over the same period and the Orbiting Carbon Observatory-2 (OCO-2) v10 MIP ensemble mean over 2015–2020 respectively) than the global flux upscaling products (-3.04 and -2.75 Pg C yr-1 by FLUXCOM2020 RS+CRUJRA1.1 and RS+ERA5 respectively and -3.30 Pg C yr-1 by NIES2020). Moreover, the spatial patterns matched with the OCO-2 v10 MIP ensemble mean reasonably well, which indicated the largest carbon uptake in the Midwest Corn-Belt area during peak growing seasons and in the Southeast on an annual basis. The estimated IAV of NEE is highly correlated with that by CarbonTracker2022. The LSTM estimate captured the NEE anomalies caused by the droughts in 2011, 2012, 2017, 2020–2021, and the 2019 Midwest floods. The performances are clearly better than existing global flux upscaling products. In addition, the estimated annual NEE exhibited a significant decline at the rate of -0.008 Pg C yr-2 (p < 0.05), indicating an overall enhanced carbon sink during the recent two decades, which is in line with contemporary estimates.

These results suggest that the LSTM-based NEE upscaling provides an improved estimation of North American NEE for both spatial and temporal characteristics, narrowing down the gap between bottom-up estimates and top-down inversions, which is an important step towards robust regional carbon budget estimations.

How to cite: He, W., Huang, C., Liu, J., Nguyen, N. T., Yang, H., and Zhao, M.: Improved estimation of net ecosystem CO2 exchange for North America in eddy flux upscaling with memory-based deep learning , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13485, https://doi.org/10.5194/egusphere-egu24-13485, 2024.

Involving the effect of atmospheric CO2 fertilization is effective for improving gross primary production (GPP) estimation accuracy using light use efficiency (LUE) model. However, the widely used LUE model, the remote sensing-driven Carnegie-Ames-Stanford Approach (CASA) model, is scarcely considering the effects of atmospheric CO2 fertilization, which cause GPP estimation uncertainties. Therefore, this study proposed an improved GPP estimation method based on CASA model integrating the atmospheric CO2 concentration and generated a long time series GPP dataset with high precision for the Tibetan Plateau. The CASA model was improved by considering the atmospheric CO2 effect on vegetation productivity and distinguishing the CO2 gradients differences within the canopy and leaves brought by the influence of leaf stomatal conductance and leaf saprophyte activity. A 500m monthly GPP dataset for the Tibetan Plateau from 2003 to 2020 were generated. The results showed that the improved GPP estimation model achieved better performances on estimating GPP (R2 = 0.68, RMSE = 406 g C/m2/year) than the CASA model (R2 = 0.67, RMSE = 499.32 g C/m2/year), and MODIS GPP products. The GPP on Qinghai-Tibet Plateau increased significantly with the increase of atmospheric CO2 concentration and the gradual accumulation of dry matter. The improved GPP estimation method can also be used for other regions and the generated GPP dataset is valuable for further understanding the ecosystem carbon cycles on Qinghai-Tibet Plateau.

How to cite: Li, J. and Jia, K.: Improving gross primary production estimation accuracy on the Qinghai-Tibet Plateau considering the effect of atmospheric CO2 fertilization, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13734, https://doi.org/10.5194/egusphere-egu24-13734, 2024.

EGU24-14253 | Posters on site | BG9.4

Detecting Field-level Crop Residue Cover across the EU Using Multi-source Satellite Data and Explainable Machine Learning 

Sheng Wang, Boqin Yuan, Kaiyu Guan, Jørgen Eivind Olesen, Rui Zhou, and René Gislum

Conservation tillage practices with crop residues covering soils can improve soil health to increase agronomic and environmental benefits for croplands. Accurate information of field-level crop residue cover is highly important for evaluating the implementation of government conservation programs and voluntary ecosystem service markets, as well as supporting agroecosystem modeling to quantify cropland biogeochemical processes. Remote sensing has been demonstrated to detect crop residue cover cost-effectively, yet existing regional-scale studies in Europe are rare. To fill this data gap, our study developed an explainable machine learning algorithm to integrate multi-source satellite data (Sentinel-2, Sentinel-1, and SMAP soil moisture) to quantify crop residue presence for the EU croplands. Specifically, we utilized satellite time series data of optical spectral tillage index, soil background reflectance, soil moisture, and SAR backscattering information to detect field-level crop residue cover. With 41,325 ground records of 10 major crops, we developed highly robust and explainable machine learning models with unbalanced label correction approaches to predict residue presence. Results show that models achieved high accuracy of 0.78 and F1-score of 0.70 to detect crop residue presence. We also aggregated field-level estimates to the regional level, which shows high match with regional census data. Among crop types, wheat and barley got higher prediction performance than other crop types. Our work highlights the feasibility of integrating multi-source satellite data with machine learning for detecting field-level crop residue cover at continental scale across the EU. These crop residue datasets can support analyzing the spatiotemporal variability of tillage practices across the EU and their potential impact on agroecosystem productivity and sustainability. 

How to cite: Wang, S., Yuan, B., Guan, K., Olesen, J. E., Zhou, R., and Gislum, R.: Detecting Field-level Crop Residue Cover across the EU Using Multi-source Satellite Data and Explainable Machine Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14253, https://doi.org/10.5194/egusphere-egu24-14253, 2024.

EGU24-15542 | ECS | Orals | BG9.4

Examining the Reliability Gap: Insights into Forest Canopy Height Using Evidential Deep Learning 

Lucas Kugler, Christine Wessollek, and Matthias Forkel

Estimating forest canopy height is a crucial aspect in quantifying forest biomass, carbon stocks, monitoring forest degradation, and succession or restoration initiatives. Operational forest structure monitoring on a large scale involves various satellite sensors and datasets as well as large geographical variations. Challenges remain in obtaining uniformly representative ground truth data across diverse areas, phenology phases and forest types. Recently deep learning models are more frequently used to map forest canopy height at large scales by e.g., using sample observations from space-borne LiDAR sensors as training data. Training deep learning models rely on large amounts of data but are often trained on limited source domain data that is confined to cover the above-mentioned aspects. However, during testing, models may encounter out-of-distribution samples, leading to unexpected model behaviour and predictions. This vulnerability reduces the reliability of deterministic Deep Learning architectures, and finally, reliance on predictions without confidence indicators can result in misleading scientific conclusions or potentially under-informed policy decisions. Due to the varying ways of data processing, differences in forest canopy height products emerge, and hence product inter-comparison is often difficult and debatable. Existing products often do not provide any information about the confidence of their predictions.
To address this lack of confidence, we employ evidential deep Learning, adapting non-Bayesian architectures to estimate forest height and associated evidence. This approach aims to capture both aleatoric and epistemic uncertainties in areas with different forest structures investigating study areas , by incorporating evidential priors into the Gaussian likelihood function. Our method involves training a myriad of deep learning architectures including a basic CNN and Residual neuronal nets for regression to infer the hyperparameters of the evidential distribution.

Alongside other current studies, Sentinel-2 and Sentinel-1 satellite imagery serve as predictors for forest canopy height, with reference data obtained from the Global Ecosystem Dynamics Investigation (GEDI) LiDAR instrument on the International Space Station. The research explores the effects of distributional data shifts on canopy height predictions and identifies footprint samples where prediction uncertainty increases, representing different forest structures.
The application of evidential deep learning could extend far beyond this study, potentially benefiting various tasks in estimating biophysical parameters from remote sensing.

How to cite: Kugler, L., Wessollek, C., and Forkel, M.: Examining the Reliability Gap: Insights into Forest Canopy Height Using Evidential Deep Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15542, https://doi.org/10.5194/egusphere-egu24-15542, 2024.

EGU24-16460 | ECS | Posters virtual | BG9.4

Self-supervised learning for mapping rice areas reduces the need for field surveys 

Mukund Narayanan, Ankit Sharma, and Idhayachandhiran Ilampooranan

Traditional approaches to mapping rice areas depend on detailed field surveys to gather label data. This data gathering, while thorough, is often time-consuming, and costly. Further, for long-term rice area mapping, especially at large scales, ground validation can only be made in recent years, which may lead to uncertainties in rice areas of the past. To solve this limitation, this study introduces a novel method for classifying rice cultivation areas without the need for field data by employing a self-supervised learning framework within Google Earth Engine. Using MODIS data to calculate indices such as the Normalized Difference Vegetation Index (NDVI), the Enhance Vegetation Index (EVI), and the Land and Surface Water Index (LSWI), a pseudo-label boundary was delineated. The delineation of the boundary involved marking flooded regions, where LSWI + 0.05 ≥ NDVI EVI. Within these flooded regions, instances when EVI in the first 40 days was at least half of the peak EVI during the growing season were assigned as rice. In contrast, regions that did not meet these criteria were considered for non-rice. As proof of concept, the delineated pseudo-label boundaries of rice and non-rice were randomly sampled and trained on several machine learning models like random forests, support vector machines, gradient-boosted trees, and decision trees, to classify rice areas in Punjab, India, from 2003 to 2022. The random forest model demonstrated superior performance, achieving an Area Under the Curve of receiver-operating characteristics (AUC) of 0.71, compared to other models (AUC of ~0.55). Furthermore, comparing the self-supervised models against the same machine learning models, which were traditionally trained on field survey data (228 ground points: 164 rice, 64 non-rice was collected), the self-supervised models showed ~10% higher performance than their traditionally supervised counterparts. Therefore, this study demonstrates that using this self-supervised modeling framework reduces the need for field-based annotations, while still providing reasonably accurate rice area maps.

How to cite: Narayanan, M., Sharma, A., and Ilampooranan, I.: Self-supervised learning for mapping rice areas reduces the need for field surveys, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16460, https://doi.org/10.5194/egusphere-egu24-16460, 2024.

EGU24-16810 | Posters on site | BG9.4

Photometric characterization of the Asal-Ghoubbet rift (Republic of Djibouti) by massive inversion of the Hapke model 

Stéphane Jacquemoud, Dung Tri Nguyen, Antoine Lucas, Sylvain Douté, Cécile Ferrari, Sophie Coustance, Sébastien Marcq, and Aymé Meygret

Numerous research projects have successfully exploited remote sensing data to analyze Earth and planetary surfaces. The use of radiative transfer models simulating the interaction between electromagnetic radiation and bare soils, such as the Hapke model, is becoming increasingly widespread. However, the in- version of these models is relatively uncommon due to a number of difficulties. To address these issues, our team has collected relevant field and satellite data from the Asal-Ghoubbet rift (Republic of Djibouti) and developed a comprehensive framework for analyzing these data. This site was chosen for the diversity of its terrains, characterized by varied albedo and surface roughness, which are well preserved due to the desert climate. It also has the advantage of being easily accessible (Labarre et al., 2019).

To carry out our study, we used images from the Pleiades-1B satellite captured in video mode over the Asal-Ghoubbet rift on January 26, 2013, during the in-flight commissioning of the satellite. This unique four-minute flyby produced 21 images at viewing angles ranging from from -56.7° to +52.6°. The images were corrected for atmospheric effects, which modify the photometric response of surfaces.  To achieve this, experts from CNES applied a variant of the MACCS ATCOR Joint Algorithm (MAJA), using auxiliary data to take into account the water vapor content and aerosol optical thickness (Hagolle et al., 2015). In addition, to validate the results of the Hapke model inversion, a field experiment was conducted in February 2016 in the Asal-Ghoubbet rift to collect soil samples and acquire data (ground truth).

To meet the challenge of limited geometric observation configurations, essential for constraining model parameters, our global approach tackled the known coupling effect between parameters. We also had to take into account the prohibitive computation time required to process millions of pixels over multiple spectral bands, which was a major obstacle to generating the Hapke parameter map. We applied the fast Bayesian inversion method developed by Kugler et al. (2022), which offers an efficient solution to overcome this problem. In parallel, a geometrical correction was applied using a previously constructed digital elevation model (DEM) of the rift that used the same data set. In the end, with each spectral band, we obtained four maps of Hapke model parameters corresponding to the single scattering albedo w, the photometric roughness θ, the asymmetry b and backscattering c parameters of the phase function. The areas of low reconstruction error (less than 1.5%) represents 70% of the entire region. The remainder can be attributed to areas with extremely steep slopes and heterogeneous terrains along slopes such as mass wasting deposits, or areas hindered by clouds and their associated shadows on the ground. The correlation between the parameters and the geological map, the analysis of the soil samples of each terrain units will be presented and discussed.

How to cite: Jacquemoud, S., Nguyen, D. T., Lucas, A., Douté, S., Ferrari, C., Coustance, S., Marcq, S., and Meygret, A.: Photometric characterization of the Asal-Ghoubbet rift (Republic of Djibouti) by massive inversion of the Hapke model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16810, https://doi.org/10.5194/egusphere-egu24-16810, 2024.

EGU24-17268 | Orals | BG9.4

Multi-stage soil surveying complementing statistical sampling designs to provide high-resolution soil maps for policy 

Simon Tanner, Madlene Nussbaum, Stefan Oechslin, and Stéphane Burgos

In Switzerland, detailed soil information is missing for many regions – although urgently needed. Soon, authorities will need to legally delineate areas for the high-quality arable land inventory based on high-resolution surveys that require sampling of large numbers of new locations within the next decade. Consequently, cost and time efficient surveying strategies are required which fulfil high quality demands for legally binding decisions. The soil functional evaluation used in these decisions requires soil attributes which cannot only be derived by objective laboratory measurement but are partly based on pedological field description by experts.

In our study area of about 1’000 hectares, we established first a feature space coverage sampling design to sample 1’500 locations based on elevation and land use data, geological information, and expert knowledge of soil scientists. 170 locations were determined by a stratified random sampling design and used for independent validation of mapping results.

We predicted a large range of soil attributes (clay, silt, humus, pH, moisture regime, rootable soil depth) in multiple depth (0-20 cm, 0-30 cm, 20-30 cm, 30-50 cm, 50-100 cm), using the first 1’200 samples, random forest, and a wide range of environmental covariates. The predicted spatial information showed low to medium accuracy and maps exhibited further deficiencies, particularly poor performance for values at the tail of the soil attribute distributions. By visual inspection of prediction interval maps we found high model uncertainties in some specific areas like geological transition zones and anthropogenic altered zones through drainage and covering layers. To improve the quality of the maps we increased the total number of sampling locations up to 2’200 by two in-fill sampling design strategies in two zones:

  • To complement the feature space coverage sampling design potentially based on incomplete environmental factors, experienced surveyors directly added additional sampling locations based on their expert knowledge. Those covered landscape features not contained in the primary sampling design such as local extrema or transition zones.
  • In the second zone a two-level infill sampling design was created. A first general level complemented the feature space further as spanned in the initial sampling design. The second level consisted of additional 250 sampling points within zones of high model uncertainties.

Subsequently generated maps showed increased accuracy with increasing sampling density for most attributes, e.g., an increase of 0.1 for the clay content in the topsoil at a sampling density of 1.7 observations per ha compared to a sampling density of 1.1 Our results further displayed increasing accuracy of 0.05 with higher-weighted data collected by experts and simultaneous lowering the sampling density to 1.5 per ha by ignoring data with the lowest quality, collected before the internal calibration and synchronisation of the field survey.
To upscale the soil mapping in such high resolution and with expert-based parameters it is crucial to have synchronized data in high and stable quality across different soil formation regions.

How to cite: Tanner, S., Nussbaum, M., Oechslin, S., and Burgos, S.: Multi-stage soil surveying complementing statistical sampling designs to provide high-resolution soil maps for policy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17268, https://doi.org/10.5194/egusphere-egu24-17268, 2024.

EGU24-17559 | ECS | Orals | BG9.4

Regionally trained models for mapping aboveground biomass from Remote Sensing data fusion: a comparison of the capabilities of Machine Learning in 4 different biomes. 

Martí Perpinyà-Vallès, Claudia Huertas, Maria José Escorihuela, Aitor Ameztegui, and Laia Romero

In recent years, multiple remote sensing technologies have been used to quantify aboveground biomass (AGB) at different scales, from regionally trained models to global maps. The former are capable of providing higher resolution and accurate estimations albeit for smaller regions. Tailoring model weights and inputs to a specific biome or region have proved to be effective to obtain better results. Global maps, on the other hand, provide an attempt to standardizing AGB mapping at slightly to moderately lower resolutions and tend to have differences between them. A similar standardization with the benefits of regional mapping, applied across biomes, has yet to be available. For that, the first step would be comprehensively comparing state-of-the-art regional and local studies. However, existing inconsistencies in the different models and inputs used, which are often region-specific, make it impracticable.

This study addresses the need for a comparison of a single methodology consistent across different biomes in order to understand the nuances that drive the estimation of AGB. We present a data fusion approach to mapping aboveground biomass at a 20m resolution using regionally trained, regression-enhanced Random Forests in 4 different biomes: semi-arid savannas in the Sahel region, dense tropical forests in Brazil, Mediterranean forests in coastal and pre-coastal areas of Catalonia, and temperate/boreal forests in Minnesota. GEDI L4A AGB data (25-m discrete footprints) is used to train a regression model in each study area. We derived predictors from Sentinel-1 SAR, Sentinel-2 multi-spectral and Digital Elevation Model (DEM) datasets, which are common for all locations. Additionally, auxiliary data such as proximity to coastlines, human-made structures or bio-climatic variables are used to enhance predictions in saturation-prone areas. Additional to the goodness of adjustment to the training data from GEDI, we carried out a thorough validation of the results using in-situ data from Forest Inventory plots gathered in all 4 study regions. This enables a comprehensive comparison of the capabilities of Machine Learning modelling to adapt to the particular characteristics of each ecosystem. An in-depth analysis is carried out to find the most important predictor variables in each biome, as well as to assess the accuracy that can be expected across a wide range of AGB values.

How to cite: Perpinyà-Vallès, M., Huertas, C., Escorihuela, M. J., Ameztegui, A., and Romero, L.: Regionally trained models for mapping aboveground biomass from Remote Sensing data fusion: a comparison of the capabilities of Machine Learning in 4 different biomes., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17559, https://doi.org/10.5194/egusphere-egu24-17559, 2024.

There is an increasing need for dynamic soil information, especially focused on monitoring soil health indicators such as soil organic carbon, soil chemical properties, soil pollution / soil degradation and status of soil micro-, meso- macro-fauna. To detect change over time, AI4SoilHealth project (https://cordis.europa.eu/project/id/101086179) is developing a spatiotemporal Machine Learning framework based on large EO data cubes (Witjes et al., 2023) to model soil health indicators e.g. to map them at high spatial resolution (30-m) with annual increments (2000–2022+) and for standard depth intervals (e.g. 0–30 cm, 30–60 cm, 60–100 cm). Produced time-series of predictions are then analyzed for trends and slope and similar coefficients are derived (per pixel) showing positive and negative changes in soil health indicators over longer periods of time (25+ years) (for the time-series method see: Hackländer et al. 2024). Areas where the trends are especially negative (e.g. significant decrease in soil carbon, significant salinization, significant loss of land cover / FAPAR etc) are flagged as requiring further soil sampling and detection of drivers of soil degradation, which should be ideally done jointly with national soil monitoring system in Europe.

The difference between spatiotemporal vs purely 2D / 3D mapping is in the three main aspects: (1) points and covariate layers are matched in spacetime (usually month-year period or at least year), (2) covariate layers are based on time-series data and include also accumulative indices (e.g. cumulative rainfall, cumulative snow cover, cumulative cropping fraction and similar) and derivatives, (3) during model training and validation, points are subset in both spacetime to avoid overfitting and bias in predictions. The rationale for using spatiotemporal machine learning is fitness of data for reliable time-series analysis: the predictions for anywhere in the spacetime cube need to be unbiased, with objectively quantified prediction errors (uncertainty), so that hence changes can be derived without a risk for serious over-/under-estimation. This framework has been tested on local and regional data sets (e.g. LUCAS soil samples covering 2009, 2012, 2015, 2018 for Europe) and can be now potentially applied using global compilations of soil points (https://opengeohub.github.io/SoilSamples/). Spatiotemporal machine learning could also potentially be used for predicting future states of soil, e.g. by extrapolating models to future climate scenarios and future land use systems (Bonannella et al., 2023). We are currently building a Soil Health Data Cube for Europe that will include some 15–20 biophysical indices (annual tillage index, bare surface cover, bimonthly FAPAR, NDWI, SAVI), climatic, terrain and parent material covariates and including the time-series of predictions of the key soil properties. This data will be made available under open data license through https://EcoDataCube.eu.

Cited references:

  • Bonannella, C., et al. (2023). Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation. PeerJ, 11, e15593. https://doi.org/10.7717/peerj.15593 
  • Hackländer, J., et al. (2023). Land potential assessment and trend-analysis using 2000–2021 FAPAR monthly time-series at 250 m spatial resolution. PeerJ, in review. https://doi.org/10.21203/rs.3.rs-3415685/v1
  • Witjes, M., et al. (2023). Ecodatacube. eu: Analysis-ready open environmental data cube for Europe. PeerJ, 11, e15478. https://doi.org/10.7717/peerj.15478 

How to cite: Hengl, T., Minarik, R., Parente, L., and Tian, X.: Mapping dynamic soil properties at high spatial resolution using spatio-temporal Machine Learning: towards a consistent framework for monitoring soil health across borders, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17704, https://doi.org/10.5194/egusphere-egu24-17704, 2024.

EGU24-19181 | ECS | Orals | BG9.4

A rapid approach for integrating high-resolution remote sensing and eddy flux observations 

Egor Prikaziuk, Christiaan Van der Tol, and Enrico Tomelleri

The Eddy Covariance (EC) method is a state-of-the-art ecosystem flux measurement technique. EC data is used to calibrate and validate biogeochemical models for downstream Earth Observation (EO) products. Despite being a point measurement, the EC method samples an area around the measurement tower, called a flux footprint (FFP). The extent and direction of an FFP depend on the wind speed and direction and the state of the atmosphere, thus it changes continuously. Although most of the EC towers are placed in homogeneous areas, where the footprint direction should not play a role, at the modern 10-m spatial resolution of EO satellites such as Sentinel-2, the area under FFP may be seen as heterogeneous because of phenological differences or temporal changes in vegetation cover. The land cover heterogeneity under the FFP may cause challenges in interpreting the EC data and discrepancies in the calibration and validation of EO downstream products.

In this study, we investigated the FFP heterogeneity of 72 European EC sites from the ICOS Warm Winter 2020 dataset (https://doi.org/10.18160/2G60-ZHAK). Firstly, the footprint size was statistically estimated according to the dominant plant functional type. Secondly, the heterogeneity was assessed for a circular buffer and twelve sub-sectors of the buffer on Sentinel-2-derived normalised difference vegetation index (NDVI) with several statistical criteria (e.g. Tukey’s test, Z-score). This approach was demonstrated to be an alternative to precise FFP models, as the latter might require parameters not available to the end users, such as standard deviation of the v-wind component or atmospheric boundary layer height. The tool was developed as a stand-alone application and can be used for spatial heterogeneity assessment beyond the tested EC footprints. 

How to cite: Prikaziuk, E., Van der Tol, C., and Tomelleri, E.: A rapid approach for integrating high-resolution remote sensing and eddy flux observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19181, https://doi.org/10.5194/egusphere-egu24-19181, 2024.

EGU24-19458 | Posters on site | BG9.4

Regional mapping of soil organic matter and particle size in Northeast China using hyperspectral satellite images 

Kun Shang, Chenchao Xiao, and Hongzhao Tang

Soil organic matter (SOM) and particle size are key indicators for evaluating cultivated soil quality. Conventional soil quality surveys based on field sampling are resource-intensive and can only obtain the data at sampling points, making it difficult to meet the needs of plot-level cultivated land management. In recent years, a series of hyperspectral satellite sensors have provided an important data source for the estimation of cultivated soil parameters. In this study, we took all 1.26 million km2 of cultivated land (including paddy fields, dry land, and irrigated fields) in Northeast China as the study area. In April 2021, we conducted a synchronized sample collection experiment utilizing ZY1-02D satellite hyperspectral data, gathering a total of 171 soil samples. More than 1,400 hyperspectral images of satellites including GF5, ZY1-02D and ZY1-02E covering the entire study area were collected and preprocessed. Firstly, we developed a bare soil identification method by combining cultivated soil spectral library, spatial-spectral filtering, and spectral angle mapping. The average accuracy of bare soil identification results varies from 90% to 95%. Secondly, we analyzed the correlation between soil parameters and dual-band spectral indices using multi-platform observed data, as well as the radiation quality of massive satellite images. Combining the results of spectral band radiation quality analysis, the optimal spectral indices of SOM, sand, silt, and clay were constructed based on the collaborative observation of multi-source data. Then, we developed a soil parameter prediction model that combines topography and spectral information. In this research, a new feature selection technique called VIP-CARS-Frog based on multi-index evaluation, which combines three algorithms including variable importance plots, competitive self-organizing selection, and random frog, was proposed to select high-quality and stable features. These technologies have been successfully applied to hyperspectral satellite data such as GF5, ZY1-02D, and ZY1-02E to map the spatial distribution of SOM and particle size in cultivated land in Northeast China. The inversion results of SOM, sand, silt, and clay have R2 of 0.84, 0.9, 0.79 and 0.76, RMSE of 5.16g/kg, 7.16%, 7.25% and 4.7%, and RPD of 2.32, 2.87, 1.72, and 1.73, respectively. From the results, it can be seen that in Songnen Plain and Sanjiang Plain, where black soil and chernozem are concentrated, the SOM content is higher and the sand content is lower. On the contrary, in the southwestern region, the sand content is higher and the SOM content is lower. The results indicate that hyperspectral satellite images can be used to estimate SOM and particle size content at a regional scale, showing its great potential in cultivated land quality surveys and agricultural precision management.

How to cite: Shang, K., Xiao, C., and Tang, H.: Regional mapping of soil organic matter and particle size in Northeast China using hyperspectral satellite images, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19458, https://doi.org/10.5194/egusphere-egu24-19458, 2024.

EGU24-19656 | Posters on site | BG9.4

Multi-seasonal land cover changes of South Peruvian Highland Andean ecosystems 

Joshua Castro, Catriona L. Fyffe, Vinisha Varghese, Evan Miles, Martin Hoelzle, and Francesca Pellicciotti

The highland ecosystems in the southern Peruvian Andes represent an important resource for people who depend on them for water regulation, agriculture, and energy generation. These ecosystems change over time due to natural causes, climate variations, or anthropic intervention. Remote sensing studies have quantified land cover changes in this domain annually, but have neglected the seasonal ecosystem variations, which are conditioned by seasonal weather patterns, species phenology, or applied management. One high-elevation headwater in this region, the Vilcanota-Urubamba Basin (VUB) in Cusco-Peru is characterized by glaciers surrounded by barren areas, flooded areas such as lakes and wetlands, and vegetation ranging from sparse grasslands to forests in the northwest of the catchment.

In this study, we used a land cover classification model at a multi-seasonal scale over 10 years to observe the seasonal dynamics and links between the land cover classes in VUB. We applied the Random Forest classification model on Landsat 7 and 8 imagery (30 m/pixel), trained with selecting 10 points for seven land cover classes, to discriminate land cover every 3 months from 2013 to 2022 over an extended area of the VUB system. We ran the model in the Google Earth Engine platform, using as inputs six spectral indices and three topographic indices obtained from an SRTM DEM.

Our overall results indicate that the VUB area (11,047 km2) is mainly occupied by Agriculture and Pasture (~52.5%) distributed in the upper-middle areas above 3000 masl, followed by Barren (~18.9%). Shrub (~8.4%) and Forest (~8.25%) areas which are more concentrated in the northwest region, and Wetland (~3.94%), Water (~2%), and Snow and Ice (~1.88%) areas, which are mostly located in the Southeast region. We apply two general accuracy assessments based on a set of collected validation points (0.74) and random points (0.72). The results show limited availability of high-quality images during January to March of almost every year, related to the high cloudiness, but much better image availability in the other months.

We find strong seasonal variations in the Snow/Ice, Water, and Wetland classes related to the precipitation regime of the region; but Barren, Shrub, and Forest areas do not vary much seasonally. We determined the correlation between land cover classes for each season and considering all seasons together to identify relevant interrelationships between classes. We find that Snow/Ice changes are correlated (p<0.05) to the Wetland areas (r=0.35) and Water bodies (r=0.71) which are also related to each other (r=0.49). The Agriculture and Pasture areas change with Barren areas (r=-0.65) but have a slight inverse correlation to Wetlands (r=-0.27) highlighting the importance of the seasonal climate. We can interpret these results to infer the dependence between highland vegetated ecosystems and the seasonal hydrological response to glaciers and weather patterns. Overall this work provides important insights into the seasonal landcover change dynamics in this region and the important interrelationships between components of Peruvian highland ecosystems.

How to cite: Castro, J., Fyffe, C. L., Varghese, V., Miles, E., Hoelzle, M., and Pellicciotti, F.: Multi-seasonal land cover changes of South Peruvian Highland Andean ecosystems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19656, https://doi.org/10.5194/egusphere-egu24-19656, 2024.

EGU24-19664 | ECS | Orals | BG9.4

Using Deep Learning and High-Resolution Imagery to Map the Condition of Scotland’s Peatland Resource. 

Fraser Macfarlane, Ciaran Robb, Margaret McKeen, Matt Aitkenhead, and Keith Matthews

Peat makes up roughly 28% of Scotland’s soil and is critical in many areas, including biodiversity and habitat support, water management, and carbon sequestration. The latter is only possible in healthy, undisturbed peatland habitats where the water table is sufficiently high, otherwise this potential carbon sink becomes a carbon source, that if left untreated will disappear forever. Drainage and erosion features are crucial indicators of peatland condition and are key for estimating national greenhouse gas emissions.
    
Previous work on mapping peat depth and condition in Scotland has provided maps with reasonable accuracy at 100 metre resolution, allowing land managers and policymakers to both plan and manage these soils and to work towards identifying priority peat sites for restoration. However, the spatial variability of the surface condition is much finer than this scale, limiting the ability to inventory greenhouse gas emissions or develop site-specific restoration and management plans.
    
This work involves an updated set of mapping using high-resolution (25 cm) aerial imagery which provides the ability to identify and segment individual drainage channels and erosion features. Combining this imagery with a classical deep learning-based segmentation model, enables high spatial resolution, national scale mapping to be carried out allowing for a deeper understanding of Scotland’s peatland resource and which will enable various future analyses using this data.

How to cite: Macfarlane, F., Robb, C., McKeen, M., Aitkenhead, M., and Matthews, K.: Using Deep Learning and High-Resolution Imagery to Map the Condition of Scotland’s Peatland Resource., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19664, https://doi.org/10.5194/egusphere-egu24-19664, 2024.

EGU24-19789 | ECS | Orals | BG9.4

The bigger peat picture: Spatio-temporal modelling of peatland water table depth using Sentinel-1, Sentinel-2, DSM, and field collected data. 

Linda Toca, Alessandro Gimona, Gillian Donaldson-Selby, Catherine Smart, Konstantinos Sideris, Jonathan Ball, and Rebekka Artz

High water table depths (WTD) and water-saturated soil are important elements for peatlands to remain healthy and are crucial targets in peatland restoration projects. Recent studies have suggested that Earth Observation data might be applicable for this task, but proposed models often lack either the spatial extension or the temporal dimension. This study has been developing a spatio-temporal model of peatland water table depth by combining time series of satellite data, namely Sentinel-1, Sentinel-2; aerial data, namely Getmapping Digital Surface Model (DSM); and field collected water table depth measurements to provide the ability to evaluate WTD changes both spatially and over time. 

Water table depth measurements were collected from 59 loggers between February and September of 2018, with loggers covering peatlands in various condition clustered around four research sites in the North of Scotland. NDVI, NDWI and OPTRAM indices were derived from reconstructed cloud-free imagery of Sentinel-2 at 5-day intervals. Similarly, VV, VH, and incidence angle values were obtained from Sentinel-1 imagery at the same time interval. Finally, a Topographic Wetness Index (TWI) was calculated using GetMapping DSM data. A Generalised Additive Model (GAM) was then fitted using all above mentioned inputs with 70% training and 30% testing split method. The model showed a good overall fit (R2=0.59 for training data; R2=0.49 for testing data), with optical covariates outperforming the radar covariates. The model was then applied spatially using the R terra package, providing raster imagery of predicted WTD for 24 unique dates with clear distinction in wetness both over different seasons, and spatially in the landscape.

Following this successful application, work is in progress to test the model on additional sites across Scotland and on European level to further test the applicability of the model to a wider range of northern peatlands.

How to cite: Toca, L., Gimona, A., Donaldson-Selby, G., Smart, C., Sideris, K., Ball, J., and Artz, R.: The bigger peat picture: Spatio-temporal modelling of peatland water table depth using Sentinel-1, Sentinel-2, DSM, and field collected data., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19789, https://doi.org/10.5194/egusphere-egu24-19789, 2024.

EGU24-20365 | Orals | BG9.4

Bridging Field Surveys and Remote Sensing for Enhanced Landscape Feature Analysis in EU Agriculture 

Talie Musavi, Jon Skøien, Bálint Czúcz, Andrea Hagyo, Fernando Sedano, Laura Martinez-sanchez, Renate Koeble, Marijn van der velde, Jean-Michel Terres, and Raphaël d’Andrimont D'andrimont

This study conducts a comprehensive comparison of landscape feature data derived from different sources — Small Woody Features (SWF) product from Copernicus Land Monitoring system, LUCAS Landscape Feature (LF) Module, and LUCAS Transect Module — in EU agricultural landscapes. Additionally, we consider the European Monitoring of Biodiversity in Agricultural Landscapes (EMBAL) project's approach of in-situ data collection for land cover, landscape elements, and biodiversity. This approach offers a promising avenue for integrating detailed field survey data with broad-scale remote sensing observations. Furthermore the EMBAL project has the potential to enhance the previously mentioned datasets by incorporating additional information, such as the nature value of all surveyed land units, habitat types or pollination potential among others. This inclusion could contribute to having better insights  into the ecological significance and monitoring of agricultural landscapes. Our analysis further explores the potential of incorporating cutting-edge datasets for enhanced monitoring of landscape features. Specifically, we consider the high-resolution (3-meter) dataset from Liu et al. (2023), which presents a detailed canopy height map and quantifies tree cover and woody biomass across Europe. 

We critically assess the strengths and limitations of each source: SWF's remote sensing foundation provides broad coverage but focuses only on woody features, the LUCAS LF Module combines photo-interpretation with field survey for a more detailed typology, and the LUCAS Transect, though discontinued, offered valuable field data for linear features. Strategies for monitoring landscape features have been considered for a long time, but are continually updated with the latest available data and methods. A comprehensive comparison and evaluation of the new data sources has not yet been carried out. Our study aims to identify complementarities between the different datasets to  improve both quantitative and qualitative monitoring of landscape features informing sustainable agricultural practices and biodiversity conservation strategies.

How to cite: Musavi, T., Skøien, J., Czúcz, B., Hagyo, A., Sedano, F., Martinez-sanchez, L., Koeble, R., van der velde, M., Terres, J.-M., and D'andrimont, R. D.: Bridging Field Surveys and Remote Sensing for Enhanced Landscape Feature Analysis in EU Agriculture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20365, https://doi.org/10.5194/egusphere-egu24-20365, 2024.

EGU24-20836 | ECS | Posters on site | BG9.4

Biodiversity Assessment in Drylands Using Augmented Satellite Imagery Through Deep Learning Models 

Jorge Rodríguez, Kasper Johansen, Hua Cheng, Areej Alwahas, Victor Angulo-Morales, Samer Almashharawi, and Matthew F. McCabe

As global biodiversity faces increasing threats from climate change, habitat loss, and human activities, effective methods for assessing and monitoring biodiversity are crucial. Drylands are particularly vulnerable to the impacts of climate change, and integrating remote sensing technology with ecological research can help protect these environments. Identification of individual trees and shrubs is fundamental to assess biodiversity and can also improve carbon stocks estimates. However, identifying individual trees using medium resolution satellite images is often not feasible. The use of advanced technologies, such as machine learning and satellite imagery in environmental management plays a key role in biodiversity conservation and can potentially fill this gap. The use of readily available Maxar satellite imagery makes conservation approaches accessible and cost-effective, which is crucial for widespread adoption, especially in resource-limited settings or for large-scale studies. This study aims to improve the identification of vegetation in dryland ecosystems by integrating deep learning methods to remote sensing. The primary objective was to distinguish vegetation from rocks or shadows in these areas, which is often challenging due to the dark appearance of vegetation and the similar visual features of the landscape, such as landforms textures, water bodies or man-made objects.. To address this challenge, a Vision Transformer (ViT) deep learning model was developed to estimate near infrared (NIR) spectral bands from high resolution Maxar Satellite images. By enhancing the spectral richness, the model aids in the differentiation of vegetation. Maxar satellite imagery was primarily used because of its accessibility through Google services, making it ideal for planning initial surveys to identify areas of interest for more detailed study. The accuracy of the model was validated against high-resolution SkySat NIR imagery, and achieved an R2 of 0.92. The obtained NIR band helped to clearly distinguish vegetation from non-vegetative surfaces such as soil, rocks, and water, which were not as discernible in RGB imagery alone. The use of a deep learning method to estimate a synthetic NIR band proved to be cost-effective and efficient for large-scale identification of individual trees and shrubs in drylands, overcoming the limitations of medium-resolution satellite imagery. The findings of the study are crucial to the conservation of biodiversity and offer a practical approach for environmentalists and researchers. Future work includes expanding the dataset to include various dryland environments, and integrating additional data sources such as soil data and topographic features for a more comprehensive analysis.

How to cite: Rodríguez, J., Johansen, K., Cheng, H., Alwahas, A., Angulo-Morales, V., Almashharawi, S., and McCabe, M. F.: Biodiversity Assessment in Drylands Using Augmented Satellite Imagery Through Deep Learning Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20836, https://doi.org/10.5194/egusphere-egu24-20836, 2024.

EGU24-539 | ECS | Orals | HS3.9

Revisiting the common approaches for hydrological model calibration with high-dimensional parameters and objectives  

Songjun Wu, Doerthe Tetzlaff, Keith Beven, and Chris Soulsby

Successful calibration of distributed hydrological models is often hindered by complex model structures, incommensurability between observed and modeled variables, and the complex nature of many hydrological processes. Many approaches have been proposed and compared for calibration, but the comparisons were generally based on parsimonious models with limited objectives. The conclusions could change when more parameters are to be calibrated with multiple objectives and increasing data availability. In this study four different approaches (random sampling, DREAM, NSGA-II, GLUE Limits of acceptability) were tested for a complex application - to calibrate 58 parameters of a hydrological model against 24 objectives (soil moisture and isotopes at 3 depths under vegetation covers). By comparing the simulation performance of parameter sets selected from different approaches, we concluded that random sampling is still usable in high-dimensional parameter space, providing comparable performance to other approaches despite of the poor parameter identifiability. DREAM provided better simulation performance and parameter convergence with informal likelihood functions; however, the difficulty in describing model residual distribution could possibly result in inappropriate formal likelihood functions and thus the poor simulations. Multi-criteria calibration, taking NSGA-II as an example, gave ideal model performance/parameter identifiability and explicitly unravelled the trade-offs between objectives after aggregating them (into 2 or 4); but calibrating against all 24 objectives was hindered by the “curse of dimensionality”, as the increasing dimension exponentially expanded the Pareto front and increased the difficulty to differentiate parameter sets. Finally, Limits of acceptability also provided comparable simulations; moreover, it can be regarded as a learning tool because detailed information about model failures is available for each objective at each timestep. However, the limitation is the insufficient exploration of high-dimensional parameter space due to the use of Latin-Hypercube sampling.

Overall, all approaches showed benefits and limitations, and a general approach to be easily used for such complex calibration cases without trial-and-error is still lacking. By comparing those common approaches, we realised the difficulty to define a proper objective function for many-objective optimisation, either for aggregated scalar function (due to the difficulty of assigning weights or assuming a form for the residual distribution) or the vector function (due to the expansion of the Pareto front). In this context, the Limits of Acceptability approach provided a more flexible way to define the “objective function” for each timestep, though it introduces extra demands in understanding data uncertainties and deciding on what should be considered acceptable. Moreover, in such many-objective optimisation, it is possible that not a single parameter set can capture all the objectives satisfactorily (not in 8 million run in this study).  The non-existence of any global optimal in the sample suggests that the concept of equifinality should be embraced in using an ensemble of comparable parameters to represent such complex systems.

How to cite: Wu, S., Tetzlaff, D., Beven, K., and Soulsby, C.: Revisiting the common approaches for hydrological model calibration with high-dimensional parameters and objectives , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-539, https://doi.org/10.5194/egusphere-egu24-539, 2024.

EGU24-1745 | Posters on site | HS3.9

Predictive uncertainty analysis using null-space Monte Carlo  

Husam Baalousha, Marwan Fahs, and Anis Younes

The inverse problem in hydrogeology poses a significant challenge for modelers due to its ill-posed nature and the non-uniqueness of solutions. This challenge is compounded by the substantial computational efforts required for calibrating highly parameterized aquifers, particularly those with significant heterogeneity, such as karst limestone aquifers. While stochastic methods like Monte Carlo simulations are commonly used to assess uncertainty, their extensive computational requirements often limit their practicality.

The Null Space Monte Carlo (NSMC) method provides a parameter-constrained approach to address these challenges in inverse problems, allowing for the quantification of uncertainty in calibrated parameters. This method was applied to the northern aquifer of Qatar, which is characterized by high heterogeneity. The calibration of the model utilized the pilot point approach, and the calibrated results were spatially interpolated across the aquifer area using kriging.

NSMC was then employed to generate 100 sets of parameter-constrained random variables representing hydraulic conductivities. The null space vectors of these random solutions were incorporated into the parameter space derived from the calibrated model. Statistical analysis of the resulting calibrated hydraulic conductivities revealed a wide range, varying from 0.1 to 350 m/d, illustrating the significant variability inherent in the karstic nature of the aquifer.

Areas with high hydraulic conductivity were identified in the middle and eastern parts of the aquifer. These regions of elevated hydraulic conductivity also exhibited high standard deviations, further emphasizing the heterogeneity and complex nature of the aquifer's hydraulic properties.

How to cite: Baalousha, H., Fahs, M., and Younes, A.: Predictive uncertainty analysis using null-space Monte Carlo , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1745, https://doi.org/10.5194/egusphere-egu24-1745, 2024.

Remote sensing observations hold useful prior information about the terrestrial water cycle. However, combining remote sensing products for each hydrological variable does not close the water balance due to the associated uncertainties. Therefore, there is a need to quantify bias and random errors in the data. This study presents an extended version of the data-driven probabilistic data fusion for closing the water balance at a basin scale. In this version, we implement a monthly 250-m grid-based Bayesian hierarchical model leveraging multiple open-source data of precipitation, evaporation, and storage in an ensemble approach that fully exploits and maximizes the prior information content of the data. The model relates each variable in the water balance to its “true” value using bias and random error parameters with physical nonnegativity constraints. The water balance variables and error parameters are treated as unknown random variables with specified prior distributions. Given an independent set of ground-truth data on water imports and river discharge along with all monthly gridded water balance data, the model is solved using a combination of Markov Chain Monte Carlo sampling and iterative smoothing to compute posterior distributions of all unknowns. The approach is applied to the Hindon Basin, a tributary of the Ganges River, that suffers from groundwater overexploitation and depends on surface water imports. Results provide spatially distributed (i) hydrologically consistent water balance estimates and (ii) statistically consistent error estimates of the water balance data. 

How to cite: Mourad, R., Schoups, G., and Bastiaanssen, W.: A grid-based data-driven ensemble probabilistic data fusion: a water balance closure approach applied to the irrigated Hindon River Basin, India , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2267, https://doi.org/10.5194/egusphere-egu24-2267, 2024.

EGU24-2300 | ECS | Posters on site | HS3.9

Representing systematic and random errors of eddy covariance measurements in suitable likelihood models for robust model selection  

Tobias Karl David Weber, Alexander Schade, Robert Rauch, Sebastian Gayler, Joachim Ingwersen, Wolfgang Nowak, Efstathios Diamantopoulos, and Thilo Streck

The importance of evapotranspiration (ET) fluxes for the terrestrial water cycle is demonstrated by an overwhelming body of literature. Unfortunately, errors in their measurement contribute significantly to (model) uncertainties in quantifying and understanding ecohydrological systems. Measurements of surface-atmosphere fluxes of water at the ecosystem scale, the eddy covariance method can be considered a powerful technique and considered an important tool to validate ET models. Spatially averaged fluxes of several hundred square meters may be obtained. While the eddy-covariance technique has become a routine method to estimate the turbulent energy fluxes at the soil-atmosphere boundary, it remains not error free. Some of the inherent errors are quantifiable and may be partitioned into systematic and stochastic errors. For model-data comparison, the nature of the measurement error needs to be known to derive knowledge about model adequacy. To this end, we compare several assumptions found in the literature to describe the statistical properties of the error with newly derived descriptions, in this study. We are able to show, how sensitive the assumptions about the error are on the model selection process. We demonstrate this by comparing daily agro-ecosystem ET fluxes simulated with the detailed agro-hydrological model Expert-N to data gathered using the eddy-covariance technique.

How to cite: Weber, T. K. D., Schade, A., Rauch, R., Gayler, S., Ingwersen, J., Nowak, W., Diamantopoulos, E., and Streck, T.: Representing systematic and random errors of eddy covariance measurements in suitable likelihood models for robust model selection , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2300, https://doi.org/10.5194/egusphere-egu24-2300, 2024.

EGU24-4140 | ECS | Orals | HS3.9

Integrating Deterministic and Probabilistic Approaches for Improved Hydrological Predictions: Insights from Multi-model Assessment in the Great Lakes Watersheds 

Jonathan Romero-Cuellar, Rezgar Arabzadeh, James Craig, Bryan Tolson, and Juliane Mai

The utilization of probabilistic streamflow predictions holds considerable value in the domains of predictive uncertainty estimation, hydrologic risk management, and decision support in water resources. Typically, the quantification of predictive uncertainty is formulated and evaluated using a solitary hydrological model, posing challenges in extrapolating findings to diverse model configurations. To address this limitation, this study examines variations in the performance ranking of various streamflow models through the application of a residual error model post-processing approach across multiple basins and models. The assessment encompasses 141 basins within the Great Lakes watershed, spanning the USA and Canada, and involves the evaluation of 13 diverse streamflow models using deterministic and probabilistic performance metrics. This investigation scrutinizes the interdependence between the quality of probabilistic streamflow estimation and the underlying model quality. The results underscore that the selection of a streamflow model significantly influences the robustness of probabilistic predictions. Notably, transitioning from deterministic to probabilistic predictions, facilitated by a post-processing approach, maintains the performance ranking consistency for the best and worst deterministic models. However, models of intermediate rank in deterministic evaluation exhibit inconsistent rankings when evaluated in probabilistic mode. Furthermore, the study reveals that post-processing residual errors of long short-term memory (LSTM) network models consistently outperform other models in both deterministic and probabilistic metrics. This research emphasizes the importance of integrating deterministic streamflow model predictions with residual error models to enhance the quality and utility of hydrological predictions. It elucidates the extent to which the efficacy of probabilistic predictions is contingent upon the sound performance of the underlying model and its potential to compensate for deficiencies in model performance. Ultimately, these findings underscore the significance of combining deterministic and probabilistic approaches for improving hydrological predictions, quantifying uncertainty, and supporting decision-making in operational water management.

How to cite: Romero-Cuellar, J., Arabzadeh, R., Craig, J., Tolson, B., and Mai, J.: Integrating Deterministic and Probabilistic Approaches for Improved Hydrological Predictions: Insights from Multi-model Assessment in the Great Lakes Watersheds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4140, https://doi.org/10.5194/egusphere-egu24-4140, 2024.

EGU24-5219 | ECS | Posters on site | HS3.9

Quantifying Uncertainty in Surrogate-based Bayesian Inference 

Anneli Guthke, Philipp Reiser, and Paul-Christian Bürkner

Proper sensitivity and uncertainty analysis for complex Earth and environmental systems models may become computationally prohibitive. Surrogate models can be an alternative to enable such analyses: they are cheap-to-run statistical approximations to the simulation results of the original expensive model. Several approaches to surrogate modelling exist, all with their own challenges and uncertainties. It is crucial to correctly propagate the uncertainties related to surrogate modelling to predictions, inference and derived quantities in order to draw the right conclusions from using the surrogate model.

While the uncertainty in surrogate model parameters due to limited training data (expensive simulation runs) is often accounted for, what is typically ignored is the approximation error due to the surrogate’s structure (bias in reproducing the original model predictions). Reasons are that such a full uncertainty analysis is computationally costly even for surrogates (or limited to oversimplified analytic cases), and that a comprehensive framework for uncertainty propagation with surrogate models was missing.

With this contribution, we propose a fully Bayesian approach to surrogate modelling, uncertainty propagation, parameter inference, and uncertainty validation. We illustrate the utility of our approach with two synthetic case studies of parameter inference and validate our inferred posterior distributions by simulation-based calibration. For Bayesian inference, the correct propagation of surrogate uncertainty is especially relevant, because failing to account for it may lead to biased and/or overconfident parameter estimates and will spoil further interpretation in the physics’ context or application of the expensive simulation model.

Consistent and comprehensive uncertainty propagation in surrogate models enables more reliable approximation of expensive simulations and will therefore be useful in various fields of applications, such as surface or subsurface hydrology, fluid dynamics, or soil hydraulics.

How to cite: Guthke, A., Reiser, P., and Bürkner, P.-C.: Quantifying Uncertainty in Surrogate-based Bayesian Inference, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5219, https://doi.org/10.5194/egusphere-egu24-5219, 2024.

EGU24-6157 | ECS | Orals | HS3.9

Analyzing Groundwater Hazards with Sequential Monte Carlo  

Lea Friedli and Niklas Linde

Analyzing groundwater hazards frequently involves utilizing Bayesian inversions and estimating probabilities associated with rare events. A concrete example concerns the potential contamination of an aquifer, a process influenced by the unknown hydraulic properties of the subsurface. In this context, the emphasis shifts from the posterior distribution of model parameters to the distribution of a particular quantity of interest dependent on these parameters. To tackle the methodological hurdles at hand, we propose a Sequential Monte Carlo approach in two stages. The initial phase involves generating particles to approximate the posterior distribution, while the subsequent phase utilizes subset sampling techniques to evaluate the probability of the specific rare event of interest. Exploring a two-dimensional flow and transport example, we demonstrate the efficiency and accuracy of the developed PostRisk-SMC method in estimating rare event probabilities associated with groundwater hazards.

How to cite: Friedli, L. and Linde, N.: Analyzing Groundwater Hazards with Sequential Monte Carlo , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6157, https://doi.org/10.5194/egusphere-egu24-6157, 2024.

EGU24-7610 | Posters on site | HS3.9

Parameter estimation of heterogeneous field in basin scale based on signal analysis and river stage tomography 

Bo-Tsen Wang, Chia-Hao Chang, and Jui-Pin Tsai

Understanding the spatial distribution of the aquifer parameters is crucial to evaluating the groundwater resources on a basin scale. River stage tomography (RST) is one of the potential methods to estimate the aquifer parameter fields. Utilizing the head variations caused by the river stage to conduct RST is essential to delineate the regional aquifer's spatial features successfully. However, the two external stimuli of the aquifer system, rainfall and river stage, are usually highly correlated, resulting in mixed features in the head observations, which may cause unreasonable estimates of parameter fields. Thus, separating the head variations sourced from rainfall and river stage is essential to developing the reference heads for RST. To solve this issue, we propose a systematic approach to extracting and reconstructing the head variations of river features from the original head observations during the flood periods and conducting RST. We utilized a real case study to examine the developed method. This study used the groundwater level data, rainfall data, and river stage data in the Zhuoshui River alluvial fan in 2006. The hydraulic diffusivity (D) values of five observation wells were used as the reference for parameter estimation. The results show that the RMSE of the D value is 0.027 (m2/s). The other three observation wells were selected for validation purposes, and the derived RMSE is 0.85(m2/s). The low RMSE reveals that the estimated D field can capture the characteristics of the regional aquifer. The results also indicate that the estimated D values derived from the developed method are consistent with the sampled D values from the pumping tests in the calibration and validation processes in the real case study. The results demonstrate that the proposed method can successfully extract and reconstruct the head variations of river features from the original head observations and can delineate the features of the regional parameter field. The proposed method can benefit RST studies and provide an alternative mixed-feature signal decomposition and reconstruction method.

How to cite: Wang, B.-T., Chang, C.-H., and Tsai, J.-P.: Parameter estimation of heterogeneous field in basin scale based on signal analysis and river stage tomography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7610, https://doi.org/10.5194/egusphere-egu24-7610, 2024.

EGU24-7820 | Orals | HS3.9

Data-driven surrogate-based Bayesian model calibration for predicting vadose zone temperatures in drinking water supply pipes 

Ilja Kröker, Elisabeth Nißler, Sergey Oladyshkin, Wolfgang Nowak, and Claus Haslauer

Soil temperature and soil moisture in the unsaturated zone depend on each other and are influenced by non-stationary hydro-meteorological forcing factors that are subject to climate change. 

The transport of both heat and moisture are crucial for predicting temperatures in the shallow subsurface and, as consequence, around and in drinking water supply pipes. Elevated temperatures in water supply pipes (even up to 25°C and above) pose a risk to human health due to increased likelihood of microbial contamination. 

To model variably saturated flow and heat transport, a partial differential equation (PDE)-based integrated hydrogeological model has been developed and implemented in the DuMuX simulation framework.  This model integrates the hydrometeorological forcing functions via a novel interface condition at the atmosphere-subsurface boundary. Relevant soil properties and their dependency on temperatures have been measured as time series at a pilot site at the University of Stuttgart in detail since 2020. 

Despite these efforts on measurements and model enhancement, some uncertainties remain. These include capillary-saturation relationships in materials where they are difficult to measure, especially in the gravel-type materials that are commonly used above drinking water pipes. 

To enhance our understanding of the underlying physical processes, we employ Bayesian inference, which is a well-established approach to estimate uncertain or unknown model parameters. Computationally cheap surrogate models allow to overcome the limitations of Bayesian methods for computationally intensive models, when such surrogate models are used in lieu of the physical (PDE)-based model. Here, we use the arbitrary polynomial chaos expansion equipped with Bayesian regularization (BaPC).  The BaPC allows to exploit latest (Bayesian) active learning strategies to reduce the number of model-runs that are necessary for constructing the surrogate model.  

In the present work, we demonstrate the calibration of a PDE-based integrated hydrogeological model using Bayesian inference on a BaPC-based surrogate.  The accuracy of the calibrated and predicted temperatures in the shallow subsurface is then assessed against real-world measurement data. 

How to cite: Kröker, I., Nißler, E., Oladyshkin, S., Nowak, W., and Haslauer, C.: Data-driven surrogate-based Bayesian model calibration for predicting vadose zone temperatures in drinking water supply pipes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7820, https://doi.org/10.5194/egusphere-egu24-7820, 2024.

EGU24-8007 | ECS | Orals | HS3.9

Investigating the divide and measure nonconformity  

Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler

This contribution presents a diagnostic approach to investigate unexpected side effects that can occur during the evaluation of rainfall--runoff models.

The diagnostic technique that we use is based on the idea that one can use gradient descent to modify the runoff observations/simulations to obtain warranted observations/simulations. Specifically, we show how to use this concept to manipulate any hydrograph (e.g., a copy of the observations) so that it approximates specific NSE values for individual parts of the data. In short, we follow the following recipe to generate the synthetic simulations: (1) copy the observations, (2) add noise, (3) clip the modified discharge to zero, and (4) optimise the obtained simulation values by using gradient descent until a desired NSE value is reached.

To show how this diagnostic technique can be used we demonstrate a behaviour of Nash--Sutcliffe Efficiency (NSE) that appears when evaluating a model over subsets of the data: If models perform poorly for certain situations, this lack of performance is not necessarily reflected in the NSE (of the overall data). This behaviour follows from the definition of NSE and is therefore 100% explainable. However, from our experience it can be unexpected for many modellers. Our results also show that subdividing the data and evaluating over the resulting partitions yields different information regarding model deficiencies than an overall evaluation. We call this phenomenon the Divide And Measure Nonconformity or DAMN.



How to cite: Klotz, D., Gauch, M., Kratzert, F., Nearing, G., and Zscheischler, J.: Investigating the divide and measure nonconformity , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8007, https://doi.org/10.5194/egusphere-egu24-8007, 2024.

Groundwater heads are commonly used to monitor storage of aquifers and as decision variables for groundwater management. Alluvial gravel aquifers are often characterized by high transmissivities and a corresponding strong seasonal and inter-annual variability of storage. The sustainable management of such aquifers is challenging, particularly for already tightly allocated aquifers and in increasingly extreme and potentially drier climates, and might require the restriction of groundwater abstraction for periods of time. Stakeholders require lead-in time to prepare for potential restrictions of their consented takes.

Groundwater models have been used in the past to support groundwater decision making and to provide the corresponding predictions of groundwater levels for operational forecasting and management. In this study, we benchmark and compare different model classes to perform this task: (i) a spatially explicit 3D groundwater flow model (MODFLOW), (ii) a conceptual, bucket-type Eigenmodel, (iii) a transfer-function model (TFN), and (iv) three machine learning (ML) techniques, namely, Multi-Layer Perceptron models (MLP), Long Short-Term Memory models (LSTM), and Random Forrest (RF) models. The model classes differ widely in their complexity, input requirements, calibration effort, and run-times. The different model classes are tested on four groundwater head time series taken from the Wairau Aquifer in New Zealand (Wöhling et al., 2020). Posterior parameter ensembles of MODFLOW (Wöhling et al., 2018) and the EIGENMODEL (Wöhling & Burbery, 2020) were combined with TFN and ML variants with different input features to form a (prior) multi-model ensemble. Models classes are ranked with posterior model weights derived from Bayesian model selection (BMS) and averaging (BMA) techniques.

Our results demonstrate that no “model that fits all” exists in our model set. The more physics-based MODFLOW model is not necessarily providing the most accurate predictions, but can provide physical meaning and interpretation for the entire model region and outputs at locations where no data is available. ML techniques have generally much lower input requirements and short run-times. They show to be competitive candidates for groundwater head predictions where observations are available, even for system states that lie outside the calibration data range.

Because the performance of model types is site-specific, we advocate the use of multi-model ensemble forecasting wherever feasible. The benefit is illustrated by our case study, with BMA uncertainty bounds providing a better coverage of the data and the BMA mean performing well for all tested sites. Redundant ensemble members (with BMA weights of zero) are easily filtered out to obtain efficient ensembles for operational forecasting.

 

References

Wöhling T, Burbery L (2020). Eigenmodels to forecast groundwater levels in unconfined river-fed aquifers during flow recession. Science of the Total Environment, 747, 141220, doi: 10.1016/j.scitotenv.2020.141220.

Wöhling, T., Gosses, M., Wilson, S., Wadsworth, V., Davidson, P. (2018). Quantifying river-groundwater interactions of New Zealand's gravel-bed rivers: The Wairau Plain. Goundwater doi:10.1111/gwat.12625

Wöhling T, Wilson SR, Wadsworth V, Davidson P. (2020). Detecting the cause of change using uncertain data: Natural and anthropogenic factors contributing to declining groundwater levels and flows of the Wairau Plain Aquifer, New Zealand. Journal of Hydrology: Regional Studies, 31, 100715, doi: 10.1016/j.ejrh.2020.100715.

 

How to cite: Wöhling, T. and Crespo Delgadillo, O.: Predicting groundwater heads in alluvial aquifers: Benchmarking different model classes and machine-learning techniques with BMA/S, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8818, https://doi.org/10.5194/egusphere-egu24-8818, 2024.

EGU24-8872 | Orals | HS3.9

Characterization and modeling of large-scale aquifer systems under uncertainty: methodology and application to the Po River aquifer system 

Monica Riva, Andrea Manzoni, Rafael Leonardo Sandoval, Giovanni Michele Porta, and Alberto Guadagnini

Large-scale groundwater flow models are key to enhance our understanding of the potential impacts of climate and anthropogenic factors on water systems. Through these, we can identify significant patterns and processes that most affect water security. In this context, we have developed a comprehensive and robust theoretical framework and operational workflow that can effectively manage complex heterogeneous large-scale groundwater systems. We rely on machine learning techniques to map the spatial distribution of geomaterials within three-dimensional subsurface systems. The groundwater modeling approach encompasses (a) estimation of groundwater recharge and abstractions, as well as (b) appraisal of interactions among subsurface and surface water bodies. We ground our analysis on a unique dataset that encompasses lithostratigraphic data as well as piezometric and water extraction data across the largest aquifer system in Italy (the Po River basin). The quality of our results is assessed against pointwise information and hydrogeological cross-sections which are available within the reconstructed domain. These can be considered as soft information based on expert assessment. As uncertainty quantification is critical for subsurface characterization and assessment of future states of the groundwater system, the proposed methodology is designed to provide a quantitative evaluation of prediction uncertainty at any location of the reconstructed domain. Furthermore, we quantify the relative importance of uncertain model parameters on target model outputs through the implementation of a rigorous Global Sensitivity Analysis. By evaluating the spatial distribution of global sensitivity metrics associated with model parameters, we gain valuable insights into areas where the acquisition of future information could enhance the quality of groundwater flow model parameterization and improve hydraulic head estimates. The comprehensive dataset provided in this study, combined with the reconstruction of the subsurface system properties and piezometric head distribution and with the quantification of the associated uncertainty, can be readily employed in the context of groundwater availability and quality studies associated with the region of interest. The approach and operational workflow are flexible and readily transferable to assist identification of the main dynamics and patterns of large-scale aquifer systems of the kind here analyzed.

How to cite: Riva, M., Manzoni, A., Sandoval, R. L., Porta, G. M., and Guadagnini, A.: Characterization and modeling of large-scale aquifer systems under uncertainty: methodology and application to the Po River aquifer system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8872, https://doi.org/10.5194/egusphere-egu24-8872, 2024.

EGU24-10517 | Orals | HS3.9

Lock-ins and path dependency in evaluation metrics used for hydrological models 

Lieke Melsen, Arnald Puy, and Andrea Saltelli

Science, being conducted by humans, is inherently a social activity. This is evident in the development and acceptance of scientific methods. Science is not only socially shaped, but also driven (and in turn influenced) by technological development: technology can open up new research avenues. At the same time, it has been shown that technology can cause lock-ins and path dependency. A scientific activity driven both by social behavior and technological development is modelling. As such, studying modelling as a socio-technical activity can provide insights both in enculturation processes and in lock-ins and path dependencies. Even more, enculturation can lead to lock-ins. We will demonstrate this for the Nash-Sutcliffe Efficiency (NSE), a popular evaluation metric in hydrological research. Through a bibliometric analysis we show that the NSE is part of hydrological research culture and does not appear in adjacent research fields. Through a historical analysis we demonstrate the path dependency that has developed with the popularity of the NSE. Finally, through exploring the faith of alternative measures, we show the lock-in effect of the use of the NSE. As such, we confirm that the evaluation of models needs to take into account cultural embeddedness. This is relevant because peers' acceptance is a powerful legitimization argument to trust the model and/or model results, including for policy relevant applications. Culturally determined bias needs to be assessed for its potential consequences in the discipline. 

How to cite: Melsen, L., Puy, A., and Saltelli, A.: Lock-ins and path dependency in evaluation metrics used for hydrological models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10517, https://doi.org/10.5194/egusphere-egu24-10517, 2024.

EGU24-10770 | Orals | HS3.9 | Highlight

Uncertainty and sensitivity analysis: new purposes, new users, new challenges 

Francesca Pianosi, Hannah Bloomfield, Gemma Coxon, Robert Reinecke, Saskia Salwey, Georgios Sarailidis, Thorsten Wagener, and Doris Wendt

Uncertainty and sensitivity analysis are becoming an integral part of mathematical modelling of earth and environmental systems. Uncertainty analysis aims at quantifying uncertainty in model outputs, which helps to avoid spurious precision and increase the trustworthiness of model-informed decisions. Sensitivity analysis aims at identifying the key sources of output uncertainty, which helps to set priorities for uncertainty reduction and model improvement.

In this presentation, we draw on a range of recent studies and projects to discuss the status of uncertainty and sensitivity analysis, focusing in particular on ‘global’ approaches, whereby uncertainties and sensitivities are quantified across the entire space of plausible variability of model inputs.

We highlight some of the challenges and untapped potential of these methodologies, including: (1) innovative ways to use global sensitivity analysis to test the ‘internal consistency’ of models and therefore support their diagnostic evaluation; (2) challenges and opportunities to promote the uptake of these methodologies to increasingly complex models, chains of models, and models used in industry; (3) the limits of uncertainty and sensitivity analysis when dealing with epistemic, poorly bounded or unquantifiable sources of uncertainties.

How to cite: Pianosi, F., Bloomfield, H., Coxon, G., Reinecke, R., Salwey, S., Sarailidis, G., Wagener, T., and Wendt, D.: Uncertainty and sensitivity analysis: new purposes, new users, new challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10770, https://doi.org/10.5194/egusphere-egu24-10770, 2024.

EGU24-11414 | ECS | Posters on site | HS3.9

Single vs. multi-objective optimization approaches to calibrate an event-based conceptual hydrological model using model output uncertainty framework. 

Muhammad Nabeel Usman, Jorge Leandro, Karl Broich, and Markus Disse

Flash floods have become one of the major natural hazards in central Europe, and climate change projections indicate that the frequency and severity of flash floods will increase in many areas across the world and in central Europe. The complexity involved in the flash flood generation makes it difficult to calibrate a hydrological model for the prediction of such peak hydrological events. This study investigates the best approach to calibrate an event-based conceptual HBV model, comparing different trials of single-objective, single-event multi-objective (SEMO), and multi-event-multi-objective (MEMO) model calibrations. Initially, three trials of single-objective calibration are performed w.r.t. RMSE, NSE, and BIAS separately, then three different trials of multi-objective optimization, i.e., SEMO-3D (single-event three objectives), MEMO-3D (mean of three objectives from two events), and MEMO-6D (two events six objectives) are formulated. Model performance was validated for several peak events via 90 % (confidence interval) CI-based output uncertainty quantification. The uncertainties associated with the model predictions are estimated stochastically using the ‘relative errors (REs)’ between the simulated (Qsim) and measured (Qobs) discharges as a likelihood measure. Single-objective model calibration demonstrated that significant trade-offs exist between different objective functions, and no unique parameter set can optimize all objectives simultaneously. Compared to the solutions of single-objective calibration, all the multi-objective calibration formulations produced relatively accurate and robust results during both model calibration and validation phases. The uncertainty intervals associated with all the trials of single-objective calibration and the SEMO-3D calibration failed to capture observed peaks of the validation events. The uncertainty bands associated with the ensembles of Pareto solutions from the MEMO-3D and MEMO-6D (six-dimensional) calibrations displayed better performance in reproducing and capturing more significant peak validation events. However, to bracket peaks of large flash flood events within the prediction uncertainty intervals, the MEMO-6D optimization outperformed all the single-objective, SEMO-3D, and MEMO-3D multi-objective calibration methods. This study suggests that the MEMO_6D is the best approach for predicting large flood events with lower model output uncertainties when the calibration is performed with a better combination of peak events.

How to cite: Usman, M. N., Leandro, J., Broich, K., and Disse, M.: Single vs. multi-objective optimization approaches to calibrate an event-based conceptual hydrological model using model output uncertainty framework., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11414, https://doi.org/10.5194/egusphere-egu24-11414, 2024.

EGU24-12676 | ECS | Posters on site | HS3.9

Physics-Informed Ensemble Surrogate Modeling of Advective-Dispersive Transport Coupled with Film Intraparticle Pore Diffusion Model for Column Leaching Test 

Amirhossein Ershadi, Michael Finkel, Binlong Liu, Olaf Cirpka, and Peter Grathwohl

Column leaching tests are a common approach for evaluating the leaching behavior of contaminated soil and waste materials, which are often reused for various construction purposes. The observed breakthrough curves of the contaminants are affected by the intricate dynamics of solute transport, inter-phase mass transfer, and dispersion. Disentangling these interactions requires numerical models. However, inverse modeling and parameter sensitivity analysis are often time-consuming, especially when sorption/desorption kinetics are explicitly described by intra-particle diffusion, requiring the discretization along the column axis and inside the grains. To replace such computationally expensive models, we developed a machine-learning based surrogate model employing two disparate ensemble methods (stacking and weighted distance average) within the defined parameter range based on the German standard for column leaching tests. To optimize the surrogate model, adaptive sampling methods based on three distinct infill criteria are employed. These criteria include maximizing expected improvement, the Mahalanobis distance (exploitation), and maximizing standard deviation (exploration).
The stacking surrogate model makes use of extremely randomized trees and random forest as base- and meta-model. The model shows a very good performance in emulating the behavior of the original numerical model (Relative Root Mean Squared Error = 0.09). 
Our proposed surrogate model has been applied to estimate the complete posterior parameter distribution using Markov Chain Monte Carlo simulation. The impact of individual input parameters on the predictions generated by the surrogate model was analyzed using SHapley Additive exPlanations methods.

How to cite: Ershadi, A., Finkel, M., Liu, B., Cirpka, O., and Grathwohl, P.: Physics-Informed Ensemble Surrogate Modeling of Advective-Dispersive Transport Coupled with Film Intraparticle Pore Diffusion Model for Column Leaching Test, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12676, https://doi.org/10.5194/egusphere-egu24-12676, 2024.

EGU24-13393 | ECS | Posters on site | HS3.9

Datasets and tools for local and global meteorological ensemble estimation 

Guoqiang Tang, Andrew Wood, Andrew Newman, Martyn Clark, and Simon Papalexiou

Ensemble gridded meteorological datasets are critical for driving hydrology and land models, enabling uncertainty analysis, and supporting a variety of hydroclimate research and applications. The Gridded Meteorological Ensemble Tool (GMET) has been a significant contributor in this domain, offering an accessible platform for generating ensemble precipitation and temperature datasets. The GMET methodology has continually evolved since its initial development in 2006, primarily in the form of a FORTRAN code base, and has since been utilized to generate historical and real-time ensemble meteorological (model forcing) datasets in the U.S. and part of Canada. A recent adaptation of GMET was used to produce multi-decadal forcing datasets for North America and the globe (EMDNA and EM-Earth, respectively). Those datasets have been used to support diverse hydrometeorological applications such as streamflow forecasting and hydroclimate studies across various scales. GMET has now evolved into a Python package called the Geospatial Probabilistic Estimation Package (GPEP), which offers methodological and technical enhancements relative to GMET. These include greater variable selection flexibility, intrinsic parallelization, and especially a broader suite of estimation methods, including the use of techniques from the scikit-learn machine learning library. GPEP enables a wider variety of strategies for local and global estimation of geophysical variables beyond traditional hydrological forcings.  This presentation summarizes GPEP and introduces major open-access ensemble datasets that have been generated with GMET and GPEP, including a new effort to create high-resolution (2 km) surface meteorological analyses for the US. These resources are useful in advancing hydrometeorological uncertainty analysis and geospatial estimation.

How to cite: Tang, G., Wood, A., Newman, A., Clark, M., and Papalexiou, S.: Datasets and tools for local and global meteorological ensemble estimation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13393, https://doi.org/10.5194/egusphere-egu24-13393, 2024.

We consider the optimal inference of spatially heterogeneous hydraulic conductivity and head fields based on three kinds of point measurements that may be available at monitoring wells: of head, permeability, and groundwater speed. We have developed a general, zonation-free technique for Monte Carlo (MC) study of field recovery problems, based on Karhunen-Loève (K-L) expansions of the unknown fields, whose coefficients are recovered by an analytical adjoint-state technique. This allows unbiased sampling from the space of all possible fields with a given correlation structure and efficient, automated gradient-descent calibration. The K-L basis functions have a straightforward notion of period, revealing the relationship between feature scale and reconstruction fidelity, and they have an a priori known spectrum, allowing for a non-subjective regularization term to be defined. We have performed automated MC calibration on over 1100 conductivity-head field pairs, employing a variety of point measurement geometries and quantified the mean-squared field reconstruction accuracy, both globally and as a function of feature scale.

We present heuristics for feature scale identification, examine global reconstruction error, and explore the value added by both groundwater speed measurements and by two different types of regularization. We show that significant feature identification becomes possible as feature scale exceeds four times measurement spacing and identification reliability subsequently improves in a power law fashion with increasing feature scale.

How to cite: Hansen, S. K., O'Malley, D., and Hambleton, J.: Feature scale and identifiability: quantifying the information that point hydraulic measurements provide about heterogeneous head and conductivity fields, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14219, https://doi.org/10.5194/egusphere-egu24-14219, 2024.

EGU24-14805 | Orals | HS3.9

Sensitivity analysis of input variables of a SWAT hydrological model using the machine learning technique of random forest 

Ali Abousaeidi, Seyed Mohammad Mahdi Moezzi, Farkhondeh Khorashadi Zadeh, Seyed Razi Sheikholeslami, Albert Nkwasa, and Ann van Griensven

Sensitivity analysis of complex models, with a large number of input variables and parameters, is time-consuming and inefficient, using traditional approaches. Considering the capability of computing importance indices, the machine learning technique of the Random Forest (RF) is introduced as an alternative to conventional methods of sensitivity analysis. One of the advantages of using the RF model is the reduction of computational costs for sensitivity analysis.

The objective of this research is to analyze the importance of the input variables of a semi-distributed and physically-based hydrological model, namely SWAT (soil and water assessment tool) using the RF model. To this end, an RF-based model is first trained using SWAT input variables (such as, precipitation and temperature) and SWAT output variables (like streamflow and sediment load). Then, using the importance index of the RF model, the ranking of input variables, in terms of their impact on the accuracy of the model results, is determined. Additionally, the results of the sensitivity analysis are examined graphically. To validate the ranking results of the RF-based approach, the parameter ranking results of the Sobol G function, using the RF-based approach and the sensitivity analysis method of Sobol’ are compared. The ranking of the model input variables plays a significant role in the development of models and prioritizing efforts to reduce model errors.

Key words: Sensitivity analysis, model input variables, Machine learning technique, Random forest, SWAT model.

How to cite: Abousaeidi, A., Moezzi, S. M. M., Khorashadi Zadeh, F., Sheikholeslami, S. R., Nkwasa, A., and van Griensven, A.: Sensitivity analysis of input variables of a SWAT hydrological model using the machine learning technique of random forest, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14805, https://doi.org/10.5194/egusphere-egu24-14805, 2024.

EGU24-16086 | ECS | Posters on site | HS3.9

Disentangling the role of different sources of uncertainty and model structural error on predictions of water and carbon fluxes with CLM5 for European observation sites 

Fernand Baguket Eloundou, Lukas Strebel, Bibi S. Naz, Christian Poppe Terán, Harry Vereecken, and Harrie-Jan Hendricks Franssen

The Community Land Model version 5 (CLM5) integrates processes encompassing the water, energy, carbon, and nitrogen cycles, and ecosystem dynamics, including managed ecosystems like agriculture. Nevertheless, the intricacy of CLM5 introduces predictive uncertainties attributed to factors such as input data, process parameterizations, and parameter values. This study conducts a comparative analysis between CLM5 ensemble simulations and eddy covariance and in-situ measurements, focusing on the effects of uncertain model parameters and atmospheric forcings on the water, carbon, and energy cycles.
Ensemble simulations for 14 European experimental sites were performed with the CLM5-BGC model, integrating the biogeochemistry component. In four perturbation experiments, we explore uncertainties arising from atmospheric forcing data, soil parameters, vegetation parameters, and the combined effects of these factors. The contribution of different uncertainty sources to total simulation uncertainty was analyzed by comparing the 99% confidence
intervals from ensemble simulations with measured terrestrial states and fluxes, using a three-way analysis of variance.
The study identifies that soil parameters primarily influence the uncertainty in estimating surface soil moisture, while uncertain vegetation parameters control the uncertainty in estimating evapotranspiration and carbon fluxes. A combination of uncertainty in atmospheric forcings and vegetation parameters mostly explains the uncertainty in sensible heat flux estimation. On average, the 99% confidence intervals envelope >40% of the observed fluxes, but this varies greatly between sites, exceeding 95% in some cases. For some sites, we could identify model structural errors related to model spin-up assumptions or erroneous plant phenology. The study guides identifying factors causing underestimation or overestimation in the variability of fluxes, such as crop parameterization or spin-up, and potential structural errors in point-scale simulations in CLM5.

How to cite: Eloundou, F. B., Strebel, L., Naz, B. S., Terán, C. P., Vereecken, H., and Hendricks Franssen, H.-J.: Disentangling the role of different sources of uncertainty and model structural error on predictions of water and carbon fluxes with CLM5 for European observation sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16086, https://doi.org/10.5194/egusphere-egu24-16086, 2024.

EGU24-16361 | ECS | Orals | HS3.9

Estimating prior distributions of TCE transformation rate constants from literature data 

Anna Störiko, Albert J. Valocchi, Charles Werth, and Charles E. Schaefer

Stochastic modeling of contaminant reactions requires the definition of prior distributions for the respective rate constants. We use data from several experiments reported in the literature to better understand the distribution of pseudo-first-order rate constants of abiotic TCE reduction in different sediments. These distributions can be used to choose informed priors for these parameters in reactive-transport models.

Groundwater contamination with trichloroethylene (TCE) persists at many hazardous waste sites due to back diffusion from low-permeability zones such as clay lenses. In recent years, the abiotic reduction of TCE by reduced iron minerals has gained attention as a natural attenuation process, but there is uncertainty as to whether the process is fast enough to be effective. Pseudo-first-order rate constants have been determined in laboratory experiments and are reported in the literature for various sediments and rocks, as well as for individual reactive minerals. However, rate constants can vary between sites and aquifer materials. Reported values range over several orders of magnitude.

To assess the uncertainty and variability of pseudo-first-order rate constants, we compiled data reported in several studies. We built a statistical model based on a hierarchical Bayesian approach to predict probability distributions of rate constants at new sites based on this data set. We then investigated whether additional information about the sediment composition at a site could reduce the uncertainty. We tested two sets of predictors: reactive mineral content or the extractable Fe(II) content. Knowing the reactive mineral content reduced the uncertainty only slightly. In contrast, knowing the Fe(II) content greatly reduced the uncertainty because the relationship between Fe(II) content and rate constants is approximately log-log-linear. Using a simple example of diffusion-controlled transport in a contaminated aquitard, we show how the uncertainty in the predicted rate constants affects the predicted remediation times.

How to cite: Störiko, A., Valocchi, A. J., Werth, C., and Schaefer, C. E.: Estimating prior distributions of TCE transformation rate constants from literature data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16361, https://doi.org/10.5194/egusphere-egu24-16361, 2024.

Deeper insights on internal model behaviors are essential as hydrological models are becoming more and more complex. Our study provides a framework which combines the time-varying global sensitivity analyses with data mining techniques to unravel the process-level behavior of high-complexity models and tease out the main information. The extracted information is further used to assist parameter identification. The physically-based Distributed Hydrology-Soil-Vegetation Model (DHSVM) set up in a mountainous watershed is used as a case study. Specifically, a two-step GSA including time-aggregated and time-variant approaches are conducted to address the problem of high parameter dimensionality and characterize the time-varying parameter importance. As we found difficulties in interpreting the long-term complicated dynamics, a clustering operation is performed to partition the entire period into several clusters and extract the corresponding temporal parameter importance patterns. Finally, the clustered time clusters are utilized in parameterization, where each parameter is identified in their dominant times. Results are summarized as follows: (1) importance of selected soil and vegetation parameters varies greatly throughout the period; (2) typical patterns of parameter importance corresponding to flood, very short dry-to-wet, fast recession and continuous dry periods are successfully distinguished. We argue that somewhere between “total period” and “continuous discrete time” can be more useful for understanding and interpretation; (3) parameters dominant for short times are much more identifiable when they are identified in dominance time cluster(s); (4) the enhanced parameter identifiability overall improves the model performance according to the metrics of NSE, LNSE, and RMSE, suggesting that the use of GSA information has the potential to provide a better search for optimal parameter sets.

How to cite: Wang, L., Xu, Y., Gu, H., and Liang, X.: Investigating dynamic parameter importance of a high-complexity hydrological model and implications for parameterization, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18569, https://doi.org/10.5194/egusphere-egu24-18569, 2024.

EGU24-18804 | ECS | Orals | HS3.9

Accelerating Hydrological Model Inversion: A Multilevel Approach to GLUE 

Max Rudolph, Thomas Wöhling, Thorsten Wagener, and Andreas Hartmann

Inverse problems play a pivotal role in hydrological modelling, particularly for parameter estimation and system understanding, which are essential for managing water resources. The application of statistical inversion methodologies such as Generalized Likelihood Uncertainty Estimation (GLUE) is often obstructed, however, by high model computational cost given that Monte Carlo sampling strategies often return a very small fraction of behavioural model runs. There is a need, however, to balance this aspect with the demand for broadly sampling the parameter space. Especially relevant for spatially distributed or (partial) differential equation based models, this aspect calls for computationally efficient methods of statistical inference that approximate the “true” posterior parameter distribution well. Our study introduces multilevel GLUE (MLGLUE), which effectively mitigates these computational challenges by exploiting a hierarchy of models with different computational grid resolutions (i.e., spatial or temporal discretisation), inspired by multilevel Monte Carlo strategies. Starting with low-resolution models, MLGLUE only passes parameter samples to higher-resolution models for evaluation if associated with a high likelihood, which poses a large potential for substantial computational savings. We demonstrate the applicability of the approach using a groundwater flow model with a hierarchy of different spatial resolutions. With MLGLUE, the computation time of parameter inference could be reduced by more than 60% compared to GLUE, while the resulting posterior distributions are virtually identical. Correspondingly, the uncertainty estimates of MLGLUE and GLUE are also very similar. Considering the simplicity of the implementation as well as its efficiency, MLGLUE promises to be an alternative for statistical inversion of computationally costly hydrological models.

How to cite: Rudolph, M., Wöhling, T., Wagener, T., and Hartmann, A.: Accelerating Hydrological Model Inversion: A Multilevel Approach to GLUE, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18804, https://doi.org/10.5194/egusphere-egu24-18804, 2024.

EGU24-19966 | Orals | HS3.9

Operational Sensitivity Analysis for Flooding in Urban Systems under Uncertainty 

Aronne Dell'Oca, Monica Riva, Alberto Guadagnini, and Leonardo Sandoval

The runoff process in environmental systems is influenced by various variables that are typically are affected by uncertainty. These include, for example, climate and hydrogeological quantities (hereafter denoted as environmental variables). Additionally, the runoff process is influenced by quantities that are amenable to intervention/design (hereafter denoted as operational variables) and can therefore be set to desired values on the basis of specific management choices. A key question in this context is: How do we discriminate the impact of operational variables, whose values can be decided in the system design or management phase, on system outputs considering also the action of uncertainty associated with environmental variables? We tackle this issue upon introducing a novel approach which we term Operational Sensitivity Analysis (OSA) and set within a Global Sensitivity Analysis (GSA) framework. OSA enables us to assess the sensitivity of a given model output specifically to operational factors, while recognizing uncertainty in the environmental variables. This approach is developed as a complement to a traditional GSA, which does not differentiate at the methodological level the nature of the type of variability associated with operational or environmental variables.

We showcase our OSA approach through an exemplary scenario associated with a urban catchment where flooding results from sewer system failure. In this context, we distinguish between operational variables, such as sewer system pipe properties and urban area infiltration capacity, and environmental variables such as, urban catchment drainage properties and rain event characteristics. Our results suggest that the diameter of a set of pipes in the sewer network is the most influential operational variable. As such, it provides a rigorous basis upon which one could plan appropriate actions to effectively manage the system response.

How to cite: Dell'Oca, A., Riva, M., Guadagnini, A., and Sandoval, L.: Operational Sensitivity Analysis for Flooding in Urban Systems under Uncertainty, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19966, https://doi.org/10.5194/egusphere-egu24-19966, 2024.

EGU24-20013 | ECS | Orals | HS3.9

Field-scale soil moisture predictions using in situ sensor measurements in an inverse modelling framework: SWIM² 

Marit Hendrickx, Jan Diels, Jan Vanderborght, and Pieter Janssens

With the rise of affordable, autonomous sensors and IoT (Internet-of-Things) technology, it is possible to monitor soil moisture in a field online and in real time. This offers opportunities for real-time model calibration for irrigation scheduling. A framework is presented where realtime sensor data are coupled with a soil water balance model to predict soil moisture content and irrigation requirements at field scale. SWIM², Sensor Wielded Inverse Modelling of a Soil Water Irrigation Model, is a framework based on the DREAM inverse modelling approach to estimate 12 model parameters (soil and crop growth parameters) and their uncertainty distribution. These parameter distributions result in soil moisture predictions with a prediction uncertainty estimate, which enables a farmer to anticipate droughts and estimate irrigation requirements.

The SWIM² framework was validated based on three growing seasons (2021-2023) in about 30 fields of vegetable growers in Flanders. Kullback–Leibler divergence (KLD) was used as a metric to quantify information gain of the model parameters starting from non-informative priors. Performance was validated in two steps, i.e. the calibration period and prediction period, which is in correspondence with the real-world implementation of the framework. The RMSE, correlation (R, NSE) and Kling-Gupta efficiency (KGE) of soil moisture were analyzed in function of time, i.e. the amount of available sensor data for calibration.

Soil moisture can be predicted accurately after 10 to 20 days of sensor data is available for calibration. The RMSE during the calibration period is generally around 0.02 m³/m³, while the RMSE during the prediction period decreases from 0.04 to 0.02 m³/m³ when more calibration data is available. Information gain (KLD) of some parameters (e.g. field capacity and curve number) largely depends on the presence of dynamic events (e.g. precipitation events) during the calibration period. After 40 days of sensor data, the KGE and Pearson correlation of the calibration period become stable with median values of 0.8 and 0.9, respectively. For the validation period, the KGE and Pearson correlation are increasing in time, with median values from 0.3 to 0.7 (KGE) and from 0.7 to 0.95 (R). These good results show that, with this framework, we can simulate and predict soil moisture accurately. These predictions can in turn be used to estimate irrigation requirements.

Precipitation radar data was primarily considered as an input without uncertainty. As an extension, precipitation forcing error can be treated in DREAM by applying rainfall multipliers as additional parameters that are estimated in the inverse modelling framework. The multiplicative error of the radar data was quantified by comparison of radar data to rain gauge measurements. The prior uncertainty of the logarithmic multipliers was described by a Laplace distribution and was implemented in DREAM. The extended framework with rainfall multipliers shows better convergence and acceptance rate compared to the main framework. The calibration period shows better performance with higher correlations and lower RMSE values, but a decrease in performance was found for the validation period. These results suggest that the implementation of rainfall multipliers leads to overfitting, resulting in lower predictive power.

How to cite: Hendrickx, M., Diels, J., Vanderborght, J., and Janssens, P.: Field-scale soil moisture predictions using in situ sensor measurements in an inverse modelling framework: SWIM², EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20013, https://doi.org/10.5194/egusphere-egu24-20013, 2024.

In recent years, Machine Learning (ML) models have led to a substantial improvement in hydrological predictions. It appears these models can distill information from catchment properties that is relevant for the relationship between meteorological drivers and streamflow, which has so far eluded hydrologists.
In the first part of this talk, I shall demonstrate some of our attempts towards understanding these improvements. Utilising Autoencoders and intrinsic dimension estimators, we have shown that the wealth of available catchment properties can effectively be summarised into merely three features, insofar as they are relevant for streamflow prediction. Hybrid models, which combine the flexibility of ML models with mechanistic mass-balance models, are equally adept at predicting as pure ML models but come with only a few interpretable interior states. Combining these findings will, hopefully, bring us closer to understanding what these ML models seem to have 'grasped'.
In the second part of the talk, I will address the issue of uncertainty quantification. I contend that error modelling should not be attempted on the residuals. Rather, we should model the errors where they originate, i.e., on the inputs, model states, and/or parameters. Such stochastic models are more adept at expressing the intricate distributions exhibited by real data. However, they come at the cost of a very large number of unobserved latent variables and thus pose a high-dimensional inference problem. This is particularly pertinent when our models include ML components. Fortunately, advances in inference algorithms and parallel computing infrastructure continue to extend the limits on the number of variables that can be inferred within a reasonable timeframe. I will present a straightforward example of a stochastic hydrological model with input uncertainty, where Hamiltonian Monte Carlo enables a comprehensive Bayesian inference of model parameters and the actual rain time-series simultaneously.

How to cite: Albert, C.: Advances and prospects in hydrological (error) modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20170, https://doi.org/10.5194/egusphere-egu24-20170, 2024.

EGU24-995 | ECS | Posters on site | CL4.10 | Highlight

Assessing the predictability of Euro-Mediterranean droughts through seasonal forecasts 

Thomas Dal Monte, Andrea Alessandri, Annalisa Cherchi, and Marco Gaetani

Droughts are characterized by prolonged and severe deficits in precipitation that can extend in time, over a season, a year or more. They are confined to specific climatic zones but can manifest in both high and low rainfall regions. Contributing factors include temperatures, strong winds, low relative humidity, and the characteristics of rainfall. Drought events are characterized through indices that can be categorized based on the specific impacts they are associated with, such as meteorological, agricultural, or hydrological effects. Using such indices for drought characterization serves multiple purposes, including detection, assessment, and representation of drought conditions within a particular region. Seasonal precipitatio is essential for social and economic development and activities, hence. Reliable seasonal forecasts, especially regarding extreme precipitation events, become crucial for sectors like agriculture and insurance. Europe, and in particular the Mediterranean region, is expected to be considerably affected under climate change. The northern regions are anticipated to exhibit higher variability, increasing the risk of floods, while the southern areas may face decreased rainfall, prolonged dry spells, and intensified evaporation, potentially leading to more frequent drought occurrences.

This research aims to evaluate the prediction skill for extreme drought events at the seasonal time-scale using the SPI and SPEI indices over the EURO-Mediterranean area. The use of SPEI also takes into account the effect of temperature on the water balance, given by the calculation of potential evapotranspiration within it, which can be crucial in a context of global warming. We consider the seasonal forecasts provided by the Copernicus multi-system and we use the Brier Skill Score metric for the assessment of the performance. The objective is to understand potential predictability factors of these indices within the study area. The results show a positive performance for most of the areas examined, between 60 and 80 percent of the entire area for both indices. This led us to investigate possible optimization strategies to increase the skill in the area.

Using the multi-model approach we optimize the prediction skill obtaining considerable performance in forecasting drought conditions. Different multi-model strategies are compared, including the selection or aggregation of available forecasts to achieve the best overall performance in the area. We show that multi-model optimization can indeed provide valuable probabilistic predictions of seasonal drought events in many areas of the Euro-Mediterranean that could be useful for the decision-making process of the affected end users.

How to cite: Dal Monte, T., Alessandri, A., Cherchi, A., and Gaetani, M.: Assessing the predictability of Euro-Mediterranean droughts through seasonal forecasts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-995, https://doi.org/10.5194/egusphere-egu24-995, 2024.

EGU24-1120 | ECS | Orals | CL4.10

Effects of the realistic vegetation cover representation on the large-scale circulation and predictions at decadal time scale. 

Emanuele Di Carlo, Andrea Alessandri, Fransje van Oorschot, Annalisa Cherchi, Susanna Corti, Giampaolo Balsamo, Souhail Boussetta, and Timothy Stockdale

Vegetation is a highly dynamic component of the Earth System. Vegetation plays a significant role in influencing the general circulation of the atmosphere through various processes. It controls land surface roughness, albedo, evapotranspiration and sensible heat exchanges among other effects. Understanding the interactions between vegetation and the atmosphere is crucial for predicting climate and weather patterns. This study explores how better representation of vegetation dynamics affects climate predictions at decadal timescale and how surface characteristics linked to vegetation affect the general circulation at local, regional and global scales. We used the latest satellite datasets of vegetation characteristics and developed a new and improved parameterization for effective vegetation cover. We implemented the new parameterization in the land surface scheme Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL), which is embedded in the EC-Earth model. 

The enhancement of the model's vegetation variability significantly improves the prediction skill of the model for several parameters, encompassing both surface and upper-level elements such as 2-metre temperature, zonal wind at 850 hPa and mean sea level pressure. The improvement is particularly evident over Euro-Asian Boreal forests. In particular, a large-scale effect on circulation emerges from the region with the most 2-metre temperature improvement, over Eastern Europe. 

The incorporation of an effective vegetation cover also introduces heightened realism in surface roughness and albedo variability. This, in turn, leads to a more accurate representation of the land-atmosphere interactions. The regression analysis of surface roughness and albedo with 2-metre temperature, mean sea level pressure and wind (both at surface and 850 hPa) reveals a robust relationship across the entire northern hemisphere. This relation between the surface and the atmosphere is notably absent in the standard configuration model, where the vegetation is prescribed by a dynamical vegetation module.

These findings underscore the substantial impact of vegetation cover on the general circulation, particularly in the northern hemisphere, and emphasise its crucial role in improving prediction skills. Furthermore, they highlight the challenges faced by modern earth system models in accurately representing several processes connecting the land surface and the atmosphere.

How to cite: Di Carlo, E., Alessandri, A., van Oorschot, F., Cherchi, A., Corti, S., Balsamo, G., Boussetta, S., and Stockdale, T.: Effects of the realistic vegetation cover representation on the large-scale circulation and predictions at decadal time scale., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1120, https://doi.org/10.5194/egusphere-egu24-1120, 2024.

EGU24-1407 | ECS | Posters on site | CL4.10 | Highlight

Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China 

Dong Tong and Dahai Liu

Rapid global changes are altering regional hydrothermal conditions, especially in ecologically vulnerable regions such as coastal areas of China. The response of vegetation growth to extreme climates and the time lag-accumulation relationship still require further exploration. We characterize the vegetation growth status by solar-induced chlorophyll fluorescence (SIF), analyzed the vegetation dynamic in coastal areas of China from 2000 to 2019, also explored the spatiotemporal pattern of vegetation, and assessed the response of vegetation to extreme climate in term of time lag-accumulation by combines gradual analysis and abrupt analysis. The results showed that (1) Coastal areas of China were sensitive to global climate change, with extreme high temperatures and extreme precipitation increasing from 2000 to 2019, and the warming in high latitudes was greater than in low latitudes, while the increase in precipitation was concentrated in the southern regions, which are already water-rich. (2) The vegetation in coastal areas of China improved significantly, with gradual analysis showed that the vegetation improvement area accounts for 94.12% of the study area, and the abrupt analysis showed that the majority (69.78%) of the vegetation change types were "monotonic increase", with 11.77% showing "increase with negative break" and 9.48% "increases to decreases." (3) Significant lag-accumulation relationships were observed between vegetation and extreme climate in coastal areas of China, and the time-accumulation effects was stronger than time-lag effects. The accumulation time of extreme temperatures was typically less than one month, and the accumulation time of extreme precipitation was 2-3 months. These findings contribute to filling gaps in understanding the time lag-accumulation effects of extreme climates on vegetation in sensitive coastal regions. It provides a foundational basis for predicting the growth trend of coastal vegetation, environmental changes and ecosystem evolution, which is essential for a comprehensive assessment of coastal ecological security.

How to cite: Tong, D. and Liu, D.: Time Lag and Cumulative Effects of Extreme Climate on Coastal Vegetation in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1407, https://doi.org/10.5194/egusphere-egu24-1407, 2024.

EGU24-3134 | Orals | CL4.10

Decadal predictability of seasonal temperature distriubutions 

André Düsterhus and Sebastian Brune

Climate predictions focus regularly on the predictability of single values, like means or extremes. While these information offer important insight into the quality of a prediction system, some stakeholders might be interested in the predictability of the full underlying distribution. These allow beside evaluating the amplitude of an extreme also to estimate their frequency. Especially on decadal time scales, where we verify multiple lead years at a time, the prediction quality of full distributions may offer in some applications important additional value.

In this study we investigate the predictability of the seasonal daily 2m-temperature on time scales of up to ten lead years within the MPI-ESM decadal prediction system. We compare yearly initialised hindcast simulations from 1960 onwards against estimates for climatology and uninitialised historical simulations. To verify the predictions we demonstrate a novel approach based on the non-parametric comparison of distributions with the integrated quadratic distance (IQD).

We show that the initialised prediction system has advantages in particular in the North Atlantic area and allow so to make reliable predictions for the whole temperature distribution for two to ten years ahead. It also demonstrates that the capability of initialised climate predictions to predict the temperature distribution depends on the season. Finally, we will also discuss potential opportunities and pitfalls of such approaches.

How to cite: Düsterhus, A. and Brune, S.: Decadal predictability of seasonal temperature distriubutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3134, https://doi.org/10.5194/egusphere-egu24-3134, 2024.

EGU24-3274 | ECS | Orals | CL4.10

 A Multi-year Climate Prediction System Based on CESM2 

Yong-Yub Kim, June-Yi Lee, Axel Timmermann, Yoshimitsu Chikamoto, Sun-Seon Lee, Eun Young Kwon, Wonsun Park, Nahid A. Hasan, Ingo Bethke, Filippa Fransner, Alexia Karwat, and Abhinav R.Subrahmanian

Here we present a new seasonal-to-multiyear earth system prediction system which is based on the Community Earth System Model version 2 (CESM2) in 1° horizontal resolution. A 20- member ensemble of temperature and salinity anomaly assimilation runs serves as the initial condition for 5-year forecasts. Initialized on January 1st of every year, the CESM2 predictions exhibit only weak climate drift and coupling shocks, allowing us to identify sources of multiyear predictability. To differentiate the effects of external forcing and natural climate variability on longer-term predictability, we analyze anomalies calculated relative to the 50-member ensemble mean of the CESM2 large ensemble. In this presentation we will quantify the extent to which marine biogeochemical variables are constrained by physical conditions. This analysis provides crucial insights into error growth of phytoplankton and the resulting limitations for multiyear predictability.

How to cite: Kim, Y.-Y., Lee, J.-Y., Timmermann, A., Chikamoto, Y., Lee, S.-S., Kwon, E. Y., Park, W., A. Hasan, N., Bethke, I., Fransner, F., Karwat, A., and R.Subrahmanian, A.:  A Multi-year Climate Prediction System Based on CESM2, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3274, https://doi.org/10.5194/egusphere-egu24-3274, 2024.

EGU24-4083 | Posters virtual | CL4.10 | Highlight

Enhancing Subseasonal Climate Predictions through Dynamical Downscaling: A Case Study in the Southern Plains of the United States 

Yoshimitsu Chikamoto, Hsin-I Chang, Simon Wang, Christopher Castro, Matthew LaPlante, Bayu Risanto, Xingying Huang, and Patrick Bunn

Predicting extreme precipitation events at subseasonal timescales is a critical challenge in Earth system science. This study advances climate predictability by employing dynamical downscaling, specifically focusing on convection-permitting modeling in the Southern Plains of the United States. Two contrasting extreme precipitation periods in Texas, the extremely dry May of 2011 and the abnormally wet May of 2015, were selected for analysis. To enhance subseasonal climate forecasting, we integrated the Weather Research and Forecasting (WRF) model with the decadal climate prediction system based on the Community Earth System Model (CESM). Evaluating the impact of dynamical downscaling on the prediction of extreme precipitation events, our study demonstrates how high-resolution downscaling enhances model skill in capturing these events. The findings hold the potential to significantly contribute to improving climate predictions and assessing regional climate-related risks, aligning with the session's goals.

How to cite: Chikamoto, Y., Chang, H.-I., Wang, S., Castro, C., LaPlante, M., Risanto, B., Huang, X., and Bunn, P.: Enhancing Subseasonal Climate Predictions through Dynamical Downscaling: A Case Study in the Southern Plains of the United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4083, https://doi.org/10.5194/egusphere-egu24-4083, 2024.

Accurate seasonal streamflow forecasts (SSF) are crucial for disaster prevention, water management, agriculture, and hydropower generation. A global approach becomes imperative in regions lacking forecast systems. The Météo-France seasonal prediction system (MF System 8 - SYS8), contributing to Copernicus Climate Change Services (C3S), employs a fully coupled Atmosphere-Ocean General Circulation Model (AOGCM) with an advanced river routing component (CTRIP) interacting with the ISBA land-surface scheme. This study evaluates the skill of the SYS8 global SSF through hindcast river discharges. This work is part of the European project CERISE, which aims to enhance the C3S seasonal forecast portfolio by improving land initialisation methodologies.

SYS8 derives land initial conditions from a historical initialisation run where land (such as soil moisture and river discharges) is weakly constrained, contrasting with the atmosphere and ocean counterparts, which are nudged to the ERA5 and GLORYS re-analysis. This study improves the initialisation run by relaxing soil moisture to fields reconstructed from an offline land simulation.  Daily streamflow ensemble hindcasts of 25 members are generated in a  0.5° grid, with a lead time of up to 4 months initialised on the first day of May and August between 1993-2017. May and August initialisations allow forecasting of summer (JJA) and fall (SON) seasons. Actual forecast skill is assessed against streamflow observations in 1608 monitored basins worldwide (with areas > 3000 km2) using deterministic and probabilistic metrics. The classical Ensemble Streamflow Prediction approach (ESP) serves as a benchmark to evaluate the control SYS8 SSF skill and the additional skill of soil moisture nudging.

Globally, hindcast skill improves with enhanced land-surface initial conditions, especially during summer. Lower latitudes (<50°N) exhibit increased skill, while higher and cooler latitudes may lead to overestimated streamflow magnitude and oscillation amplitude due to soil moisture constraints. Local skill degradation will be discussed. Still, positive results support ongoing efforts to enhance land initialisation through a global land data assimilation system.

How to cite: Narváez, G. and Ardilouze, C.: Global Streamflow Seasonal Forecasts: Impact of soil moisture initialization in a novel two-way AOGCM-River Routing coupling approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5484, https://doi.org/10.5194/egusphere-egu24-5484, 2024.

EGU24-6494 | Posters virtual | CL4.10 | Highlight

Seasonal predictions of summer humid heat extremes in the southeastern United States driven by sea surface temperatures 

Liwei Jia, Thomas Delworth, and Xiaosong Yang

Humid heat extreme (HHE) is a type of compound extreme weather event that poses severe risks to human health. Skillful forecasts of humid heat extremes months in advance are essential for developing strategies to help communities build more resilience to the risks associated with extreme events. This study demonstrates that the frequency of summertime HHE in the southeastern United States (SEUS) can be skillfully predicted 0-1 months in advance in the SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. The sea surface temperature (SST) at the tropical North Atlantic (TNA) basin is found as the primary driver of the prediction skill. The responses of large-scale atmospheric circulation and winds to anomalous warm SSTs in TNA favor the heat and moisture flux transported from the gulf of Mexico to the SEUS. This research demonstrates the role of slowly-varying sea surface conditions in modifying large-scale environments that contribute to the predictions of HHE in SEUS. The results are potentially applicable for developing early warning systems of HHE. 

How to cite: Jia, L., Delworth, T., and Yang, X.: Seasonal predictions of summer humid heat extremes in the southeastern United States driven by sea surface temperatures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6494, https://doi.org/10.5194/egusphere-egu24-6494, 2024.

“Synergistic Observing Network for Ocean Prediction (SynObs)” is a project of the United Nations Decade of Ocean Science for Sustainable Development. SynObs aims to find the way to extract maximum benefits from the combination among various ocean observation platforms, including satellite and in situ observations. A major ongoing effort led by SynObs is the international multi-system OSEs/OSSEs. In this activity, various operational centers and research institutes participating will conduct Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs) using a variety of ocean or coupled ocean-atmosphere prediction systems with the common setting to evaluate ocean observation impacts which are robust for most ocean prediction systems. More than 10 ocean prediction systems with various model resolutions and diverse data assimilation methods are used in this activity, and impacts of various observation data, including satellite sea surface temperature and height, Argo floats, and tropical mooring buoys, will be evaluated.

The activity is divided into two parts. The first part is the ocean prediction OSEs. In this part, we run several ocean reanalysis runs assimilating different observation datasets at least for 2020 (preferably extended to 2022), and conduct 10-day ocean predictions from the reanalysis fields of every 5 days. Three-dimensional oceanic temperature, salinity, and velocity fields with the 1/10-degree resolution, and several two-dimensional diagnostics with the 1/4-degree resolution will be analyzed. The second part is the subseasonal-to-seasonal (S2S) OSEs. Here, we run several ocean reanalysis runs for 2003-2022, and conduct 1-month (4-month) coupled predictions from the reanalysis fields of every month (twice a year). We will evaluate the impacts of ocean observation data on the long-term reanalysis and S2S predictions using the coupled prediction systems. We also plan to conduct OSSEs using multiple ocean prediction systems in order to assess newly emerging or future observing systems, such as SWOT, ocean gliders, etc. 

We are currently conducting the S2S OSEs using a Japanese operational global ocean data assimilation and coupled prediction system for S2S forecasts. We are now conducting OSEs assimilating no in situ observations and withholding temperature and salinity profiles observed by Argo floats. In the presentation, we will introduce the results and the perspective of the collaborative activities.

How to cite: Fujii, Y., Ishikawa, I., and Hirahara, S.: Early results of OSEs conducted for the SynObs international multi-system OSE effort using an Japanese operational system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6970, https://doi.org/10.5194/egusphere-egu24-6970, 2024.

EGU24-7918 | ECS | Orals | CL4.10

Generation of sea ice initial conditions for the next Météo-France seasonal forecasting system 

Fousiya Thottuvilampil Shahulhameed, Jonathan Beuvier, and Damien Specq

Research and development activities around the current Météo-France operational seasonal forecasting system (System 8) are underway to upgrade it to the next version (System 9), along with efforts to improve the initialization of its components. Among these components, sea ice is particularly challenging to initialize. At present, a coupled-nudged initialisation strategy, based on a high-resolution configuration of the CNRM-CM6 climate model, is employed to initialise the System 8, except for the sea-ice. In order to get initial states of sea ice that are consistent with the forecasting model, our procedure consists in making a preliminary continuous run where the ocean and sea ice models are integrated in stand-alone mode, with forcing at the surface from an atmosphere reanalysis.

However, in the current operational System 8 – based on the NEMO 3.6 ocean model and the GELATO sea ice model – the initial states of sea ice generated with this procedure are not fully realistic. Results show that the sea ice thickness over the Arctic region in the System 8 initial states is underestimated compared to the reference data. Numerous sensitivity experiments were carried out with the current NEMOv3.6-GELATO system, leading to some minor improvements. Thus, an upgraded version of the ocean model (NEMO version 4.2) coupled to a new sea-ice component (SI3) has been tested (in stand-alone mode, not coupled to the atmosphere) to see if the use of more recent versions of ocean and sea-ice models leads to some improvements in the Arctic sea ice representation. The results are encouraging as the representation of sea ice variables in the Arctic is improved compared to the old version.

This incites our team to foresee that System 9 will indeed incorporate the NEMO4.2 and SI3 models, and that the same initialization procedure as before (using these new models) will provide sea-ice initial states closer to those observed.

 

 

How to cite: Thottuvilampil Shahulhameed, F., Beuvier, J., and Specq, D.: Generation of sea ice initial conditions for the next Météo-France seasonal forecasting system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7918, https://doi.org/10.5194/egusphere-egu24-7918, 2024.

EGU24-11927 | Posters virtual | CL4.10 | Highlight

Seasonal prediction of solar energy resources in the United States 

Xiaosong Yang, Thomas Delworth, Liwei Jia, Nathaniel Johnson, Feiyu Lu, and Colleen McHugh

Solar energy plays a crucial role in the transition towards a sustainable and resilient energy future. One challenge that remains is the considerable year-to-year variation in solar energy resources. As a result, precise seasonal solar energy predictions become pivotal for effective energy system planning and operation.  This study employs GFDL’s GFDL’s Seamless System for Prediction and Earth System (SPEAR) to evaluate seasonal solar irradiance prediction across the United States.  Notably, SPEAR demonstrates high skill in predicting solar irradiance particularly in the western United States. Furthermore, we conduct an advanced predictability analysis to pinpoint the underlying physical drivers contributing to this skillful solar energy prediction.  The outcomes of this research offer substantial potential benefits to stakeholders within the energy sector by providing predictable information regarding year-to-year fluctuations in solar energy resources.

How to cite: Yang, X., Delworth, T., Jia, L., Johnson, N., Lu, F., and McHugh, C.: Seasonal prediction of solar energy resources in the United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11927, https://doi.org/10.5194/egusphere-egu24-11927, 2024.

EGU24-11948 | Posters on site | CL4.10

What is the Target for Multi-Model and Perturbed-Physics Ensembles? 

David Stainforth

Much effort goes into studying the causes of systematic errors in Earth System Models (ESMs). Reducing them is often seen as a high priority. Indeed, the development of Digital Twin approaches in climate research is founded on the idea that a sufficiently good model would be able to provide reliable and robust, conditional predictions of climate change (predictions conditioned on scenarios of future greenhouse gas emissions). Here, “reliable” encapsulates the idea that the predictions are suitable for use by society in anticipating and planning for future climate change, and “robust” encapsulates the idea that they are unlikely to change as the models are improved and developed.

Such an approach, however, begs the question, when is a model sufficiently realistic to be able to provide reliable, detailed predictions? A physical processes view of current ESMs suggests that they are not close to this level of realism while a nonlinear dynamical systems perspective raises questions over whether it will ever be possible to achieve such reliability for the types of regionally-specific, extrapolatory, climate change predictions that we may think society seeks.

Given this context, multi-model and perturbed-physics ensembles are often seen as a means to quantify uncertainty in conditional, climate change predictions (commonly referred to as “projections” in the scientific community). In the IPCC atlas (https://interactive-atlas.ipcc.ch/) the most easily accessible output is the multi-model median with the 10th, 25th, 75th and 90th percentiles of the multi-model distribution also prominent. This presentation in terms of probabilities implies that the probabilities themselves have meaning to the users of the data - most users are likely to take them as probabilities of different outcomes in reality. Unfortunately multi-model ensembles cannot be interpreted that way because we have no metric for the shape of model space nor any idea of how to explore it, so the ensemble members cannot be taken as independent samples of possible models. Perturbed-parameter ensembles work in a more defined space of possible model-versions but the shape of that space is also undefined and as a result the ensemble-based probabilities are again arbitrary.

When seeking the best possible information for society, multi-model and perturbed physics ensembles would benefit from targeting diversity: the greatest possible range of responses given a particular model structure. Model emulators could be used to systematise this process. Such an approach would provide more reliable information. It changes the question, however, from “when is a model sufficiently realistic” to “how unrealistic does a model have to be to be uninformative about extrapolatory future climatic behaviour?”

In this presentation I will discuss and elaborate on these issues.

 

References:

Stainforth, D., “What we do with what we’ve got”, Chapter 21 in “Predicting Our Climate Future: What we know, what we don’t know and what we can’t know”, Oxford University Press, 2023.

Stainforth, D.A. et al., Confidence, uncertainty and decision-support relevance in climate predictions, Phil.Trans.Roy.Soc., 2007.

Stainforth, D.A. et al., Issues in the interpretation of climate model ensembles to inform decisions, Phil.Trans.Roy.Soc., 2007.

How to cite: Stainforth, D.: What is the Target for Multi-Model and Perturbed-Physics Ensembles?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11948, https://doi.org/10.5194/egusphere-egu24-11948, 2024.

EGU24-12988 | ECS | Posters on site | CL4.10

A CNN-based Downscaling Method of C3S Seasonal Forecast: Temperature and Precipitation 

Qing Lin, Yanet Díaz Esteban, Fatemeh Heidari, Edgar Fabián Espitia Sarmiento, and Elena Xoplaki

Copernicus Climate Change Service provides seasonal forecasts for meteorological outlooks several months in advance and can provide indications of future climate risks on a global scale. Using downscaling techniques, global variables can be transferred to the high-resolution regional scale, allowing the information to be elaborated for extreme events detection and further implementing and coupling with hydrological models for regional hazard prediction, thus serving agriculture and energy, improving planning for tourism and other sectors.

In this study, we applied a new CNN-based architecture for temperature and precipitation downscaling. Both variables are downscaled from 1 degree to 1 arcminute to fulfill the requirements as an input to the hydrological models. The architecture implements an auto-encoder/decoder structure to extract the data relations. The system is trained with seasonal forecast inputs and observation data to establish the relation between both scales. The model is then evaluated with the validation period from the observation data to achieve the best performance, changing network structures and tuning different network hyper-parameters. The results show a good fit for the observation data on the monthly scale, providing enough details in the downscaling product. Finally, the best-performing networks for downscaling temperature and precipitation are selected and could be extended for further utilization.

How to cite: Lin, Q., Díaz Esteban, Y., Heidari, F., Espitia Sarmiento, E. F., and Xoplaki, E.: A CNN-based Downscaling Method of C3S Seasonal Forecast: Temperature and Precipitation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12988, https://doi.org/10.5194/egusphere-egu24-12988, 2024.

EGU24-13811 | ECS | Posters on site | CL4.10

Estimating Seasonal to Multi-year Predictability of Statistics of Climate Extremes using the CESM2-based Climate Prediction System 

Alexia Karwat, June-Yi Lee, Christian Franzke, and Yong-Yub Kim

Climate extremes, such as heat waves, heavy precipitation, intense storms, droughts, and wildfires, have become more frequent and severe in recent years as a consequence of human-induced climate change. Estimating the predictability and improving prediction of the frequency, duration, and intensity of these extremes on seasonal to multi-year timescales are crucial for proactive planning and adaptation. However, climate prediction at regional scales remains challenging due to the complexity of the climate system and limitations in model accuracy. Here we use a large ensemble of simulations, assimilations, and reforecasts using Community Earth System Model version 2 (CESM2) to assess the predictability of statistics of climate extremes with lead times of up to 5 years. We show that the frequency and duration of heat waves during local summer in specific regions are predictable up to several months to years. Sources of long-term predictability include not only external forcings but also modes of climate variability across time scales such as El Niño and Southern Oscillation, Pacific Decadal Variability, and Atlantic Multidecadal Variability. This study implies opportunities to deepen our scientific understanding of sources for long-term prediction of statistics of climate extremes and the potential for the associated disaster management.

How to cite: Karwat, A., Lee, J.-Y., Franzke, C., and Kim, Y.-Y.: Estimating Seasonal to Multi-year Predictability of Statistics of Climate Extremes using the CESM2-based Climate Prediction System, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13811, https://doi.org/10.5194/egusphere-egu24-13811, 2024.

EGU24-15488 | ECS | Orals | CL4.10

Phytoplankton predictability in the Tropical Atlantic - triggered by nutrient pulses from the South 

Filippa Fransner, Marie-Lou Bachèlery, Shunya Koseki, David Rivas, Noel Keenlyside, Nicolas Barrier, Matthieu Lengaigne, and Olivier Maury

The variability and predictability of the Tropical Atlantic primary productivity remains little explored on interannual-to-decadal time scales. Here, we  present the results of two studies, in which find a decadal scale variability in phytoplankton abundance that can be predicted three years ahead. The predictions are made with NorCPM, which is a fully coupled climate prediction model with ocean biogeochemistry that assimilates temperature and salinity to reconstruct past variability. From these reconstructions, predictions are initialized that are run freely ten years ahead. We find that the predictability is a result of nutrient pulses that are advected with the southern branch of the South Equatorial Current from the most southern part of the Atlantic, and that then get caught in the Equatorial undercurrent before they reach the surface in the Tropical Atlantic Ocean. A more detailed analysis is being done in order to pinpoint the underlying mechanisms in a forced ocean model, where we find a link to the Pan-Atlantic decadal oscillation.

How to cite: Fransner, F., Bachèlery, M.-L., Koseki, S., Rivas, D., Keenlyside, N., Barrier, N., Lengaigne, M., and Maury, O.: Phytoplankton predictability in the Tropical Atlantic - triggered by nutrient pulses from the South, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15488, https://doi.org/10.5194/egusphere-egu24-15488, 2024.

EGU24-15829 | Posters on site | CL4.10

The role of realistic vegetation variability in climate predictability and prediction 

Andrea Alessandri, Emanuele Di Carlo, Franco Catalano, Bart van den Hurk, Magdalena Alonso Balmaseda, Gianpaolo Balsamo, Souhail Boussetta, and Tim Stockdale

Vegetation is a relevant and highly dynamic component of the Earth system and its variability – at seasonal, interannual, decadal and longer timescales – modulates the coupling with the atmosphere by affecting surface variables such as roughness, albedo and evapotranspiration. In this study, we investigate the effects of improved representation of vegetation dynamics on climate predictability and prediction at the seasonal timescale. To this aim, the observational constraints from the latest generation satellite dataset of vegetation Leaf Area Index (LAI) have been integrated in the modeling, including a parameterization of the effective vegetation cover as a function of LAI. The improved vegetation representation is implemented in HTESSEL, which is the land surface model included in the seasonal forecasting (ECMWF SEAS5) systems used in this work.

Our results show that the realistic representation of vegetation variability has significant effects on both potential predictability and actual prediction skill at the seasonal time scale. It is shown a significant improvement of the skill in predicting boreal winter (December-January-February; DJF) 2m Temperature (T2M) at 1-month lead time especially over Euro-Asian boreal forests; the improvement is at least in part due to the more realistic representation of the interannual albedo variability that is related to the changes in vegetation shading over snow. Remarkably, from the region with the most considerable T2M improvement originates a large-scale ameliorating effect on circulation encompassing Northern Hemisphere middle-to-high latitudes from Siberia to the North Atlantic. The results indicate that the coupling with the improved vegetation might operate by amplifying locally the signal originating from the North Atlantic sector, therefore improving both potential predictability and actual skill over the region. Concurrently, the improved predictability and skill over the Euro-Asian forests appears to feedback to the large-scale circulation enhancing the representation of the circulation pattern and associated interannual anomalies.

How to cite: Alessandri, A., Di Carlo, E., Catalano, F., van den Hurk, B., Balmaseda, M. A., Balsamo, G., Boussetta, S., and Stockdale, T.: The role of realistic vegetation variability in climate predictability and prediction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15829, https://doi.org/10.5194/egusphere-egu24-15829, 2024.

EGU24-16402 | Orals | CL4.10

On the stationarity of the global spatial dependency of heat risk on drought. 

Matteo Zampieri, Karumuri Ashok, Andrea Toreti, Davide Bavera, and Ibrahim Hoteit

Compound climate anomalies pose escalating risks in the context of climate change, with anomalous heat and drought presenting significant stressors to both ecosystems and society. The simultaneous occurrence of these events can be influenced by land surface processes such as the soil moisture – air temperature coupling. However, the long-term variability of this coupling remains unexplored. Here, using a combination of observations and multi-model ensemble forecasts dating back to the 1980s, we examine the global land exposure to higher than normal probabilities of concurrent hot temperature anomalies and drought on a monthly scale. Our findings confirm that drought substantially shapes the spatial distribution of heat-related risks on a global scale, offering a crucial predictive factor for these combined events. Traditionally, defining heat anomalies for non-adaptive systems involves fixed reference temperature thresholds. Using this method, our analysis reveals that the portion of global land experiencing drought-conditioned hot temperature anomalies has tripled in less than three decades. Surprisingly, the global level of spatial coupling appears to be declining. However, this outcome heavily depends on the specific definition of heat risk employed. By employing a time-dependent temperature threshold that considers changes in the climate's mean state due to both global warming and natural variability, a different picture emerges. Using the latter method, the level of spatial coupling demonstrates persistence and stability. Importantly, this method is better suited to assessing risks for adaptive systems and is more consistent with our current understanding of the underlying processes. Our study strongly advocates for tailoring hazard definitions to the specific processes and systems under investigation. Additionally, it underscores the pivotal role of operational sub-seasonal and seasonal forecasts in early warning systems, crucial for societal adaptation in the face of global warming.

How to cite: Zampieri, M., Ashok, K., Toreti, A., Bavera, D., and Hoteit, I.: On the stationarity of the global spatial dependency of heat risk on drought., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16402, https://doi.org/10.5194/egusphere-egu24-16402, 2024.

EGU24-16456 | Orals | CL4.10

Advancements and Challenges in Assessing and Predicting the Global Carbon Cycle Variations Using Earth System Models 

Hongmei Li, Tatiana Ilyina, István Dunkl, Aaron Spring, Sebastian Brune, Wolfgang A. Müller, Raffaele Bernardello, Laurent Bopp, Pierre Friedlingstein, William J. Merryfield, Juliette Mignot, Michael O'Sullivan, Reinel Sospedra-Alfonso, Etienne Tourigny, and Michio Watanabe

The imperative to comprehend and forecast global carbon cycle variations in response to climate variability and change over recent decades and in the near future underscores its critical role in informing the global stocktaking process. Our study investigates CO2 fluxes and atmospheric CO2 growth through ensemble decadal prediction simulations using Earth System Models (ESMs) driven by CO2 emissions with an interactive carbon cycle. These prediction systems provide valuable insights into the global carbon cycle and, therefore, the variations in atmospheric CO2. Assimilative ESMs with interactive carbon cycles effectively reconstruct and predict atmospheric CO2 and carbon sink evolution. The emission-driven prediction systems maintain comparable skills to conventional concentration-driven methods, predicting 2-year accuracy for air-land CO2 fluxes and atmospheric CO2 growth, with air-sea CO2 fluxes exhibiting higher skill for up to 5 years. Our multi-model predictions for the next year, along with assimilation reconstructions, for the first time contribute to the Global Carbon Budget 2023 assessment. We plan regular updates and the involvement of more ESMs in future assessments. Ongoing efforts include implementing seasonal-scale predictions for skill improvement. Furthermore, we assess uncertainty contributions to CO2 flux and growth predictions, revealing the comparable impacts of internal climate variability and diverse model responses, particularly at a lead time of 1-2 years. Notably, the effect of CO2 emission forcing rivals internal variability at a 1-year lead time. Large uncertainties in CO2 responses to initial states of ENSO are observed, stemming from both model responses and internal variability. The challenge lies in addressing the scarcity and uncertainty of data for initialization and obtaining precise external forcings to enhance the reliability of predictions. The further advancements involve not only addressing comprehensive bias correction but also implementing statistical methods to enhance dynamical predictions.

How to cite: Li, H., Ilyina, T., Dunkl, I., Spring, A., Brune, S., Müller, W. A., Bernardello, R., Bopp, L., Friedlingstein, P., Merryfield, W. J., Mignot, J., O'Sullivan, M., Sospedra-Alfonso, R., Tourigny, E., and Watanabe, M.: Advancements and Challenges in Assessing and Predicting the Global Carbon Cycle Variations Using Earth System Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16456, https://doi.org/10.5194/egusphere-egu24-16456, 2024.

EGU24-16842 | Posters on site | CL4.10 | Highlight

Exploring Sources of Multi-year Predictability of Terrestrial Ecosystem 

June-Yi Lee, Yong-Yub Kim, and Jeongeun Yun

The demand for decision-relevant and evidence-based near-term climate information is increasing. This includes understanding and explaining the variability and changes in ecosystems to support disaster management and adaptation choices. As climate prediction from seasonal to decadal (S2D) expands to encompass Earth system dimensions, including terrestrial and marine ecosystems, it is crucial to deepen our scientific understanding of the long-term predictability sources for ecosystem variability and change. Here we explore to what extent terrestrial ecosystem variables are driven by large-scale - potentially predictable -climate modes of variability and external forcings or whether regional random environmental factors are dominant. To address these issues, we utilize a multi-year prediction system based on Community Earth System Model version 2 (CESM2).  The system consists of 50-member uninitialized historical simulations, 20-member ocean assimilations, and 20-member hindcast initiated from every January 1st integrating for 5 years from 1961 to 2021. The key variables assessed are surface temperature, precipitation, soil moisture, wildfire occurrence, and Gross Primary Productivity. Our results suggest that land surface processes and ecosystem variables over many parts of the globe can be potentially predictable 1 to 3 years ahead originating from anthropogenic forced signals and modes of climate variability, particularly El Nino and Southern Oscillation and Atlantic Multi-decadal variability. These global modes of climate variability shift regional temperature and precipitation patterns, leading to changes in soil moisture, wildfire occurrence, and terrestrial productivity.  

How to cite: Lee, J.-Y., Kim, Y.-Y., and Yun, J.: Exploring Sources of Multi-year Predictability of Terrestrial Ecosystem, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16842, https://doi.org/10.5194/egusphere-egu24-16842, 2024.

EGU24-18766 | Orals | CL4.10

Deciphering Prediction Windows of Opportunity: A Cross Time-Scale Causality Framework   

Stefano Materia, Constantin Ardilouze, and Ángel G. Muñoz

While subseasonal forecasts often exhibit limited skill across mid-latitudes, occasional improvements are observed in specific locations during certain periods, known as "windows of opportunity." Understanding the causal factors behind these windows is complex due to the diverse and interdependent nature of predictors, their spatial and temporal variability, and the challenges in establishing causality relationships. 

Traditional lagged-correlations methods provide only a partial view, lacking insights into causality. Based on previous work on the role of land surface processes, multi-model subseasonal model skill assessment and the use of causality metrics in predictions across timescales (e.g. Ardilouze et al., 2020, 2021; Materia et al 2020, 2022; Muñoz et al., 2023), here we propose an approach based on the Liang-Kleeman information flow, allowing the assessment of statistically significant causal links across various lead times.

Applied to reforecast and reanalysis data, our framework successfully identifies significant predictability drivers -involving sea-surface temperatures, atmospheric circulation and remote and local land-surface processes-, revealing their interference (interplay), evolving patterns and prevalence from seasonal to subseasonal scales. 

Furthermore, the comparison between reanalysis and reforecast results aids in assessing the capability of models to capture these causality features, suggesting additional ways to conduct model diagnostics. We illustrate here the theoretical background by showcasing the causal factors influencing a window of opportunity identified from a multimodel subseasonal reforecast.

 

References

Ardilouze, C., Materia, S., Batté, L., Benassi, M., & Prodhomme, C. (2020). Precipitation response to extreme soil moisture conditions over the Mediterranean. Climate Dynamics, 1, 1–16. https://doi.org/10.1007/S00382-020-05519-5/TABLES/2

Ardilouze, C., Specq, D., Batté, L., & Cassou, C. (2021). Flow dependence of wintertime subseasonal prediction skill over Europe. Weather and Climate Dynamics, 2(4), 1033-1049. https://doi.org/10.5194/wcd-2-1033-2021 

Materia, S., Muñoz, Á. G., Álvarez-Castro, M. C., Mason, S. J., Vitart, F., & Gualdi, S. (2020). Multi-model subseasonal forecasts of spring cold spells: potential value for the hazelnut agribusiness. Weather and Forecasting. https://doi.org/10.1175/waf-d-19-0086.1 

Materia, S., Ardilouze, C., Prodhomme, C., & et al. (2022). Summer temperature response to extreme soil water conditions in the Mediterranean transitional climate regime. Climate Dynamics, 58, 1943–1963. https://doi.org/10.1007/s00382-021-05815-8

Muñoz, Á. G., Doblas-Reyes, F., DiSera, L., Donat, M., González-Reviriego, N., Soret, A., Terrado, M., & Torralba, V. (2023). Hunting for “Windows of Opportunity” in Forecasts Across Timescales? Cross it. EGUGA, EGU-15594. https://doi.org/10.5194/EGUSPHERE-EGU23-15594 

How to cite: Materia, S., Ardilouze, C., and Muñoz, Á. G.: Deciphering Prediction Windows of Opportunity: A Cross Time-Scale Causality Framework  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18766, https://doi.org/10.5194/egusphere-egu24-18766, 2024.

Top-down constraints of CO2 emissions from coal-fired power plants are critical to improving the accuracy of CO2 emission inventory and designing carbon reduction strategies. Different top-down models based on satellite observation have been proposed in previous studies, but discrepancies between these models and the underlying drivers are rarely explored, limiting the confidence of their application to monitor point-source CO2 emissions from satellite. Here, we apply three top-down models to estimate CO2 emissions from individual coal-fired power plants in the United States (US) and China in 2014-2021 from Orbiting Carbon Observatory 2 (OCO-2) satellite observations. The first one applies the Gaussian plume model to optimize emissions by fitting modeled CO2 enhancement to the observation. The second and third methods apply the same inversion framework, but with WRF-Chem and WRF-FLEXPART as forward models, respectively. We evaluate consistency between the three methods in estimating emissions of 10 power plants in the US, using daily reported values from the US Environmental Protection Agency (EPA) as a benchmark, and then apply the three methods to quantify emissions of 13 power plants in China. Results show that the WRF-Chem and WRF-FLEXPART based inversion results are more consistent with the EPA reported emission rates compared to the Gaussian plume model method, with correlation coefficients of 0.76 and 0.89 and mean biases of 4.06 and 3.22 ktCO2/d relative to EPA reports at 10 power plants, respectively. This is because application of high-resolution three-dimensional wind fields better captures the shape of observed plumes, compared to the Gaussian plume model which relies on wind field at a single point, and thus the Gaussian plume model has difficulty to optimize emissions under inhomogeneous wind fields or when observations are far away from the power plant. In general, using the WRF-FLEXPART model as the forward model in the inverse analysis shows the best consistency with the EPA’s reports, likely due to its capability to simulate narrow-shape plumes in the absence of numerical diffusion which is inherent in Eulerian model such as WRF-Chem. Emissions estimated by the three top-town methods show a moderate consistency at 13 coal-fired power plant cases in China, with 8 of 13 cases showing differences of less than 30% between at least two methods. However, large differences emerge when wind fields are inhomogeneous and number of available observations is limited. Using different meteorological wind fields and OCO-2 data versions can also bring substantial differences to the posterior emissions for all three approaches. We find that the posterior CO2 emissions, though only reflecting instantaneous emission rates at satellite overpass time, are not proportional to the reported capacities of these power plants, indicating that attributing CO2 emissions simply based on the capacity of power plants in some bottom-up approaches may have significant discrepancies. Our study exposes the capability and limitation of different top-down approaches in quantifying point-source CO2 emissions, advancing their application for better serving increasing constellations of point-source imagers in the future.

How to cite: He, C., Lu, X., and Fan, S.: Revisiting the quantification of power plant CO2 emissions in the United States and China from satellite: a comparative study using three top-down approaches., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1269, https://doi.org/10.5194/egusphere-egu24-1269, 2024.

EGU24-10050 | PICO | AS3.41

Sectoral differentiation of CH4 footprints by using the ICON-ART model – A feasibility study 

Buhalqem Mamtimin, Thomas Rösch, Beatrice Ellerhoff, Diego Jiménez de la Cuesta Otero, and Andrea K. Kaiser-Weiss

In this study, we present an ICON-ART (ICOsahedral Non-hydrostatic Aerosols and Reactive Trace gases) model based sectoral differentiation of CH4 concentration in terms of a feasibility study. ICON-ART is an extension of the numerical weather prediction model ICON used by DWD. The physical parameterizations and numerical methods of ICON used in ICON-ART, which simulated the interactions between trace subtances and the state of the atmosphere.

The motivation for the sectoral differentiation based on the model is directed towards the comparison of the field measurements, with the assumption that the modeled simulations could represent a response signal of how each sector contributes to the measured concentration on the Integrated Carbon Observation System (ICOS) stations of interest.

The CH4 concentrations for various economic sectors of Europe and of Germany are simulated using ICON-ART model. In order to compare the model results and against measurements  from the Integrated Carbon Observation System (ICOS) stations, the model equivalents have been extracted at the locations of the ICOS monitoring stations. We test our experimenal setup in a feasibility study, which shows benefits of using the ICON-ART model to comprehend emissions from various sectors.

How to cite: Mamtimin, B., Rösch, T., Ellerhoff, B., Jiménez de la Cuesta Otero, D., and Kaiser-Weiss, A. K.: Sectoral differentiation of CH4 footprints by using the ICON-ART model – A feasibility study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10050, https://doi.org/10.5194/egusphere-egu24-10050, 2024.

EGU24-10117 | ECS | PICO | AS3.41 | Highlight

An atmospheric data assimilation system combining biomass and atmospheric CO₂ data for constraining biosphere carbon fluxes 

Auke Van Der Woude, Joram Hooghiem, Remco De Kok, Ingrid Luijkx, Marnix Van de Sande, Aleya Kaushik, John Miller, and Wouter Peters

Quantification of the long-term carbon uptake by the land biosphere is of key importance for climate action. Traditional methods of estimating the carbon sink include atmospheric inversions, which use CO₂  measurements to reduce inherent biases in simulations of the land biosphere. The atmospheric  CO₂ measurements used are informative on different time scales from days to decades, which are often difficult to separate from the data. Additional data sources can be used to separate the decadal change in sink magnitude from the shorter-term impacts of e.g. droughts. An example is the use of remotely-sensed above-ground biomass changes that have recently gained traction to estimate the stock change of carbon at the surface (Δbiomass), caused by months and years of integrated Net Ecosystem Exchange (NEE). We therefore built a Bayesian framework in which we constrain decades of daily NEE with both atmospheric CO2 observations as well as satellite-based Δbiomass products. With this integration we aim to better constrain the magnitude, inter-annual variability and location of land carbon sinks and sources. We focus the initial tests of the system on European carbon fluxes and find that Europe is a small long-term sink of CO₂, albeit with large regional differences. Most notably, vegetation of central European comes out as a net source of CO₂  into the atmosphere in our system, a finding that is supported by both by the Δbiomass product and the atmospheric CO₂ data. In this presentation we further explore the limits of the attempted integration, aiming to pave the way for future syntheses of atmospheric inversions with novel data products.

How to cite: Van Der Woude, A., Hooghiem, J., De Kok, R., Luijkx, I., Van de Sande, M., Kaushik, A., Miller, J., and Peters, W.: An atmospheric data assimilation system combining biomass and atmospheric CO₂ data for constraining biosphere carbon fluxes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10117, https://doi.org/10.5194/egusphere-egu24-10117, 2024.

EGU24-10496 | PICO | AS3.41

Evaluating ICON-ART-LAM vertical profiles and columns of CH4 for May-June 2018 over Europe 

Anne-Marlene Blechschmidt, Buhalqem Mamtimin, Thomas Rösch, and Andrea Kaiser-Weiss

A greenhouse gas satellite data assimilation system is currently being developed for the ICOsahedral Nonhydrostatic (ICON) - Aerosols and Reactive Trace gases (ART) - Limited Area Mode (LAM) model at the German Weather Service. This work is part of the modelling module of the Integrated Greenhouse Gas Monitoring System project (ITMS-M). A first step towards the satellite data assimilation system is the derivation of vertical columns of methane from ICON-ART-LAM simulations that can be compared to column retrievals of CH4 from satellite sensors such as the TROPOspheric Monitoring Instrument (TROPOMI) on board of the Copernicus Sentinel-5 Precursor satellite. As the ICON-ART-LAM simulations are limited to about 20 km altitude, vertical columns cannot directly be derived from the model output alone.

In this presentation, the potential of adding CH4 concentrations from the Copernicus Atmosphere Monitoring Service (CAMS) egg4 greenhouse gas reanalysis and CAMS inversion optimized products above the ICON-ART-LAM upper boundary is evaluated for the time period May-June 2018 and a domain covering Europe (6.5 x 6.5 km2 horizontal grid spacing). The vertical profiles of ICON-ART-LAM are investigated for consistency with the CAMS simulations and ICON-ART-LAM vertical columns derived from the model output will be compared against CH4 vertical columns from TROPOMI. For the latter, the satellite orbit and the sensitivity of the satellite sensor towards retrieving CH4 in different layers of the atmosphere are considered.

How to cite: Blechschmidt, A.-M., Mamtimin, B., Rösch, T., and Kaiser-Weiss, A.: Evaluating ICON-ART-LAM vertical profiles and columns of CH4 for May-June 2018 over Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10496, https://doi.org/10.5194/egusphere-egu24-10496, 2024.

EGU24-11312 | ECS | PICO | AS3.41

Evaluating Boreal Wetland Methane Emissions in Fennoscandia using MAGIC2021 airborne measurements and Atmospheric Modelling 

Félix Langot, Cyril Crevoisier, Thomas Lauvaux, Charbel Abdallah, Antoine Berchet, Klaus-Dirk Gottschaldt, Alina Fiehn, Jérôme Pernin, Axel Guedj, Thomas Ponthieu, Anke Roiger, Sophie Wittig, Marielle Saunois, and Xin Lin

Boreal wetlands are components of the terrestrial carbon cycle, acting as significant natural sources of methane (CH4) in circumpolar regions. With accelerated Arctic warming, emissions from these ecosystems become hard to predict with high uncertainties on future hydrological regimes, wetland/permafrost extent, and organic matter decomposition rates, subsequently affecting CH4 emissions. Validation of accurate quantification methods for these emissions is therefore pivotal in order to better understand and manage potential climate feedbacks.

In this context, the MAGIC2021 international large-scale field campaign's airborne measurements provide key empirical data to assess CH4 emissions from boreal wetlands in Fennoscandia. Led by CNRS and CNES, the campaign took place in August 2021 and involved 70 scientists from 14 international research teams. More than twenty instruments were deployed, onboard research aircraft (in-situ and lidars), as well as on stratospheric balloons (AirCores) and on the ground (EM27/SUN). In particular, obtaining CH4 concentrations from aircraft flights within the boundary layer allowed to directly capture the signatures of wetland emissions, offering a robust dataset for model validation.

Our study employs two Lagrangian models, FLEXPART driven by ERA5 data and WRF-LPDM, to estimate wetland CH4 fluxes from these measurements. The use of these distinct Lagrangian approaches allows for cross-validation of results, enhancing the reliability of our findings. The derived fluxes are compared with outputs from two bottom-up emission models, WetCHARTs and JSBACH-HIMMELI, which simulate wetland CH4 dynamics at different scales and resolutions. This comparative analysis not only benchmarks the performance of these models against observational data but also sheds light on discrepancies in modelled bottom-up fluxes that can guide future improvements.

Contributions of this study to the session include:

  • A high resolution assessment of boreal wetland CH4 emissions and atmospheric distribution, using state-of-the-art airborne observational techniques.
  • Integration of multiple Lagrangian modelling frameworks to validate and corroborate CH4 flux estimates.
  • A critical evaluation of bottom-up models WetCHARTs and JSBACH-HIMMELI against empirical data, advancing our understanding of model uncertainties and informing on possible enhancements in wetland CH4 emission.

This research aims to further improve our understanding of methane emission processes from boreal wetlands, which helps improve predictions about these important ecosystems. The outcomes contribute to a more accurate global methane budget and underscore the importance of synergistic observational and modelling strategies in environmental science.

How to cite: Langot, F., Crevoisier, C., Lauvaux, T., Abdallah, C., Berchet, A., Gottschaldt, K.-D., Fiehn, A., Pernin, J., Guedj, A., Ponthieu, T., Roiger, A., Wittig, S., Saunois, M., and Lin, X.: Evaluating Boreal Wetland Methane Emissions in Fennoscandia using MAGIC2021 airborne measurements and Atmospheric Modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11312, https://doi.org/10.5194/egusphere-egu24-11312, 2024.

EGU24-13160 | ECS | PICO | AS3.41

Optimal network designs of in situ atmospheric CO2 stations over continental France 

Carla D'Angeli, Thomas Lauvaux, David Matajira Rueda, Charbel Abdallah, Hassan Bazzi, Philippe Ciais, Morgan Lopez, Michel Ramonet, and Léonard Rivier

The global Stocktake, a fundamental component of the Paris Agreement tracking progress on national mitigation actions, collects the Nationally Determined Contributions (NDCs) generated through the means of annual national inventories. Greenhouse gases (GHG) inventories are prone to uncertainties, especially when considering sub-national scales, sub-annual frequencies, or the natural component of GHG budgets, lacking verification and transparency. Atmospheric observations assimilated through the inverse approach can help constrain both the natural and anthropogenic components of national carbon budgets. Here, we aim at quantifying the carbon dioxide (CO2) fluxes over continental France by combining atmospheric greenhouse gas concentrations from the ICOS (Integrated Carbon Observation System) measurement network and a high-resolution inversion system.

We present an assessment of the observational constraint from the current ICOS network. We also determine the optimal locations and number of additional stations to monitor CO2 fluxes from human activities and different ecosystems. The CO2 concentration measurements influenced by surface CO2 fluxes are analyzed using a Lagrangian Particle Dispersion (LPDM) model. LPDM is run backward in time with meteorological inputs from the Weather Research Forescating (WRF) model, at 3km resolution over continental France. We infer the origin of the CO2 using the TNO high-resolution fossil fuel inventory and biogenic CO2 fluxes produced by the Vegetation Photosynthesis Respiration Model (VPRM). The VPRM model simulates both the CO2 uptake from photosynthesis and the release from respiration using meteorological re-analysis products and surface remote sensing data.

We start by evaluating the improved model performances at high resolution compared to low resolution simulations. Then we analyze the influence of biogenic and fossil fuel sources at each tower of the ICOS network, and finally we explore which areas are constrained by atmospheric stations using different criteria: by ecosystem type, by land cover, and in terms of net carbon fluxes and fossil fuel emissions. We discuss here how our future inversion system could help constrain the regional distribution of CO2 fluxes, sub-annual variations at seasonal and monthly timescales to track current climate change impacts (forest fires, droughts), and the effects of emission mitigation policies.

How to cite: D'Angeli, C., Lauvaux, T., Matajira Rueda, D., Abdallah, C., Bazzi, H., Ciais, P., Lopez, M., Ramonet, M., and Rivier, L.: Optimal network designs of in situ atmospheric CO2 stations over continental France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13160, https://doi.org/10.5194/egusphere-egu24-13160, 2024.

EGU24-14255 | ECS | PICO | AS3.41

Study on energy and CO2 flux in a monsoon temperate rice paddy and soybean field in Korea 

Mingu Kang, Kyo-moon Shim, Yongseok Kim, Jina Hur, Sera Jo, Eungsup Kim, and Sueng-gil Hong

  Unlike natural ecosystems, agricultural ecosystems are unique ecosystems in which artificial factors play a significant role. The material cycling within an agricultural ecosystem is influenced by factors such as agricultural activities, weather, and soil conditions. Understanding the material cycling and energy flow in these ecosystems is important to cope with climate change. In this study, we measured energy and carbon dioxide flux using the eddy covariance method to assess material cycling in rice paddy and soybean field ecosystems with similar weather conditions but different vegetation. Additionally, growth surveys were conducted every two weeks to analyze crop development. During the summer, the weather and soil conditions in rice paddy and soybean field were comparable, resulting in similar levels of latent heat flux for both ecosystems. In July 2020, despite the rainy season, the water use efficiency(WUE) of rice paddy was higher than that of other periods, influenced by vegetation and weather conditions. WUE during the summer resembled that of the cropping period, indicating a potential impact on overall crop grain weight.

How to cite: Kang, M., Shim, K., Kim, Y., Hur, J., Jo, S., Kim, E., and Hong, S.: Study on energy and CO2 flux in a monsoon temperate rice paddy and soybean field in Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14255, https://doi.org/10.5194/egusphere-egu24-14255, 2024.

EGU24-18123 | PICO | AS3.41

WRF-Chem CO2 simulation over a medium sized city: An evaluation across grey-zone resolutions 

Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Cyril Crevoisier, Bruno Grouiez, Delphine Combaz, Nicolas Dumelié, Yao Té, Hao Fu, Morgan Lopez, Frank Hase, Neil Humpage, Caroline Bès, Axel Guedj, Jérôme Pernin, and Aurélien Bourdon

Metropolitan areas are known to be anthropogenic “hot spots” of Greenhouse Gas (GHG) fluxes. To track the effectiveness of climate mitigation policies and emission reduction objectives, large metropolitan areas like Munich and Paris regions are currently being instrumented with dense atmospheric GHG networks, further assimilated in inversion systems with high-resolution inventories, also complementing the data collected by remote sensing instruments on the ground and in space. To study medium-sized cities, where a large fraction of the global population lives, spaceborne measurements often fail to quantify fossil fuel emissions since the atmospheric signatures are below the detection threshold of current instruments. For the past two years (2022 and 2023), two large-scale campaigns of the MAGIC initiative led by CNRS and CNES (https://magic.aeris-data.fr) have been taking place in Reims, France, a city with a population of 300,000 inhabitants (207 hab./km2) located to the East of Paris (approx. 100 km away). During these two intensive measurement campaigns, a wide range of ground-based instruments have been deployed around the city to measure CO2 concentrations, in addition to instrumented balloons and aircraft. The goal of these campaigns was to evaluate CO2 emissions from the area and to assess the detection capabilities of current satellite instruments.

In our study, we simulated the atmospheric CO2 mixing ratios using the Weather Research Forecast model coupled to a chemistry transport model (WRF-Chem) at 4 horizontal resolutions (9 km, 3 km, 1 km, and 333 m). Typically, mesoscale models are used for resolutions coarser than 1 km while microscale Large-Eddy Simulation models (LES) are used for resolutions finer than 100m. In between, i.e. the grey-zone, turbulent motions are not resolved explicitly but high resolutions might offer a better representation of fine plume structures. Here, we present the results of a multi-scale multi-instrument comparison between the model and the observations to characterize the model performances and the ability of the model to reproduce the observed variations in concentrations. We found that the detectability of the various CO2 plumes remains challenging. First, the strength of the anthropogenic signals from the city remains low compared to gradients from nearby sources, whether industrial or metropolitan, hence making the city plume hard to study. We also showed that improvements in the modelling of CO2 plumes were not significant between the 1 and 0.3 km horizontal resolution scales, thus suggesting that LES models might be better suited for such studies.

How to cite: Abdallah, C., Lauvaux, T., Joly, L., Crevoisier, C., Grouiez, B., Combaz, D., Dumelié, N., Té, Y., Fu, H., Lopez, M., Hase, F., Humpage, N., Bès, C., Guedj, A., Pernin, J., and Bourdon, A.: WRF-Chem CO2 simulation over a medium sized city: An evaluation across grey-zone resolutions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18123, https://doi.org/10.5194/egusphere-egu24-18123, 2024.

EGU24-18698 | ECS | PICO | AS3.41

Analysis of atmospheric radon for uncertainty evaluation in regional-scale greenhouse gas emissions estimation  

Dafina Kikaj, Mareya Saba, Alistair Manning, Peter Andrews, Edward Chung, Grant Foster, Angelina Wenger, Simon O’Doherty, Matt Rigby, Chris Rennick, Joseph Pitt, and Tim Arnold

Atmospheric transport model (ATM) uncertainty continues to be a significant constraining factor in making confident top-down (inverse model based) GHG emission estimates. Despite its importance, accurately gauging model uncertainty and capturing its temporal fluctuations remains a challenge. Inversion frameworks typically involve an empirical selection of data to be assimilated whereby only the data from periods where the ATM has the lowest uncertainties are used for the inversion.  There are numerous data filtering methods, that often depend on modelled parameters (mixing height, wind speed, potential temperature), which could result in data selection bias.

To address this, we present analysis of radon measurements, a natural radioactive noble gas with simple and well-constrained source and sink. Radon’s unique characteristics make it an ideal tracer to study the transport and mixing of air and thus has potential to act as an independent metric to evaluate ATM performance. A new approach involves utilising measured and modelled radon (calculated using the Met Office Numerical Atmospheric Modelling Environment (NAME) dispersion model and radon flux map) to classify the ATM output uncertainty as either high (poor performance) or low (the best performance). This approach could be universally applied to any location measuring radon from a single inlet height and in conjunction with any other dispersion modelling scenarios.  

To evaluate the effectiveness of the radon selection method, we assess the methane (CH4) emissions across the UK using four tall tower sites (part of the Deriving Emissions linked to Climate Change - DECC network): Heathfield, Ridge Hill, Tacolneston and Weybourne. The CH4 emissions are estimated by the Met Office’s inversion modelling system – Inversion Technique for Emission Modelling (InTEM). We will compare how emissions sensitivity varies between our radon-based approach and the current selection method, which relies on model parameters and the vertical gradient of CH4 measurements. This comparative analysis aims to demonstrate the potential advantages of using radon as a tool for improving the accuracy of ATM performance assessments in GHG emission estimates.

How to cite: Kikaj, D., Saba, M., Manning, A., Andrews, P., Chung, E., Foster, G., Wenger, A., O’Doherty, S., Rigby, M., Rennick, C., Pitt, J., and Arnold, T.: Analysis of atmospheric radon for uncertainty evaluation in regional-scale greenhouse gas emissions estimation , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18698, https://doi.org/10.5194/egusphere-egu24-18698, 2024.

EGU24-19625 | ECS | PICO | AS3.41 | Highlight

Artificial intelligence for dynamic and intelligent methane inventory  

Jade Eva Guisiano, Thomas Lauvaux, Zitely Tzompa Sosa, Éric Moulines, and Jérémie Sublime


Atmospheric methane contributes to approximately 20-30% of the current global radiative forcing by greenhouse gases. Despite the potential for a 39% reduction in emissions from the oil and gas sector at no net cost, the lack of dependable emission data hinders governments from implementing timely and impactful mitigation actions aligned with the Global Methane Pledge. Existing regulations rely on national methane emission inventories, significantly underestimating methane sources across various emission sectors as revealed by recent studies. The primary cause of this discrepancy is the exclusion of super-emitters in these inventories. Super-emitters, characterized by high emission rates, collectively account for an average of 40% of total methane emissions. To implement effective regulations for reducing methane emissions, a novel, reliable, and accurate inventory methodology is needed. We propose here a framework for an innovative dynamic and intelligent inventory based on artificial intelligence tools.  The dynamic component involves the collection and automatic association, over time, of methane plume detections from satellite source points with the oil and gas infrastructures at their origin. The intelligent part of the inventory enables automatic statistical and forecasting analyses contributing to the definition of multi-level emission profiles in near real-time, spanning country, region, basin, operator, site, and infrastructure levels. The proposed framework is divided into two main parts, the first part focusing on instantiated detection of potentially methane-emitting infrastructures, without recourse to fixed inventories of oil and gas (O&G) infrastructures. As the landscape of O&G infrastructures is constantly evolving, the use of an emission inventory produced at time t can quickly become inaccurate. The principle of snapshot instantiation is essential for building up an up-to-date inventory of infrastructures especially in the context of quasi-continuous monitoring. This first part is based on the use of object detection algorithms to automatically detect and recognize O&G infrastrucutres for each methane plume detection with an accuracy of over 94%. The second part of the framework consists in matching the infrastructure closest to that of the detected plume, using the K-nearest-neighbor algorithm. Carried out successively in time, this method allows to build up a time series of the rate and frequency of methane emissions by O&G infrastructures which form the basis for methane emissions spatio-temporal analysis and forecasting. To show how this framework can be used, we present a study case that consists in estimating a methane emissions inventory for compressors, tanks and wells in the Permian Basin (USA).

How to cite: Guisiano, J. E., Lauvaux, T., Tzompa Sosa, Z., Moulines, É., and Sublime, J.: Artificial intelligence for dynamic and intelligent methane inventory , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19625, https://doi.org/10.5194/egusphere-egu24-19625, 2024.

The estimation of reference evapotranspiration (ETo) holds significant importance for the hydrological cycle, necessitating an extensive understanding of the various climate variables and their influence on ETo variability. This study aims to examine spatio-temporal variations in Penman Monteith based ETo estimations and the factors contributing to their changes over the Indian subcontinent in the historic and future climate change. Using climate variables from the ERA5 reanalysis and CMIP6 simulations this study focuses on the changes in ETo across different aridity zones in the study area. Further, the partial least squares (PLS) regression was employed to determine the relative contribution of different climate variables on ETo trends. Results show that the majority (70%) of the areas in the subcontinent exhibited decreasing ETo trends in the historical past. Zonal analysis of ETo trends revealed all zones except the humid zone exhibited a significant decreasing trend for ETo. Contribution analysis shows that, across the study area, temperature and radiation are the most significant factors influencing ETo, followed by wind speed and relative humidity. Further, temperature and ETo were found to be having opposing tendencies, highlighting an “evapotranspiration paradox” that encompasses the majority of the study area. CMIP6 simulations show that ETo is projected to increase significantly across the Indian subcontinent, especially in the semi-arid and arid regions with temperature and radiation being the dominant factor contributing to increases in ETo.

How to cite: Varghese, F. C. and Mitra, S.: Spatio-temporal variation of reference evapotranspiration and its contributing factors over the Indian subcontinent under historic and future climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-675, https://doi.org/10.5194/egusphere-egu24-675, 2024.

EGU24-878 | ECS | Orals | CL4.1

Land-Climate Nexus: Unravelling Extremes with Attention Networks 

suchismita subhadarsini, D. Nagesh Kumar, and S. Govindaraju Rao

The intricate interplay between land use, climate dynamics, and other contributing factors significantly influences the occurrence of extreme events such as droughts, floods, and heatwaves. Modeling this complex system in a high-dimensional space poses a formidable challenge, given incomplete understanding and limited availability of data. This study explores the application of deep learning approaches, specifically leveraging transformer architectures, to capture long-range dependencies in spatiotemporal data. These mechanisms are then employed to encapsulate the complex interactions between land use, climate, and other factors influencing extreme events. The proposed approach incorporates attention mechanisms, enhancing interpretability by highlighting crucial spatial and temporal features essential for forecasting. To evaluate the effectiveness of this methodology, a case study was conducted on the Godavari River Basin in India. Utilizing vegetation indices as a representation of crop type and land use, alongside climate data spanning from 2000 to 2020, the results provide valuable insights into the driving factors behind land use change and climate extremes in the region. The study not only demonstrates predictive capabilities of the proposed approach but also offers insights into the intricate relationships within the land-atmosphere feedback system. The extracted information is useful for making informed decisions related to land management, climate adaptation, and disaster risk reduction.

How to cite: subhadarsini, S., Kumar, D. N., and Rao, S. G.: Land-Climate Nexus: Unravelling Extremes with Attention Networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-878, https://doi.org/10.5194/egusphere-egu24-878, 2024.

EGU24-1608 | Orals | CL4.1

Forest Canopy Transpiration: A Key Moderator of Hydroclimate Variability and Extreme Rainfall in the Maritime Continent 

Min-Hui Lo, Ting-Hui Lee, Jason Hsu, Chun-Lien Chiang, and Yan-Ning Kuo

This study investigates the interannual variability of evapotranspiration (ET) in the Maritime Continent (MC), focusing on the dynamics behind its minimal fluctuations despite significant changes in precipitation due to the El Niño-Southern Oscillation. We analyze ET components - canopy evaporation (CE), canopy transpiration (CT), and soil evaporation (SE) - and uncover a self-compensating mechanism between CE and CT. During El Niño, increased CT offset decreased CE and SE, maintaining ET's stability. Conversely, La Niña shows an inverse pattern. Additionally, the research examines the impacts of deforestation on extreme precipitation in MC. Deforestation disrupts the ET balance by removing CT's stabilizing effect, amplifying ET variability, and altering precipitation patterns. Our findings propose a new precipitation paradigm in MC under deforestation: "rich-get-richer, poor-get-poorer, and the middle-class-also-get-poorer," marked by increased variability in extreme precipitation events. The study highlights the critical role of MC's forest canopy transpiration in moderating ET variability and its significant influence on the hydroclimatological cycle, especially under deforestation. This intricate interplay between deforestation, ET, and precipitation emphasizes the need to consider both local land use and broader climatic changes in understanding and managing the region's water cycle and extreme climate events.

How to cite: Lo, M.-H., Lee, T.-H., Hsu, J., Chiang, C.-L., and Kuo, Y.-N.: Forest Canopy Transpiration: A Key Moderator of Hydroclimate Variability and Extreme Rainfall in the Maritime Continent, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1608, https://doi.org/10.5194/egusphere-egu24-1608, 2024.

EGU24-1973 | ECS | Orals | CL4.1

Global South most affected by socio-ecosystem productivity decline due to compound heat and flash droughts 

Lei Gu, Erich Fischer, Jiabo Yin, Louise Slater, Sebastian Sippel, and Reto Knutti

Flash droughts (FDs) and heatwaves are posing disproportionate biophysical and social losses worldwide, particularly threatening the disadvantaged communities in the Global South. However, the underlying physical mechanisms behind compound heat-flash drought (CHFD) events and their impacts on global socio-ecosystem productivity remain elusive. Here using satellites, reanalysis, reconstructions, and field measurements, we find more dry regions (53%~62%) with above-average ratios of FDs accompanied by extreme heat than humid regions (50%~57%), due to asymmetric effects by synoptic weather systems. The CHFDs associated with strong soil moisture-temperature coupling aggravate the constraint on plant photosynthesis in dry regions, whereas this coupling-related vegetation stress is not significant in humid regions. We further develop a global risk framework that integrates CHFD hazards, population/agriculture exposures, and vulnerability, and find the Global South is the primary region affected by CHFDs, contributing to greater-than-usual carbon uptake reduction, 90%~94% and 76%~86% of risks to world population and agriculture over the past four decades. We reveal the Global South is severely affected by the impacts of CHFDs on socio-ecosystem productivity decline and underscore the importance of efforts to monitor, predict, and mitigate the rise in CHFDs. 

How to cite: Gu, L., Fischer, E., Yin, J., Slater, L., Sippel, S., and Knutti, R.: Global South most affected by socio-ecosystem productivity decline due to compound heat and flash droughts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1973, https://doi.org/10.5194/egusphere-egu24-1973, 2024.

The land-atmosphere coupling is responsible for flash droughts as the reduced soil moisture increases sensible heat and consequently the lifting condensation level, which ultimately reduces convective precipitation. Meanwhile, the decrease in atmospheric humidity increases the evaporation demand, facilitates the drying of the land surface, and triggers flash droughts with rapid onset and devastating impact. However, whether the role of the land-atmosphere coupling is enhanced or weakened under climate change remains elusive, as previous studies are usually based on unconditional analysis without discriminating dry or wet extremes. Here, we start the investigation from a mega-flash drought occurred over the Yangtze River basin in southern China during the summer of 2022. Both the offline high-resolution land surface model simulations and the CMIP6 climate model data are used for the analysis. It is found that high temperature aggravates the 2022 flash drought onset speed and intensity, highlighting the importance of climate warming. Even under natural climate forcings, the land-atmosphere coupling increases the risks of flash drought intensity and onset speed. The synergy of coupling and anthropogenic climate change would further increase the risks. The synergistic effect on the long-term trends of flash droughts is also being explored, shedding light on the mechanism of flash droughts in a changing climate.

How to cite: Yuan, X.: Synergistic effect of land-atmosphere coupling and climate change on flash droughts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2848, https://doi.org/10.5194/egusphere-egu24-2848, 2024.

EGU24-3079 | ECS | Orals | CL4.1

Causal analysis of Heatwaves in India: Impact of Remote Soil Moisture 

Abhirup Banerjee, Armin Koehl, and Detlef Stammer

Heatwaves are a significant threat to human health, agriculture, and infrastructure; particularly in India, where they are prevalent during the pre-monsoon months. May is a critical period for heatwave occurrences, severely impacting the Indian subcontinent. This work delves into the underlying mechanisms driving heatwaves in India, specifically focusing on those that occur in May. Utilizing an intermediate complexity earth system model, PLASIM1, and its adjoint2 for sensitivity analysis3, we systematically investigate the causal role of remote soil moisture in heatwave formation. We find that variations in remote soil moisture significantly influence the strength and duration of pre-monsoon heat waves in India. Our analysis shows that at a lead time of 10-15 days, higher soil moisture particularly over the Middle East, can prolong heatwave conditions over India. On the other hand, high soil moisture over India suppresses the development of heatwaves with no lag. The delayed mechanism of remote soil moisture works through the altered atmospheric circulation patterns induced by heat flux forcing modulated by soil moisture anomalies, leading to enhanced subsidence and reduced moisture transport to India. Our study provides valuable insights into the mechanisms driving heatwaves in India, particularly those in May. These insights are crucial for developing effective early warning systems, enhancing disaster preparedness, and implementing mitigation strategies to reduce the adverse impacts of these extreme events.

1The Planet Simulator (PlaSim): a climate model of intermediate complexity for Earth, Mars and other planets.

2Marotzke, Jochem, et al. "Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity." Journal of Geophysical Research: Oceans 104.C12 (1999): 29529-29547.

3Köhl, Armin, and Andrey Vlasenko. "Seasonal prediction of northern European winter air temperatures from SST anomalies based on sensitivity estimates." Geophysical Research Letters 46.11 (2019): 6109-6117.

How to cite: Banerjee, A., Koehl, A., and Stammer, D.: Causal analysis of Heatwaves in India: Impact of Remote Soil Moisture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3079, https://doi.org/10.5194/egusphere-egu24-3079, 2024.

Assessing the impacts of anthropogenic land use and land cover change (LULCC) on climate extremes is of public concern, calling for the use of state-of-the-art experiments and datasets to update our knowledge. Here, we used the CMIP6-LUMIP experiment results to depict the realistic LULCC effects on extreme temperature and extreme precipitation over both historical and future periods. We pointed out some interesting findings over the historical period: Approximately 1oC decrease in the maximum temperature, and up to nearly 2oC decrease in the minimum temperature in the mid-high latitude of the North Hemisphere. About 10 annual heatwave days can be avoided by LULCC effects in 10% of specific LULCC-intense regions. Three LULCC-intense regions in the North Hemisphere have experienced cooling effects in intensity, frequency, and duration aspects. The precipitation displayed a clear contrast change between the North Hemisphere (wetter) and the South Hemisphere (drier), especially on light rainy days (R1mm). Results of the future period indicate that the tropical deforestation regions are projected to induce a remarkably hotter and drier trend. However, the climate responses averaged globally to deforestation have no obvious changes due to the colder and wetter compensation responses in other regions. The maximum temperature increase in deforestation regions is prominent in intensity, frequency, and duration aspects, while the drought is mainly manifested by frequency and duration reduction of precipitation. Seasonal cycle of changes in temperature indices can be discovered in the North Hemisphere mid-latitude deforestation region, tropical region shows year-round consistency. Changes in LULCC induced climate extremes are more obvious under the low-emission scenario in general. Our work is devoted to portraying the latest and more realistic picture of LULCC impacts on climate extremes and gives early warning information to policymakers and the public.

How to cite: Zhang, M. and Gao, Y.: Impacts of anthropogenic land use and land cover change on climate extremes based on CMIP6-LUMIP experiments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4834, https://doi.org/10.5194/egusphere-egu24-4834, 2024.

EGU24-5226 | Posters on site | CL4.1

Using HydroTiles to represent different hydrological regimes in a global Earth System model 

Tobias Stacke, Philipp de Vrese, Veronika Gayler, and Victor Brovkin

Land surface regions that are of crucial importance for climate dynamics, such as Arctic permafrost landscapes, are often extremely heterogeneous. In these areas, hydrological processes and heat fluxes, which are influenced by topographic features on the scale of a few meters, can affect processes such as permafrost thaw over large regions. Despite the emergence of Earth system models that can operate at a resolution down to one kilometer, hydrological heterogeneity at smaller scales is often overlooked. In addition, high-resolution models are computationally intensive, making them unsuitable for the time scales required to study the climate impacts of processes such as permafrost thaw.

In this study, we present an extension to the tiling infrastructure of the ICON Earth system model that enables the representation of different hydrological regimes within individual grid cells. This innovative approach facilitates the representation of lateral water flow connections between different areas within grid cells and the simultaneous representation of different surface water and soil moisture states, such as dry and wet conditions, within a single grid cell. The impact of this improvement is twofold. First, it provides a more accurate representation of surface and soil hydrology. Second, it is expected to improve the representation of land-atmosphere coupling, allowing us to better capture feedbacks across landscapes affected by strong hydrologic contrasts.

By enabling the representation of hydrological features in subgrids through tiles, which we call HydroTiles, we hypothesize that the HydroTiles setup could replicate some features of high-resolution simulations even at lower resolutions. This approach offers the potential to make simulations more computationally cost-efficient. In our presentation, we would like to highlight the advantages and disadvantages of the HydroTile setup compared to high-resolution simulations.

How to cite: Stacke, T., de Vrese, P., Gayler, V., and Brovkin, V.: Using HydroTiles to represent different hydrological regimes in a global Earth System model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5226, https://doi.org/10.5194/egusphere-egu24-5226, 2024.

EGU24-5392 | ECS | Posters on site | CL4.1

Examining the impact of extreme land surface temperature and land cover on heatwave occurrence: The case of MENA region  

Mohammadsaeed asghariian, Parvin Azizi, Milad Aminzadeh, and Nima Shokri

The increase in Land Surface Temperature (LST) in a changing climate is expected to alter the intensity and frequency of heatwaves by shifting the energy partitioning over the land surface. The relationship between LST and hot air temperatures, influenced by land cover and associated changes in surface properties is not fully understood, particularly in dry regions of the world experiencing prolonged droughts. Extremely high LSTs and their projected changes [1] may stress resilience and adaptive capacities of the growing population in the Middle East and North Africa (MENA). We thus investigate the evolution of extremely high LSTs in MENA over the past two decades to identify its coupling with hot air temperatures considering different land cover types. Our preliminary results highlight the difference in warming rates of LST and air temperature across different land covers thus enabling to identify the role of land temperature extremes in triggering heatwave events. We observed that variation of land temperature arising from land cover changes (affecting soil moisture dynamics and surface thermal and radiative properties) may significantly influence the occurrence and the intensity of heatwaves in this region. The study offers valuable insights into the complex interplay between land and air hot extremes that are particularly important in local climate investigations, agricultural practices, and ecosystem functions.

Reference

[1] Aminzadeh, M., Or, D., Stevens, B., AghaKouchak, A., & Shokri, N. (2023). Upper bounds of maximum land surface temperatures in a warming climate and limits to plant growth. Earth's Future, 11, e2023EF003755. https://doi.org/10.1029/2023EF003755

How to cite: asghariian, M., Azizi, P., Aminzadeh, M., and Shokri, N.: Examining the impact of extreme land surface temperature and land cover on heatwave occurrence: The case of MENA region , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5392, https://doi.org/10.5194/egusphere-egu24-5392, 2024.

EGU24-5644 | ECS | Orals | CL4.1 | Highlight

The relationship between forest fragmentation and extreme high temperature 

Ran Du and Yanhong Gao

Warming lead to a surge in extreme climate events, including heatwaves, droughts, flooding, and wildfires. Numerous studies demonstrate that these occurrences have become more frequent, which exerts notable influences on socio-economic development and human health. Besides natural climate changes, land use and land cover changes (LULCC) play a crucial role in shaping extreme climates. As the most extensive land use type globally, forest has experienced great changes since the industrial evolution. Deforestation is one of the most notable global environmental issues. Besides the decrease of the coverage, fragmentation is one of the appearances of deforestation. Many studies have demonstrated that forest distribution shows high agreements with climate regimes generally, however, the relationship between forest fragmentation and extreme climate events remain unclear. This study analyzes the relation between forest fragmentation and main extreme high temperature indices in 2000-2020. Global continental areas are categorized into regions with increased and decreased forest fragmentation index. Regions with increased index, such as the southeast Amazon, Congo Basin, and parts of the Southeast Asia are emphasized. The 11 extreme temperature indices are analyzed responded to the forest fragmentation index change. This study could provide insights for forest management strategies adapting to climate change in the future.

How to cite: Du, R. and Gao, Y.: The relationship between forest fragmentation and extreme high temperature, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5644, https://doi.org/10.5194/egusphere-egu24-5644, 2024.

The Vietnamese Mekong Delta (VMD) is the most productive region in Vietnam in terms of agriculture and aquaculture. Unsurprisingly, droughts have emerged as a persistent concern for stakeholders throughout the VMD in recent decades. In the evolution and intensification of droughts, local feedbacks in the Land-Atmosphere (LA) interactions were considered to play a crucial role. Previous studies mainly focused on the water cycle feedback loop (e.g., soil moisture-evaporation-precipitation) in the LA interactions. However, there is a noticeable gap in the feedback loop of coupled water and energy balances (e.g., soil moisture-sensible heat-precipitation) associated with the anomalies in sensible heat and precipitation. Therefore, deep understanding of the roles of key variables and their inter-relationships in the LA interactions is of great significance for local communities and authorities. In this study, a deep learning model, named Long- and Short-term Time-series Network (LSTNet), was applied to simulate the LA interactions over the VMD. With the ERA5 data as modelling inputs, the role of each key variable (e.g., soil moisture, sensible and latent heat) in the LA interactions over the past decade (2011-2020) was investigated, and the variations of these variables and their inter-relationships in the future period (2015-2099) were also analyzed based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) data. The LSTNet model has demonstrated that the deep learning algorithm can effectively capture the relative importance of key variables in the LA interactions. We found it is crucial to evaluate the effect of coupled temperature and sensible heat on the LA interactions, particularly for the regions that are susceptible to concurrent droughts and heatwaves, as the co-occurrence of dry and hot weather conditions would inhibit the formation of precipitation and intensify the drought severity. Moreover, the decline in soil moisture and the rise in sensible heat under a changing climate are anticipated to further diminish precipitation in the future. This study would not only enhance our knowledge of the feedback mechanisms in the LA interactions during the drought evolution and intensification, but also provide valuable insights for further development and advancement of hydrologic models for drought monitoring and forecasting.

How to cite: Zhou, K., Shi, X., and Renaud, F.: Deep Learning-Based Analyses of Feedback Mechanisms in the Land-Atmosphere Interactions during Droughts over the Vietnamese Mekong Delta, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5756, https://doi.org/10.5194/egusphere-egu24-5756, 2024.

EGU24-6099 | ECS | Orals | CL4.1

How strong is land-atmosphere coupling in global storm-resolving simulations? 

Junhong Lee and Cathy Hohenegger

The debate on the sign of land-atmosphere coupling has not been solved so far. On the one hand, studies using global coarse-resolution climate models have claimed that the land-atmosphere coupling is positive. But, such models use convective parameterizations, which is a source of uncertainty. On the other hand, studies using regional climate models with explicit convection have reported negative coupling. Yet, the large-scale circulation is prescribed in such models, and interactions with the ocean are neglected. In this study, we revisit the land-atmosphere coupling using a global fully coupled storm-resolving simulation that has been integrated at a grid spacing of 5 km over a full seasonal cycle, and we compare these results to a coarse-resolution climate model simulation using parameterized convection. We find that the coupling between soil moisture and precipitation is weaker and more negative in the storm-resolving than in the coarse-resolution simulation. Further analysis indicates that not only the feedback between soil moisture and evapotranspiration but also between evapotranspiration and precipitation is weaker in the storm-resolving simulation, in better agreement with observations. Reasons for the differences will be mentioned.

How to cite: Lee, J. and Hohenegger, C.: How strong is land-atmosphere coupling in global storm-resolving simulations?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6099, https://doi.org/10.5194/egusphere-egu24-6099, 2024.

EGU24-7942 | ECS | Orals | CL4.1

The cooling effect induced by the Three Gorges Reservoir operation in observations and model simulations 

hongbin li, weiguang wang, and giovanni forzieri

The Three Gorges Dam, the world's largest hydropower project, and its impoundment reservoir have notably modified land cover, with potential implications for regional hydroclimate. However, the seasonal dynamic climate feedbacks arising from variations in water body areas managed by the Three Gorges Reservoir (TGR) remains poorly understood. Based on data-driven analysis and regional climate simulations, we depict the impact of the TGR regulation activities on local land surface temperature (LST) and biophysical processes across different spatiotemporal dimensions, determine the spreading extent of this effect to external territories, and further identify the quantitative attributions between regional climate variabilities and the TGR operation. Results indicate that the TGR induces more pronounced daytime cooling from May to October, particularly in June-August (JJA) with -2.41±0.23 K. The influence of TGR on nighttime LST transitions to warming effects in most regions from November to April (NDJFMA). The significantly increased latent heat (LH) from evaporation growth dominates cooling effects, particularly during daytime, while in JJA, the effects of evaporation are constrained to some extent by abundant precipitation. Albedo exerts a comparatively significant dominance on the nighttime LST in NDJFMA. The TGR-induced surroundings LST changes are notably discernible within an approximately 10 km buffer. The simulations amplify the magnitude and extent of the TGR cooling effect. The simulation results reveal significant reductions in LST of 6.08% (-1.42 K, JJA) and 4.58% (-1.04 K, December-January-February, DJF). respectively, TGR-induced LH variations are dominant for cooling (contributions: -52.09% in JJA; -71.98% in DJF, respectively) among the diverse energy components. This study is valuable for providing scientific guidance in reservoir planning under changing climate.

How to cite: li, H., wang, W., and forzieri, G.: The cooling effect induced by the Three Gorges Reservoir operation in observations and model simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7942, https://doi.org/10.5194/egusphere-egu24-7942, 2024.

EGU24-8546 | Orals | CL4.1

Role of infiltration on land–atmosphere feedbacks in Central Europe: WRF-Hydro simulations evaluated with cosmic-ray neutron soil moisture 

Joel Arnault, Benjamin Fersch, Martin Schrön, Heye Reemt Bogena, Harrie-Jan Hendricks-Franssen, and Harald Kunstmann

The skill of climate models partly relies on their ability to represent land–atmosphere feedbacks in a realistic manner, through the coupling with a land surface model. However, these models often suffer from insufficient or erroneous information on soil hydraulic parameters. In this study, the land–atmosphere model WRF-Hydro driven with ERA5 reanalysis is employed to reproduce the regional climate over Central Europe with a horizontal resolution of 4 km, for the period 2017-2020 during which cosmic-ray neutron sensor (CRNS) soil moisture is available at three Terrestrial Environmental Observatories. The soil hydraulic parameter datasets referred to as SoilGrids and EU-SoilHydroGrids, together with Campbell and van Genuchten–Mualem retention curve equations, are used to assess the role of infiltration on modeled land–atmosphere feedbacks. After calibration of the percolation parameter to better capture observed discharge amounts in the observatories, it is found that WRF-Hydro with Campbell and SoilGrids gives the lowest mean temperature and mean precipitation differences compared to the E-OBS product from European Climate Assessment & Dataset, by reducing soil moisture in the rootzone, increasing temperature, and decreasing precipitation through a positive soil moisture–precipitation feedback process. WRF-Hydro with van Genuchten–Mualem and EU-SoilHydroGrids best reproduces CRNS soil moisture daily variations, despite enhanced positive biases that generate a larger proportion of convective precipitation favored over wet soils and spurious discharge peaks. The question remains open whether an infiltration modeling option that better captures CRNS soil moisture dynamics can also lead to a clear improvement of the simulated climate.

How to cite: Arnault, J., Fersch, B., Schrön, M., Bogena, H. R., Hendricks-Franssen, H.-J., and Kunstmann, H.: Role of infiltration on land–atmosphere feedbacks in Central Europe: WRF-Hydro simulations evaluated with cosmic-ray neutron soil moisture, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8546, https://doi.org/10.5194/egusphere-egu24-8546, 2024.

EGU24-9084 | ECS | Posters on site | CL4.1

Sensitivity of the simulated regional climate to changes in the prescribed soil type distributions: Insights from Coupled Regional Climate Model EBU-POM 

Irida Lazic, Vladimir Djurdjevic, Ivana Tosic, and Milica Tosic

In previous studies, it was noticed that many high-resolution Regional Climate Models (RCMs) simulations within the state-of-the-art EURO-CORDEX multi-model ensemble tend to overestimate air temperature and underestimate precipitation in summer leading to the so-called summer drying problem. One of the possible and considerable sources of uncertainty in simulated regional climate is the choice of soil texture database and its soil parameter values. This is crucial because soil hydrophysical properties, influenced by such choices, have an impact on soil moisture and therefore affect the partitioning of surface fluxes [1]. These properties among others play a role in controlling the evolution of soil and air temperature, evapotranspiration, runoff, and precipitation. 

To better understand one of the possible reasons for this problem, we performed two simulations with the coupled regional climate model EBU-POM with two different prescribed soil type distributions. One simulation used the soil type dataset derived from the Zobler dataset and in the second simulation, we used FAO/STATSGO dataset. Two 11-year EBU-POM simulations were conducted, spanning the period from 2000 to 2010. These simulations were initiated in 1998, allowing a two-year spin-up time to reduce the impact of initial fields. The area of interest was Central Europe with a focus on Pannonian Basin because previous studies indicated pronounced dry and warm biases during summer and autumn in low-lying areas, especially in south-eastern Europe. 

The soil moisture capacity is influenced by its hydrophysical characteristics, wherein the size of soil grains plays a crucial role. In this investigation, we emphasized and analyzed the significance of soil hydrophysical properties in shaping surface fluxes. We performed the comprehensive analysis with a focus on the most common specific soil category transitions related to changes in soil parameters and bias changes in surface and near-surface variables and fluxes. The main goal of this study is not to inspect the accuracy of the soil texture map but rather to comprehend the impact on modeled surface and near-surface variables when employing one soil texture dataset versus the other. 

On the other hand, Seneviratne et al. [2] suggested that a new transitional zone characterized by strong land-atmosphere interactions shifted northwards to central and eastern Europe as a consequence of global warming. Their findings highlighted that increased temperature variability in this region is mainly due to land-atmosphere feedbacks. Hence, we analyzed bias in surface and near-surface variables and fluxes and their relation to extreme events such as the heat wave occurred in 2007 to determine their influence on heat wave formation.

[1] Dennis, E. J., and Berbery, E. H. (2021). The role of soil texture in local land surface–atmosphere coupling and regional climate. Journal of Hydrometeorology22(2), 313-330.

[2] Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C. (2006). Land–atmosphere coupling and climate change in Europe. Nature, 443(7108), 205-209.

Keywords: regional climate modelling, soil moisture, soil texture, land-atmosphere interactions

Acknowledgement: This research was supported by the Science Fund of the Republic of Serbia, No. 7389, Project Extreme weather events in Serbia - analysis, modelling and impacts” - EXTREMES

How to cite: Lazic, I., Djurdjevic, V., Tosic, I., and Tosic, M.: Sensitivity of the simulated regional climate to changes in the prescribed soil type distributions: Insights from Coupled Regional Climate Model EBU-POM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9084, https://doi.org/10.5194/egusphere-egu24-9084, 2024.

EGU24-9091 | ECS | Orals | CL4.1

Analysis of trends in surface energy fluxes under hot conditions using remote sensing products 

Almudena García-García and Jian Peng

Studying land-atmosphere interactions is important for understanding the mechanisms leading to changes in temperature and precipitation extremes. However, the non-conservation of energy and water in most products and their coarse spatial and temporal resolution hamper the study of land-atmosphere feedbacks. The combination of remote sensing data and modelling frameworks allows to greatly improve the spatial coverage and resolution of data products. Here, we investigate trends in surface fluxes over Europe using the new data product generated with the high-resolution land surface fluxes from satellite and reanalysis data (HOLAPS) framework. HOLAPS is a one dimensional modelling framework that solves the energy and water balance at the land surface, providing consistent surface and soil variables derived from remote sensing data and reanalysis products as forcings. The evaluation of the HOLAPS product against eddy covariance measurements shows slightly better results than other ET and H products at daily scales in summer (KGE > 0.0 for ET and KGE > -0.3 for H) and during hot extremes (KGE > -0.15 for ET and KGE >-0.7 for H), while the state-of-the-art products show KGE > -0.49 for ET and KGE > -1.2 for H in summer and KGE > -0.49 for ET and KGE > -1.5 for H during hot extremes. These results together with the 1D conservation of energy and water in the modeling framework makes this product the perfect tool for the analysis of trends in surface energy and water fluxes during the last decades. Preliminary results for the period 2001-2016 reveals a larger increase in the energy reaching the surface during the hottest month of the year than during summer over central Europe and the Mediterranean coast. This extra energy is released as sensible heat over dry areas during the hottest month of the year. In areas where soil water is available, the extra energy available during the hottest month is released as latent heat flux, adding it to the already large latent heat flux during summer. These results support previous analyses indicating an increase of latent heat flux during hot conditions at monthly scales. However, trends at higher temporal resolutions should be examined to improve the robustness of this conclusion. 

How to cite: García-García, A. and Peng, J.: Analysis of trends in surface energy fluxes under hot conditions using remote sensing products, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9091, https://doi.org/10.5194/egusphere-egu24-9091, 2024.

EGU24-11141 | ECS | Posters on site | CL4.1

The drought response of European ecosystem processes via multiple components of the hydrological cycle 

Christian Poppe Terán, Bibi Naz, Harry Vereecken, and Harrie-Jan Hendricks Franssen

Droughts have become more frequent and severe in Europe over the last decade - a trend expected to continue. Recent studies have shown widespread responses of energy, water, and carbon fluxes in ecosystems to single drought years from flux observations. 

However, to better understand how ecosystems react to droughts, we need to gain explicit knowledge about the different factors that influence their response. In this light, it is crucial to associate the influence of droughts on diverse ecosystem types with particular compartments of the hydrological cycle (atmosphere, surface, soil, and groundwater reservoirs). For instance, during a drought, atmospheric dryness might be the dominant factor in arid regions as opposed to dry soils in humid regions.

Here, we use states and fluxes of water and carbon (vapor pressure deficit, surface runoff, soil moisture, and water table depth) from the Community Land Model 5 in a 3 km resolution over Europe from 1995 to 2018 to determine the drought anomalies of ecosystem processes (gross primary production and evapotranspiration). Importantly, we apply a systematic drought concept integrating lags between deficits in a network of multiple sections of the hydrological cycle during a drought.

Our analyses indicate that the dominance of a particular water resource in controlling ecosystem processes converges regionally and is predominantly consistent across drought events. This finding emphasizes using more comprehensive drought indices incorporating time lags and multiple water resources when analyzing ecosystem responses. Lastly, it identifies areas potentially threatened by droughts and their controlling water resource.

How to cite: Poppe Terán, C., Naz, B., Vereecken, H., and Hendricks Franssen, H.-J.: The drought response of European ecosystem processes via multiple components of the hydrological cycle, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11141, https://doi.org/10.5194/egusphere-egu24-11141, 2024.

EGU24-11163 | ECS | Orals | CL4.1

Examining the influence of forest changes on drought across time scales in Europe through multiple regional climate model simulations 

Yan Li, Bo Huang, Chunping Tan, Yi Liu, and Henning W. Rust

Land cover changes, notably forest alterations, have been observed across Europe due to extensive land management policies. These changes have significant influence on local climates through diverse biophysical mechanisms, given the crucial role of forests in the land ecosystem. While modeling studies have emphasized the impact of forest changes on regional temperature and precipitation in recent decades, their effects on drought conditions in this region remain largely unexplored. To address this gap, our study analyzes multiple simulations with regional climate models to comprehensively investigate how forest changes impact drought across various timescales in Europe. Specifically, we explored seven models, each simulated two extreme scenarios: maximum forest coverage and grass coverage in the region. The comparison between extreme forest coverage and grass coverage serves to evaluate the impact of deforestation on drought. The Standardized Precipitation Evapotranspiration Index was chosen as our metric to assess drought conditions. Our findings reveal considerable variation among the models in depicting the response to deforestation in terms of drought, particularly notable in Scandinavia and Eastern Europe. Our results suggest an increase in aridity on the Iberian Peninsula following deforestation. In Scandinavia the response varies during the year: winter months tend toward increased dryness, while summer months display a tendency toward greater wetness post-deforestation. Our primary objectives encompass quantifying the potential impacts of deforestation in Europe, identifying resilient model responses, and unraveling the sources of uncertainty within these simulated impacts. Through a meticulous analysis of model responses across regions and timescales, we aim to offer insights into the nuanced effects of forest change on drought conditions. This exploration is crucial in guiding future land management policies and devising strategies to mitigate potential adverse impacts of deforestation on regional drought susceptibility in Europe. Ultimately, our study seeks to contribute to informed decision-making regarding land use practices and their implications for climate and ecosystems.

How to cite: Li, Y., Huang, B., Tan, C., Liu, Y., and Rust, H. W.: Examining the influence of forest changes on drought across time scales in Europe through multiple regional climate model simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11163, https://doi.org/10.5194/egusphere-egu24-11163, 2024.

Extreme climate events such as droughts and heatwaves significantly impact the stability of ecosystem function and are expected to intensify in the future. The mid-high latitude regions of the Northern Hemisphere (23.5° to 90°N) exhibit pronounced seasonality and are highly sensitive to climate variations. However, further research is needed to understand the vegetation decline and its changing trends driven by extreme hydroclimatic and their compound events in this region. This study, based on multi-source data including NDVI, LAI, and GPP from 1982 to 2015 as vegetation growth indicators, amid to identify vegetation decline during the growing season and explore its temporal trends, and to further reveal the seasonal response. The research supported the importance of drought and high temperature compared to extreme wet and cold conditions. Due to the high frequency, wide impact and long duration of impact, independent low SM dominated the cumulative vegetation decline, followed by low SM and high VPD compound events. High VPD caused stronger negative impacts on vegetation growth than high T and that it was more strongly coupled to SM. We further found a turning point in vegetation decline. Because of the significant increase in VPD and its enhanced coupling with low SM, low SM and its compound events, especially SM- & VPD+ & T+ compound events, led to a significant enhancement of the vegetation decline after about the 21st century. Furthermore, the sensitivity of vegetation growth to extreme hydroclimatic has also significantly increased, with stronger intensity of vegetation decline. Seasonally, early growing season vegetation was more vulnerable (with the strongest continuous decline) due to experiencing the longest duration of negative impacts, while summer vegetation was more sensitive to extreme hydroclimatic, with the strongest intensity. Notably, compound events of high VPD and low SM primarily affected summer vegetation growth. Additionally, there was a significant lag time in vegetation response to extreme hydroclimatic, especially to high VPD and high T. In over half of the regions, the vegetation response to high T and high VPD had a lag time exceeding two months, which may be associated with seasonal legacy. In the context of global warming, further investigation is needed to explore the inter-seasonal connections. This research significantly contributes to a deeper understanding of ecosystem responses to extremes hydroclimatic and its future changes.

How to cite: Du, R. and Wu, J.: The turning point in vegetation decline in the Northern Hemisphere driven by hydroclimatic extremes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11693, https://doi.org/10.5194/egusphere-egu24-11693, 2024.

EGU24-12392 | ECS | Posters virtual | CL4.1

Heatwaves and Droughts in Europe: A multi-year analysis using MODIS Land Surface Temperature Anomalies 

Foteini Karinou, Ilias Agathangelidis, and Constantinos Cartalis

In recent decades, European societies and ecosystems have faced recurrent extreme temperatures that contribute to a significant number of impacts, such as wildfires, heat-related illnesses, and crop losses. As heat extremes are further projected to increase in frequency and intensity, a better understanding and close monitoring of these events is necessary. In this study, remotely-sensed Land Surface Temperatures (LSTs) from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to assess recent heatwaves and droughts in Europe (2003 – 2023). Our results reveal that surface heat extremes are intensifying and becoming more frequent. Moreover, a strong coupling is found between surface thermal extremes, heatwaves (based on near-surface air temperatures) and droughts. Finally, surface LST anomalies are investigated in the context of shifts in energy partitioning under heatwaves/droughts, using eddy covariance flux measurements from the Integrated Carbon Observation System network.

How to cite: Karinou, F., Agathangelidis, I., and Cartalis, C.: Heatwaves and Droughts in Europe: A multi-year analysis using MODIS Land Surface Temperature Anomalies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12392, https://doi.org/10.5194/egusphere-egu24-12392, 2024.

EGU24-12955 | ECS | Posters on site | CL4.1

The influence of temperature–moisture coupling on the occurrence of compound hot and dry events over South America: historical and future perspectives 

João L. Geirinhas, Ana Russo, Renata Libonati, Diego G. Miralles, Daniela C. A. Lima, Andreia F. S. Ribeiro, and Ricardo M. Trigo

The strong global warming observed in the past 50 years has intensified the Earth’s water cycle, triggering more frequent and severe rainfall and drought episodes, a trend that is expected to be aggravated in many regions1,2. Consequently, significant changes in the distribution of temperature, precipitation and evaporation are foreseen. Such changes will likely cause disturbances to the physical coupling between temperature and moisture and, ultimately, to the occurrence of compound hot and dry (CDH) extremes, leading to severe environmental and socio-economic impacts3–5. These coupling interactions can be conceptualized by (1) the correlation between temperature and precipitation to characterize atmospheric coupling, and (2) the correlation between temperature and evaporation, as a proxy for land–atmosphere coupling.

Data from ERA5 reanalysis and from a weighted CORDEX-CORE ensemble6 assuming two different emission scenarios (RCP2.6 and RCP 8.5), was used to assess, for seven climate regions in South America, the influence of these coupling interactions on the occurrence of CDH conditions.

Results obtained by applying multivariate regression models for the historical period (1980–2005) demonstrate that the dependence of CDH conditions on these two metrics of coupling varies considerably from region to region. While in some areas of South America a monotonical influence of a particular coupling mechanism dominates, in other regions of the continent a jointly impact of both coupling processes in the occurrence of CDH conditions is present.  We also investigate how the distribution levels of these two coupling processes will change in future due to long-term disturbances expected by climate change in temperature and in the water balance, and how a higher or lower occurrence of CDH episodes can be explained by changes in the type and strength of the dominant coupling mechanism.  

References

  • Chagas, V. B. P. et al. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022).
  • Donat, M. G. et al. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 6, 508–513 (2016).
  • Berg, A. et al. Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change. J. Clim. 28, 1308–1328 (2015).
  • Miralles, D. G. et al. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).
  • Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).
  • Lima, D. C. A. et al. A multi-variable constrained ensemble of regional climate projections under multi-scenarios for Portugal – Part I: An overview of impacts on means and extremes. Clim. Serv. 30, 100351 (2023).

Acknowledgments:

JG is grateful to Fundação para a Ciência e a Tecnologia I.P./MCTES (FCT) for the PhD Grant 2020.05198.BD. JG, AR, RMT, and DCAL also thank FCT I.P./MCTES through national funds (PIDDAC) – UIDB/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020). AR, RMT, RL, JG and AFSR thank also FCT for project DHEFEUS (https://doi.org/10.54499/2022.09185.PTDC). AR was supported by FCT through https://doi.org/10.54499/2022.01167.CEECIND/CP1722/CT0006. DCAL was supported by FCT through https://doi.org/10.54499/2022.03183.CEECIND/CP1715/CT0004. DGM acknowledges support from the European Research Council (HEAT, 101088405).

How to cite: Geirinhas, J. L., Russo, A., Libonati, R., Miralles, D. G., Lima, D. C. A., Ribeiro, A. F. S., and Trigo, R. M.: The influence of temperature–moisture coupling on the occurrence of compound hot and dry events over South America: historical and future perspectives, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12955, https://doi.org/10.5194/egusphere-egu24-12955, 2024.

EGU24-13027 | ECS | Posters on site | CL4.1

Unveiling the influences of soil moisture on moist heat stress extremes: a global assessment using CMIP6 data 

Jingwei Zhou, Dragan Milosevic, and Adriaan Teuling

Soil moisture is a key variable in land-atmosphere interactions, as it affects the partitioning of near-surface energy fluxes and thereby temperature and humidity of the lower atmosphere. Both ambient temperature and humidity play a crucial role in the removal of heat from the human body through direct heat transfer and sweat evaporation, therefore these two factors are commonly used in measuring moist heat stress. As moist heat stress describes the combined effects of temperature and humidity on human health and well-being, understanding the intricate relationship between soil moisture and moist heat stress is crucial for accurately assessing and mitigating moist heat extremes. Whereas the impact of soil moisture on temperature is well understood, previous research has found non-trivial and complex relations between soil moisture and moist heat stress due to humidity feedbacks. We selected two metrics among four widely used metrics which involve both temperature and humidity, indoor and open-air wet-bulb globe temperature, heat index, and humidex, to represent the heat stress in our study. We use different levels to describe the significance of the heat stress and tolerance level among the population.

In this study, we aim to investigate the impacts of soil moisture on moist heat stress at the global scale using the Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP) dataset within the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We use the historical and future simulations from LS3MIP to analyze the spatial and temporal variations of soil moisture-heat stress coupling, and to identify the regions that are most susceptible to moist heat stress. Interactions between soil moisture and moist heat stress tend to be particularly pronounced in hot and humid regions,. These regions are likely to experience more frequent events with higher moist heat stress, posing serious challenges for human health and adaptation.

To our best knowledge, this study is the first to show a global picture of the interactions between soil moisture and moist heat stress using CMIP6 dataset. The pattern of heat stress in relation to soil moisture in perspectives of the time of day, season, and soil moisture regime will be investigated. Our study provides a novel insight into the role of soil moisture in modulating moist heat stress, and highlights the need for more accurate representation of land surface processes and feedbacks in climate models. The findings are crucial for developing effective strategies in managing moist heat stress risks and protecting vulnerable populations.

How to cite: Zhou, J., Milosevic, D., and Teuling, A.: Unveiling the influences of soil moisture on moist heat stress extremes: a global assessment using CMIP6 data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13027, https://doi.org/10.5194/egusphere-egu24-13027, 2024.

EGU24-13484 | ECS | Orals | CL4.1

Seasonal Variability of Deforestation-Induced Warming in the Congo Basin Using Remote-Sensing Data 

Coralie Adams and Luis Garcia-Carreras

Deforestation impacts in the Congo Basin remain significantly understudied compared to other tropical regions. The main driver of Congo Basin deforestation is small-scale industrial agriculture, which leads to the formation of the rural complex; a mosaic patch of deforested land comprising small fields at different stages of regrowth being deforested repeatedly. Transition from primary forest to rural complex may induce lesser changes in albedo, Bowen ratio, and surface roughness than primary forest to cropland, suggesting the impacts of deforestation on temperatures in the Congo Basin will differ from those in other rainforest regions. The Basin's long-term warming trend and possible ongoing drying could exacerbate warming due to deforestation. It is therefore essential that we understand how the specific nature of deforestation in the Congo Basin influences temperatures, and how this is affected by changes in the large-scale conditions driven by global climate change.

In this study, we used MODIS satellite data for LST and EVI, CHIRPS2 for rainfall, and the Global Forest Change dataset for deforestation analysis from 2000 to 2019 to assess how observed deforestation is affecting LST in the Congo Basin and how the deforestation-induced warming varies with climate anomalies, LST and rainfall (SPI), and Δ EVI (deforested EVI – surrounding forest EVI). Due to limited data availability, caused by the prevalence of cloud cover throughout much of the year, our focus narrowed to the most data-consistent dry season (DJF), where land-atmosphere interactions are also likely to be strongest.

We found a linear relationship between cumulative deforestation and warming over deforested land, which varied in intensity by month. A typical 1 km rural complex pixel within the region will warm by +0.33 °C in December, +0.85 °C in January, and +1.54 °C in February, relative to the surrounding forest. We then assessed the cause of the strong seasonal differences by looking at the deforestation-induced warming as a factor of the climate anomalies and Δ EVI. The amount of warming of a typical 1 km rural complex pixel did not show a relationship with the LST anomaly or SPI for the individual months. However, when considering all months collectively, a correlation emerged with the LST anomaly, suggesting a seasonal evolution where the LST anomaly acts as a proxy. We then found a link between the warming of a typical 1 km rural complex pixel and Δ EVI which is present for each month; this partially explains the interannual variability of the results, but it doesn’t explain the seasonal evolution. Comprehensive and high-quality observations are needed over the Congo Basin to fully untangle these relationships. Accurate soil moisture data could be crucial in understanding the pronounced seasonal differences in warming. These findings suggest that even though the rural complex differs from cropland, and might be expected to have a smaller impact, the additional warming can still be substantial (+1.54 °C), although it has a strong seasonal dependency.

How to cite: Adams, C. and Garcia-Carreras, L.: Seasonal Variability of Deforestation-Induced Warming in the Congo Basin Using Remote-Sensing Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13484, https://doi.org/10.5194/egusphere-egu24-13484, 2024.

EGU24-14184 | ECS | Orals | CL4.1

Links between seasonal precipitation intermittency and soil moisture variability 

Woon Mi Kim, Isla Simpson, Clara Deser, Flavio Lehner, and Angeline Pendergrass

Precipitation is an important control of soil moisture on land. Thus, many studies have focused on understanding the influences of mean or total precipitation variability on soil moisture. However, the relationship between precipitation intermittency (the temporal distribution of rainfall events) and soil moisture variability remains largely underexplored. This question requires more attention as climate models are known to be deficient in their representation of precipitation intermittency (PI), and PI is projected to increase in a future warmer climate, potentially affecting soil moisture variability. In this study, we examine the associations between seasonal PI and soil moisture (SM) across the globe in observation-based datasets (ERA5, MSWEP, and GLEAM) and model simulations (CESM2 Large Ensembles – LENS2) for the period 1981–2020. As a methodology to quantify the associations between PI and SM, we use a conditional regression analysis of 10cm soil moisture onto a metric of PI (reverted number of wet days in a season) after the removal of the influence of total seasonal precipitation from each variable. 

The result suggests that in many regions, higher PI leads to decreases in SM under the same amount of seasonal precipitation. These associations are explained by increased runoff under higher PI. Therefore, the spatial patterns of the magnitude and sign of the linkage between PI and SM align with the global patterns of PI-runoff interactions. Additionally, the regions where evapotranspiration (ET)–SM correlations are high (>0.5) present higher SM sensitivity to changes in PI. CESM2 exhibits spatial consistency in the PI–SM associations with ERA5, although noticeable differences exist in the magnitudes of the regression coefficients between the two datasets. In general, the PI–SM associations are weaker in CESM2. This disparity is attributed to the different runoff sensitivity to changes in precipitation and PI. CESM2 exhibits reduced runoff sensitivity to PI than ERA5 over the entire globe. This finding implies that how runoff is modeled and constrained in climate models will affect future projections of soil moisture.

How to cite: Kim, W. M., Simpson, I., Deser, C., Lehner, F., and Pendergrass, A.: Links between seasonal precipitation intermittency and soil moisture variability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14184, https://doi.org/10.5194/egusphere-egu24-14184, 2024.

Land-atmosphere interactions are crucial in both weather and climate extremes. Studies have revealed certain large atmospheric circulation patterns such as amplified circumglobal wave 5 and 7 play important role in generating and maintaining surface extremes. These extremes can occur at the same time but different locations, for example in 2010, the wave 5 pattern was the driver for Russian heatwave and Pakistan flooding. But how soil moisture and land-atmosphere interactions affect the climatology states of jetstreams, amplified waves, and hence persistent extremes still remains unclear.

Here, we employ large ensemble simulations from climate model EC-Earth 3 to study the role of soil moisture in affecting large-scale atmospheric circulation for the period of 2009 to 2016. Three sets of experiments (each set has 100 ensemble members) are carried out with perturbed atmosphere-soil moisture interactions and one reference run (100 members) in which the interaction between the atmosphere and the land is fully interactive. We show that atmosphere-soil moisture interactions strongly influence the climatological mean states of atmospheric circulation in the Northern Hemisphere during the summer season (June to August) and especially in July. With the same soil moisture climatology, the reference run showed an overall land warming that led to poleward migration of jet and a more Arctic front jet state.

 Additionally, West Russia is chosen for the case study area as it is a hotspot for both amplified wave 5 and wave 7 heat extremes. We define the long duration heatwave event as near-surface temperature exceeding 30oC for at least eight days. The results show that with the soil-atmosphere interaction, the probability of such events increased from 2.2% to 5.8% for wave 5 and 0.47% to 4.5% for wave 7.

How to cite: Luo, F., Selten, F., and Coumou, D.: The role of soil moisture on summer atmospheric circulation climatology and persistent heatwaves in the Northern Hemisphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14484, https://doi.org/10.5194/egusphere-egu24-14484, 2024.

EGU24-14774 | Orals | CL4.1

Drought Changes Growing Season Length and Vegetation Productivity 

Josh Gray, Eunhye Choi, Mark Friedl, and Patrick Griffiths

Meteorological droughts are increasing in intensity, frequency, and duration due to climate change. These events may have substantial impacts on vegetation productivity that influence the global carbon balance. Effects vary considerably, however, with the intensity of the drought as well as local abiotic and biotic conditions such as vegetation type, soil type, and the timing of the drought. Productivity is primarily reduced because droughts decrease the efficiency with which plants can convert atmospheric CO2 into carbohydrates, largely because of stomatal closure when energy is not limiting. However, another aspect by which droughts can reduce productivity is by shortening the growing season length (GSL). GSL reduction may be particularly pronounced in vegetation communities already sensitive to precipitation variability, in particular, short-rooted grassland and croplands ecosystems. Here, we use evidence from satellite observations of ecosystem activity, meteorological measurements, and data from eddy-covariance flux towers to reveal the impact of several large-scale meteorological droughts on vegetation productivity on natural and managed ecosystems. In particular, we show that the timing of the drought is important, with late droughts being particularly diminishing to productivity. We also demonstrate that while plant physiological responses to drought dominate the reduction in productivity, the diminishment of GSL plays an underappreciated role. These results have wide implications for the future carbon balance under a changing climate, and suggests that ecosystem models could better explain productivity by incorporating the effects of droughts on GSL.

How to cite: Gray, J., Choi, E., Friedl, M., and Griffiths, P.: Drought Changes Growing Season Length and Vegetation Productivity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14774, https://doi.org/10.5194/egusphere-egu24-14774, 2024.

EGU24-15546 | ECS | Orals | CL4.1

Challenges in simulating ground surface temperature based on remote sensing land surface temperature over mountain grasslands 

Raul-David Șerban, Giacomo Bertoldi, Paulina Bartkowiak, Mariapina Castelli, and Andrea Andreoli

Ground surface temperature (GST), measured at a depth of around 5 cm below the ground surface, is essential for understanding the climate change impacts in the Earth Critical Zone. Large spatiotemporal variations of GST have been reported in mountain regions due to the heterogeneity of surface cover and topography. This work aims to improve the monitoring of GST using a physical land-surface model driven by satellite-based land surface temperature (LST). In this regard, GST was simulated using the physical GEOtop model at 1500 m elevation in Matsch Valley, north-eastern Italian Alps, from 2014 to 2017 during the phenological cycle, between April and October. The model was forced only by the LST derived from the Terra MODerate resolution Imaging Spectroradiometer (MODIS). The 1-km MODIS LST was first downscaled to a finer spatial resolution of 250-m using data-driven sharpening from random forest algorithm. The simulated GSTs correlate well with the in-situ observations with a Pearson correlation of 0.88 and a coefficient of determination of 0.77. However, the model overestimated the GST for the whole period with a mean bias of 8.72 °C. These overestimations are similar to the differences between in-situ GST and MODIS LST which range from 4.8 to 19 °C with an average of 8.5 °C. They are mainly caused by the low temporal resolution of LST data with only one observation per day which is additionally limited by frequent cloud cover contamination and the low spatial resolution of the MODIS thermal channels. Modelling the damping of the LST signal in the first centimeters of soil to simulate GST in very heterogeneous areas like alpine pastures is still challenging. This is mainly due to the resolution mismatch between ground and remote sensing observations and the poor knowledge of soil and vegetation properties needed to parametrize physical models.

How to cite: Șerban, R.-D., Bertoldi, G., Bartkowiak, P., Castelli, M., and Andreoli, A.: Challenges in simulating ground surface temperature based on remote sensing land surface temperature over mountain grasslands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15546, https://doi.org/10.5194/egusphere-egu24-15546, 2024.

EGU24-16559 | Orals | CL4.1 | Highlight

Assessing extreme temperature volatilities across Germany between 1990 and 2022 

Elisa Jordan, Ankit Shekhar, and Mana Gharun

Climate change causes a global rise in mean air temperature and increased frequency of temperature extremes. Recent studies link sharp temperature changes between consecutive days to increased mortality, reduced economic growth, and negative effects on ecosystems. While climatological analyses predominantly focus on mean temperatures, extreme temperatures have higher impacts on human health. This study assesses the variability of the daily maximum air temperature between two consecutive days (i.e., volatility) across Germany from 1990 to 2022. We used observation-based raster data of the maximum daily temperature assessed volatility regarding: 1) magnitude, 2) seasonality, 3) the direction of temperature change, and 4) trends during the entire period. As changes of land use and land cover have a direct impact on local temperatures, we analysed the land cover changes during the same period and examine its correlation to extreme volatilities.

The results showed a higher magnitude of rapid temperature decreases compared to temperature increases. Extreme volatilities increased with further distance to the coast from north of Germany to south. Overall, abrupt day-to-day temperature changes occurred mostly during the warming half-year (from March to August). During the study period, significant trends of 0.5 °C and 0.2 °C per decade showed a widening range of extreme volatility in spring and autumn. Compared to unchanged areas, changing land cover was predominantly liked to increasing volatilities of up to 0.5 °C. Understanding rapid temperature changes is crucial for climate change mitigation strategies and limiting impacts on human health and on the environment.

How to cite: Jordan, E., Shekhar, A., and Gharun, M.: Assessing extreme temperature volatilities across Germany between 1990 and 2022, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16559, https://doi.org/10.5194/egusphere-egu24-16559, 2024.

EGU24-16729 | ECS | Posters on site | CL4.1

Poleward migration of soil moisture–temperature coupling hotspots under global warming 

Daniel F.T. Hagan, Diego Miralles, Guojie Wang, Alan T. Kennedy-Asser, Mingxing Li, Waheed Ullah, and Shijie Li

Global hotspot regions where soil moisture (SM) constrains temperature changes are expected to migrate and change in intensity under climate change, impacting hydroclimatic events; however, the nature of these changes is still uncertain. Using multiple model outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6), we assessed potential future changes in the coupling between boreal summer SM and near-surface mean air temperature (T) across the globe under four Shared Socioeconomic Pathways (SSPs, 2015–2100). We find weakening SM impacts on T (SM-T coupling) in semi-arid, low-latitude regions with increasing emission scenarios due to reduced sensitivity of evaporation to SM. However, our results showed intensifying SM-T coupling primarily over humid regions with increasing precipitation yet decreasing SM due to increasing evaporation. We demonstrate that these changes could be linked to the poleward expansion of the Hadley cells and water-limiting conditions, shifting SM controls on partitioning the surface net radiation and subsequently on T under global warming. These results suggest a higher likelihood of extreme hydroclimatic events, such as heatwaves in higher latitudes associated with the SM–T coupling, which could impact food and water security.

How to cite: Hagan, D. F. T., Miralles, D., Wang, G., Kennedy-Asser, A. T., Li, M., Ullah, W., and Li, S.: Poleward migration of soil moisture–temperature coupling hotspots under global warming, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16729, https://doi.org/10.5194/egusphere-egu24-16729, 2024.

EGU24-17393 | Orals | CL4.1

Investigating the Climate Impacts of Afforestation and Deforestation in Europe via 5 km climate model simulations 

Luca Caporaso, Gregory Duveiller, Matteo Piccardo, Emanuele Massaro, Caspar Roebroek, Mirco Migliavacca, and Alessandro Cescatti

In the context of the European Green Deal framework, understanding the intricate and varied impacts of afforestation and deforestation across different regions is paramount. A complex interplay of environmental factors shapes the resulting climate effects. Evaluating these impacts and their spatial variability is crucial for formulating effective and context-specific climate mitigation and adaptation strategies.

This study takes a comprehensive approach, investigating both local and non-local effects of afforestation and deforestation within Europe, with a specific emphasis on the radiative budget and temperature dynamics.  Utilizing the cutting-edge Regional Climate Model (RegCM5) in conjunction with the Community Land Model version 4.5 (CLM4.5), we conducted simulations at a fine-scale, convective-permitting resolution of 5 km. This granular approach allows for an in-depth understanding of climate dynamics, shedding light on the distinct climate responses to forest cover alterations at various locations.

We conducted three simulations spanning the period 2004-2014: a control run and two scenarios involving afforestation and deforestation.  We concentrated on analyzing climatic changes through variables such as land surface temperature, near-surface air temperature, and the energy fluxes at the Earth's surface and the top of the atmosphere (TOA). Results suggest that afforestation/deforestation can yield substantial impacts on the climate system. It underscores the critical importance of evaluating biophysical effects at a high resolution, emphasizing the need to incorporate such considerations into climate change mitigation strategies.

Recognizing the location-dependent nature of afforestation and deforestation climate impacts, combined with the capabilities of advanced modeling tools, underscores the importance of flexible and adaptable land use planning. The practical implications of our findings extend to policymaking, offering insights that can inform sustainable land use decisions. These insights can guide the formulation of resilient and sustainable land use policies, aligning with the ambitious objectives of the European Green Deal.

How to cite: Caporaso, L., Duveiller, G., Piccardo, M., Massaro, E., Roebroek, C., Migliavacca, M., and Cescatti, A.: Investigating the Climate Impacts of Afforestation and Deforestation in Europe via 5 km climate model simulations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17393, https://doi.org/10.5194/egusphere-egu24-17393, 2024.

EGU24-17662 | ECS | Orals | CL4.1

Large biases in soil moisture limitation across CMIP6 models 

Francesco Giardina, Ryan S. Padrón, Benjamin D. Stocker, Dominik L. Schumacher, and Sonia I. Seneviratne

Accurate soil moisture representation is crucial in climate modeling, due to its significant role in land-atmosphere interactions. Our study focuses on water storage dynamics and analyzes how soil moisture limitation is represented in simulations from the land component (land-hist experiment) of seven models within the Coupled Model Intercomparison Project phase 6 (CMIP6). We quantified the annual maximum depletion in soil moisture, contrasting model results with observations of terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE). Our analysis shows that CMIP6 models mostly underestimate these annual extremes in soil moisture reductions, with the Amazon consistently emerging as the most biased region. We further computed the critical soil moisture thresholds and quantified the frequency of soil moisture limitation in CMIP6 simulations, comparing model estimates against solar-induced fluorescence (SIF) and GRACE observations. We found consistent results with the annual maximum depletion in soil moisture, with models almost always overestimating the frequency of soil moisture limitation globally compared to observations. We validated our findings with data from 128 eddy-covariance sites from eight biomes worldwide. Our study illuminates the biases in soil moisture storage and dynamics between CMIP6 models and empirical observations, highlighting the importance of improving the representations of soil moisture and land-atmosphere interactions in Earth System Models.

How to cite: Giardina, F., Padrón, R. S., Stocker, B. D., Schumacher, D. L., and Seneviratne, S. I.: Large biases in soil moisture limitation across CMIP6 models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17662, https://doi.org/10.5194/egusphere-egu24-17662, 2024.

EGU24-17860 | Orals | CL4.1

The International Soil Moisture Network (ISMN): providing a permanent service for earth system sciences 

Matthias Zink, Fay Boehmer, Wolfgang Korres, Kasjen Kramer, Stephan Dietrich, and Tunde Olarinoye

Soil moisture is recognized as an Essential Climate Variable (ECV), because it is crucial to assess water availability for plants and hence food production. Having long time series of freely available and interoperable soil moisture data with global coverage enables scientists, practitioners (like farmers) and decision makers to detect trends, assess the impacts of climate change and develop adaptation strategies.

The collection, harmonization and archiving of in situ soil moisture data was the motivation to establish the International Soil Moisture Network (ISMN) at the Vienna University of Technology in 2009 as a community effort. Based on several project funding periods by the European Space Agency (ESA), the ISMN became an essential means for validating and improving global land surface satellite products, climate and hydrological models. In December 2022, the ISMN was transferred to a new hosting facility the International Centre for Water Resources and Global Change (ICWRGC) and the German Federal Institute of Hydrology (BfG) in Koblenz (Germany). ISMN data are successfully provided from the new host since then and will be for decades to come as the German government committed to its long-term funding.

This presentation is going to showcase the International Soil Moisture Network (ISMN). Beyond offering comprehensive in situ soil moisture data, ISMN freely disseminates additional environmental variables, including soil temperature, snow depth, snow water equivalent, precipitation, air temperature, surface temperature and soil water potential if they are available from our data providers. With a global reach, ISMN has already accumulated 3000 stations with observations at various depths, while about 1000 stations are updated on a daily basis. Ongoing efforts are concentrated on expanding the database by incorporating additional stations and networks from institutional or governmental sources. Substantial resources are directed towards fortifying the operational system and improve usability to better serve our users. Additional efforts are undertaken to include ISMN in the data-to-value chain by contributing to international initiatives like WMO, FAO and GCOS. One example is the contribution to WMO’s yearly Global State of the Water Resources report.

How to cite: Zink, M., Boehmer, F., Korres, W., Kramer, K., Dietrich, S., and Olarinoye, T.: The International Soil Moisture Network (ISMN): providing a permanent service for earth system sciences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17860, https://doi.org/10.5194/egusphere-egu24-17860, 2024.

EGU24-18231 | ECS | Orals | CL4.1

Summer Drought Prediction in Europe combining Climate Simulations and Remote Sensing 

David Civantos Prieto, Jesús Peña-Izquierdo, Lluis Palma, Markus Donat, Gonzalo Vilella, Mihnea Tufis, Arjit Nandi, Maria Jose Escorihuela, and Laia Romero

The occurrence of droughts is ruled by the interplay of complex processes with very different natures and spatio-temporal scales. Different modes of climate variability, like the North Atlantic Oscillation or ENSO (El Niño-Southern Oscillation), set the prevalence of distinct weather regimes providing sources of predictability at large-scale. On the other hand,  land-atmosphere feedbacks play a crucial role in climate extremes, and particularly, in the evolution and amplification of droughts. However, the weak predictability of the former large-scale variability in the extratropics together with the poor representation of these feedbacks in current seasonal predictive systems lead to a limited capability of predicting droughts months in advance. In this study (part of the AI4Drought project, funded by ESA), we aim to enhance summer drought prediction in Europe from spring conditions by the combination of state-of-the-art climate simulations and remote sensing.

A hybrid model combining climate simulations and high-resolution remote sensing data is proposed to boost the predictability signal at seasonal time-scale through the integration of two machine learning (ML) models. The first model (model-A) enhances large-scale predictability. It consists of a generative model (conditional variational auto-encoder, based on Pan et al., 2022), which is trained with 10.000s years of CMIP6 climate simulations to empirically learn the probability distributions between global spring fields; e.g., sea surface temperatures and 500 hPa geopotential height; and summer drought conditions (SPEI3). A local-scale model for extremes amplification is developed (model-B). A pixel-based (multi-layer neural network) model aims to capture land-atmosphere feedbacks; integrating local conditions from satellite-based products and reanalysis data, e.g. soil moisture (SM), temperatures and NDVI together with information from the large-scale predictions from model-A in order to predict SM anomalies for the whole summer season.

Preliminary results highlight the significance of local conditions in enhancing drought predictions, particularly in the Mediterranean region, where land-atmosphere feedbacks are pronounced. Experiments conducted under ideal conditions, knowing the future large-scale conditions in advance, demonstrate improved prediction skill when local conditions (e.g., soil moisture, NDVI) are included as predictors.

Moreover, a DeepSHAP analysis (eXplainableAI-based method) is performed to understand which are the most important drivers for the local-scale model prediction of summer SM anomalies. As expected, the spring’s SM anomalies are the most important input features; together with the large-scale conditions described by August SPEI-3. Additionally, temperature anomalies have a relatively high importance when predicting summer drought conditions.

This research underscores the potential of a hybrid approach integrating climate simulations and remote sensing data to advance the understanding and prediction of summer droughts in Europe.

How to cite: Civantos Prieto, D., Peña-Izquierdo, J., Palma, L., Donat, M., Vilella, G., Tufis, M., Nandi, A., Escorihuela, M. J., and Romero, L.: Summer Drought Prediction in Europe combining Climate Simulations and Remote Sensing, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18231, https://doi.org/10.5194/egusphere-egu24-18231, 2024.

EGU24-18682 | ECS | Posters on site | CL4.1

Uncovering the moisture and heat sources to croplands during agricultural failure events 

Hao Li, Jessica Keune, and Diego Miralles

Dry and hot climate anomalies threaten rainfed agricultural productivity worldwide. Land–atmosphere feedbacks play a critical role during these abnormal weather events; for example, dry soils reduce evaporation and enhance sensible heating over the land surface, thereby amplifying air temperatures and water deficits for crops, consequently leading to agriculture failure. Moreover, these anomalies of moisture and heat upwind can be translated into downwind regions, thus leading to the spatial propagation of crop-adverse climate conditions. 

In this presentation, we analyse precipitation and temperature anomalies associated with crop failure events over the world’s largest 75 rainfed breadbaskets. Then the spatio-temporal origins of moisture and heat over these breadbaskets are determined using a novel atmospheric Lagrangian modelling framework along with satellite observations. Results indicate that upwind and local land–atmosphere feedbacks together cause lower moisture and higher heat transport into these breadbaskets, leading to decreases in yield of up to 40%. By zooming into the Southeastern Australia wheat belt as an example, known for experiencing recurrent droughts and heatwaves, we provide a detailed analysis of the anomalies of water and energy fluxes and atmospheric circulation and their impacts on moisture and heat sources. We find a substantial impact of advection of dry and hot air from upwind terrestrial regions, particularly during crop failure events, i.e., 1994, 2002, and 2006. Persistent high-pressure systems significantly alter moisture and heat imports into the wheat belt during these events, with upwind drought conditions intensifying rainfall deficits and heat stress in the agricultural region.

Our study suggests the potential for upwind land management to mitigate agricultural losses in rainfed, water-limited regions. Further understanding the intricate relationships between upwind and local influences on global breadbaskets, and specific regions like Southeastern Australia, may provide crucial insights for developing adaptive measures to avert food shortages in the face of a changing climate.

How to cite: Li, H., Keune, J., and Miralles, D.: Uncovering the moisture and heat sources to croplands during agricultural failure events, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18682, https://doi.org/10.5194/egusphere-egu24-18682, 2024.

EGU24-19126 | Orals | CL4.1

Development of a land model for the next generation MIROC climate model and evaluation of its simulated land-atmosphere coupling 

Tomoko Nitta, Takashi Arakawa, Akira Takeshima, Dai Yamazaki, and Kei Yoshimura

We have been developing Integrated Land Simulator as a land model for the next generation of the MIROC climate model. Using a general-purpose coupler, ILS couples various land component models with minimum modifications and makes a land model independent from the atmospheric model. The major changes from the previous version of the land model in MIROC6 are the method of coupling land and atmosphere, the independent grid system and spatial resolution for the land model, and the river model. In MIROC6, the land model was part of the physical process of the atmospheric model and was run sequentially, but in the new model (MIROC-ILS), the land and atmospheric models are run in parallel. We have confirmed the MIROC-ILS meets the requirements such as water balance closure and computation time. In the presentation, we will show how the changes of land-atmosphere coupling method and coupling frequency affects the simulated atmosphere field.

How to cite: Nitta, T., Arakawa, T., Takeshima, A., Yamazaki, D., and Yoshimura, K.: Development of a land model for the next generation MIROC climate model and evaluation of its simulated land-atmosphere coupling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19126, https://doi.org/10.5194/egusphere-egu24-19126, 2024.

EGU24-19526 | ECS | Orals | CL4.1

Exploring the influence of land-atmosphere interactions on humid heat extremes in a convection permitting model simulation 

Guillaume Chagnaud, Chris Taylor, Cathryn Birch, Lawrence Jackson, John Marsham, and Cornelia Klein

Ambient humidity reduces the ability of the body to cool down through sweating, adding to the heat 
stress caused by elevated air temperature alone. Indeed, humid heat waves (HHWs) are already a threat
for humans, livestock and wildlife, and their impacts are projected to increase with global warming.
HHWs result from the combination of thermodynamic and dynamic processes interacting on a range of 
time and space scales and whose relative importance may vary according to location and time of year.

Africa is one continent where HHWs, defined here as extremes of wet-bulb temperature (Twb), are 
expected to become more important under global warming. Local-scale humid heat extremes may occur 
within more moderate larger-scale events across much of the continent. Yet, climatological 
characteristics of these smaller-scale events such as location and timing (in year and day) are poorly 
documented in the current climate, due to a lack of high-resolution data and research focus. Moreover, 
a comprehensive understanding of their meso- to synoptic-scale drivers is still lacking. Here, we explore 
these two issues using a 10-year pan-African convection-permitting model simulation that explicitly 
resolves land-atmosphere interactions, and particularly those involving moist processes that are 
instrumental to HHWs.

We find humid heat extremes in semi-arid regions occurring in the core of the rainy season, on length 
scales down to a few tens of kilometers. During HHWs, Twb peaks several hours 
later than the climatological peak in the late morning. This diurnal cycle shift is likely due to HHWs 
typically developing in the aftermath of a rainfall event: the resulting positive anomaly in soil moisture 
induces increased latent heat fluxes, low level divergence, and a reduced PBL height, all ingredients
displaying sharp spatial gradients conducive to locally high Twb values. These results have implications 
for the improvement of localized HHW predictability based on local soil moisture conditions, a key step 
towards climate change adaptation through e.g., early-warning systems.

How to cite: Chagnaud, G., Taylor, C., Birch, C., Jackson, L., Marsham, J., and Klein, C.: Exploring the influence of land-atmosphere interactions on humid heat extremes in a convection permitting model simulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19526, https://doi.org/10.5194/egusphere-egu24-19526, 2024.

EGU24-20049 | ECS | Orals | CL4.1

Impact of soil moisture data assimilation on short-term numerical weather prediction 

Zdenko Heyvaert, Michel Bechtold, Jonas Mortelmans, Wouter Dorigo, and Gabriëlle De Lannoy

Land-atmosphere (LA) coupling describes the dynamic interaction between the Earth’s land surface and (the bottom of) the atmosphere. This coupling involves the exchange of energy, water, and momentum between the two systems and its strength varies depending on several factors (e.g., season, land cover, topography, and climate zone). Several metrics that quantify the strength of the LA coupling, both physical and statistical, have been developed and explored extensively in the literature.

Coupled systems that model the atmosphere, the land surface, and their interaction require an initialization of both the atmospheric and the land components. For the latter, a land surface model (LSM) is typically spun up in a so-called ‘offline’ manner, i.e., not coupled to the atmospheric model but forced by an atmospheric reanalysis product. So far, little research has focused on the potential impact of satellite-based soil moisture data assimilation (DA) during this spin-up period on the subsequent forecast by the coupled system. However, several studies in the land surface modeling community have demonstrated the potential benefit of soil moisture DA to improve estimates of hydrological variables and land surface fluxes in offline simulations.

In this study, soil moisture retrievals from the 36 km Soil Moisture Active/Passive (SMAP) Level 2 product are assimilated into the Noah-MP LSM with dynamic vegetation, forced by the MERRA-2 atmospheric reanalysis. This is done using a one-dimensional Ensemble Kalman Filter (EnKF) within the NASA Land Information System (LIS). The DA updates the moisture in each of the four soil layers of the LSM. The resulting land reanalysis provides consistent estimates of land surface variables and fluxes from 1 January 2016 through 31 December 2020 on an 18 km grid over the contiguous United States.

This land reanalysis is subsequently used to initialize the land component of an experiment where the Noah-MP LSM and the Weather Research & Forecasting (WRF) atmospheric model are coupled within the NASA Unified WRF (NU-WRF) framework. The atmospheric component is initialized with MERRA-2, which also serves as the boundary condition for the atmospheric model. We compare the results in terms of short-term atmospheric estimates (e.g., of evaporative fraction, growth of the planetary boundary layer, screen-level temperature and humidity) with an initialization that uses a purely model-based land spin-up. 

Our study allows the quantification of land DA impact during spin-up and the assessment of its relationship with the LA coupling strength. The results will provide important insights into where and when short-term atmospheric forecasts may benefit from assimilating satellite-based soil moisture retrievals.

How to cite: Heyvaert, Z., Bechtold, M., Mortelmans, J., Dorigo, W., and De Lannoy, G.: Impact of soil moisture data assimilation on short-term numerical weather prediction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20049, https://doi.org/10.5194/egusphere-egu24-20049, 2024.

CC BY 4.0