Presentation type:
ERE – Energy, Resources and the Environment

EGU24-15525 | ECS | Orals | ERE5.3 | Highlight | ERE Division Outstanding Early Career Scientist Award Lecture

Fault Lines to Frontlines: Geomechanical Challenges of Sustainable Energy Transition 

Roberto Emanuele Rizzo, Derek Boswell Keir, Andreas Busch, Nathaniel Forbes Inskip, David Healy, Snorri Gudbrandsson, Luca De Siena, and Paola Vannucchi

The transition to sustainable energy systems introduces a complex landscape, wherein geothermal energy and carbon dioxide storage (CCS) play critical roles. These activities target geological formations that are always faulted and fractured. As the focus intensifies on alternative energy systems for decarbonisation, understanding these faulted rocks in the subsurface gains great importance. Fault and fracture systems can act not only as conduits for fluid flow but they can also be zones of mechanical weakness that may respond dynamically to fluid pressure changes due to natural geological processes or anthropogenic activities, such as CCS or geothermal extraction. This dual role of fault and fracture systems as pathways for fluid flow and as potential triggers for mechanical failure makes their study a cornerstone of sustainable subsurface resource management. The challenge lies in accurately characterising the permeability of these systems and estimating their mechanical behaviour under changing stress conditions. This is vital for ensuring the integrity and efficacy of operations like CCS and geothermal energy extraction, where even slight variations in fluid pressure can have significant implications. For instance, experiences from the fluid injection experiment for an enhanced geothermal system in Basel, Switzerland, and the In Salah CCS pilot site in Algeria highlight how minor changes in pore fluid pressures (as little as 10 MPa) can induce leakage and/or seismic activities. We highlight selected case studies from both active and prospective CCS and geothermal sites (in Svalbard and Mid-Ethiopian Ridge, respectively). These examples illustrate methodologies in fault stability analysis and geomechanical characterization, shedding light on the relationship between fluid flow, stress alterations, and rock mechanics in faulted and fractured formations. By coupling empirical data with modelling techniques, we present strategies to mitigate risks and enhance the efficiency of subsurface decarbonisation efforts.

How to cite: Rizzo, R. E., Keir, D. B., Busch, A., Forbes Inskip, N., Healy, D., Gudbrandsson, S., De Siena, L., and Vannucchi, P.: Fault Lines to Frontlines: Geomechanical Challenges of Sustainable Energy Transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15525, https://doi.org/10.5194/egusphere-egu24-15525, 2024.

ERE1 – Integrated studies

EGU24-79 | PICO | ERE1.1

Water supply risks for thermoelectric power plants considering climate change  

Zhenxing Zhang, Yao Wang, Laura De La Guardia, and Wei Dang

Water and energy are inextricably connected as water is needed for energy development and vice versa. This linkage is referred to as water-energy nexus, which highlights the need for integrated management and study of both resources. The nexus becomes even more complicated with climate change as both resources are greatly impacted by climate change. This study is aimed to assess the impact of climate change on water demand by thermoelectric power plants. The Integrated Environmental Control Model (IECM) and the Global Climate Model (GCM) are integrated to simulate water demand under future climate scenarios. The daily, monthly, and yearly water demand by selected thermoelectric power plants in Illinois are examined to explore the temporal patterns of climate change impact on water-energy nexus. Initial results showed that water use is more sensitive to shorter timescales. Compared with water withdrawal, water consumption is more sensitive to climate change.  This approach is also coupled with a hydrological model, specifically, a HSPF model, to assess the water supply risks to thermoelectric power plants in the future climate scenarios.

How to cite: Zhang, Z., Wang, Y., De La Guardia, L., and Dang, W.: Water supply risks for thermoelectric power plants considering climate change , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-79, https://doi.org/10.5194/egusphere-egu24-79, 2024.

EGU24-1106 | PICO | ERE1.1

A remote-sensing-based assessment of a city's urban environmental quality 

Srashti Singh, Anugya Shukla, and Kamal Jain

Unprecedental and unplanned urban sprawl poses a substantial challenge for cities in developing nations, detrimentally impacting the environmental quality of the urban landscape. The key environmental factors affected by urbanization must be vigilantly monitored to ensure sustainable urban development. Consequently, it is imperative to have a sustainable framework for a comprehensive and critical assessment of the environmental parameters that are affected because of urbanization. The aim of this research is to assess the environmental quality of a developing city in India – Bhopal and to quantify the environmental damage. The environmental quality is compared at 5-year time steps from 2000 to 2020 keeping 2000 as the benchmark year. The study employs satellite-based remote sensing data to extract all the parameters that are considered. The biophysical indicators (BI), include Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), Particulate Matter concentration (PM2.5) and actual Evapotranspiration (ETa), and the census-related parameters include the Population Density (PD) and Built-up Volume (BV). The research assesses the relation between these parameters, followed by the quantification of an Environmental Quality Index (EQI) for the years 2005, 2010, 2015 and 2020 to investigate the city's environmental quality. The city's environmental quality is then categorized based on the EQI values in each year. The results reveal that there is a poorer quality of environment where the BV and PD is high, and vegetation cover is low, which also results into higher LST. PM2.5 was higher in the traffic congestion zones, industrialisation areas and major roads. The comprehensive findings indicate pronounced environmental degradation in specific areas characterized by dense urbanization, heavy traffic, industrial zones, and major highways. This study sheds light on the adverse environmental impacts of unplanned urbanization, providing valuable insights for policymakers and urban designers to enhance the quality of urban development and promote sustainability. Additionally, the research proposes strategies and policy interventions for addressing industrial and vehicular pollutants, emphasizing the crucial role of urban greening in elevating the overall urban environment.

How to cite: Singh, S., Shukla, A., and Jain, K.: A remote-sensing-based assessment of a city's urban environmental quality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1106, https://doi.org/10.5194/egusphere-egu24-1106, 2024.

EGU24-1384 | PICO | ERE1.1

A Study on Vulnerability Maps for Marine Environmental impact Assessment 

Taeyun Kim, Junho Maeng, Eunchae Kim, Tae-sung Kim, and Moonjin Lee

In Korea, various development projects such as port construction, nearshore wind farms, tidal reclamation, and seawall construction have been taking place along the coast, however spatial information and vulnerability assessment methods for proper environmental impact assessment are lacking. In this study, we categorized four sectors (social environment, protected areas, habitats, and species) to create vulnerability maps on each that can be used for environmental impact assessment. The vulnerability map for the social environment includes spatial information on fisheries, aquaculture, coastal tourism, and port facilities, while the vulnerability map for protected areas is based on international protected areas, marine reserves, and environmental and fishery resource management areas. Habitat vulnerability map is based on data for tidal flats and wetlands, seagrass beds, stop-over sites of migratory birds, and marine protected species habitats. Finally, species vulnerability map was created spatial fish catches and marine bird tracking data. Vulnerability maps for each sector are based on the scores assigned to sector-specific indicators.

How to cite: Kim, T., Maeng, J., Kim, E., Kim, T., and Lee, M.: A Study on Vulnerability Maps for Marine Environmental impact Assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1384, https://doi.org/10.5194/egusphere-egu24-1384, 2024.

EGU24-1956 | ECS | PICO | ERE1.1

Global technical, economic and ecological performance of different solar photovoltaic modules  

Changkun Shao, Kun Yang, and Xinyao Zhang

Bifacial solar modules and solar trackers are experiencing worldwide rapid development, and they are proven to be effective in increase solar power generation. This study presents a comprehensive worldwide assessment on technical and economic potential of combination of mono or bifacial photovoltaic modules with different solar trackers based on a high-quality long-term solar radiation dataset and a physical model chain. Impact factors such as topography, land suitability, etc. were taken into consideration when evaluating electricity generation potential. Overall, bifacial photovoltaic modules can increase power generation and lower levelized tariffs globally. Solar trackers can increase the efficiency of PV panels, but reduce the total power generation due to lower land utilization. Fixed bifacial modules contributed the highest total global power generation of 2217 PWh and the lowest average global levelized cost of electricity of 3.6. The spatial distribution of the optimal PV module and solar tracker combination is also revealed by this study. Furthermore, there is a significant mismatch between energy generation and demand, despite the fact that total global electricity generation potential far exceeds total electricity demand. Countries with 70% of the total generation potential consume less than 20 % of the demand. Distributed PV may contribute to solving this problem. As for the environmental and ecological impact, the global carbon reduction and loss in ecosystems service values are 1205 million Mt and 3244 million dollars per year, respectively. The Sahara Desert and Western Asia, with high power generation potential and low ecological costs, serve to be hotspots for photovoltaic. This study providing guidance for selecting, sitting and deploying different solar modules combination, and emphasize the ecological and environmental impact of solar panels.

How to cite: Shao, C., Yang, K., and Zhang, X.: Global technical, economic and ecological performance of different solar photovoltaic modules , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1956, https://doi.org/10.5194/egusphere-egu24-1956, 2024.

With the green transition in Europe from fossil fuels to renewable energy, it will significantly change the demand for raw materials. The European Union’s new growth strategy focuses on sustainability. While doing so, the intent is to reduce the dependency on non-EU countries regarding the raw materials supply. Access to raw materials has been questioned by the European Commission for twenty years as it is foreseen as new “oil and gas”. The transition requires using carbon-free energy resources and electric vehicles which leads to a great need for raw materials that are used in the production of wind turbines, solar panels and batteries, etc. However, Europe is mostly dependent on non-EU countries which poses a risk of supply chain disruptions, as witnessed in the Covid-19 pandemic and the war in Ukraine.

In this study, silicon (Si) metal, one of the critical raw materials having high economic value, will be investigated in terms of its usage, substitution, supply, demand, and future strategies. Si metal is used in aluminum alloys, electronic, chemical, and photovoltaic applications. Green transition and autonomy in the mineral supply chain in Europe both require upscaling mining and supply from secondary materials/recycling of critical raw materials. However, there is almost no recycling of Si metal since it is mostly dispersive in metallic alloys and chemical applications. Thus, mining should be considered as the main activity for the security and sustainability of the Si metal supply chain. This implies that Europe will need to overcome several disadvantages such as no sufficient exploration of resources, public opposition to mining and complex permitting procedures, since it is not given the priority to produce their raw materials. Considering the disadvantages, it is estimated that the upscaling of the mining activities will take 10 to 15 years.

Today, China controls 76% of the Si metal global supply which increased by 10% since 2020 and USA shares 8 %, Brazil 7 % Norway 6 % of global production. Norway shares about 50% of the Si metal produced in Europe and there are high-purity quartz deposits distributed across the country. Furthermore, Norway possesses renewable and cheaper electricity, which is typically the most costly element in producing metals, in addition to its natural resources. The availability of affordable power will most likely become more crucial in the future as energy sources shift from hydrocarbons to green energy sources. Finland is assumed to have a high-quality reserve, while the exact quantities are unknown. In Greenland, although the purity is unknown, the reserves are thought to be substantial. Sweden is also known to have potential reserves of high-quality quartz. As a result, this study will elaborate on the potential leading role of northern countries in meeting Europe's Si metal needs in the path of green transition.

How to cite: Akyıldız, O.: The Importance of Silicon Metal on the Green Transition and the Role of Northern Countries in the Silicon Metal Market, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4042, https://doi.org/10.5194/egusphere-egu24-4042, 2024.

In the context of a circular economy, increasing the durability of existing infrastructure is of paramount importance. Roads are the lifelines of the modern economy, and it is imperative to increase their lifespan as part of sustainable growth. Most conventional roads are a mixture of rock aggregate and bitumen. The region where bitumen meets aggregate in any asphalt mix experiences a complex interaction between electrostatic, chemical, and mechanical forces resulting in the formation of an Interfacial Transition Zone (ITZ) (Zhu et al. 2017). More specifically, there is a complex behavior of materials that could result from three different types of interaction between the aggregates, fillers, and bitumen: i) physisorption ii) chemisorption iii) mechanical interlocking (Pasandín and Perez 2015).

The integrity of the ITZ is one of the crucial factors for the overall durability of any mixture containing aggregate and binding materials. Due to the complex interaction of different minerals, present in the rock aggregate, with the bituminous binder, this junction is considered a weak link that dictates the overall structural durability of the mixture (Zhu et al. 2021). Most of the studies concerning the ITZ are based on mechanical tests at the aggregate-bitumen contact and generally do not include mineralogical observations.

The present study focuses on the ITZ within laboratory-manufactured asphalt samples utilizing rock aggregate varieties typically used in surface courses in the Republic of Ireland. Structural and petrographic observations are made using a combination of digital microscopy and Raman spectroscopy. Early observations suggest that there is a strong control exerted by aggregate mineralogy on the formation of features within the ITZ, including the linear alignment of iron oxide particles in the bitumen. Iron-oxide particles could potentially create a zone of weakness in a stone-mix asphalt, especially where the key aggregate is greywacke.

References

  • Zhu et al. 2017; Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques, Materials and Design. 129, 91-102.
  • Pasadin and Perez, 2015; The influence of the mineral filler on the adhesion between aggregates and bitumen, International Journal of Adhesion and Adhesives.

 

How to cite: Chakraborty, T., Unitt, R., and Meere, P.: Investigation of the Interfacial Transition Zone (ITZ) in asphalt mastic and its effect on the integrity of the mix: A Raman hyperspectral approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4378, https://doi.org/10.5194/egusphere-egu24-4378, 2024.

The dissolution and diffusion process of hydrogen sulfide (H2S) in aqueous solutions are critical in the formation of many metal deposits and the stability of H2S hydrate also play an important role in natural gas exploitation and transportation due to the tendency of H2S to form hydrate at low temperature and high pressure, which can lead to pipeline blockage. In this study, the solubility and diffusion coefficient of H2S in water and brine as well as the stable conditions of H2S hydrates have been determined using fused silica capillary cell, high pressure optical cell, high pressure reactor, and Raman spectrometers.The details are as follows: (1) H2S solubility data in water were obtained at temperatures up to 573 K and pressures up to 100 MPa. These new data extend the predictable range of previous models. (2) The diffusion coefficients of H2S in water at 0.1–2 MPa and 273.1–373.1 K and in four brine solutions (0.62, 1, 2, and 3 mol•kg−1 NaCl) at 1 MPa and 273.1–373.1 K were determined. The results showed that the diffusion coefficient increased with the temperature and was inhibited by salinity. (3) The stability of H2S hydrate in water and brine including NaCl, KCl, MgCl2, NH4Cl, Na2SO4 and K2SO4 at the temperature range from 273.4 to 298.8 K, pressure ranging from 1.13 to 21.90 bar, and salinity from 3.4-20.0 wt.% were investigated. The results showed that the inhibitory effect of six electrolytes on H2S hydrate formation is in the order of MgCl2 > NH4Cl > NaCl > KCl > Na2SO4 = K2SO4.

How to cite: Jiang, L., Wu, C., Sun, J., and Lin, J.: Determination of the solubility, diffusion coefficient and hydrate stability of hydrogen sulfide in water and brine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7342, https://doi.org/10.5194/egusphere-egu24-7342, 2024.

EGU24-9593 * | PICO | ERE1.1 | Highlight

Microbially mediated energy storage in the pedosphere  

Michael Harbottle, Holly Smith, Julia Kennedy, Devin Sapsford, Peter Cleall, Andrew Weightman, and Ugalde-Loo Carlos

Energy storage is vital to buffer intermittency in power supplies comprised largely or wholly of variable sources (e.g. wind, solar) at large and small scale. Present technologies and those in development (e.g. electrochemical cells) have disadvantages (e.g. cost, resource use, chemical hazard) whilst the capacity required is extremely large and widely distributed. Storage is needed for burgeoning off-grid small-scale infrastructure such as sensor networks as well as larger scale power sources. To address challenges with current technologies we demonstrate the ability of the pedosphere to store electrical energy and act as a natural, biogeochemical battery. The pedosphere, consisting of porous geomaterials such as soil and sediment, is an extensive potential energy repository covering much of the Earth and underpins most infrastructure or situations where power is generated or required. This pre-existing capacity has the potential to simplify energy storage and the installation and management of power generating or consuming infrastructure.

In this study the concept of such ‘geo-batteries’ is demonstrated. Controlled microbial synthesis of simple organic molecules in natural porous media (estuarine sediment) is shown, with this organic matter acting as an accessible form of energy storage. When combined with the employment of a microbial fuel cell to extract this energy electrically through degradation of the organic molecules, a battery is formed, with external control over energy input and output through switching of charging and discharging cycles.

This project received funding from the UK Engineering and Physical Sciences Research Council, grant no. EP/X018865/1.

How to cite: Harbottle, M., Smith, H., Kennedy, J., Sapsford, D., Cleall, P., Weightman, A., and Carlos, U.-L.: Microbially mediated energy storage in the pedosphere , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9593, https://doi.org/10.5194/egusphere-egu24-9593, 2024.

As global efforts towards achieving net-zero targets continue to grow, countries experiencing a surge in demand for renewable energy infrastructure may encounter competition due to uneven production capacities. Currently, European renewable energy infrastructure depends on limited suppliers and technologies, which have the potential to be diversified and robustified. This work aims to explore the potential supply chain transition of net-zero European renewable energy infrastructure and evaluate it in terms of environmental impacts, policy robustness, and economic costs. Based on results from scenario analysis, we find that the trade-offs always exist, i.e., sustainability, reliability, and affordability cannot be simultaneously achieved in a single scenario. Furthermore, the study emphasizes the close interaction of European renewable energy infrastructure with global capacity and market, indicating the need for a holistic approach in addressing the challenges of achieving a sustainable and resilient energy future.

How to cite: Cui, C.: Sustainable, Reliable, or Affordable: The Future European Renewable Energy Infrastructure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12941, https://doi.org/10.5194/egusphere-egu24-12941, 2024.

EGU24-14109 | ECS | PICO | ERE1.1

Joint Optimization of Lithology and Petrophysical Parameters in Athabasca Oil Sands Using Self-Attention Mechanism 

M Quamer Nasim, Paresh Nath Singha Roy, and Adway Mitra

Precisely determining lithology and petrophysical parameters, including core-calibrated porosity and water saturation, is crucial for reservoir characterization. The traditional method of manually interpreting well-log data is not only time-consuming but also prone to human errors. To address these challenges in identifying lithology and estimating petrophysical parameters in Athabasca Oil Sands region, this study introduces a novel solution using the AutoRegressive Vision Transformer (ARViT) model for accurate prediction. ARViT improves upon the ViT framework by integrating sequential dependencies into its output. The self-attention mechanism and auto-regression are key features that enable ARViT to systematically process data, capturing detailed spatial dependencies in well-log data. This empowers the model to discern subtle spatial and temporal relationships among various geophysical measurements. In essence, ARViT's incorporation of sequential information through its auto-regression mechanism on top of ViT enhances its ability to comprehensively model complex relationships within well-log data. In this study, a multitask learning approach is embraced to enhance the model's interpretability and efficiency. This methodology involves optimizing the model's performance across multiple tasks simultaneously. By doing so, the model gains a broader understanding of diverse tasks and benefits from shared knowledge and features across these tasks. This collaborative optimization contributes to a more robust and versatile model, ultimately improving its overall perflormance and interpretability. To evaluate the effectiveness of the ARViT model, we conducted a comprehensive series of experiments and comparative analyses, contrasting its performance with conventional artificial neural networks (ANN), Long Short-Term Memory (LSTM), and ViT models. Furthermore, to illustrate the versatility of ARViT, we apply Low-Rank Adaptation (LoRA) to a different, smaller dataset of well-log, showcasing its ability to adapt effectively to various geological contexts. LoRA becomes particularly crucial in this context, as it not only enhances the model's adaptability but also plays a vital role in reducing the number of trainable parameters. This reduction not only contributes to computational efficiency but is essential for preventing overfitting and ensuring optimal performance across different datasets. Our findings demonstrate the consistent superiority of ARViT over ANN, LSTM, and ViT in accurately estimating lithological and petrophysical parameters. This is highlighted by ARViT's remarkable Lithological Accuracy of 96.51%, surpassing the baseline ANN's 73.18%, LSTM's 89.80%, and ViT's 93.23%. The substantial reduction in Mean Squared Error (MSE) for porosity, decreasing from 0.0007 (ANN) to 0.0004 (ARViT), and water saturation, decreasing from 0.022 (ANN) to 0.005 (ARViT), further emphasizes ARViT's exceptional performance in providing precise and reliable predictions across various metrics. The application of LoRA yields notable enhancements in ARViT's performance metrics. Specifically, in terms of Lithology Accuracy, ARViT-LoRA showcases a significant improvement, soaring from 88.74% (ARViT-Scratch) to an impressive 97.22%. Additionally, the implementation of LoRA resulted in a significant reduction of GPU consumption by 25%. While lithology prediction has been a well-explored field, ARViT distinguishes itself through its exclusive combination of features, encompassing a self-attention mechanism, auto-regressive nature, and multitask approach, coupled with effective fine-tuning using LoRA. This unique combination positions ARViT as a valuable tool for addressing intricate challenges of lithology prediction and petrophysical parameter estimation.

How to cite: Nasim, M. Q., Singha Roy, P. N., and Mitra, A.: Joint Optimization of Lithology and Petrophysical Parameters in Athabasca Oil Sands Using Self-Attention Mechanism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14109, https://doi.org/10.5194/egusphere-egu24-14109, 2024.

EGU24-17869 | PICO | ERE1.1 | Highlight

Enhancing the Ambition and Technical Feasibility of Delivering Nationally Determined Contributions to the Paris Agreement 

Joel Gill, Katherine Daniels, Dafydd Maidment, Mohammed Salih, and Lara Blythe

Delivering the goals of the Paris Agreement, including limiting global temperature rise to no more than 1.5°C requires the setting and implementation of ambitious yet viable Nationally Determined Contributions, or NDCs. Article 4 of the Paris Agreement establishes a responsibility on each party to ‘prepare, communicate and maintain’ successive NDCs, each more ambitious than the last. Parties are then encouraged to work at a domestic level to achieve their NDC objectives.

Based on an analysis of NDCs from eastern and northern Africa (including Ethiopia, Eritrea, Kenya, Malawi, Rwanda, Tanzania, Somalia, Sudan, and Uganda) here we outline steps that would (i) strengthen opportunities for scientific input in the development of NDCs, ensuring that the mitigation and adaptation pledges included are both comprehensive and scientifically feasible, and (ii) improve aligned implementation strategies, ensuring coherence with higher education and research and innovation, and a cross-governmental approach to addressing climate change.

A lack of engagement with appropriate expertise when developing NDCs may result in pledges that are not viable and/or the omission of feasible and impactful options. A lack of appropriate implementation planning, and policy coherence, may result in a skills shortage that hinders implementation of actions set out in NDCs and therefore the ability to deliver the mitigation and adaptation ambitions of the Paris Agreement. Collectively, the steps we propose would strengthen the NDC process, while also supporting global ambitions to improve education for sustainable development (Sustainable Development Goal 4.7), employment opportunities (Sustainable Development Goal 8.5, 8.6), and research capacity (Sustainable Development Goal 9.5).

How to cite: Gill, J., Daniels, K., Maidment, D., Salih, M., and Blythe, L.: Enhancing the Ambition and Technical Feasibility of Delivering Nationally Determined Contributions to the Paris Agreement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17869, https://doi.org/10.5194/egusphere-egu24-17869, 2024.

EGU24-17873 | ECS | PICO | ERE1.1

Nutrient removal in constructed wetlands: Especial emphasis on type of plantation method 

Mahak Jain, Balram Sharma, Sai Kiran Pilla, Partha Sarathi Ghosal, and Ashok Kumar Gupta

Constructed wetlands (CW) have emerged as sustainable and eco-friendly solutions for mitigating the impact of nutrient pollution in water bodies. Nutrient pollution, primarily caused by excess nitrogen and phosphorus, poses significant threats to aquatic ecosystems, leading to issues such as algal blooms, oxygen depletion, and impaired water quality. In response to these challenges, constructed wetlands have gained prominence as innovative systems capable of efficiently removing nutrients from wastewater and stormwater. These engineered ecosystems mimic the natural processes of wetlands to effectively treat wastewater. Among the key factors influencing the efficiency of nutrient removal, the choice of plantation method in CW stands out as a crucial aspect that demands closer scrutiny. As such, understanding the impact of different plantation methods on nutrient removal becomes paramount for optimizing the performance of constructed wetlands. This study focuses on elucidating the role of diverse vegetation strategies in enhancing the performance of these systems, with particular emphasis on nutrient uptake and transformation processes. Through a comprehensive review of existing literature, this research aims to identify and analyze the impact of various plantation techniques on nutrient removal efficiency. Factors such as plant species selection, plantation type i.e., single plant in a system (monoculture) or multiple vegetation in the system (polyculture) are examined to ascertain their influence on nitrogen and phosphorus removal rates. Polyculture improved TN and TP removal in horizontal subsurface CW by around 5%. However, a very high increment in treatment efficiency of both TN and TP was observed for vertical subsurface CW being more than 20%. Polyculture provided synergistic effect of various plant and microbial species for higher removal of nutrients from wastewater. Ultimately, the research aims to delineate the effect of plantation on performance of different CW in terms of mitigation of nutrient pollution in wastewater.

How to cite: Jain, M., Sharma, B., Pilla, S. K., Ghosal, P. S., and Gupta, A. K.: Nutrient removal in constructed wetlands: Especial emphasis on type of plantation method, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17873, https://doi.org/10.5194/egusphere-egu24-17873, 2024.

EGU24-19931 | ECS | PICO | ERE1.1

Sustainable Scale for Geosystem Services Use: Addressing the missing link in subsurface management 

Adithya Eswaran, Tine Compernolle, and Kris Piessens

Geosystem services as a concept allow for understanding the benefits that are gained from abiotic processes and structures that contribute to human welfare. These services are obtained from the diversity of the geosystem (of which the subsurface is a part) are often overlooked and undervalued. Intense anthropogenic utilization of these finite services, emphasizes the need for pre-emptive management of the subsurface. While the concept of geosystem services allows for capturing the plurality of the subsurface (in terms of different functions and services), it is often under-emphasized in subsurface management. The objective of this paper is to systematically review the existing approaches for the management of geosystem services in literature and contextualize the principle of sustainable scale in terms of a conceptual scheme for the subsurface. The systematic review's findings reveal a lack of comprehensive discussions on the management of geosystem services. Instead, the current discourse revolves around identifying various components that require management and emphasizing the necessity for active management. Although the articles propose recommendations for the management of geosystem services, they lack a set of operationalized principles that can be used by policymakers. To establish a conceptual scheme for the sustainable management of the services obtained from the services, the principle of sustainable scale as found in the literature of Ecological Economics was contextualized. The proposed conceptual scheme resulted in the following key aspects: (a) connects the subsurface characteristics (e.g. replenishment rates, different functions) and the nature of benefits (economic, environmental, and social) (b) provides the conceptual basis for defining the scale of subsurface utilization based on the type of service and its regeneration rate.

How to cite: Eswaran, A., Compernolle, T., and Piessens, K.: Sustainable Scale for Geosystem Services Use: Addressing the missing link in subsurface management, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19931, https://doi.org/10.5194/egusphere-egu24-19931, 2024.

EGU24-20300 | ECS | PICO | ERE1.1

Effects of biogeochemical interactions between cementitious materials and sewage on the durability of wastewater treatment plant facilities 

Nedson Kashaija, Viktória Gável, Krett Gergely, Csaba Szabó, Erika Tóth, and Zsuzsanna Szabó-Krausz

Wastewater treatment plants (WWTPs) are critical environmental solutions for sanitation management in many cities and municipalities. The construction of these facilities uses cementitious materials (e.g., concretes) due to their low cost, high strength and excellent watertightness properties. However, the long-term performance of these materials in WWTPs is affected by deterioration influenced by the formation of new (secondary) cement minerals. These secondary minerals are formed as a result of biogeochemical interactions between cementitious materials and wastewater microbial communities. The literature shows a lack of consensus on the mechanisms involved in the biogeochemical mechanism of sewage and cementitious materials in WWTP facilities. As a result, many civil and water engineers are unaware of its adverse effects on the sustainability of WWTP facilities, and as a consequence, the operation of many WWTP facilities costs billions of dollars in repair and maintenance due to concrete failure. This study studies the possible processes of biogeochemical interactions between sewage and cementitious materials in WWTPs and their subsequent mineral alteration and formation.

An in-situ experiment exposed 48 cement specimens of ordinary Portland cement and calcium sulfoaluminate cement to the sewage pumping station and sand-trap structures. The research involves: (1) geochemical analysis (SEM and XRD) to study the change of cement materials, (2) engineering analysis to study their mechanical change and (3) microbiological investigations to explore the microbial communities involved in the biogeochemical interaction.

The preliminary results of the study: (a) change of color from light grey to a mixture of yellow and brown for cement pastes exposed in the sewage pumping station, whereas the samples from the sand-trap maintained their original grey color. (b) the appearance of secondary minerals such as gypsum (CaSO4.2H2O), ettringite (Ca6Al2(OH)12(SO4)3·26H2O), and thaumasite (Ca3Si(OH)6 (CO3) (SO4)12.H2O) which are characterized as expansive process causing several cracks in the concrete structures. (c) the main mechanism for the formation of these sulfur-related minerals (i.e., gypsum, ettringite, and thaumasite) involves sulfide adsorption and its subsequent oxidation to form biogenic H2SO4 which eventually attack the cement alkaline mineral phases such as portlandite (Ca(OH)2 and calcium silicate hydrate (C-S-H). Another biogeochemical mechanism for sewage-cement interaction observed in this work was the carbonation process, which resulted in the formation of calcite mineral in hydrated cement.

How to cite: Kashaija, N., Gável, V., Gergely, K., Szabó, C., Tóth, E., and Szabó-Krausz, Z.: Effects of biogeochemical interactions between cementitious materials and sewage on the durability of wastewater treatment plant facilities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20300, https://doi.org/10.5194/egusphere-egu24-20300, 2024.

EGU24-1232 | ECS | Posters on site | ERE1.2

Cost-effectiveness uncertainty may bias the decision of coal power transition in China 

Xizhe Yan and Dan Tong

Coal power transition always maintains a high complexity as the heterogeneities of characteristics such as technical attribute, economic lock-in, and environmental and health impact. Here, we explored the cost-effectiveness uncertainty brought by policy implementation disturbance of different phaseout and new-built strategies (i.e., the disruption of phaseout priority) of coal power based on a developed unit-level uncertainty assessment framework, and revealed the opportunity and risk of coal transition decision by employing preference analysis. We found that, the uncertainty of policy implementation might lead to potential delays in yielding the initial positive annual net benefits. For example, a delay of 6 years might occur when the prior phaseout practice is implemented. A certain level of risk remains in the implementation of the phaseout policy, as not all strategies can guarantee the achievement of positive cumulative net benefits from 2018-2060. Since the unit-level heterogeneities shape diverse orientation of decision making, the decision-making preferences would significantly alter the selection of coal transition strategy. While the uncertainty of policy implementation might lead to missed opportunities in identifying optimal strategy. Our results highlight the importance of minimizing the policy implementation disturbance, which helps mitigate the risk of negative benefits and strengthen the practicality of phaseout decision.

How to cite: Yan, X. and Tong, D.: Cost-effectiveness uncertainty may bias the decision of coal power transition in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1232, https://doi.org/10.5194/egusphere-egu24-1232, 2024.

EGU24-1833 | ECS | Orals | ERE1.2 | Highlight

Solar park impacts on plant biomass and earthworm and nematode communities 

Luuk Scholten, Gerlinde De Deyn, and Ron de Goede

Solar parks are a rapidly expanding novel land use primarily to produce renewable energy. However, the aim is to make them multifunctional, and limit negative impacts on soils or even improve soil quality. Solar panels change the microclimate and cause shading below the panels, influencing plant growth and carbon and water inputs to the soil, with potential cascading effects on the soil biota. This research aimed to test the effect of solar panels on earthworm and nematode communities in 12 solar parks with contrasting designs across the Netherlands. Earthworm abundance and diversity, plant biomass and nematode abundance were measured between (gap) and below the solar panels. Nematode abundance was also measured at the highest and lowest edges of the panels. Plant biomass, nematode abundance and earthworm abundance were all significantly lower below the solar panels compared to in the gap between the panels. Nematode abundance at the highest and lowest edges showed intermediate numbers compared to the gap and below the panels. These results show that solar parks have a large impact on the soil biota and stress the need for guidelines for ecologically sound solar park designs to prevent soil damage.

How to cite: Scholten, L., De Deyn, G., and de Goede, R.: Solar park impacts on plant biomass and earthworm and nematode communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1833, https://doi.org/10.5194/egusphere-egu24-1833, 2024.

EGU24-2933 | Orals | ERE1.2 | Highlight

Introducing the first ecovoltaic parks of Hungary: a reconciliation between solar development and nature conservation 

Csaba Tölgyesi, Botond Magyar, Kata Frei, Alida Anna Hábenczyus, Zoltán Bátori, and Róbert Gallé

Solar energy is the most rapidly growing renewable globally. However, ground-mounted solar panels have a high land requirement, leading to extensive, low-nature-value photovoltaic parks. This may be alleviated by considering ecological aspects during their planning, construction and mainetnance. The resulting ecovoltaic park can bring various benefits for the owners if ecosystem services related to the imporved ecological conditions are recognized and wisely utilized. A major step in developing ecovoltaic parks is the creation of a short but species-rich grassland ecosystem. There is little empirical evidence on how to achieve this; therefore, we set up an experimental sowing experiment in three formerly conventional photovoltaic parks located in the forest-steppe zone of Hungary. From the regional native grassland species pool, we selected short but competitive ones (two graminoids and 50 forbs that are often visited by pollinators), and sowed them in half of the parks (between panel rows) in October, 2022, while the other half was left as control. In 2023, we surveyed the vegetation of the sown and control parts of the parks and adjacent old-growth grasslands (as references), and found that total plant species richness and the species richness of grassland specialists increased compared to the control sites, but remained below the references. In contrast, the cumulative cover of grassland specialist species in the sown sites could reach the references. We also surveyed pollinator assemblages (hoverflies and wild bees), and found higher species richness and Shannon diversity in the sown parts then in the reference grasslands, while control parts of the parks showed intermediate values. This might have been caused by spillover from the sown parts, although flying pollinators might have also taken advantage of the permanent windshade among the panel rows of control parts, despite the low food supply compared to the reference grasslands. Our findings suggest a rapid improvement of plant and pollinator assemblages after sowing native seed mixtures in solar parks. The resulting high-nature-value grassland ecosystem can have many co-benefits for the owners, as (i) it requires lower management intensity due to the short vegetation, (ii) has the potential to offer high-quality forage for livestock or honey-bees, and (iii) lowers the widespread “not-in-my-backyard” syndrome of local inhabitants due to its attractive, flower-rich appearance.

How to cite: Tölgyesi, C., Magyar, B., Frei, K., Hábenczyus, A. A., Bátori, Z., and Gallé, R.: Introducing the first ecovoltaic parks of Hungary: a reconciliation between solar development and nature conservation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2933, https://doi.org/10.5194/egusphere-egu24-2933, 2024.

EGU24-4551 | Orals | ERE1.2

Remote sensing-based frameworks to quantify city-level carbon fluxes in urban green infrastructures 

Oz Kira, Julius Bamah, Alexander Muleta, and Shirley Bushner

The urban population is experiencing rapid growth, and it is estimated that around 90% of people will be living in cities by the year 2100. Given that urban areas are significant sources of greenhouse gas and pollutant emissions, and with the expectation that these urban areas will become even more densely populated, achieving sustainable urban living requires careful and well-informed urban planning for infrastructures capable of effectively mitigating these emissions. One commonly proposed approach to address this challenge is the implementation of urban green infrastructures, which are often regarded as net sinks for CO2. However, due to the diverse and varied land use within urban areas, our ability to precisely isolate and quantify their overall impact on the city's carbon balance is limited.

Our research aims to overcome this limitation by testing two distinct frameworks. The first integrates remote observations with local measurements to determine the carbon balance of green infrastructures at the city level, ultimately producing a detailed CO2 sequestration map of these infrastructures. The second utilizes satellite observations of solar-induced chlorophyll fluorescence, a signal emitted exclusively by vegetation, to estimate urban vegetation's city-wide carbon sequestration potential. Our findings demonstrate that these two frameworks provide valuable insights into the carbon sequestration capacity of green infrastructures.

The frameworks developed in this study offer a significant advancement in understanding the contribution of green infrastructures to the carbon budget of cities. This improved understanding can inform the planning of low carbon-emitting cities and aid in identifying green areas with limited—or even negative—net carbon uptake. Additionally, the results of this research may be instrumental for policymakers and city planners in developing more sustainable urban environments.

How to cite: Kira, O., Bamah, J., Muleta, A., and Bushner, S.: Remote sensing-based frameworks to quantify city-level carbon fluxes in urban green infrastructures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4551, https://doi.org/10.5194/egusphere-egu24-4551, 2024.

EGU24-4911 | Posters on site | ERE1.2

Electricity generation using biogas from food waste in Jakarta, Indonesia: Techno-economic and environmental impact analysis 

Jin-Kyu Park, Min-Jung Jung, Hui-Young Yun, and Kyung-Hui Wang

Food waste (FW) has a substantial environmental impact, contributing to 4.4 GtCO2 eq annually, equivalent to approximately 8% of total anthropogenic greenhouse gas emissions based on carbon footprints. Indonesia ranks as the world's second-largest food waste producer, estimated to generate 300 kg of food waste per capita per year. However, there is a scarcity of studies assessing the electricity generation potential and economic feasibility of biogas-to-electricity projects in Indonesia. This paper presents the recovery of biogas from food waste for electricity generation, aiming to determine its economic and environmental benefits for Jakarta, Indonesia. The food waste generation potential in Jakarta was estimated from 2024 to 2043, and the theoretical methane yield was calculated using Buswell's equation. The economic feasibility of anaerobic digestion projects was analyzed using various methods, including total life cycle cost, net present value, investment payback period, levelized cost of energy, and internal rate of return. Environmental impact assessment included air pollution (SO2, NOx, and PM10) and greenhouse gas (CO2 and CH4) emissions reduction. Methane yield from anaerobic digestion was determined to range from 315.9 to 616.5 × 106 m3/yr, with electricity generation potential between 721.5 and 1,407.9 Gigawatt-hours. Economic indicators demonstrated the viability of anaerobic digestion, with positive net present values. The net present value and levelized cost of energy for anaerobic digestion were $162.8 million and $0.095 per kilowatt-hour, respectively. Utilizing biogas from anaerobic digestion for electricity generation could displace 8.2 million tons of coal over the system's lifespan. This displacement would lead to reductions of 17.8 million tons of SO2, 13.9 million tons of NOx, 1.7 million tons of PM10, and 20.1 million tons of CO2 compared to coal combustion.

Acknowledgments

This research was supported by Particulate Matter Management Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI) funded by the Ministry of Environment (MOE).

How to cite: Park, J.-K., Jung, M.-J., Yun, H.-Y., and Wang, K.-H.: Electricity generation using biogas from food waste in Jakarta, Indonesia: Techno-economic and environmental impact analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4911, https://doi.org/10.5194/egusphere-egu24-4911, 2024.

EGU24-5653 | ECS | Orals | ERE1.2

Inequality and driving factors in regional level energy-related CO2 emissions at a residential sector of Iran 

Behnam Ata, Parisa Pakrooh, and János Pénzes

An increasing amount of CO2 emissions from the household sector of Iran led us to analyze the inequality and understand the possible driving forces behind the CO2 emissions. The household sector in Iran contributes one of the largest sectors of CO2 emissions. The study of inequality provides information to policy‐makers to point policies in the right direction. By considering the differences in the socio‐economic factors of provinces, the study aims to analyze the inequality in CO2 emissions and different kinds of energy consumption, including oil, gas and electricity, for the household sector of Iran’s provinces between 2000 and 2019. Also, Household panel data of 28 provinces of Iran are employed by using both static and dynamic panel models for the years 2001 to 2019. This study investigates the relationship between CO2 emissions and the efficient factors in three major groups including energy, climate, and household socio-economic factors. the Theil index and Kaya factor, as a simple and common method, were considered to evaluate the inequality in both CO2 emissions and energy consumption, and determine the driving factor behind CO2 emissions. According to the results, inequality in oil and natural gas consumption were increasing, electricity was almost constant; however, CO2 emissions experienced a decreasing trend for the study period. The results of the Kaya factor indicate that the second factor, energy efficiency, with a 0.21 value was the main driving factor of inequalities in CO2 emissions. The empirical result of the static method showed a positive dependence of household CO2 emissions on Heating Degree Days (HDD), Cooling Degree Days (CDD), precipitation level, oil consumption, gas consumption, household income, size of household, and also building stocks. Also, removing the energy subsidy for fossil fuels due to substantial subsidy in fossil fuels in Iran or implementing a re-pricing energy policy can be a beneficial way to control carbon emissions from households within the provinces of the country.

Behnam Ata is funded by the Stipendium Hungaricum scholarship under the joint executive program between Hungary and Iran.

The study was elaborated under the research project TKP2021‐NKTA‐32 . 

How to cite: Ata, B., Pakrooh, P., and Pénzes, J.: Inequality and driving factors in regional level energy-related CO2 emissions at a residential sector of Iran, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5653, https://doi.org/10.5194/egusphere-egu24-5653, 2024.

EGU24-5919 | ECS | Posters on site | ERE1.2

Investigating the contribution of biogenic sinks and sources to Vienna’s CO2 budget using bottom-up modelling and tall-tower flux measurements 

Enrichetta Fasano, Carmen Schmid, Erwin Moldaschl, Merlin Mayer, Sebastian Konrad Braun, Francesco Vuolo, Peter Weiss, Helmut Schume, and Bradley Matthews

The importance of accurate monitoring of carbon dioxide (CO2) emissions from cities is underlined by the substantial urban contribution to global fossil fuel combustion. Typically, cities quantify emissions of CO2 using inventories and also use these models to design appropriate local mitigation policies and measures. However, inventories of individual cities can be uncertain (lack of appropriate activity data and emission factors, uncertainties in spatial downscaling) and furthermore often do not include estimates for the sector Land Use, Land-use Change and Forestry (LULUCF). While the relative, total contribution of LULUCF to a city’s annual CO2 balance may be assumed small, such an assumption should be verified. Furthermore, biogenic fluxes of photosynthesis and respiration may indeed be significant at higher temporal resolutions and omitting these fluxes can limit the conclusions drawn from comparisons of city CO2 inventories with estimates based on atmospheric CO2 observations.

The Vienna Urban Carbon Laboratory is currently investigating how monitoring of CO2 emissions in Austria’s capital city can be supported by a range of atmospheric measurement methods, including a tall-tower, urban application of eddy covariance. Despite the focus on atmospheric observations, the project is also investigating the contribution of biogenic fluxes to Vienna’s net CO2 budget. A LULUCF model of annual carbon stock changes has been developed following the IPCC guidelines using inter alia local forest inventory data and spatially-explicit data on land use and urban tree crown cover. Parrellel to this, work is underway to implement spatially- and temporally resolved simulations of vegetation CO2 fluxes using semi-empirical models of photosynthesis and respiration. Ultimately, integrating these results (together with bottom-up estimates of human respiration) will provide a more meaningful comparison between the local CO2 inventory with the fluxes derived from the eddy covariance measurements.

How to cite: Fasano, E., Schmid, C., Moldaschl, E., Mayer, M., Braun, S. K., Vuolo, F., Weiss, P., Schume, H., and Matthews, B.: Investigating the contribution of biogenic sinks and sources to Vienna’s CO2 budget using bottom-up modelling and tall-tower flux measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5919, https://doi.org/10.5194/egusphere-egu24-5919, 2024.

Highly accurate land cover (LC) information with fine spatial resolution serves as the cornerstone for reliable environmental insights, strategic land management, and ecological conservation. Yet, existing public LC products with 1-30m resolution exhibit considerable inconsistencies, particularly within complex terrains and fragmented habitats such as hill and gully regions, leading to uncertainties in various applications. In this context, our study innovatively targeted China's hilly and gully regions to develop an enhanced 10m resolution LC map for 2020, termed CLC-HG. The methodological advancement lied in fusing multiple LC products through accuracy evaluation, spatial consistency verification, object-oriented classification, and random forest classification. The research involved: (1) Strategic zoning of hilly and gully regions into five areas, selecting one or two representative validation regions within each; (2) Leveraging high-resolution imagery and 20000 field verification points to derive a 1m resolution land use dataset for validation regions, named GFLUCC, with 1m resolution and 95% accuracy; (3) Comprehensive validation of seven land use products spatial consistency and accuracy based on GFLUCC; (4) Filtering of layers based on spatial consistency, retaining regions with high and medium consistency; (5) Utilizing object-oriented classification and random forest classification, a higher-accuracy LC dataset was generated to replace the layers that were removed in the spatial consistency process; (6) Successful creation of CLC-HG, mirroring the accurate land use patterns of 2020. Our findings elucidated: (i) The superiority of WorldCover 10m in LC classification, contrasting with other products' regional inaccuracies; (ii) The influences of terrain complexity and human activity on accuracy, highlighting the precision in uniform areas versus the inaccuracy in complex regions; (iii) Substantial variations in spatial consistency across different terrains, with LP showing the weakest consistency; (iv) CLC-HG's remarkable performanced in identifying diverse LC types, boasting 85% overall accuracy; (v) Notable progress in classification accuracy with CLC-HG, uncovering the nuanced influences of land category complexity on consistency and human interventions on accuracy. This study breaks new ground by integrating multidimensional data and methodologies, contributing valuable insights for classification enhancements and more adept land resource management. The pioneering CLC-HGproduct holds significant potential to reduce uncertainties in global environmental change studies, ecosystem evaluations, and hazard assessments, marking an important step forward in remote sensing applications.

How to cite: Chen, L.: Multisource fusion for high-accuracy land cover mapping: A 10m resolution strategy in China's hill and gully regions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9379, https://doi.org/10.5194/egusphere-egu24-9379, 2024.

EGU24-9583 | ECS | Orals | ERE1.2

Disentangling national carbon fluxes of African rainforest countries. 

William WM Verbiest, Corneille EN Ewango, Jean-Remy Makana, Simon Lewis, Marijn Bauters, Jean-François Bastin, Adeline Fayolle, Anaïs-Pasiphae Gorel, and Wannes Hubau

African tropical ecosystems possess great potential for nature-based solutions in mitigating fossil fuel emissions through absorbing and storing carbon in soil and vegetation. However, past studies mostly focused on pan-continental carbon balance quantification, often ignoring regional differences. Remarkably, few science-informed attempts have been made to refine carbon flux estimates at the national level within African rainforest countries. Yet, such refined estimates are essential to improve the quantification of Nationally Determined Contributions for the United Nations Framework Convention on Climate Change.

In this contribution, we present preliminary results on quantifying national carbon budgets for African rainforest countries by disentangling three major carbon fluxes for the period 2001-2015: (1) net carbon uptake in tropical savannas, woodlands, and forests, (2) carbon losses from land-use change, and (3) fossil fuel emissions. Carbon fluxes in intact forests are quantified using ground-based data1, while the carbon uptake by intact savannas and woodlands is based on Net Primary Productivity assessments estimated from remote sensing products2,3. Furthermore, carbon emissions from land-use change are estimated by analyzing various satellite images and related products providing data on land-use change4–6, soil and tree carbon stocks7–12, fire emissions3,13,14, and carbon recovery in regrowing forests15–18 in tropical Africa. Country-level fossil fuel emissions are taken from the Global Carbon Project database19 to complete the national carbon balances.

We reveal that most Central and East African rainforest countries acted as net carbon sinks between 2001 and 2015, while West African rainforest countries exhibited minimal net carbon loss. Overall, tropical ecosystems have played an important role in mitigating carbon emissions due to land-use change and fossil fuels in African rainforest countries, particularly in Congo Basin countries. Our insights into nation-level carbon fluxes will be crucial for informing African rainforest countries, guiding climate policies to stay on track to keep global warming well below 2°C.

References:

1. Hubau, W. et al. Nature 579, 80–87 (2020).
2. Running, S.W. et al. BioScience 54, 547-560 (2004).
3. Randerson, J.T. et al. (2018).
4. Hansen, M.C. et al. Science (1979) 342, 846–850 (2013).
5. Vancutsem, C. et al. Sci Adv 7, eabe1603 (2021).
6. Curtis, P.G. et al. Science (1979) 361, 1108–1111 (2018).
7. Simard, M. et al. Nat Geosci 12, 40–45 (2019).
8. Avitabile, V. et al. Glob Chang Biol 22, 1406–1420 (2016).
9. Zarin, D.J. et al. Glob Chang Biol 22, 1336–1347 (2016).
10. Saatchi, S.S. et al. Proc Natl Acad Sci USA 108, 9899–9904 (2011).
11. Baccini, A. et al. Nat Clim Chang 2, 182–185 (2012).
12. Poggio, L. et al. SOIL 7, 217–240 (2021).
13. Van Wees, D. et al. Geosci Model Dev 15, 8411–8437 (2022).
14. Di Giuseppe, F. et al. Atmos Chem Phys 18, 5359–5370 (2018).
15. Heinrich, V.H.A. et al. Nature 615, 436–442 (2023).
16. Deklerck, V. et al. Biol Conserv 233, 118–130 (2019).
17. Cook-Patton, S.C. et al. Nature 585, 545–550 (2020).
18. IPCC. 6 (2006).
19. Friedlingstein, P. et al. 14, 4811–4900 (2022).

How to cite: Verbiest, W. W., Ewango, C. E., Makana, J.-R., Lewis, S., Bauters, M., Bastin, J.-F., Fayolle, A., Gorel, A.-P., and Hubau, W.: Disentangling national carbon fluxes of African rainforest countries., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9583, https://doi.org/10.5194/egusphere-egu24-9583, 2024.

EGU24-10664 | ECS | Orals | ERE1.2

Multi-Dimensional Feasibility Assessment of the Deployment of Vortex-induced vibration Energy Harvester to utilize hidden hydro potential in European water and energy infrastructure 

Bjarnhéðinn Guðlaugsson, Matej Secnik, Ivana Stepanovic, Bethany Bronkema, Marko Hocevar, and David Finger

In recent years, there has been an increased interest in technologies such as Vortex-induced vibration energy harvesters (VIV-EH) concerning the potential to harvest and utilise the energy potential in oceans, rivers, channels and water pipelines. VIV-EH could be an ideal solution for energy generation through harvesting the kinetic energy from flow-induced vibration in open water systems such as rivers, lakes and lagoons, as well as closed water systems like water pipe systems in water and energy infrastructure. The energy generated could enable a self-powered sensor monitoring system and, therefore, replace the need for batteries or diesel generators to power the monitoring system, enhancing the water system's reliability. One of the applications explored for deploying VIV-EHs is installing into existing water pipelines to harness the flow vibration for energy generation. Assessing the feasibility of new energy technology such as VIV-EH is crucial to successfully implementing any technology into the pre-existing system. To fully determine feasibility requires information and inputs attained from assessing multiple cross-dimensional factors, which can provide information on the positive and negative economic, environmental and societal impacts and technological barriers or opportunities related to implementing this technology to any existing system infrastructure. To address this, an assessment framework is being developed, incorporating data and calculations from Life Cycle Assessment for calculating environmental impacts, MatLab for calculating the VIV-EHs key characteristics, and stakeholder engagement for assessing the selection of crucial evaluation metrics. The assessment tool will allow the user to carry out a multi-dimensional (Socio-Economic, Technical, Environmental) or single-dimension feasibility assessment concerning the integration of VIV-EHs into existing water infrastructure using a web-based tool. The application of the assessment framework provides critical informations such as VIV-EH's energy generation potential and role in the energy transition towards a cleaner and green energy system, which are relevant to designing a technology implementation strategy. The framework is applied, tested and used to evaluate the potential of VIV-EHs in various case studies: i) a geothermal district heating network in Reykjavik, Iceland; ii) a drinking water supply system in Ferlach, Austria, and iii) the MOSE flood protection in the Lagoon of Venice, Italy. Preliminary results suggest that the VIV-EH can reach capacities to supply sufficient energy – measured in watts – to power sensors for monitoring, maintenance and operation of water infrastructure. This continuous supply for monitoring networks can increase the resilience of water infrastructure and improve water resource utilisation, which is becoming more critical during climate change. The findings will be used to develop the assessment tool further and provide information that can help build a strategy for deploying VIV-EHs into water and energy infrastructure across Europe. The framework is tested on representative case studies across Europe but can potentially be applied in any energy system worldwide.

How to cite: Guðlaugsson, B., Secnik, M., Stepanovic, I., Bronkema, B., Hocevar, M., and Finger, D.: Multi-Dimensional Feasibility Assessment of the Deployment of Vortex-induced vibration Energy Harvester to utilize hidden hydro potential in European water and energy infrastructure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10664, https://doi.org/10.5194/egusphere-egu24-10664, 2024.

EGU24-11334 | Posters on site | ERE1.2

Transition towards low-carbon emissions: A Comparative Analysis between Western Macedonia (Greece) and Rhenish (Germany) 

Efthimios Tagaris, Apostolos Tranoulidis, Rafaella-Eleni P. Sotiropoulou, and Kostas Bithas

The transition away from fossil fuels involves management challenges since the socioeconomic prosperity of the affected areas should be assured. This study assesses the mechanisms, and the future planning of two European regions - Rhenish in Germany, and Western Macedonia in Greece – currently under decarbonization. The assessment is grounded in the application of the five EU - recommended tools, i.e., the governance tools, the sustainable employment and welfare support toolkit, the environmental rehabilitation and repurposing toolkit, the financial toolkit and the technology options toolkit. Rhenish region is targeting for lignite phase-out by 2038 whilst Western Macedonia has set a target for the completion of the transition away from lignite by 2028. The analysis carried out here has shown that both regions have adopted comprehensive strategic plans, delineated transition roadmaps, and established economic models. In particular, both regions have similar governance structures in place and have adopted comparable action plans for sustainable employment and welfare support. However, Western Macedonia faces some implementation challenges and delays in the sector of Reclamation and repurposing efforts. The financial structure of both regions is similar, with the EU and the state being the primary funding sources. Both regions are primarily considering technology options that prioritize the repurposing of power plants, the reduction of carbon emissions in energy-intensive industries, the utilization of hydrogen technologies, and non-electric carbon applications. The findings of this work will contribute to the development of viable strategies for coal transition in diverse national contexts. By thoroughly evaluating the experiences of these locations, this work aims to inform policymakers and stakeholders about effective approaches to navigate the challenges associated with decarbonization while ensuring sustained prosperity in affected areas.

How to cite: Tagaris, E., Tranoulidis, A., Sotiropoulou, R.-E. P., and Bithas, K.: Transition towards low-carbon emissions: A Comparative Analysis between Western Macedonia (Greece) and Rhenish (Germany), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11334, https://doi.org/10.5194/egusphere-egu24-11334, 2024.

EGU24-12276 | ECS | Orals | ERE1.2

The techno-environmental potential of offshore pumped hydro storage: A case study of the Dutch North Sea 

Inge Ossentjuk, Jan Wiegner, Robbert Nienhuis, Jasper Griffioen, Antonis Vakis, and Matteo Gazzani

Abstract

Energy storage systems (ESS) are required to overcome the challenges of large-scale integration of variable renewable energy. Specifically, offshore ESS can increase the utilisation of offshore transmission cables and reduce stress on the grid. Marine pumped hydro storage (PHS) is a promising technology in this domain [1]. This study focuses on the role of a subsea PHS system in offshore wind farms, taking the Dutch North Sea as a case study. This novel technology stores electricity on the seabed by pumping water to a reservoir subject to the hydrostatic pressure of the overlying seawater, and releases it by letting the water flow back through a set of turbines to a second reservoir at atmospheric pressure, thus utilising the change in potential energy associated with pressure difference.

Anthropogenic activities increasingly deploy marine environments as sites of operation. Besides traditional uses like fisheries, navigation, defence and
mining, the climate and biodiversity crises respectively call for the uptake of offshore renewable energy systems and biodiversity-enhancing structures such as artificial reefs. These activities affect the marine host ecosystems, though impacts can be both beneficial (providing artificial habitats) and detrimental (disturbing species) [2].

The European Topic Centre on Inland, Coastal and Marine waters highlights the importance of marine spatial planning and environmental impact assessment (EIA) methods in elucidating conflicts of interest between the development of offshore renewable energy and protection of the marine environment [3]. Though the environmental impacts of offshore renewable energy projects such as wind and even wave farms have been investigated and are safeguarded by EIA legislation, only few studies can be found on offshore energy storage. Research on offshore ESS mainly focuses on either the (life-cycle) environmental impacts of a technology, or on the technical and/or economic performance in terms of efficiency, feasibility or costs and benefits. The combination is lacking for specific technologies and areas, such as subsea PHS. Therefore, this study integrates a techno-economic modelling approach with EIA methodology with the objective of obtaining the techno-environmental potential of subsea PHS as a novel offshore energy storage system.

First, a literature review is conducted to compose a framework for the assessment of biological, chemical and physical impacts of offshore energy storage systems, consisting of a list of impact indicators and, if available, threshold values. Second, the framework is applied to a case study of subsea PHS in the Dutch North Sea. The technical potential, i.e., the optimal installed capacity from a technical point of view, is determined by modelling the Dutch planned offshore wind farms until 2030, allowing for installation of the storage technology to minimise curtailment of wind energy in the system. The model is formulated as a mixed-integer linear program. Third, the impact indicators are investigated for the resulting technology size and, taking threshold values into account, the environmental potential is determined. Last, trade-offs between technical performance and ecological effects are identified and discussed.

References

[1] Wang et al. A review of marine renewable energy storage. International Journal of Energy Research, 2019.
[2] Taormina et al. A review of methods and indicators used to evaluate the ecological modifications generated by artificial structures on marine ecosystems. Journal of Environmental Management, 2022.
[3] Galparsoro et al. Mapping potential environmental impacts of offshore renewable energy. European Topic Centre on Inland, Coastal and Marine waters, 2022.

How to cite: Ossentjuk, I., Wiegner, J., Nienhuis, R., Griffioen, J., Vakis, A., and Gazzani, M.: The techno-environmental potential of offshore pumped hydro storage: A case study of the Dutch North Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12276, https://doi.org/10.5194/egusphere-egu24-12276, 2024.

EGU24-13162 | ECS | Orals | ERE1.2

Calibration of the DayCent Model for Native Pastures in South-Eastern Queensland 

Zahrasadat Mirsafi, Ken Day, William Parton, Naoya Takeda, and David Rowlings

Soil organic carbon dynamics are strongly influenced by soil and climate conditions, as well as management practices including grazing and cropping. Over the past two decades, biogeochemical models have been widely used for analysing the effect of different environmental and management variables on soil carbon, including potential change under hypothetical future climate and management scenarios. The DayCent model, which is a daily implementation of the Century model, considers the impacts of soil texture, climate, historical vegetation cover, and land management practices, including crop type, fertilizer additions, and cultivation events on soil carbon dynamics.

In this study, we calibrate the DayCent model for two long-term (38-year) native pasture exclosures at one location in south-eastern Queensland. These sites have had similar management, being ungrazed and burnt or mown at the beginning of each pasture growing season but differ with respect to soil type (texture and depth) and species composition. One site is dominated by kangaroo grass (Themeda triandra), which represents the species composition prior to the introduction of tree clearing and grazing by cattle in the late 1800s. The other site is dominated by black spear grass (Heteropogon contortus) which has become the dominant species in the region since that time. To reflect the long-term species composition changes in the region, kangaroo grass crop parameters were used to run the model to equilibrium from year 1 AD to the year 1900 for both sites, and spear grass parameters were introduced in 1901 for the spear grass site.

The model calibration concentrated on the key ‘crop’ parameters governing potential production, root to shoot ratio, and plant carbon to nitrogen ratio. The calibrated DayCent model accounted for only 21 percent of the observed year-to-year variability in end-of-season above-ground biomass at the kangaroo grass site and 58%  at the spear grass site. The observed biomass production for the two sites was most strongly correlated with simulated evapotranspiration during the growing season (R2 = 0.43 and 0.58 for kangaroo grass and spear grass respectively) and we found a strong correlation between simulated and observed soil water content to a depth of 50 cm at both sites (R2 = 0.64 and 0.6 for kangaroo grass and speargrass respectively).

Whilst year-to-year variability was not well simulated, the long-term average production of each site is the main driver of soil carbon. For both sites, the model overestimated the average observed above-ground biomass at the end of the growing season by approximately 15 percent. By this time of year, the plants have flowered and lost biomass through the detachment of seeds and seed heads as well as some dead leaves. The timing of this detachment process is difficult to simulate in DayCent and it is therefore likely that DayCent simulated the annual biomass production quite closely. It remains to validate the DayCent simulations against similar long-term production data at a further six long-term study sites at this location and to evaluate how well DayCent simulates observed soil carbon across soil types, both under grazed and ungrazed conditions.

How to cite: Mirsafi, Z., Day, K., Parton, W., Takeda, N., and Rowlings, D.: Calibration of the DayCent Model for Native Pastures in South-Eastern Queensland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13162, https://doi.org/10.5194/egusphere-egu24-13162, 2024.

Against the backdrop of the rapid global rise of solar photovoltaic (PV) energy, its supply chain from manufacturing to installation has gradually exhibited dynamic spatial evolution, yet the spatiotemporal distribution of greenhouse gas emissions and mitigation throughout the entire PV industry chain has not received sufficient attention. The pathways to enhance the net mitigation benefits of PV through international collaboration across the entire industrial chain remains in its initial stage. This presentation will outline the author's systematic accounting of global supply chain carbon emissions and mitigation, combining spatiotemporal dynamic lifecycle assessments and scenario analyses. The analysis explored the spatiotemporal evolution of net greenhouse gas mitigation from 2009 to 2060 within the global PV industry. The study reveals that optimized collaboration between manufacturing and installation globally could increase the net mitigation effects of the entire industrial chain by 97.5 Gt carbon dioxide equivalent, equivalent to 1.9 times the global GHG emissions in 2020. This finding provides theoretical and empirical support for enhancing international strategic cooperation to enhance global greenhouse gas mitigation.

How to cite: Chen, S. and Lu, X.:  Greenhouse gas emissions and mitigation in the global solar photovoltaic industry chain, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13733, https://doi.org/10.5194/egusphere-egu24-13733, 2024.

EGU24-13747 | Posters on site | ERE1.2

Optimal Transition Pathways Toward a Low-Carbon Energy System in China: a Data-Driven Optimization Prediction Model in Machine Learning. 

Xinxu Zhao, Li Zhang, Xutao Wang, Changyan Zhu, Kun Wang, Yu Ni, Jun Pan, Liming Yang, Yanlin Su, and Chenghang Zheng

The rapid expansion of renewable energy and the imperative for carbon reduction have prompted significant coal phase-outs. Coal is the largest contributor to energy-related carbon emissions globally, accounting for over one-third of the total. Coal-fired electric generating units (EGUs) play a significant role in these emissions, with over 5,000 units in China contributing to around 15% of global carbon emissions. These units, relatively young with an average age of less than 15 years, are facing challenges such as the absence of power purchase agreements, the prospect of early retirement, amid renewable energy growth, and ongoing retrofits for energy efficiency and carbon reduction. The transition pathway of the coal-fired power sector is crucial for its evolution and the integration of renewable energy. Hence, a data-driven optimization prediction model is introduced in this study, aiming to delineate an optimal transition pathway for the coal-fired power sector under different scenarios, guiding its evolution towards a low-carbon energy system.

The model comprises two modules: the phase-out module and the retrofit optimization prediction module. A unified unit-level database, encompassing operational data from over 5000 coal-fired EGUs in China, as well as techno-economic information associated with 21 types of carbon reduction retrofits, serves as the foundation for the most cost-effective pathway towards a low-carbon transition in the power sector. The phase-out module predicts the phase-out and remaining capacities, including the potential portion replaced by renewable energy. The phase-out determination involves assessing the cost of replacing coal-fired power with renewable power generation, along with considerations of the economics and carbon emissions associated with units under normal operation before retirement. This laterally furnishes valuable information for comprehending the potential capacity for renewable generation, ensuring that the transition pathways in the coal-fired sector are realized in a manner that safeguards the stability and reliability of the future power system. The optimization prediction model employs machine learning algorithms consisting of the predictor and the optimizer. The predictor provides estimates for overall carbon reduction potential (CRP) for the coal-fired power sector, even for the power sector, as well as near-term levelized costs of carbon emissions reduction (LCOC) and electricity (LCOE), approached from the unit-level perspective. The optimizer identifies portfolios that maximize carbon emission potential while minimizing costs. This study ultimately provides a comprehensive analysis of the low-carbon transition pathway for the primary source of emissions in the energy sector, namely the coal-fired power sector, conducted from both techno-economic and environmental (specifically carbon reduction) standpoints, employing an optimization prediction model.

How to cite: Zhao, X., Zhang, L., Wang, X., Zhu, C., Wang, K., Ni, Y., Pan, J., Yang, L., Su, Y., and Zheng, C.: Optimal Transition Pathways Toward a Low-Carbon Energy System in China: a Data-Driven Optimization Prediction Model in Machine Learning., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13747, https://doi.org/10.5194/egusphere-egu24-13747, 2024.

In Taiwan's rural areas, significant changes are underway in the once-predominant focus on traditional agriculture. The current landscape in rural areas is characterized not only by the presence of numerous factories but also by the increasing solar panels, driven by the ongoing transition to renewable energy sources. Despite numerous studies confirming the correlation between land use and temperature in urban areas, limited thermal research has been conducted in rural regions. Additionally, rural residents, particularly the elderly, are more sensitive to temperature variations.

The purpose of this study is to investigate whether the construction of iron rooftop factories and rooftop solar panel structures in rural environments results in significant differences in surface temperature and surrounding land use, thereby revealing the thermal impacts of these structures.Three coastal towns in central Taiwan were selected as the primary study area due to their higher density of solar panels and similar agricultural characteristics. Landsat 8 surface temperature data were utilized, with buffer zones established at 30-meter intervals from sample boundaries to explore variations in surface temperature and land use characteristics.

The findings reveal that rooftop solar panels and iron factories are predominantly surrounded by arid fields. As the distance from rooftop solar panels increases, the surface temperature gradually decreases, returning to ambient levels. However, no discernible changes in surface temperature were observed around iron rooftop factories. This study not only sheds light on the thermal impacts of these structures in rural environments but also points out the importance of land use control on thermal environments.

How to cite: Lee, Y.-J., Chung, M.-K., and Tseng, W.-L.: Coexisting Agriculture, Industry, and Energy in Rural Areas: Comparative Surrounding Surface Temperatures between Rooftop Solar Panels and Iron Rooftop in the Yunlin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13845, https://doi.org/10.5194/egusphere-egu24-13845, 2024.

EGU24-13941 | ECS | Posters on site | ERE1.2

GIS Assessment of Carbon Storage and Sequestration Impact Caused by Urban Development in Itaperuna-RJ, Brazil 

Igor Paz, Priscila Celebrini de Oliveira Campos, Norton Barros Felix, and Maria Esther Soares Marques

The changes in Land Use and Land Cover (LULC) have multifaceted impacts on sustainable development. Among the main ecosystem services acting on the environment, the Carbon Storage and Sequestration consists of the process of removing carbon from the atmosphere and its subsequent incorporation or storage in the form of biomass. Therefore, its understanding and modeling allow the control and instrumentalization of the biological absorption of carbon by the soil and, consequently, the reduction of the amount of greenhouse gases (GHG) in the atmosphere. To unravel this intricate ecosystem service, this study employs the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) methodology, specifically the Carbon Storage and Sequestration (CSS) model, within the municipality of Itaperuna in the northwest of the state of Rio de Janeiro (RJ), Brazil. This model estimates the amount of carbon stored in an area, calculates the variations that have occurred, and predicts future storage in the same region. It does so by analyzing land use and land cover, estimating carbon sequestration alterations between different scenarios, and assessing their monetary worth. To undertake this analysis effectively, three key pieces of information are essential: delineation of two LULC scenarios (e.g., 2015 and 2020), carbon content across various LULC classes, and the Social Cost of Carbon (SCC), which evaluates potential socioeconomic repercussions due to climate change for each ton of carbon emitted. This investigation aims not only to comprehend the dynamics of land use and land cover alterations in a medium-sized city within this region but also to estimate changes in carbon stocks and sequestration resulting from LULC transformations. The study further intends to quantify the financial implications of these alterations through the application of SCC.

How to cite: Paz, I., Celebrini de Oliveira Campos, P., Barros Felix, N., and Soares Marques, M. E.: GIS Assessment of Carbon Storage and Sequestration Impact Caused by Urban Development in Itaperuna-RJ, Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13941, https://doi.org/10.5194/egusphere-egu24-13941, 2024.

The quantification of carbon sequestration in Urban Green Spaces (UGSs) is challenging due to their unique characteristics such as the fragmentation of green spaces, human-influenced species selection, and varying management practices. IPCC guidelines recommend calculating carbon sequestration in UGSs per individual tree or crown cover area. Although crown cover area-based estimation is commonly used in national greenhouse gas inventories, research on the growth rate based on crown cover area (CRW) and the effects of varying sampling methodologies is limited. This research aimed to calculate CRW [ton C (ha crown cover)-1 yr-1] in South Korea using two distinct sampling methods. MethodSS (MSS; Systematic Sampling Method) divided urban areas into 500m x 500m grids and selected a 5% sample (1,603 grids) randomly. Within each grid, three sites were chosen and vegetation at three points was surveyed. For analysis, only points with trees excluding shrubs were included. MethodCS (MCS; Categorized Sampling Method) divided UGSs into three categories: street trees, urban parks, and others. For each category, 48 sites with three plots each were selected. In the street trees category, a plot consisted of 20 trees, while in urban parks and others, a plot was defined as a 20 x 20 m area. At each plot, species, diameter at breast height (DBH), height, and crown width of all trees were measured. For the derivation of CRW, a total of 8,037 and 5,733 trees were used in MSS and MCS, respectively. CRW was calculated in four steps: 1) The carbon storage of individual trees (Ct1) was calculated using allometric equations and the carbon fraction. 2) The carbon storage from one year prior (Ct2) was estimated based on the annual DBH growth rate (cm yr-1). 3) The annual carbon accumulation (kg C tree-1 yr-1) was calculated as the difference between Ct1 and Ct2. 4) CRW was calculated by dividing the total annual carbon accumulation by the total crown cover area of the surveyed trees. As a result, The study revealed a notable difference in CRW between MSS and MCS. MSS reported CRW of 0.23 ton C ha-1 yr-1, while MCS presented 0.30 ton C ha-1 yr-1. When categorized by land use, CRW was found to be highest in urban parks followed by others and street trees. In MSS, the diverse sample locations resulted in a wider range of DBH values, including many large-sized trees (DBH ≥ 70 cm). The lower CRW estimates in MSS were primarily due to the assumption that large-sized trees had zero annual carbon sequestration following the IPCC guidelines. This led to a higher inclusion of large-sized trees in MSS, resulting in lower CRW values. Also, there were significant differences in species distribution, tree sizes (DBH), and CRW, depending on the sampling methodology. These variances are primarily due to the unique characteristics of UGSs. The study highlights the necessity for further research into more representative sampling methodologies for estimating carbon sequestration in UGSs.

How to cite: Lee, J., Jo, H., Kim, W., and Son, Y.: Annual Carbon Sequestration Per Crown Cover Area of Urban Green Spaces in  South Korea: Comparative Analysis Using Different Sampling Methodologies, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14214, https://doi.org/10.5194/egusphere-egu24-14214, 2024.

EGU24-18737 | Posters on site | ERE1.2

Impact of recent forest protection on deadwood carbon stocks 

Katarina Merganicova, Renata Nowinska, Jan Merganic, and Lech Kaczmarek

The reduction of carbon dioxide levels in the atmosphere is one of the most pressing issues in the context of global warming. Forest ecosystems play a crucial role in carbon cycling due to their ability to store significant amounts of carbon in plant biomass, deadwood and soil. Research on deadwood has usually focused on the analysis of the current state without considering the history of forest stands. However, a recent trend in many European countries is to increase the area and number of protected areas, often encompassing previously managed forests. Such changes in forest management affect the abundance and character of deadwood, and thus and need to be considered in the analysis of its carbon storage capacity.

The forests of Wielkopolski National Park in Poland are an excellent subject for such research. Until the end of the 18th century, they were owned by various landowners, leading to a highly diversified forest management driven by immediate needs of owners. In 1931, the first reserve, where logging was discontinued, was established. The current strict protection areas were mostly designated in 1957 when the park was legally established. Currently, strict protection mainly applies to habitats of oak-hornbeam forests Galio sylvatici-Carpinetum betuli, with other communities represented to a lesser extent.

The assessment of deadwood carbon stock (DWCstock) was performed using the data from the field survey conducted between 2017 and 2018. Deadwood was inventoried at 98 circular plots (0.04 ha) located inside 12 strictly protected areas. We distinguished five deadwood categories: standing snags, logs, stumps, branches, and twigs, and 5 decay classes. All dead trees and their parts with a minimum top diameter of 3 cm were measured. The small diameter threshold was selected due to the abundant presence of shrubs that ocurrred during the 'renaturalization' of forest ecosystems. From the measured dimensions we derived DWCstock using species- and decay-specific volume equations, wood density and carbon fraction values. The data were stored in a relational database and further processed and statistically analysed in the R environment. 

The analysis showed a high variability of DWCstock between plots (from 0.19 to 92.43tC/ha, mean 15.03tC/ha). Almost 50% of the total DWCstock was assigned the third decay stage, while 10 and 5% of DWCstock occurred in the first and last decay stage, respectively. This indicates a substantial accumulation of the deadwood after the abandonement of forest management. In 60% of cases, the dominant species of deadwood did not coincide with the dominant species of the currently living trees suggesting the changes in species composition of forest ecosystems over time. The results show deadwood can be considered as a long-term memory of forest dynamics. The work highlights the need to use multiple data sources for a better understanding of ecosystem development.

How to cite: Merganicova, K., Nowinska, R., Merganic, J., and Kaczmarek, L.: Impact of recent forest protection on deadwood carbon stocks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18737, https://doi.org/10.5194/egusphere-egu24-18737, 2024.

China and India, two of the world's leading carbon emitters, have pledged to achieve carbon neutrality by mid-century in alignment with the Paris Agreement. Central to this ambition is the electrification of their economies, and both nations have made significant strides in recent years. Yet, a thorough cost-benefit analysis of their energy transition progress and future energy transition pathways remains lacking. Here we adopt nine comprehensive models to assess the region-specific co-benefits related to carbon emission, air pollution, health and employment of energy transition in the power sector in China and India from 2015-2020 and further explore their most cost-effective pathways towards 1.5°C and 2°C scenarios in 2030-2050. We find that although the emissions contributed by the power sector in China and India from 2015 to 2020 resulted in more than 10,000 PM2.5 attributable deaths in 2020, the economic benefit of job creation of new installation of renewable power in 2020 was 68 (95% CI: 56-93) times and 6 (95% CI: 5-7) times than the monetary of health loss. Under the SSP1_RCP2.6 scenario, it will ultimately achieve the largest benefit (monetary health co-benefits) to cost (carbon mitigation cost) ratio for both countries in 2050, and India (14.6 (95% CI: 12.7-16.1) will obtain a larger ratio than that of China (4.1 (95% CI: 3.3-4.7)). We recommend both nations deepen their commitment to power sector transition, prioritizing low-carbon fuels and expanding education and skill training to support the emerging new energy economy.

How to cite: Lu, C.: Co-benefits and cost-benefit analysis of energy transition in the power sector in China and India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20459, https://doi.org/10.5194/egusphere-egu24-20459, 2024.

EGU24-20934 | Posters on site | ERE1.2 | Highlight

Grassland establishment in solar parks on former arable land - spontaneous succession and first findings of a highly divers seed-based approach 

Sandra Dullau, Maren Helen Meyer, Pascal Scholz, and Sabine Tischew

In recent years, landscapes in many countries have been transformed by efforts to fight global warming, specifically the shift towards renewable energies. Photovoltaics is one of the key technologies for reducing greenhouse gas emissions and achieving climate neutrality for Europe by 2050, which has led to the promotion of solar parks. Due to the ambitious goals for the expansion of photovoltaics, a multiple of the area used so far will be built on with solar parks. These parks are often built on arable land, can span up to several hundred hectares, and grassland vegetation is usually created between and under the panels. In most cases, this is done by spontaneous revegetation or by seeding species-poor mixtures dominated by grasses.

In a case study of 12 spontaneously planted solar parks in a structurally poor agricultural landscape in central Germany, we found an average of 90 vascular plant species. However, the number of target grassland species is only one third and the majority are ruderal species. A comparison of the three zones showed that there were the same number of target grassland species in the area between the panels and without panels, but significantly fewer under the panels. Surprisingly, the coverage of target grassland species was highest between the panels.

Establishing grasslands using highly divers native seed mixtures can significantly enhance target species richness. This finding has already been well documented by grassland restoration research. However, it has not yet been proven for solar parks with their special characteristics, such as small-scale modified site conditions. In two solar parks on ex-arable land, we seeded a site adapted seed mixture with high percentage of forb seeds (39 species, including 3 grasses). In the first year after sowing, the establishment success of the sown species in the areas between the PV panels were recorded. The establishment rate was 25-30 % in the unshaded sections, increased significantly in the partially shaded sections and fell sharply with increasing shade. The low establishment rate is probably related to the significantly below-average rainfall in 2021, while the partially shaded sections provided better establishment conditions due to higher soil moisture. Heavy shading hindered the establishment of light-demanding grassland species. An increasing establishment rate is expected in the further vegetation development and must continue to be monitored.

How to cite: Dullau, S., Meyer, M. H., Scholz, P., and Tischew, S.: Grassland establishment in solar parks on former arable land - spontaneous succession and first findings of a highly divers seed-based approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20934, https://doi.org/10.5194/egusphere-egu24-20934, 2024.

EGU24-21320 | ECS | Posters on site | ERE1.2

Variability of litter carbon stocks in Croatia 

Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Darko Bakšić, Mislav Anić, and Hrvoje Marjanović

Litter stores around 5% of total carbon (C) stocks in the World's forests (Pan et al. 2011) and is one of five forest ecosystem C pools in national greenhouse gas (GHG) inventory reports, for which reporting is mandatory. Litter is known for its high spatial heterogeneity at different scales. Litter mass, and therefore its C stock, varies with respect to climate region, forest type, and various site and stand characteristics. Litter in the context of GHG reporting in Croatia corresponds to the forest floor (undecomposed leaf organic layer – OL, and fragmented and humified organic layer – OFH), while emissions and removals from the Forest land category, which includes the Litter pool, are stratified into Broadleaves and Conifers. Although a relatively small country in Europe, the biogeographical diversity of Croatia is high, which leads to the question if the existing stratification for the litter should be refined. We tested the hypothesis that litter C stocks within specific tree species groups (Broadleaves and Conifers) differ between biogeographical regions (BGR).

From available national data sources, we compiled a database on litter, soil and forest stand variables at 276 plots distributed across three BGRs in Croatia: Alpine, Continental and Mediterranean. Litter data includes height, dry mass, C stock and C/N. Soil data includes soil organic C (top 30 cm), soil texture and bulk density. Stand variables include main tree species, stand basal area and tree density. Additionally, the database includes information on mean annual temperature (MAT), mean annual precipitation (MAP) and elevation at the plot level. Data were analysed at different scales regarding three BGR and two tree species groups (Broadleaves and Conifers).

Litter C stocks showed high variability (CV>30%) at the regional scale, with the Mediterranean BGR having the highest variability (CV of 43%). When looking at the specific tree species group, coniferous forests in Mediterranean BGR have the highest averaged litter C stocks (8.13 tC ha-1), while the broadleaf forests in Continental BGR have the lowest averaged litter C stocks (4.37 tC ha-1). Litter C stocks significantly differ between Alpine and Mediterranean BGR in coniferous forests, while in broadleaf forests significant difference in litter C stocks was observed between Alpine and Continental BGR. Our results indicate that the stratification of the Litter with respect to BGRs may improve the accuracy of the national carbon inventory.

How to cite: Bitunjac, D., Ostrogović Sever, M. Z., Bakšić, D., Anić, M., and Marjanović, H.: Variability of litter carbon stocks in Croatia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21320, https://doi.org/10.5194/egusphere-egu24-21320, 2024.

EGU24-21950 | ECS | Posters on site | ERE1.2

Intercomparison of soil organic carbon stocks measured from conventional and in situ sampling techniques at different spatial scales 

Macdara O'Neill, Marcos Alves, Andrew Manderson, Roberta Macdonald, and Petros Georgiadis

Soil organic carbon (SOC) is a key property of soil quality in arable soils and can play a central role in the voluntary carbon credit market by improving soil health, future food security and mitigating against climate change. The adoption of regenerative agricultural practices are considered one solution to achieve increases in SOC sequestration rates. However, the spatiotemporal dynamics of SOC mean the changes in SOC attributed to management practices are often difficult to detect across different spatial scales and over short temporal periods. Thus, rapid, cost-effective methods for quantifying carbon are sought by key stakeholders in both academia and industry for accurate accounting of SOC stocks. A field trial experiment was conducted in 2023 on five arable fields in Denmark to compare SOC stocks measured between: (i) the conventional sampling method and (ii) a portable, handheld visible near infrared (NIR) spectrometer. The conventional sampling method used a hydraulic corer to extract soil in each field (n=9) split into three depth increments (0-15, 15-30 and 30-60 cm). The samples were analysed for %SOC by the dumas dry combustion method whilst bulk density was measured volumetrically from the intact core upon extraction. For the spectroscopy method, soil was first extracted using a handheld auger (0-30 cm) which was subsequently homogenised and soil properties (%SOC, %Clay content and bulk density) were measured in situ by the scanner. The SOC concentration of these in situ soil samples were also measured by dry combustion analysis. We found differences in cumulative SOC stocks between the conventional and NIR methods attributed to variation in how SOC concentration was measured (directly vs. dry combustion) and less so to variation in bulk density. Clay contents were also similar between the conventional sampled soils and NIR soils, whilst the SOC concentrations measured by dry combustion were similar for both conventional and NIR soils. Overall, the results highlight that portable vis-NIR spectroscopy could be a scalable solution for monitoring SOC stocks in arable soils.

How to cite: O'Neill, M., Alves, M., Manderson, A., Macdonald, R., and Georgiadis, P.: Intercomparison of soil organic carbon stocks measured from conventional and in situ sampling techniques at different spatial scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21950, https://doi.org/10.5194/egusphere-egu24-21950, 2024.

EGU24-22105 | ECS | Orals | ERE1.2

Optimized renewable energy production for a low-carbon future to mitigate climate change and associated health impacts 

Victoria Gallardo, Pedro Jiménez-Guerrero, and Sonia Jerez

The transition towards a decarbonized electricity system, based on renewable energies, is urgently needed to achieve the so-called carbon neutrality and help mitigating climate change, among other reasons. At the same time, there is a need for electricity production from renewable energies to be stable in time, or to follow the demand, without substantial fluctuations. The open-access step-wise model called CLIMAX exploits the fact that wind and solar photovoltaic (PV) power present a certain degree of spatio-temporal complementarity in order to reduce the volatility of their combined production at its minimum. In a previous study, CLIMAX was used to identify optimum deployments of PV and wind power facilities across five European domains (Jerez et al., 2023). Here, using these optimum capacity density scenarios, the installed capacity per European country for the period 2012-2020 as reported in IRENA (2020), and ERA5 reanalysis data for the same period, are used to compute capacity factors, and the wind-plus-solar electricity production is estimated and compared to that from a BASE scenario with a homogeneous spatial distribution of installations. Results show that the optimization of the spatial distribution of the wind-plus-solar installed capacities does not only enhance the stability of the energy production in time, but also in terms of mean values (i.e. efficiency). More precisely, an average improvement in the energy production of +47.5 TW·h per year, integrated over Europe, is obtained as compared to BASE. Consequently, pollutant emissions from thermal power plants could have been reduced if electricity would have been produced from these renewable sources. In this work, this reduction is estimated and, in a last step, the potential reduction of human deaths related to air pollution is also evaluated. Results encourage further efforts towards a low-carbon energy future.

 

REFERENCES:

Jerez, S., Barriopedro, D., García-López, A., Lorente-Plazas, R., Somoza, A. M., Turco, M., et al. (2023). An action-oriented approach to make the most of the wind and solar power complementarity. Earth's Future, 11, e2022EF003332. https://doi.org/10.1029/2022EF003332.

IRENA. (2020). Renewable capacity statistics 2020. International Renewable Energy Agency (IRENA).

How to cite: Gallardo, V., Jiménez-Guerrero, P., and Jerez, S.: Optimized renewable energy production for a low-carbon future to mitigate climate change and associated health impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22105, https://doi.org/10.5194/egusphere-egu24-22105, 2024.

EGU24-22175 | Orals | ERE1.2 | Highlight

Degraded pasturelands for sustainable biorenewables production: an ecological approach 

Maíra Padgurschi, Daniele de Souza Henzler, Gabriel Palma Petrielli, and Thayse A. D. Hernandes

Worldwide changes in the land use and climate are the main drivers that have triggered a decline in both biological and cultural diversities, and the degradation of ecosystems. In countries like Brazil, deforestation is the main source of greenhouse gas emissions, and it is increased, in some cases, by the degradation. As response to those challenges, degraded areas have emerged as a promising option for cultivating biomass to produce biorenewables, aligning with the concept of a 'green transition'. Brazil stands out as a viable region for new cropland requirement to address the global demand for biorenewables production. Nevertheless, despite the large areas of degraded pastureland in Brazil, identifying those for growing the crops avoiding worsening the principal causes of biodiversity loss is an issue to be addressed. We evaluated the ecological feasibility of degraded pasturelands as potential areas for biomass production. We selected four exclusion criteria based on the Brazilian legal framework and the conventions and agreements to which the country is a signatory. In 2021, Brazil had 98.1 Mha of degraded pasturelands with the largest portion (63.9 Mha) experiencing a moderate level of degradation, mostly in Amazon biome (22.3 Mha). In addition, Brazilian legislation for biofuels production (Renovabio) predicts the exclusion of Amazon and Pantanal (a Brazilian wetland) biomes as eligible areas. Those biomes were the first exclusion criteria, remaining 65.1 Mha after its exclusion. In terms of protected areas, another adopted criterion, the land of traditional populations evaluated contains fewer degraded areas (0.3 Mha), when compared to the other Brazilian conservation categories (1.2 Mha). In the excluded degraded pasturelands (55.8 Mha, in total), the restoration of native vegetation should be prioritized to enhance biodiversity loss and the mitigation of climate change. Restoration efforts may vary by region, but agroforestry systems using native species of the biome could be a positive alternative. In addition to prioritizing the recovery of habitat and biodiversity loss, this approach has the potential to decrease local social vulnerabilities and to promote sustainable biorenewables production. By prioritizing the conservation of biological diversity, Brazil still has 42.3 Mha available for biorenewables, which corresponds to almost the total area currently under soybean cultivation in the country. The greater availability of degraded pastureland areas is within the Brazilian savanna. In addition to be a biodiversity hotspot, the Brazilian savanna is also central to water supply, contributing to important river basins in the country. Future work should consider other criteria such as water scarcity and climate vulnerability since it is necessary to evaluate the whole biorenewables’ value chains to assure sustainability.

How to cite: Padgurschi, M., de Souza Henzler, D., Palma Petrielli, G., and A. D. Hernandes, T.: Degraded pasturelands for sustainable biorenewables production: an ecological approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22175, https://doi.org/10.5194/egusphere-egu24-22175, 2024.

EGU24-1188 | ECS | Posters on site | ERE1.3

Stone decay in the underwater environment: examples from Mediterranean archaeological sites 

Luigi Germinario, Isabella Moro, Fabio Crocetta, Patrizia Tomasin, Emanuela Moschin, Franca Cibecchini, Stella Demesticha, Enrico Gallocchio, Judith Gatt, and Claudio Mazzoli

This contribution presents one of the research directions of the project WATERISKULT (https://wateriskult.geoscienze.unipd.it), involving the decay of underwater archaeological sites, in particular of submerged structures and artifacts made of stone. The pilot sites of this project are located in the western, central, and eastern Mediterranean Sea, and include the Roman complex of Baia in Italy, the Hellenistic harbor of Amathus in Cyprus, and the Roman port structures of Anse des Laurons in France. Diving and sampling campaigns were organized therein in the first half of 2023, and were followed by laboratory analyses that explored the state of conservation of different archaeological stone materials (limestones, marbles, tuffs, sandstones, etc.). Microscopic techniques were applied for investigating the stone composition, biofouling, and chemical alteration, observing the surface and stratigraphic features of the sampled materials. Moreover, 3D morphometric techniques allowed for the quantification of the physical damage of the archaeological surfaces. The analytical results were combined with site-specific topographic information collected during the dives and environmental data provided by seawater monitoring agencies. In that way, the interaction between ancient materials and the underwater environment was explored, discussing the relationship between deterioration and a range of different stone and seawater properties.

How to cite: Germinario, L., Moro, I., Crocetta, F., Tomasin, P., Moschin, E., Cibecchini, F., Demesticha, S., Gallocchio, E., Gatt, J., and Mazzoli, C.: Stone decay in the underwater environment: examples from Mediterranean archaeological sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1188, https://doi.org/10.5194/egusphere-egu24-1188, 2024.

EGU24-1312 | ECS | Orals | ERE1.3

Thermo-hygric weathering of Carrara Gioia marble monitored with Nonlinear Resonant Ultrasound Spectroscopy 

Marie-Laure Chavazas, Philippe Bromblet, Jérémie Berthonneau, and Cédric Payan

Carrara marble is widely used, in buildings and sculptures, in ancient and recent works. Yet, it can develop deteriorations over time, such as bowing, cracks, expansion, reduction of mechanical strength, when it is exposed to environmental conditions. Previous studies have shown that these deteriorations can result from exposure to temperature variations, and that they can be enhanced by additional humidity variations. However, the mechanisms at stake at the microstructure level are still not well-understood.

This work is therefore focused on the understanding of the degradation mechanisms induced on marble by temperature and humidity fluctuations. Laboratory experiments are carried out on Carrara marble samples first heated at different temperatures and then undergoing thermal, hygric, and thermo-hygric cycles. The temperature investigated during cycling belongs to the mild temperature range (40 – 105 °C) in order to simulate outdoor exposure conditions.

The mechanical state of Carrara marble samples is non-destructively monitored during the cycles with Nonlinear Resonant Ultrasound Spectroscopy (NRUS), through the evolution of resonant frequency and of nonclassical nonlinearity. The first parameter is related to sample stiffness, and the latter is highly sensitive to any change occurring at the microstructure level (micro cracks, friction, capillary effects, etc.). Additionally, microstructural characterization (mercury intrusion porosimetry, optical microscope and SEM observations) is made on marble samples to link the evolution of the NRUS parameters to the changes occurring in marble microstructure.

The impact of heating on marble is first studied for temperatures between 40 and 250 °C, and the progressive granular decohesion of the material is monitored with NRUS. Marble state is also characterized during adsorption-desorption cycles, which shows that relative humidity fluctuations alone do not induce permanent damage. Finally, the influence of thermal cycling at mild temperatures and the impact of combined temperature and relative humidity cycling are studied with NRUS.

How to cite: Chavazas, M.-L., Bromblet, P., Berthonneau, J., and Payan, C.: Thermo-hygric weathering of Carrara Gioia marble monitored with Nonlinear Resonant Ultrasound Spectroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1312, https://doi.org/10.5194/egusphere-egu24-1312, 2024.

EGU24-2818 | Posters on site | ERE1.3

A multidisciplinary approach for the diagnostics of the stone building materials of architectural structures 

Giuseppe Casula, Silvana Fais, Francesco Cuccuru, Maria Giovanna Bianchi, Paola Ligas, and Luciano Cannas

The integrated use of non-destructive geomatic and geophysical techniques such as close-range digital photogrammetry, laser scanner techniques, thermography, sonic and ultrasonic methods, resistivity, etc... for the diagnostics of the stone building materials of architectural structures has become increasingly dependent on the integration of different disciplines of applied research. As is well known many historic monuments are characterized by severe damage due to temporal degradation, problems caused by differential settlements of the foundations and various types of natural hazards. Therefore it is of great interest to test and develop effective, integrated non invasive procedures to detect the conservation state of the building materials of historic structures, and identify and prevent their potential vulnerability in order to preserve their intrinsic characteristics for a long time.

For extensive applications, as well as for investigations on monuments or large architectural elements, scanning and digital high resolution images are particularly useful, thanks to their limited cost, high production and relatively simple reproducibility of the tests. These techniques give useful information on the shallow conditions of the investigated materials. Geophysical techniques such as the ultrasonic and resistivity methods are non-invasive and are considered the most appropriate to evaluate the internal structure and assess the quality of the stone materials of the architectural heritage.

This paper presents an integrated approach that combines advanced geomatic survey procedures, such as close-range photogrammetry (CRP) based on high resolution images and Terrestrial Laser Scanner (TLS) techniques with a few geophysical techniques such as the ultrasonic and resistivity ones in order to test the effectiveness of the integrated approach in providing an effective diagnosis of stone building materials in the Basilica di San Saturnino (Cagliari – Italy). This Basilica is the oldest monument of the town of Cagliari (Italy) and represents an interesting synthesis of different construction techniques with heterogeneous stone materials of different origins. CRP and TLS were applied to the investigated elements with the aim of obtaining a natural colour texturized 2D-3D model with a calibrated scale and coordinates. The geometrical anomaly and reflectivity maps derived from the data of the CRP-TLS survey show the presence of some anomalies worthy of attention, but they were referred to the shallow materials. A further investigation on site using the ultrasonic pulse velocity (UPV) and electrical resistivity techniques were performed to investigate the materials in depth. The results of the CRP and TLS techniques allowed the best design of the ultrasonic and electrical techniques and also proved to be useful in the data interpretation phase.

Acknowledgements: The authors would like to thank the Ministero della Cultura - DIREZIONE GENERALE MUSEI - DIREZIONE REGIONALE MUSEI SARDEGNA (ITALY) for their kind permission to work on the San Saturnino Basilica.

How to cite: Casula, G., Fais, S., Cuccuru, F., Bianchi, M. G., Ligas, P., and Cannas, L.: A multidisciplinary approach for the diagnostics of the stone building materials of architectural structures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2818, https://doi.org/10.5194/egusphere-egu24-2818, 2024.

EGU24-4340 | ECS | Posters on site | ERE1.3

Black Crusts as Geochemical Archives: Preliminary Results from Antwerp, Belgium 

Sofia Deboli, Silke Visschers, Blanca Astray Uceda, Adela Šípková, Katrin Wilhelm, and Tim De Kock

Interaction between the historical built environment and environmental pollution can result in the accumulation of weathering crust on building material surfaces. A subgroup of weathering crusts are black crusts, which consist of gypsum layers formed by sulfation on calcium-rich substrates. These crusts occur more often and are more pronounced in polluted environments such as urban settings. As a result, they can incorporate particulate matter, polyaromatic hydrocarbons, and heavy metals. Black crusts can act as non-selective passive samplers, accumulating distinct layers of air contaminants depending on historical pollution levels.
Existing studies provide only coarse-resolution reconstruction of pollution, differentiating solely between inner and outer crust layers. Just a few explore the correlation between different periods of exposure to pollution and the variation of the composition of these crusts. This study focuses on the stratigraphic analysis of black crusts to assess their potential as a reliable geochemical archive for the reconstruction of past anthropogenic pollution within urban settings.
Following technological developments in transportation and combustion, the composition of pollutants in the atmosphere has evolved over the centuries, likely reflected within weathering crusts where pollutants accumulate. For the identification of past air pollution signatures, lead can serve as a useful tracer due to its isotopes, their presence is the result of different historical pollution sources. Variations in the ratios of lead isotopes provide a means to attribute and differentiate among these pollution sources. For lead isotope analysis, high-resolution laser ablation mass spectrometry will be used to distinguish between 206Pb, 207Pb, and 208Pb.
This study deepens the understanding of localized pollution levels in urban settings, allowing the implementation of conservation interventions including cleaning and consolidation, strategies to mitigate the impact on human health, local ecosystems, and biodiversity, and to support urban planning.

How to cite: Deboli, S., Visschers, S., Astray Uceda, B., Šípková, A., Wilhelm, K., and De Kock, T.: Black Crusts as Geochemical Archives: Preliminary Results from Antwerp, Belgium, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4340, https://doi.org/10.5194/egusphere-egu24-4340, 2024.

EGU24-7547 | ECS | Posters on site | ERE1.3

Biodeterioration of historical buildings and sites in north of Lake Tana, Ethiopia: a preliminary investigation 

Ayenew Demssie, Tim De Kock, Natalia Ortega-Saez, and Blen Gemeda

Lake Tana is the largest lake in Ethiopia and the source of the Blue Nile. The lake is protected as a natural heritage site. It is surrounded by wetlands that provide a sanctuary to a diverse set of flora and fauna some of which are endemic to the region. It is also a culturally significant area. Surrounding the lake and on the islands are found tens of stone built monasteries, churches, bridges and palaces built in the Gondarine period (17th and 18th Century AD) and earlier. However, these buildings are subjected to biological growth in many different types that cause  discoloration and  degradation. The short and intense rainy season contributes to the nature, diversity and intensity of biological colonization of these stone structures. Biofilms, fungi, mosses, lichen and higher plants can be observed, while also small animals such as mites and rodents are agents of bio-deteriorative process. While micro-organisms alter the visual appearance, roots of higher plants are responsible for more severe physical decay on the site and building level, increasing also the impact of moisture-related weathering in decayed locations. However, micro-organisms can also alter the surface properties of materials, like water absorption and retention, and it is currently not well understood to what extend these contribute to the observed forms of degradation, like chipping, fissuring, cracking, etc. 

This poster aims to address some of the key challenges of managing cultural heritage sites found in a complex, evolving and vulnerable ecosystem, i.e. Lake Tana. Factors such as intense rainfall, humidity, the state of the structures, intensification of agriculture and the perspectives of local communities and stakeholders will be evaluated.

How to cite: Demssie, A., De Kock, T., Ortega-Saez, N., and Gemeda, B.: Biodeterioration of historical buildings and sites in north of Lake Tana, Ethiopia: a preliminary investigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7547, https://doi.org/10.5194/egusphere-egu24-7547, 2024.

EGU24-10672 | Orals | ERE1.3

Creating a holistic view on the situation of historic parks and gardens 

Jürgen Moßgraber, Tobias Hellmund, Jürgen Reuter, Lola Kotova, and Katharina Matheja

Extreme weather events due to climate change not only affect nature, but can also impact historical buildings, collections, and historic parks and gardens. Assessing the extent to which cultural heritage is threatened by such weather and climate events is an interdisciplinary task that requires the collaboration of experts from heritage preservation and restoration, climate research, natural and engineering sciences, social and economic sciences, landscape architecture, informatics, and more.

Due to this complexity and the abundance of available information, modern IT tools are crucial in explaining the condition of cultural heritage sites to decision-makers and providing insights into future developments. To get a better understanding of the situation of historic parks and gardens, a knowledge platform can offer map-based visualization of data. The biggest challenge in developing such a platform was the integration and processing of relevant data. Due to the interdisciplinary nature of the field and the heterogeneity of the data, it was designed to be able to flexibly integrate and process various types of data. For example, the platform incorporates:

- (Live) sensor data,

- Severe weather risk maps,

- Climate projections and models,

- Expert knowledge incl. tree cadasters,

- Image and video materials, and

- Unstructured documents

This integration aims to provide users with a comprehensive view of their properties.

As part of the project, soil moisture sensors were deployed in Sanssouci Park in Potsdam Germany to monitor soil moisture levels over an extended period of time. These sensors allow for the measurement of soil moisture and temperature at a depth of one meter. A total of 10 sensors were placed at representative locations to provide insights into the irrigation needs of the property. The sensors transmit their data using LoRaWAN (Long Range Wide Area Network), a wireless communication technology that can reliably transmit smaller amounts of data over long distances with low energy consumption. Given the vastness of the Sanssouci Park case study, this approach is suitable as it allows the sensors to be placed in relevant locations without having to consider technical constraints.

The collected data is stored using a FROST server, which is an open-source software project that enables the capture of time series data, including their metadata. The FROST server implements the SensorThings API, a standard of the Open Geospatial Consortium, which aims to standardize the description of sensor data and simplify their reuse. For the visualization of the captured sensor data, a map view has been developed that allows for the positioning of the sensors and the display of their measured data.

How to cite: Moßgraber, J., Hellmund, T., Reuter, J., Kotova, L., and Matheja, K.: Creating a holistic view on the situation of historic parks and gardens, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10672, https://doi.org/10.5194/egusphere-egu24-10672, 2024.

EGU24-11004 | Orals | ERE1.3

ERODEM: Exploring Carbonate Rock Recession through Data Fusion of Extensive Experimental Data via Machine Learning 

Claudio Mazzoli, Chiara Coletti, Luigi Germinario, Lara Maritan, Riccardo Pozzobon, Nereo Preto, and Dimitrios Kraniotis

Pollution and climate change raise increasing concerns about the vulnerability of cultural heritage. In carbonate rocks, the primary concern is surface recession, which severely impacts the readability of details, preventing us from transmitting our legacy to future generations. Recession equations available in the literature are highly inadequate due to the complex relationship between climate conditions, hygrothermal (HT) behaviour, and stone textures. This is related to the limited set of parameters used by different authors and to the basic statistical approach used in their fitting processes.

Through this research, we aim to develop a robust and reliable model to predict stone recession, employing Machine Learning algorithms supported by Multivariate Statistical Analysis. We will examine a large database of surface recession measurements obtained from different types of carbonate rocks, which differ in their textural features (e.g. grain size, porosity) and HT behaviour (e.g. water vapour permeability), and of the relative micro-climate conditions under which they have been exposed during outdoor experiments. Additional recession data will be derived from laboratory experiments using an autoclave, allowing precise regulation of pH and temperature of water in contact with stone samples. Validation of the predictive model will involve comparing the recession predictions based on the time series of climate data and material characteristics with the observed recession obtained through the meticulous comparison of historical plaster replicas with the original monuments. This comprehensive analysis aims to ensure the model accuracy in capturing the real-world complexities of carbonate rock surface recession under varying environmental conditions.

 

Acknowledgement:

ERODEM project was funded by the Department of Geosciences through the “Progetto Premiale” call. This initiative is part of the larger project "Le Geoscienze per lo Sviluppo Sostenibile," funded by the Italian Ministry of University and Research (MUR) within the frame of the “Progetti di Eccellenza 2023-2027”.

How to cite: Mazzoli, C., Coletti, C., Germinario, L., Maritan, L., Pozzobon, R., Preto, N., and Kraniotis, D.: ERODEM: Exploring Carbonate Rock Recession through Data Fusion of Extensive Experimental Data via Machine Learning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11004, https://doi.org/10.5194/egusphere-egu24-11004, 2024.

EGU24-12505 | Posters on site | ERE1.3

Sustainability and cultural heritage conservation: re-use of sand from deconstruction renders 

Beatriz Menéndez, Victor Yameogo, and Elhem Ghorbel

The European project SCORE (Sustainable COnservation and REstoration of built cultural heritage, GA 101007531) deals with a two-way assessment of impacts of the environment on materials and of materials on the environment. Indeed, climate conditions and atmosphere composition determine built cultural heritage (BCH) materials’ behaviour and, at the same time, BCH conservation processes (products and techniques) impact greenhouse gases emissions and then climate change.

The objective of this work is to study the feasibility of recycling old mortars and plasters from an existing building to extract the sand with the aim of reusing it to produce new mortars for the renovation of the built heritage. Old mortars and plasters were mainly made with "natural" sands, generally alluvium and river sands, available near the site. These sources of sand may no longer be available or have become scarce. The use of different sands from the original ones in restoration plasters has consequences on the aesthetic properties of the new plasters applied during the renovation, which often requires the use of additives and dyes. To solve this problem, one possibility is to extract the original sand from deconstruction mortars, taken for example from renovation sites.

We tested the proposed method on a site in Paris. Deconstruction mortars were crushed and the sand was recovered, characterized and used for the formulation of new mortars by adding lime and water. Washing methods with water and acid washing solutions have been tested in order to obtain sands free of debris and lime agglomerates. Citric acid was used because it presents good lime dissolution results and is quite easy to employ in restoration works. Microscopic observations were made to determine the effectiveness of each washing solution. Sands washed only with water show some remains of lime on the grain surfaces whereas washing the grains with citric acid solution (2 %) produces excellent results.

In addition, mortars formulations with different grain size of recycled sands were made. These formulations consist of a mixture of recycled sand, water and an additive lime in equal proportions. Specimens of 4 x 4 x 16 cm were produced and their mechanical properties were measured at 28 days of age. During the maturation time, the samples are kept in an environment with constant humidity and temperature, to optimize the conditions of hydration, carbonation and maturation.

The results obtained show that the mechanical properties of mortars made from recycled sand are acceptable and that these are intrinsically linked to the grain size and quality of the sands. The mechanical properties of mortars formulated with recycled sands of the right grain size are similar to those formulated with commercial natural sand. A large part of the recycled sand, after just washing with water, can be used in the formulation of new mortars with regard to standards and aesthetic properties.

How to cite: Menéndez, B., Yameogo, V., and Ghorbel, E.: Sustainability and cultural heritage conservation: re-use of sand from deconstruction renders, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12505, https://doi.org/10.5194/egusphere-egu24-12505, 2024.

EGU24-13376 | Posters on site | ERE1.3

Durability of Built Cultural Heritage Materials under different climate conditions 

Luis Valdeon, Beatriz Menendez, Javier Reyes, and Inge Rörig-Dalgaard

The European project SCORE (Sustainable COnservation and REstoration of built cultural heritage, GA 101007531) deals with a two-way assessment of impacts of the environment on building materials and of materials on the environment. Indeed climate conditions and atmosphere composition determine built cultural heritage (BCH) materials’ behaviour and, at the same time, BCH conservation processes (products and techniques) impact greenhouse gases emissions and eventually climate change.

This contribution presents a characterization of the effects of different climate conditions on several traditional restoration mortars, bricks and calcareous stones. A common strategy plan was designed in order to compare the results of weathering exposition experiments in several location: North of Spain, North-West of France, Denmark and Calakmul Biosphere Reserve in Mexico. Some of the presented results correspond to real conditions experiments started before the common exposition campaign but they will be presented because of their interest.

The exposition support is a frame with a plate surface of 1mx1m, placed at 1m height under two exposure conditions: inclination of 10° and at horizontal position. The exposition frame is oriented facing the predominant wind direction. For comparison we chose to expose two kinds of hydraulic lime mortars from Saint Astier company, bricks from Denmark and Mayan calcareous stone from Campeche area treated with Ca(Zn (OH)3)2·2H2O nanoparticles (CZ) in order to improve their behaviour under the exposure conditions.  Mortar coupons had dimensions of 20 x 10 x  3 cm, while the stone samples ones were 5 x 5 x 3.5 cm. A first set of mortars consisting of two-layer sample was tested with a base of a salt protection mortar and a 1 cm upper layer with a finishing mortar. A second set of mortars consists of a monolayer of a masonry restoration mortar. In each specific site, local or recipe mortars have been also exposed. 

Samples have been characterized before exposition and at regular time intervals during the exposition period, that is not finished. Weight, hardness, deterioration patterns, colour and P wave velocity have been measured at different sample locations. Results indicate that in French locations commercial mortars become better than home-made ones, probably due to the absence of any additive in the home-made recipes. First results for the Spanish exposition site show that velocity measurements start detecting some points where layers begin to separate from each other. Some microcracks start to develop at the surface of one type of mortar respecting the monolayer one.  Finally colour changes have been detected in the two layers masonry mortar.

Such gradual (also visible) degradation has previously also been documented in laboratory examination of fired clay bricks submerged in liquids with varying pH (3,5,7,9,11) and varying duration up to more than one year (432 days). Increasing submersion duration resulted in increased degradation, whereas the different pH values representing exposure to various conditions (acid rain, traditional rain, connection with alkaline mortar) revealed different degradation patterns.

The stone coupons improve some of their properties due to CZ addition at initial periods, but they tend to decrease over time.

How to cite: Valdeon, L., Menendez, B., Reyes, J., and Rörig-Dalgaard, I.: Durability of Built Cultural Heritage Materials under different climate conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13376, https://doi.org/10.5194/egusphere-egu24-13376, 2024.

EGU24-13920 | ECS | Orals | ERE1.3

Vulnerability Index of Critical Infrastructure in Greater Kuala Lumpur Fault Zone, Malaysia 

Rabieahtul Abu Bakar, Nurin Faiqah Noorazri, Zakaria Mohamad, Anggun Mayang Sari, and Zamri Ramli

The Greater Kuala Lumpur (Greater KL) region, a pivotal hub of Malaysia's economic growth, confronts a burgeoning challenge amid rapid urbanization. Unprecedentedly, it is vulnerable to seismic reactivation possibilities from the dormant Kuala Lumpur Fault Zone (KLFZ). With a comprehensive integration of geospatial technologies, to dissect the geological intricacies of the KLFZ and assess the vulnerability of critical infrastructure within Greater KL. The research aims to bridge the realms of geology and infrastructure engineering, providing actionable insights for policy decisions and urban planning to enhance the region's resilience to seismic events. The problem statement underscores the urgent need for a comprehensive investigation into the interplay between the geological characteristics of the KLFZ and the vulnerabilities in infrastructure. Despite the economic significance of Greater KL, a notable research gap hinders effective mitigation and preparedness strategies. The aim is to unravel the distinctive features of the KLFZ, assess infrastructure vulnerability, and inform policies for safeguarding against potential seismic threats. The methodology unfolds systematically, employing geospatial analysis, remote sensing, and geological data. The research adopts a meticulous data acquisition approach, integrating Sentinel-2 imagery and a seismotectonic map of Malaysia to delineate the fault zone. The extraction of critical infrastructure is conducted with precision, considering the guidelines from the U.S. Cybersecurity and Infrastructure Security Agency. The subsequent steps involve buffer zone creation, overlay analysis, and data classification to develop a vulnerability index. The expected outcome revolves around a comprehensive understanding of the KLFZ and its implications on infrastructure vulnerability. The methodology employs detailed mapping and geospatial analysis, providing insights into fault characteristics, seismic hazards, and critical infrastructure susceptibility. The research aims to contribute a robust foundation for disaster preparedness, urban planning, and engineering strategies, fostering the safety and stability of Greater KL against seismic risks. This research contributes to the broader discourse on urban resilience and disaster management, emphasizing the significance of geomatics in addressing the complex challenges posed by active fault zones or the possibilities of reactivated fault zones. The findings hold practical implications for policymakers, urban planners, and geospatial professionals, offering a nuanced perspective on the intricate relationship between geological factors and infrastructure vulnerabilities in dynamic urban landscapes. In conclusion, this research endeavours to unravel an inform evidence-based decision-making, contributing to the sustainable development and safety of the Greater KL region.

How to cite: Abu Bakar, R., Noorazri, N. F., Mohamad, Z., Sari, A. M., and Ramli, Z.: Vulnerability Index of Critical Infrastructure in Greater Kuala Lumpur Fault Zone, Malaysia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13920, https://doi.org/10.5194/egusphere-egu24-13920, 2024.

EGU24-15733 | Orals | ERE1.3

Condition assessment of limestone tombs Theban Necropolis (Luxor, Egypt) 

Ákos Török and Tamás Zomborácz

The Theban Mountain, on the west bank of the river Nile, near Luxor is internationally known as the burial site of Egyptian Dynasties. The current study focuses on four tombs dating back to the late Old Kingdom and the First Intermediate Period. The tombs are located on the hill's southern slope and were cut into the rock. Their geometry is characteristic since at least six horizontal rows were excavated above one another. Sedimentary rocks of the study area form parts of Tarawan Cretaceous, Esna Shale and Theba Limestone formations. All four tombs were once lavishly decorated with wall paintings and reliefs carved directly into the carbonatic rocks. Until now, these structures have gone through considerable erosion in addition to the occurring damages resulting from their reuse as modern habitations until the late 20th century. Thus, most of the tombs’ decorations have perished or heavily deteriorated. Since 1983 a Hungarian Archaeological Mission has been exploring the site. Numerous attempts have been made to reconstruct the fragmented walls and conserve the remaining works of art, however, very little effort has been made to understand the deterioration process and its origins. This research describes the geological conditions, petrology and sedimentology of local carbonates, fracture pattern, micro-climatic conditions of the tombs, and decay forms. Stratification, micro-cracking and discontinuities were also mapped. The painted and carved surfaces were documented, and the condition of the walls was assessed. On-site tests included moisture content measurements (vertical profiling) and the detection of surface strength by non-destructive methods. Sensors were placed at various parts of the tombs, recording temperature and relative humidity. The main trigger mechanisms of deterioration processes were identified and preservation measures were made. This study aims to provide an example that helps assess the conditions of rock-cut tombs in arid climates and the changes linked to micro-climatic conditions.

How to cite: Török, Á. and Zomborácz, T.: Condition assessment of limestone tombs Theban Necropolis (Luxor, Egypt), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15733, https://doi.org/10.5194/egusphere-egu24-15733, 2024.

EGU24-15931 | Posters on site | ERE1.3

Mapping Vertical Greenery on Historic Buildings in Neighbourhoods with High Environmental Risks: A Case Study in Antwerp, Belgium 

Eda Kale, Marie De Groeve, Lena Pinnel, Yonca Erkan, Piraye Hacıgüzeller, Scott Allan Orr, and Tim De Kock

Ongoing urbanization has increased the impact of the urban heat island effect, air pollution, and noise pollution while limiting the space for green areas. Therefore an urgent action is required to mitigate these environmental risks. Vertical Greenery (VG) has emerged as a sustainable and viable solution across diverse contexts, but it is generally not always accepted for historic buildings by experts. The scepticism is rooted in concerns about the potential adverse effects on conservation practices and heritage values. Contrary to expert concerns, VG on historic buildings is seen as a response to reducing the urban heat island effect in high environmental risk areas by the users.

We conducted a comprehensive study in Antwerp (Belgium), a city actively advocating for VG solutions. We selected three neighbourhoods, namely Historical Centre, Oud Berchem, and Borgerhout Intra Muros Zuid, where air pollution, noise, and heat stress are above the risk level. We documented the VG implementations in these three neighbourhoods through the use of GIS and field survey methods. The prevalence of VG in case sites was analysed based on factors such as the heritage status of buildings and the morphology of streets, which could pose challenges to the implementation of VG.

The results suggest that VG is present in up to 14% of all buildings in the selected neighbourhoods. While in the Historical Centre, 59% of the buildings with VG have a heritage designation. As such, narrow streets and heritage designation do not prevent VG implementation in densely built neighbourhoods with green space deficits.

While this study provides site-specific results, the analysis methods we used can guide policymakers and urban planners to explore VG's adaptability to historic buildings in the development of effective integration strategies.

How to cite: Kale, E., De Groeve, M., Pinnel, L., Erkan, Y., Hacıgüzeller, P., Orr, S. A., and De Kock, T.: Mapping Vertical Greenery on Historic Buildings in Neighbourhoods with High Environmental Risks: A Case Study in Antwerp, Belgium, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15931, https://doi.org/10.5194/egusphere-egu24-15931, 2024.

EGU24-16698 | ECS | Posters on site | ERE1.3

The influence of orientation and leaf area indices of a vertical green wall on historic building materials 

Marie De Groeve, Eda Kale, Scott Allan Orr, and Tim De Kock

Built heritage is a vital component of urban environments and is rich in cultural and economic values. These buildings are abundant in city centres and have been the site of development for several centuries. They have created dense urban environments, exhibiting strong urban heat island effects. Ground-based vertical greening is a widely used green initiative in dense urban environments to mitigate the current climate stressors due to its small footprint and its ability to cover a large surface area with vegetation. The impact of this green initiative on the materials and structural integrity of built heritage is currently poorly understood and thus the focus of this research.


Several studies have already proven the efficacy of ground-based vertical greening in fostering a more stabilized condition on the underlying wall surface, characterized by reducing the amplitude of temperature and relative humidity fluctuations and the amount of solar irradiation. More stable conditions can imply a lower risk of common degradation processes, such as freeze-thaw weathering and salt crystallization, in historic building materials. 


Since the extent of the vertical greening performance and the deterioration of building façades strongly depend on the orientation of the façade, part of this research aims to establish a relationship between those two variables while considering the orientation of a building façade. Monitoring case studies in the historic city centre of Antwerp during summer develops an understanding of the shading performances of vertical greening and characterises the boundary conditions, such as orientation or leaf area index (LAI), that signify the extent of efficacy. The current case studies reveal a positive correlation between the LAI and the shading potential of vertical greening and highlight the significant role of orientation in mitigating the environmental parameters on the wall surface, as the cooling processes of vegetation mainly depend on the amount of solar irradiation. More specifically, the highest leaf area index and a south or west orientation show us the most significant cooling behaviour during the day which can reduce the risk of salt crystallization the most. The shading performance of vertical greening is only one of the several mechanisms determining the impact of vertical greening on the local environment and the subjected historic materials. 

How to cite: De Groeve, M., Kale, E., Orr, S. A., and De Kock, T.: The influence of orientation and leaf area indices of a vertical green wall on historic building materials, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16698, https://doi.org/10.5194/egusphere-egu24-16698, 2024.

EGU24-18747 | Posters on site | ERE1.3

Insight to the effect of adding cow hair and pig bristles to lime mortars: Towards obtaining more sustainable construction products recycling waste animal byproducts. 

Eduardo Molina-Piernas, María Jesús Pacheco-Orellana, Salvador Domínguez-Bella, Javier Martínez-López, and Ángel Sánchez-Bellón

The increase in demand for natural resources due to the growth of the world population is generating an unprecedented increase in waste, and the unsustainability of this situation has induced the change towards a more environmentally friendly economy, the so-called “Green Economy”. Through the new policies for waste management, its reuse in other industrial processes is being encouraged, favouring “Zero Waste” initiatives. This aims to minimize the emission of greenhouse gases that could accelerate climate change, as well as to the reduction of associated energy expenditure. In Spain, two of the sectors that generate the most waste are construction and agriculture, especially linked to animal by-products not intended for human consumption (SANDACH, by its Spanish acronym). In line with these new trends, new initiatives are required to promote the reuse of this waste and the development of more sustainable construction products that involve the reduction of the carbon footprint. Therefore, the main goal of this work is to better understand the effect of adding natural fibres of animal origin, in this case cow hair and pig bristles, to lime mortars for their use both in modern construction and its application in repair historical mortars. In this way, we aim to achieve a double goal: on the one hand, to obtain information about the quality of the result of combining these products; and on the other hand, to reduce CO2 production by avoiding the incineration of animal by-products not usable in other sectors, finally producing a more sustainable mortar. The specific objectives proposed are: 1) to compare the quality of lime mortars considering the addition of hairs, bristles or with combined proportions of both fibres, with respect to control samples without fibres; 2) to evaluate if the speed and degree of carbonation are affected by the addition of fibres; 3) to identify deterioration processes that may reduce the quality of lime mortars due to aging in the laboratory and outdoors; and 4) to establish optimal production and handling conditions in collaboration with regional or national companies interested in the use of this product. To achieve these goals, in this first stage we will present the preliminary results comparing a mortar without fibres as control sample, with 3 sets of samples with different fibre proportions (containing 10 g or 20 g of cow hair or pig hair per 2 kg), as well as a mixture of both types of fibres (5+5 g and 10+10 g per 2 kg). Based on these results, it will be possible to consider the possibility of increasing the quantity of fibres until reaching an acceptable limit of workability and usefulness without compromising the quality of these mortars.

Acknowledgements: This study was financially supported by the Research Project TED2021-132417A-I00 funded by MCIN/AEI /10.13039/501100011033 and by the European Union NextGenerationEU/ PRTR and E. Molina-Piernas acknowledges co‑funding from the European Social Fund (D1113102E3) and Junta de Andalucía.

How to cite: Molina-Piernas, E., Pacheco-Orellana, M. J., Domínguez-Bella, S., Martínez-López, J., and Sánchez-Bellón, Á.: Insight to the effect of adding cow hair and pig bristles to lime mortars: Towards obtaining more sustainable construction products recycling waste animal byproducts., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18747, https://doi.org/10.5194/egusphere-egu24-18747, 2024.

Cultural heritage in Sweden is increasingly at risk from a number of climate change related factors. These include the direct effects of erosion, flooding, landslides, melting permafrost and related threats, but also increasing industrial activity in the Arctic associated with energy production and the extraction of minerals for 'green' technologies. Whilst much of the physical science of climate related threats is well understood, the practical implications at the local and regional level, as well as the hands-on management of these risks has been somewhat neglected. In a recent pilot study we exposed problems in government planning processes, and in particular that even though the general risks and potential consequences are known, Sweden lacks any form of coordinated system for the prioritisation of sites in terms of conservation, protection, documentation or abandonment. On an international level, we also identified a tendency to focus on above ground archaeological remains and high status sites and monuments. Cultural landscapes, preserved organic and palaeoecological archives, and as yet undiscovered sites are, on the other hand, are less frequently studied and often neglected in planning processes.

Many important cultural heritage sites and landscapes are in close proximity to, and potentially impacted by, transport infrastructure. As the climate warms, roads in particular are increasing in number and traffic volume in the northern areas of Scandinavia. In cooperation with the Swedish Transport Administration we developed a prototype GIS system for assisting in the evaluation of climate related threats to sites in close proximity to transport infrastructure. Three areas were investigated in more detail, ranging from temperate coastal to sub-Arctic rural settings and including a broad variety of cultural heritage types from prehistoric to historical. Case studies looked at particular secondary risks, including the expanding use road salt, and the use of specific datasets (e.g. historical maps, erosion models). This work exposed not only the potential for using such a system in research and planning, but also a number of issues in the uncritical use of publicly available national databases for transport infrastructure, climate threats, and cultural heritage. For example, the poor spatial resolution of risk maps in the Arctic and the poor locational accuracy of many older archaeological and historical investigations can lead to an incorrect assessment of threats. Similarly, much of the rural north of Sweden is poorly surveyed, and existing predictive models for locating unknown sites are inadequate. There is thus a potential bias between risk assessment in the south and the north, and between urban and rural areas. A clear potential exists for the further development of GIS based models with a greater capacity for visualizing and, to an extent compensating for, variability in the quality of the underlying data.

This presentation will show some results and conclusions from these studies, as well as some preliminary findings from ongoing research into the reasons behind problems of implementing strategies for the prioritisation of cultural heritage threatened by future climate change.

How to cite: Buckland, P. and Antonson, H.: Challenges and potential for predicting and managing climate threats to cultural heritage in Sweden, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18769, https://doi.org/10.5194/egusphere-egu24-18769, 2024.

Treatments intending to prevent stone damage sometimes accelerate deterioration unexpectedly. It would be meaningless if the use of protective agents in a more severe deterioration than originally intended. A combination of the properties between agents and stones determines the ability of protective agents to penetrate the stone. In particular, it is expected to depend on the pore diameter distribution of the stone. The present study focuses on freeze-thaw and salt weathering tests were carried out by using several types of tuffs to verify this. The stone materials used were Oya tuff, Nikka tuff, Tatsuyama tuff, Ashino tuff, and Towada tuff, which have different pore size distributions, different strengths, and different durability to salt weathering. In rocks with a high proportion of micro-pores and low resistance to salt weathering, the use of protective agents (water repellents) can delay the onset of surface deterioration. On the other hand, rocks with a high proportion of large pores (>100.5 µm) and not less resistant to salt weathering were found to be more likely to deteriorate more severely with an earlier onset of surface deterioration than untreated stones. It is considered to be because the salts crystallize at greater depths when protective agents are applied, whereas they crystallize only at the surface in the case of untreated rocks, and the crystalline pressure causes fracture from the deeper layers. Therefore, when using protective agents, it is necessary to understand the combination of rock properties such as rock structure, pore size, and strength of the rock sample with crystal pressure.

How to cite: Oguchi, C. and Ikeda, Y.: Effect of pore size distribution on the application of water repellent for preventing deterioration of stone materials., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19171, https://doi.org/10.5194/egusphere-egu24-19171, 2024.

Identifying and determining buried archaeological structure limits are crucial for archaeological prospection surveys. The archaeological prospection surveys can shed light on protecting cultural heritage. Magnetic is one of the most applied methods in archaeological surveys to plan the excavation process. It aims to identify buried temples, graves, city walls, and other structures by interpreting the data obtained from magnetic measurements, which is one of the non-destructive geophysical exploration methods. In the process of interpretation of magnetic data, many methods have been developed, such as Horizontal Gradient Magnitude, Analytical Signal, Theta Map, and Tilt Angle methods, which can generate information about the boundaries of potential subsurface features. By analyzing the gradients of the magnetic field data, inferences can be made to determine the edges of subsurface potential archeological structure distributions.

The Olympos is an important ancient city in Antalya (the south of Turkey) and contains many structures from the Byzantine period. This research aims to detect the pipe drain as a water system of the Episkopeion region in the Olympos ancient city. To this end, Tilt Angle (TA) and Edge detection field (ED) methods were tested on the magnetic map of the synthetic model. The horizontal boundaries of the potential pipe drain elements of the region were analyzed by applying the same procedures on the magnetic map obtained from the magnetic measurements on the area that has not been excavated in the Episkopeion archaeological excavation area. Magnetic measurements were carried out in 4 different regions within the Episkopeion area, and each area was numbered and analyzed separately. Combining the results obtained, an integrated visualization of the water system in the area was achieved.

Keywords: Archaeological Prospection, Edge Detection, Olympos, Tilt, Angle, Pipe drains.

 

How to cite: Deniz Toktay, H.: Edge detection of magnetic data: Preliminary results of application to Episkopeion region in Olympos Ancient City (Antalya), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19203, https://doi.org/10.5194/egusphere-egu24-19203, 2024.

EGU24-605 | ECS | Posters virtual | ERE1.5

Disentangling social perspectives on the use of reclaimed water in agriculture using Q methodology 

Cintya Villacorta Ranera, Irene Blanco Gutiérrez, and Paula Novo Nunez

Water scarcity due to climate change and increased water demands is driving the use of non-conventional water sources, including reclaimed water, particularly in agriculture. In many EU countries affected by droughts, reclaimed water has become an important component of the overall water mix. For example, in Spain, Europe’s most arid country, reclaimed water is 560 hm3/year (nearly 10% of the treated wastewater).

The use of reclaimed water has many advantages, but it also faces significant barriers. The lack of social acceptance has been described as one of the major obstacles. However, understanding how different stakeholders perceive the use of reclaimed water has not been addressed in depth the literature so far. Existing studies are scarce and fragmented. They focus on a single type of stakeholder (farmers or consumers), ignoring the perceptions and eventual acceptance of different stakeholder groups directly or indirectly impacted by reclaimed water.

This study attempts to fill this gap by exploring the plurality of perspectives on the use of reclaimed water for irrigation in Spain. To do so, we applied Q-methodology and conducted twenty-three interviews with key stakeholders, including representatives of public administration, environmental groups, farmer associations, food retailers, consumer organizations, water treatment companies and water reuse experts. As part of the Q study, stakeholders were asked to sort according to their level of relative agreement 36 statements related to different socio-economic, technical, environmental, institutional and political aspects of reclaimed water. The results were analysed using principal component analysis in R ('qmethod' package).

Our study found three discourses: 1- Reclaimed water is a guarantee for water supply in agriculture, 2- Reclaimed water has the potential to be a sustainable water resource and 3- Reclaimed water has a negative impact on the environment. These discourses show different ways of understanding reclaimed water. Although stakeholders had diverse perceptions, there is a certain agreement that the public administration has the will to promote the use of reclaimed water and therefore it is key to promote reclamation projects in agriculture.

They also agree that most consumers are not informed about the quality of reclaimed water and its benefits in the agricultural sector, which leads to a certain social reluctance to use it, and to avoid this, awareness campaigns would be necessary to increase the social acceptance of reclaimed water.

Therefore, some discourses conclude that it is possible that reclaimed water may have pollution problems, but it is also true that the potential for improvement in reclamation technology can avoid them. Regarding the reduction of ecological flows, it is important to study this on a case-by-case basis, as this problem tends to occur in inland areas, although not always.

Finally, the question of who should pay for water regeneration is very controversial and the best solution is to share the costs between the different stakeholders, with the purification and reclamation being carried out tipping fee, and the farmers, with the help of the administration, bearing the costs of the infrastructure and controls from WWTP.

How to cite: Villacorta Ranera, C., Blanco Gutiérrez, I., and Novo Nunez, P.: Disentangling social perspectives on the use of reclaimed water in agriculture using Q methodology, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-605, https://doi.org/10.5194/egusphere-egu24-605, 2024.

EGU24-1342 | ECS | Orals | ERE1.5 | Highlight

Increasing water footprints of flex crops 

Oleksandr Mialyk, Markus Berger, and Martijn J. Booij

Flex crops—crops with multiple end-uses that can be flexibly interchanged—play an important role in our society. Due to high nutritional and energy contents, they became widely used in various industries, providing food, animal feed, biofuels, and other chemical components. However, a limited number of studies exists on the environmental pressures of such crops, specifically concerning water resources.

Here, we aim to quantify the water footprints of main flex crops—namely maize, oil palm, soya beans, sugar cane, coconut, cassava, rape seed, and sunflower—using a recently published database on gridded water footprints of the world’s major crops in the 1990–2019 period. Our study reveals three key developments:

  • All flex crops experienced large water-productivity gains in response to increasing crop yields (less water is needed per tonne).
  • The global water footprint of flex crops has increased by more than one trillion cubic metres as productivity gains were insufficient to meet rapidly growing demand.
  • The production of flex crops has been concentrating around main exporting regions, most notably in Latin America and South-eastern Asia.

As demand keeps increasing, this raises a need for further research addressing the sustainability of flex crops. In particular, regarding the potential links to green and blue water scarcity, exposure of global supply chains to socio-economic and climatic risks, and the role of flex crops in our society.

How to cite: Mialyk, O., Berger, M., and J. Booij, M.: Increasing water footprints of flex crops, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1342, https://doi.org/10.5194/egusphere-egu24-1342, 2024.

EGU24-1481 | ECS | Posters on site | ERE1.5

Overcoming Barriers to Sustainable Rice Production: A Remote Sensing-Enabled Approach 

Nick Kupfer, Carsten Montzka, and Tuan Quoc Vo

In Vietnam, conventional rice cultivation is under strong economic and ecological pressure. Against this backdrop, there is a rising demand for organic products both domestically and globally. In response, OrganoRice aims to facilitate the transition to organic farming in the model provinces of Vinh Long, Dong Thap, and An Giang in the Mekong Delta through a collaborative effort between German and Vietnamese partners. The initiative encompasses not only addressing physical challenges such as soil and water pollution reduction, optimal fertilization, and ecological plant protection but also delves into critical socio-economic dimensions, including enhancing the income of rice farmers and product marketing. The project acknowledges the intricate task of integrating cultural identity and individual farmers into the social fabric of the village community as a crucial factor for success in the conversion process. Direct communication with the rural population is prioritized, and key local stakeholders and scientific institutions, such as Can Tho University, play pivotal roles in ensuring the project's sustainable success.

The Mekong Delta's agricultural landscape is being explored through advanced tools such as remote sensing and hydrological simulations to map, predict, and optimize crop types, agricultural practices (both conventional and organic), and irrigation water pathways. Leveraging European Copernicus satellites Sentinel-1 and Sentinel-2, alongside PlanetScope equipped with radar and multispectral sensors, allows for monitoring plant growth conditions at a high spatial resolution. The analytical process involves examining remotely sensed data through phenological metrics, quantile mapping, and Fourier transform, complemented by conceptual simulations of irrigation flow paths. The initial phase comprises a comprehensive high-resolution time-series analysis of land use and land cover (LULC) dynamics to identify all potential LULCs influencing organic rice farming. Subsequently, irrigation flow path modeling is employed to estimate complex water dependencies. Ultimately, data fusion of LULC and irrigation analysis, combined with crop-specific pesticide data, results in an opportunity map highlighting suitable areas for organic rice farming. This interdisciplinary approach underscores the importance of integrating technological advancements with socio-economic considerations for a comprehensive and sustainable organic farming transition in the Mekong Delta.

How to cite: Kupfer, N., Montzka, C., and Quoc Vo, T.: Overcoming Barriers to Sustainable Rice Production: A Remote Sensing-Enabled Approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1481, https://doi.org/10.5194/egusphere-egu24-1481, 2024.

EGU24-1491 | ECS | Orals | ERE1.5

Modelling Agrivoltaics in a climate perspective for water-energy-food nexus analysis 

Lia Rapella, Philippe Drobinski, and Davide Faranda

Renewable energies (REs) are increasingly important in addressing the challenge of climate change. Their development and widespread use can significantly reduce greenhouse gas emissions from fossil fuels and help mitigate the effects of climate change. To achieve a "net-zero" carbon economy, the transition to a RE system must occur alongside a profound transformation of the agri-food sector. Agrivoltaics (AVs) offers an opportunity to achieve both of these goals simultaneously. AVs provides clean energy and it is an important tool for realizing a sustainable and circular food economy in rural and farming communities. Additionally, by placing photovoltaic (PV) panels over crop fields, AVs can avoid the competition between solar energy and agriculture for land-use. This can also help to mitigate the impact of climate change on crop productivity, which is expected to be negatively affected by a warmer and drier future climate.
In our study, we developed a large-scale sub-grid AVs model to explore the inter-links between climate, the AVs system, and crops. This model enables a comprehensive evaluation of the effectiveness and efficiency of an AVs configuration within the context of the climate-water-energy-food nexus. Our approach involves coupling a PV model with the soil-vegetation-atmosphere-transfer model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) to construct the AVs module. The PV layer simulates the effects of PV panels, altering solar radiation and wind speed taken from atmospheric forcings. Subsequently, these altered variables, along with other key atmospheric variables like air temperature and precipitation required by ORCHIDEE, are used as inputs to the hydro-vegetation layer. Leveraging ORCHIDEE capability to quantify terrestrial water and energy balances at the land surface, this integration allows for a comprehensive simulation of crop ecosystem behavior within an AVs system. Net Primary Production (NPP), Water Use Efficiency (WUE), and PV power potential (PVpot) are finally computed as ultimate outputs of our model, representing key indicators for the water-energy-food nexus. Focusing on the Iberian Peninsula and the Netherlands, we apply our model to assess three AVs configurations (fix-tilted array, sun tracking, sun antitracking) across three specific years (2015, 2018, 2020) for two types of crops. Specifically, we compare the performance of different configurations among themselves and against the situation without AVs systems to analyze different behaviors depending on climate conditions, crop type, and location and to explore the potential benefits of the AVs systems.

How to cite: Rapella, L., Drobinski, P., and Faranda, D.: Modelling Agrivoltaics in a climate perspective for water-energy-food nexus analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1491, https://doi.org/10.5194/egusphere-egu24-1491, 2024.

The escalating threat of water scarcity presents a dual challenge to both food production and water-related systems. The degradation of conventional water resources (e.g., surface water and ground water), coupled with insufficient investment in infrastructure, has compelled the water sector to seek alternative sources such as Non-Conventional Water Resources (NCW), encompassing reclaimed water reuse and desalination of brackish and seawater, as a long-term strategy, particularly in arid and semi-arid environments where irrigation is a vital component.
Recognizing the substantial potential of NCWs, this research presents the outcomes of an extensive study [1]. The study adopts a multidisciplinary approach, specifically employing Multi-Criteria Decision Making (MCDM), to assess the effectiveness of smart city water management strategies within the framework of NCWs. Utilizing representative criteria, our analysis involves objective judgment, assigns weights through the Analytic Hierarchy Process (AHP), and scores strategies based on their adherence to these criteria.
Our findings underscore the pivotal role of the "Effectiveness and Risk Management" criterion, carrying the highest weight at 15.28%, in shaping strategy evaluation and ensuring robustness. Criteria with medium weight include "Resource Efficiency, Equity, and Social Considerations" (10.44%), "Integration with Existing Systems, Technological Feasibility, and Ease of Implementation" (10.10%), and "Environmental Impact" (9.84%), focusing on ecological mitigation. Recognizing the importance of community engagement, "Community Engagement and Public Acceptance" (9.79%) is highlighted, while "Scalability and Adaptability" (9.35%) address the dynamics of changing conditions. Balancing financial and governance concerns are "Return on Investment" (9.07%) and "Regulatory and Policy Alignment" (8.8%). Two low-weight criteria, "Data Reliability" (8.78%) and "Long-Term Sustainability" (8.55%), emphasize data accuracy and sustainability.
Strategies with higher weights, such as "Smart Metering and Monitoring, Demand Management, Behavior Change," and "Smart Irrigation Systems," prove highly effective in enhancing water management in smart cities. Notably, medium-weighted strategies (e.g., "Educational Campaigns and Public Awareness," "Policy and Regulation," "Rainwater Harvesting," "Offshore Floating Photovoltaic Systems," "Collaboration and Partnerships," "Graywater Recycling and Reuse," and "Distributed Water Infrastructure") and low-weighted strategies (e.g., "Water Desalination") also contribute significantly, allowing for customization based on each smart city's unique context.
This research is of significance as it addresses the complexity of urban water resource management, offering a multi-criteria approach that enhances traditional single-focused methods. It comprehensively evaluates water strategies in smart cities and provides a criteria-weight-based resource allocation framework for sustainable decision-making, thereby boosting smart city resilience. It is essential to acknowledge that results may vary depending on specific smart city needs and constraints. Future studies are encouraged to explore factors such as climate change's impact on water management in smart cities and consider alternative MCDM methods like Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) or Elimination and Choice Expressing the Reality (ELECTRE) for strategy evaluation.

[1] Bouramdane, A.-A., Optimal Water Management Strategies: Paving the Way for Sustainability in Smart Cities. Smart Cities 2023, 6, 2849–2882. https://doi.org/10.3390/smartcities6050128

 

 

How to cite: Bouramdane, A.-A.: Sustainable Management Strategies for Non-Conventional Water Resources: Enhancing Food and Water Security in Arid and Semi-Arid Regions , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2856, https://doi.org/10.5194/egusphere-egu24-2856, 2024.

EGU24-3533 | Posters virtual | ERE1.5 | Highlight

Challenges and opportunities of using reclaimed water for agricultural irrigation in Spain: A hydro-economic analysis.  

Paloma Esteve, Irene Blanco-Gutiérrez, Marina RL Mautner, Samaneh Seifollahi-Aghmiuni, and Marisa Escobar

Growing pressure on water resources and climate uncertainty are driving the need for alternative water sources. In countries with severe water stress, such as Spain, the reuse of water from urban wastewater treatment plants has become a promising opportunity to secure and improve agricultural production. The use of reclaimed water in agriculture offers many significant economic and the environment benefits. In addition to preserving freshwaters, it increases the reliability of water supplies and provides a source of nutrients needed for crop growth and soil fertility. In recent years, the European Union and the Spanish government have promoted the reuse of reclaimed water for irrigation as part of their circular economy strategies. However, the uptake of this practice is still limited and so far deployed below its potential.

This study uses a hydro-economic model to investigate the potential for reclaimed water reuse in agriculture and effective water resource management in the Western La Mancha aquifer in Spain. In this region, groundwater abstraction for irrigation exceeds aquifer recharge, leading to conflicts between rural socio-economic development and water conservation. In this context, reclaimed water reuse is seen as an alternative source to groundwater that can contribute to reduce over-exploitation. An economic optimization model is linked to the hydrology model WEAP (Water Evaluation And Planning system) to analyse management alternatives, that include full compliance with the current water abstraction regime and different levels of reclaimed water reuse from the region’s urban wastewater treatment plants (current level and full potential). Climate uncertainty is also simulated and represented by projected precipitation and temperature changes from a selection of global climate models under different representative concentration pathways (4.5 and 8.5).

The results show that compliance with the abstraction regime can help to mitigate aquifer overexploitation. Reclaimed water reuse represents an additional effort for aquifer recovery, resulting in improved groundwater storage levels. Its effect is particularly relevant under climate change scenarios, although groundwater levels would show a downward trend. However, reusing reclaimed water for irrigation reduces effluent flows to rivers and has a negative impact on meeting the environmental needs of downstream wetlands. At the same time, water reuse could mitigate the negative impact of water scarcity on farm incomes, especially in municipalities with high-capacity treatment plants (> 1Mm3/year) where high value crops (vineyards, olives and horticultural crops) are grown. 

Overall, this research evidence uneven impacts of reclaimed water reuse across the basin. Its contribution to reversing groundwater depletion is limited and should be understood as part of the solution, but not as the solution itself. Our results provide valuable insights into the economic and environmental implications of reclaimed water reuse and can support policy decisions for the adoption of such alternatives for integrated and sustainable water resource management in semi-arid regions.

How to cite: Esteve, P., Blanco-Gutiérrez, I., Mautner, M. R., Seifollahi-Aghmiuni, S., and Escobar, M.: Challenges and opportunities of using reclaimed water for agricultural irrigation in Spain: A hydro-economic analysis. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3533, https://doi.org/10.5194/egusphere-egu24-3533, 2024.

EGU24-3941 | ECS | Orals | ERE1.5 | Highlight

Do non-conventional water resources lead to a better performance of irrigation communities? A comparative analysis between the regions of Murcia (Spain) and Apulia (Italy) 

Mario Ballesteros-Olza, Sarah Stempfle, Irene Blanco-Gutiérrez, Almudena Gómez-Ramos, Giacomo Giannoccaro, and Bernardo De Gennaro

In a context of growing global water demands, plus climate change affecting water resources availability, non-conventional water sources (like reclaimed water and desalinated seawater) are emerging as promising water supply alternatives. Given that agriculture is the major contributor to water withdrawals, this study analyzes if the use of non-conventional water for irrigation leads to a better performance of irrigation communities (ICs). To do so, the research includes several ICs from the Segura River Basin (southeast of Spain), a region with structural water deficit, which is pioneer regarding the use of non-conventional water; as well as ICs from the Apulia region (southeast of Italy), which also suffers from water scarcity problems, but is less experienced regarding the use of non-conventional water. A benchmarking analysis was carried out, based on a set of Key Performance Indicators (KPIs), such as irrigation efficiency, guarantee of water supply, energy costs or gross margin, among others. This methodology has been previously used in the framework of the water and drainage sector. Also, a Principal Component Analysis and Clustering Analysis were applied to explore potential dissimilarities between the studied ICs and their causes. Finally, a regression analysis was carried out to observe if the use of non-conventional water has any effects on the performance of the studied ICs. The results of this research may help to increase knowledge regarding the pros and cons of using these non-conventional water resources, depending on the socioeconomic, environmental and geographical context. This way, this study would contribute to promoting the use of non-conventional water in other regions, leaning towards a more sustainable use of water resources and, consequently, protecting and preserving water ecosystems.

How to cite: Ballesteros-Olza, M., Stempfle, S., Blanco-Gutiérrez, I., Gómez-Ramos, A., Giannoccaro, G., and De Gennaro, B.: Do non-conventional water resources lead to a better performance of irrigation communities? A comparative analysis between the regions of Murcia (Spain) and Apulia (Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3941, https://doi.org/10.5194/egusphere-egu24-3941, 2024.

EGU24-4136 | ECS | Orals | ERE1.5 | Highlight

The economic and environmental impacts of UK meat imports post-Brexit 

Kaixuan Wang, Lirong Liu, Jonathan Chenoweth, and Stephen Morse

The United Kingdom (UK), a high consumer of meat, has traditionally relied heavily on the European Union for its meat imports. However, with the advent of Brexit, the UK now faces the imperative of identifying potential meat-importing nations. The choices of different meat import countries not only impact the economy and environment of the UK but also other countries around the world. This study builds the UK Meat Trade-centred World Input-Output Model (UK-MTWIO), incorporating diverse import data within various scenarios. With different scenarios considering costs, GHG emission and animal welfare, this study analyzes the economic, environmental and animal welfare impacts on the UK and other countries worldwide. The novelty involves the comprehensive consideration of scenario setting, the application of RAS method as well as the animal welfare analysis with the method of world input-output model. The study reveals that beef imports have the most significant impact on the imports of the lamb and pork. Meanwhile, the changes in the UK's meat trade may change the trade partners of some major meat-importing countries. In terms of environment, some import scenarios have the potential to contribute to GHG emissions reduction in the global agricultural sector: CHN, MEX, and JPN are typical countries that are significantly impacted. The results of this study provides valuable insights for policymakers making meat trade decisions post-Brexit.

How to cite: Wang, K., Liu, L., Chenoweth, J., and Morse, S.: The economic and environmental impacts of UK meat imports post-Brexit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4136, https://doi.org/10.5194/egusphere-egu24-4136, 2024.

EGU24-5637 | ECS | Orals | ERE1.5

Balancing food system greenhouse gas emissions reduction and food security in China 

Hao Zhao, Haotian Zhang, Petr Havlik, and Jinfeng Chang

China's increasing food consumption, particularly for animal products, presents a substantial challenge to mitigating greenhouse gas (GHG) emissions, not only within China but also extending to its trading partners. In this study, we employ the well-established food system integrated assessment model (GLOBIOM-China) to comprehensively investigate GHG emissions within the context of China's future food consumption. Our study indicates that in the baseline scenario (BAU), GHG emissions from China's food consumption side are projected to be 965 million tonnes of CO2 equivalent (Mt CO2 eq) by 2060, similar to the current level. Domestically, ruminant production accounts for a substantial 44% of total consumption-based emissions. Meanwhile, livestock-related methane emissions take prominence in terms of different gas categories, comprising a significant 45%. Virtual GHG emissions import is expected to decrease due to the deceleration of land use change, while the GHG emissions attributable to livestock product imports are projected to incrementally rise, eventually constituting 17.2% of the total food consumption-based emissions. Striving for food self-sufficiency (SS scenario) offers a pathway to diminishing China's food system GHG emissions and virtually imported emissions by 6% and 43%, respectively. However, this scenario presents an increase of domestic emissions by 2% and simultaneously poses challenges to domestic land use and other related indicators. Maintaining basic food self-sufficiency, and reducing calorie intake from animal sources and improving production practices contribute to a 216 Mt CO2eq reduction of total GHG emissions. This approach not only holds promise for emission reduction but also brings broader benefits such as decreased agricultural commodity prices (by -28%), reduced nitrogen fertilizer uses (by -13%), diminished agricultural land requirement (by -10%), and only 2% decline in per capita calorie intake. Our study reconciles GHG mitigation strategies and food security within China's food system, thereby contributing significantly to global sustainable development.

How to cite: Zhao, H., Zhang, H., Havlik, P., and Chang, J.: Balancing food system greenhouse gas emissions reduction and food security in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5637, https://doi.org/10.5194/egusphere-egu24-5637, 2024.

EGU24-7331 | ECS | Orals | ERE1.5

Agricultural pollution in Indian Interstate Trade Network 

Shekhar Goyal, Raviraj Dave, Udit Bhatia, and Rohini Kumar

Humanity’s contemporary challenge in achieving global food security is sustainably feeding the rising global population. Intensive agricultural practices have powered green revolutions, helping nations attain self-sufficiency. However, these fertilizer-intensive methods and exploitative trade systems have created unsustainable agrarian systems. To probe the environmental consequences on production hubs, we map the fate of Nitrogen and Phosphorus in India’s interstate staple crop trade over the recent decade. Here, we analysed the spatiotemporal evolution of physical and virtual nutrient flow within India's interstate agricultural trade network, examining the environmental load on key production regions, assessing the sustainability of domestic wheat and rice trade systems in light of nutrient surplus, and providing policy recommendations for environmentally sustainable food security. Our examination of the cereal crop trade reveals that the Nation's food bowls contributing significantly towards domestic food security are sacrificing their environmental goals by becoming pollution-rich and water-poor. Our study emphasises policies focusing on redistributing funds from agricultural subsidies that aggravate environmental disparity to those incentivising sustainable production. The findings could offer a foundation for designing and exploring alternate trade network configurations that aim for environmental sustainability without compromising food security goals.

 

How to cite: Goyal, S., Dave, R., Bhatia, U., and Kumar, R.: Agricultural pollution in Indian Interstate Trade Network, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7331, https://doi.org/10.5194/egusphere-egu24-7331, 2024.

EGU24-7380 | ECS | Orals | ERE1.5

Removal of favipiravir and oseltamivir in domestic wastewater effluents using ozonation and catalytic ozonation 

Nasim Chavoshi, Serdar Dogruel, Nilay Bilgin-Saritas, Zeynep Karaoglu, Irem Ozturk-Ufuk, Ramazan Keyikoglu, Alireza Khataee, Emel Topuz, and Elif Pehlivanoglu-Mantas

The surge in pharmaceutical use during global pandemics, like SARS-CoV-2, has led to increased antiviral concentrations in wastewater treatment plant influents. The low biodegradability of certain antivirals poses a challenge for wastewater treatment, threatening aquatic and soil ecosystems. This study aimed to optimize ozonation and catalytic ozonation processes for removing two anti-COVID-19 drugs (namely, favipiravir and oseltamivir) and assess their ecotoxicological effects in the context of potential wastewater reuse.

In this study, samples with 50 µg/L of favipiravir and oseltamivir were added to synthetic wastewater with approximately 50 mg COD/L, mirroring a typical domestic effluent. Experiments involved three ozone doses (0.2, 0.6, and 1 mg O3/mg DOC) at pH levels of 7 and 10. Adding 0.1 g/L of ZnFe layered double hydroxide as a catalyst aimed to improve the ozonation efficiency. Samples with 0.1 mg/L polyethylene microplastics were prepared to explore the efficiency of the applied processes in the presence of microplastics. The target drugs were quantified by LC-MS/MS. E. crypticus was used to understand the ecotoxicological impact of the treatment techniques on the potential reuse of treated wastewater for irrigation.

Regardless of the ozone dose used, ozonation at pH=7 resulted in removal efficiencies of 84% and 64% for favipiravir and oseltamivir, respectively. Increasing the pH value to 10 did not improve favipiravir elimination, yet an additional removal of 21% was recorded for oseltamivir at all three ozone doses. During catalytic ozonation, an approximately 30% decline in the abatement of drugs was observed when compared with ozonation alone, which could be attributed to either adsorption of ozone on the catalyst’s active-sites (blockage of active-sites and reduction in the availability of ozone radicals) or production of refractory by-products (enhancement in the competition between radicals and active-sites). In the presence of microplastics, ozonation experiments at pH=7 provided an average decrease of about 30% in the removal efficiency for both drugs whereas ozonation at pH of 10 resulted in an approximately 15% fall in the elimination level. Catalytic ozonation in the absence of microplastics, however, showed positive effects on the reduction rates of the examined drugs since the applied process yielded an improvement in the abatement of 14 and 7% for favipiravir and oseltamivir, respectively. Both in the presence and absence of microplastics, ozonation and catalytic ozonation of antivirals at pH=7 did not lead to any toxic effects for the reproduction of E. crypticus; instead, an increase in the reproduction performance was found, possibly due to the formation of more biodegradable organic intermediates. The experimental data obtained revealed that ozonation or catalytic ozonation could be viable alternatives for upgrading the existing wastewater treatment plants as they functioned well as a complementary treatment process not only to reduce the release of antivirals from domestic effluents, but also to substantially increase the reuse potential of treated wastewater for irrigation purposes.

This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project #121Y383) and Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU-BAP, Project # MYL-2023-44496).

How to cite: Chavoshi, N., Dogruel, S., Bilgin-Saritas, N., Karaoglu, Z., Ozturk-Ufuk, I., Keyikoglu, R., Khataee, A., Topuz, E., and Pehlivanoglu-Mantas, E.: Removal of favipiravir and oseltamivir in domestic wastewater effluents using ozonation and catalytic ozonation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7380, https://doi.org/10.5194/egusphere-egu24-7380, 2024.

EGU24-7458 | ECS | Orals | ERE1.5 | Highlight

Leveraging renewable energy solutions for distributed urban water management: The case of sewer mining 

Athanasios Zisos, Klio Monokrousou, Konstantinos Tsimnadis, Ioannis Dafnos, Katerina Dimitrou, Andreas Efstratiadis, and Christos Makropoulos

As urban populations swell and infrastructure demands escalate, managing resources sustainably becomes increasingly challenging. This paper focuses on the energy challenges inherent in distributed water management systems, using sewer mining as an example. Sewer mining is a distributed water management solution involving mobile wastewater treatment units that extract and treat wastewater locally. In this context, we examine the integration of renewable energy sources, specifically solar photovoltaics, to reduce reliance on traditional power grids, highlighting a pilot implementation at the Athens Plant Nursery in Greece since 2021. The study evaluates various system configurations, balancing performance with landscape integration, to propose a scalable and robust model for distributed water management. This approach not only addresses the direct energy requirements of water treatment systems but also contributes to the broader agenda of circular economy, by enhancing the sustainability and resilience of urban water infrastructure.

This work is supported by IMPETUS research project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101037084

How to cite: Zisos, A., Monokrousou, K., Tsimnadis, K., Dafnos, I., Dimitrou, K., Efstratiadis, A., and Makropoulos, C.: Leveraging renewable energy solutions for distributed urban water management: The case of sewer mining, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7458, https://doi.org/10.5194/egusphere-egu24-7458, 2024.

EGU24-7880 | ECS | Orals | ERE1.5

Crop switching in the Indo-Gangetic Plain of India can improve water and food sustainability with increased farmers’ profit 

Ruparati Chakraborti, Kyle Frankel Davis, Ruth DeFries, Narasimha D. Rao, Jisha Joseph, and Subimal Ghosh

Water and food security in the Indo-Gangetic Plain (IGP) is severely affected due to the intensive irrigated agriculture, growing population, and changing climate. Agricultural intensification with the water-intensive rice-wheat system has increased the water demand in India. The declining monsoon rainfall and increased irrigation with more reliance on groundwater sources have resulted in groundwater depletion over India’s fertile region, the Indo-Gangetic Plain (IGP), with high energy usage. Despite several agricultural technology developments, no improvement is found in calorie production from cereal crops per unit of water consumption in the IGP. Crop switching from water-intensive rice and wheat to climate-resilient nutri-cereals can be a potential solution for water sustainability, but other dimensions i.e. food supply, and farmers’ profit need to be considered for implementation. So, a multi-objective optimization framework is needed to address the social, economic, and environmental sustainability objectives which are conflicting in nature, to find the optimal cropping pattern. In this study, an optimization model is developed and applied for crop switching with objectives to maximize calorie production, and farmers’ profit and to minimize water consumption by reallocating the cropped areas between cereals at the district level. Application of the model suggests switching from rice to millet and sorghum in the Kharif Season (monsoon), and wheat to sorghum and barley in the Rabi season (winter), which could potentially decrease water consumption by 32%, increase calorie production by 39%, and elevate farmers' profits by 140%. Water and energy savings (with the replaced cropping pattern are higher than changing irrigation practices (i.e. from flood to drip). So, crop switching coupled with efficient irrigation practices (drip) contributes to saving more energy and water. These findings suggest the potential of crop switching to address the multidimensional sustainability challenges in agricultural practices in the IGP, with a scope of application to other regions grappling with similar issues. The implementation of crop switching is driven by multiple factors such as the willingness of farmers, incentives, and other strategies for farmers to shift crop practice, procurement of nutri cereals through Minimum Support Price, subsidized supply through the Public Distribution System, and consumer demand; thus, leaving an opportunity to explore these aspects in future studies for policy framing towards sustainable agricultural practices.

How to cite: Chakraborti, R., Davis, K. F., DeFries, R., D. Rao, N., Joseph, J., and Ghosh, S.: Crop switching in the Indo-Gangetic Plain of India can improve water and food sustainability with increased farmers’ profit, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7880, https://doi.org/10.5194/egusphere-egu24-7880, 2024.

EGU24-9881 | ECS | Posters on site | ERE1.5

Comparison of different interpolation techniques for sub-basins located in Madrid. 

Blanca Cuevas, Elena Pascual, Carlota Bernal, and Sergio Zubelzu

Soil hydrophysical properties can be very spatially and temporally heterogeneous even in small areas. Due to this spatial and temporal variability, it is impossible to obtain real data for each point of interest. Therefore, the possibility to obtain the optimal estimated value, at any desired point, is decisive. The aim is to evaluate different methods to minimise the error made in this measurement.

Two basins were selected in the Autonomous Community of Madrid (Spain), where hydraulic conductivity data were taken at different points. All sampling point in both basins were georeferenced. For each basing different interpolation methods were tested. The methods used are Spline, Inverse Distance Weighted Interpolation (IDW), Kriging, and Thiessen Polygons. With the help of the Matlab program, the values for each method were obtained. Finally, the error is used for the analysis.

Differences among the obtained data by each method are expected to be found. In addition to the differences between the number of samples and the error, and the location in the basin of the samples.

In conclusion, it is hoped to find the most appropriate method for obtaining a value as close to reality as possible. Furthermore, it is expected to be able to use this methodology in other situations.

Acknowledgements: This research Project has been funded by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Politécnica de Madrid

How to cite: Cuevas, B., Pascual, E., Bernal, C., and Zubelzu, S.: Comparison of different interpolation techniques for sub-basins located in Madrid., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9881, https://doi.org/10.5194/egusphere-egu24-9881, 2024.

EGU24-11353 | ECS | Orals | ERE1.5

Agroforestry management practices as nature-based solutions for climate change adaptation in the Galapagos Islands 

Ilia Alomia, Yessenia Montes, Rose Paque, Jean Dixon, Armando Molina, and Veerle Vanacker

Small tropical islands in the Pacific Ocean are highly vulnerable to climate change. Nature-based solutions can help local communities adapt their local agricultural systems. Through a comparative analysis, we evaluated the effects of agroforestry management practices on soil temperature, soil water availability and storage, and carbon stocks in Santa Cruz Island (Galapagos Archipelago). We installed six monitoring sites that consist of two replicates per agroforestry management practices: (i) conservation of native forest, (ii) traditional agroforestry, and (iii) abandoned farmland in passive restoration. After pedological characterization of the sites, the soil physicochemical and hydrological properties were determined in the laboratory. Over 30 months (July 2019 to December 2021), the environmental sensors captured the hydrometeorological and soil physical and hydrological properties of the sites. This was done by a dense network of rain gauges, air temperature and relative humidity sensors, and time-domain reflectance probes that registered volumetric water content and soil temperature.

We measured differences in soil temperature, moisture availability and soil organic carbon content between soils under forest, traditional agroforestry and passive restoration. Forest soils are protected from direct solar radiation, and trees keep the soil 12% cooler than soils converted to agricultural land. Soil moisture is 20% higher under forest than under traditional agroforestry or abandoned farmland, and forest soils have a lower dry bulk density, lower saturated hydraulic conductivity and higher water retention capacity. The forests and sites under passive restoration store more than 377 Mg C. ha-1 (1 m depth), about 50% more than under traditional agroforestry. The study shows that conserving forest patches in an agricultural landscape might be a promising strategy to mitigate increasing soil temperatures, agricultural drought, and decline in soil organic carbon content. However, more studies on landscape scale are needed to corroborate those results.

How to cite: Alomia, I., Montes, Y., Paque, R., Dixon, J., Molina, A., and Vanacker, V.: Agroforestry management practices as nature-based solutions for climate change adaptation in the Galapagos Islands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11353, https://doi.org/10.5194/egusphere-egu24-11353, 2024.

EGU24-11369 | ECS | Orals | ERE1.5

Expert-based global database of sand dams dimensions and distribution across drylands 

Jessica Eisma, Luigi Piemontese, Giulio Castelli, Ruth Quinn, Bongani Mpofu, Doug Graber Neufeld, Cate Ryan, Hannah Ritchie, Lorenzo Villani, and Elena Bresci

Sand dams are water harvesting structures built across ephemeral sandy rivers to increase water supply in drylands. Despite their effectiveness in reducing water scarcity for local communities and their recent traction in research and development, information on their distribution and characteristics are sporadic and largely unreported. This gap represents a major barrier for understanding the large-scale potential of such a Nature-based Solution for drylands and planning for new infrastructure. This paper presents a global database of sand dam locations and dimensions developed within a collaboration between research and development experts on the topic. We collected sand dam information on location from several sources, ranging from research reports to databases provided by practitioners. We then reviewed and enriched them based on visual inspection from Google Earth images. The georeferenced information provided by the database can support research development on the effectiveness of sand dams and support practitioners with science-based criteria for sand dam development across global drylands.

How to cite: Eisma, J., Piemontese, L., Castelli, G., Quinn, R., Mpofu, B., Graber Neufeld, D., Ryan, C., Ritchie, H., Villani, L., and Bresci, E.: Expert-based global database of sand dams dimensions and distribution across drylands, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11369, https://doi.org/10.5194/egusphere-egu24-11369, 2024.

Pumping energy is a key component of the groundwater governance challenge. Yet it is largely missing in the discourse on agricultural use of groundwater. A sub-category of literature studying groundwater-energy nexus tends to focus on groundwater depletion hotspots where entrenched interests and long-standing history restrict the range of feasible energy models. We simulate expected impacts of expanding groundwater irrigation under five different energy provision models in a region with among the lowest irrigation coverage, and therefore, free of path dependent policies. We find aquifer properties play a crucial role in mediating the groundwater-energy nexus. On average, the maximum volume of water that can be pumped from a well of a specific depth in an alluvial aquifer is approximately 150 times the volume that can be pumped from a well in a hard-rock aquifer. Therefore, managing uncertainty in groundwater consumption is a far greater challenge in alluvial than hard-rock aquifers. Uncertainty in groundwater consumption can be limited in hard-rock aquifers if the number of wells and depths of wells can be controlled - capital subsidies for well construction could be a potential policy. Our results imply that while solar pumps are a risky alternative in alluvial aquifers for maintaining current and future groundwater levels, they are relatively safe and among the most economical for expanding irrigation in hard-rock regions. Using a novel dataset comprising of biophysical and socioeconomic data, we find hard-rock regions to have limited irrigation coverage, high availability of annually replenishable groundwater, and high concentrations of marginalized farmers. Therefore, groundwater irrigation expansion in hard-rock areas could have dual benefits of ensuring future food security and targeting poverty reduction.

How to cite: Ray, S.: Balancing groundwater access and sustainability through energy pricing in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13972, https://doi.org/10.5194/egusphere-egu24-13972, 2024.

EGU24-14721 | Posters on site | ERE1.5

Silage  production from olive mil wastes  

Ioannis Manariotis, Styliani Biliani, Maria Varvara Manarioti, and Nikolaos Athanassolpoulos

Within the European Union, approximately 129 Mtons of food waste were generated in 2011, and about 52% of them derived from post-processing activities. The most common by-products originated from the food industry are spent coffee grounds, sugar cane waste, and fruit peels, while the main agricultural wastes are livestock slurry, manure, crop residue, and woodland pruning and maintenance wastes. The olive tree is cultivated worldwide, and more than 90% of the cultivated area is located in the Mediterranean basin. The olive oil extraction is carried out using two- or three-phase centrifuge systems. The olive mill wastes can be incorporated into the diets of productive animals, especially ruminants, due to their high fiber content. The aim of this work was to investigate the optimum conditions for silage production for animal food using olive oil wastes from a diphasic olive mill facility. Olive mill waste and straw were the base materials for silage composition: 53 to 55% and 45 to 47%, respectively (dry weight basis). Different mass ratios of molasse (0 to 4%) and urea (0 to 1%) per olive mill mass (dry weight) were used. The presence of urea and the absence of molasses turned out to be inhibitory factors for the silage process. The highest molasses rates the highest efficiency of silage production.

How to cite: Manariotis, I., Biliani, S., Manarioti, M. V., and Athanassolpoulos, N.: Silage  production from olive mil wastes , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14721, https://doi.org/10.5194/egusphere-egu24-14721, 2024.

EGU24-14983 | ECS | Orals | ERE1.5 | Highlight

Reducing climate change impacts and inequality of the global food system through diet shifts 

Yanxian Li, Pan He, Yuli Shan, Yu Li, Ye Hang, Shuai Shao, Franco Ruzzenenti, and Klaus Hubacek

How much and what we eat and where it is produced can create huge differences in greenhouse gas emissions. Bridging food consumption with detailed household-expenditure data, this study estimates dietary emissions from 13 food categories consumed by 201 expenditure groups in 139 countries, and further models the emission mitigation potential of worldwide adoption of the EAT–Lancet planetary health diet. We find that the consumption of groups with higher expenditures generally creates larger dietary emissions due to excessive red meat and dairy intake. As countries develop, the disparities in both emission volumes and patterns among expenditure groups tend to decrease. Global dietary emissions would fall by 17% if all countries adopted the planetary health diet, primarily attributed to decreased red meat and grains, despite a substantial increase in emissions related to increased consumption of legumes and nuts. The wealthiest populations in developed and rapidly developing countries have greater potential to reduce emissions through diet shifts, while the bottom and lower-middle populations from developing countries would cause a considerable emission increase to reach the planetary health diet. Our findings highlight the opportunities and challenges to combat climate change and reduce food inequality through shifting to healthier diets.

How to cite: Li, Y., He, P., Shan, Y., Li, Y., Hang, Y., Shao, S., Ruzzenenti, F., and Hubacek, K.: Reducing climate change impacts and inequality of the global food system through diet shifts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14983, https://doi.org/10.5194/egusphere-egu24-14983, 2024.

EGU24-15307 | ECS | Orals | ERE1.5

Tracking real-time impacts of climate variability and trade disruptions on water and food security  

Marijn Gülpen, Christian Siderius, Ype van der Velde, Jon Cranko Page, Jan Biermann, Ronald Hutjes, Lisanne Nauta, Samuel Sutanto, and Hester Biemans

Food insecurity results from a complex interplay of climate, socio-economic and political drivers, with local food security being frequently influenced by events elsewhere. Recent unprecedented climate events and economic disruptions such as Covid-19 and the resurgence of large intra- and inter-state conflict, show the diverse and unpredictable nature of risk, which can suddenly impacting food production and supply chains.

Here, we present a coupled hydrology-crop production-trade model that is able to simulate, in real time, current and near-future risks to water and food security. The model combines an operational process-based simulation of global crop production and hydrology with an ML-powered trade module, trained on FAOs detailed trade matrix dataset. It is updated monthly with the latest ERA5 climate data from the Copernicus Data Store to assess current risk, and can be forced with seasonal forecasting and long term climate projections up to 2100. The model explains about 50% of yield variability in major growing regions - a critical characteristic for nowcasts or seasonal forecasts – and the majority of food trade and trends therein, but generally still underestimates the variability. As a first step to better reproduce observed crop yield anomalies we improved the simulation of growing seasons in the production model.  

By combining production with trade, we are able to estimate the impact of climate-related yield anomalies elsewhere, and to assess risks for water- and food security at the country, regional or global scale. Derived indicators provide a real-time insight into, for example, food production and storage per capita, crop water productivity, or crop or export specific water stress. Through continued evaluation and learning, we expect to be able to better identify emerging stresses in the food system and its drivers, and support early anticipation of potential future food security risks. This should ultimately lead to a better understanding of the complexity of the global food system and eventually result in a more sustainable food system.

How to cite: Gülpen, M., Siderius, C., van der Velde, Y., Cranko Page, J., Biermann, J., Hutjes, R., Nauta, L., Sutanto, S., and Biemans, H.: Tracking real-time impacts of climate variability and trade disruptions on water and food security , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15307, https://doi.org/10.5194/egusphere-egu24-15307, 2024.

EGU24-15345 | ECS | Orals | ERE1.5

Atrazine Removal in Constructed Wetlands: Efficacy of Monocultures versus Polycultures 

Sai Kiran Pilla, Mahak Jain, Partha Sarathi Ghosal, and Ashok Kumar Gupta

The Green Revolution in India, from 1967-68 to 1977-78, led to a significant shift in the country's agricultural landscape, transforming it from an insufficient food production country to a global agricultural power. This led to an increase in the use of pesticides, such as atrazine, which can pollute water sources and endanger aquatic habitats. This research aims to find sustainable and practical techniques for atrazine remediation within aquatic habitats. Literature suggests that macrophyte richness enhances the functionality of constructed wetlands (CWs), but the predominant practice is monocultures. The functional diversity within macrophyte communities is crucial for optimal performance of CWs for contaminant remediation. CWs with diverse growth forms exhibit enhanced plant growth and superior nutrient removal capabilities. The study evaluates atrazine removal efficacy of polyculture and monoculture plantation, monitoring the efficiency of various individual macrophyte, such as Canna indica and Phragmites Australis for atrazine detoxification. The findings could guide the formulation of sustainable and efficacious atrazine remediation strategies, safeguarding water quality and the integrity of aquatic ecosystems.

How to cite: Pilla, S. K., Jain, M., Ghosal, P. S., and Gupta, A. K.: Atrazine Removal in Constructed Wetlands: Efficacy of Monocultures versus Polycultures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15345, https://doi.org/10.5194/egusphere-egu24-15345, 2024.

EGU24-16795 | ECS | Posters on site | ERE1.5 | Highlight

Food loss & waste of staple crop products: mapping environmental impacts within the Nexus paradigm 

Francesco Semeria, Giacomo Falchetta, Adriano Vinca, Francesco Laio, Luca Ridolfi, and Marta Tuninetti

Over the last decade, a combination of economic uncertainty, supply shocks, and extreme climate events has led to a renewed prevalence of undernourishment, posing a serious threat to the realization of the Zero Hunger Sustainable Development Goal. Future scenarios are likely to be even more challenging to its accomplishment, based on projected trends of population growth and human-induced climate change impacts. There is urgent need for the development and implementation of sustainable transformation pathways to make agri-food systems worldwide more resilient and capable to sustain these pressures. These pathways should include a wide range of actions, targeting all stages of the value chain. Reducing food loss and waste (FLW), which currently accounts for approximately one-third of the food produced, is considered among those with the largest potential, with significant environmental co-benefits on the Water-Energy-Food-Ecosystem Nexus. The presence of complex and tele-coupled trade networks however, together with the lack of robust and granular datasets, make it difficult for researchers to run detailed analyses on this issue.

In this work we estimate the FLW associated to the consumption of a wide range of staple crops globally, disaggregating between the single food commodities and the different stages of the value chain. Moreover, we investigate the associated impacts on the water, land, and energy resources. The methodology applied allows us to trace the environmental impacts from the countries of production and manufacturing, where resources have been used, to the countries of consumption (from farm to fork) and backwards (from fork to farm), offering a dual perspective on the complex system. Our preliminary results show that over 20% of the quantities cultivated are wasted through FLW, globally. Transnational flows of FLW – and of associated virtual resources – compose a vast multi-layered network involving most of the countries worldwide. Differentiated impacts are observed, depending on the countries’ role in the network: while large exporters bear substantial impacts of FLW occurring abroad on their resources, net-importing nations transfer large portions of the environmental effects of the FLW associated with their consumptions onto foreign stocks. The ability to discern between the single food commodities, without aggregating primary and derived products, increases the level of specificity from past research. This detailed data is valuable for informing public policies, providing a more fine-grained approach to prioritize efforts in reducing FLW and its associated impacts.

How to cite: Semeria, F., Falchetta, G., Vinca, A., Laio, F., Ridolfi, L., and Tuninetti, M.: Food loss & waste of staple crop products: mapping environmental impacts within the Nexus paradigm, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16795, https://doi.org/10.5194/egusphere-egu24-16795, 2024.

EGU24-18001 | ECS | Orals | ERE1.5

Adsorptive removal of humic acid from water by magnesium oxide 

Rupal Sinha and Partha Sarathi Ghosal

Disinfection is a critical drinking water treatment procedure to guarantee water safety in urban water supply systems. However, an inevitable consequence is the generation of secondary pollutants, referred to as disinfection byproducts (DBPs). Toxicological researches have linked the ingestion of DBPs to harmful human health consequences like a higher risk of bladder cancer, reproductive problems, etc. Subsequently, the water authorities face immense challenges due to their existence in the drinking water. The foremost approach to limiting their generation in the drinking water is to eliminate their precursors prior-to disinfection. Humic acid (HA), a significant constituent of the natural organic matter in surface water, has been acknowledged as the primary precursor of DBPs. Thus, the present work aims to reduce humic acid content in water by magnesium oxide (MgO) adsorbent. To ascertain the mechanism of humic acid removal, characterizations of the adsorbents were conducted both before and after. At neutral pH level, the impacts of various process parameters are examined, including contact time, adsorbent dosage, initial humic acid concentration, and temperature. Moreover, studies were performed to assess the effects of different solution pH on the elimination of humic acid. The removal of humic acid was found to be increased at low pH. At pH 3, over 85% elimination was obtained. Furthermore, the role of several anions, including nitrate, sulfate, and chloride, in the adsorption of humic acid has also been evaluated. Overall, the present study would be conducive to proving the applicability of MgO for the reduction of HA and other organic matter from water and, hence, reduce the generation of DBPs.

How to cite: Sinha, R. and Ghosal, P. S.: Adsorptive removal of humic acid from water by magnesium oxide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18001, https://doi.org/10.5194/egusphere-egu24-18001, 2024.

Life Cycle Assessment (LCA) is a systematic approach used to evaluate the environmental impacts of products, services, or activities throughout their life cycle, from raw material acquisition and production to use and final disposal or recycling stages. The goal of LCA is to comprehensively assess environmental impacts across the entire life cycle, including energy consumption, greenhouse gas emissions, water and land use, and more. The execution of LCA primarily involves four stages: "goal and scope definition," "life cycle inventory," "life cycle impact assessment," and "life cycle interpretation." This method helps identify and improve environmental hotspots in products or activities, aiming to reduce adverse impacts on the environment.

This study references the "Packaging Lunch Box Product Category Rules" published by the Environmental Protection Administration of the Executive Yuan in Taiwan. Using a vegetarian lunch box manufacturer in Taiwan as a data source, a "Vegetarian Lunch Box Carbon Footprint Calculation Tool" was developed using SimaPro. Users can input first-tier data for each stage of the product life cycle (such as raw material input, energy, transportation distance, and output products), enabling the calculation of the carbon footprint of the vegetarian lunch box.

However, during the "life cycle interpretation" stage, this study found that the "raw material acquisition stage" contributes 80% of the carbon footprint throughout the entire life cycle of the vegetarian lunch box. This indicates significant negative environmental impacts during the "agricultural production" process. As a result, the study traces the environmental impacts of upstream agricultural production processes for grains and vegetables and proposes an improvement strategy: regenerative agriculture.

Regenerative agriculture practices include protective tillage to reduce physical soil disturbance, increasing biodiversity in fields, cover cropping to enhance soil carbon and prevent erosion, crop rotation for balanced soil nutrient use, and refraining from using chemical fertilizers and pesticides. The goal of regenerative agriculture is to sequester carbon in the soil and above-ground biomass, reducing greenhouse gas emissions, increasing crop yields, enhancing resilience to unstable climates, and improving the health and vitality of rural communities.

This study will also employ the life cycle assessment method to collect inputs and outputs for both conventional farming practices and regenerative agriculture, comparing their environmental impacts.

How to cite: Chen, C.-K. and Tung, C.-P.: Application of Life Cycle Assessment in Vegetarian Lunch Box: Environmental Impact Hotspot Analysis of Whole Grain and Vegetable Production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18099, https://doi.org/10.5194/egusphere-egu24-18099, 2024.

EGU24-20605 | ECS | Posters on site | ERE1.5

Exploring the potential of cowpea inoculation in Namibia for improved resource use and human nutrition 

Jihye Jeong, Kerstin Jantke, and Uwe. A Schneider
  • Motivation, problem statement and aim

Cowpea is an important source of protein in the semiarid parts of sub-Saharan Africa. Even under water or temperature stress, cowpea can produce grain and fix nitrogen. The robustness of cowpea makes them a good choice especially for smallholder farmers with limited resource. Inoculated cowpea is not only more resilient against many plant diseases, but also can fix nitrogen more effectively.

Located in sub-Saharan region, water supply is a constant struggle of Namibia. In addition, due to dry climate and soil characters, only 1% of the country is arable. In contrast to harsh natural condition, over 70% of population depends their livelihoods on agriculture. For insufficient production, food supply in Namibia is highly dependent on imports. This combination of natural and societal condition puts Namibian population into nutrition hazard.

Thereby, the study aims to investigate the potential of cowpea inoculation in Namibia by answering the following questions:

1) How much can inoculation increase cowpea production in Namibia?

2) How much land and water resource can be saved by introducing inoculation in cowpea cultivation?

  • Methodology

Environment Policy and Integrated Climate (EPIC) model is adopted for crop simulation. It is calibrated specifically to the Namibian agricultural environment. Different climate scenarios and agricultural management systems are simulated in EPIC. The simulation result is used in optimisation modelling using General Algebraic Modelling System (GAMS). The model is simulated under objective of maximum food production given the current population.

  • Result

Primarily, potential cowpea production is depicted in both inoculated and non-inoculated scenarios. The simulation considers the total arable land of the country and subsistence farming as the only farming management. Cowpea production increases by 26% with inoculation.

The land and water use of inoculated cowpea cultivation is shown in relative to non-inoculated cowpea cultivation. In the perspective of current resource availability, the relative resource use is elaborated. Inoculation saves up to 23% of land and 79% of water use.

  • Conclusion

By introducing inoculation in cowpea cultivation, Namibia is expected to have meaningful increase in production and decrease in both land and water use. Since cowpea is already well integrated in smallholder farmers’ practice, the adoption of inoculation can penetrate the positive effects into remote and vulnerable areas.

How to cite: Jeong, J., Jantke, K., and Schneider, Uwe. A.: Exploring the potential of cowpea inoculation in Namibia for improved resource use and human nutrition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20605, https://doi.org/10.5194/egusphere-egu24-20605, 2024.

EGU24-21484 | Orals | ERE1.5

Sustainable and digitalized water management in rural environments in the SUDOE area (GestEAUr project) 

Jose Luis Molina, Victor Monsalvo, Angel Encinas, and Engracia Lacasa

The rural areas of the SUDOE present many common challenges related to the integrated water cycle: the scarcity of water resources (aggravated by climate change), the impact of agricultural and livestock activities on water quality (and the consequent difficulty of reconciling compliance with the European directive, the continuity of economic activity and the availability of water) and the lack of efficiency and profitability in management (with obsolete facilities and few human resources).
It is essential to strengthen collaboration networks between the many stakeholders involved in water resources management in order to implement efficient, sustainable and cost-effective techniques for water purification, reuse and treatment. To this end, it is necessary to create a new governance system based on territorial cooperation. Water is a common good and, as such, it does not understand borders.
The project will develop a strategy to improve water efficiency and quality in rural SUDOE areas in a context of climate change, 5 action plans for 4 organizations to improve water supply and treatment services, 3 pilot tests of cost-effective and sustainable solutions for water purification, purification and reuse, and a digital tool for 2 organizations to improve water management. In addition, it will improve the capacities of public authorities in 3 countries and the knowledge of water purification, treatment and reuse techniques like water treatment, reuse and purification techniques of 3 scientific institutions.
GestEAUr will adopt an innovative approach, addressing the integrated water cycle holistically (taking into account all its stages) and will go beyond existing practice, which tends to apply the same solutions whatever the characteristics of the territory where they are implemented.
Consequently, it will analyze and test cost-effective, cutting-edge and nature-based techniques (and combinations of techniques) (SBN) specific to the needs of rural areas in the SUDOE. It will also provide digital tools to optimize and facilitate their management and planning.

How to cite: Molina, J. L., Monsalvo, V., Encinas, A., and Lacasa, E.: Sustainable and digitalized water management in rural environments in the SUDOE area (GestEAUr project), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21484, https://doi.org/10.5194/egusphere-egu24-21484, 2024.

EGU24-1146 | ECS | Orals | ERE1.6

Mitigation of GHG emission from the wastewater treatment plant: Life cycle assessment approach 

Praveen Kumar Vidyarthi, Pratham Arora, Nadège Blond, and Jean-Luc Ponche

The rapid expansion of wastewater treatment plants, aimed at mitigating global water stress, has significantly increased the energy demand. In India, the anticipated rise in sewage generation to treatment ratio from 46% to 80% by 2050 [1]. It is expected to further intensify the energy demand of treatment facilities to meet national standards. This required energy, predominantly in the form of electricity, primarily fulfill from coal-based thermal plants, consequently contributing to air pollution and emissions. Moreover, enhancing the oxygen supply in the biological process to improve treatment efficiency is projected to escalate direct greenhouse gas (GHG) emissions. India's central electricity authority reports that the Indian grid produces around 0.91 kg CO2eq/kWh. A typical wastewater treatment plant (WWTP) demands an average of 185 kWh per million litres per day (MLD), resulting in approximately 168.35 kilograms of CO2 equivalent emissions per MLD [2]. Exploring alternative mitigation measures becomes imperative to address the energy demand from the grid. One approach involves employing mitigation technologies like gasification, anaerobic digestion, or pyrolysis to generate electricity from the sludge process. The study aims to estimate direct and indirect emissions from WWTPs by conducting a comprehensive life cycle assessment of various mitigation technologies. Notably, gasification, anaerobic digestion, and pyrolysis demonstrate potential emission reductions of around 81.8%, 57.2%, and 36.4%, respectively.

How to cite: Vidyarthi, P. K., Arora, P., Blond, N., and Ponche, J.-L.: Mitigation of GHG emission from the wastewater treatment plant: Life cycle assessment approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1146, https://doi.org/10.5194/egusphere-egu24-1146, 2024.

The Ulan Buh Desert, as one of China's eight significant deserts, is situated in the country's northwestern region and encompasses a diverse array of landscapes, including various desert types, vegetation, water bodies, and other landforms. This diversity is crucial for the ecological integrity and safety of the Yellow River Basin. The desert is notably constrained by water availability, and there has been a notable expansion in the degree of human activities, particularly regarding agricultural development, in the area.

Over the past 32 years, studies tracking the temporal and spatial variations of the Normalized Difference Vegetation Index (NDVI) in the Ulan Buh Desert have revealed a consistent increase in vegetative cover. Through the analysis of drivers such as climate change and human activity, it has been determined that temperature exhibits a positive correlation with NDVI, a relationship that has strengthened progressively over the years. Conversely, precipitation's influence on NDVI has been relatively insignificant. On the human activity front, contributions to NDVI changes have grown considerably, with such activities accounting for nearly a 50% increase in the vegetative index, suggesting that human interventions are increasingly aligning with ecological rehabilitation and positive environmental outcomes.

By scrutinizing the ecological consequences of both natural processes and human endeavors on the Ulan Buh Desert, insights gleaned can offer actionable recommendations for ecological restoration efforts, ensuring the sustainable management and recovery of this vital region.

How to cite: Yan, Y. and Cheng, Y.: Study of Changes in the Ulan Buh Desert under the Dual Impacts of Natural and Anthropogenic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1249, https://doi.org/10.5194/egusphere-egu24-1249, 2024.

EGU24-1717 | ECS | Orals | ERE1.6 | Highlight

Air quality improvements can strengthen China's food security 

Xiang Liu, Bowen Chu, Rong Tang, Yifan Liu, Xing Li, Jingfeng Xiao, Ankur Desai, and Haikun Wang

China, with nearly 20% of the world's population, achieves self-sufficiency in major grain production using only about 10% of the global arable land. To further ensure food security in China, it is crucial to gain a deep understanding of the driving factors behind grain production. Climate change, water scarcity, and air pollution pose serious threats to food production. Air quality in China is among the poorest in the world, thus quantifying its impact on grain production not only holds significance for maintaining its food security but also provides valuable insights into future air quality management policies. Here, we conducted a comprehensive analysis of the impact of aerosols and ozone on crop growth by integrating long-term, high spatial-temporal resolution remote sensing SIF data, crop planting information, and nationwide air pollution concentration data using nonlinear functional relationships and a two-way fixed-effects statistical model. The results show a consistent negative impact of ozone pollution on crop growth, while the effect of aerosols is varied by crop type and geographic location. By establishing a quantitative response relationship between crop growth and pollutant concentrations, we found that when China reaches the standard of 35 µg m-3 PM2.5, the average yields of corn, rice, and wheat nationwide will change by 0.45 ± 0.8%, 0.70 ± 0.22%, and −5.28 ± 2.97%, respectively. At the same time, reaching a warm-season ozone concentration of 60 µg m-3 in China will result in average national yield increases of 7.40 ± 1.32%, 3.40 ± 0.56%, and 8.71 ± 1.85% for corn, rice, and wheat, respectively. If China simultaneously meets both air pollution standards, the average daily per capita calorie intake of the three major crops will increase by 4.51%. Finally, our study suggests that, compared to reducing PM2.5, reducing ozone can more effectively increase domestic grain supply and further maintain China’s food security.

How to cite: Liu, X., Chu, B., Tang, R., Liu, Y., Li, X., Xiao, J., Desai, A., and Wang, H.: Air quality improvements can strengthen China's food security, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1717, https://doi.org/10.5194/egusphere-egu24-1717, 2024.

Diversifying cropping systems with grain legumes has been identified as a key measure to achieve the objectives set by European policies in terms of sustainability and protein self-sufficiency. Because grain legumes are sensitive to numerous biotic and abiotic stresses, expanding their production area in the context of climate change will require the implementation of adaptation strategies.

The objectives of this study are to shed light on what knowledge is needed by stakeholders to adapt grain legume cultivation to climate change and to assess matches and mismatches between these needs and crop-climate modelling. To this aim, we performed (i) a systematic literature review (n=83) to summarise recent simulation studies that assessed the impact of climate change and adaptation on grain legume performances in Europe, and (ii) interviews with 30 stakeholders involved in different stages of the value chain in France (cooperatives, seed breeders, extension services) to identify their needs.

Stakeholders’ information needs could be grouped into three categories: (i) information on profitability (including crop yield, pre-crop effect, and economic margin) and risks associated with growing grain legumes (including yield stability and risk of crop failure) and comparison of these variables with major crops like cereals, (ii) agroclimatic indicators such as rainfall distribution, heat waves, and frost days, that can be used to adjust crop management and identify climatic constraints to the introduction of new grain legume species (e.g., chickpea and soybean), and (iii) climate change impacts on diseases, pests, and their natural enemies. The appropriate time and spatial scales at which this information is relevant depend on the stakeholder. Stakeholders supporting farmers (e.g., extension services) expressed a need for short-term (up to 10 years) and local information, whereas cooperatives and stakeholders engaged in R&D were also interested in medium-term (up to 30 years) information at multiple spatial scales (from the cooperative’s supply area to the national and European scale).

When comparing these needs with our literature review, several mismatches were identified. Although stakeholders expressed a need for short to medium-term information, the reviewed studies focused mainly on the second half of the 21st century. The predominance of global-scale studies (63% of studies) contrasted with the need for local and regional data. We also highlight a lack of simulation studies assessing the impact of climate change on yield stability and economic indicators, especially relative to major crops like cereals. The impact of climate change on diseases, pests, and their natural enemies remains a blind spot, even though biotic pressure was identified as a growing concern for the stakeholders. Finally, although the majority of adaptation strategies identified by stakeholders (e.g., irrigation, changes in sowing date and density) have been studied in the literature, options such as substituting spring-sown crops with winter-sown crops and switching grain legume species have hardly been assessed (only one study).

Our results outline priority avenues for further research, considering the needs of stakeholders to support the development of grain legumes in Europe in the context of climate change.

How to cite: Marteau-Bazouni, M., Jeuffroy, M.-H., and Guilpart, N.: Assessing matches and mismatches between modelling and stakeholders’ needs to support the adaptation of grain legumes to climate change in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1992, https://doi.org/10.5194/egusphere-egu24-1992, 2024.

Pathogens are a factor that determines emergency responses for both the public and the safety of first responders due to their life-threatening properties. At the same time, pathogen contamination is difficult to detect, and specialized skills, tools, and procedures are needed to deal with it. Waterborne pathogen contamination accidents can occur anywhere and for a variety of reasons. Earthquakes can cause disruptions to the urban drinking water and wastewater networks, and can also be contaminated by accidents, malicious attacks, and illegal activities.

This study developed a decision support system for pathogen contamination management in disaster situations by utilizing GIS technology. The system will not only enhance the operational capability of early responders (FRs) and strengthen overall management, but also reduce errors when setting up new technologies.

The system integrates various technical means, such as collecting and analyzing satellite and drone-based water quality data and evaluating the severity of water pollution using social media data. This enables rapid and accurate detection and re-response of environmental risks. The system is interconnected with various sources through REST and open APIs, and effectively manages data by utilizing MongoDB and geo-server.

The study is expected to make a significant contribution to protecting the environment and human safety by providing an accurate risk assessment and providing the necessary technical means to respond to pathogen pollution in disaster situations. Industrial accidents can be reduced by increasing the capacity to respond to risks that have not been specifically identified and strengthening the ability to respond to disasters. The study will also provide essential data for policy-making and regulatory development aimed at protecting the environment. 

This research was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE)  (P163300014, 2021 Industrial Technology International Cooperation Project - Horizon2020 Program)

 
 

How to cite: Yoon, H., Son, S., Choi, I., Jo, J., and Kwon, J.: Designing a GIS-based Decision Support System to protect environmental and human health by integrating spatial data, environmental information, and health data for informed decision-making., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3774, https://doi.org/10.5194/egusphere-egu24-3774, 2024.

EGU24-6710 | Posters virtual | ERE1.6

Assessing adaptation strategies for potato cultivation in Morocco: modeling approaches at the field scale 

Assia Lozzi, Amandine Ouedraogo, Nassima Darrhal, Khalid Dhassi, and Saad Drissi

Climate change is set to reshape the environmental parameters governing crop growth, necessitating the implementation of revised management practices at the field scale. This study focuses on the adaptation and evaluation of the APSIM model for simulating the phenological growth, development, and yield prediction of potato (Solanum tuberosum L.) in response to climate variability in Morocco. Recognizing the critical role of potatoes in global food systems, and the increasing pressures of climate change, the research aims to accurately forecast the growth and yield responses of potato crops to these environmental shifts. The calibration phase of the APSIM model was rigorously conducted using local datasets, including climate patterns, soil properties, plant phenological data, and cropping practices. The model's accuracy was demonstrated through its high determination coefficients in simulating key growth stages and biomass accumulation of the potato crop. The findings showcase the model's capability in predicting potato yield and phenological responses to climate variability, providing strategic insights for enhancing agricultural practice efficiency. Overall, this study underlines the APSIM model's efficacy in developing strategies for climate-resilient potato farming, offering a robust tool for adapting agricultural practices under changing environmental conditions.

How to cite: Lozzi, A., Ouedraogo, A., Darrhal, N., Dhassi, K., and Drissi, S.: Assessing adaptation strategies for potato cultivation in Morocco: modeling approaches at the field scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6710, https://doi.org/10.5194/egusphere-egu24-6710, 2024.

EGU24-7063 | Orals | ERE1.6

Current Status of Pre-Calibration Techniques for Enhancing the Positional Accuracy of the Agricultural and Forestry Satellite 

Joongbin Lim, Chaeyeon Kim, Jong-Hwan Son, Taejung Kim, Sooahm RLee, Junghee Lee, Kyoungmin Kim, and Seunghyun Lee

The agricultural and forestry satellite, scheduled for launch in 2025, is a satellite being jointly developed by the Ministry of Science and ICT, the Rural Development Administration, and the Korea Forest Service of South Korea. Prior to its launch, technological developments have been made to ensure the positional accuracy of the agricultural and forestry satellite. For the geometric calibration of the satellite, a total of 4,650 precise image reference points have been established across the Korean Peninsula. These established precise image reference points have been verified to have a positional error of less than 1 meter based on field survey results. Utilizing this, the Rational Function Model (RFM) was corrected, determining the optimal parameters with six coefficients as suitable RFM correction coefficients for the precise geometric establishment of simulated images of the agricultural and forestry satellite. Subsequently, using the Digital Elevation Model for orthorectification, a final positional error of within 1 pixel (less than 5 meters) was confirmed.

How to cite: Lim, J., Kim, C., Son, J.-H., Kim, T., RLee, S., Lee, J., Kim, K., and Lee, S.: Current Status of Pre-Calibration Techniques for Enhancing the Positional Accuracy of the Agricultural and Forestry Satellite, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7063, https://doi.org/10.5194/egusphere-egu24-7063, 2024.

EGU24-9018 | ECS | Orals | ERE1.6

Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance 

Georg Goldenits, Kevin Mallinger, Thomas Neubauer, and Edgar Weippl

Abstract

Digital Twins are becoming an increasingly researched area in agriculture due to the pressure on food security caused by growing population numbers and climate change. They provide a necessary push towards more efficient and sustainable agricultural methods to secure and increase crop yields.
Digital Twins often use Machine Learning, and more recently, deep learning methods in their architecture to process data and predict future outcomes based on input data. However, concerns about the trustworthiness of the output from deep learning models persist due to the lack of clarity regarding the reasoning behind their outputs.

In our work, we have developed crop rotation policies using explainable tabular reinforcement learning techniques. We have compared these policies to those generated by a deep Q-learning approach, using both five-step and seven-step rotations. The aim of the rotations is to maximise crop yields while maintaining a healthy nitrogen level in the soil and adhering to established planting rules. Crop yields may vary due to external factors such as weather patterns, so perturbations were added to the reward signal to account for these influences. The deployed explainable tabular reinforcement learning methods perform similarly to the deep Q-learning approach in terms of collected reward when the rewards are not perturbed. However, in the perturbed reward setting, robust tabular reinforcement learning methods outperform the deep learning approach while maintaining interpretable policies. By consulting with farmers and crop rotation experts, we demonstrate that the derived policies are reasonable and that the use of interpretable reinforcement learning has increased confidence in the resulting policies, thereby increasing the likelihood that farmers will adopt the suggested policies.


Keywords: Digital Twin, Reinforcement Learning, Explainable AI, Agriculture, Crop Rotation Planning, Climate Change, Food Security

How to cite: Goldenits, G., Mallinger, K., Neubauer, T., and Weippl, E.: Tabular Reinforcement learning for Robust, Explainable CropRotation Policies Matching Deep Reinforcement LearningPerformance, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9018, https://doi.org/10.5194/egusphere-egu24-9018, 2024.

EGU24-10036 | ECS | Orals | ERE1.6 | Highlight

Effects of enhanced mineral weathering on soil structure and organic carbon storage 

Evelin Pihlap, Noemma Olagaray, Tobias Klöffel, Michael D. Masters, Ilsa B. Kantola, David J. Beerling, and Noah J. Planavsky

Enhanced mineral weathering is a nature-based solution to reduce atmospheric and soil CO2 concentrations in agricultural settings. Spreading finely grained basalt on the soil leads to subsequent chemical reactions that alters soil properties by changing soil pH, nutrient availability and particle-size distribution. Changes in these soil properties activate soil feedback mechanisms such as shifts in soil biogeochemical reactions or plant growth dynamics. Several studies have examined changes in pH and CEC after basalt application; however, basalt application may have an additional influence on the soil’s structural quality and the quantity of soil organic carbon (OC). In this study, we used a long-term field trial of basalt application at the University of Illinois Energy Farm (Illinois, USA) to elucidate changes in soil structure and OC storage. The field study was launched in 2016 using a randomized block design consisting of control (n=4, no basalt application), basalt (n=4), and lime (n=3) treatments. The sampling campaign was conducted in 2022 and in each field, we sampled with stainless steel cylinders (250 cm3) at depths of 1—6 cm and 15—20 cm. All samples were analyzed for nutrient content, OC concentration, pH, CEC and select samples were analyzed for soil water characteristic curves and aggregate-size distribution.

Basalt and lime application had a significant effect on soil pH, Ca concentration and the dominance of Ca2+ as an exchangeable cation, all which reflect evidence of increased soil structural quality. Indeed, soil structure, as quantified from the soil water characteristic curves using the concept of relative entropy (the Kullback-Leibler divergence), showed clear signs of enhancement after lime application. However, this was less evident for the basalt treatment. Despite improvements in soil structure, there were no effects on OC storage in either of the treatments. Aggregate characterization for OC concentration showed that the depth stratification had a greater role in carbon protection than the soil treatment itself, where the highest OC enrichment (EOC>1) was observed at the lower sampling depth of 15—20 cm. The organo-mineral association in the finest fraction was not affected by the treatment because neither the aggregate size class distribution nor OC accumulation in the finest fraction differed among the control, lime, and basalt treatments. Enhanced mineral weathering improves soil nutrient content, pH, and, potentially, soil structure; however, these changes do not directly result in higher OC storage, which underlines the complex nature of OC dynamics.

How to cite: Pihlap, E., Olagaray, N., Klöffel, T., Masters, M. D., Kantola, I. B., Beerling, D. J., and Planavsky, N. J.: Effects of enhanced mineral weathering on soil structure and organic carbon storage, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10036, https://doi.org/10.5194/egusphere-egu24-10036, 2024.

EGU24-13861 | Orals | ERE1.6 | Highlight

Assessment of Rice Yield Potential changes over Korean Peninsula under climate change with 1-km high resolution SSP-RCP scenarios  

Sera Jo, Yong-Seok Kim, Jina Hur, Kyo-moon Shim, Seung Gil Hong, Min-gu Kang, and Eung-sup Kim

The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation for CYP instead of sunshine duration which is relatively uncommon in the climate prediction field. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benefits of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in future climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. 
This work was supported by a grant (no. RS-2021-RD009055) from the Rural Development Administration, Republic of Korea

How to cite: Jo, S., Kim, Y.-S., Hur, J., Shim, K., Hong, S. G., Kang, M., and Kim, E.: Assessment of Rice Yield Potential changes over Korean Peninsula under climate change with 1-km high resolution SSP-RCP scenarios , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13861, https://doi.org/10.5194/egusphere-egu24-13861, 2024.

EGU24-15122 | ECS | Posters on site | ERE1.6

Linking material cycles and ecosystem services assessment in forest modelling 

Cholho Song, Chul-Hee Lim, Youngjin Ko, Jiwon Son, Hyun-Ah Choi, and Woo-Kyun Lee

In ecosystem services assessment in South Korea, many studies have applied various modelling methods. However, these modelling approaches mainly focused on the statistical growth model based on the national forest inventory, so calculating carbon was the main target of research. Statistical modelling enables annual assessment of the carbon budget in forests, but it was limited to understanding daily ecosystem changes and other material cycles. Therefore, this study tried to set up the linkage of material cycles and ecosystem services using various current modelling schemes in South Korea. Therefore, the process-based model and current forest models were applied to assess carbon and ecosystem productivity. In addition, their possible linkage to ecosystem services was analyzed. From the process-based model, the net primary productivity value was calculated at around 5.17 Mg C ha-1 average, and it indicated around 1.61 Mg C ha-1 in net carbon sequestration during the 2021-2100. Considering the current projection of annual carbon sequestration, this value is similar to the current model projection. In addition, the process-based model calculated evapotranspiration, respirations, and other values which converted ecosystem services, especially climate regulation, supporting ecosystem services, and provisioning ecological materials. Linkage of these models can support to assessment of many other non-assessed ecosystem services, and an ensemble of modelling and expanded modelling in ecosystem services will be required to assess Korean ecosystem services.

How to cite: Song, C., Lim, C.-H., Ko, Y., Son, J., Choi, H.-A., and Lee, W.-K.: Linking material cycles and ecosystem services assessment in forest modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15122, https://doi.org/10.5194/egusphere-egu24-15122, 2024.

Invasive pest species are the most serious threat to the resilience of agroecosystems. They cause direct damage by reducing crop yield and increasing management costs, and indirect damage through agroecosystem disturbances. To mitigate the risks posed by invasive pests, identifying their potential distribution is a crucial prerequisite. This study predicted the climatic suitability of the rice stem borer (RSB), Chilo suppressalis, within Europe using a species distribution model, CLIMEX. RSB first invaded Spain in the 1930s and has since caused significant damage, with reports of its presence in France, Hungary, and near the Caspian Sea in Russia. The overall suitability for RSB in Europe, while lower than its native region in East Asia, is predicted to be habitable across the European mainland. Notably, the climates of Mediterranean countries (e.g., Greece, Italy, France, Spain, Croatia, etc.) are expected to be sufficiently suitable for RSB habitation. Currently, RSB is also reported in Hungary, but the exact route of invasion is unclear; thus, it is necessary to investigate whether these are extensions of the existing populations in Spain and France or the result of accidental introduction through trade. Moreover, in southern Europe, where rice production is high, there is a risk of significant damage similar to that in Spain. Therefore, quarantine and prevention measures against RSB invasion are required.

How to cite: Hong, J. and Cho, K.: Potential Invasion risk of the rice stem borer, Chilo suppressalis, in Europe using CLIMEX., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15677, https://doi.org/10.5194/egusphere-egu24-15677, 2024.

The risk of wildfires is increasing due to rising temperatures and worsening dry conditions resulting from climate change (Westerling et al., 2008; Vilà-Vilardell et al., 2020). Human activities, driven by urbanization and population growth, contribute to the occurrence of wildfires. As wildfires are a consequence of the complex interplay of various factors, an integrated understanding of the social and ecological systems influencing wildfires is crucial for protecting human communities and preserving the natural environment. Particularly, the Wildland-Urban Interface (WUI), an area where urban and natural landscapes and vegetation coexist or are adjacent, represents a space where the interaction between human activities and natural systems is pronounced (Stewart et al., 2007). A specific and clear analysis and management of the WUI’s social-ecological system is necessary due to the severe damage caused by urban wildfires.

There is a growing awareness of the necessity to establish effective prevention and management strategies to protect urban systems. However, there is a lack of research on social-ecological systems over time, such as before and after wildfires in the WUI. Therefore, the objective of this study is to conduct a comprehensive analysis of the socio-ecological system of urban WUI areas, with a focus on identifying and evaluating the factors influencing the resilience of these systems. By examining the interactions within the WUI’s socio-ecological framework, the research aims to propose strategies for enhancing the capacity of urban areas to adapt to and recover from environmental disturbances, thereby contributing to the development of robust and resilient urban social-ecological systems.

To define and categorize socio-ecological systems, a spatial analysis of wildfire-prone areas was employed and to identify and evaluate the factors affecting the resilience of the system in response to wildfires, system analysis tools and models were utilized.

Building upon this study, future research will employ the Urban Resilience Index classification to derive strategies for each type of green infrastructure planning based on the 4Rs of resilience (robustness, rapidity, redundancy, and resourcefulness) to improve urban socio-ecological resilience for wildfire response in urban Wildland-Urban Interface (WUI). The results can be utilized to develop a green infrastructure planning decision support system.

References

Westerling, A. L., & Bryant, B. P. (2008). Climate change and wildfire in California. Climatic Change, 87(Suppl 1), 231-249.

Stewart, S. I., Radeloff, V. C., Hammer, R. B., & Hawbaker, T. J. (2007). Defining the Wildland-Urban Interface. Journal of Forestry, 105(4), 201-207.

Sullivan, A., Baker, E., & Kurvits, T. (2022). Spreading like wildfire: The rising threat of extraordinary landscape fires.

※ This work was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

How to cite: Kang, S. and Lee, J.: Analysis of Influencing Factors to Enhance Resilience of Urban Social-Ecological Systems in Urban Wildfire Response, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16379, https://doi.org/10.5194/egusphere-egu24-16379, 2024.

EGU24-16948 | Orals | ERE1.6

Are There Carbon-Neutral Cities in South Korea: Using Residual Modeling on Different Spatial Scales 

Yujeong Jeong, Sujong Lee, Mina Hong, Youngjin Ko, Hyun-Woo Jo, and Woo-Kyun Lee

To achieve the national carbon neutrality goal by 2050, it is crucial to be spatially strategic. Understanding the spatial distribution of carbon balance in different levels of spatial scales from global/continental scales to urban, and province/state is essential. This paper aims to estimate the spatial distribution of carbon balance in South Korea using an integrated carbon balance estimation model and to identify the disparity of carbon-emission characteristics determined by three different spatial divisions ¾ metropolitan and basic local governments, and town-level (eup/myeon/dong&li). Two-step ridge regression model using residuals was established based on land cover maps, population maps, and energy production data to analyse the distribution of carbon emissions. The distribution of carbon sequestration was calculated using the Korean forest growth model (KO-G-Dynamic model). The results from each model were calibrated and validated by the National Greenhouse Gas Inventory of basic local governments. The carbon balance was quantified by integrating the results of carbon emission and carbon sequestration. Surprisingly, the results showed that several cities, especially along the biggest mountain range in South Korea, have already achieved regional carbon neutrality. This is particularly true when the spatial scale is below a metropolitan government level. Additionally, the study found that the narrower the spatial scale of distribution becomes, the greater the number of urban/provinces with a carbon balance under zero. Obviously, carbon-neutral regions are characterized by low energy and industrial facilities and high forest density and, in most of the top emitting regions, vice versa. This study provides insights into the methodology for researching the spatial distribution of carbon balance. It also highlights the need for constructing carbon reduction pathways and strategies that reflect the regionality of carbon balance in multi-level districts. With further development of the study, the result could be used as scientific evidence for the effective fulfillment of regional carbon neutrality.

How to cite: Jeong, Y., Lee, S., Hong, M., Ko, Y., Jo, H.-W., and Lee, W.-K.: Are There Carbon-Neutral Cities in South Korea: Using Residual Modeling on Different Spatial Scales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16948, https://doi.org/10.5194/egusphere-egu24-16948, 2024.

EGU24-17914 | Posters virtual | ERE1.6

Impact of climate change on coffee agrosystems and potential of adaptation measures 

Raniero Della Peruta, Valentina Mereu, Donatella Spano, Serena Marras, and Antonio Trabucco

Coffee is one of the most economically important agri-food systems globally, and is the main source of income for many rural households in several developing countries. Ongoing climate change could cause problems for sustainable coffee production, with greater instability from year to year and lower average yields. To overcome these problems, possible adaptation measures and agronomic practices should be evaluated, such as intercropping with other tree species that can provide more shade for coffee plants and promote resilience and environmental sustainability. To study the effectiveness of such options, the use of process-based models can be very useful.

The DynACof model was developed specifically to simulate coffee agrosystems, including phenological development, physiological processes related to flower and fruit production, carbon allocation, the effect of water availability, light and temperature, and management. We validated the yields modeled by DynACof with productivity data available from some sites and areas included in previous evaluation studies in Mexico, Rwanda, Brazil, Ethiopia, and Costa Rica. We then developed and established a modeling framework in which the model can be applied spatially on a continental or pan-tropical scale, using extended climate projection ensemble and soil geodata.

Our modelling tool was then used to simulate potential yields in Latin America and Africa for both 1985-2014 and 2036-2065, using an ensemble of statistically downscaled and bias adjusted climate projections for two different shared socioeconomic pathways. Comparing the two periods, the model predicts a decrease in yields between 23 and 35 percent in Latin America and between 16 and 21 percent in Africa. The spatial representation of these changes indicates a likely future shift of suitable production areas to higher elevations, possibly impacting fragile mountain ecosystems. We simulated a specific management option, namely increased agroforestry shading, to evaluate its effectiveness in improving resilience to climate risks. The results suggest that increased tree shading could partially reverse the trend of declining yields due to climate change in some lowland areas. However, these preliminary results must be confirmed by further analyses. Impact analysis and adaptation modeling of coffee agrosystems, together with socioeconomic indicators, have the potential to delineate realistic integrated risk assessments and support effective adaptation recommendations.

How to cite: Della Peruta, R., Mereu, V., Spano, D., Marras, S., and Trabucco, A.: Impact of climate change on coffee agrosystems and potential of adaptation measures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17914, https://doi.org/10.5194/egusphere-egu24-17914, 2024.

EGU24-18453 | Orals | ERE1.6

Analysis of South Korea's 3S Forest Management Pathways for Carbon Neutrality Achievement 

Mina Hong, Jinwon Son, Moonil Kim, YoungJin Ko, and Woo-Kyun Lee

In recent years, global climate change has emerged as a critical issue, exerting widespread impacts across various sectors. In response, the Intergovernmental Panel on Climate Change (IPCC) has emphasized the urgency of preparing for a 2℃ temperature rise by focusing on greenhouse gas reduction strategies and the vital role of forests as carbon sinks. Aligning with international efforts, South Korea has formulated the "2050 Carbon Neutrality Strategy" and presented corresponding strategies in the forestry sector. This research utilizes the Korean Dynamic Forest Growth Model to explore forest management pathways aimed at achieving carbon neutrality through the aspects of sequestration, storage, and substitution (3S). The study incorporates climate change scenarios and forest policies to select appropriate management pathways. The assessment of various scenarios revealed that the combination of the SSP1 climate change scenario, clear-cutting, thinning of approximately 200,000 hectares, reforestation with suitable species, and ensuring a maximum forest road accessibility of 1 km produced significant and meaningful results across all three aspects of forest management (sequestration, storage, and substitution). As a result, sequestration of 28.49 million tCO2 yr-1, a storage of 2.1 billion tCO2 yr-1, and the substitution 7.92 million m3 of harvested wood products (HWP) in the 2050. Furthermore, the 3S forest management approach is expected to contribute to mitigating tree-age imbalances and provide resilience against the impacts of climate change. In conclusion, this study is meaningful in that it suggested a spatio-temporal forest management path by reflecting the environmental characteristics of Korea for achieving carbon neutrality. This is considered to be able to contribute to local government carbon neutrality achievement plans and national policies.

 

How to cite: Hong, M., Son, J., Kim, M., Ko, Y., and Lee, W.-K.: Analysis of South Korea's 3S Forest Management Pathways for Carbon Neutrality Achievement, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18453, https://doi.org/10.5194/egusphere-egu24-18453, 2024.

EGU24-18916 | ECS | Orals | ERE1.6

Systematic Analysis of the Impact of Mangrove Forest Changes on Ecosystem Services in Vietnam 

Mikyeong Tae, Min Kim, and Jinhyung Chon

Mangroves, a form of blue carbon, encompass approximately 1,054,900 hectares globally, with Vietnam possessing 75,900 hectares, representing around 7% of the total area. Beyond providing essential resources such as food, timber, and habitat, mangroves confer diverse ecosystem services, including coastal erosion mitigation and carbon sequestration while attenuating wave energy. Nevertheless, the pervasive impacts of climate change and anthropogenic activities are precipitating a reduction in mangrove coverage, giving rise to socio-ecological challenges, including biodiversity loss, escalated carbon emissions, and heightened vulnerability to severe flooding. Efforts are underway to address this predicament; however, accurate assessment remains challenging due to the intricate nature of mangrove habitats. Survey-derived data suffers from accuracy limitations, necessitating comprehensive research utilizing satellite imagery for efficient identification within a condensed timeframe, employing a systems thinking approach to understand complex ecosystem services holistically.

This research aims to detect changes in the area of mangrove forests in Vietnam using Landsat satellite imagery from 2010 to 2020, the initial implementation period of the Vietnam Forestry Development Strategy, and to analyze the impact of these changes on ecosystem services.

To achieve this, high-resolution (30cm) satellite images are utilized to calculate specific vegetation indices such as NDVI, NDWI, and SAVI in QGIS software.

 These indices are instrumental in detecting alterations in mangrove coverage throughout Vietnam. Additionally, this study employs systems thinking to construct a causal chain map that illustrates how changes in the mangrove area impact ecosystem services within Vietnam.

Satellite imagery was harnessed for GIS analysis to evaluate the ongoing status of Vietnam's mangrove forest area over time. The alterations in the area were quantified by grid partitioning, and causal loop diagrams were utilized to comprehend how modifications in mangrove areas affect ecosystem services such as coastal protection, water purification, habitat provision, and food supply. These changes engender trade-offs.

This study is significant as it utilizes high-resolution satellite data to quantify the change in Vietnam's mangrove forest area over time. It also underscores the impact of these changes on ecosystem services from a systems-thinking perspective. Moreover, deducing the ecosystem service structure of mangrove forests from causal chain maps can serve as a cornerstone for formulating policies aimed at safeguarding mangrove forests for decision-makers in Vietnam and other countries with similar ecosystems. Additionally, exploring the potential of mangroves as blue carbon sources can contribute significantly to carbon neutrality and planning.

Acknowldegemt

This research was supported by "Development of living shoreline technology based on blue carbon science toward climate change adaptation" of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220526)

How to cite: Tae, M., Kim, M., and Chon, J.: Systematic Analysis of the Impact of Mangrove Forest Changes on Ecosystem Services in Vietnam, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18916, https://doi.org/10.5194/egusphere-egu24-18916, 2024.

Renewable energies, particularly solar and wind power, are gaining prominence in the shift towards a carbon-neutral climate. however, challenges for wind power include ecological disruption, coastal landscape degradation, and visual impact due to offshore turbine installation. Technological limitations currently dictate offshore wind turbines' placement 10 to 30 kilometers inland, raising concerns about light environmental changes affecting nearby coastal areas. This raises concerns about the potential impact of light environmental changes such as the effects of aviation obstruction lights on wind turbines and blade movements on inland areas close to the coastline.  Therefore, developing offshore wind farm plans analyzing the impact of light environment changes and proposing mitigation measures is crucial.
In this study, we analyze the light environmental impact of wind power and propose mitigation measures to minimize its effects on the planned offshore wind farms in the South Sea's Aphae area, surrounded on three sides by sea and offering favorable conditions for marine renewable energy development, and the West Sea's Jangbogo area in South Korea.
The assessment utilized 2022 Day and Night Band (DNB) satellite imagery from the VIIRS sensor to evaluate light pollution. QGIS was subsequently employed to analyze visible frequency, turbine shadow impact range, and distance from the power generation site, resulting in a light environment value assessment map. Key points were identified on the map, and the study further examined the influence of turbine blade movements on aviation obstruction lights and shadow flickering using QGIS and WINDPRO.
As a result of measurements using VIIRS satellite images, the light pollution levels at the Aphae and Jangbogo sites were found to be approximately 0.631542 × 10-9 W/cm²sr and 0.38 × 10-9 W/cm²sr, respectively. In Aphae, the impact of light pollution was generally minimal, less than 0.002 cd/m², but it did have an impact in the northern coastal area. Jang Bogo measured less than 0.002 cd/m², indicating a low impact on island residents.
As a result of light pollution analysis, it was found that shadow flickering occurs for 30 to 60 minutes a day for more than 120 days a year in the northern coastal area of Aphae. Jangbogo showed very limited shadow flickering, less than 10 hours per year and less than 10 minutes per day in certain areas. The impact of light pollution is expected to be minimal in Jang Bogo, and mitigation measures are needed to alleviate pressure damage. Recommendations may include adjustments to the layout of offshore wind farms or changes to the coordination of offshore wind operations.
This study is significant in analyzing the impact of light environmental changes caused by offshore wind power on inland areas and proposing mitigation measures. Furthermore, the findings of this research can be applicable to environmental studies for the development of offshore wind farms in other regions in the future.

Acknowledgement

This research was supported by “Development of Advanced Science and Technology for Marine Environmental Impact Assessment” of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20210427)

How to cite: Choi, H., Kim, M., and Chon, J.: Assessing Light Environmental Impact in Offshore Wind Farm: A Case Study of Aphae and Jangbogo Areas in South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19001, https://doi.org/10.5194/egusphere-egu24-19001, 2024.

Climate change is altering weather patterns around the world, and one notable effect is changes in the jet stream that controls weather systems. As the polar regions warm faster than lower latitudes, the temperature difference that drives the jet stream winds decreases, causing them to become more frequent and the air masses to stagnate. This could lead to prolonged periods of extreme weather, including deadly heat waves, floods and droughts. An example of this can be seen in 2018, when a heat wave broke record high temperatures in Korea due to blocking (a phenomenon in which air flow stagnates in the upper mid-latitudes, weakening westerly winds and causing strong north-south winds) by Rossby waves. Life-threatening heat persists without an increase in low-pressure systems that bring cooling rain.

This study uses a systems ecology approach to examine the interactions between energy and material cycles in interconnected ecosystems in East Asia. The region's rapid urbanization, industrial growth, and high population density have significantly altered heat and material flows and cycles. These anthropogenic changes, together with natural climate variability, have complex and far-reaching impacts on regional climate patterns and ecosystem health.

East Asia's built environment and demographics have fundamentally disrupted natural stability mechanisms. Rapid development has replaced heat-reflecting green spaces with heat-absorbing concrete structures, reducing evaporative cooling capacity. Sprawling road systems filled with vehicle heat exacerbate urban heat islands.

In addition, climate-induced changes in the natural cycles of water, carbon, and nutrients link ecosystems in complex ways. Quantifying changes in cycling by evaluating historical data and models provides a basis for predicting ecosystem stability and resilience in the face of climate change. For example, a decrease in relative humidity in an area increases the risk of wildfires as moisture is removed from dead grass, fallen trees, and leaves. In areas with low relative humidity and abundant fuel-rich vegetation, the risk of wildfires may increase, particularly in winter and spring. A systematic understanding of these dynamics is essential to guide regional climate change adaptation planning.

Finally, the study translates its findings into policy recommendations. By analyzing the positive impacts of increased plant cover on humidity and overall ecosystem water availability, this study provides actionable steps towards a more resilient East Asia.

Acknowledgements: This research was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

How to cite: Park, H., Song, C., and Lee, W.-K.: Impacts of Climate Change on the Energetics and Ecosystem Material Cycles and Extreme Weather Events: An East Asian Case study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19195, https://doi.org/10.5194/egusphere-egu24-19195, 2024.

EGU24-19777 * | Posters on site | ERE1.6 | Highlight

Multi-purpose afforestation scenarios under climate change for carbon dioxide reduction  

Florian Kraxner, Dmitry Schepaschenko, Sabine Fuss, Andrey Krasovskiy, Anatoly Shvidenko, Georg Kindermann, Hyun-Woo Jo, and Woo-Kyun Lee

This study aims at identifying the carbon dioxide reduction (CDR) potential of large-scale and multi-purpose afforestation/reforestation at the global level with special emphasis on the Mid-Latitude Region (MLR). Applying a combined remote sensing/GIS approach coupled with biophysical forest and disturbance modeling under various climate change scenarios, we identify potential afforestation locations, inter-alia on abandoned agricultural land and on areas burnt from wild land fires. With the help of IIASA’s biophysical global forestry model (G4M), we calculate the associated land-based CDR potentials through carbon sequestration in afforested biomass and through climate risk-resilient and sustainable forest management dedicated to the supply of bioenergy plants coupled with carbon capture and storage (BECCS) facilities. Finally, three promising scenarios have been identified including I) afforestation; II) reforestation; and III) BECCS. In all scenarios, priority is put on sustainable forest management and nature/biodiversity conservation. Forest modeling results have been combined with recent data sets which have been overlayed in order to provide a unique basis to estimate the land-based CDR technologies’ potential to mitigate climate change and contribute to reaching the goals of the Paris Agreement. In the case of afforestation, preliminary results indicate a total potential afforestation area greater than 1 billion ha.  The largest area potential for afforestation have been identified in the USA. Given the higher productivity (combined with large area available), Brazil is the country with the highest total CDR potential of close to 500 MtC/yr.

How to cite: Kraxner, F., Schepaschenko, D., Fuss, S., Krasovskiy, A., Shvidenko, A., Kindermann, G., Jo, H.-W., and Lee, W.-K.: Multi-purpose afforestation scenarios under climate change for carbon dioxide reduction , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19777, https://doi.org/10.5194/egusphere-egu24-19777, 2024.

EGU24-20157 | Orals | ERE1.6

A Green Infrastructure Approach through Carbon Cycle Analysis and Decision Support 

Jiangong Bi, Sangchul Lee, and Junga Lee

Due to climate change, abnormal weather conditions such as floods, droughts, heavy snow, and heatwaves are escalating globally. Recent climate observations and model predictions indicate a trend toward more frequent and intense extreme climate events in the near future, attributed to anthropogenic greenhouse gas emissions. When floods occur, they simplify the habitats of ecosystems, leading to a reduction in diversity and water quality pollution. Basin ecosystems play a crucial role in carbon absorption, mitigation, and providing habitats for plants and animals. Therefore, it is imperative that plants, soil, and wetlands within the watershed ecosystem absorb and sequester carbon from the atmosphere to decrease greenhouse gas concentrations. Consequently, there is a necessity for research on decision support tools capable of identifying and analyzing the factors influencing carbon circulation during a flood.

 

The primary objective of this study is to develop a decision support tool for green infrastructure (GI) planning in watershed ecosystems to enhance resilience against climate change. The tool will help identify and analyze factors affecting the carbon cycle during flood events and enable the creation of GIs that support the carbon cycle.

 

The expected results from the study combine positive factors that can lead to various positive and combining factors, so future research can create scenarios through combinations of factors. The scenarios created can result in GIs that can perform ad hoc tasks by choosing more efficient configurations.

 

 

References

Michael W. Strohbach, Eric Arnold, Dagmar Haase. The carbon footprint of urban green space—A life cycle approach. Landscape and Urban Planning, Volume 105, Issue 4, 30 April 2012, Pages 445

 

※ This work was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A10045235).

※ This work was supported by Korea Environment Industry &Technology Institute (KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment (MOE) (2022003570003)

How to cite: Bi, J., Lee, S., and Lee, J.: A Green Infrastructure Approach through Carbon Cycle Analysis and Decision Support, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20157, https://doi.org/10.5194/egusphere-egu24-20157, 2024.

Abstract

The expansion of impervious surfaces resulting from urbanization induces alterations in the natural water cycle system, culminating in urban flooding. Persistent flood damage arises from issues such as the failure to designate flood-prone areas despite receiving flood reports or the exclusion from flood-prone zones due to complaints. Both the central government and local authorities are taking measures to designate and manage flood-prone areas, recognizing the necessity to address this issue not only from an ecological standpoint but also considering social aspects, including the real estate value of the region and the effort and cost of flood damage recovery. Furthermore, flood resilience should be a central consideration, aiming to identify existing problems through the virtuous cycle process of flood damage, both upstream and downstream, and working towards recovery or improvement to a state superior to pre-flood conditions.

This study's objective is to redefine the criteria for green infrastructure planning in flood-prone zones, exploring interrelated factors influencing urban water systems and identifying synergistic solutions to enhance resilience. The application of systems thinking involves four integral stages: dynamic thinking, causal thinking, closed-loop thinking, and strategic discovery. These stages collectively establish a systematic dynamic loop. To construct this loop within the complexity of a water circulation system, initial attention must be given to discharge management. Ensuring a robust water cycle necessitates the equitable distribution of runoff across processes such as evaporation, filtration, infiltration, and groundwater recharge. Secondly, green infrastructure design should leverage technologies that harness natural mechanisms, enhancing the cyclical movement of materials within the ecosystem. This involves strategic infrastructure planning that minimizes alterations to topography, preserving the natural functions of the water cycle while allowing for flexible application tailored to ecosystem requirements. These green infrastructure characteristics, effects, and plans are summarized as variables. Thirdly, the dynamic loop is constructed with consideration of the summarized variables. The final stage of the process integrates flood risk management within a community flood resilience framework. By cycling through the stages of learning, prevention, resistance, response, and recovery, the objective is to minimize damage caused by floods and effectively respond to unexpected floods due to climate change.

As a result, seven derived criteria include land use type identification, target site characteristics analysis, detailed survey, water circulation goal selection, design criteria and layout strategy, spatial suitability evaluation, and water cycle change verification. Using these criteria, the ultimate goal of this study is to identify suitable green infrastructure locations and create a monitoring map for a healthy water cycle. The study aims to contribute to flood prevention measures in flood-prone areas by analyzing the impact of green infrastructure on emissions.

Acknowledgements

This work was supported by Korea Environment Industry &Technology Institute (KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment (MOE) (2022003570003).

References

EPA, U. (2007). Reducing stormwater costs through low impact development (LID) strategies and practices. United States Environmental Protection Agency, Nonpoint Source Control Branch (4503T).

How to cite: Lee, W. J., Jeon, S., and Lee, J.: Green infrastructure planning criteria for flood-prone areas to restore water cycle system and improve flood resilience , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20208, https://doi.org/10.5194/egusphere-egu24-20208, 2024.

EGU24-22025 | Orals | ERE1.6 | Highlight

Towards a better integration of the human and biophysical dimensions in global change modelling 

Christian Folberth, Peter Burek, Taher Kahil, Florian Kraxner, Michael Kuhn, Amanda Palazzo, Stefan Wrzaczek, and Dilek Yildiz

Global change encompasses on the environmental side components such as climate change, land degradation and pollution; and in the societal domain socioeconomic changes such as demography, economic development, and equality. This nexus is primarily driven by human activities and affects outcomes relevant for peoples’ well-being and viability through a network of interactions and feedbacks. Due to its strong influence on land surface and land-atmosphere processes and as a basis for food security and income, agriculture and rural livelihoods are at the heart of global change.

Despite the close entanglement of rural populations, livelihoods, and agricultural production, their integrated assessment is so far hardly considered in large-scale and global foresight studies. Instead, most large-scale research on consequences of global change and potential solutions is still monothematic or combines few of the above elements.

Integration across disciplines is taking place only to a limited extent, typically with static combinations of model outcomes. E.g., integrated land use models typically combine yield projections for changing climate with a priori projections of economic and population change. Other examples are the combination of independent projections of crop productivity and water availability to analyze adaptation potentials within the biophysical domain or across scientific domains the estimation of migration driven by changes in crop productivity and water availability. Importantly, both mono- and interdisciplinary studies are most often confined to business-as-usual scenarios or trajectories along shared socioeconomic pathways. Consequently, they do not capture feedbacks involving the human dimension and potentials for adaptation, and therefore lack outcomes that can inform on options for local and regional decision-making covering the water-food-population nexus.

The state-of-the-art highlights a concerning lack of integrated approaches to model global change impacts and feedbacks across environmental and socioeconomic domains. Based on own research and literature that characterizes interactions in the water-food-population nexus under global change pressures and existing model types and approaches, we propose herein a platform for the quantitative integrated modelling and assessment of global change impacts and adaptation covering food and water security, land use, demography, migration, and adaptive capacity.

Applications of such a modelling platform may address a wide range of pressing questions including shocks, their cascading effects and ultimate feedbacks (e.g. food security through output and input trade during and after Ukraine war; other historic shocks such as financial crisis; etc.); slow-onset global change impacts and adaptation; or transversal achievement of SDGs; and eventually serve as a first step towards the modelling of societal catastrophic change scenarios.

How to cite: Folberth, C., Burek, P., Kahil, T., Kraxner, F., Kuhn, M., Palazzo, A., Wrzaczek, S., and Yildiz, D.: Towards a better integration of the human and biophysical dimensions in global change modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22025, https://doi.org/10.5194/egusphere-egu24-22025, 2024.

Carbon capture and storage technology is a necessary means to achieve the temperature control goal of 1.5 degrees Celsius under the background of peak carbon dioxide emissions and carbon neutrality. The storage of carbon dioxide in oil and gas reservoirs has the advantages of high safety, large storage capacity, and less additional cost. The reservoir-caprock configuration can provide favorable space for the storage of carbon dioxide geological bodies. To make clear the distribution range of geological bodies suitable for carbon dioxide sequestration, taking the middle-south section of the eastern sag of Liaohe as an example, based on the model of the ratio of mud to ground and caprock effectiveness division, the control factors of caprock sealing were analyzed by entropy weight method combined with TOPSIS method, and the effective thickness of reservoir was determined by clarifying the relationship between reservoir lithology, physical properties, oil content and electricity. The results show that the lower limit of the effective caprock mud-to-ground ratio in the sand-mud interbedding sequence is 70.6%, and the sealing ability of caprock is mainly affected by the thickness of the fault and the thickness of the caprock single layer; The two sets of caprocks in the Shahejie Formation and Dongying Formation are relatively stable, with good fault-caprock configuration sealing, and the fault juxtaposition thickness in the Shahejie Formation is characterized by "thick in the north and thin in the south"; The effective reservoirs of the Dongying Formation are distributed in the whole region, the effective reservoirs of Es1 are distributed in the north of Rongxingtun, and the distribution range is smaller than that of the Dongying Formation, while the effective reservoirs of Es3 are mainly distributed in Huangyure area at the northern end of the study area, and the distribution range is further reduced. According to the reservoir-caprock configuration, carbon dioxide storage types can be divided into three types: shallow storage type, deep storage type, and multi-layer storage type. The lower caprock is well sealed and the lower effective thick reservoir controls the deep enrichment of carbon dioxide; The lower caprock is poorly sealed, and the effective thick reservoir in the middle or upper part controls the multi-layer enrichment of carbon dioxide; The lower caprock is poorly sealed, the upper caprock is well sealed, and the upper effective thick reservoir controls the shallow enrichment of carbon dioxide. The relationship between the effective thickness of the reservoir and the sealing ability of the caprock determines the vertical distribution series of carbon dioxide.

How to cite: li, H. and jiang, Y.: Study on Reservoir-caprock Configuration for Carbon Dioxide Sequestration in oil and gas reservoirs , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-86, https://doi.org/10.5194/egusphere-egu24-86, 2024.

EGU24-362 | ECS | Posters on site | ERE1.8

Towards net-zero: assessing the carbon storage potential of onshore saline aquifers in Brazil 

Francyne B. Amarante, Juliano Kuchle, and Mauricio B. Haag

Global warming poses a major challenge that humanity will face during the 21st century, requiring a significant reduction in anthropogenic CO2 emissions to mitigate the escalating global temperature. Several governments worldwide, including Brazil, have committed to achieving net-zero CO2 emissions by 2050, which will be impossible without Carbon Capture, Utilisation and Storage (CCUS) deployment. Ranked 12th globally in CO2 emissions (and 1st in South America), Brazil is in the early stages of studying CCUS. At present, CCUS efforts in the country primarily revolve around enhanced oil recovery, with limited exploration of CO2 injection in alternative geological settings. A total of 31 sedimentary basins span Brazilian territory, encompassing an area of approximately 6.4 million km2, 75% of which is situated onshore. The potential for CO2 storage in saline aquifers is gaining attention globally, proving a successful and effective approach in various sites. In this work we combine the available surface (geological maps, roads, and gas pipelines) and subsurface data (seismic lines and borehole data) to assess the logistics and feasibility of utilizing saline formations in onshore intracratonic basins as CO2 sinks, aiming to enable Brazil to reach net-zero CO2 emissions by 2050. Previous studies indicate that the Parnaíba, São Francisco, Amazonas, and Paraná basins present saline formations with favorable characteristics for CO2 injection, such as adequate depths, porosity, and permeability. Building upon prior research, we introduce the onshore portion of Espírito Santo Basin to the list of potential sinks, where the target saline aquifer is the pre-salt Mucuri Formation. Results show that greenhouse gases emissions from industrial processes are notably higher in the southeast region of Brazil. Within this region, two formations exhibit considerable potential for carbon sequestration in saline aquifers: (i) the Mucuri Formation, located in the onshore Espírito Santo Basin, reaching 350 m of thickness and shallowest depths of about 950 m, and (ii) the Rio Bonito Formation, in the proximities of the São Paulo state, with over 100 m of thickness and shallowest depths of about 650 m. For large-scale projects, CO2 transport in the region can be accomplished using the available infrastructure and the available gas pipelines, while smaller-scale research projects can utilize trucks, rail, and ships. Brazil's untapped potential for CCUS presents a unique funding opportunity from the private sector, marking a crucial step toward sustainable and impactful climate action.

How to cite: B. Amarante, F., Kuchle, J., and B. Haag, M.: Towards net-zero: assessing the carbon storage potential of onshore saline aquifers in Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-362, https://doi.org/10.5194/egusphere-egu24-362, 2024.

EGU24-800 | ECS | Posters on site | ERE1.8

Ultrasonic Evaluation of Shales vis-à-vis Temperature: A Case Study from Permian Damodar Valley Basin 

Varun Dev Jamwal and Ravi Sharma

Despite constituting two-thirds of the sedimentary rock volume, shales are a few of the least understood rocks. The varied depositional processes and environments give rise to complexity and anisotropy in them. Understanding unconventional resources like shales becomes crucial given their abundance in the petroleum systems and reservoirs and their potential suitability for sub-surface carbon and radioactive waste storage. Therefore, paramount significance lies in understanding the petrophysical and rock physical characteristics of shales to develop feasibility models for the sustainable use of these rock types.
 
This investigation focuses on the Barren Measures and Raniganj Formation shales in the Damodar Valley of Eastern India, which are primarily rich in clays, carbon, and iron and are of fluvio-lacustrine origin. These relatively shallow formations can be good sites for storage and sequestration as they are overlain by shaley and clayey formations acting as traps. The anisotropy in shales is even more challenging as its imponderables range from a micro to a macro scale. This changes even further with factors like organic-hosted porosity and maturity. The inherent anisotropy in shales necessitates a multiscale examination. These multiscale discontinuities, coupled with parameters like organic matter and maturity, impact the elastic properties of the rocks, as evidenced by the ultrasonic evaluations.
 
In this study, acoustic characterization of samples was conducted using a benchtop ultrasonic wave propagation setup. The samples were clustered based on their colour and observed megascopic properties. Some sandstones were also included in the study to contrast sandstones with respect to shales. The wave velocities were determined for samples subjected to progressive heating up to 200°C (gas window), and the consecutive changes in the elastic parameters and resultant wave velocities of the rock were studied. Inputs from other methods utilizing different physics, such as FE-SEM, XRD were integrated to refine our interpretation. Notable changes were seen in wave velocities, especially in clusters with elevated organic content, while the density and Vp cross plots gave a good correlation with an R2 value of around 0.7.
This study advances our understanding of the impact of temperature on the elastic properties of shales, an aspect less explored than factors like stress and pressure. Thoroughly characterizing these parameters through acoustic methods provides critical insights into shale's storage capacity, carbon sequestration potential, and additional hydrocarbon recovery, specifically with respect to the Damodar Valley shales, aiding India to offset the projected peak of 4 GT CO2 emissions to achieve the carbon neutral goal promised at COP 26 and fulfilling UN Sustainable Development Goals.

How to cite: Jamwal, V. D. and Sharma, R.: Ultrasonic Evaluation of Shales vis-à-vis Temperature: A Case Study from Permian Damodar Valley Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-800, https://doi.org/10.5194/egusphere-egu24-800, 2024.

EGU24-1674 | ECS | Posters on site | ERE1.8

Using FracpaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs 

Hager Elattar, Richard Collier, and Paul W.J. Glover

Abstract: Fractured carbonate reservoirs are of great importance in the oil industry due to their significant role in global oil reserves and complex nature, where the majority of these reservoirs are naturally fractured, making them complex and challenging for oil recovery. The detection and characterization of fractures are essential for understanding the reservoir's petrophysical properties and hydrocarbon recovery potential as they play a critical role in reservoir performance. In this paper we have used 3D seismic from the Razzak field in the Western Desert, Egypt, with a specific focus on the Alamein dolomite reservoir. The reservoir holds significance due to its prolific oil-bearing nature, and featuring widespread lateral distribution in the northern Western Desert. Additionally, its contribution to an active Mesozoic petroleum system emphasizes its importance. Using Petrel software, the Alamein top and visible faults were identified, leading to the creation of a structural map illustrating the WSW-ENE axes of the Alamein's structural culminations in the southern part of the horst block. Owing to an extensional force during the Jurassic period with a NE-SW orientation, resulting from rifting, was evident, marked by the formation of normal faults associated with the opening of the Neotethys in the NE-SW direction. In the interpretation of 3D seismic data for Alamein dolomite reservoir, only one major listric normal fault was identified. However, the presence of minor faults or fractures, not easily discernible with conventional seismic techniques, is plausible. To address this, volume attributes were applied to detect subtle changes in seismic properties: (i) the curvature operation calculated the dip and azimuth angles, aiding in identifying structural complexities like faults and fractures, (ii) the maximum curvature value highlighted areas of steeply dipping or folded structures, (iii) Edge detection emphasized sharp boundaries, yet no hidden fractures or minor faults were revealed. The variance attribute yielded limited information, but Ant tracking on the variance cube effectively identified hidden minor faults and fractures. Incorporating the Ant track attribute into FRACPAQ software provided an objective methodology for quantifying fracture patterns, revealing NW-SE-oriented fracture segments in contrast to the WSW-ENE orientation of the major fault. Consequently, seismic attributes will unveil concealed fractures, and the application of FRACPAQ will prove effective in furnishing data on fracture orientation and length statistics.

Key words: FracpaQ; seismic attributes; fractured carbonate; Razzak field

How to cite: Elattar, H.A., Collier, R., and Glover, P. W. J.: Using FracPaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1674, https://doi.org/10.5194/egusphere-egu24-1674, 2024.

How to cite: Elattar, H., Collier, R., and Glover, P. W. J.: Using FracpaQ and seismic attributes to assess seismic scale fractures in carbonate reservoirs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1674, https://doi.org/10.5194/egusphere-egu24-1674, 2024.

Revealing the thermal structure of subsurface is crucial for various projects including geothermal energy exploitation, CCS and hydrocarbon exploration. For instance, temperature is one of the key physical underground parameters governing the type of Geothermal systems, whether injected CO2 remains in supercritical fluid stage and the depth of Golden Zone at where the hydrocarbon accumulations occur. Thus, understanding the temperature and geothermal gradient change in 1D-2D-3D sense indicates sweet spots and helps geoscientists to build more robust models to reduce the risks.

Based on this concept, this study aims to demonstrate the outcomes of a game-changer method which is the conversion of interval velocities into temperatures, thermal conductivities and heat flows by the help of recently proposed empirical relationships. As a case study, Northern Arabian Plate, SE Turkey is selected due to the neglection of thermal conditions in the area. Therefore, oil & gas industry-wide accepted methodologies have been applied to better understand thermal behaviour of the subsurface and how it has been controlled by regional tectonic edifices including large-scale thrust and strike slip faults.

In terms of methodology, as the first step, dynamic bottom hole temperatures of the wells have been converted into static ones by the help of “Temperature Analyser” web application. The converted temperature measurements have been used to generate regional temperature and geothermal gradient maps for every 500 meters. On the other hand, for 3D temperature models, seismic velocities have been converted into temperature cubes after calibration with the converted BHT measurements. Generated temperature cubes have been reflected on seismic sections to display lateral and vertical variations in temperature behaviour. It also allows the detection of meaningful temperature anomalies corresponding to possible fluid content.

The results reveal that abrupt temperature increase on maps directly coincides with the locations of oil producing fields. The same behaviour was noted globally both for hydrocarbon and geothermal fields. The change in temperature trend is also dominated by regional tectonics of the focus area. Large thrust fault systems act as boundaries for thermal anomaly regions while sinistral Mosul Fault Zone displaces and separates high temperature zones in a NW-SE sense. This movement can be easily associated with the Northern slip of the Arabian Plate since the continental collision occurred in the Miocene.

 

Based on these observations, the workflows and results of this study can be used for detailed investigation of subsurface geology, thermal conditions, and their effect on potential reservoirs for geothermal and CO2 storage. Workflows used to generate thermal models might allow the development of more efficient sustainable energy projects not only for the Northern sector of the Arabian plate but also for the other regions of the World.

How to cite: Uyanik, A.: Conversion of Interval Velocities into Thermal Models: A Game Changer Method for Subsurface Energy Exploitation Projects , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1739, https://doi.org/10.5194/egusphere-egu24-1739, 2024.

EGU24-2177 | Orals | ERE1.8

Short and long-term multiphase reactive transport processes during a pilot test of air injection into a sandstone gas storage facility 

Laurent De Windt, Irina Sin, Camille Banc, Anélia Petit, and David Dequidt

This study is based on unique field data on a 3-year pilot test during which air containing 8 mol% O2(g) was injected as a cushion gas into a natural gas reservoir, a carbonate-cemented sandstone aquifer located in the Paris Basin (France) [1]. The oxygen was fully depleted several months after injection completion, meanwhile CO2(g) was detected around 2–6 mol%; the pH decreased from 8 to 6, while reducing conditions shifted to mildly oxidizing ones with increasing concentration of sulfates in equilibrium with gypsum. After the test completion, the long-term evolution of the aquifer was assessed by a 15-year survey. The pH gradually returned to its near initial state and sulfates were reduced by 2 to 3 times. Data on the release of trace metals (Ba, Cu, Pb, Zn) during and after the test were also available.

Multiphase reactive transport models were developed on these field data using the HYTEC reactive transport code in 2D-reservoir configurations [1]. At the short-term scale, modeling focused on the gas-water-rock reactive sequence during the air injection: 1/ depletion of the injected O2(g) due to pyrite oxidation, 2/ leading to acidity production and dissolved sulfates, 3/ acidity buffering by calcite dissolution, 4/ followed by gypsum precipitation and CO2(g) exsolution. At the long-term scale, the modeling tackled with the progressive return to the baseline chemistry of the deep aquifer that was 1/ mostly driven by transport processes and 2/ to a lesser extent, slow water/rock chemical interactions.

These field-based models developed at short and long-term could be used as a workflow for other gas storage facilities, e.g. biomethane, compressed air, and CO2.

[1] Sin, I., De Windt, L., Banc, C., Goblet, P., Dequidt, D. (2023). Assessment of the oxygen reactivity in a gas storage facility by multiphase reactive transport modeling of field data for air injection into a sandstone reservoir in the Paris Basin, France. Science of The Total Environment 869, 161657.

How to cite: De Windt, L., Sin, I., Banc, C., Petit, A., and Dequidt, D.: Short and long-term multiphase reactive transport processes during a pilot test of air injection into a sandstone gas storage facility, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2177, https://doi.org/10.5194/egusphere-egu24-2177, 2024.

Kerogen is typically categorized in three types: type I is associated with lacustrine, type II associated with marine, and type III associated with terrestrial sources, respectively. The Kerogen type is a crucial factor affecting oil-generative properties as it significantly influences the initiation and potential for hydrocarbon generation in source rocks. Geoscientists traditionally use Rock-Eval pyrolysis to determine kerogen types, maturity, and pyrolysis reaction temperature (Tmax), and calculate hydrocarbon potential, essential factors in assessing oil reserves and understanding the oil window. Such method, however, has insufficient resolution and is time-consuming. In this study, we employ a temperature-dependent infrared (IR) spectroscopy method to precisely determine kerogen type, maturity, and Tmax. Specifically, our IR spectroscopy is combined with a numerical analysis model developed for the analysis of various organic matter samples. Through measurements of the IR spectra of samples at different temperatures (Heating-FTIR), we determine the maximum sedimentary burial temperature and the pyrolysis Tmax of kerogen. By applying the conversion formula by Shibaoka & Bennett (1977), (R0)a=Ra+btI*exp(cTm), we derive a virtual vitrinite reflectance, which is strongly correlated with our IR spectroscopy results, with insights into the maturation. This Heating-FTIR technique is a valuable tool for petroleum geology, facilitating the assessment of oil potential and maturity. Future refinement of the numerical model and improvement of the instrumentation are required to apply this technique to broader fields, such as sedimentary temperature for ancient geothermal gradient with better understanding of the sedimentary history.

How to cite: Chen, Y.-Y. and Chang, Y.-J.: Evaluation of Oil Source Rocks Using Temperature-dependent Infrared Spectroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2449, https://doi.org/10.5194/egusphere-egu24-2449, 2024.

EGU24-3199 | ECS | Posters virtual | ERE1.8

 Using Quantitative Diagenesis to characterise and understand carbonate CCUS prospects 

Omar Mohammed-Sajed, Fraidoon Rashid, Paul Glover, Richard Collier, and Piroska Lorinczi

Recent years have seen the growth of new techniques that combine conventional stratigraphic and observational approaches to characterizing the type, scope, extent, timing and effects of diagenetic processes with petrophysical measurements of their rock microstructure. These Quantitative Diagenetic (QD) techniques can be used to predict post- and pre-dolomitisation porosities and permeabilities as well as trace the pathway of the diagenetically evolving rock through different stages of diagenesis that may turn a low-quality carbonate reservoir into a high-quality reservoir, or vice versa. While these new QD techniques are becoming useful for the characterization of hydrocarbon reservoirs, they are also extremely useful in the characterization of carbonate reservoirs for prospective CCUS use. This paper will briefly explain some of the main approaches to QD including dolomitisation prediction, petrodiagenetic pathways, reservoir quality fields, and Fracture Effect Index (FEI), before examining how they can be used to ensure that the prospective CCUS target reservoir is sufficiently well characterized that effective reservoir modelling can take place, and that the volume, flow and trapping of CO2 in the reservoir can be effectively monitored. Dolomitisation is known to be affected by the presence of CO2, with CO2 dissolving in aqueous pore fluids to form carbonic acid that directly affects porosity through dissolution and indirectly by affecting the dynamics of the dolomitisation process itself. There are two current QD methods for predicting the change in porosity upon dolomitisation. One is affected by both the direct and indirect effects, while the other is only sensitive to the indirect effects. Both the direct and the indirect effects can be plotted on a petrodiagenetic pathway. The presence of fractures is also a key aspect of how injected CO2 will flow in a CCUS reservoir. The QD parameter FEI describes the change in permeability of a rock concomitant upon a unit change in fracture porosity (i.e., what increase in flow results from a given increase on fracture porosity). This varies depending upon the degree to which fractures are connected and can be extremely useful in predicting the flow of CO2 within a fractured legacy carbonate CCUS prospect. In summary, QD approaches have the potential to provide those who need to characterise and model carbonate CCUS prospects with new and useful tools.

 

How to cite: Mohammed-Sajed, O., Rashid, F., Glover, P., Collier, R., and Lorinczi, P.:  Using Quantitative Diagenesis to characterise and understand carbonate CCUS prospects, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3199, https://doi.org/10.5194/egusphere-egu24-3199, 2024.

EGU24-3696 | ECS | Posters virtual | ERE1.8

Simulation experiment evaluation and chemical kinetics prediction of the composition of n-alkanes components 

Song Bo, Haitao Xue, and Shuangfang Lu

          It is pivotal to predict the overall composition of subsurface oil and gas reservoirs to assess their fluidity, phase behavior, and recovery potential. Recognizing the significance of n-alkanes as key constituents of mature oil and gas, this study conducted a thermal simulation experiment of gold tube hydrocarbon generation on the source rock of Gulong Sag. The experiment included comprehensive analysis and measurement of the n-alkanes components in a representative sample. Subsequently, an empirical regression evaluation formula was established to evaluate the n-alkanes composition at various maturity stages. Furthermore, a chemical dynamics model for the formation of individual n-alkanes single molecule components was developed and calibrated based on the principles of chemical kinetics. Combined with the stratigraphic burial history and thermal evolution history of the target area, the distribution and evolution characteristics of n-alkanes components in different evolutionary stages of geological conditions can be quantitatively evaluated and predicted. Moreover, the phase behavior of n-alkanes components can be determined based on the evolution characteristics of these components. Experimental results indicate that the methane yield continues to increase with temperature under both heating rates. Additionally, the yield of n-C to n-C initially reaches its maximum with the temperature increase, and subsequently decreases. Furthermore, the hydrocarbon generation characteristics of n-alkanes follow a Gaussian distribution trend. The kinetic results demonstrate that the activation energy of n-alkanes falls within the range of 190-280 kJ/mol, while the distribution of pre-exponential factors is uneven. By considering the geological conditions, it has been determined that the light component in the Gulong Sag is currently experiencing a favorable generation period, whereas the heavy component has reached its peak formation stage, with some undergoing cracking. The oil and gas produced under these geological conditions exist as single-phase unsaturated fluids within volatile reservoirs. The evaluation value of the experimental regression formula, along with the predicted value from the dynamic model, aligns well with the experimental data, providing a solid foundation for the geological application of the model. Therefore, this research serves as a stepping stone towards furthering our understanding of hydrocarbon composition prediction, as well as evaluating phase behavior, mobility, and recovery of underground oil and gas in conjunction with geological conditions. 

How to cite: Bo, S., Xue, H., and Lu, S.: Simulation experiment evaluation and chemical kinetics prediction of the composition of n-alkanes components, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3696, https://doi.org/10.5194/egusphere-egu24-3696, 2024.

EGU24-3700 | ECS | Posters virtual | ERE1.8

Characteristics and factors controlling Permian shale gas reservoirs in the Hongxing area, Sichuan Basin, China 

BaiZHi Li, Nengwu Zhou, and Shuangfang Lu

Successful exploration of Permian shale gas in the Hongxing area has broadened shale gas exploration in the Sichuan Basin; however, the target layer is newly discovered, and reservoir research, which is key to shale gas exploration and development, is limited, thus restricting the screening and evaluation of the section containing the shale gas target layer. In this study, using organic carbon, whole-rock mineral analysis, scanning electron microscopy, low-temperature nitrogen adsorption, and other experimental methods, and by systematically identifying different lithofacies, we clarified the organic‒inorganic composition and microscopic pore structure characteristics of Permian shales in different phases of the Hongxing area and revealed the main factors controlling high-quality reservoirs and favorable lithofacies types for exploration. The results show that the shale in the study area mainly features six types of lithofacies: high-carbon siliceous shale (RS), high-carbon mixed shale (RM), high-carbon calcareous shale (RC), high-carbon muddy shale (RCM), low-carbon muddy shale (LCM), and low-carbon calcareous shale (LC). Organic pores are mainly present in RS, RM, RC, and RCM, while inorganic pores are dominant in LC and LCM. The pores are dominantly micropores, some mesopores are present, and very few macropores are present. Among them, the degree of micropore development is mainly affected by organic matter (abundance, maturity, and type), that of mesopores is mainly affected by clay minerals, and that of macropores is mainly affected by siliceous and clay minerals. There are obvious differences in the pore structure of different lithologies. The RS has the highest pore volume and specific surface area, with average values of 13.8×10-3 cm3/g and 21.57 m2/g, respectively, and its pore morphology is ink-bottle type, with pore diameters mainly <10 nm. The storage space of RM, RC, RCM, and LCM is moderate, with low-carbon argillaceous shale (LM) having the lowest.

How to cite: Li, B., Zhou, N., and Lu, S.: Characteristics and factors controlling Permian shale gas reservoirs in the Hongxing area, Sichuan Basin, China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3700, https://doi.org/10.5194/egusphere-egu24-3700, 2024.

EGU24-3864 * | ECS | Orals | ERE1.8 | Highlight

From hydrocarbons to geothermal energy: a case study from the Dutch subsurface 

Annelotte Weert, Francesco Vinci, David Iacopini, Paul van der Vegt, Stefano Tavani, and Kei Ogata

The West Netherlands Basin, which has a long history in exploration as a former prosperous hydrocarbon province, is currently a geothermal hotspot. Being exploited since the 1950’s, most of its oil and gas fields are now in their final phase of production. In the past decade, interest shifted to sustainable energy sources. The geothermal industry in the area is developing quickly, helped by the legacy of the hydrocarbon industry: a wealth of publicly available seismic and well data. Currently, the area has 14 realized, and at least 3 projects in the development phase, with the Late Jurassic Nieuwerkerk Formation being the main target.

Conversely to petroleum systems, in which anticlines are the preferential target for hydrocarbon exploration, synclines are the most suitable sites for geothermal exploration. They offer higher temperatures with respect to the limbs and anticlines, and possible remaining hydrocarbons are not expected to be located inside the central portions of the synclines.

The West Netherlands Basin is a former rift basin that developed during the Mesozoic in the framework of the North Sea rift, and subsequently inverted during the Late Cretaceous. The Nieuwerkerk Formation was deposited during the last major rifting phase. Thus, the thickest packages of its fluvial-deltaic deposits are fault-controlled and commonly located in the synclines. The heterogeneity of fluvial reservoirs causes lateral and vertical quality variations in porosity, permeability and net-to-gross ratios. With the hydrocarbon industry focussing on the stratigraphic highs, there is only limited well data available for the central portions of the synclines.

With reprocessed 3D seismic data, our study uses an image processing approach, coupling traditional amplitude mapping with seismic attributes. This will help to reconstruct the evolution of the fluvial architecture of the Nieuwerkerk Formation over time. By tying the seismic with well data, a better prediction of the quality of the sandy bodies per location can be made. These results can be implemented in de-risking geothermal well planning across fluvial reservoirs in inverted rift basins.

How to cite: Weert, A., Vinci, F., Iacopini, D., van der Vegt, P., Tavani, S., and Ogata, K.: From hydrocarbons to geothermal energy: a case study from the Dutch subsurface, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3864, https://doi.org/10.5194/egusphere-egu24-3864, 2024.

EGU24-4657 | ECS | Orals | ERE1.8

Wave velocities as a proxy to forecast deformation during cyclic loading-unloading in porous reservoir rocks 

Debanjan Chandra, Barbara Perez Salgado, and Auke Barnhoorn

Porous reservoir rocks like sandstones have gained utmost important in the last decade as a potential sink for CO2. Most of the targeted reservoirs are depleted oil and gas fields, which has caprocks to ensure the containment of the injected CO2. Injecting CO2 into porous reservoirs increase the pore pressure, which therefore reduces the effective horizontal and vertical stresses. Depending on the pre-injection stress-condition and permeability of the reservoir, utmost care should be taken to define the upper limit of CO2 injection pressure, in order to prevent any permanent damage to the reservoir which can lead to leakage or induced seismicity. Lab-scale experiments provide key insights to the deformation behavior of reservoir rocks under different stress-conditions, which can be upscaled to understand reservoir scale processes. To simulate the stress perturbation caused by CO2 injection operations, we have subjected porous reservoir rocks (coreplugs) collected from different depths of offshore North Sea under cyclic axial loading and unloading with a confining pressure increment from 10-50 MPa between each cycle. The P and S wave velocities along the axial direction of the coreplugs were recorded in every 10 s to assess the change in wave properties during deformation. It was observed that during each loading cycle, wave velocities are highest at the elastic-plastic transition zone, which can be attributed to the compression of pores and closure of microcracks perpendicular to the loading direction. The wave velocities decrease sharply after the onset of plastic deformation, which can be attributed to the formation of microcracks in the coreplug due to increasing load. The static and dynamic Young’s modulus (E) of the coreplugs during each cycle of increasing confinement show linear increase. Plugs with lower porosity shows higher E with steeper increment at higher confining pressure. The correlation between the wave properties and mechanical response of the reservoir rocks under cyclic loading reveal that constant monitoring of wave velocities during CO2 injection can act as an efficient tool for monitoring stress-state of the reservoir, facilitating safer CO2 storage operations.

How to cite: Chandra, D., Salgado, B. P., and Barnhoorn, A.: Wave velocities as a proxy to forecast deformation during cyclic loading-unloading in porous reservoir rocks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4657, https://doi.org/10.5194/egusphere-egu24-4657, 2024.

EGU24-5508 | ECS | Orals | ERE1.8

Cushion gas requirements for hydrogen storage in global underground gas storage facilities 

Mayukh Talukdar, Chinmaya Behera, Niklas Heinemann, Johannes Miocic, and Philipp Blum
To ensure system security and flexibility, storing excess renewable energy as hydrogen is considered an integral component of future energy systems. Cyclic underground hydrogen storage (UHS) with injection production cycles is planned to meet energy demand until new subsurface sites are prepared for storage. To avoid geomechanical risks caused by dynamic pressure fluctuations during cyclic storage, cushion gas is stored in such reservoirs. Cushion gas requirements for sites are still unknown. Therefore, in this study, we calculate the cushion gas requirement of various hydrogen storage sites using reservoir properties.
 
Hydrogen requires less cushion gas by volume than methane. Cushion gas volume in UHS sites varies with the initial reservoir pressure, gas flow rate, well tubing size, and erosional velocity. Cushion gas requirement decreases with increasing reservoir pressure, increasing gas flow, increasing well tubing size, and decreasing erosional velocity. In the studied sites, cushion gas volume ranged from a few % (0-5%) to 99% of the total gas volume. Shallow sites cannot store much hydrogen because of the high cushion gas %. On the other hand, sites deeper than 1100 m are unsuitable owing to insufficient structural trapping and enhanced biogeochemical reactions. Considering these factors, we report the optimum cushion gas volumes for various underground storage sites worldwide.

How to cite: Talukdar, M., Behera, C., Heinemann, N., Miocic, J., and Blum, P.: Cushion gas requirements for hydrogen storage in global underground gas storage facilities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5508, https://doi.org/10.5194/egusphere-egu24-5508, 2024.

EGU24-7216 | ECS | Posters virtual | ERE1.8

Land Use Change Characteristics in the Pan-Pearl River Basin in China from 1985 to 2020 

Wei Fan and Xiankun Yang

The changes in land use/cover are essential aspects of studying the impact of human activities on the Earth's surface and global transformations. In this study, utilizing the ESRI Global Land Cover data (ESRI land cover 2020) and the China Land Cover Data (CLCD), along with historical imagery from Google Earth, a comparative analysis scheme for land use classification results was designed. The CLCD dataset was updated, leading to the creation of a land use dataset for the Pan-Pearl River Basin spanning from 1985 to 2020. This dataset was then employed for the analysis of land use changes in the Pan-Pearl River Basin over the past 35 years.The results indicate:(1) Among the seven land use types, the most significant changes in area occurred in the following order: build -up land, cropland, forest land, grassland, shrubland, waterbody, and barren. Notably, there was a substantial increase in the areas of build-up land and forest land, while cropland, grassland, and shrubland experienced significant decreases. The waterbody’area showed a slight overall increase trend.(2) The major land use types undergoing changes varied among sub-basins, with the intensity of land use change ranked as follows: Pearl River Delta region(1.9%) > Coastal rivers in southern Guangdong and western Guangxi(0.20%) > Dongjiang River Basin(0.13%) > Hanjiang River Basin(0.12%) > Xijiang River Basin(0.10%) > Beijiang River Basin(0.08%) > Hainan Island region(0.02%).(3) Within the sub-basins of the Pan-Pearl River Basin, the most significant increase was observed in the area of built-up land, exhibiting a continuous expansion trend with a total increase of 12184 km2. This increase was primarily due to the conversion of cropland, forest land, and waterbody. The most significant decrease occurred in cropland, with a total reduction of 10435 km2, mainly transitioning to built-up land and forest land. The phenomenon of built-up land encroaching on cropland was particularly prominent, especially in the Pearl River Delta region. Forest land also showed a decreasing trend, mainly attributed to cultivation and the encroachment of built-up land. The reduction in grassland area was more pronounced in the Xijiang River Basin, primarily transforming into forest land, cropland, and built-up land. The study reveals that the rapid development of socio-economics and industry, coupled with an increase in residents' consumption levels, serves as the primary driving force behind land use changes in the Pan-Pearl River Basin. Additionally, land use and management policies play a crucial role as driving factors in the region's land use changes. This research aims to provide a scientific basis for formulating policies related to the region's land resources and land management, holding significant importance for preserving ecological balance and fostering sustainable development in the basin.

How to cite: Fan, W. and Yang, X.: Land Use Change Characteristics in the Pan-Pearl River Basin in China from 1985 to 2020, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7216, https://doi.org/10.5194/egusphere-egu24-7216, 2024.

EGU24-7761 | Posters on site | ERE1.8 | Highlight

Reutilising hydrocarbon wells as deep heat exchangers to decarbonise heating in the Northern Netherlands  

Johannes Miocic, Jan Drenth, and Pieter van Benthem

To meet the climate targets outlined in the Paris Agreement, European Green Deal, and the goal of reducing dependence on fossil fuel imports per the REPower EU Action, decarbonizing and reducing energy consumption in the heating and cooling sector is imperative. This sector, a major contributor to household energy use, plays a pivotal role in achieving sustainable energy goals.

Geothermal energy, particularly through geothermal doublets, stands out as an ideal solution for supplying energy for space heating and cooling. However, the inherent risks associated with fluid exchange with the subsurface make it scientifically or politically challenging in certain areas. Addressing this concern, deep borehole heat exchangers function as closed-loop systems, eliminating fluid exchange with the subsurface.

In this study, we explore the feasibility of repurposing existing oil and gas wells in the Northern Netherlands as deep coaxial borehole heat exchangers to provide heat to local communities. Utilizing analytical solutions, we calculate the thermal power output of 365 gas wells suitable for retrofitting. These wells exhibit bottom hole temperatures exceeding 80°C, capable of delivering temperatures above 60°C or thermal powers exceeding 800 kW, depending on flow rate and inflow temperature.

Our analysis includes assessing the proximity of well locations to high-density heat demand neighborhoods within a 6 km radius, facilitating the provision of supply temperatures for future local heat district networks. Notably, heat loss from well to neighborhood generally remains below 2°C, ensuring sufficient heating power supply to nearby residential areas. Several well clusters demonstrate significant heat over-supply, suggesting the potential for transporting excess heat to more distant locations. In cases where heat supply from wells is too low, in particularly in neighbourhoods with very low building efficiency rating (<E), heat pumps can be utilised to supply the needed energy.

Our findings indicate that repurposing existing hydrocarbon wells as coaxial heat exchangers offers a viable option for providing low-carbon heating to numerous residential areas in the Northern Netherlands. However, the geographical distribution reveals that not all high heat demand neighbourhoods have well sites in proximity, underscoring the importance of implementing a diverse heat supply strategy.

How to cite: Miocic, J., Drenth, J., and van Benthem, P.: Reutilising hydrocarbon wells as deep heat exchangers to decarbonise heating in the Northern Netherlands , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7761, https://doi.org/10.5194/egusphere-egu24-7761, 2024.

EGU24-8307 | ECS | Posters virtual | ERE1.8

Using machine learning to discriminate between mineral phases and pore morphologies in carbonate systems 

Wurood Alwan, Paul Glover, and Richard Collier

Digital rock models are becoming an essential tool not only for the modelling of fundamental petrophysical processes, but in specific key applications, such as Carbon Capture and Underground Storage (CCUS), geothermal energy exploration, and radioactive waste storage. By utilizing advanced imaging and simulation techniques, digital rocks provide indispensable insights into the porous structures of geological formations, crucial for optimizing CO2 storage, enhancing geothermal reservoir characterization, and ensuring the secure containment of radioactive waste. This abstract aims to present new advances using digital rocks to study these pressing environmental and energy challenges.

Estimating the physical properties of rocks, a crucial and time-consuming process in both the characterisation of hydrocarbon, geothermal and CCUS resources, has seen a shift from traditional laboratory experiments to the increasingly prevalent use of digital rock physics. A key requirement of many forms of pore structure image analysis is that they require binary images showing pore-space vs. non-pore space (mineral phases). These are typically obtained by thresholding grey scale SEM or X-ray tomographic images to separate the two phases. In this paper, we have adapted a 2D process-driven MATLAB model to generate synthetic porous media images, laying the foundation for simulating authentic SEM images. The objective of the computational framework outlined in this study is to train a machine-learning model capable of predicting various types of porosity. Drawing inspiration from recent advances in machine learning applied to porous media research, our approach involves the development of deep learning models utilizing Convolutional Neural Networks (CNN). Specifically, we aim to quantitatively characterize the inner structure of the 2D porous media based on their binary images through the implementation of these CNN models. This framework consists of: (i) Generating synthetic porous media images through a process-driven model, (ii) training a neural network that takes a labelled synthetic image as input and gives two types of porosity as output, (iii) whereupon the trained model can be applied to provide types of porosities for new images that are not in the training database. The generated data are divided into training, validation, and testing datasets. The training dataset optimizes CNN parameters for accuracy, the validation dataset aids in hyperparameter selection and prevents overfitting, and the testing dataset evaluates the predictive performance of the trained CNN model.

This research not only advances the understanding of fundamental geological processes but also plays a crucial role in optimizing the utilization of renewable energy sources such as geothermal and contributing to the effective management of carbon capture and storage initiatives.

How to cite: Alwan, W.S., Glover, P. W. J., and Collier, R.: Using machine learning to discriminate between mineral phases and pore morphologies in carbonate systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8307, https://doi.org/10.5194/egusphere-egu24-8307, 2024.

How to cite: Alwan, W., Glover, P., and Collier, R.: Using machine learning to discriminate between mineral phases and pore morphologies in carbonate systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8307, https://doi.org/10.5194/egusphere-egu24-8307, 2024.

EGU24-8973 | ECS | Orals | ERE1.8

Assessing earthquake focal mechanisms in the North Sea for risk mitigation of large-scale CO2 injections 

Evgeniia Martuganova, David F. Naranjo Hernandez, Daniela Kühn, and Auke Barnhoorn

Decarbonisation of the European economy represents one of the current challenges to both society and the energy sector. The advancement and further application of carbon capture and sequestration (CCS) technologies are crucial components of the EU’s effort to become climate-neutral by 2050. The success of CCS depends heavily on understanding the present-day stress field to anticipate reservoir and cap rock response to fluid injection. Despite its importance, many proposed carbon storage sites in the North Sea are located in areas with little to no borehole stress data available, presenting a significant challenge.

Within the ACT project SHARP Storage framework, we have addressed this gap by generating a comprehensive earthquake bulletin for the North Sea, revealing spatial clusters of seismic events with the majority of earthquakes with ML < 4. Focal mechanisms of earthquakes are excellent indicators of crustal dynamics, which are essential for assessing the present-day stress field. Therefore, to improve the understanding of the in-situ stress conditions, we created a comprehensive workflow to evaluate focal mechanisms based on data from the North Sea (Kettlety et al., 2023). First, we developed a routine for the seismological bulletin to aggregate the recorded earthquakes from international seismological centres. The following step included retrieval of the waveforms from data centres and quality control routines, which included dead channels check, exclusion of files with significant recording gaps and low signal-to-noise ratio, and corrections of errors in the station XML files. Then, a subset of data traces with sufficient quality was selected for moment tensor computations using a Bayesian bootstrap-based probabilistic inversion scheme (see Heimann et al., 2018). Using existing focal mechanism solutions for the North Sea region, we calibrated our processing routine and then applied it to selected earthquakes (after 1990, M > 3.5) to expand the existing focal mechanisms database.

The newly computed focal mechanism solutions provide valuable insight into the present-day stress field in areas outside the main hydrocarbon provinces and improve the risk assessment of ongoing and future CCS projects. Furthermore, we will release our processing workflow as an open-source package and a new focal mechanisms database of the North Sea to establish a standard processing routine that can be readily utilised for similar seismological studies.

How to cite: Martuganova, E., Naranjo Hernandez, D. F., Kühn, D., and Barnhoorn, A.: Assessing earthquake focal mechanisms in the North Sea for risk mitigation of large-scale CO2 injections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8973, https://doi.org/10.5194/egusphere-egu24-8973, 2024.

EGU24-9206 | ECS | Orals | ERE1.8

Storage potential of CO2 by repurposing oil and gas-related injection wells in the Montney Play, northeast British Columbia, Canada 

Hongyu Yu, Bei Wang, Honn Kao, Ryan Visser, and Malakai Jobin

From 2005 to 2020, Canada achieved a 9.3% reduction in green house gas emission (69 Mt CO2 eq), meanwhile British Columbia witnessed a 5% increase (3.0 Mt CO2 eq) from 2007 to 2019. Exploiting unconventional oil and gas resources in northeast British Columbia (NEBC) has become the province’s second-largest source of greenhouse gas emissions. In pursuit of a cost-effective and seismic risk-aware approach for carbon emission reduction, this study evaluates the CO2 geological storage capacity in NEBC with a focus on repurposing existing injection wells for carbon storage.

We particularly emphasize the Montney and Debolt formations. These formations are the main targets of a diverse array of injection wells, including those for hydraulic fracturing, enhanced hydrocarbon recovery, and wastewater disposal. Three trapping mechanisms in the NEBC area are examined: physical and solubility trapping for wastewater disposal wells in the Debolt Formation, and physical and mineral trapping for hydraulic fracturing and enhanced recovery wells in the Montney Formation. Furthermore, we incorporate an assessment of seismic hazards, informed by the latest insights into injection-induced seismicity in NEBC, as a potential indicator of CO2 leakage risk.

Our findings underscore the favorable conditions of the Debolt Formation with lower seismicity hazard and a substantial CO2 storage capacity (19.3 Gt; ~284.4 years of CO2 emissions in BC). Depleted oil and gas reservoirs within the Montney Formation are also deemed suitable for CO2 storage, estimated at 1671.8 Mt (approximately 24.5 years), particularly in the Upper Montney due to its higher storage capacity and lower seismic risk.

Overall, this research offers an assessment of CO2 geological storage potential at the formation-scale in NEBC. The emphasis on well suitability and seismic risks effectively bridges the gap between the regional-scale geological assessments and site-scale engineering evaluations. It paves the path for future studies on addressing more practical topics related to the choices of project sites and injection strategies.

How to cite: Yu, H., Wang, B., Kao, H., Visser, R., and Jobin, M.: Storage potential of CO2 by repurposing oil and gas-related injection wells in the Montney Play, northeast British Columbia, Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9206, https://doi.org/10.5194/egusphere-egu24-9206, 2024.

EGU24-9509 | ECS | Orals | ERE1.8

Quantifying flow reduction during injection of CO2 into legacy hydrocarbon reservoirs for CCUS 

Qian Wang, Glover Paul, and Lorinczi Piroska

In the development of hydrocarbon fields, it is becoming known that CO2 injection (which is sometimes done to improve hydrocarbon production) can cause pore blockage and wettability alteration by the promotion of asphaltene deposition. In hydrocarbon reservoirs, the result is poor oil recovery performance during carbon dioxide (CO2) injection. If CO2 is being injected into a legacy hydrocarbon reservoir (i.e., one that still contains residual oil) the same process will occur. Once again, the ability of fluid (this time supercritical CO2) to flow will be impeded, but it is also possible that asphaltene deposition will also reduce the overall pore volumes in which CO2 could otherwise be stored. In this work, the residual oil distribution and the permeability decline caused by organic and inorganic precipitation after miscible CO2 flooding and water-alternating-CO2 (CO2-WAG) flooding have been studied by carrying out core-flooding experiments at high pressures and temperatures in an artificial three layer system. For simple CO2 injection during CCUS operations, flooding experimental results indicate that the low-permeability layers retain a large oil production potential even in the late stages of production, which could impede CO2 emplacement and provide significant heterogeneity, while the permeability decline due to asphaltene precipitation is more significant in high-permeability rocks. In contrast, we found that CO2-WAG can reduce the influence of heterogeneity on the oil production, but it results in more serious reservoir damage, with permeability decline caused by CO2–brine–rock interactions becoming significant. In addition, miscible CO2 flooding has been carried out for rocks with similar permeabilities but different wettabilities and different pore-throat microstructures in order to study the effects of wettability and pore-throat microstructure on formation damage. Reservoir rocks with smaller pore-throat sizes and more heterogeneous pore-throat microstructures were found to be more sensitive to asphaltene precipitation, making these less attractive for CCUS reservoirs. However, rocks with larger, more connected pore-throat microstructures became less water wet due to asphaltene precipitation to pore surfaces, ultimately leading to a lower pore volume in which CO2 can be stored. Taken together, there may be a case for not simply injecting CO2 in CCUS operations, but alternating the CO2 injection with injection of water in order to stabilise CO2 flow and reduce formation damage by asphaltene precipitation.

How to cite: Wang, Q., Paul, G., and Piroska, L.: Quantifying flow reduction during injection of CO2 into legacy hydrocarbon reservoirs for CCUS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9509, https://doi.org/10.5194/egusphere-egu24-9509, 2024.

Though global energy needs continue to grow, fossil fuels, and their associated CO2 emissions, are increasingly being opposed as our main source of energy. Instead, to achieve net zero greenhouse gas emissions goals, we are currently transitioning to more sustainable sources of energy, such as solar and wind power and geothermal energy, coupled with storage of waste, such as CO2. However, these new technologies come with their own challenges, as they continue to rely on (re-)use of the subsurface landscape. The intermittency of solar and wind power will require storage of renewably generated electricity. Hydrogen fuel has been marked as a potential energy carrier, enabling us to store large quantities of energy for prolonged periods of time, such as required to supply large industries or communities during winter months. To store this hydrogen fuel, the subsurface offers the largest storage space available, such as in (offshore) depleted hydrocarbon fields, but reproduction of the stored fluid is crucial. Geothermal energy production will require the extraction of hot fluids from depth and will often be performed in populated areas, close to the consumers, meaning that phenomena such as surface subsidence and induced seismicity are highly undesirable. The safe storage of CO2 for thousands of years also entails fluid injection, but containment is of vital importance to keep the CO2 out of our atmosphere. So though we have a vast history of exploitation of the subsurface through the oil and gas industry, which we can and should build upon, these new sustainable energy developments also pose their own, new challenges. While fluid production changes the physical equilibrium of the system, these new uses will also impact the chemical equilibrium through the injection of new fluids. Furthermore, containment and safety play an even bigger role than before to ensure the longevity of these new subsurface operations. In this contribution, I will outline what the challenges are that we are facing and how geoscientists can contribute to solving these challenges, across all areas from rock physics, geochemistry and hydrology, to sedimentology, structural geology and policy.

How to cite: Hangx, S.: Same same but different: the scientific challenges when re-using the subsurface for sustainable energy developments, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12486, https://doi.org/10.5194/egusphere-egu24-12486, 2024.

EGU24-12846 | Posters on site | ERE1.8

Exploring the Relationship between CT Scanning Resolutions and Sandstone Porosity for CCS Applications 

Jyh-Jaan Steven Huang, Yao-Ming Liou, Arata Kioka, and Tzu-Ruei Yang

In the context of Carbon Capture and Storage (CCS), the porosity of potential storage formations is a critical factor. Our study explores this aspect using computed tomography (CT) to assess how different scanning resolutions impact the accuracy of porosity measurements. We employed three CT systems - Geotek RXCT (resolution ~20-150 μm), Bruker 1272 (resolution ~5 μm), and DELab μCT-100 (resolution ~9 μm) - to scan sandstone cores of varying porosities. The aim was to identify an optimal scanning resolution that balances detail with practicality for CCS evaluations.

This research addresses the challenges in high-resolution CT scanning, such as denoising effects that can alter accuracy, and the complexities of thresholding segmentation across various systems. Additionally, we examined the partial volume effect, crucial for interpreting pore sizes and distributions accurately.

Our preliminary results suggest that scanning resolution significantly affects the perceived porosity. Different resolutions uncover diverse aspects of pore structure, highlighting the importance of choosing an appropriate resolution. Advanced image processing techniques, including effective denoising and accurate thresholding, are vital for reducing errors in porosity measurement.

The study provides valuable insights into the use of CT scanning for CCS applications, emphasizing the need for a balanced approach in resolution selection and sophisticated image processing. These findings are instrumental in enhancing the reliability of geological evaluations for potential CCS sites, contributing to the broader efforts in carbon storage and climate change mitigation.

How to cite: Huang, J.-J. S., Liou, Y.-M., Kioka, A., and Yang, T.-R.: Exploring the Relationship between CT Scanning Resolutions and Sandstone Porosity for CCS Applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12846, https://doi.org/10.5194/egusphere-egu24-12846, 2024.

EGU24-13835 | ECS | Posters on site | ERE1.8

Characterising functionalised nanoparticles for improving fluid flow for CCUS in legacy hydrocarbon reservoirs  

Louey Tliba, Afif Hetnawi, Farad Sagala, Robert Menzel, Paul Glover, and Ali Hassanpour

In recent years there has been rapid development of nanoparticles (NPs). Nanoparticles can be used both as a probe into restricted spaces, such as the pores within a reservoir rock, and as tools for altering wettability or deliberately blocking pore throats to enhance fluid movement in less connected pores. Silica nanoparticles can have functional surfaces allowing them to react specifically to oils or water. Nanoparticles can be used to enhance oil production by releasing oil on mineral surfaces and improving fluid flow. However, they also have the potential for improving CO2 flow in CCUS reservoirs while enhancing the pore volume available for CO2 storage. In this paper we evaluate the performance of different non-functionalised and functionalised nanoparticles for enhancement of oil production, CO2 emplacement and gas flow. Different forms of silica NPs have been made, either unfunctionalized, or functionalised with branched amino-based polymer (hydrophilic) or a silane-based agent (hydrophobic). Their stability has been characterised using a range of laboratory methods. The microscopic performance of the nanoparticles has been measured using contact angle measurements. Their ability to enhance oil production and CO2 emplacement has been tested using imbibition and drainage experiments. 

The contact angles, measured in the presence of brine, no modified silica NPs, branched amino-based polymer (hydrophilic) modified silica NPs and silane-based agent (hydrophobic) modified silica NPs showed contact angle values of approximately 110°, 116°, 124°, and 136°, respectively. These results show that introduction of nanofluids led to a change in substrate wettability from water-wet to strongly water-wet. Notably amongst the tested nanoparticles the Silane-based NPs demonstrated the highest hydrophilic surface. The spontaneous imbibition tests conducted on various sandstone cores revealed that silane-based NPs yielded the highest oil recovery rates among the tested NPs. Specifically, these nanoparticles showed an approximate 12% and 50% enhancement in oil recovery compared to non-modified silica nanoparticle, and branched amino-based polymer (hydrophilic) modified silica NPs. In summary, nanofluids have been shown to substantially improve the wettability alteration of the rock surface from oil-wet to water-wet, which can lead to improve the volume and flow characteristics of legacy CCUS prospects. Our future plan is to investigate the enhancement of carbon dioxide (CO2) solubility in brine through the utilization of the prepared nanoparticles, with the objective of advancing carbon capture technologies.

How to cite: Tliba, L., Hetnawi, A., Sagala, F., Menzel, R., Glover, P., and Hassanpour, A.: Characterising functionalised nanoparticles for improving fluid flow for CCUS in legacy hydrocarbon reservoirs , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13835, https://doi.org/10.5194/egusphere-egu24-13835, 2024.

EGU24-14959 | Orals | ERE1.8

TRANSGEO - Transforming abandoned wells for geothermal energy production 

Hannes Hofmann, Julie Friddell, Ingo Sass, Thomas Höding, Katrin Sieron, Max Svetina, Monika Hölzel, Robert Philipp, György Márton, Balázs Borkovits, Klára Bődi, Alen Višnjić, Tomislav Kurevija, and Bojan Vogrinčič

TRANSGEO is a regional development project that aims to explore the potential for producing sustainable geothermal energy from abandoned oil and gas wells in central Europe.  Composed of 11 partner organizations and 10 associated partners in 5 countries, TRANSGEO is developing a Transnational Strategy and Action Plan to address this technical and economic opportunity.  Our primary objective is to support rural communities and industries in the energy transition by providing tools and information that highlight sustainable redevelopment priorities and opportunities.

To reach this objective and promote the switch from fossil fuels to green energy, TRANSGEO is developing reuse procedures for five different geothermal technologies and validating them via numerical modelling, to assess their performance in repurposing existing hydrocarbon infrastructure and determine the optimal reuse conditions and configurations.  The five geothermal technologies are Aquifer Thermal Energy Storage, Borehole Thermal Energy Storage, Deep Borehole Heat Exchangers, Enhanced Geothermal Systems, and Hydrothermal Energy production.  The modelling studies focus on reference sites in our study areas, the North German Basin, the South German Molasse Basin, the Vienna Basin, and the Pannonian Basin.  Comparison of varying wellbore and reservoir parameters in the numerical modelling studies will provide input to a new online well assessment tool which will be available publicly to determine well suitability and guide planning for future reuse projects.  The online tool will be informed by a database of abandoned wells in Austria, Croatia, Germany, Hungary, and Slovenia and will include local reference data, such as geology, topography, heat demand, and utilities.  This will facilitate well reuse by matching candidate wells with local energy demand and heating networks.  Additional work on socio-economic and policy analyses will provide financial and liability information for the 5 different geothermal technologies, across the project countries.  Finally, the partnership will propose a legal policy and incentive framework to facilitate and expand reuse of abandoned wells for geothermal energy production and storage across central Europe.

TRANSGEO is co-funded by the European Commission’s Interreg CENTRAL EUROPE programme.

How to cite: Hofmann, H., Friddell, J., Sass, I., Höding, T., Sieron, K., Svetina, M., Hölzel, M., Philipp, R., Márton, G., Borkovits, B., Bődi, K., Višnjić, A., Kurevija, T., and Vogrinčič, B.: TRANSGEO - Transforming abandoned wells for geothermal energy production, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14959, https://doi.org/10.5194/egusphere-egu24-14959, 2024.

EGU24-16266 | ECS | Orals | ERE1.8

Geological characterization of the “Fonts-Bouillants” helium discovery - France 

Russier Emma, Géraud Yves, Hauville Benoît, Tarantola Alexandre, Beccaletto Laurent, and Diraison Marc

Geological characterization of the “Fonts-Bouillants” helium discovery - France

Russier E1,2, Géraud Y2, Hauville B1, Tarantola A2 ,Beccaletto Land Diraison M1

1 45-8 ENERGY, France

2 GeoRessources, University of Lorraine, France

3 BRGM, F-45060, Orléans, France

 

ABSTRACT

Helium is essential for the manufacturing of many of our daily commodities such as optical fibres, computers or cell phones (semiconductors and processors), medical use (MRI scanners) or in other more specific applications such as airlifts, leak detection, gas chromatography or diving. Nowadays, Europe imports 100% of its helium needs from overseas and is facing regular shortages, reason why 45-8 Energy embarked five years ago on helium exploration and production in Europe.

 

Helium is a noble gas mostly coming from the natural radioactive decay of Uranium and Thorium contained in the crust and the basement. Its migration and accumulation are strongly linked to a vector fluid that can be CO2, N2, CH4 or water. Helium and its vector fluids are then trapped and sealed in a rock reservoir.

 

The Fonts-Bouillants area is located at the southern edge of the Paris Basin at the vicinity of the French Massif Central and Limagne rift. The 45-8 Energy project aims to jointly produce He and CO2 from a gas which is naturally seeping through the major Saint-Parize fault (SPF).  Geological origin and migration pathway of He are therefore key questions to define the exploration guide, in particular to locate production wells to produce the seeping gas and process it. A multidisciplinary approach involving geology, geophysics, petrophysics and geochemistry has therefore been deployed.

 

Because geological context was hardly documented in this area, a wide range of geophysical data were acquired or reprocessed and coupled with field geology to build a regional geological model. The initial geological model was considerably updated and a hidden and thick Late Palaeozoic depocenter was especially highlighted below the Mesozoic series. Well data in nearby analogous basins as well as outcrops enabled rock collections to conduct petrophysical and geochemical characterization. The main reservoirs discovered currently are in Triassic and Jurassic sandstones, and fault like Saint-Parize fault acted as barrier and drain. 

Our outcrops petrophysical and geochemical study highlight the importance of Late Palaeozoic basin for the helium system:

  • As a potential rock source, with higher U-Th concentrations (3-13.5, 8-24 ppm) than typical crustal U-Th concentrations (1.8 and 7.2 ppm, [1]).
  • As a potential migration pathway and reservoir, with sandstones and conglomerates porosity higher than 20% and permeability higher than 100 mD.

 

Finally, gas sampling was performed in local natural springs, but also during well testing conducted in shallow boreholes which have encountered gas bearing reservoirs in the Mesozoic along the SPF. Helium generation system was modelled with geochemical data from the rocks and the fluids and from the volumetric capacity of the Palaeozoic basin.

 

Keywords: Helium exploration, Geophysics, Petrophysics, Geochemistry

Themes: Helium exploration

 

References:

[1] Krauskopf, K. B., & Bird, D. K. (1967). Introduction to geochemistry (Vol. 721). McGraw-Hill New York.

 

How to cite: Emma, R., Yves, G., Benoît, H., Alexandre, T., Laurent, B., and Marc, D.: Geological characterization of the “Fonts-Bouillants” helium discovery - France, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16266, https://doi.org/10.5194/egusphere-egu24-16266, 2024.

Natural gas storage is currently considered as one key pillar of the EU strategy to ensure security of energy supply. In view of CH4 storage, Oldenburg [1] demonstrated in a theoretical study that using CO2 as cushion gas instead of CH4 has the advantage of increasing natural gas storage capacities of geologic reservoirs by up to 30 %. This is due to CO2 undergoing a significant density change when its’ critical pressure is exceeded during CH4 injection. Kühn et al. [2] investigated a comparable scenario with CH4 gas storage in a closed cycle with CO2 in one reservoir to temporarily store and reuse wind and solar energy. However, the potential qualitative degradation of the stored CH4 due to mixing with the CO2 cushion gas has not yet been sufficiently addressed in terms of the impact of the modeller’s choice of diffusion coefficients. Hence, the present study focuses on a quantitative assessment of the mixing behaviour of CH4 and CO2 under consideration of dynamic binary diffusion coefficients in a reference numerical simulation benchmark [1,3]. The TRANSPORTSE numerical simulator [4,5] is used with dedicated measures to mitigate the initially high numerical dispersion, introduced by the benchmark’s relatively coarse grid discretisation. The simulation results show that the mixing region is substantially reduced if dynamic binary diffusion coefficients are applied instead of a global constant for both gas components. Consequently, it is demonstrated that previous numerical assessments of natural gas storage with a carbon dioxide cushion gas overestimate the simulated CH4-CO2-mixing area, and thus the calculated mixing losses. Hence, combined gas storage of CH4 and CO2 is more efficient than expected so far.

[1] Oldenburg, C. M. (2003) Carbon Dioxide as Cushion Gas for Natural Gas Storage. Energy Fuels 17(1), 240−246. https://doi.org/10.1021/ef020162b

[2] Kühn, M., Nakaten, N. C., Streibel, M., Kempka, T. (2014): CO2 Geological Storage and Utilization for a Carbon Neutral “Power-to-gas-to-power” Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia, 63, 8044-8049. https://doi.org/10.1016/j.egypro.2014.11.841

[3] Ma, J., Li, Q., Kempka, T., Kühn, M. (2019) Hydromechanical Response and Impact of Gas Mixing Behavior in Subsurface CH4 Storage with CO2-Based Cushion Gas Energy & Fuels 33 (7), 6527-6541. https://doi.org/10.1021/acs.energyfuels.9b00518

[4] Kempka, T. (2020) Verification of a Python-based TRANsport Simulation Environment for density-driven fluid flow and coupled transport of heat and chemical species. Advances in Geosciences, 54, 67-77. https://doi.org/10.5194/adgeo-54-67-2020

[5] Kempka, T., Steding, S., Kühn, M. (2022) Verification of TRANSPORT Simulation Environment coupling with PHREEQC for reactive transport modelling. Advances in Geosciences, 58, 19-29. https://doi.org/10.5194/adgeo-58-19-2022

How to cite: Kempka, T. and Kühn, M.: Geologic CH4 storage with CO2 cushion gas: using dynamic binary diffusion coefficients instead of a global constant in numerical simulations is more precise and results in lower mixing losses, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17184, https://doi.org/10.5194/egusphere-egu24-17184, 2024.

Since the end of the XIX century, many wells have been drilled worldwide for both Oil & Gas exploration purposes. Most of them are now abandoned and subjected to mining closure because exhausted or sterile. In the new epoch of energy transition scenario, the possibility to adapt and reuse these existing boreholes to exploit geothermal energy seems very promising. In fact, considering that approximately 40% of the total costs for a new geothermal project are devoted to drilling activity, the possibility of repurposing abandoned oil and gas wells offers a wide range of applications and exploitation of underground heat uses. The drilled borehole available data (e.g., underground temperature, lithology) provide helpful information about the sub-surface reservoirs, reducing the mining risk level, and wells allow direct access to the sub-surface heat energy. However, to develop a commercially viable geothermal power/thermal generating system, one must consider several factors, i.e., available prospecting, drilling and reservoir technologies, energy costs in the area, and resource durability.

This research aims to analyze the potential and feasibility of deep closed-loop systems solutions for heat and power energy production in Italy, in areas characterized by both normal and anomalous geothermal gradients and the distribution of available abandoned oil and gas wells. A prominent result is the development of a workflow leading to the feasibility assessment of deep closed-loop systems development, based on the identification of suitable abandoned O&G wells through the geological and thermal underground characterization and wells construction characteristics (diameter, depth, borehole material). Furthermore, a sensitivity analysis of the main parameters affecting most of the retrofitting of abandoned wells for geothermal purposes is performed thanks to thermal FEM modelling.

Finally, identifying the possible end-users in a suitable case study area, this research work provides preliminary insights into the quantity of thermal energy and electric power that this technology could produce.

How to cite: Facci, M. and Galgaro, A.: Numerical sensitivity analysis of energy performance of geothermal deep closed loop heat exchangers derived from the reuse of abandoned oil and gas wells, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17674, https://doi.org/10.5194/egusphere-egu24-17674, 2024.

EGU24-18605 | Orals | ERE1.8

Modelling dynamics of sedimentary basins: using geological history to predict subsurface activities at large-scale 

Claude Gout, Marie-Christine Cacas-Stentz, Adriana Traby, and Nathalie Collard

The dynamics of sedimentary basins is a complex combination of synchronous generally non-linear processes. In these natural systems, fluids migration and associated transfers play a fundamental role, even more so as they represent resources that are or may become essential for human societies. One way of assessing the potential of sedimentary basins is to model their past behaviour numerically.

Basin models have been developed since the 1990s for the needs of the oil industry, with the initial aim of assessing the thermal history, i.e. the maturation and expulsion of hydrocarbons from source rocks with variable kinetics and initial composition. These models are used for hydrocarbon prospect assessment in a wide range of sedimentary basins. They have evolved with the integration of the simulation of compaction mechanisms and fluid migration by Darcean single-phase or multi-phase flows. Still with an operational objective in mind, one of these models has been extended to simulate the transport of thermal energy and chemical elements in fluids, thereby helping to assess the geothermal and large-scale storage potential of a basin. The explicit representation of faults and unconformities, as well as the calculation of seal or reservoir formation fracturing as a function of fluid pressures, enables the plumbing system to be represented on a basin scale. In this network of drains, single- or multiphase fluids carrying compounds can interact with the rocks, according to the principles of reactive transport. Some of these simulations are being experimented using AI techniques. In these digital experiments, elements tracking could be a true added value for basin’s dynamics understanding.

A coupled simulation of this kind, combining conductive and advective thermal physics, mechanics (particularly of porous media), the hydraulics of multiphase fluids in porous media, chemistry of reactive transport and even the impact of bioactivity on basin’s fluids, representing geological processes in the subsurface on a large scale, makes it possible to quantify mass and energy transfers in the past. The result is a physically balanced model of the current spatial distribution of pressure, stress, temperature, mass, solid or fluid elements.

These results can be useful both in economic applications for first-order assessment of the resources of any sedimentary basin and in the scientific field for defining the boundary conditions of more specialised models. Initial experiments demonstrating the use of multiphysics models on a basin scale for CCS applications and geothermal energy assessment will be shown.

How to cite: Gout, C., Cacas-Stentz, M.-C., Traby, A., and Collard, N.: Modelling dynamics of sedimentary basins: using geological history to predict subsurface activities at large-scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18605, https://doi.org/10.5194/egusphere-egu24-18605, 2024.

With the advancement of exploration theory and technology, deep and ultra-deep carbonate rocks have gradually become an important new field for the development of oil and gas resources. High-quality carbonate reservoirs have become the focus of attention for oil and gas exploration and research in deep and ultra-deep fields. The Tarim Basin is the largest intracontinental oil and gas basin in China. The thick carbonate strata developed in the Lower Paleozoic are the main layers for oil and gas exploration, and the Ordovician carbonate strata are the main oil and gas producing layers. The predecessors have studied the tectonic evolution, sedimentary background and rock types of the Ordovician in the Tarim Basin. Combined with the analysis of the sedimentary thickness, lithology distribution and seismic profile structure of the Early Ordovician, it is believed that the Lower Ordovician sedimentary period inherited the Cambrian sedimentary pattern and transformed it into a gentle slope sedimentary background with a 'uplift-sag 'pattern, with obvious differentiation. Under the sedimentary background of the gentle slope of the Penglaiba Formation, the three paleo-uplifts of southwestern, northern and central Tarim are inherited geomorphological highs, and the inner gentle slope tidal flat facies is developed. The thickness of the stratum is obviously thinner, and it is mainly developed to represent the tidal flat environment. The periclinal part around the paleo-uplift is the middle gentle slope, which is characterized by dolomite and limestone interbeds. The proportion of granular rocks is high, which is a favorable development area for granular beaches. In this study, the deep drilling cores of the Lower Ordovician Penglaiba Formation in the central Tarim Basin were taken as the key research object, and the lithofacies, reservoir characteristics and dominant reservoir control factors of dolomite reservoirs were systematically analyzed by using macro-micro, qualitative-quantitative reservoir petrology analysis methods. Through research, it is clear that the rock types of the Lower Ordovician Penglaiba Formation in the central Tarim Basin are mainly crystalline dolomite and ( residual ) granular dolomite, and also contain a small amount of limestone, siliceous rocks and transitional rocks. There are various types of reservoir space, mainly including non-fabric selective dissolution pores, intercrystalline pores and various fractures. Combined with previous studies on the genesis and diagenetic evolution of the Lower Ordovician dolomite in the Tarim Basin, it is considered that the development of high-quality dolomite reservoirs in the Lower Ordovician Penglaiba Formation in the central part of Tarim Basin is controlled by many factors. It is the result of a combination of favorable sedimentary facies belts, short-term sea-level changes, exposure and dissolution, early dolomitization, and late tectonic hydrothermal adjustment and transformation.

How to cite: Li, X. and Xu, Q.: Development characteristics and controlling factors of deep dolomite reservoirs of Lower Ordovician in Tazhong area, Tarim Basin, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20142, https://doi.org/10.5194/egusphere-egu24-20142, 2024.

Seismic data integration plays a pivotal role in enhancing the capabilities of geological modelling

software. Our current research focuses on the improvement of seismic interpretation tools within the

PZero software in the framework of the Geosciences IR project lead by the Italian Geological

Survey GitHub - andrea-bistacchi/PZero. The objective is to seamlessly incorporate seismic data

into the geological modelling workflow, enabling more comprehensive and accurate models of

subsurface structures.

The initial phase of our work involved using various libraries to import and analyze seismic

datasets, either 2D or 3D within the PZero framework. We have successfully achieved the

importation of SEGY files into PZero, marking a significant milestone in our efforts. Integrating

seismic data is a crucial step that sets the foundation for constructing detailed geological models,

allowing us to enhance our understanding of subsurface geological features.

Soon, our research trajectory aims to develop advanced algorithms for stochastic simulation tailored

explicitly for modelling clastic sedimentary alluvial plains. The ongoing work includes developing

advanced stochastic simulation algorithms tailored for modelling clastic sedimentary environments,

relevant to both conventional energy resources and emerging sustainable energy storage solutions.

These advancements in seismic data integration and simulation within PZero will significantly

contribute to the field of reservoir modelling. They provide a robust framework for predicting the

behavior of subsurface energy storage systems, which is pivotal in the transition to a low-carbon

energy future.

How to cite: Hussain, W. and Bistacchi, A.: Advancements in Seismic Data Integration and Stochastic Simulation for Geological Modeling in PZero, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22365, https://doi.org/10.5194/egusphere-egu24-22365, 2024.

EGU24-2809 | Posters on site | ERE1.9

A small coil transient electromagnetic system for quick subsurface mapping  

Pradip Maurya, Esben Auken, and Thue Bording

Transient Electromagnetic (TEM) methods are widely used in near-surface geophysical exploration. Traditional ground-based TEM systems utilize large transmitter loops (25x25 to 50x50 m²) to investigate depths between 200 and 300 meters, yielding 15-20 soundings per day. To enhance efficiency in shallower investigations (0 - 100 m), we introduce a compact TEM system with a small coil setup for rapid deployment and mobility, increasing data collection rates along extensive transects.

 

The novel system comprises a 3x3 m transmitter loop with two turns and an equivalently sized offset receiver loop with four turns, separated by 10 m to minimize coil coupling and ensure unbiased signals. Operating as a single-moment setup, it achieves a peak current of 5 Amp or 10 Amp, turning off in approximately 7 µs. Unbiased measurement begins at 10 µs post turn-off, extending to a late gate of 3 ms. Both transmitter and receiver are integrated into a portable unit powered by lightweight lithium-ion batteries. A dedicated mobile application for Android and iOS devices controls the system, facilitating real-time monitoring of data curves and system parameters like current and temperature.

With this system, two people can collect a 400 m profile in under 60 minutes, significantly faster than Electrical Resistivity Tomography (ERT) methods. The presentation will cover the system's layout, operational methodology, depth capabilities, and validation against the Danish National TEM Test Site. Comparative analyses will underscore its efficiency and effectiveness in aquifer layer mapping, offering a compelling alternative to traditional ground-based systems.

How to cite: Maurya, P., Auken, E., and Bording, T.: A small coil transient electromagnetic system for quick subsurface mapping , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2809, https://doi.org/10.5194/egusphere-egu24-2809, 2024.

EGU24-5979 | Posters on site | ERE1.9

Time-domain denoising of CSAMT data base on long short-term memory 

Zhiguo An, Bingcheng Xu, Ying Han, and Gaofeng Ye

Controlled-source audio-frequency Magnetotellurics method (CSAMT) partially overcomes the drawbacks of weak natural field signals. However, substantial interference is an inevitable part of field surveys in practice, which negatively impacts signal quality. We require new denoising techniques since traditional techniques, such as Fourier transformation, which compute apparent resistivity directly from frequency-domain data, are insufficient in our situation. CSAMT denoising research is currently lacking, nevertheless. This research proposes the use of long short-term memory (LSTM) neural networks to denoise CSAMT signals in the time domain, given their good performance in processing Magnetotelluric (MT) data as shown by prior studies. We seek to directly extract the desired frequency signal for denoising from the time series data, in contrast to conventional denoising techniques. Since noise and target frequency signals are mixed together in MT data, the only way to suppress noise is to find the characteristics of the noise in the time series. CSAMT, on the other hand, differs from MT in that it uses an artificial transmitting source and fixes the valid signal frequency within a temporal window. This makes it possible to extract target frequency signals directly without taking into account the intricate properties of noise. In order to complete the noise suppression job, we created a neural network in this study that is based on bidirectional LSTM. This method was able to partially handle the difficulty of denoising when the data's SNR falls below 0 dB and, on average, enhance the signal-to-noise ratio (SNR) of CSAMT data by roughly 20 dB after executing both simulated and measured data testing.

How to cite: An, Z., Xu, B., Han, Y., and Ye, G.: Time-domain denoising of CSAMT data base on long short-term memory, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5979, https://doi.org/10.5194/egusphere-egu24-5979, 2024.

EGU24-7179 | Posters on site | ERE1.9

Early Detection of Coal Fire inside the Coal Stock Pile by 4D ERT Monitoring 

Myeong Jong Yi, Soocheol Jeong, and Seungwook Shin

Coal-fired power plant requires huge storage of coal. During the storage of coal, heat is accumulated inside the stock piles and eventually results in the self-combustion or coal fire, which is a very serious problem in the fuel management and environmental aspect of the power plant facilities. To detect and forecast the coal fire, various methods had been suggested but there are no proven early warning technology until today. Since the resistivity of the coal is strongly affected by temperature, we suggested the ERT (Electrical Resistivity Tomography) monitoring technology to identify the heat accumulation inside the coal stock pile, which can eventually provide an early warning method of coal fire in the power plant facilities. To prove the technology, we prepared a small scale coal stock pile and electrodes were placed on the bottom of the stock pile. In the inside of the coal pile, temperature was continuously increased by using heating tools and ERT monitoring data were acquired for a few days until real coal fire take place on site. The whole ERT monitoring data were processed and we tried the 4D inversion to obtain changes of 3D resistivity distribution with temperature changes. In the 4D inversion results, we could identify the systematic change of resistivity values due to the heating process. Although resistivity is increased in the very early heating stage, increased resistivity is evident with the increase of coal temperature until self-combustion of coal. Therefore, we could prove that 4D ERT monitoring technology is a very promising method to detect and forecast the coal fire in the power plant facility.

How to cite: Yi, M. J., Jeong, S., and Shin, S.: Early Detection of Coal Fire inside the Coal Stock Pile by 4D ERT Monitoring, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7179, https://doi.org/10.5194/egusphere-egu24-7179, 2024.

EGU24-9430 | ECS | Posters virtual | ERE1.9

Characterization of contaminated site using electrical resistivity and induced polarization methods 

Jian Meng, Teng Xia, Xinmin Ma, Ruijue Zhao, and Deqiang Mao

Soil and groundwater contamination has been widely concerned because of its impact on industrial, agricultural production, and even human health. Accurate delineation of contaminant distribution is the basis for successful remediation strategies. Traditional drilling based methods are costly and less efficient. Geophysical methods, particularly electrical resistivity (ERT) and induced polarization (IP), are sensitive to soil and groundwater contamination and have been proven very effective. However, there were still some pressing issues to be resolved, such as IP mechanism of contaminant, data acquisition, inversion strategies and monitoring system. In this study, we proposed the conceptual model of IP response for LNAPLs in-situ remediation process based on laboratory columns and sandboxes IP measurements, and quantified the effect of contaminant removal on IP parameters. In addition, the IP data acquisition method were improved for contaminated site surveys, doubling the detection depth and significantly increasing the IP data quality. Moreover, we propose a refined structure-constrained method that updates the smooth weights of all eight elements surrounding a boundary element using three different magnitudes. Combined with the joint interpretation of multisource data, detection accuracy was improved and the number of boreholes was reduced. We have applied ERT and IP techniques to more than 30 contaminated sites and proved their effectiveness.

How to cite: Meng, J., Xia, T., Ma, X., Zhao, R., and Mao, D.: Characterization of contaminated site using electrical resistivity and induced polarization methods, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9430, https://doi.org/10.5194/egusphere-egu24-9430, 2024.

The Badain Jaran Desert, located in the western part of the Inner Mongolia Autonomous Region in China, distinguishes itself from typical deserts by its abundance of lakes and rich groundwater reserves. At the Badain Jaran Desert, 153 magnetotelluric sounding stations have been explored to perform one-dimensional and three-dimensional inversion analyses of the collected magnetotelluric dataset. The results of one-dimensional inversion at each sounding station, where the top interface of the first underground low-resistivity layer is less than 400 meters, were used to build a map of the potentiometric surface level of the study area. This map aligns closely with the findings from hydrological surveys. The three-dimensional resistivity model indicates the existence of a conductive layer at the deep of 2-3 km, interpreted as a sandstone-confined aquifer, located between the mountain areas surrounding the Badain Jaran Desert and its clusters of lakes. 
Moreover, there is an almost vertical conductive zone underneath the lake cluster, which is interpreted as the discharge area of the confined aquifer. This zone is related to the upward flow of deep groundwater through fractures, replenishing both the lakes and the shallow groundwater, while the surrounding mountainous regions of the desert act as the recharge areas for this confined aquifer. Finally, an estimation of the volumetric percentage of saline fluid in the confined aquifer was derived based on the electrical conductivity model of pore-fluid saturated sandstone, yielding the saline fluid content that meets the resistivity/conductivity range conditions of the confined aquifer.

How to cite: Yi, X., Ye*, G., Jin, S., Wei, W., and Zhang, Y.: Groundwater Recharge Mechanisms in the Lake Clusters of the Badain Jaran Desert and the Salinity of Confined Aquifers Based on the Electrical Conductivity Model of Pore-fluid Saturated Sandstone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15176, https://doi.org/10.5194/egusphere-egu24-15176, 2024.

EGU24-15575 | ECS | Posters on site | ERE1.9

Insights into geological and hydrogeological characteristics using airborne geophysical investigations of former opencast lignite mining areas 

Elisabeth Schönfeldt, Olaf Cortes Arroyo, Marcus Fahle, Bernhard Siemon, Silvio Janetz, and Erik Nixdorf

The region Lusatia in northeastern Germany, which is located about 100 km south of Berlin, is strongly affected by over a century of both former and on-going opencast lignite mining. Although, there is an abundance of borehole data from former excavation surveys both varying data quality and heterogeneous coverage is a challenge for deriving spatially continuous subsurface properties. To overcome these obstacles we combined airborne geophysical investigations with borehole data. Different machine learning-algorithms (Random Forest and K-means) are used to determine spatially and depth-related insights into the variability of geological and hydrogeological characteristics. An aeroelectromagnetic (AEM) survey was carried out in summer 2021 using BGR’s (German Federal Institute for Geosciences and Natural Resources) helicopter, which covered flight lines of 1680 km in an area of about 200 km². First results show that the machine learning approach can predict fine-grained sediments (clay and silt) in untrained areas and can distinguish between clusters of mining-affected regions and undisturbed ones. The results of the study will be further used to improve the parameterization of existing regional groundwater flow models to address challenges of water allocation in the region of Lusatia.

How to cite: Schönfeldt, E., Cortes Arroyo, O., Fahle, M., Siemon, B., Janetz, S., and Nixdorf, E.: Insights into geological and hydrogeological characteristics using airborne geophysical investigations of former opencast lignite mining areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15575, https://doi.org/10.5194/egusphere-egu24-15575, 2024.

EGU24-15611 | ECS | Posters on site | ERE1.9

The first application of a new 3D octree finite element inversion framework to CS/MT data 

Cedric Patzer, Longying Xiao, and Jochen Kamm

At GTK we are currently developing the entire workflow of the controlled source EM (CSEM) method, ranging from data acquisition to time series processing to modelling and inversion. Part of this work is the development of a 3D modelling and inversion framework, which is mostly done within the DroneSOM project. The flexible implementation allows not only for modelling and inversion of semi-airborne drone EM data, but also land-based CSEM/MT data. The forward problem is solved using the finite element method on hexahedral meshes. We separate forward and inverse mesh using octree mesh refinement. This helps in solving the trade-off between the required accuracy in the forward modelling and computational cost. It is also a great tool to combine different multiresolution EM data (e.g., CSEM and MT) in a single comprehensive inversion framework. This work will focus on first applications of land-based CSEM and (CS)MT.

In 2022 we collected controlled source MT data using a grounded electric dipole transmitter along the Koillismaa ultra-mafic intrusion in North-Eastern Finland. Despite transmitter receiver offsets of 3-5 km far field condition does not apply for frequencies below 4kHz, which permits the use of standard MT inversion. Here we show first inversion results of these data using our new EM inversion routine taking the transmitter position into account. In addition to the active source MT data, we also collected conventional MT data on a larger scale crossing the Koillismaa intrusion. Our inversion routine also allows the inversion of MT data. We are thus showing first inversion results of joint inversion of both datasets. 

How to cite: Patzer, C., Xiao, L., and Kamm, J.: The first application of a new 3D octree finite element inversion framework to CS/MT data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15611, https://doi.org/10.5194/egusphere-egu24-15611, 2024.

EGU24-18165 | ECS | Posters on site | ERE1.9 | Highlight

Mapping Subsurface Conductivity: Challenges and Progress in Italy's MARGE Project 

Giulia Pignatiello, Igino Coco, Michele De Girolamo, Manuele Di Persio, Fabio Giannattasio, Valerio Materni, Luca Miconi, Massimo Miconi, Giovanna Lucia Piangiamore, Gerardo Romano, Valentina Romano, Lucia Santarelli, Vincenzo Sapia, Sabina Spadoni, Simona Tripaldi, Roberta Tozzi, Agata Siniscalchi, and Paola De Michelis

In Italy, the MARGE initiative, an abbreviation for Geoelectromagnetic Risk Map for Central Italy, strives to create an extensive map of subsurface electrical conductivity by analyzing natural electric and magnetic fields.

Led by the National Institute of Geophysics and Volcanology in collaboration with the University of Bari and the Institute of Environmental Analysis Methodologies at CNR, his project involves establishing measurement points distributed on a grid spaced approximately 50 km apart.

However, this endeavor faces significant challenges in the central region of the Italian peninsula due to extensive urbanization, numerous electromagnetic disturbances from railways and high-voltage power lines, and challenging topography, making finding suitable land parcels a complex task.

The MARGE project aims to gather broad-band and long-term magnetotelluric data, focusing on two primary objectives: utilizing magnetotelluric data to outline large-scale lithospheric structures in the Central Apennines and developing maps of the geoelectric field in Central Italy to support Space Weather modeling and critical infrastructure vulnerability analysis.

Presenting our initial findings, we discuss encountered challenges and potential solutions identified in this ongoing project.

How to cite: Pignatiello, G., Coco, I., De Girolamo, M., Di Persio, M., Giannattasio, F., Materni, V., Miconi, L., Miconi, M., Piangiamore, G. L., Romano, G., Romano, V., Santarelli, L., Sapia, V., Spadoni, S., Tripaldi, S., Tozzi, R., Siniscalchi, A., and De Michelis, P.: Mapping Subsurface Conductivity: Challenges and Progress in Italy's MARGE Project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18165, https://doi.org/10.5194/egusphere-egu24-18165, 2024.

EGU24-19540 | ECS | Posters on site | ERE1.9

Uncertainty estimation of conductive thin plates parameters through a Bayesian approach 

Alessandro Vinciguerra, Guy Marquis, Jean-François Girard, Grant Harrison, and Elodie Williard

The uranium deposits of the Athabasca basin (Canada) represent one of the world’s highest-grade uranium resources. They are unconformity-related type at the base of relatively flat-lying sequences, where faults acted as circulation paths for hydrothermal fluids. The fault zones often contain graphitic mineralization and hence represent a valuable exploration guide of small lateral extension but detectable by electromagnetic (EM) surveys. Time-domain EM (TEM) is the method of choice for uranium exploration in the Athabasca, and taking into account the frequencies involved we can approximate the graphitization along the fault as a conductive thin plate.

To better determine the geometry of the deposit, it might be crucial to recover the subsurface resistivity and the geometric parameters of the plate (position, dip, depth, azimuth etc.). Moreover, the assessment of the uncertainty associated to the parameters can help to evaluate the reliability of geological models and to guide the subsequent drilling activities.

A quantitative approach consists of employing Bayesian inversion algorithms, which allows to exploit the prior information available. Indeed, Bayesian inversion algorithms aim to solve the inverse problem statistically returning the posterior probability density function (ppdf). In particular, they are based on the Bayes theorem, which relates the prior information (e.g. from geological and petrophysical models) with the likelihood function to assess the posterior probability density function and thus the uncertainty. We implement the Differential Evolution Markov Chain algorithm (DEMC), a multi-chain approach that integrates the Metropolis selection rule with population evolution to sample the ppdf. The chains run in parallel and each current model is updated drawing two other chains and exploiting the models at the previous iteration. After an initial stage of burn-in, the algorithm reaches the stationary regime where the chains start sampling the ppdf resulting at the end in an ensemble of models. From these models the moments of first and second order (mean and variance) are computed obtaining the uncertainty of the inverse problem solution. As forward operator we employ the LEROI forward code developed by CSIRO (AMIRA), which computes the TEM response of one or more conductive 3D thin plates embedded in a horizontally layered earth.

In this work we propose the DEMC inversion of TEM data as a tool to assess thin plates parameters and uncertainty in the context of uranium exploration.

 

How to cite: Vinciguerra, A., Marquis, G., Girard, J.-F., Harrison, G., and Williard, E.: Uncertainty estimation of conductive thin plates parameters through a Bayesian approach, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19540, https://doi.org/10.5194/egusphere-egu24-19540, 2024.

EGU24-20965 | ECS | Posters on site | ERE1.9

Development of 9000 m level hadal OBEM 

Sixuan Song, Ming Deng, Zhen Sun, Xianhu Luo, and Kai Chen

Taking the sea area near the southern part of the Mariana Trench as a typical area is crucial for deep structural research in marine geology and geophysics. The magnetotelluric (MT) method has advantages such as large detection depth, sensitive to low resistance reactions, low cost, and high efficiency. The application of MT in deep water requires instruments with high reliability and stability, low noise, wideband, low power consumption, and miniaturization. The ocean bottom electromagnetic receiver (OBEM), as one of the important instruments for MT in deep water observation, its performance directly affects the quality of detected data.

In response to the shortcomings of the existing 6000 m level OBEM, there is an urgent need to develop a 9000 m level hadal OBEM. According to the requirements, we have focused on overcoming the challenges of weak E-field measurement technology, low-power and low-noise M-field measurement technology, low-power underwater acoustic release technology, and water surface large-scale recycling technology. We have achieved lower noise, longer underwater operation time, and efficient operations, providing reliable and stable instruments for hadal MT observation.

We have developed a chopper amplifier that matches deep water E-field sensors, analyzed the causes of injected charges, and adopted a scheme that combines peak filtering technology and dead zone technology to suppress residual misalignment generated during the chopper modulation, effectively reducing 1/f noise in the circuit, expanding the input range, and improving input impedance.

An orthogonal fundamental mode fluxgate based on digital demodulation is developed. Digital closed-loop real-time processes such as high-precision ADC, digital synchronous demodulation, digital integration, and high-precision large dynamic range DAC are used to reduce the switching charge noise introduced by analog circuits. Developing adaptive closed-loop feedback control algorithms to achieve fast feedback compensation with low noise and large dynamic range can help improve key parameters such as noise bandwidth, and input range of sensors.

We adopt a deep-water acoustic release system, pressure-resistant acoustic transducer, and control module prototype. Hydroacoustic communication controls the opening of the constant current source and the electrocorrosion decoupler. This solution reduces the size of the instrument and only relies on a single glass ball to achieve the floating of the instrument. The system integrates commands such as status query, electrocorrosion on and off. The status information includes distance, electrocorrosion status, battery voltage, etc. The propagation distance of acoustic signals is greatly increased, improving the success rate of underwater acoustic communication.

The glass ball is equipped with a beacon module, which is controlled by acoustic signals to activate the AIS, achieving real-time transmission of the OBEM position. Besides, high-power LED flashing is controlled to facilitate nighttime recycling and further reduce the cost of offshore operations.

In August 2023, 5000 m level test was conducted in the southern South China Sea. It is preliminarily verified the MT measurement, which has been improved in terms of low power consumption, low noise, and adaptability to deep sea. In the future, we will conduct test verification in deeper sea.

How to cite: Song, S., Deng, M., Sun, Z., Luo, X., and Chen, K.: Development of 9000 m level hadal OBEM, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20965, https://doi.org/10.5194/egusphere-egu24-20965, 2024.

At present, we are using commercial ground penetrating radar (GPR) to inspect tunnel walls, conduct an underground geological structure assessment and anticipate geology behind the tunnel face. A variety of metal objects, include portal frame, forklift, and excavator, can cause back reflection in the GPR profile during the test in the tunnel. Typically end users of GPR are unable to appropriately interpret the GPR profile because they are unware of what is actually coming from back reflection in the air and projection into the ground penetrating radar profile or from subsurface. They really need some method to identify real reflection signals from underground sources.

The GPR antenna transmits electromagnetic (EM) waves that can travel all space, including the air, the interface between the ground and the air, and the subsurface. During EM travel in the air, there is some back reflection from the air object to be recorded in the GPR profile during data collection in the field. We need to measure and recognize and elimate this back reflection interference noise. We have made electromagnetic waves absorbent block configuration for the GPR antenna that can complete cover the GPR antenna. We have done the comparative experiments tests with and without electromagnetic waves absorbent block have been conducted in the field, the results show that, without this block, GPR profile recorded many back reflection from the air objects, while the GPR antenna with covering electromagnetic waves absorbent block can only record the refection from surbsurface during data collection in the field, and it is clear GPR profile. This allows the GPR end user direct interpret the GPR profile only with reflection from surbsurface as it may completely eliminate back reflection from the air object.

How to cite: Deng, X.: A method to collect clear profile with Ground Penetrating Radar in tunnel, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21417, https://doi.org/10.5194/egusphere-egu24-21417, 2024.

EGU24-21924 | Posters on site | ERE1.9

Measuring Induced Polarization signals from deep seated magma chamber – preliminary results from a pilot survey in Finland 

Bitnarae Kim, Jacques Deparis, Mathieu Darnet, Francois Bretaudeau, Simon Vedrine, Julien Gance, Jochen Kamm, Uula Autio, Cedric Patzer, and Suvi Heinonen

In this study, we conducted an extensive geophysical survey to explore the potential of electrical resistivity methods in delineating deep ore deposits within between Koillismaa Intrusion and Näränkävaara intrusion, northeastern Finland. Preliminary investigations in 2022, including magnetic, gravity and audio-magnetotelluric (AMT) methods, along with drilling, uncovered significant anomalous structures in the survey area. Subsequent drilling of an exploration well provided positive lithological indications of a ultramafic igneous rock at more than 1.5 km depth, which are very likely of the same age as the layered intrusions in the area. Borehole data indeed revealed that the Archaean basement gneiss extends down to approximately 510 m, underlain by a granite dyke with interspersed thin layers of pyroxenite and peridotite. Notably, peridotite layers around 1500 m depth exhibited distinct magnetic and IP responses in core data.
We employed electrical methods at the site, including electrical resistivity tomography (ERT) and induced polarization (IP). To cover a large-scale area, 25 transmitter dipoles, each 1 km long and using three different transmitter systems, were deployed and data were recorded at 119 receiver stations. This work presents the acquisition and preliminary results from the ERT-IP surveys. During the processing of ERT and IP data, we utilized full time-series data recorded across the four lowest main frequencies (from 0.0625 Hz to 8Hz) to capture voltage data in a steady state. Apparent resistivity data were derived from the stacked voltage data, while IP data were initially extracted from these decay curves of these stacked voltage data and subsequently processed in the frequency domain (outphasing). Analysis of the resistivity and IP responses revealed notable IP signals at depths exceeding 1.5 km. Meanwhile, the resistivity data indicated generally very high values, around 10,000 ohm-m, with complex variations observed near the surface. This study demonstrates the efficacy of ERT and IP methods in delineating deep-seated mineral deposits, with the deep-depths IP responses being particularly noteworthy.

How to cite: Kim, B., Deparis, J., Darnet, M., Bretaudeau, F., Vedrine, S., Gance, J., Kamm, J., Autio, U., Patzer, C., and Heinonen, S.: Measuring Induced Polarization signals from deep seated magma chamber – preliminary results from a pilot survey in Finland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21924, https://doi.org/10.5194/egusphere-egu24-21924, 2024.

The Heath Discover – Advanced Mobile Leak Detection (AMLD) is an ultra-sensitive advanced technology capable of detecting natural gas leaks or emissions from a remote distance while driving on a street or right of way. It allows the user to cover large areas for compliance or emission surveys and provides reports and GIS data with breadcrumb trail on a Windows-based tablet app.

The Discover AMLD employs a mid-IR open path version of the proven TDLAS technology which has been used in other Heath Products such as RMLD-CS. It uses two Mid-Infrared Lasers, one each for Methane and Ethane, that pass through the air in front of the vehicle. As the lasers pass through a gas plume, the methane and ethane absorb a portion of the light, which the instrument detects. Based on the local meteorological conditions, a given amount of gas escaping from the ground will produce a plume that varies in size and uniformity of concentration levels. The plume, by nature is variable and dependent on the soil type, moisture, temperature, wind, venting and leak rate.

The Discover AMLD technology is already employed at 4 major gas utilities 2 domestic and 2 international and is being used to find real world leaks and disaster-based surveys. It is helping to distinguish between sewer/Biogas leak and pipeline leaks and is able to localize and quantify the methane emissions. The technology was demonstrated in real world conditions at more than 50 domestic and international gas utilities with excellent results. METEC facility at Colorado State University has done extensive testing and confirmed the efficacy and accuracy of the technology in its ability to find, localize & quantify emissions. This is helping utilities rapidly find leaks and reduce methane emissions to keep communities safe and reduce greenhouse gas emissions.

The technology was developed and commercialized by Heath Products division by connecting with research scientists at Physical Sciences Incorporation a premier research organization based in Massachusetts and utilizing their most innovative ideas and bring them to life. By using their TDLAS technology and adopting it to an open path vehicle mountable system that can be very versatile and completely wireless without the need to modify the vehicle, Heath engineers and technicians were able make it into a manufacturable product and make it available commercially in the last quarter of 2022. Since then, the product has been demonstrated and has impressed the technology evaluation laboratories of gas utilities and academia with its real-world prowess in rapidly discovering methane emissions and improving productivity of surveys by a multiplier of 4 or more. We believe that this will be a game changing technology that will help utilities in making their operations safer, build trust with communities and make environmentally friendly energy available to hundreds of millions of people.

How to cite: Wehnert, P. and Six, E.: Discover Advanced Mobile Leak Detection (AMLD) - Natural Gas Leak Surveys Utilitzing Mid-IR Open Path TDLAS , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1698, https://doi.org/10.5194/egusphere-egu24-1698, 2024.

EGU24-2391 | PICO | ERE1.11

Using Quantum Gas Lidar for Continuous Methane Emissions Quantification of Gas to Grid Plants in Water Sewage Treatment Works. 

Aaron Van Pelt, Bharanitharan Srinamasivayam, Alex Harrison, Doug Millington-Smith, and Gavin Lindsay

The recent global focus on anthropogenic methane emissions mitigation has accelerated the development and deployment of novel technologies to detect, quantify, locate and prioritize mitigation of fugitive and process emissions of methane, particularly within the oil and gas supply chain. The majority of emissions within this infrastructure result from large and intermittent sources. One study1 showed that the largest 5% of emissions (i.e. super emitters) typically contribute over 50% of the total emission volumeand another study2 found that most sources (66%) are intermittent, and account for most (48%) of the emissions. The largest impact on emissions mitigation therefore can be realized by deploying detection methods and technologies that are matched to how these two classes of emissions manifest in the infrastructure. Continuous monitoring solutions that can image and pinpoint emission sources are especially well-suited for use at sites that are expected to have intermittent process emissions.

We present recent work utilizing novel Quantum Gas Lidar for continuous methane emissions monitoring in sludge treatment works where methane-rich biogas is produced from the anaerobic digestion of sewage sludge. Some of the biogas is consumed on site and the rest is cleaned, upgraded and fed into the natural gas distribution network. Monitoring campaigns are ongoing at three such plants in the UK, owned and operated by Severn Trent, two of which have full gas to grid infrastructure. The third site uses combined heat and power engines to convert the biogas into electricity for use on site. Specific elements of the infrastructure are targeted for continuous, automated measurement by the lidar system (especially the digesters, gas storage, combined heat and power engines and gas to grid plants) and any detected methane emission plumes are imaged, their origins are pinpointed, and their emission rates are quantified. This results in a methane emission rate dataset having both high spatial and temporal resolution which can be used for both component and site-level emissions reporting within, for example, the OGMP 2.0 level 4 and level 5 framework, and IPCC Tier 3 (facility level) reporting. 3 The individual emission sources are intermittent and can have emission rates that vary in time depending on various process variables (i.e. varying pressures within the equipment) so that an accurate accounting of the overall emissions over time is reliant on the high-accuracy quantification and high temporal resolution that the lidar system provides. The continuous measurements have so far identified some previously unknown emission sources and have allowed the actual emissions of those sources to be accurately quantified for the first time, offering a high-confidence, measurement-based accounting of the methane emissions at these sites.

[1] https://pubs.acs.org/doi/10.1021/acs.est.6b04303

[2] https://pubs.acs.org/doi/10.1021/acs.estlett.1c00173

[3] https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

How to cite: Van Pelt, A., Srinamasivayam, B., Harrison, A., Millington-Smith, D., and Lindsay, G.: Using Quantum Gas Lidar for Continuous Methane Emissions Quantification of Gas to Grid Plants in Water Sewage Treatment Works., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2391, https://doi.org/10.5194/egusphere-egu24-2391, 2024.

EGU24-4195 | ECS | PICO | ERE1.11

A Two-dimensional Model for the Gas Transport in the Unsaturated Zone with the Soil Aeration 

Jui-Hsiang Lo, Kathleen Smits, and Daniel Zimmerle

To develop methods based on integrating the two-phase (liquid and gas) flow and free flow in the porous media to optimize the operation of subsurface gas venting, we developed a two-dimension soil aeration model based on the coupling of two-phase flow (liquid and gas) in the porous media with the single-phase flow (methane, CH4) in the free-flow domain under homogeneous, isotropic, and isothermal conditions. The dissolution, bioreaction, and thermal diffusion of CH4 are not included in the model. Numerical experiments were conducted with diverse near-surface meteorological conditions, soil properties (e.g., porosity, soil layering, air permeability, and soil moisture), and the deployment of venting bar holes to study the effects of environmental conditions and venting system designs on the gas flow in the subsurface. Simulation results not only demonstrated the capability of the soil aeration model on the prediction of the migration of the residual CH4 concentration in the subsurface due to the venting but also highlighted the influence of soil permeability, deployment of venting bar holes, and the venting pressure on the change in residual gas concentration in the unsaturated zone. During the soil aeration, the low soil permeability impacted the migration of advective air flow by venting in the soil and prolonged the operation time of the soil aeration. Furthermore, the Peclet number of the gas migration significantly decreased from the center of the venting bar hole with the decrease in soil permeability and venting pressure. The variation of venting pressure is more sensitive to the development of venting flow rates than that of the number of venting bar holes. The proposed 2D soil aeration model and approaches of evaluation of soil aeration in this study provide insights to investigate the multiphase flow in the subsurface due to soil aeration operation under various environmental conditions and venting strategies.

How to cite: Lo, J.-H., Smits, K., and Zimmerle, D.: A Two-dimensional Model for the Gas Transport in the Unsaturated Zone with the Soil Aeration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4195, https://doi.org/10.5194/egusphere-egu24-4195, 2024.

EGU24-4598 | PICO | ERE1.11

Unraveling Natural Gas Migration Rate and Extent from Leaking Underground Pipelines under Varying Environmental Conditions 

Kathleen Smits, Navodi Jayarathne, Daniel Zimmerle, Stuart Riddick, and Richard Kolodziej

Natural gas (NG) leakage from belowground pipelines is currently poorly understood, even though it is an area of safety, environmental, and economic concern. To date, there are limited studies on the transient behavior of NG, defined as the speed and maximum extent that gas travels belowground, and how this behavior changes with soil, environmental and leak characteristics. What is least identified is the interrelation between each controlling parameter, how to properly parameterize and characterize as well as the proper field application, specifically operator and first responder protocols. To address this gap, this work identifies key parameters influencing the transient behavior of leaked NG in the subsurface and opportunities to link this understanding to operator practice.  Though a three-year long series of over 150 controlled release experiments conducted at Colorado State University’s Methane Emission Technology Evaluation Center (METEC) and parallel numerical modeling we’ve investigated subsurface methane migration rates and extents and subsequent emission to the atmosphere. Experimental results were used to understand overall transient behavior both during and after terminating the leak. Numerical simulations were then used to extend experimental results to other conditions (e.g. additional soil types, surface conditions, and belowground infrastructure). Results demonstrate the impact of temporary rain and snow surface conditions on the extent and duration of leak transport, resulting in levels that pose heightened environmental and safety risks.  Furthermore, after leak termination, our findings demonstrate the isolated changes in the belowground migration time and the extent of leaked gas, driven by changes in surface and atmospheric conditions, a key point not consistently included in risk assessments or environmental emission rate calculations. While efforts to study a wider range of environmental conditions is underway, the findings of this study provide crucial insight to on identifying and prioritizing emissions from the perspective of both safety and the environment. 

How to cite: Smits, K., Jayarathne, N., Zimmerle, D., Riddick, S., and Kolodziej, R.: Unraveling Natural Gas Migration Rate and Extent from Leaking Underground Pipelines under Varying Environmental Conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4598, https://doi.org/10.5194/egusphere-egu24-4598, 2024.

EGU24-6658 | ECS | PICO | ERE1.11 | Highlight

A Comparison of the Effectiveness of Regulated OGI Leak Detection and Repair (LDAR) Surveys and Aerial Measurements in the Real-World 

Shona Wilde, David Tyner, Bradley Conrad, and Matthew Johnson

Periodic comprehensive or screening leak detection and repair (LDAR) surveys are a central part of many current regulations, which are intended to reduce unintentional methane emissions caused by leaking infrastructure.  In principle, by swiftly identifying and repairing leaks, emissions of methane, a potent greenhouse gas, are reduced.  The primary tools used for comprehensive LDAR surveys are Optical Gas Imaging (OGI) cameras.  While OGI can be effective for detecting and visualizing methane leaks, its extension to quantitative measurement (QOGI) is notoriously imprecise.  Moreover, studies have shown considerable variation in the performance of OGI in practice, where successful use is heavily dependent on the skill of the operator. 

Manual OGI surveys are also time consuming and labour intensive.  Implementing and maintaining an effective LDAR program that involves multiple OGI surveys per facility can be costly, potentially disrupting routine operations while requiring the deployment of trained personnel to each site.  Although operators are obligated to address and verify the repair of identified leaks, there is also still potential that significant leaks may be allowed to persist if they are not initially detected.  Consequently, despite the substantial costs involved, the full potential of methane reduction benefits may not be realized.  By contrast, aerial surveys have the potential to overcome many of the negatives associated with OGI surveys. In particular, aerial surveys can permit large numbers of sites to be surveyed per day at significantly lower cost per site, reducing overall compliance costs, labour requirements, and improving safety through reduced risks.  However, there remains no objective way to assess the relative performance of aerial surveys in complementing or replacing LDAR surveys under different scenarios.  In the context of emerging regulations, this is an especially important topic.

This work seeks to directly compare the effectiveness of conventional OGI surveys and aerial measurement under real-world conditions.  At an identical set of approximately 500 operating oil and gas sites in British Columbia, Canada, we compare and contrast detected and quantified sources in regulated LDAR surveys with parallel aerial surveys completed using Bridger Photonics’ Gas Mapping LiDAR (GML) technology.  The publicly reported LDAR reports are parsed to analyze patterns in detected emissions on 1 and 3 times per year deployments which are contrasted with aerial measurements at the same set of sites.  This direct contrast under real world conditions gives one of the first large scale tests of LDAR and aerial performance in practice, helping to provide quantitative guidance for the design of potential alternative LDAR programs under emerging regulatory scenarios.

How to cite: Wilde, S., Tyner, D., Conrad, B., and Johnson, M.: A Comparison of the Effectiveness of Regulated OGI Leak Detection and Repair (LDAR) Surveys and Aerial Measurements in the Real-World, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6658, https://doi.org/10.5194/egusphere-egu24-6658, 2024.

Establishing a streamlined workflow within the Monitoring, Measuring, Reporting, and Verifying (MMRV) framework is crucial for effective methane emission management and accurate methane emission reconciliation in the oil and gas (O&G) industry. Despite existing MMRV standards such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0), Veritas 2.0, and MIQ providing valuable guidance, the O&G industry still faces obstacles in compliance with these standards. These obstacles include (1) The Bottom-Up (BU) inventory, constructed with generic activity and emission factors, underestimates emissions and poses gaps in closing uncertainties during the reconciliation process, (2) The decision to deploy one or multiple methane sensing technologies, relying on emission profiles derived from limited sample measurements, can not accurately represent all emissions due to their inherent limitations and the stochasticity and intermittency of emissions, (3) No standard has been employed to assimilate observations from sensing technologies with varying measurement scales and data from operational events, and (4) Addressing various uncertainties, including those arising from direct measurements, atmospheric inversion modeling, and population inference from sample emission events, proves challenging in the final stages of the reconciliation process.

In this study, we present a streamlined MMRV-focused workflow integrating established and novel methodologies for reconciling emissions. The workflow consists of five key steps: Firstly, using the Oil and Gas Production Greenhouse Gas Emissions Estimator (OPGEE) to construct more accurate BU inventories and emission profiles for each type of equipment; secondly, determining the technology deployment plan and work practice based on constructed emission profiles using the Leak Detection and Repair Simulator (LDAR-Sim); thirdly, assimilating real measurements from deployed technologies through an ISO/OGC standard-based integrated sensor web architecture; fourthly, leveraging assimilated measurements and operational data to resolve emission events and reconcile the emissions; and finally estimating uncertainties from emission quantifications, inaccuracies in establishing emission event duration, and missed emission events. We demonstrate this workflow using data from the upstream O&G sites provided by an anonymous company. At the end of the demonstration we reconcile and report emissions by following the OGMP 2.0 guidelines. 

How to cite: Gao, M. and Liang, S.: Toward developing a streamlined workflow for methane emission monitoring, reporting, and verification in the oil and gas industry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7156, https://doi.org/10.5194/egusphere-egu24-7156, 2024.

The goal of reducing anthropogenic methane emissions, in particular those arising from oil and gas operations, will require the implementation of routine and effective monitoring, both to detect repairable emissions and to reliably report emitted quantities. This will mean a transition from research investigations to more formal requirements for monitoring which will be the responsibility of industry. Methane emissions are particularly challenging to measure as the sources are highly inhomogeneous in terms of the ranges of their emission characteristics such as emission rate, temporal behaviour, and the wide variety of potential sources of emissions (ducted emissions, vents, fugitive leaks from components, storage tanks, flares, onshore and offshore facilities). To enable baselining and reliable reporting from across different parts of the oil and gas industry, and to address the different needs from detection to quantification, a range of different methods based on different measurement technologies are needed. This has resulted in a large number of available and developing approaches. Industry will need confidence in the emissions data they report as they will be used to guide emission reduction activities and to report into international frameworks such as the IMEO. In future there will be increasing regulatory pressure.   
To support these growing requirements, and to support the selection of appropriate methods, there is therefore a need for a metrology framework to ensure the quality, reliability, comparability and suitability of measurement methods. It is important that the measurement uncertainties associated with methods are well understood including key sources of uncertainties, and the impact of the use of methods in different conditions and locations. This will not only support the selection of appropriate methods, but also enable the interpretation and comparison of data between sources and over different scales (both temporal and spatial).
This talk will outline these issues, review the requirements for defining clear measurement objectives and performance requirements and provide an illustration of what such a metrology quality framework would look like.  The talk will discuss the issues around determining the uncertainties in methane emission measurements and in particular in derived data such as emission rates, and the use of validation studies and controlled releases will be discussed. It will also provide an overview of current activities to develop standardised methods for monitoring methane emissions and to develop the tools to support the evaluation of such methods.

How to cite: Robinson, R., Innocenti, F., and Helmore, J.: The requirements for standardisation and performance evaluation for methane emissions monitoring technologies – a metrology perspective., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10605, https://doi.org/10.5194/egusphere-egu24-10605, 2024.

EGU24-13335 | PICO | ERE1.11

Aerial Gas Mapping LiDAR for Methane Emissions Management at Oil and Gas Infrastructure 

Michael Thorpe, Aaron Kreitinger, Peter Roos, Jason Brasseur, Benjamin Losby, Nathan Greenfield, Asa Carre-Burritt, William Kunkel, Dominic Altamura, Cameron Dudiak, Christopher Donahue, and Ben Moscona

We present an overview of aerial Gas Mapping LiDAR (GML) technology and its application to methane emissions monitoring and informatics for oil and gas infrastructure. The GML sensor combines spatially scanned and coaligned topographic and path-integrated methane concentration LiDAR measurements with navigation data and aerial photography to provide episodic detection, localization, emission rate quantification, and emission source attribution of methane plumes within scanned infrastructure. Aerial deployment enables rapid and efficient coverage of large and dispersed infrastructure. High sensitivity LiDAR measurements allow detection of methane emissions at rates below 1.5 kg/h with greater than 90% probability of detection in most deployment conditions, resulting in the detection of more than 90% of emissions from typical oil and gas production basins. The high spatial resolution of the LiDAR scans provides geo-location of emission sources, typically to within 2 m, for targeted LDAR response and reliable emission source attribution. Well characterized emission rate estimates, produced by combining LiDAR methane concentration measurements with gas flow speed information, allow source-level prioritization of LDAR response and enable accurate source-resolved methane emissions inventories.  Real-world examples of Gas Mapping LiDAR use cases will be presented and requirements for producing large-scale methane emission inventories including sample planning, facility and equipment identification, emission rate quantification accuracy, detection sensitivity, and statistical analysis methods will be covered. Specific applications of the GML technology include leak detection and repair (LDAR); measurement, monitoring, reporting, and verification (MMRV) programs; measurement-based methane emissions inventory and intensity benchmarking and reductions tracking; and differentiated gas certification programs. © 2024 The Author(s)

How to cite: Thorpe, M., Kreitinger, A., Roos, P., Brasseur, J., Losby, B., Greenfield, N., Carre-Burritt, A., Kunkel, W., Altamura, D., Dudiak, C., Donahue, C., and Moscona, B.: Aerial Gas Mapping LiDAR for Methane Emissions Management at Oil and Gas Infrastructure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13335, https://doi.org/10.5194/egusphere-egu24-13335, 2024.

EGU24-14031 | ECS | PICO | ERE1.11

Evaluation of a UAV-Based Methodology for Measuring Flare Combustion Efficiency 

Simon Festa-Bianchet, Milad Mohammadi, Alexis Tanner, Greg Kopp, and Matthew Johnson

This work will present a quantitative evaluation of the potential for measuring gas flare combustion efficiency using an aspirating sensor platform mounted under an uncrewed aerial vehicle (UAV).  The UAV sensor package contains lightweight commercial gas analyzers capable of precise measurements of atmospheric methane (CH4), ethane (C2H6), carbon dioxide (CO2), and carbon monoxide (CO).  By sampling the flare’s plume of combustion products with the help of a UAV, flare efficiency measurements can be safely and remotely completed without affecting the flare’s operation.  The relative mole fraction of the measured major carbon containing species can be used to close a carbon mass balance, which permits calculation of a local carbon conversion efficiency of the flare.  However, because the composition of the flare plume can be inhomogeneous as well as turbulent, it is not straightforward to determine whether the measured incomplete combustion products are representative of total inefficiencies.  Further uncertainty arises if the flared gas contains additional hydrocarbon species (e.g., C3+ hydrocarbons) that may not be directly measurable by the UAV platform.  To address these challenges, controlled experiments were completed on large scale (100-mm diameter) flares burning within Western University’s Boundary Layer Wind Tunnel.  With the wind tunnel running in an open circuit configuration, the UAV/sensor package was suspended within the wind tunnel test section downstream of the flare where it measured combustion efficiency while being moved in and out of the combustion plume.  Results were compared with known combustion efficiencies for identical operating conditions obtained following the established method of Burtt et al. (J. Energy Inst. 2022).  Further, combustion efficiency measurements from operating flares will be made using the developed sensor to validate the proposed measurement approach.  Ultimately, this tool could close a known gap in our ability to quantify carbon conversion efficiency and methane slip from flares under field conditions as required under emerging measurement, reporting, and verification (MRV) programs.  

How to cite: Festa-Bianchet, S., Mohammadi, M., Tanner, A., Kopp, G., and Johnson, M.: Evaluation of a UAV-Based Methodology for Measuring Flare Combustion Efficiency, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14031, https://doi.org/10.5194/egusphere-egu24-14031, 2024.

Recent emphasis on decreasing methane emissions from oil and gas production and transport has stimulated the development of multiple regulatory and voluntary reporting programs.  These programs include monitoring and verification requirements, commonly known as MMRV (methane monitoring, reporting and verification).  An underlying assumption in these programs is the use of advanced methods to estimate emissions, including continuously installed sensors at facilities and aerial, satellite and driving survey methods. These methods provide emission estimates at the scale of major sources or entire facilities. Regulatory programs in the USA and EU are increasingly tying these estimates to substantial financial risks while encouraging anonymous 3rd party measurements, raising the stakes for using these methods.  This abstract reviews recent studies of these methods, and reviews four areas of concern. 

First, multiple commonly used methods display accuracy problems which are likely to be present in most methods. Recent studies study assessed methods at production and midstream facilities onshore in the USA.  Two methods deployed simultaneously at 14 midstream facilities disagreed by 2:1 averaged across all facilities and by more than 2:1 at 6 of the facilities.  Other studies in U.S.A production and European midstream have identified similar accuracy issues. 

Second, ‘measurement informed inventory’ methods, which use full-facility estimates to update emissions reporting, remain poorly developed and unevenly implemented.  While one study found that survey methods identified large emitters and operators corrected reporting, another study found that most aerial detections did not result in effective corrections to inventory estimates. 

Third, methods used to extrapolate facility-scale estimates to basin scale have unaddressed uncertainties.  Recent work indicates that 9-49% of plumes detected by aircraft methods are due to maintenance emissions, which are poorly characterized by anonymous aerial sampling.  Additionally, extrapolation methods poorly estimate short emission events, resulting in a significant potential to over-estimate of emissions.  Conversely, random non-detects of exhaust emissions likely under-estimates emissions from engines and combustors by a factor of 2 or more.  These errors both shift emission between sectors and may result in significant bias. Additional control inputs, better GIS data, and improved methods are required to better estimate regional emissions.  

Finally, recent studies of continuous emissions monitors in both controlled and field tests indicate poor quantification accuracy in controlled testing, and poorer accuracy in field conditions. 

While advanced methods show promise for improving emissions detection and mitigation, consumers of these data need to be aware of the performance of these methods and account for bias, uncertainty, and variability of emissions estimates when constructing programs that utilize these estimates.

How to cite: Zimmerle, D.: Impact of Emissions Estimation Uncertainty on Methane Monitoring Reporting and Verification (MMRV) Programs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14035, https://doi.org/10.5194/egusphere-egu24-14035, 2024.

Satellite observations are an important tool in large emission event detection and global monitoring of methane emissions from oil and gas facilities, but current satellite-based methods face significant uncertainty. One of the major sources of uncertainty is a high rate of false positives. Current methods to mitigate false positive rates typically involve manual inspection of plume imagery, a time-consuming process which introduces human error. The Sentinel-2 multispectral satellite is widely used in global methane observation, as methane enhancements can be identified by a signal in shortwave infrared bands 11 and 12.  However, physical, biological and other anthropogenic processes can have a similar spectral signature, leading to a high rate of false positives. We present an empirical False Discovery Rate approach for quantifying the false positive probability for a given candidate plume. Imagery data is divided into a near-to-well set (within 200m of oil and gas infrastructure) and a far-from-well control set (between 400m-1200m away from oil and gas infrastructure), which is conservatively assumed to consist entirely of false positives. With these datasets, we define the probability of a false positive given proximity to oil and gas infrastructure as a function of plume quality and distance to infrastructure.  The results from this approach are shown for a case study over the contiguous United States, where we found a strong relationship between the selected plume quality metrics, distance to infrastructure and the false positive probability. We also identified significant differences in plume characteristics between the near-to-well and far-from-well datasets.  This work presents a more efficient and data-driven false positive algorithm, which can significantly reduce the manual step in false positive identification, resulting in larger scale deployment and data processing of satellite-based methane emission monitoring.

How to cite: Rischard, M., Schissel, C., and Niazi, M.: Methane leak or false positive? An automated probabilistic treatment of detected emissions from oil and gas facilities in multi-spectral satellite imagery at continental scale., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16519, https://doi.org/10.5194/egusphere-egu24-16519, 2024.

EGU24-20055 | PICO | ERE1.11

Transparent Horizons: IMEO's Methane Data Empowering Global Climate Action  

Daniel Zavala-Araiza, Steven P. Hamburg, Andreea Calcan, Stefan Schwietzke, James Lawrence France, Cynthia Randles, Marci Rose Baranski, Meghan Demeter, Roland Kupers, Robert Field, and Manfredi Caltagirone

Ambition on methane emissions reduction is growing, and open, reliable, measurement-based and actionable data is essential to track changes in emissions over time. The ability of countries and companies to meet their goals requires a thorough understanding of the magnitude and location of methane emissions, as well as being able to demonstrate progress towards these goals.  

As a core implementing partner of the Global Methane Pledge, the UN Environment Programme’s International Methane Emissions Observatory (IMEO) has been tasked with creating a sound scientific basis for methane emissions estimates and is providing reliable, public, policy-relevant data to facilitate actions to reduce methane emissions. IMEO is collecting and integrating diverse methane emissions data streams, including satellite remote sensing data, science studies, national inventories, and measurement-based industry reporting to establish a global, centralized public record of empirically verified methane emissions. 

Here, we will show the progress of IMEO towards developing its global, public dataset of policy-relevant methane data, highlighting successful mitigation case studies for the oil and gas industry from the pilot phase of IMEO’s Methane Alert and Response System (MARS), and from IMEO’s Methane Science Studies. We demonstrate how empirical data can drive real, tangible mitigation action in countries around the world.  

How to cite: Zavala-Araiza, D., Hamburg, S. P., Calcan, A., Schwietzke, S., France, J. L., Randles, C., Baranski, M. R., Demeter, M., Kupers, R., Field, R., and Caltagirone, M.: Transparent Horizons: IMEO's Methane Data Empowering Global Climate Action , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20055, https://doi.org/10.5194/egusphere-egu24-20055, 2024.

EGU24-20581 | ECS | PICO | ERE1.11 | Highlight

Combining Aerial and Ground Surveys to Quantify Oil and Gas Sector Methane Emissions in Colombia 

Nikolai Calderon-Cangrejo, Simon A. Festa-Bianchet, Bradley M. Conrad, David R. Tyner, Shona E. Wilde, and Matthew R. Johnson

Curbing methane emissions is a crucial aspect of achieving emissions reduction targets across the world. This is particularly important in Colombia, where it is estimated that 24% of anthropogenic methane emissions originate from the energy sector (IEA, 2023). However, the mitigation potential remains hampered by a lack of understanding of emission sources in the field and limited access to accurate official inventories.  The objective of this study is to develop a comprehensive inventory of methane emissions within the oil and gas industry in Colombia. The implemented framework consists of a hybrid inventory that integrates top-down, source-resolved aerial measurements with bottom-up measurements following the published methodology of Johnson et al., Comms. Earth & Environ, 2023. This approach not only facilitates a detailed attribution of emission sources but also quantifies the measurement and sample size uncertainties, employing the detection probability of the airborne sensor, Monte Carlo analysis, and bootstrap analysis.  For this study, around 3,400 facilities were included in the top-down campaign, complemented by a select sample of facilities in a parallel bottom-up campaign. The total facility sample covers six different production regions across five departments, including a wide range of oil and gas facilities and production types. This presentation will discuss the initial results of the field campaigns and progress towards the completion of a first-ever measurement-based methane inventory for Colombia that is intended to be used to support verified reporting under the International Oil and Gas Methane Partnership (OGMP 2.0).

How to cite: Calderon-Cangrejo, N., Festa-Bianchet, S. A., Conrad, B. M., Tyner, D. R., Wilde, S. E., and Johnson, M. R.: Combining Aerial and Ground Surveys to Quantify Oil and Gas Sector Methane Emissions in Colombia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20581, https://doi.org/10.5194/egusphere-egu24-20581, 2024.

Hundreds of thousands of unconventional natural gas wells recently constructed across North America have transformed the global energy landscape and generated widespread concern relating to fugitive methane leakage. To date, no studies have evaluated the integrity of unconventional wells post-abandonment. Here, we evaluated emissions at nine decommissioned unconventional wells within the Montney region of British Columbia, Canada and found two exhibited co-emission of CH4 and CO2 from surrounding soils indicating integrity failure, releasing up to ~2000 kg of CO2-eq/yr into the atmosphere. A further three wells exhibited statistically significant anomalous CO2 fluxes of ~500 kg/year from surficial soils around the well, likely associated with minor integrity failure and derived from near total soil-based aerobic oxidation of fugitive CH4. These findings suggest that more than half of decommissioned unconventional wells may generate emissions, however only relatively small contributions to GHG emissions result that are significantly mitigated through natural soils-based CH4 oxidation.

 

How to cite: Cahill, A.: Evaluating Methane Emissions From Decommissioned Unconventional Petroleum Wells in British Columbia, Canada, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22532, https://doi.org/10.5194/egusphere-egu24-22532, 2024.

EGU24-1444 | ECS | Posters on site | HS1.1.7

Urban green space: global assessment of potential energy demand reduction in buildings 

Giacomo Falchetta and Enrica De Cian

Climate change impacts are increasingly felt, and a key hazard for human health is exposure to chronic and acute heat. Air conditioning is an effective indoor adaptation technology. However, it is widely regarded as a form of “maladaptation” due to its high energy intensity and the detrimental impact it has on urban outdoor temperatures and global greenhouse gas emissions. On the other hand, urban green space (UGS) is widely regarded as an effective green infrastructure with potential to mitigate the urban heat island effect. In this context, here we built on a global validated model based on street-level vegetation density, satellite imagery, and ancillary covariates to track UGS in a large sample of cities worldwide (Falchetta and Hammad, forthcoming) and derive a context-aware but generalized statistical linkage with buildings electricity consumption statistics. Based on the modelled relations, we derive future projection of the potential contribution of UGS expansions to energy demand reduction in buildings in different regions of the world. Our study advances the quantitative, globally relevant understanding of the intersection between climate change adaptation and mitigation, and the role of nature-based solutions to reduce the feedback impacts of adaptation while providing ecosystem service co-benefits.

How to cite: Falchetta, G. and De Cian, E.: Urban green space: global assessment of potential energy demand reduction in buildings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1444, https://doi.org/10.5194/egusphere-egu24-1444, 2024.

EGU24-6337 | Posters on site | HS1.1.7 | Highlight

Simulating the impact of ground-based façade greenery design on indoor heat stress reduction 

Yannick Dahm, Karin Hoffmann, Oliver Schinke, and Thomas Nehls

Vertical greenery (VG) reduces the indoor heat hazard. To take advantage of their cooling effects, the underlying key design factors have to be understood. However, the influence of plant species, building type, and VG design on the thermal advantages has received limited attention in current literature.
Therefore, heat fluxes and temperature profiles for different ground based VG designs in the temperate climate of Berlin, Germany, were analysed using a process-based model. Indoor temperature profiles were integrated, assuming that air conditioning (AC) had been installed. Cooling effects have been simulated for six parameterised plant species of varying ages, across three different building types, and alternated air gap and crop thickness.
The results were compared, quantifying the cooling potential and the possible energy savings. They differ between plant species and building types. The diurnal variation of the indoor temperature resulted in maximum savings during the night. Fallopia baldschuanica showed the highest energy savings of approximately 23%. Thereby, it was multiple times more energy efficient than a Humulus lupulus.
This illustrates the significance of selecting the appropriate VG plant species. Considering factors such as growth rates and potential harm to buildings, VG can be strategically optimzed.

How to cite: Dahm, Y., Hoffmann, K., Schinke, O., and Nehls, T.: Simulating the impact of ground-based façade greenery design on indoor heat stress reduction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6337, https://doi.org/10.5194/egusphere-egu24-6337, 2024.

EGU24-7729 | Posters on site | HS1.1.7

Evaluating Green Roof Heat Mitigation Potential in a Changing Climate 

Giovan Battista Cavadini and Lauren Cook

As the impacts of climate change intensify, bringing an increase in the frequency and magnitude of heat waves, the interest around urban heat mitigation strategies is rapidly growing worldwide. Green roofs, defined as roofing systems that incorporate a vegetated layer, have been proved to reduce urban heat, thanks to their evaporative cooling and lower heat storage than conventional roofs. Thus, they are expected to become increasingly important in the future, given their potential to counteract the projected temperature increases associated with climate change.

Numerous studies emphasize the urban heat mitigation potential of green roofs, yet accurate quantifications of their temperature reductions under future climate are currently lacking. For instance, under climate change, higher temperatures and longer dry periods are expected in central Europe, conditions that can negatively affect green roofs. Recently, microclimate models are gaining traction in evaluating the efficacy of heat mitigation strategies, facilitating the quantification of urban heat reductions under various climate conditions. However, despite their increasing use in the literature, microclimate models are rarely combined with climate projections, due to the complexity of downscaling interdependent weather variables such as precipitation, air temperature and global horizontal radiation. Consequently, the heat reduction potential of green roofs under future climates is largely unexplored, particularly in comparison to their observed performance under current climate. Additionally, it is unknown whether specific roof parameters could contribute to further enhancing heat mitigation, such as plant characteristics, irrigation schemes, or substrate depth.

This study aims to investigate the heat mitigation potential under climate change on a green roof in Mendrisio, Switzerland (characterized by hot, dry summers) using an open source microclimate model developed by Meili et al. (2020), Urban Tethys-Chloris (UT&C). This model was selected because of the fully coupled energy and water balance, and the incorporation of plant-specific characteristics. Continuous year-long monitoring of the green roof enabled to collect surface temperature using infrared sensors. These measurements were used to calibrate and validate the microclimate model. To account for climate change, coupled, sub-hourly, future projections of precipitation, air temperature, solar radiation, relative humidity, and wind speed were used as input to the validated microclimate model. These projections were derived from a convection resolving climate model (COSMO forced by MPI-M-MPI-ESM-LR at RCP 8.5, worst-case emissions scenario) run over the European domain at a 2.2-km, 6-minute resolution for a 10-year period that was bias corrected through quantile mapping. Lastly, variations in key parameters like substrate depth, vegetation type, and green roof irrigation schemes were explored to analyze their impact on urban heat mitigation under climate change.

Preliminary, manual calibration of the microclimate model resulted in a good predictive ability (r2 = 0.71), which will be further improved with automatic calibration. In a current climate, the green roof was able to reduce maximum surface temperatures in Summer by approximately 15°C, with respect to an adjacent concrete roof. Further expected results will evaluate potential temperatures reductions in a future climate and determine whether green roofs can counteract increasing temperatures by exploring a range of alternative designs.

How to cite: Cavadini, G. B. and Cook, L.: Evaluating Green Roof Heat Mitigation Potential in a Changing Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7729, https://doi.org/10.5194/egusphere-egu24-7729, 2024.

EGU24-12889 | ECS | Posters on site | HS1.1.7 | Highlight

Rainfall temporal variability and rainwater harvesting efficiency: an analysis over the Italian territory.  

Matteo Carollo and Ilaria Butera

Rainwater harvesting for indoor uses could be a useful practice for a sustainable management of urban water. The realization of a rainwater harvesting system strictly depends on the costs and the required space so that an accurate design is necessary, especially in the tank sizing step. The volume of the tank is an important element of the system which impacts not only important environmental issues such as the volumes of saved potable water and the reduction of rainwater volumes to the sewerage system, but also the costs and the practical realization of the rainwater harvesting system. Nevertheless, while the professional world seeks solutions that are easy to apply (e.g. simplified sizing methods), from a scientific point of view several aspects are still to be clarified, among these the role of the temporal variability of rainfall in the tank sizing step, that is the object of the present study.

Rainfall temporal variability is quantified by the Coefficient of Variation (CV) of rainfall datasets. This analysis is carried out through numerical simulations and it is focused on the national Italian territory. Daily rainfall data of 3436 rainfall gauge stations located on the national Italian territory are considered and buildings with different catchment area and number of persons are taken into account. Our computations show that the majority of rainfall gauges in Italy has a rainfall CV in the 2.5-3.5 range, with higher values in the South and in the main islands. The role of the temporal variability of rainfall is clear: the same building in locations with the same mean annual rainfall depth, can require different tank sizes according to the rainfall coefficient of variation of the specific location. As an example, to reach the same water saving, a medium rise building located in Ascoli Satriano (CV=2.42) should be equipped with a tank size of 2700 litres, while in other locations which have the same mean annual rainfall depth but different CV, like Casale Monferrato (CV=3.41) and Muravera (CV=4.83), the required capacity is 3400 litres and 6800 litres, respectively. This underline the importance of taking into account the rainfall temporal variability in the tank sizing.

The analysis made use of non dimensional parameters, i.e. the storage fraction and the demand fraction, so that the results, obtained from different buildings over the Italian territory, are comparable, allowing in this way to build a unique graph that contains all information: the water demand, the mean annual rainfall depth and the rainfall coefficient of variation, as well as the number of inhabitants and the roof area of the building.

How to cite: Carollo, M. and Butera, I.: Rainfall temporal variability and rainwater harvesting efficiency: an analysis over the Italian territory. , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12889, https://doi.org/10.5194/egusphere-egu24-12889, 2024.

EGU24-15912 | ECS | Posters on site | HS1.1.7

Modelling reference evapotranspiration of green walls (ET0vert) 

Karin A. Hoffmann, Rabea Saad, Björn Kluge, and Thomas Nehls

Green walls, facade greenery, living walls – vertical building greening as part of urban green infrastructure are measures for climate sensitive urban design, for water management and microclimate regulation. Strategic integration of green walls into local water and energy cycles requires prediction of evapotranspiration, considering the individual design, plant species, and building characteristics. Available models address horizontal surfaces but disregard vertical particularities and urban conditions, e.g., reduced direct radiation, spatial patterns of radiation on the wall due to building orientation and shading obstacles, and very heterogeneous wind fields that are influenced by rough surfaces, canyons, and adjacent wind barriers. We present a verticalization model, ET0vert, for the reference crop evapotranspiration ET0 (FAO) based on a sensitivity analysis. It comprises the adaptation of solar radiation and wind to the individual situations in front of a wall or facade. The accuracies of the model predictions are evaluated for (i) remote climate station data (horizontal reference plane), (ii) interpolated climate data (both horizontal and vertical reference plane) and (iii) on-site measured climate data (vertical reference plane, both not height-adapted and height-adapted) as input. We validate the model with data for a one-month reference period (25/07/2014 – 29/08/2014) from a weighable lysimeter with Fallopia baldschuanica greening of a 12 m high wall in Berlin, Germany.

Regarding individual meteorological input parameters, we found high relevance of both vapor pressure deficit (VPD) and solar radiation (RS) for the study area. Using VPD and RS, respectively, a linear model could explain 90 % and 85 % of daily ET0 variances. No such relationship could be detected for wind speed, but for maximum and minimum wind speed.

Compared to remote horizontal input data, verticalization of input data (RS and wind) reduced overestimations of ET from about 90 % to 14 % and 27 % for the daily and hourly resolution, respectively. If onsite climate data is available, deviations are reduced to 9 % and 5 % for the daily and hourly resolution. Height-adaptation of input data resulted in further improvements of the prediction accuracies (1 % and 2 % deviation for hourly and daily resolution).

We conclude that simply using remote horizontal climate data for calculating ET of green walls is not advisable. Instead, any input data, onsite measured or remote climate station data, should be verticalized and preferably height-adapted. The verticalized model predicts the hourly and daily evapotranspiration of green walls necessary for e.g., irrigation planning, building energy simulations or local climate modeling.

For more information: https://doi.org/10.5194/hess-2023-22

How to cite: Hoffmann, K. A., Saad, R., Kluge, B., and Nehls, T.: Modelling reference evapotranspiration of green walls (ET0vert), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15912, https://doi.org/10.5194/egusphere-egu24-15912, 2024.

EGU24-16430 | ECS | Posters on site | HS1.1.7

Assessing the microclimate conditions in urban green spaces and the effects of underlying driving factors in Switzerland 

Yuxin Yin, Gabriele Manoli, and Lauren Cook

Urbanization and climate change are leading to an increase in urban heat, posing a threat to human health and well-being. Urban green spaces (UGS), such as parks and gardens, have been recognized as an effective strategy for heat mitigation because they dissipate heat within their boundaries and in the surrounding areas. The magnitude of the cooling effect of UGS varies across locations and is affected by various factors, such as background climate, urban fabric, and vegetation properties. However, previous research studying the effect of UGS typically focused on specific case study areas and particular aspects of driving factors.

To do so, we integrate modeling, remote sensing datasets, and on-site measurements to assess the microclimate conditions of five different UGS (allotment gardens, public parks, private gardens, real estate yards, and ruderal sites.) in three Swiss cities with different biophysical conditions (Zurich, Geneva, and Lugano). Urban Tethys-Chloris (UT&C) model, a novel urban ecohydrological model with an explicit representation of urban canyon and vegetation properties, is applied to simulate the microclimate for each UGS and city. The models are validated using on-site measurements for air temperature, relative humidity, and surface temperature from July to October 2023. Preliminary results for Zurich show a good fit between simulation results and on-site measurements for both three variables, especially for air temperature and surface temperature with both R-squares larger than 0.8.

During the simulation period from June 21 to October 3, results will identify diurnal and daily patterns of microclimate conditions, including how different vegetation properties (i.e., height, canopy width, leaf area index, stomatal conductance) affect the microclimate. Subsequently, statistical regression will be employed to explore how the cooling effect of UGS is related to the distinct urban fabric and background conditions. Overall, the study will explain how various factors influence urban microclimate and provide insights on which factors will help to enhance the cooling effect in urban green space design.

How to cite: Yin, Y., Manoli, G., and Cook, L.: Assessing the microclimate conditions in urban green spaces and the effects of underlying driving factors in Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16430, https://doi.org/10.5194/egusphere-egu24-16430, 2024.

EGU24-17003 | Posters on site | HS1.1.7

Sustainable Water Consumption Strategies in a Changing Climate 

Christina Tsai, Yu-Kai Chiu, Ching-Hao Fu, and Yao-Wen Hsu

Water consumption is a fundamental global need.  Water production consumes lots of energy and emits plenty of greenhouse gases.  Determining the carbon footprint of water can offer various benefits. Reducing water use and conserving water can lead to lower energy consumption, lower carbon emissions, lower monthly water and energy costs, and less demand for water.  As carbon neutrality gradually prevails, low carbon emissions have become the future global trend and goal.  Therefore, it is crucial to understand the relationship between water consumption and carbon emissions.

As most countries struggle to reduce their carbon emissions in response to global warming, investments in water conservation, efficiency, and reuse are among the most cost-effective energy and carbon reduction strategies.  Urban water infrastructures have been demonstrated to contribute to global CO2 emissions significantly, and buildings account for a large portion of most urban water consumption.  Notably, while there is abundant rainfall in Taiwan, there appears to be a frequent water shortage crisis.  Such a crisis is aggravated by climate change because of the more unpredictable seasonal changes.  Climate change is linked to excessive anthropogenic carbon emissions. 

This study focuses on five types of buildings with various missions and usage on the National Taiwan University campus.  These infrastructures are typically deemed as having significant water consumption at National Taiwan University: (1) Residential buildings, (2) Experimental buildings, (3) Experimental farms, (4) the Department of Animal Science and (5) Lecture halls.  The specific objectives of this project are to uncover the nexus between thermal comfort and water consumption and the relationship between water consumption and hydro-meteorological and anthropogenic factors.

 

How to cite: Tsai, C., Chiu, Y.-K., Fu, C.-H., and Hsu, Y.-W.: Sustainable Water Consumption Strategies in a Changing Climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17003, https://doi.org/10.5194/egusphere-egu24-17003, 2024.

EGU24-391 | ECS | PICO | HS7.3

Explaining agricultural land use changes in Spain (2004 – 2021): Markets, climate and water resources. 

Gabriel Arbonès Domingo, Lucia De Stefano, and Alberto Garrido

In Spain, from 2004 to 2021, irrigation has increased by 500,000 hectares, the percentage of cultivated land with irrigation has increased from 18% in 2004 to 23% in 2021. The literature points to intensive irrigated agriculture as one of the main causes of the destruction of biodiversity, the worsening of the quality of water bodies, changes in the rural economy, among others. The study analysis the dynamics of land use changes in Spain particularly in irrigated crops, from 2004 to 2021 at provincial level. It aims to understand and promote sustainable land use transitions by identifying factors influencing farmers' decisions in altering land use and crop surfaces. To this end, several public open-access databases were used to analyse, on one hand, the land use changes at a detailed level, and on the other hand, guided by the literature to examine the factors behind the observed land use change. Findings reveal agricultural intensification trends in Spain, marked by the abandonment of less productive croplands and the intensification of highly productive lands, through the implementation of irrigation. The intensification, driven by the introduction of irrigated woody crops, mostly olives, vineyards, and almonds, predominantly occurred in the water-constrained southern region of the country. This was achieved by overcoming water limitations through increased exploitation of groundwater, and the widespread adoption of drip irrigation technology. Additionally, market trends driving increased demand for these commodities and changes in the Common Agricultural Policy (CAP) have further contributed to their expansion. We explain why some provinces intensify, via more irrigated and intensive crops, and reduce cultivated land, whereas others intensify and expand the total cultivated land. The study suggests that agricultural land change is a complex dynamic process, resulting from a combination of policy impact, market incentives, mature technologies, available resources and changing climate.

How to cite: Arbonès Domingo, G., De Stefano, L., and Garrido, A.: Explaining agricultural land use changes in Spain (2004 – 2021): Markets, climate and water resources., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-391, https://doi.org/10.5194/egusphere-egu24-391, 2024.

EGU24-697 | ECS | PICO | HS7.3 | Highlight

Rainfall accumulation as a driver of higher Leptospirosis risk in northern South America 

Alejandro Builes-Jaramillo, Clara Susana Arias-Monsalve, Juliana Valencia, Carolina Florian, and Hernán D. Salas

Rainfall accumulation during wet seasons in Northern South America can be enhanced during La Niña ENSO phases.  Leptospirosis is a zoonotic waterborne disease that affects humans, domestic animals, and wildlife associated with occupational and recreational water activities, natural disasters, and socioeconomic conditions for which rainfall plays a key role in its transmission. We analyzed the incidence of leptospirosis, and relative risk of changes on the incidence of the disease due to rainfall accumulation in Northern Colombia during the period 2007-2021. The rainfall accumulation analysis was done for 7, 14 and 21 days based on the periods of incubation of the disease, biology of transmission, and thresholds of rainfall accumulation above the mean values. We found a statistically significant association between excess rainfall and leptospirosis at different lags for cities in Northern Colombia (Barranquilla, Santa Marta, Cartagena) and the levels of accumulated rainfall exceedance associated with leptospirosis were specific for each city. Our findings give insight into the association between leptospirosis and excess accumulated rainfall and provide climate services and local health authorities with tools to act on and prevent this important zoonotic disease.

How to cite: Builes-Jaramillo, A., Arias-Monsalve, C. S., Valencia, J., Florian, C., and Salas, H. D.: Rainfall accumulation as a driver of higher Leptospirosis risk in northern South America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-697, https://doi.org/10.5194/egusphere-egu24-697, 2024.

Environmental protection is of global interest to earth’s inhabitants with increasing concerns related to climate change. Solid wastes constitute an undeniable source of environmental degradation and a possible disaster to human health. In Jos Metropolis, a number of arable lands double as waste dumpsites and are at risk of heavy metal pollution. Shallow groundwater used for domestic purposes and plants cultivated near these dumpsites are prone to contamination and the prolonged consumption of unsafe concentrations of heavy metals through edibles and/or water may trigger numerous biochemical alterations in the human body. Subsurface geophysical investigation using 2D electrical survey and the assessment of soil and water quality has been carried out in the arable land and at close geological proximity to a solid waste dumpsite located at Utan, Jos, Plateau State, Nigeria. This study focus on delineating the lateral extent and depth of leachate migration into the subsurface from the waste dumpsite. 2D resistivity survey was carried out along three traverse (A, B and C) using Wenner–Schlumberger configuration. Qualitative interpretation of the inverse resistivity models revealed low resistivity zones of < 44 Ωm to be regions of leachate accumulation. The extent of downward migration through the vertical stratigraphic interval exceeds 15.6 m trending laterally in the eastern direction of traverse A. The analysis of heavy metal determination for water samples was aided by the use of Atomic Absorption Spectrophotometer while the soil samples were analyzed using X-ray fluorescence (XRF) analytical method. The concentrations of Pb and Ni in the analyzed water samples were above the permissible limit for drinking water and concentration of heavy metals in soil samples varies significantly. This study revealed the concentration of heavy metals in soil and water samples in close geographical proximity to the waste dumpsite and the uncontrolled disposal of waste over time poses great threat to the environment and its inhabitants. Waste management practices have to be improved upon to mitigate pollution.

How to cite: Obasuyi, F. O., Oladimeji, A. M., and Yusuf, T. A.: Investigation of the lateral extent and depth of contamination using 2D electrical resistivity and the assessment of soil and water quality in the vicinity of a Waste Dumpsite in Utan Jos, Plateau State. Nigeria., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1287, https://doi.org/10.5194/egusphere-egu24-1287, 2024.

EGU24-2496 | PICO | HS7.3

Effect of intermittent drainage on the emission of two greenhouse gases (CO2 and CH4) from three paddies in South Korea 

Seunghun Hyun, Wonjae Hwang, Minseok Park, Youn-Joo An, Sunhee Hong, and Seung-Woo Jeong

In this field pot study, effect of irrigation practice (continuous flooding (CF) and intermittent drainage (ID) treatment) on greenhouse gas (GHGs, CO2 and CH4) emission was determined from three Korean paddies (BG, MG, and JS series), varying soil properties such as soil texture, labile carbon, and mineral types.  Emission of GHGs was evidently influenced by irrigation practices, to a different extent, depending on paddy’s redox response to flooding events.  The Eh decline upon flooding was slower in JS pot, where pore-water concentration of ferric and sulfate ions is the highest (~ up to 3-fold) among three paddies.  MG pot was 2- to 3-fold percolative than others and the Eh drop during flooding period was the smallest (remaining above -50 mV) among three pots.  By adopting ID, CH4 emission (t CO2-eq ha-1 yr-1) was reduced in a wide range by 5.6 for JS pot, 2.08 for BG pot, and 0.29 for MG pot relative to CF, whereas CO2 emissions (t CO2-eq ha-1 yr-1) was increased by 1.25 for JS pot, 1.07 for BG pot, and 0.48 for MG pot due to the enhanced carbon oxidation upon drainage.  Grain yield and aboveground biomass production from ID were no less than those from CF (p < 0.05).  Consequently, benefit of global warming potential (S GWP) by ID varied as in order of JS (37%) > BG (14%) > MG (~0 %) pots, and negligible effect observed for MG pot was due to the equivalent trade-off between CO2 and CH4. Our findings imply that that the efficacy of drainage on GHG mitigation depends on the redox response of paddies.

Keyword

Climate Change, Greenhouse gas, Paddy, Intermittent drainage

 

Acknowledgement

This research was in part supported by the Korea Environment Industry & Technology Institute (KEITI), funded by Korea Ministry of Environment (MOE) (No. 2022002450002 (RS-2022-KE002074)) and in part supported by Korea University Grant.

How to cite: Hyun, S., Hwang, W., Park, M., An, Y.-J., Hong, S., and Jeong, S.-W.: Effect of intermittent drainage on the emission of two greenhouse gases (CO2 and CH4) from three paddies in South Korea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2496, https://doi.org/10.5194/egusphere-egu24-2496, 2024.

Agricultural development in Kinmen region has long suffered from the absence of a corresponding management unit responsible for irrigation planning and infrastructure maintenance, resulting in the majority of local farmlands relying on natural rainfall for cultivation. Unfortunately, this method is highly susceptible to the impacts of climate change. To address this pressing issue, the government plans to utilize reclaimed water from domestic sources as a supplementary irrigation resource. Within this context, this study aims to devise an irrigation water allocation model to optimally harness the limited water resources.

In this study, we simulate the crop rotation of local sorghum and wheat, considering soil, crop, and historical meteorological data. We calculate the variations in crop yield under different irrigation schemes. Additionally, we use historical meteorological data from Kinmen to calculate various simulated climates, testing the benefits of this irrigation plan under more extreme weather conditions. In conclusion, guided by the simulation outcomes and considerations of factors like cost and government procurement prices, we undertake a comparative analysis of the economic benefits under various scenarios and irrigation plans. This analysis aims to pinpoint the optimal irrigation water allocation plan that can be feasibly implemented by local farmers.

For this study, we have chosen a 100-hectare demonstration area located in Jinsha Town, Kinmen, as our study area. We will utilize 750 tons of reclaimed water provided daily by the Ronghu Water Resources Recycling Center as the irrigation water source, and the government has already established six agricultural ponds in the area to store water. Following this, our study will proceed with the implementation of the irrigation water allocation plan in the designated demonstration area. Our ultimate aim is for this initiative to serve as a starting point, enabling the systematic expansion of the irrigation water allocation plan to other regions in Kinmen, thereby enhancing the overall irrigation quality.

Keywords: Irrigation Water Allocation Model; Reclaimed Water; Rotation Irrigation; Kinmen; Sorghum

How to cite: Su, Y., Yu, H.-L., and Chang, T.-J.: Agricultural Irrigation Water Allocation Planning and Economic Benefit Assessment – A Case Study of Kinmen County, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2737, https://doi.org/10.5194/egusphere-egu24-2737, 2024.

EGU24-3235 | ECS | PICO | HS7.3

Estimating the risk of crop yield loss due to changing regional air temperatures 

Poornima Unnikrishnan, Kumaraswamy Ponnambalam, and Keith Hipel

Agricultural produce’s yield can be heavily impacted by changes in the weather patterns. With the current global warming scenario, the extremes temperature anomalies are expected to occur more frequently, posing a significant threat to the crop yields. To better plan the agricultural practices and crop rotation, it would be highly beneficial to understand the impact of temperature anomalies on crop yields. Here in this study, we investigated the impact of changing air temperature extremes on the yields of strawberries in farms in California's Central Valley. By using a copula modeling framework, the study has identified the risks of crop yield loss associated with temperature extremes. Based on this analysis, various scenarios of crop yield loss have been identified, and the likelihood of encountering those scenarios based on changes in temperature extremes has been estimated. The results of this study can be immensely helpful in planning agricultural practices and implementing appropriate measures to mitigate the risks. With air temperature forecasts readily available from various sources, nature-based solutions can be effectively implemented to combat the negative effects of temperature extremes on crop yields.

How to cite: Unnikrishnan, P., Ponnambalam, K., and Hipel, K.: Estimating the risk of crop yield loss due to changing regional air temperatures, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3235, https://doi.org/10.5194/egusphere-egu24-3235, 2024.

Vegetation restoration such as human-induced and natural growth has seen a significant increase over the past two decades. However, this surge has raised concerns regarding its potential impact on water resources and its consequential hindrance to local social and economic development. Policymakers are particularly focused on mitigating the negative hydrological effects of vegetation restoration. Nevertheless, the implications for water yields in the context of forest management types, such as planted and natural forests, remain unclear. In this study, we explored hydrological responses to forest expansion in both planted and natural forest watersheds, utilizing evapotranspiration data synthesized from 12 data products, forest management maps, and climate datasets. Our analysis, based on the Budyko framework, revealed that water yield reduction in arid watersheds with planted forests (PFs) exceeded that in watersheds with expanding natural forests (NFs). Interestingly, vegetation restoration, whether in PFs or NFs watersheds, could even lead to an increase in water yield. Attribution analysis highlighted ecological restoration, rather than climate conditions, as the primary contributor to the observed water yield decrease. In NFs watersheds, the decrease was primarily linked to underlying characteristics, while in PFs watersheds, changes in water yield sensitivity to the land surface played a crucial role. It is noteworthy that vegetation restoration in humid zones exhibited a negligible impact on water yield. Even in NFs watersheds where water yield decreased due to tree cover expansion in drylands, natural growth emerged as a viable option to mitigate local hydrological effects in arid zones.

How to cite: Yan, Y., Liu, Z., and Jaramillo, F.: The distinct hydrological responses to vegetation restoration between planted and natural forests watersheds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3708, https://doi.org/10.5194/egusphere-egu24-3708, 2024.

The study focuses on assessing the impact of climate change on water balance components in the Upper Ghatprabha River Basin in India. The Soil Water Assessment Tool (SWAT) is utilized to simulate streamflow in the basin. Calibration and validation of SWAT are performed across multiple sites using the Sequential Uncertainty Fitting Algorithm (SUFI 2). Performance assessment relied on metrics such as the Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). Future climate projections are based on an ensemble mean of 13 bias-corrected GCM models for the Shared Socioeconomic Pathways (SSP) scenarios SSP245 and SSP585. The simulation of future basin water balance components involves segmenting the entire timeframe into S1 (2015-2040), S2 (2041-2070), and S3 (2071-2100). Projections indicate an increase in maximum and minimum temperatures, with precipitation potentially rising by up to 47% in the basin under the SSP245 scenario by the end of the century. Hydrological simulations reveal increased surface runoff and evapotranspiration under the SSP245 scenario compared to historical data. The percentage change in blue water components under both SSP scenarios shows an increase of more than 50% compared to the historical data. In comparison, that of green water components only increases to a maximum of 8% in all the timeframes (S1, S2 and S3). Notably, the impact of climate change is more pronounced under the SSP585 scenario compared to SSP245. These changes significantly impact the water resources of the Upper Ghatprabha River Basin; necessitating focused attention on future planning and management strategies for water resources.

How to cite: Jain, S. and Jain, M. K.: Assessment of Blue and Green Water Availability in the Upper Ghatprabha River Basin under Climate Change Impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4988, https://doi.org/10.5194/egusphere-egu24-4988, 2024.

EGU24-5462 | ECS | PICO | HS7.3

Influencing factors of durum wheat productivity under current and future climatic conditions 

Malin Grosse-Heilmann, Elena Cristiano, Francesco Viola, and Roberto Deidda

Durum wheat is a critical staple crop in arid and semi-arid regions worldwide, that plays a significant role in local food security. Providing essential nutrients and a high protein content, it is widely used for the production of pasta and couscous. Various constraints and drivers affect durum wheat productivity, including biotic and abiotic stressors, agronomic practices, and CO2 concentrations. Their influence varies based on duration and intensity of the stressor, as well as the durum wheat growth phase in which they occur. Drought and heat were shown to act as primary yield limiting factors. Furthermore, the water footprint, a comprehensive measure for the volume of water associated with crop production, helps to analyse durum wheat cultivation from a water-food nexus perspective. Given that climate change is affecting the main influencing factors of durum wheat’s productivity and of its water footprint, such as precipitation, temperature, and atmospheric CO2 levels, its cultivation is expected to undergo alterations as well. In this context, we explore the present state of durum wheat productivity and the potential influence of changing climatic conditions on its future cultivation worldwide. The current state of research on future durum wheat production is characterised by contradictory results, compromising projections of significant declines due to heat and drought stress as well as strong increases in productivity as a consequence of the CO2-fertilisation effect, for the same or nearby locations. Understanding the complex interactions between climate change, durum wheat productivity and the associated water footprint is of great importance to derive sustainable adaptation strategies and move one step closer into ensuring future food and water security.

How to cite: Grosse-Heilmann, M., Cristiano, E., Viola, F., and Deidda, R.: Influencing factors of durum wheat productivity under current and future climatic conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5462, https://doi.org/10.5194/egusphere-egu24-5462, 2024.

Mobile phones, televisions, computers and other liquid crystal devices have become the electronic products widely used by humans in modern society. Liquid crystal monomers (LCMs) are the key material of liquid crystal display and considered as potential persistent, bioaccumulative, and toxic (PBT) substances in recent years, but there is a limited of information regarding their occurrence in human body. We used EPI suite software from USEPA to evaluate its physical and chemical properties, analyzed its concentration in serum and urine by GC-MS, and finally assessed its health risk to humans through the calculation of daily intake. In this paper, 15 LCMs were detected in serum and urine samples of the general population, with median concentrations ranging from 9.7 to 124.8 and 2.68 to 36.98 µg/L, respectively. The correlation of LCM in serum and urine suggests that they have potential common applications and similar sources. The results showed that the CLrenal of LCMs in the Northwest China population was 0.61, 7.79, 6.04, 4.81, 9.37, 4.85, 19.94, 10.64, 3.80, 7.44, 8.26, 15.39, 7.52, 10.17, 13.54 mL/kg/day for EBCN, BCBP, PBIPHCN, DFPrB, FPrCB, BEEB, BMBC, DFPCB, DFEEB, EPrCPB, EEPrTP, EDFPB, DFPrPrCB, EFPeT, TeFPrT, respectively. The daily intake for ∑LCMs in the adult of northwest China was 22.35 ng/kg bw/day, indicating a potential exposure risk to the general population. This study provides the first evidence for the presence of LCM in serum and urine in the daily population and finds a correlation between LCMs, but the differences in B/U ratio and renal clearance indicate the need for further investigation of its metabolism and clearance in the human body.

How to cite: Yang, K., Cheng, H., Quan, W., Gong, Y., and Ai, Y.: Human health risks estimations from Liquid crystal monomers(LCMs)in Northwest China : partitioning, clearance and exposure in paired human serum and urine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7771, https://doi.org/10.5194/egusphere-egu24-7771, 2024.

EGU24-8378 | ECS | PICO | HS7.3

Optimizing irrigation practices for sustainable olive production in semi-arid areas: A comparative analysis of the efficiency of Subsurface and Surface drip irrigation systems  

Sara Ourrai, Bouchra Aithssaine, Abdelhakim Amazirh, Salah Er-raki, Lhoussaine Bouchaou, Frederic Jacob, Mohamed Hakim Kharrou, and Abdelghani Chehbouni

Abstract : Irrigated olive trees constitute the main arboricultural component of orchards in semi-arid regions, and the optimization of irrigation practices is crucial to sustain the production, increase agricultural water productivity and reallocate water savings to other higher-value uses. Numerous technical strategies have been implemented in the last two decades, to promote water conservation in irrigated agriculture, namely the adoption of subsurface drip irrigation system. This study delves into a comprehensive comparative analysis between subsurface (SDI) and surface (DI) drip irrigation systems over an olive orchard, with an emphasis on the evolution of evaporative fraction (EF) and the ratio of transpiration (T) to evapotranspiration (ET), soil moisture distribution patterns, as well as water use efficiency and water productivity. The experiment was carried out over two irrigated olive plots located in the Tensift basin (Morocco), from May to October 2022. Each plot is subjected to a specific irrigation pattern, and equipped with an Eddy-Covariance system to quantify the energy balance components, along with Time-Domain-Reflectometry (TDR) sensors installed at various depths, to monitor the soil water content. Besides, the partitioning of ET into T and evaporation (E) over the two irrigation systems was performed using the Conditional Eddy-Covariance (CEC) scheme and validated using sap flow measurements collected over SDI plot during April 2023. The ET of the DI system was higher than that of the SDI one, with diurnal ET values ranging between 0.58-3.02 (mm/day) and 0.48-2.74 (mm/day) for DI and SDI systems, respectively. Our findings suggest that although a smaller irrigation water amount was applied in SDI (194 mm) compared to DI (320 mm), crop yield revealed no significant differences. This thorough assessment intends to add substantial knowledge to the lasting debate about sustainable irrigation practices over olive orchards and assist policymakers in making informed decisions to enhance water use efficiency while sustaining overall agricultural production.

Keywords: subsurface and surface drip irrigation; evapotranspiration; water productivity; water use efficiency; olive trees; semi-arid areas.

How to cite: Ourrai, S., Aithssaine, B., Amazirh, A., Er-raki, S., Bouchaou, L., Jacob, F., Kharrou, M. H., and Chehbouni, A.: Optimizing irrigation practices for sustainable olive production in semi-arid areas: A comparative analysis of the efficiency of Subsurface and Surface drip irrigation systems , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8378, https://doi.org/10.5194/egusphere-egu24-8378, 2024.

EGU24-8539 | ECS | PICO | HS7.3

Design of a low-cost autonomous seawater measurement buoy to scale and optimize a green-powered desalination plant 

Zachary Williams, Manuel Soto Calvo, and Han Soo Lee

Climate change and water scarcity has pushed more countries with direct ocean access to seek desalination solutions to face part of their need for domestic water networks or industrial usage, while conserving coastal ecosystems. Seawater monitoring is crucial in implementing a desalination plant as it ensures the efficiency and sustainability of the desalination process, especially in the case of a plant powered by renewable energy sources. Seawater is the main input of desalination processes and coastal areas are the locations of the release of the salty waste. An autonomous buoy can be used to monitor the seawater parameters which are essential to sizing a desalination plant.

There have been recent developments of autonomous buoy systems for monitoring different water parameters, however lacking in certain aspects. Some of the elements of these buoys include limited range of data transmission, high-cost designs, immobility and limited number and types of sensors. Also, there has been lacking implementation of autonomous buoys used in development of desalination plants. 

The proposed low-cost autonomous buoy is designed and constructed using cost effective materials. It increases the possibility of multiplying the sensor count to have a more accurate data mapping system. The low cost provides the opportunity of having more devices where there is a higher probability of equipment loss due to possible theft or remoteness of travel. The power supply is an oversized solar array with a backup battery and solar charger. An Arduino microcontroller is connected to two probes and a GPS sensor. The data is logged on a SD memory card with data transmitted via the Iridium satellite constellation, consisting of 75 satellites. There are two parts of construction involved in the project: the construction of the outer shell of the buoy and the design of the inner circuitry and components. The project involves multiple steps of experimentation: first in a laboratory/controlled area then deployed in the Seto Inland Sea, Japan. The various steps ensure the data collected by the sensors is reliable, valid, and suitable for scientific research. After this successful implementation, the buoy will be adapted and deployed in the Caribbean Sea surrounding Jamaica.

Initial results show a promising possibility of measuring seawater parameters such as GPS location, salinity, and sea surface temperature for any body of water. Utilizing the span of the Iridium satellite communication system, this ensures that virtually all regions of the Earth can be measured. The sizing of the solar powering components allows for at least 1 year of monitoring in the worst-case scenario and 4-5 years in the best-case scenario. The integration of autonomous buoys in the desalination process enhances efficiency in the plant design stages and reduces potential costs which contributes to the optimization of the desalination system. The environmental integration and the operation of the plant will be improved as a result of the enhanced assessment of the input and waste release conditions.

 

Keywords: Seawater Monitoring, Remote Sensing, Desalination, Autonomous buoy, Autonomous measurements

 

How to cite: Williams, Z., Soto Calvo, M., and Lee, H. S.: Design of a low-cost autonomous seawater measurement buoy to scale and optimize a green-powered desalination plant, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8539, https://doi.org/10.5194/egusphere-egu24-8539, 2024.

Reduced rainfall has been identified as a highly probable consequence of climate change in certain regions of Zambia. This is particularly concerning for small-holder farmers, who heavily rely on rainfall and are the primary producers of the country’s staple food, such as maize. The resulting decrease in production significantly impacts national food security. Recognizing the potential of irrigated agriculture to improve food security and sustain production levels, the Zambian Agricultural Research Institute (ZARI) has been actively engaged in research since 2021. Their focus is on enhancing irrigation and soil fertility management under conditions of reduced water availability.

To address these challenges, a research trial was initiated at the ZARI research station in 2021. This trial aims to identify the optimal and sustainable water and nitrogen application for achieving maximum maize production in irrigated crop systems. Access tubes were installed in each subplot to monitor soil moisture to a depth of 1 m before and after irrigation on a weekly basis.

This paper assesses the stored water in the root zone (up to 1 m) with interplay between amount of nitrogen fertilizer  applied and water application level.

In the 2021 season, the results indicate that significantly more water was retained averagely throughout the growing season  in treatments with higher nitrogen levels, especially under reduced irrigation water applications (50% and 75% ETc). A similar trend was observed in the 2022 season, albeit only for 50% ETc. The increased stover yield may have contributed to reduced evaporation, minimizing losses. As nitrogen application levels rise, the ability to store soil water in the profile appears to increase. However, further analyses of soil moisture depth and root systems are needed to determine whether excess water in deficit-irrigated treatments is obtained from lower depths or if (and how much) water is lost in optimally irrigated treatments.

How to cite: Mwape, M., Said Ahmed, H., Phiri, E., and Dercon, G.: Enhancing Maize Production in Irrigated Crop Systems: Optimizing Water and Nitrogen Application for Sustainable Agriculture in Zambia, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8734, https://doi.org/10.5194/egusphere-egu24-8734, 2024.

EGU24-9386 | ECS | PICO | HS7.3

Food security in a changing climate - how can Earth observation and machine learning help?  

Emanuel Bueechi, Milan Fischer, Laura Crocetti, Miroslav Trnka, Ales Grlj, Luca Zappa, and Wouter Dorigo

Climate change is threatening food security. To ensure food security, we do not only have to safeguard agricultural production - crop yields also need to be optimally distributed. For that, decision-makers need reliable crop forecasts so that they can plan which regions are likely to experience crop yield losses and which regions will produce a surplus. Earth observation and machine learning are key tools to calculate such forecasts. However, extreme crop yield losses, for example caused by severe droughts, are often underestimated. To test this, we developed a machine learning-based crop yield anomaly forecasting system for the Pannonian Basin and examined its performance, with a focus on drought years. We trained the model (XGBoost) with crop yield data from 43 regions in southeastern Europe and predictors describing soil moisture, vegetation, and meteorological conditions. Maize and winter wheat yield anomalies were forecasted with different lead times (zero to three months) before the harvesting season. Our results show that the crop yield forecasts are significantly more reliable from 2 months before the harvest than before in both, drought and non-drought years. The models have their clear strength in forecasting interannual variabilities but struggle to forecast differences between regions within individual years. This is related to spatial autocorrelations and a lower spatial than temporal variability of crop yields. In years of severe droughts, the wheat yield losses remain underestimated, but the maize forecasts are fairly accurate. The feature importance analysis shows that in general wheat yield anomalies are controlled by temperature and maize by water availability during the last two months before harvest. In severe drought years, soil moisture is the most important predictor for the maize model and the seasonal temperature forecast becomes key for wheat forecasts two months before harvest. 

How to cite: Bueechi, E., Fischer, M., Crocetti, L., Trnka, M., Grlj, A., Zappa, L., and Dorigo, W.: Food security in a changing climate - how can Earth observation and machine learning help? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9386, https://doi.org/10.5194/egusphere-egu24-9386, 2024.

EGU24-13506 | ECS | PICO | HS7.3

The impact of drought on the water-food nexus at the global scale 

Tobia Rinaldo, Elena Ridolfi, Benedetta Moccia, Flavia Marconi, Paolo D'Odorico, Fabio Russo, and Francesco Napolitano

The demand for farmland products is increasing worldwide, causing unprecedented stress on the global agricultural system and, consequently, on water resources. Here we analyse the impact of drought events on rainfed agriculture, a topical issue given the prolonged and severe drought events currently occurring around the world and thus including highly productive areas. We investigate the agricultural yields of key crops that represent 61% of the world’s production of proteins for human consumption (i.e. corn, wheat, rice, and soybeans). Our analysis spans from the early 1900s to 2022, allowing us to assess the total agricultural area under drought stress per year and the most vulnerable types of crops. We identify significant trends in the extent of agricultural land under stress, considering both historical and recent periods. This comprehensive analysis enables us to estimate the frequency of occurrences of crop-specific cultivated areas under stress over time, unravelling the pattern of drought impact on global agriculture.

How to cite: Rinaldo, T., Ridolfi, E., Moccia, B., Marconi, F., D'Odorico, P., Russo, F., and Napolitano, F.: The impact of drought on the water-food nexus at the global scale, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13506, https://doi.org/10.5194/egusphere-egu24-13506, 2024.

Continued population growth, changing climate and increased pressure on water resources will dramatically increase the pressure on Chinese agriculture in the coming decades. Although there have been some reports of yield stagnation in the world’s major cereal crops, including maize, rice and wheat, the reasons for stagnation have not been quantified thoroughly. Here, we use statistical data to examine the trends in crop yields for two key Chinese crops: maize and wheat and their drivers in China’s drylands. Results showed that although yields continue to increase in many areas, we found that across 70.2% of maize- and 51.9% of wheat- growing prefectures or provinces, yields either never improved, stagnated or collapsed. The reasons for the decline and stagnation of crop yield were mainly caused by the change of growing season precipitation and irrigation fraction. New investments such as increased irrigation fraction in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

How to cite: Zi, S.: Recent patterns of crop yield growth, stagnation and their drivers in China’s dryland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13868, https://doi.org/10.5194/egusphere-egu24-13868, 2024.

EGU24-18617 | ECS | PICO | HS7.3

Climate change impact on wheat yield in India: Study using CERES-wheat model 

Achanya Lakshmanan, Yogendra Shastri, and Riddhi Singh

Agriculture is highly dependent on climate because rainfall, temperature and sunlight are the primary determinants of crop development. Climate change driven effects such as variation in precipitation and changes in temperatures are likely to affect agricultural yields. Systematic planning of agricultural activities considering these effects is essential. As a first step towards this longer term objective, this work quantifies the effect of climate change on crop in short and long term in India. Wheat is chosen as the crop of interest. Madhya Pradesh, one of the leading wheat producing states in India, is the region under focus, and Betul district is selected for a initial studies. The CERES-wheat model in the Decision Support System for Agrotechnology Transfer (DSSAT) tool is used to estimate the impact of climate change on wheat yield. The CERES-wheat model has been calibrated and validated, and the calibrated parameters have been used to simulate wheat yield in the future. The base period for calculating base wheat yield is 2009-2019. Future wheat yields are calculated for two periods (2025-2055 and 2056-2085). The projected changes in precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) in future compared to the base period are calculated using four different General Circulation Models (GCMs) and four Shared Socioeconomic Pathways (SSPs). To increase the study's robustness, 1000 samples are systematically generated using Latin Hypercube Sampling (LHS). A stochastic weather generator (WG), WeaGETS, is used to create a synthetic time series of climate variables. Using the 1000 different combinations of changes in climate variables, 1000 climate scenarios are generated using WeaGETS. The climate variables used to determine the relationship between climate and wheat yield were mean rainfall, rainfall variance, Tmax, and Tmin. Wheat yield ranged from 2065 to 3207 kg/ha during the baseline period, and it is expected to vary from 1629 to 3638 kg/ha between 2025 and 2055. Looking ahead to 2056-2085, wheat yields are estimated to range from 1363 to 3555 kg/ha. The sensitivity analysis results between climate variables and wheat yield for both periods suggest that wheat yield is positively correlated with mean rainfall and rainfall variance and negatively correlated with Tmax and Tmin. Maximum temperature has a significant negative correlation with wheat yield in both periods after excluding the effect of other climate variables. However, in the last stage of wheat yield development, the grain filling stage, Tmin is more critical than Tmax. These results highlight the need for systematic planning to manage negative impacts of climate change on wheat cultivation in India. These results will used as a basis for suggesting adaptation strategies to manage the impact of climate change on wheat yield.

How to cite: Lakshmanan, A., Shastri, Y., and Singh, R.: Climate change impact on wheat yield in India: Study using CERES-wheat model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18617, https://doi.org/10.5194/egusphere-egu24-18617, 2024.

EGU24-19902 | PICO | HS7.3

Estimating and Suggesting measures to reduce carbon emissions and water footprint linked to water collection, agriculture, and tourism in the Canary Islands (Spain) 

Juan C. Santamarta, Noelia Cruz-Pérez, Joselín R. Rodríguez-Alcántara, Jesica Rodríguez-Martín, Alejandro García-Gil, Samanta Gasco-Cavero, and MIguel Á. Marazuela

The Canary Islands constitute an archipelago of Spain, also being a European outermost region composed of eight islands. Overall, these islands face a high risk of experiencing the impacts of climate change, particularly rising sea levels, floods, temperature increases, and a decrease in water resources, factors that significantly affect the daily life of the population in the islands. As the effects of climate change are linked to greenhouse gas emissions, it is crucial to measure the emissions from the main sectors of the Canary Islands to implement effective mitigation and reduction measures, as well as to increase energy production through renewable sources. For this reason, the Government of the Canary Islands has commissioned the project to determine the carbon footprint and water footprint of the main sectors of the region, including the production of drinking water and wastewater management, agriculture, and tourism. The results indicate that seawater desalination for drinking water, being a significant energy consumer with low penetration of renewable energy in the Canary Islands' electricity mix, is the facility contributing the most to greenhouse gas generation in the water cycle in the region. It is followed by wastewater treatment plants and extraction wells from the aquifer. In the case of agriculture, focusing on the consumption of tropical crops such as avocados and bananas, key export crops, it is noteworthy that avocados are major water consumers, slightly exceeding the water consumption of bananas. This poses challenges in the face of an uncertain future due to reduced natural precipitation resulting from climate change. Lastly, the analysis of tourism emissions highlights that hotel activities and rental vehicles are significant contributors to greenhouse gas emissions. Although these emissions are indirect for the archipelago, other studies have emphasized the high emissions associated with the arrival of tourists by air to the islands. This study stands as the first to analyze the emissions of the main sectors in the Canary Islands, providing an opportunity for governmental actions to reduce these emissions and mitigate climate change in the islands.

Keywords: Climate change; outermost region; vulnerability; sustainable development

Acknowledgements

This research was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement 101037424 and Project ARSINOE (Climate Resilient Regions Through Systems Solutions and Innovations).

How to cite: Santamarta, J. C., Cruz-Pérez, N., Rodríguez-Alcántara, J. R., Rodríguez-Martín, J., García-Gil, A., Gasco-Cavero, S., and Marazuela, M. Á.: Estimating and Suggesting measures to reduce carbon emissions and water footprint linked to water collection, agriculture, and tourism in the Canary Islands (Spain), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19902, https://doi.org/10.5194/egusphere-egu24-19902, 2024.

EGU24-20643 | PICO | HS7.3

The use of crop models to assess crop production and food security 

Yohanne Gavasso Rita, Simon Papalexiou, Yanping Li, Amin Elshorbagy, Zhenhua Li, and Corinne Schuster-Wallace

The global food supply and food security are altered by field, soil, and weather conditions during crop production. Researching food productivity became crucial as the global population increased. In particular, crop losses bring low food supply and price instabilities at the regional and global levels. With that in mind, we reviewed ten crop models and the most simulated impacts from soil-crop-atmosphere interactions in maize, rice, and wheat production. Since 2012, modellers have mainly used APSIM to predict water availability, temperature changes and Greenhouse Gas  (GHG) concentration to predict crop phenology, growth and development, grain filling and nutrient content, and yield. Since 2013, AquaCrop has been used to simulate scenarios focused on water balance in crop production systems, water stress and irrigation planning. Interestingly, Biome-BGCMuso was developed as a biogeochemical model and was not considered good by crop modellers. However, After updates, version v6.2 can simulate different management and field conditions for fifteen crops, considering heat, nitrogen and drought stress. Since 2008, crop modellers used CropSyst to evaluate water availability, nitrogen use efficiency (UE), temperature shifts and GHG concentration in rainfed and irrigated crop systems. Since 2002,  crop modellers have used DAISY to predict crop growth, nitrogen and water UE, grain content, yield gap, and losses. Since 2011, researchers have used DSSAT-CERES for mitigation strategy planning by predicting crop growth, soil characteristics, changes in land use, and nitrogen and water UE. Since 2015, JULES has been used to determine land-atmosphere interactions, changes in land use and GHG impacts on agriculture. Since 2008, ORYZA modellers have mainly predicted nitrogen and water UE, salinity impacts, and toxicity to rice. STICS was developed in 1996, and since 2008, it has been primarily used to simulate fertilization and irrigation systems, nitrogen leaching, and water availability. Since 2000, researchers have used WOFOST to analyze water availability, crop growth, and productivity under temperature changes. Crop models are fast and reliable resources when simulating crop production and food availability.

How to cite: Gavasso Rita, Y., Papalexiou, S., Li, Y., Elshorbagy, A., Li, Z., and Schuster-Wallace, C.: The use of crop models to assess crop production and food security, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20643, https://doi.org/10.5194/egusphere-egu24-20643, 2024.

EGU24-20876 | ECS | PICO | HS7.3

Application of Machine Learning Approaches for Cotton Seasonal Yield Estimation  

Lisa Umutoni, Vidya Samadi, Jose Payero, Bulent Koc, and Charles Privette

Estimating crop yield can help farmers plan for equipment, labor, and other crop production input requirements. Forecasting crop yield is also useful for analyzing weather-related variability to guide decisions such as irrigation water and fertilizer management. This work discusses the application of Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) machine learning algorithms for seasonal cotton yield prediction. Simulation results from the crop model AquaCrop, consisting of irrigation depth, soil moisture content, and crop growth stage data from 2003 to 2021 were used to train the algorithms. The two developed yield-prediction models were tested against data collected from an irrigated cotton field located at Clemson University Edisto Research and Education Centre (EREC), near Blackville, South Carolina, USA during the 2023 growing season. The values of hidden layers, hidden units, dropout, learning rate and batch size hyperparameters were set to respectively, 3, 64, 0.2, 10E-3 and 64 for the GRU model and 3, 128, 0.4, 10E-3 and 64 for the LSTM model. Analysis suggested that the tested algorithms resulted in very good to excellent performance. We concluded that machine learning algorithms are useful tools that can provide insights into how much yield to expect in an upcoming season and help farmers optimize energy, water, and fertilizers applications.

How to cite: Umutoni, L., Samadi, V., Payero, J., Koc, B., and Privette, C.: Application of Machine Learning Approaches for Cotton Seasonal Yield Estimation , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20876, https://doi.org/10.5194/egusphere-egu24-20876, 2024.

EGU24-21145 | ECS | PICO | HS7.3

Climate Risk and Vulnerability Assessment (CRVA) for the Port of Heraklion in Greece  

Anastasios Perdios, Antonios Boutatis, Andreas Langousis, Panagiotis Biniskos, Eva Kypraiou, Konstantina Korda, and Alexandros Zacharof

Climate change is expected to impact the maritime sector, including the port industry. Ports are on the frontline when it comes to experiencing operational challenges from the increased sea levels and extreme weather conditions, associated with increased infrastructure investments. For instance, rising sea water levels are expected to change the accessibility of channels and increase the need for higher quay walls, while the increased intensity or/and frequency of events, such as fog, high winds, and waves, may increase the frequency of port operation disruptions; but changes are uncertain, and with regional variation.

The present study focuses on the Port of Heraklion, one of the main ports of national importance in the Greek Maritime Network, located in the North side of the island of Crete, and aims at assessing the impacts of climate change on port operations associated with: 

  • Changes in mean sea level, storm surges and wave characteristics (i.e. wave height, period, frequency of occurrence).
  • Reduced visibility caused by intense precipitation and/or fog.
  • Disruption of port operations due to high wind speeds, drainage system induced flooding, as well as river discharges and sediment transfer in the harbor basin.

To assess the effects of climate change on winds we use climate change factors (CCFs) obtained using climate model data at 3-hourly temporal resolution over the Island of Crete (i.e. sub-country level) from EURO-CORDEX ensemble, and more in particular from HIRHAM5 RCM (Regional Climate Model) nested in (downscaled from) EC-EARTH GCM (Global Climate model), for two Representative Concentration Pathways of future emissions: RCP 4.5 for the period 2071-2100 and RCP 8.5 for the period 2041-2070. These are also the RCM-GCM combination and time periods used to assess the effects of climate change on the sea state and wave characteristics.

For rainfall, we make direct use of the climate change factors reported in the context of SWICCA program (Service for Water Indicators in Climate Change Adaption, 2015 - 2018), which was financed by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Copernicus Agency within the framework of the Copernicus climate change service (C3S). Over the island of Crete, the corresponding factors are available for 9 GCM - RCM combinations (i.e. 5 for the RCP 4.5 scenario and 4 for the RCP 8.5 scenario).

We find that the increase of the mean sea level, as well as the increase in the frequency of intense storms significantly affect the frequency of port operation disruptions, particularly due to breakwater overtopping, storm induced flooding, as well sediment deposition in the harbor basin.

Acknowledgements

The presented work has been conducted under the project Climate Risk and Vulnerability Assessment (CRVA) for the Heraklion Port Authority" (project code: AA 011391-002/CC15302), which has been financed by the EIB under the InvestEU Advisory Hub. 

How to cite: Perdios, A., Boutatis, A., Langousis, A., Biniskos, P., Kypraiou, E., Korda, K., and Zacharof, A.: Climate Risk and Vulnerability Assessment (CRVA) for the Port of Heraklion in Greece , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21145, https://doi.org/10.5194/egusphere-egu24-21145, 2024.

Because of their computational expense, models with comprehensive tropospheric chemistry have typically been run with prescribed sea surface temperatures (SSTs), which greatly limits the model’s ability to generate climate responses to atmospheric forcings. In the past few years, however, several fully coupled models with comprehensive tropospheric chemistry have been developed. For example, the Community Earth System Model version 2 with the Whole Atmosphere Community Climate Model version 6 as its atmospheric component (CESM2-WACCM6) has implemented fully interactive tropospheric chemistry with 231 chemical species as well as a fully coupled ocean. Earlier versions of this model used a “SOAG scheme” that prescribes bulk emission of a single gas-phase precursor to secondary organic aerosols (SOAs). In contrast, CESM2-WACCM6 simulates the chemistry of a comprehensive range of volatile organic compounds (VOCs) responsible for tropospheric aerosol formation. Such a model offers an opportunity to examine the full climate effects of comprehensive tropospheric chemistry. To examine these effects, 211-year preindustrial control simulations were performed using the following two configurations: (1) the standard CESM2-WACCM6 configuration with interactive chemistry over the whole atmosphere (WACtl) and (2) a simplified CESM2-WACCM6 configuration using a SOAG scheme in the troposphere and interactive chemistry in the middle atmosphere (MACtl). The middle-atmospheric chemistry is the same in all configurations, and only the tropospheric chemistry differs. Differences between WACtl and MACtl were analyzed for various fields. Regional differences in annual mean surface temperature range from −4 to 4 K. In the zonal average, there is widespread tropospheric cooling in the extratropics. Longwave forcers are shown to be unlikely drivers of this cooling, and possible shortwave forcers are explored. Evidence is presented that the climate response is primarily due to increased sulfate aerosols in the extratropical stratosphere and cloud feedbacks. As found in earlier studies, enhanced internal mixing with SOAs in WACtl causes widespread reductions of black carbon (BC) and primary organic matter (POM), which are not directly influenced by VOC chemistry. These BC and POM reductions might further contribute to cooling in the Northern Hemisphere. The extratropical tropospheric cooling results in dynamical changes, such as equatorward shifts of the midlatitude jets, which in turn drive extratropical changes in clouds and precipitation. In the tropical upper troposphere, cloud-driven increases in shortwave heating appear to weaken and expand the Hadley circulation, which in turn drives changes in tropical and subtropical precipitation. Some of the climate responses are quantitatively large enough in some regions to motivate future investigations of VOC chemistry’s possible influences on anthropogenic climate change. Additional simulations of a 2000 baseline (rather than preindustrial) climate reveal that these results are sensitive to the prescribed land emissions. Most of this work was recently published in Atmospheric Chemistry and Physics (doi:10.5194/acp-23-9191-2023).

How to cite: Stanton, N. A. and Tandon, N. F.: How does tropospheric VOC chemistry affect climate? Investigations using the Community Earth System Model Version 2., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2025, https://doi.org/10.5194/egusphere-egu24-2025, 2024.

EGU24-3142 | ECS | Posters on site | AS3.26

Understanding and quantifying chemical uncertainties in the hydrogen budget 

Rayne Holland, M. Anwar H. Khan, and Dudley Shallcross

The potential transition to a hydrogen-based economy, requires a comprehensive understanding of hydrogen's atmospheric behaviour for well-informed decision-making. Among the uncertainties surrounding the atmospheric fate of hydrogen, the chemical processes governing its formation and transformation are pressing.

This study employs STOCHEM-CRI, a global 3D tropospheric chemical transport model, to explore the chemical uncertainty associated with atmospheric hydrogen. The primary objective is to improve our understanding of the hydrogen distribution, sources, and sinks on a global scale. Addressing the significant role of formaldehyde (HCHO) as a chemical source, we update its photolysis parameterisation in accordance with recent recommendations (JPL 2020 and IUPAC 2013) and assess its variability. Furthermore, we evaluate the atmospheric burden of HCHO as a function of its sources to identify key photochemical contributors to the present hydrogen budget.

The study undertakes preliminary studies of the major sink of atmospheric hydrogen, namely uptake by soil, to gauge its impact. Through a meticulous examination of model outputs against observational data, various scenarios are systematically assessed for their ability to accurately replicate global hydrogen distribution and seasonal variations.

Preliminary results show updates to the photochemical parameters of HCHO significantly reduce the hydrogen burden by between 50 and 90 ppb globally. This is namely due to updates to the quantum yield of the molecular (H2 producing) photolysis channel which varies significantly when compared to previous recommendations. There is limited variation between the two updates (JPL 2020 and IUPAC 2013) of up to 5 ppb. Additionally, minor updates relating to the temperature dependence of the soil sink result in significant improvement in the models replication of observational data, including seasonal variation.

How to cite: Holland, R., Khan, M. A. H., and Shallcross, D.: Understanding and quantifying chemical uncertainties in the hydrogen budget, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3142, https://doi.org/10.5194/egusphere-egu24-3142, 2024.

EGU24-3552 | ECS | Posters on site | AS3.26

Hydrogen supply chain and its impacts on energy storage and carbon neutrality 

Tatsuto Yukihara and Qian Sun

As a clean and efficient secondary energy, hydrogen energy is of great significance for energy transition and carbon neutrality. However, hydrogen development faces big challenges of high cost, unclean in production process, insecurity in transportation and storage etc. This paper tries to build a theoretical framework of hydrogen supply chain which contains whole life cycle of production, transportation, storage, utilization, and recycle of end use. Our study shows that a complete and mature hydrogen energy supply chain can enlarge the scale of hydrogen production and reduce the cost, improve its efficient and safety, and obtain a stable, sustainable, and zero-emission energy system. At the same time, a sound hydrogen energy supply chain also plays an important role in ensuring energy security and a bridge for the transition from fossil energy to renewable energy and these will help to reduce CO2 emissions, promote carbon peaking and neutrality through energy technological innovation and rapid energy transition.

Key words: Hydrogen energy storage, hydrogen industry supply chain, green hydrogen, energy transition, carbon peaking and neutrality.

How to cite: Yukihara, T. and Sun, Q.: Hydrogen supply chain and its impacts on energy storage and carbon neutrality, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3552, https://doi.org/10.5194/egusphere-egu24-3552, 2024.

EGU24-4434 | ECS | Posters on site | AS3.26

Uncertainties in tropospheric ozone changes due to natural precursor emissions 

Xingpei Ye, Xiaolin Wang, Danyang Li, Paul Griffiths, Alex Archibald, and Lin Zhang

Accurate modelling of tropospheric ozone is crucial for understanding its climate and health effect, yet the uncertainty associated with natural ozone precursor emissions such as lightning and soil NOx is often overlooked. Here we apply a global chemical transport model, GEOS-Chem High Performance, to explore this uncertainty.

The modelled present-day tropospheric ozone burden, under low to high natural NOx emissions levels (set to align with the current literature’s range), varies from 285 to 373 Tg; primarily attributed to lightning NOx uncertainty. Such a range far exceeds the ozone difference driven by anthropogenic emissions between the two most disparate SSP scenarios in 2050 (33 Tg). Ozone’s sensitivity to natural emissions is the highest around the tropical upper troposphere where ozone’s climate effect is also large, and would be even higher if anthropogenic emissions were reduced along the SSP1-2.6 pathway. At the surface, global mean warm-season ozone ranges from 32.4 to 38.8 ppbv, mainly due to soil NOx. This especially introduces large ozone uncertainties in southern hemisphere regions such as the Amazon and Australia.

We also examine ΔO3-anthro, the ozone change driven by anthropogenic emissions changes up-to 2050. We found that with respect to tropospheric ozone burden, ΔO3-anthro shows limited differences between high and low natural emission levels (~13%), implying that the estimate of future changes in ozone radiative forcing is subject to less uncertainty from uncertain natural emissions than the present-day ozone radiative forcing itself. However, ΔO3-anthro related to the surface ozone exposure metric shows significant contrasts with different natural NOx emissions. The largest difference exceeds 5 ppbv (~50%) in regions such as Europe, North America, eastern China, and India. We hence stress that extra care needs to be taken when using individual models to assess ozone health risks in these densely populated regions as highly uncertain natural emissions will produce a presently unconstrained error.

How to cite: Ye, X., Wang, X., Li, D., Griffiths, P., Archibald, A., and Zhang, L.: Uncertainties in tropospheric ozone changes due to natural precursor emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4434, https://doi.org/10.5194/egusphere-egu24-4434, 2024.

EGU24-6038 | ECS | Posters virtual | AS3.26

A Simple Approach for Atmospheric Hydrogen Modelling Based on the Seasonal Variability 

Alexander Tardito Chaudhri and David Stevenson

Anthropogenic hydrogen emissions to the atmosphere have the potential to increase if there is a proliferation of hydrogen as a fuel in the future (Warwick et al., 2023).  It is well understood that atmospheric hydrogen has a positive indirect global warming potential (Ocko and Hamburg, 2022; Sand et al., 2023).  However, substantial uncertainty remains in evaluating this global warming potential, and how this value depends on the distribution of emissions.  Principally, the most appropriate surface deposition scheme to use in models remains unclear (Paulot et al., 2021).

Motivated by the observation that the seasonal variability of station hydrogen measurements (from Petron et al., 2023) can be well described as a function of latitude, we present an idealised latitude-height model for testing prototype deposition schemes.  We show how much of the key features of the seasonal variability can be captured with an illustrative benchmark deposition scheme, and finally how this model can be used to iteratively develop existing deposition schemes (e.g. Bertagni et al., 2021).

How to cite: Tardito Chaudhri, A. and Stevenson, D.: A Simple Approach for Atmospheric Hydrogen Modelling Based on the Seasonal Variability, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6038, https://doi.org/10.5194/egusphere-egu24-6038, 2024.

There are close to 6000 megaconstellation satellites in low-Earth orbit comprising 65% of all satellites orbiting Earth. The growth in satellite megaconstellations has driven surges in rocket launches and re-entry destruction of spent satellites. This has contributed to large increases in emissions of pollutants that are very effective at depleting stratospheric ozone and altering climate, due to direct injection of pollutants into the upper layers of the atmosphere where turnover rates are very slow. An additional 540,000 megaconstellation satellites are proposed, yet the environmental impacts of emissions from current and future satellite megaconstellations remain uncharacterized and unregulated. Here we calculate emissions of the dominant pollutants from megaconstellation and non-megaconstellation rocket launches and re-entries from 2020 to 2022 to determine the effect on climate and stratospheric ozone. Pollutants include black carbon (BC), nitrogen oxides (NOx≡NO+NO2), water vapour (H2O), carbon monoxide (CO), alumina aerosol (Al2O3) and chlorine species (Cly≡HCl+Cl2+Cl) from rocket launches and nitrogen oxides (NOx≡NO) and alumina aerosol (Al2O3) from re-entries. Launch emissions are calculated by determining the vertical distribution of propellant consumption for each rocket stage and calculating and applying vertically resolved propellant specific emission indices that account for additional oxidation in the hot rocket plume and changes in atmospheric composition with altitude. To quantify the re-entry emissions, the mass of re-entering objects is compiled for all objects (spacecraft, rocket stages, fairings, and components) re-entering Earth’s atmosphere in 2020-2022. Many objects, accounting for 12-16% of re-entry mass, are not geolocated, so the longitude and latitude of re-entry is bounded by the reported orbital inclination. Object class and object reusability are used to define the chemical composition and mass ablation profile of each re-entering object. We find that total propellant consumed has nearly doubled from ~38 Gg in 2020 to ~67 Gg in 2022 and re-entry mass has increased from ~3.3 Gg in 2020 to ~5.6 Gg in 2022. Megaconstellation re-entries accounted for 8-12% of the Al2O3 and NOx re-entry emissions in 2020-2022, due to increased megaconstellation launches and short (~2 years) lifespan of most (85%) megaconstellation satellites. Anthropogenic re-entry emissions of NOx (~4.2 Gg) and Al2O3 (~0.96 Gg) in 2022 equal a third of the natural meteoritic injection of NOx and surpass the natural injection by 7 times for Al2O3. The annual emissions for 2020-2022 will be used to predict the rise in emissions up to 2029 from megaconstellation and non-megaconstellation rocket launches and object re-entries for input to the 3D atmospheric chemistry transport model GEOS-Chem coupled to a radiative transfer model to simulate stratospheric ozone depletion and radiative forcing attributable to a decade of satellite megaconstellation emissions.

How to cite: Barker, C., Marais, E., and McDowell, J.: Developing inventories of by-products from satellite megaconstellation launches and disposal to determine the influence on stratospheric ozone and climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6467, https://doi.org/10.5194/egusphere-egu24-6467, 2024.

EGU24-7558 | Orals | AS3.26

Understanding the benefits and risks of the hydrogen economy: the HYDRA project 

Rossella Urgnani, Noelia Ferreras Alonso, Alessio Bellucci, Oliver Wild, Kyriakos Panopoulos, Massimo Santarelli, Nathanael Poinsel, and Isella Vicini

The European Green Deal target of zero emissions by 2050, boosted by the energy crisis due to the Russian-Ukranian conflict, put decarbonisation at the forefront of policymakers’ and industries’ development plans. Hydrogen, especially if produced by renewable energy sources, is considered one of the main candidates in the ongoing energy transition. The hydrogen economy is still in its early stages, due to the high cost of technologies, production, and infrastructure, but the electrolyser capacity installed in 2023 doubled 2022 levels (IEA report, 2023), with clear signs of increasing investments in this sector. However, large-scale diffusion of hydrogen technologies could negatively impact climate because of the increase in H2 emissions (through leakages or other mechanisms) to the atmosphere and its interactions with other gases. Hydrogen interacts with the oxidative cycles of CH4, NOx, and CO, affecting natural GHG-removing mechanisms. In addition, an increase in atmospheric hydrogen could alter stratospheric levels of ozone and water vapour. Increasing H2 emissions may result in an increase in global radiative forcing, even if H2 replaces a proportion of fossil fuel use. However, quantification of these impacts remains uncertain and depends on the development and uptake of different hydrogen technologies. The HYDRA project, funded by the European Commission under the Horizon Europe program, officially started on November 1st, 2023, and aims to evaluate the benefits and the potential risks associated with the hydrogen economy. It starts with the analysis of policies and markets to quantify the potential diffusion of hydrogen technologies in the mid-to-long term and the associated emissions of H2 and other gases (e.g., CH4, H2O, NOX, methanol, NH3). Using these data, HYDRA will simulate the impacts of the integration of hydrogen in the energy sector using WILIAM, an Integrated Assessment Model accounting for interactions between society, economy, and the environment, which will produce a range of energy, land, and emission scenarios. The FRSGC/UCI Chemical Transport Model will then be used to quantify global and regional impacts on O3, CH4, NOX, VOC, CO, and other oxidants, estimating the uncertainty in the important soil sink of hydrogen. The role of H2 in influencing stratospheric water vapour, ozone, and nitrous oxide (N2O) will be determined with the SLIMCAT and UKCA models. The changes in atmospheric composition from these simulations will be used to estimate the effective radiative forcing associated with H2 emissions and perform future climate projections, using the EC-Earth global climate model. Finally, since hydrogen-air mixes are highly inflammable, HYDRA will develop a new leakage detection/quantification monitoring system to make H2 technologies safer. The overall benefits and risks associated with a future hydrogen economy will be evaluated from a sustainable perspective, from changes in mean climate conditions to impacts on society and environment. HYDRA is fully committed to finding sustainable solutions for the development of the hydrogen economy, and to proposing mitigation strategies and guidelines for policymakers at the end of the 4-year project.

How to cite: Urgnani, R., Ferreras Alonso, N., Bellucci, A., Wild, O., Panopoulos, K., Santarelli, M., Poinsel, N., and Vicini, I.: Understanding the benefits and risks of the hydrogen economy: the HYDRA project, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7558, https://doi.org/10.5194/egusphere-egu24-7558, 2024.

EGU24-9653 | Orals | AS3.26

Impact of hydrogen on atmospheric composition and climate 

Tanusri Chakraborty, Gill Thornhill, and Bill Collins

Hydrogen(H2) is one of the most abundant greenhouse gases in the atmosphere that participates in stratospheric ozone depletion and influences air quality. Using hydrogen as an alternative energy source to meet net-zero carbon emissions by 2050 can increase the risk of Hydrogen Leakage. Excess H2 leaked from a hydrogen economy could travel from the Earth’s surface to the stratosphere, where its oxidation would increase water vapor (H2O) in the upper atmosphere. It also has the potential to modify stratospheric ozone destruction by altering catalytic reactions involving HOx (=OH+HO2) radicals as well as changing stratospheric temperatures. Additional H2 in the air would consume the hydroxyl radical (OH) and lengthen the atmospheric lifetime of methane (CH4), increasing its abundance, whilst the oxidation of both H2 and CH4 generates tropospheric O3. The changes in OH can cause a cascade of climate impacts that includes changes in aerosol clouds. Increases in H2 will increase the concentration of CH4, O3, and H20, resulting in increased radiative forcing. Here, we are using the UK Earth System Model (UKESM) chemistry-climate model to see the effect of indirect radiative forcing arising from increases in H2 in the atmosphere. We have conducted experiments at present and future H2 and CH4 concentrations and analyzed the feedback on O3, aerosol, and stratospheric H2O over the period of 40 years. The highlight of the study is to see the effects of radiative forcing on CH4, O3, and H2o separately . We have seen the effect on one component at a time by switching off the feedback of the other components and also see the effect of radiative forcing as a whole due to an increase in H2 concentration.

How to cite: Chakraborty, T., Thornhill, G., and Collins, B.: Impact of hydrogen on atmospheric composition and climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9653, https://doi.org/10.5194/egusphere-egu24-9653, 2024.

When hydrogen is used as an energy carrier, some hydrogen will leak into the atmosphere during production, storage, transport, and end use. Hydrogen itself is not a greenhouse gas, but via chemical reactions in the atmosphere, the leaked hydrogen will affect the atmospheric composition of methane, ozone, and stratospheric water vapor and hence radiation in the atmosphere. A recent multi-model study found the Global Warming Potential over a 100-year time horizon (GWP100) to be 11.6 ±2.8 (one standard deviation). In this study, a chemistry transport model (OsloCTM3) is used to investigate the sensitivity of the calculated GWP100 due to the size of the hydrogen perturbation, the location of the hydrogen perturbation as well as the chemical composition of the background atmosphere.

The hydrogen perturbation of an additional 0.1, 1, 10 and 100 Tg yr-1 of anthropogenic hydrogen emissions gave GWP values that differed by only 0.4. To test the sensitivity of the location of the perturbation, 1 Tg yr-1 was added to seven different sites around the world. Perturbations at sites that are further away from dry deposition areas (such as middle of the ocean and in Antarctica) resulted in feedback factor larger than one. The GWP values were enhanced compared to perturbations at sites influenced more by dry deposition where feedback factor was less than one. The difference in GWP100 between the two most extreme sites was 4, less than the width of the ± one standard deviation range from the multi-model GWP100 study.

The hydrogen economy is expected to grow, and in the future, the atmospheric composition might be different than the 2010 atmosphere used to calculate GWP100 in the multi-model study. To check the sensitivity to this the GWP100 is calculated with the perturbations on top of three different 2050 atmospheres using different SSP scenarios. The three different SSPs had different combinations of NOx to CO emission ratios and methane levels that both influence the atmospheric lifetime of hydrogen. The atmospheric lifetime increased in all the scenarios, and in SSP4-3.4 by as much as ~1 year. However, the dominant control on the total lifetime of hydrogen is the soil sink. Thus, future changes to the soil sink should be investigated, with a focus on how it influences the calculated GWP.

How to cite: Skeie, R. B.: Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9851, https://doi.org/10.5194/egusphere-egu24-9851, 2024.

EGU24-10002 | Orals | AS3.26

Improving quantification and understanding of the global H2 soil sink through field and lab based flux measurements 

Nicholas Cowan, Julia Drewer, Toby Roberts, Mark Hanlon, Chiara Di Marco, Carole Helfter, and Eiko Nemitz

An improved quantification of the soil sink of Hydrogen (H2) gas is required to understand the environmental implications of a future Hydrogen economy and global atmospheric models. Typically, soil microbes utilise H2 as an energy source, but we also have evidence that emission of H2 from soils is also possible via microbial processes. We present new H2 flux data from several field sites and lab studies in which a variety of soils from around the world have been measured from. These sites include agricultural and forest soils from the UK where we have preliminary data of a longer-term measurement campaign. We have developed flux chamber methodology to establish a best practice for measuring H2 flux in soils, which is radically different from typical greenhouse gas protocols. We present our work so far on the development of H2 measurement methodology and on the characterisation of the H2 soil sink in relation to soil physical & chemical properties, vegetation and climate under controlled environment conditions. We also present observations of spatial and temporal soil H2 uptake rates from sites across the UK. We highlight the importance of soil aeration and the physical barriers that strongly interfere with H2 uptake in soils, particularly the influence of high water-filled pore space which should be accounted for in future modelling efforts.

How to cite: Cowan, N., Drewer, J., Roberts, T., Hanlon, M., Di Marco, C., Helfter, C., and Nemitz, E.: Improving quantification and understanding of the global H2 soil sink through field and lab based flux measurements, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10002, https://doi.org/10.5194/egusphere-egu24-10002, 2024.

EGU24-10067 | ECS | Orals | AS3.26

Detection of regional industrial H2 emissions using an active Aircore and a high-precision GC-PDHID system 

Iris M. Westra, Bert A. Scheeren, Steven M.A.C. van Heuven, Bert A.M. Kers, and Harro A.J. Meijer

As result of the global energy transition, it is expected that H2 emissions are on the rise due to increasing production, transport and usage. Leakage rates might be up to 10% of the total hydrogen production. This will lead to an increase of the global atmospheric hydrogen mole fraction, resulting in the lengthening of the lifetime of in particular methane, enhanced tropospheric ozone production, and increased stratospheric water vapor levels. Because of these effects, H2 is called an indirect greenhouse gas. We present first results of the use of a high-precision Agilent 8890 GC-system equipped with a Pulsed Discharge Helium Ionization Detector (PDHID) combined with an ‘active’ Aircore and sampling flasks as a tool to detect and quantify industrial H2 emissions. Our GC-PDHID measures H2 with a precision <2 ppb and is calibrated and linked to the international NOAA-H2-X1996 hydrogen scale (e Max Planck Institute for Biogeochemistry (MPI-BGC) Jena, Germany). The ‘active’ AirCore is an atmospheric sampling system that consists of a long narrow tube (in the shape of a coil) in which atmospheric air samples are collected using a pump during the sampling experiment, in this way preserving a profile of the trace gas of interest along the measurement trajectory. In this study we focus on potential H2 emitters in the Groningen province, mainly located at the Delfzijl Chemistry Park bordering the Wadden sea coast. During our field experiments we deployed three different complementary sampling methods. The first method involves the use of an active Aircore system with a sample volume of 4.35 L from a passenger car. This Aircore is filled to an end-pressure of up to 1.6 bar over the course of about 2 hours of sampling resulting in up to 38 discrete Hsamples on the GC-PDHID. The second method involved the use of an active Aircore system on a UAV with a volume of 3.7 L and filled with a sampling flow of 200 ml min-1 at atmospheric pressure, allowing for up to 21 discrete Hsamples. The third sampling technique involved the use of dried and vacuumized 2.3 L glass flasks to collect discrete samples along the measurement trajectory. The glass flasks samples were further analysed by CRDS (Picarro G2401) on mole fractions of CO2, CH4, CO, to get additional information on the emission sources co-located with H2. We found a regional H2 background of 529 ± 5 ppb in agreement with the European background station observations at Mace Head, Ireland. Our results so far indicate constant undetected industrial H2 emissions at the Chemistry Park Delfzijl, ranging from enhanced signals of 580 ppb up to 1.5 ppm of H2 downwind the source area. Based on these results we present first estimates of current industrial H2-emissions from the Delfzijl Chemistry park. Further work will focus on specific H2 production and storage infrastructure.

How to cite: Westra, I. M., Scheeren, B. A., van Heuven, S. M. A. C., Kers, B. A. M., and Meijer, H. A. J.: Detection of regional industrial H2 emissions using an active Aircore and a high-precision GC-PDHID system, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10067, https://doi.org/10.5194/egusphere-egu24-10067, 2024.

EGU24-10187 | ECS | Posters on site | AS3.26

Analysis of trade-offs from the use of hydrogen blended with natural gas in the European Union 

Thiago Brito, Lena Höglund-Isaksson, Peter Rafaj, Robert Sander, and Zbigniew Klimont

Context: Increasing use of hydrogen (H2) across the economy is currently seen as an important strategy for decarbonization of fossil fuel-dependent sectors. Energy scenarios, especially those aiming at net-zero GHG emission targets, project that surplus electricity produced from renewable sources, such as solar and wind, will be converted and stored as H2 by electrolysis. The use of pure hydrogen would require the replacement or significant modification of some of the infrastructure (e.g. steel pipelines) and end-use appliances (e.g. combustion engines) by H2-dedicated equipment (e.g. PE/PVC pipelines, fuel cells); in fact, many sectors are already moving towards these solutions. However, hydrogen can also be blended into natural gas and used in the same applications. The combustion of such blends enables reduction of carbon intensity in several sectors without significant technological retrofits. However, hydrogen combustion under lean air conditions leads to higher thermal formation of nitrogen oxides (NOx), when compared to natural gas. The amount depends on the burner type, load and hydrogen blending ratio. While NOx emissions pose a direct risk to human health and act as a precursor to the O3 and particulate matter, deployment of H2 would also result in direct leakages to atmosphere and associated climate impacts.

Objective: This study seeks to quantify and evaluate the potential NOx increases in the European Union (EU27) countries due to the combustion of hydrogen blended with natural gas.

Methodology: We use GAINS model framework to conduct this analysis assuming that hydrogen combustion will mostly take place in the buildings, industry (boilers and furnaces) and power generation sectors. The exclusion of the transport sector is justified by the predominant use of hydrogen in fuel cell vehicles, which do not contribute to NOx formation. Since hydrogen blends will be used in the same devices as currently natural gas, existing abatement technologies as well as their adoption rates are kept across all sectors and regions.

Expected Results: We expect the results of this study will allow us a better understanding of hydrogen impacts in terms of pollutant emissions. While the paper asserts that the findings are unlikely to influence the development or viability of future hydrogen economies in Europe, it acknowledges the importance of the analysis in revealing potential emissions trends and identifying local or country-specific trade-offs. The emphasis on existing regulations and emission control strategies in Europe provides context for the limited air quality impacts expected on the overall trajectory of hydrogen adoption. Moreover, these preliminary results could lead to relevant insights regarding expected H2 fugitive emissions which may impact climate mitigation targets and economical viability. 

How to cite: Brito, T., Höglund-Isaksson, L., Rafaj, P., Sander, R., and Klimont, Z.: Analysis of trade-offs from the use of hydrogen blended with natural gas in the European Union, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10187, https://doi.org/10.5194/egusphere-egu24-10187, 2024.

EGU24-10918 | ECS | Posters on site | AS3.26

The Impacts of Hydrogen on Tropospheric Ozone and their Modulation by Background NOx 

Hannah Bryant, David Stevenson, Mathew Heal, and Maria Sand

A shift in our energy production is crucial to the control of global warming. This will occur as fossil fuels are phased out, following legislation created to reach the targets set out in the Paris Agreement. One of the possible sources for a low carbon energy landscape is renewable hydrogen. Whilst hydrogen represents an alternative energy store, it can leak from the system. Understanding the fate of leaked hydrogen is vital to quantify the implications of this energy transition. This study uses the atmospheric version of the United Kingdom Earth System Model to analyse the impact of hydrogen on the atmosphere. The model indicates that increased atmospheric hydrogen leads to an increase in tropospheric ozone concentrations. Ozone is a greenhouse gas and therefore there is an indirect atmospheric warming due to hydrogen emission through ozone. Understanding the relationship between hydrogen and the chemical ozone budget is therefore required to dissect how this warming occurs. We find that hydrogen increases ozone production, governed by the increased flux through the reaction of HO2 with NO. Future atmospheric nitrogen oxide concentrations are expected to decrease in the coming decades, under most climate scenarios. Understanding the relationship between hydrogen and background NOx concentrations is therefore crucial in determining the mechanisms of how hydrogen is expected to impact future atmospheres. We use the model to calculate the tropospheric global warming potential of hydrogen and how this is altered by changing background NOx. We find that this tropospheric GWP will stay relatively constant alongside decreases in ground level anthropogenic NOx.

How to cite: Bryant, H., Stevenson, D., Heal, M., and Sand, M.: The Impacts of Hydrogen on Tropospheric Ozone and their Modulation by Background NOx, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10918, https://doi.org/10.5194/egusphere-egu24-10918, 2024.

EGU24-11016 | Orals | AS3.26 | Highlight

The climate impact of a future hydrogen economy 

Didier Hauglustaine

Inflammable air, known today as hydrogen, was first identified and produced in 1766 by the British chemist and physicist Henry Cavendish. Today, hydrogen can be produced by splitting the liquid water molecules. The water electrolysis producing hydrogen can be powered by renewable energy in the case of "green" hydrogen. Hydrogen is also produced from fossil fuels by steam reforming of methane in natural gas in conjunction with carbon sequestration in the case of "blue" hydrogen, or without carbon sequestration in the case of "grey" hydrogen. The use of hydrogen enables energy conversion and storage, and can provide a way to decarbonize sectors of the economy where decarbonization has no alternative or is hard to reach, such as long-distance transport by truck, train or airplane, heavy industries, or for domestic use in mixture with natural gas. Hydrogen has no direct greenhouse effect but is an indirect climate gas which induces perturbations of atmospheric methane, ozone and water vapour, three powerful greenhouse gases. The budget of atmospheric molecular hydrogen will be presented and the main sources and sinks will be briefly discussed. Based on the results of state-of-the-art global numerical climate and chemistry models, we derive various indicators intended to quantify the climate impact of hydrogen and in particular derive its Global Warming Potential (GWP).

All the scenarios considered in this study for a future transition towards a hydrogen economy in Europe or in the world clearly suggest that a "green" hydrogen economy is beneficial in terms of CO2 emissions mitigation for the relevant time horizons and leakage rates considered. In contrast, the results suggest that carbon dioxide (CO2) and methane (CH4) emissions associated with the production and transport of "blue" (and "grey") hydrogen reduce the climate benefit of such a transition and even introduce a climate penalty in the event of a very high leakage rate or strong penetration of "blue" hydrogen on the market. Various assumptions will be illustrated for future “blue” hydrogen production carbon intensity. Reducing the leakage rate of H2 (and CH4 in the case of "blue" hydrogen production) and increasing the "green" hydrogen production sector appear to be the key levers towards maximum mitigation of CO2 emissions from a large-scale structural transition to a hydrogen economy.

In addition, in the specific case of aviation, the use of liquid hydrogen powered aircraft induces additional climate forcings from water vapour emissions in the upper atmosphere and from impact on contrail formation. In the case of an hydrogen powered fleet, the forcings from NOx and from contrails are still subject to large uncertainties. These effects will be illustrated based on various assumptions for future aircraft using hydrogen fuel.

 

How to cite: Hauglustaine, D.: The climate impact of a future hydrogen economy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11016, https://doi.org/10.5194/egusphere-egu24-11016, 2024.

EGU24-12262 | Posters virtual | AS3.26

Impact of Hydrogen and Ammonia on Surface Air Pollution. 

Caroline Jouan, Øivind Hodneborg, and Ragnhild Skeie

Hydrogen and ammonia fuels are being explored as cleaner and sustainable energy alternatives to fossil fuels, due to their potential for decarbonization. The production of renewable energy-based hydrogen converted into green ammonia offers a more efficient solution for storing and transporting energy than gaseous hydrogen. However, both ammonia and hydrogen can indirectly lead to air pollution.

Ammonia, if leaking to the atmosphere, plays a role in forming secondary aerosols, generating particles like ammonium nitrate that add to fine particulate matter (particulate matter with diameter <2.5 micrometers; PM2.5). Additionally, the production of oxides of nitrogen (NOX) gases during ammonia combustion contributes to tropospheric ozone formation and can influence aerosol abundance (as NOX may lead to less aerosols and not necessarily more). Hydrogen, if leaked to the atmosphere, will impact tropospheric ozone and possible aerosols through a complex chain of chemical reactions.

Our research aims to assess the potential air quality effects of shifting to a hydrogen and ammonia-based economy.

Using simulations from the three-dimensional global chemical transport model (OsloCTM3), we are investigating the impacts of hydrogen and ammonia on key air quality parameters, with a specific focus on surface concentrations of ozone and PM2.5.

We will attempt to assess the benefits of this energy transition in relation to the reduction of atmospheric pollutants associated with fossil fuels. In the case of ammonia, we will compare air pollution impacts across different emission sectors. Future work will involve the analysis of chemistry-climate model simulations.

How to cite: Jouan, C., Hodneborg, Ø., and Skeie, R.: Impact of Hydrogen and Ammonia on Surface Air Pollution., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12262, https://doi.org/10.5194/egusphere-egu24-12262, 2024.

EGU24-14242 | ECS | Orals | AS3.26

Quantifying leaks with a field-deployable, fast, sensitive hydrogen instrument 

Elizabeth Lunny, Richard Wehr, Joseph Roscioli, Conner Daube, Joanne Shorter, Tianyi Sun, William Long, Ahmad Momeni, John Albertson, Scott Herndon, and David Nelson

Accurate quantification of leaks associated with hydrogen transport and storage infrastructure is vital to evaluate the environmental benefit associated with the transition from fossil fuels to hydrogen as an energy source. Understanding the locations and magnitudes of leaks is critical in efforts to mitigate the indirect climate impact of transitioning to a hydrogen economy. Quantification of hydrogen leaks requires a field-deployable, fast, sensitive measurement technology which, until recently, has not existed. We have developed a novel inlet system which couples to an Aerodyne tunable infrared laser direct absorption spectrometer (TILDAS) to measure hydrogen with <5 ppb precision and <5 second time response. Laboratory-based instrument performance results and data from recent mobile measurements will be presented.

How to cite: Lunny, E., Wehr, R., Roscioli, J., Daube, C., Shorter, J., Sun, T., Long, W., Momeni, A., Albertson, J., Herndon, S., and Nelson, D.: Quantifying leaks with a field-deployable, fast, sensitive hydrogen instrument, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14242, https://doi.org/10.5194/egusphere-egu24-14242, 2024.

EGU24-16477 | ECS | Posters on site | AS3.26

Modelling the Global Uncertainty of Hydrogen Deposition 

Megan Brown, Alex Archibald, Luke Abraham, Nicola Warwick, and Paul Griffiths

Using hydrogen as an alternate fuel source could lead to lower carbon emissions if sourced from renewable energies. However, it can act as an indirect greenhouse gas by extending the lifetime of methane and causing stratospheric water vapour to increase. The global production and loss of hydrogen in the atmosphere are important in order to quantify its lifetime and, by extension, its global warming potential. The main sinks for hydrogen are loss through chemical reactions with OH and biological soil uptake, the latter of which accounts for approximately 80% loss and, on average, has an error range of +/-40%. Due to the wide potential range of deposition velocities and its large global impact on hydrogen, this introduces a major uncertainty to the overall hydrogen budget.

Previously in the UK Chemistry and Aerosol model (UKCA), the soil uptake of hydrogen was fixed temporally and depended on land type, following the scheme by Sanderson et al. (2003). We have implemented the deposition scheme from Paulot et al. (2021) into UKCA in order to better represent the uptake of hydrogen. A wide range of soil parameters are used in the updated scheme: soil moisture, temperature, snow depth, soil carbon content, soil type, and soil saturation content, which allow for a more diverse and dynamic range of deposition velocities. These results from UKCA are evaluated against previous global hydrogen budgets and verified against hydrogen observations from the National Oceanic and Atmospheric Administration.

The calculation of hydrogen deposition velocity onto soil is independent of atmospheric hydrogen, and, as a result, can be calculated offline. We use data from CMIP6 simulations as inputs to calculate a range of global hydrogen deposition velocities across multiple future projections using a range of different deposition models. The different uncertainties associated with models (hydrogen deposition and climate models) natural variation, and future scenarios can be isolated. Fluctuations in deposition and variation through time can be analysed to assess the which factors have the greatest contribution to the hydrogen deposition velocity uncertainty.

How to cite: Brown, M., Archibald, A., Abraham, L., Warwick, N., and Griffiths, P.: Modelling the Global Uncertainty of Hydrogen Deposition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16477, https://doi.org/10.5194/egusphere-egu24-16477, 2024.

EGU24-16712 | ECS | Orals | AS3.26

Climate effects of contrail cirrus for aircraft with hydrogen combustion    

Susanne Pettersson and Daniel Johansson

Aviation accounts for approximately 5% of the current anthropogenic climate impact. Up to two thirds of the warming generated by airplanes is attributed to non-CO2 effects with contrail cirrus as the largest contributor. Hydrogen as aviation fuel promises zero carbon emission but the non-CO2 effects of this new fuel are poorly known.

In this study we investigate the generation of contrail cirrus from hydrogen combustion using a modified version of the Contrail Cirrus Prediction model (CoCip). In the absence of soot-emissions ice particles in hydrogen contrail are assumed to form on entrained aerosols, ultrafine volatile particles and lubrication oil. The calculation of the number of ice particles formed on entrained aerosols is approximated by previously published simulation results and theory.  Ultrafine volatile particles and lubrication oil both activate into water droplets at lower temperatures than soot and aerosols due to the Kelvin effect (small radius) and hydrophobicity respectively and are implemented using theory and published experimental results.

Using hydrogen fuel contrails can, according to the Schmidt-Appleman criteria, form at lower altitudes than with jet fuel due to the increase in water vapor in the exhaust. Despite this our preliminary results show an overall decrease in both warming and cooling contrails for hydrogen compared to standard jet fuel. We do find that hydrogen contrails can generate more radiative forcing than jet contrails at very low temperatures mainly due to the activation of lubrication oil in combination with the larger amount of water vapor. For the bulk of flights however, hydrogen fuel leads to either equal or less contrail radiative forcing than jet fuel even with reduced soot-emissions in line with lean-burn engines.   

How to cite: Pettersson, S. and Johansson, D.: Climate effects of contrail cirrus for aircraft with hydrogen combustion   , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16712, https://doi.org/10.5194/egusphere-egu24-16712, 2024.

Hydrogen fuel, a green transition option and a cleaner alternative to fossil fuels, has an indirect greenhouse impact through atmospheric reactions of “leaked” hydrogen. Sand et al., 2023 used six different chemistry-transport models (CTM) to estimate a Global Warming Potential over a 100-year time horizon (GWP-100) for hydrogen of 11.6 ± 2.8, in range with similar studies. In this study, we extend those analyses by investigating the atmospheric production and loss terms of hydrogen in the CTMs. Specifically, we compare formaldehyde (HCHO) and the hydroxyl radical (OH) concentrations. Then we develop a box model that can be used for quickly evaluating the impact of the different sources and sinks on atmospheric concentration and isotopic composition of H2 from a global perspective.

Atmospheric production of hydrogen through photo-oxidation of methane and volatile organic compounds represents roughly 60% of the total production. To compare the atmospheric production in the models, we evaluate HCHO (produced during photo-oxidation). A preliminary comparison between the global mean model-derived tropospheric HCHO and TROPOMI-derived HCHO suggests that all models other than WACCM perform reasonably well. Generally, models tend to overestimate HCHO values over land and underestimate HCHO concentrations over the oceans. WACCM has very low HCHO values compared to TROPOMI and the other models.

The two primary removal mechanisms are soil uptake (65-85%), and atmospheric oxidation by hydroxyl radical (OH). Among the models, OsloCTM3 and WACCM have higher OH concentrations compared to GFDL, INCA and UKCA. Direct measurements of atmospheric OH concentrations are lacking due to the short lifetime of the OH radical. Therefore, we used CO and NO2 concentrations as a proxy to evaluate the models. Compared to satellite values (TROPOMI for NO2 and MOPPIT for CO), models seem to generally overestimate NO2 and underestimate CO. These results are discussed within the context of the OH radical and atmospheric lifetime of H2.

Then we present a simple box model that is developed using CTM results for studying the atmospheric budget of H2. Reconstructions of hydrogen concentrations using ice-core records from the South Pole over the last 150 years show an increase in H2 concentration of ~200ppb, likely due to increased methane oxidation and anthropogenic emissions. We use time-varying emissions in our box model to replicate this time evolution since the pre-industrial period.

The box model also contains a framework for studying hydrogen isotopic composition. Each of the sources and removal processes of H2 have distinct isotopic signatures. This allows for the evaluation of concurrent changes in atmospheric concentrations and hydrogen isotopic compositions for each source/sink contribution, leading to a more robust evaluation of the hydrogen budget in the atmosphere.

How to cite: Krishnan, S.: Atmospheric hydrogen budget: an evaluation using chemistry-transport models and a box model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16977, https://doi.org/10.5194/egusphere-egu24-16977, 2024.

EGU24-19183 | ECS | Posters on site | AS3.26

Fugitive hydrogen emissions from a converted national UK network of methane pipelines – stratospheric climate impacts 

Anna Peecock, Lars Schewe, and Stuart Haszeldine

Increased fugitive hydrogen in the stratosphere can promote chemical reactions that result in increased lifetimes and abundances of gases that have a harmful climate impact. It is therefore crucial to understand the significance of this effect, and thereon identify and mitigate potential leakage pathways within future hydrogen energy systems. Repurposing the existing high-pressure National Transmission System and low pressure local gas distribution networks for pure or blended hydrogen delivery throughout the UK, is a solution favoured by existing gas network operators. It minimises the necessary replacement of pipeline infrastructure by re-use of £30bn of already installed welded polythene pipe network and compatible assets, which will decrease associated transport costs. However, gaseous hydrogen can compromise mechanical properties of carbon steels, posing integrity concerns for pipelines and other network components. Considerable work has investigated the extent to which material integrity could affect the repurposing potential of existing infrastructure. By contrast, this study aims to quantify the ranges of anticipated increase in atmospheric hydrogen release upon conversion of existing UK gas networks for hydrogen delivery. Based on existing network architectures, provided by UK network operators, we identify the most likely locations for leakage within UK pipeline networks and present a static model to estimate potential fugitive hydrogen. Sensitivity analyses have been undertaken to assess the impact of emissions mitigation strategies, including polythene renewal in the Iron Mains Replacement Programme and replacement of wet compressor seals. Consequently, we can consider both physical leakage at joints and equipment, and permeation losses through pipe walls from natural gas leakage data. Our findings indicate that, while significant, the climate implications of determined theoretical rates of potential hydrogen leakage without mitigation are between 6.5 and 14 times less than those associated with current natural gas transport, based on respective GWP100s. It should be noted that we have considered only the potential emissions associated with pipeline transport, and have thus ignored the additional impact of embedded supply chain emissions.

We further propose a geospatial distribution of these potential hydrogen emissions across the UK network. The dataset could serve as a crucial input for future climate modelling to assess the impact of emission location dependency on hydrogen’s global warming potential and quantify the benefits of mitigating leakage in identified “hotspots”. 

How to cite: Peecock, A., Schewe, L., and Haszeldine, S.: Fugitive hydrogen emissions from a converted national UK network of methane pipelines – stratospheric climate impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19183, https://doi.org/10.5194/egusphere-egu24-19183, 2024.

EGU24-20693 | Posters on site | AS3.26

Quantifying the role of interactive chemistry on the anthropogenic effective radiative forcing in Earth System Models 

Jane Mulcahy, Martin Cussac, Dirk Olivie, Pierre Nabat, Martine Michou, and Juliette Lathiere

Many global climate and Earth system models that participated in CMIP6 did not include fully interactive chemistry mechanisms mainly due to the large associated computational cost of these schemes. A number of studies have recently highlighted the potential importance of enhanced aerosol-chemistry-climate coupling and associated feedbacks for the anthropogenic effective radiative forcing (ERF) of a number of key climate forcing agents such as aerosols (Thornhill et al., 2021), methane (O’Connor et al., 2022) and ozone. The different levels of complexity in both aerosol and chemistry schemes in CMIP6 models has been highlighted as a leading contributor to the large inter-model diversity in the ERF of aerosols and trace gas species (Thornhill et al., 2021). To this end, as part of the EU Horizon project, ESM2025, advanced stratospheric-tropospheric chemistry schemes have been developed and implemented in 2 ESMs, CNRM-ESM and NorESM2, for the first time. Dedicated experiments have been conducted to determine the pre-industrial (1850) to present-day (2014) ERF with these updated models and the UKESM1.1 model, to assess the impact of fully interactive chemistry on the ERF of key forcing agents. In UKESM1.1, which already includes interactive chemistry, the interactive chemistry scheme is switched off and run with a much-simplified aerosol-chemistry mechanism driven by prescribed oxidant fields. We argue the improved realism of representing these aerosol-chemistry-climate interactions is essential for improved cross-model consensus on the magnitude of anthropogenic ERFs of aerosol and key trace gas species.

References:

Thornhill et al., Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, 2021.

O’Connor et al., Apportionment of the pre-industrial to present-day climate forcing by methane using UKESM1: The role of the cloud radiative effect. Journal of Advances in Modeling Earth Systems, 14, e2022MS002991. https://doi.org/10.1029/2022MS002991, 2022.

How to cite: Mulcahy, J., Cussac, M., Olivie, D., Nabat, P., Michou, M., and Lathiere, J.: Quantifying the role of interactive chemistry on the anthropogenic effective radiative forcing in Earth System Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20693, https://doi.org/10.5194/egusphere-egu24-20693, 2024.

EGU24-1070 | ECS | Orals | BG8.9

Understanding spatio-temporal pattern of crop diversification for India 

Chanda Kumari, Roopam Shukla, and Stephanie Gleixner

Abstract: Agrobiodiversity, a key principle of agroecology, encompasses crop diversification, offering resilience to climate variability (Ronnie Vernooy, 2022). Increasing crop species diversity within a region could improve agricultural sustainability, but knowledge of the spatiotemporal variation of crop species diversity and how this is related to climatic conditions is limited (Sjulgård, H., et al., 2022). Higher crop diversity may alleviate the effects of heat stress (Degani et al., 2019, Marini et al., 2020) and drought (Bowles et al., 2020, Marini et al., 2020) on crop yields. Therefore, crop diversity will play a crucial role in the functioning of agroecosystems under climate change (Sjulgård, H., et al., 2022). Hence, this study aims to investigate the relation between the spatiotemporal pattern of crop diversity and changing climatic conditions at the district level in India by building relationship between crop diversification and climatic variables. Crop species diversity was estimated using the Shannon Index. Advanced statistical analysis was used to understand the relationship between climatic variables and crop diversity. The outcome will also help the policymaker, researchers, and field practitioners in designing climate-resilient agricultural practices following the principles of agroecology.

Keywords:

Crop diversification, Shannon Index, Climate variables, Risk map, Agrobiodiversity, Agroecology, India.

Figure 1: Schematic representation of the proposed work

How to cite: Kumari, C., Shukla, R., and Gleixner, S.: Understanding spatio-temporal pattern of crop diversification for India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1070, https://doi.org/10.5194/egusphere-egu24-1070, 2024.

EGU24-1392 | ECS | Posters on site | BG8.9

A novel composite Index for early-season maize mapping 

Yuan Gao, Yaozhong Pan, Shoujia Ren, and Chuanwu Zhao

Maize cultivation significantly contributes to global food security and sustains human livelihoods. Efficient early-season maize mapping is pivotal for forecasting production and informed pre-harvest decisions. Existing approaches rely on prolonged phenological data or available crop labels, limiting their applicability in areas lacking comprehensive data. Thus, an automated, dynamic, and accurate maize identification method for the early growing season is crucial. This study explores spectral bands to distinguish maize early in terms of water content and chlorophyll levels. A novel composite index for dynamic maize identification independent of labels was proposed. Utilizing this index with a multi-temporal Gaussian Mixture Model facilitated early-season maize mapping and identification. Assessments across diverse global regions revealed the method's robustness, consistently achieving 90% accuracy and F1-score. NDCI outperformed other indices, enhancing F1-score by up to 30%. NDCI-mGMM accurately generated maize maps two months pre-harvest, promising an F1 score of at least 77%. Operating autonomously from labels, this framework offers swift and precise maize identification in data-deficient regions, revolutionizing global food security and trade forecasts.

How to cite: Gao, Y., Pan, Y., Ren, S., and Zhao, C.: A novel composite Index for early-season maize mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1392, https://doi.org/10.5194/egusphere-egu24-1392, 2024.

EGU24-2876 | Posters on site | BG8.9

Modelling greenhouse gas emissions at farm level across Switzerland 

Jérôme Schneuwly, Anina Gilgen, and Daniel Bretscher

For a better understanding of the environmental impacts of the agricultural sector and based on federal regulation, the monitoring of the agri-environmental system of Switzerland (MAUS) is tracking the development of different environmental indicators, among them regional GHG emissions. For this purpose, we developed a GHG emission model to calculate farm-scale, yearly, management-influenced emissions.

The considered categories of greenhouse gas emissions largely follow the approach of Switzerland's national greenhouse gas inventory under the UNFCCC (FOEN, 2023), while adaptations in the calculation of emissions from manure management were implemented. Among them, the ALFAM2 (Hafner et al., 2019) methodology was used for slurry application emission estimation and slurry storage emission factors were revised based on the publication from Kupper et al. 2020.

The manure management part of the model depicts nitrogen flows along the manure cascade. At each step (1. barn, pasture, yard; 2. storage; 3. application), a fraction of total ammoniacal nitrogen is being lost as N2O, NH3, NOx or N2. CH4 emissions from manure management are calculated in parallel to the nitrogen containing emissions, following the methods of Soliva et al., 2006. NH3, N2O and CO2 emissions originating from mineral fertilizer, organic products and harvest residues are calculated by multiplying nitrogen or carbonate inputs with respective emission factors. Further, CH4 from enteric fermentation is implemented according to the 2019 IPCC guidelines for greenhouse gas inventories, taking into account gross energy intake. As exact and exhaustive data is not available for every single Swiss farm, data from various sources were combined and averaged on different levels if necessary.

Farm-based calculations allow to monitor the effects of management changes on GHG emissions and to summarize the results at different geographical resolutions depending on the goals of the according study. To analyze regional differences for MAUS, the emissions were summarized per municipality and set in relation to utilized agricultural area. Monte-Carlo-like simulations were run to examine sensitivities of individual input variables and uncertainties, which showed generally a large influence of animal numbers and milk urea concentrations on total farm GHG emissions.

Within MAUS, it is planned to calculate emissions annually to detect potential trends. Further, newly available data sources, like farm specific mineral fertilizer applications, will be considered to make more detailed calculations.

FOEN, 2023: Switzerland’s Greehouse Gas Inventory 1990-2021: National Inventory Document. Submission of April 2023 under the United Nations Framework Convention on Climate Change. Federal Office for the Environment, Bern. URL: https://www.bafu.admin.ch/bafu/en/home/topics/climate/state/data/climate-reporting/ghg-inventories/latest.html (20.12.2023).

Hafner, S.D., Pacholski, A., Bittman, S., Carozzi, M., Chantigny, M., Génermont, S., Häni, C., Hansen, M.N., Huijsmans, J., Kupper, T., Misselbrook, T., Neftel, A., Nyord, T., Sommer, S.G., 2019. A flexible semi-empirical model for estimating ammonia volatilization from field-applied slurry. Atmospheric Environment 199, 474-484.

Kupper, T., Häni, C., Neftel, A., Kincaid, C., Bühler, M., Amon, B., VanderZaag, A., 2020. Ammonia and greenhouse gas emissions from slurry storage - A review. Agriculture, Ecosystems and Environment 300

Soliva, C.R., 2007. Dokumentation der Berechnungsgrundlage von Methan aus der Verdauung und dem Hofdünger landwirtschaftlicher Nutztiere. Federal Office for the Environment, Bern.

How to cite: Schneuwly, J., Gilgen, A., and Bretscher, D.: Modelling greenhouse gas emissions at farm level across Switzerland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2876, https://doi.org/10.5194/egusphere-egu24-2876, 2024.

EGU24-3443 | Orals | BG8.9 | Highlight

Integration of data from agricultural practice into the Swiss agri-environmental monitoring project MAUS 

Silvio Blaser, Simon Baumgartner, Jérôme Schneuwly, and Anina Gilgen

In order to fulfil the requirements of the Agriculture Act and the Ordinance on the Assessment of Sustainability, the Swiss Federal Research Centre Agroscope assesses the quantitative and qualitative impacts of agriculture on the environment using regional and farm-related eco-indicators. This is done by the monitoring of the Swiss agri-environmental system (MAUS).

Thematically, these indicators cover a wide range of agroecological hotspots, such as humus, heavy metal and nutrient balances, use and risks of plant protection products, potential impact on biodiversity, greenhouse gas emissions and others. Agroscope bases the calculation of the indicators largely on existing data. To supplement and improve the quality of this data, MAUS is currently launching projects to acquire and integrate data from remote sensing, online surveys and farm management information systems (FMIS).

Integrating FMIS data essentially means requesting data that is already collected by farmers for their farm management and in order to receive direct payments. A large part of this is field calendar data, which describes what happened in a field after the previous crop was harvested: e.g., how was the seedbed prepared, what fertilisation and plant protection measures were carried out before the crop was harvested, etc.

There are various large gaps in the level of detail and scope of the FMIS available on the market compared to what is needed to calculate the indicators. Therefore, solutions are needed that allow the farms providing data to supplement missing information and, where necessary, to specify the entries for MAUS.

As part of a pilot project, a technical solution was developed with one of the Swiss providers and is currently being implemented. This has shown that, in addition to a precise definition of requirements, constant and lively dialogue is important. A comprehensive data set that exemplifies how operating data must arrive at MAUS not only helps with final testing, but also with understanding the implementation.

In the near future, other interested FMIS are to supplement their platforms so that data can be supplied to MAUS. In the collaboration between Agroscope and the interested providers, both parties will benefit from the preliminary work and the findings of the pilot project.

How to cite: Blaser, S., Baumgartner, S., Schneuwly, J., and Gilgen, A.: Integration of data from agricultural practice into the Swiss agri-environmental monitoring project MAUS, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3443, https://doi.org/10.5194/egusphere-egu24-3443, 2024.

EGU24-5171 | ECS | Posters on site | BG8.9

Mapping the nationwide crop phenology stages in Saudi Arabia using machine learning and Sentinel-2 NDVI time series 

Ting Li, Oliver Miguel Lopez Valencia, Kasper Johansen, and Matthew Francis McCabe

Vegetation phenology, encompassing critical events like leaf emergence and maturity, serves as an important indicator of adaptive plant responses to environmental factors. In the context of Saudi Arabia, existing crop phenology retrieval methods encounter several challenges related to local farm management operations. These can include unstable crop calendars with planting and harvesting at any time throughout the year, uncertainty in sub-field management with independent control of areas within a center-pivot field, and diverse crop rotations between fodder and non-fodder crops. To address these challenges, we present an innovative framework utilizing machine learning and Sentinel-2 NDVI time series data for mapping phenology stages of key crops at a national scale. The framework is composed of three modules that are implemented step-wise, including: (1) a within-field dynamic clustering module (termed WithinFDy) that monitors fields for potential subdivision based on pixel-level NDVI temporal dynamics; (2) a phenology estimation module (termed PhenoEst) that segments NDVI time series into growing seasons and extracts essential phenology stages (e.g., planting and harvesting dates) for each season; and (3) a crop type discrimination module (termed CropDis) that utilizes extracted phenology information as input features to discriminate between different crop types. Evaluated on 1,000 randomly selected fields in northern Saudi Arabia, our framework achieved overall accuracies of 93.38%, 96.40%, and 94.39% for WithinFDy, PhenoEst, and CropDis modules, respectively. When applied nationwide in 2020, the framework revealed valuable insights. In terms of field management, 21.8% of the fields were divided into two distinct subfields, featuring different planting and harvesting dates - and sometimes crop type, while 73.2% showed consistent practices across the entire field. For seasonal dynamics, 53.4%, 36.3%, and 8.7% of fields supported crops for one, two, and three seasons annually, respectively. Main planting and harvesting activities occurred during winter seasons (November to February), with another peak observed in June. Approximately 30% of fields were under production for 5 to 6 months, and 15.7% were under production year-round. The dominant crop types in 2020 were fodder crops (e.g. alfalfa and Rhodes grass), followed by winter crops like winter wheat. Our methodology represents a substantial advancement over previous approaches, expanding applicability beyond crops with regular growth patterns. The results not only enrich agricultural datasets in Saudi Arabia but also hold promise for enhancing food and water security studies globally.

How to cite: Li, T., Lopez Valencia, O. M., Johansen, K., and McCabe, M. F.: Mapping the nationwide crop phenology stages in Saudi Arabia using machine learning and Sentinel-2 NDVI time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5171, https://doi.org/10.5194/egusphere-egu24-5171, 2024.

EGU24-5448 | Posters on site | BG8.9

Improving high-resolution spatial information on agricultural land use management in Europe for economic land use modelling and the assessment of policy impacts 

Linda See, Orysia Yashchun, Zoriana Romanchuk, Juraj Balkovič, Rastislav Skalsky, Žiga Malek, Dmitry Schepaschenko, Andre Deppermann, Tamás Kriztin, and Petr Havlík

There is currently a lack of high-resolution pan-European information on land use management, especially in terms of how intensively and extensively cropland and grassland are managed. This is partly due to the lack of ground-based information, which is needed to downscale these types of management practices (some of which are captured in different types of agricultural censuses and surveys) as well as the inability of remote sensing to capture different kinds of land use. This type of information is needed for economic land use modelling and for assessing policy impacts, such as the latest reforms from the Common Agricultural Policy (CAP) and other European Union (EU) Green Deal targets. These types of analyses are undertaken using economic land use models such as GLOBIOM and CAPRI, which is one of the main aims of the Horizon Europe funded LAMASUS project (https://www.lamasus.eu/).  

This presentation will provide an overview of the ongoing developments in creating high-resolution spatially explicit layers on agricultural and grassland management for Europe to support the LAMASUS project. The proposed cropland and grassland management classes will be outlined along with the methodology for how they have been implemented using existing data layers from remote sensing, statistical data from Eurostat, the Joint Research Centre of the EU, agricultural ministries, and other sources. One of the key challenges is ensuring that the high-resolution data matches official statistics at the national (and NUTS2 level where available) so that they can be used by the economic land use models in LAMASUS. A method will be presented for how this is achieved using priors in the form of integrated layers of cropland and grassland probability created from existing high-resolution remotely sensed input layers.

 

How to cite: See, L., Yashchun, O., Romanchuk, Z., Balkovič, J., Skalsky, R., Malek, Ž., Schepaschenko, D., Deppermann, A., Kriztin, T., and Havlík, P.: Improving high-resolution spatial information on agricultural land use management in Europe for economic land use modelling and the assessment of policy impacts, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5448, https://doi.org/10.5194/egusphere-egu24-5448, 2024.

EGU24-6031 | Posters on site | BG8.9

Country-wide Cross-Year Crop Mapping from Optical Satellite Image Time Series 

Mehmet Ozgur Turkoglu, Helge Aasen, Konrad Schindler, and Jan Dirk Wegner

Previous works on vegetation mapping from optical satellite images use training and test datasets within the same year. We think that from a practical perspective, this experimental setting is not realistic due to (i) crop growth changes from year to year (also like from region to region), therefore test assessment does not fully reflect real-world cases and (ii) obviously it is not possible to apply the algorithm current year if it is trained with current year data. Thus a cross-year experimental setting should be de-facto for this line of research then we can readily apply developed algorithms in real-world applications. In this work, we evaluate a state-of-the-art crop classification method from optical satellite (Sentinel-2) image time series data - a hierarchical multi-stage deep learning method, i.e. ms-convSTAR which we introduced in [1] - in a cross-year experimental setting. The deep learning model is trained with the entire 2021 crop dataset in Switzerland and during test time it is applied to the 2022 crop dataset. Our results show that our method performs reasonably well in this experimental setting achieving ~83% accuracy at the pixel level. 

References

[1] Turkoglu, M. O., D'Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K., & Wegner, J. D. (2021). Crop mapping from image time series: Deep learning with multi-scale label hierarchies. Remote Sensing of Environment, 264, 112603.

How to cite: Turkoglu, M. O., Aasen, H., Schindler, K., and Wegner, J. D.: Country-wide Cross-Year Crop Mapping from Optical Satellite Image Time Series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6031, https://doi.org/10.5194/egusphere-egu24-6031, 2024.

EGU24-7035 | Orals | BG8.9 | Highlight

Assessment of wetland ecosystem services associated with changing climate and agricultural wetland drainage in a major food producing region 

Colin Whitfield, Emily Cavaliere, Helen Baulch, Robert Clark, Chris Spence, Kevin Shook, John Pomeroy, and Zhihua He

Agricultural regions worldwide face the dual challenge of producing food for a growing world population while simultaneously reducing the industry’s environmental footprint. The prairie region of western Canada, where more than 40 million ha are used as cropland or pasture, is one of the world’s major food producing regions. This complex landscape provides agroecosystem services associated with these agricultural lands and their millions of depressional wetlands. As a cold region, and one with a highly variable climate which is undergoing strong climate change, agricultural practices continue to evolve. One widely used tool for adaptation to wet periods and to maximize arable land area is to drain wetlands; however, a tradeoff exists between draining wetlands to support expansion of cropland, and conserving wetlands to maintain their valuable ecosystem services. Wetland drainage decisions are often made without identifying impacts to the services these systems provide.

We address this gap using a novel assessment to quantify impacts to ecosystem services via wetland drainage in the Canadian prairie landscape, and explore how wetland ecosystem services may be impacted by future climate. Quantifying response of a suite of indicators (median annual flows, total phosphorus export, riparian habitat, dabbling ducks, wetland-associated birds, carbon sequestration) to wetland drainage demonstrated that all respond strongly to the loss of depressional wetlands, but sensitivity varies among the indicators. Median annual flows and phosphorus export respond more strongly than longer return period flows, potentially tripling in magnitude with high levels of wetland loss. Dabbling ducks and wetland-associated bird abundances are even more sensitive, with abundances predicted to decrease by half with loss of as little as 20% of wetland area. As a relatively unique region, where inundated wetland area is highly dynamic both interannually as the system alternates between dry and wet phases, and intra-annually (across seasons), wetland ecosystem services response to climate change is more nuanced. In the Canadian prairie, there appears to be a delicate balance between future warming and changes in precipitation amount that could yield either increases or decreases in wetland area, with wetland ecosystem services anticipated to change accordingly. Our results illustrate the sensitivity of wetland ecosystem services to agroecosystem management and climate change in a major food producing region, highlighting the need to consider the tradeoff between loss of these services and benefits of agricultural expansion. Under a drier future climate, fewer remaining wetlands may both enhance the value of wetland-associated ecosystem services, and temper the demand for wetland drainage.

 

How to cite: Whitfield, C., Cavaliere, E., Baulch, H., Clark, R., Spence, C., Shook, K., Pomeroy, J., and He, Z.: Assessment of wetland ecosystem services associated with changing climate and agricultural wetland drainage in a major food producing region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7035, https://doi.org/10.5194/egusphere-egu24-7035, 2024.

EGU24-7646 | ECS | Posters on site | BG8.9

Estimation of annual grassland yields with Sentinel-2 time series 

Sophie Reinermann, Anne Schucknecht, Ursula Gessner, Sarah Asam, Ralf Kiese, and Claudia Kuenzer

Grassland ecosystems shape the landscape in large parts of Germany and provide numerous services that are relevant for the carbon cycle, water quality and biodiversity, apart from being the main source of fodder for the dairy and meat industry. Annual yields between grasslands vary strongly because their productivity depends on the management and environmental conditions. Information on grassland yields are not freely and extensively available in Germany but would be relevant for comprehensive assessments of grassland ecosystem services including the impact of extreme events on yields. With satellite remote sensing, grassland productivity and yields can be extensively and multi-temporally estimated. Within our project (SUSALPS, https://www.susalps.de/en/), grassland yields are estimated in a grassland-dominated area in southern Germany using ground-truth measurements of above-ground biomass and Sentinel-2 time series data. Field data was collected on 12 differently used grassland parcels in the region in 2019-2021. We aim to overcome limitations of previous research – caused by the heterogenous nature of grasslands due to varying use intensities in Germany – by including management information and a large gradient of field samples trough multiple measurements throughout the vegetation growth period into the modelling. We tested empirical model based on the field and accompanying Sentinel-2 data (n=74) to estimate grassland biomass. The best model was applied to all available Sentinel-2 scenes in the region in 2019. Random Forest and Artificial Neural Network models showed the highest accuracy (R²cv = 0.7). A novel input feature was the mowing date which is available as 6-year dataset (Reinermann et al. 2022 & 2023). Next, the multi-temporal biomass estimations are aggregated to annual yield estimates to enable spatially discrete and multi-annual yields are estimated and compared (2018-2023). First results show that the inclusion of mowing date information supports the reliable estimation of grassland yields and its assessment on fine spatial scale substantially. In the future, the results are coupled with modelled plant biodiversity information to gain a complementary picture on grassland ecosystem services.

How to cite: Reinermann, S., Schucknecht, A., Gessner, U., Asam, S., Kiese, R., and Kuenzer, C.: Estimation of annual grassland yields with Sentinel-2 time series, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7646, https://doi.org/10.5194/egusphere-egu24-7646, 2024.

EGU24-9284 | ECS | Posters on site | BG8.9

An improved biodiversity index for FAO’s Tool of Agroecology Performance Evaluation (TAPE) 

Simon Baumgartner, Anina Gilgen, Rahel Felder, Felix Herzog, Philippe Jeanneret, Robin Séchaud, Stevan Paunovic, Dario Lucatoni, Remi Cluset, Anne Mottet, and Lutz Merbold

The "Tool for Agroecology Performance Evaluation" (TAPE) was developed under the coordination of the Food and Agriculture Organisation of the United Nations (FAO) to assess the sustainability performance of agroecosystems. The assessment is mainly based on a 2-3-hour farm interview, in which a wide variety of data is collected. The environmental dimension has so far been represented in TAPE by two simple indices: A soil index, which is based on a visual analysis of the soil, and a biodiversity index, which is primarily based on the Gini-Simpson index of crops grown and animals kept. While the TAPE biodiversity index is crucial, it does not yet take into account so-called unplanned biodiversity, i.e. the impact of on-farm management practices on wild species. We have therefore expanded TAPE to include this aspect.

Direct surveys of wildlife biodiversity in the field were not possible in TAPE, as this would have far exceeded the time required for data collection. Consequently, we based the newly developed biodiversity index on the indirect European BioBio method. The new index consists of ten indicators, which can take values between 0 and 100% and be aggregated to form the overall index. Examples of these indicators are field size, nitrogen application or stocking density. The new index was developed and tested on selected Swiss farms, where the comparison with a much more comprehensive and time-consuming method showed a positive correlation (r = 0.56, p-value = 0.009).

The new index has so far been used in Switzerland (21 farms) and in Kenya (103 farms). In Switzerland, the field size and land use change indicators performed best (values > 75%), while the indicators tree habitat, nitrogen application, field operations and grazing intensity performed poorly (values > 50%). In Kenya, the field size, land use change, pesticide and field operations indicators reached values above 75%, while the tree habitat, grazing intensity and semi-natural habitat indicators had values clearly below 50%.

How to cite: Baumgartner, S., Gilgen, A., Felder, R., Herzog, F., Jeanneret, P., Séchaud, R., Paunovic, S., Lucatoni, D., Cluset, R., Mottet, A., and Merbold, L.: An improved biodiversity index for FAO’s Tool of Agroecology Performance Evaluation (TAPE), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9284, https://doi.org/10.5194/egusphere-egu24-9284, 2024.

EGU24-9951 | ECS | Posters on site | BG8.9

A hybrid framework for improved crop mapping over a large scale by combining pixel-based and object-based approaches 

Yuanyuan Di, Jinwei Dong, Ping Fu, and Stuart Marsh

Remote sensing technology presents unique possibilities for monitoring agricultural systems, providing accurate information like crop type distribution, crop planting area, crop rotation, etc. Extracted from remote sensing imagery, previous efforts generally produce crop information based on pixel-based classification strategy without considering spatial context of objects. Further incorporation of object-based image analysis in crop type mapping could improve mapping accuracy and reduce disturbance caused by uncertainties caused by pixel-based methods. Here we aim to combine the advantages of pixel-based and object-based approaches for further improving crop type maps over Northeast China based on Sentinel-2 imagery, simple non-iterative clustering (SNIC), random forest classifier and Google Earth Engine platform. The results showed in the majority of cropland, object-based mapping results had higher accuracies and reduced obvious errors at parcel level. Overall accuracies improved by 0.5% and the Kappa coefficient improved by 9% in Sanjiang Plain. However, soybean and maize intercropping with small parcels could be ignored in object-based methods when clustering objects. Therefore, an integration of pixel and object-based approaches was adopted considering different landscapes and patch areas to generate an unprecedentedly accurate crop type map in Northeast China.

How to cite: Di, Y., Dong, J., Fu, P., and Marsh, S.: A hybrid framework for improved crop mapping over a large scale by combining pixel-based and object-based approaches, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9951, https://doi.org/10.5194/egusphere-egu24-9951, 2024.

EGU24-13479 | ECS | Orals | BG8.9 | Highlight

Spatially-explicit greenhouse gas footprints of agricultural commodities from around the world 

Chaidir Arsyan Adlan, Birka Wicke, Steef V. Hanssen, and Carlijn Hendriks

Agriculture and its land use are associated with 22% of global annual anthropogenic greenhouse gas (GHG) emissions [1]. Reducing these emissions requires insight into how much emissions are caused by specific agricultural commodities and where they occur. Commodity-specific GHG footprints are a useful tool in this regard as they enable producers to determine the emission intensity and environmental impact of their products [2]-[3]. Further, they can help identify emission reduction strategies and region-specific mitigation efforts [4]-[6].

Spatially-explicit GHG footprints are particularly useful since they show the geographic distribution of commodities’ emission intensity and allow for the comparison across countries [7]. Several past studies have produced crop-specific footprints but considered emissions solely from land use change and did not include emissions from agricultural practices [8]-[11]. Attribution was mostly conducted at aggregate level such as country and region level [16],[17]. Those studies that employed spatially-explicit attribution methods are characterized by limited geographical coverage [14] and a limited selection of crops [15]. Studies also applied largely different methods for attributing emissions to crops, making comparison across studies not possible. 

The current study aims at filling in this research gap by improving data resolution and the methodology for attributing dynamic land-use emissions to specific crops. We derive global spatially-explicit GHG emission footprints for 161 agricultural crops over the period of 1970 to 2021 at 15 arcmin resolution. We do so by quantifying spatially-explicit land-use emissions related to agriculture and then attributing them to specific agricultural commodities (Fig1). The analysis is conducted using the LUH2 dataset on land use dynamics over time [16] and IMAGE-LPJmL 3.2 for carbon stock data [17]. IMAGE-LPJmL is a dynamic global vegetation model that simulates vegetation dynamics and distribution based on carbon cycle and crop growth model [18], [19]. This allows leveraging advanced data in terms of dynamic, annual, and spatially specific carbon stocks (Tier-3), rather than constant and/or national level carbon stock data (Tier-1) as generally used in the literature.

This study also compares three different emission attribution methods (AM) (Fig2). AM1 uses an annual accounting period, attributing emissions to the land use change committed in the same year. AM2 uses a larger time step and attributes the emissions only to the land use type at the end of the accounting period. These two methods are the two most employed methods in carbon accounting studies. We also propose an alternative approach that reflects the dynamics of land use (AM3); we attribute the emissions based on occupation year of each land use type in the accounting period.

The expected results of this study are crop-specific GHG footprints in terms of land use emissions per production area (tCO2eq/ha) and per crop yield (tCO2eq/ton) at the grid level as well as means and variations per crop and country. Also, variations as a result of different AMs will be presented and its implications for research and application in e.g. corporate emission reporting and target setting will be discussed. 

Fig1

Fig2

How to cite: Adlan, C. A., Wicke, B., Hanssen, S. V., and Hendriks, C.: Spatially-explicit greenhouse gas footprints of agricultural commodities from around the world, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13479, https://doi.org/10.5194/egusphere-egu24-13479, 2024.

EGU24-13714 | Orals | BG8.9 | Highlight

Mapping, Attribution, and Environmental Effects of Woody Plant Encroachment in Grasslands under Climate Change and Human Activities 

Jie Wang, Chuchen Chang, Xu Wang, Jilin Yang, and Xiangming Xiao

Woody plant encroachment (WPE) into grasslands has been occurring globally and may be accelerated by climate change and human activities in the future. There are limited studies to document this ecological process and hamper our understanding to make sustainable management approaches for grassland conservation.  Here, we improved our previous studies on woody plant encroachment in the grasslands of Oklahoma, USA.  This study (1) summarized the detection of woody plant encroachment into grasslands over the typical regions in global through PALSAR, Sentinel-1, Sentinel-2, and Landsat images; (2) examined the drivers of woody plant encroachment into grasslands at local and global scales; and (3) developed approaches to quantify the effects of woody plant encroachment into grasslands on carbon, water, and local land surface temperature. The results provide some insights to understand the process and assocaited drivers of woody plant encroachment during the last decades and the roles on carbon and water cycles and the local environment.

How to cite: Wang, J., Chang, C., Wang, X., Yang, J., and Xiao, X.: Mapping, Attribution, and Environmental Effects of Woody Plant Encroachment in Grasslands under Climate Change and Human Activities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13714, https://doi.org/10.5194/egusphere-egu24-13714, 2024.

EGU24-14243 | Posters virtual | BG8.9

Makara: Navigating Agricultural Challenges through Digital Innovation 

Ramesh Guntha, Aiswarya Aravindakshan, Soham Adla, Maya Presannakumar, Mario Alberto Ponce Pacheco, and Saket Pande

Modern-day agriculture presents numerous challenges for small rural farmers, including labor issues, fluctuating costs, unpredictable weather, and the complexities of managing fertilizers, pesticides, and market dynamics. These challenges often hinder farmers from making timely decisions that could maximize their revenue and minimize costs.

The Makara app stands out as a groundbreaking tool in agricultural management, providing a digital platform meticulously designed to meet the diverse needs of farming. It enables farmers to create individual accounts and input detailed information about their land, including soil type, soil health parameters, water sources (such as borewells, rivers, or pipelines), and preferred irrigation methods. The app's versatility allows farmers to manage multiple lands and configure various crops for each, supporting both mixed cropping and multi-cropping systems. Additionally, farmers can adjust crop configurations annually and seasonally, offering unparalleled flexibility in digital farming management.

Makara's interface is exceptionally adaptable and capable of digitizing and tracking any farming setup. Beyond just planning, the app excels in financial management, assisting farmers in budgeting and recording expenses. This includes costs for seeds, fertilizers, and various labor activities like irrigation, weeding, land preparation, applying fertilizers and pesticides, harvesting, transportation, and storage. These financial features are detailed at the crop level for each season and year, providing farmers with a comprehensive view of their agricultural expenses and aiding in more informed financial decision-making.

A standout feature of Makara is its day-to-day advisory service, which provides guidance based on best practices, and insights into planting seasons, crop varieties, and growth stages. The app's recommendations on fertilizers and pesticides aim to promote sustainable farming and maximize yields. Additionally, Makara assists in activity planning and journaling, enabling farmers to maintain systematic records of their farming activities. The app emphasizes budgeting, cost and revenue management, and farm resource optimization, positioning itself as an all-encompassing agricultural tool.

The app's risk prediction module offers farmers valuable insights into expected crop yields for upcoming seasons, allowing them to estimate the likelihood of achieving specific yield targets and the corresponding potential income and profits. This feature is complemented by a historical market price database, enabling farmers to make informed decisions based on predicted yields and market trends.

Makara is crafted for user-friendliness and accessibility, featuring a multilingual interface that not only displays content but also provides audio readouts to farmers in their native languages. Mindful of the connectivity issues often encountered in rural settings, the app is equipped with an offline mode. This ensures uninterrupted operation and access to previously stored data, even in the absence of network connectivity, making it a reliable tool for farmers regardless of their location.

This paper introduces the Makara app, detailing its main functionalities, deployment strategies, and the considerations behind its design choices. We also present an analysis of the app's deployment and usage, highlighting its impact on alleviating the cognitive burden faced by farmers in making crucial decisions that significantly affect their costs and revenues.

How to cite: Guntha, R., Aravindakshan, A., Adla, S., Presannakumar, M., Alberto Ponce Pacheco, M., and Pande, S.: Makara: Navigating Agricultural Challenges through Digital Innovation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14243, https://doi.org/10.5194/egusphere-egu24-14243, 2024.

EGU24-15266 | Orals | BG8.9 | Highlight

Towards Live, Nation Wide, Farm-Level  Crop Monitoring  

Ishan Deshpande, Amandeep Kaur Reehal, Gaurav Singh, Chandan Nath, Renu Singh, and Alok Talekar

Accurate and timely information about expected crop production is crucial for various applications including agricultural monitoring, policy making, and food security assessment. Policy makers can use near-real time crop maps to better determine crop support prices, storage infrastructure, and imports. In the context of India, absence of farm-level crop maps r the government to work with aggregate statistics based on manual surveys, and therefore are fundamentally limited in scale and accuracy. Surveys over large regions such as entire states or countries are slow and provide information only after large delays. Indian farms also go through up to three crop rotations a year necessitating continual monitoring. We put forward a nation-wide, farm-level, weekly agricultural monitoring and event detection model for the study area of India. Our model leverages remote sensing and machine learning to build a crop map that allows us to accurately monitor individual farms across large areas. 

We utilize the rich spectral and temporal information provided by Sentinel-2 satellite to provide near-real time crop monitoring, including sowing, crop type, and harvesting information. The predictions are done on an individual farm level with farm boundaries coming from a field segmentation model. Making predictions on a farm level scale helps getting more accurate yield estimates and allows monitoring individual fields for credit, insurance, resource allocation, etc. Currently, the model is able to identify major winter crops with an accuracy of up to 80% as early as 2 months after sowing. Equipped with the ability to provide weekly sowing and harvesting information makes the model near-real time for agricultural purposes. We also demonstrate the scalability of the model by showing results pan-India, across several diverse agro climatic zones. The model successfully generalizes to many unseen regions without requiring regional data. Using satellite data to provide accurate and timely crop cover information has the potential of saving millions of dollars spent by the government on manual surveys.

How to cite: Deshpande, I., Reehal, A. K., Singh, G., Nath, C., Singh, R., and Talekar, A.: Towards Live, Nation Wide, Farm-Level  Crop Monitoring , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15266, https://doi.org/10.5194/egusphere-egu24-15266, 2024.

EGU24-15697 | Posters on site | BG8.9

Monitoring Changes In Agricultural Field Boundaries Using Spatiotemporal Remote Sensing Data 

Nikita Saxena, Abigail Annkah, Ishan Deshpande, Alex Wilson, and Alok Talekar

In the domain of precision agriculture, land-use planning, and resource management, the precise delineation of field boundaries is pivotal for informed decision-making. The dynamic nature of agricultural landscapes, particularly in smallholder farming, introduces seasonal changes that pose challenges to accurately identify and update field boundaries. The conventional approach of relying on high-resolution imagery for this purpose proves to be economically impractical on a seasonal basis. We propose a framework that utilizes a spatiotemporal series of medium-resolution public imagery (e.g., Sentinel-2) in conjunction with an outdated high-resolution image as a reference for super-resolution reconstruction. The developed methodology incorporates super-resolution techniques to enhance the spatial resolution while simultaneously performing semantic segmentation at the higher resolution. We evaluate the proposed model's performance in predicting seasonal field boundaries at a pan-India level. The validity of these findings is established through assessment by a team of human annotators.

Our approach aims to offer a scalable spatiotemporal solution for accurate field boundary identification at a national level by combining information from different satellites at different resolutions.

How to cite: Saxena, N., Annkah, A., Deshpande, I., Wilson, A., and Talekar, A.: Monitoring Changes In Agricultural Field Boundaries Using Spatiotemporal Remote Sensing Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15697, https://doi.org/10.5194/egusphere-egu24-15697, 2024.

EGU24-15816 | Posters on site | BG8.9 | Highlight

Applying the Pesticide Load Index to characterize ecotoxicological impact from pesticide use in the EU 

Rui Catarino, Francesco Galimberti, Stephanie Bopp, Thomas Fellmann, Ana Klinnert, Michael Olvedy, Maria Luisa Paracchini, Alberto Pistocchi, Xavier Rotllan-Puig, Jean-Michel Terres, Marijn Van Der Velde, and Raphael d'Andrimont

Improving the sustainability of agriculture requires an advanced assessment of the ecological impacts of pesticides at both policy and scientific levels. This can be achieved by integrating ecological considerations into the assessments of plant protection products beyond plot or experimental sites. Among plant protection products, pesticides are often the most harmful and toxic due to the chemical properties of their active substances (AS), which can range from non- to extremely toxic depending on the organism affected. Our study applies the Pesticide Load Index (PLI), as applied in Denmark and in the United Kingdom , to quantify pesticide risks to environmental health and biodiversity across the European Union. The PLI is defined as the sum of the application rate (AR) for each applied AS (k) divided by the toxicity (TOX) for a number of non-target taxa such as birds, mammals, fish, algae and agricultural beneficial insects like bees and natural enemies of pests, using the formula: PLI = Σ (ARk / TOXk,i).

Our methodology bridges the gap between ecological health and pesticide risk assessment using three extensive data sets (Figure 1). The first includes EU-wide estimations of AS emissions, as geospatial layers at 1km resolution, representing the most extensive data collection available for the entire European Union. The second dataset provides unparalleled granularity in AS use, capturing field-level information across France for the year 2018, including details on crop type distribution. The third dataset, sourced from the Pesticide Properties DataBase, assesses the ecological impacts of pesticide use by linking usage to ecotoxicological endpoints.

Figure 1: Overview of the methodology for the Pesticide Load Index (PLI) Study. 

By integrating acute toxicity, chronic toxicity, and environmental fate, our approach moves towards a thorough understanding of pesticide impacts. Acute toxicity, indicative of short-term exposure, highlights immediate and potentially severe effects, while chronic toxicity addresses the long-term consequences of prolonged and continuous exposure. The environmental fate sheds light on the pesticides' behaviour and transformation in the environment, considering their distribution, degradation, accumulation, and transport across air, water, and soil.

The outcomes of this study provide a new perspective on pesticide use within the EU. The highly granular nature of the PLI maps makes them key tools for identifying areas with high ecotoxic levels, and therefore informing where additional risk mitigation measures are necessary. Detailed analyses are done by i) identifying predicted hotspots of pesticide use across the EU, ii) analysing variations in bio-climatic regions, and iii) breaking down the results by crop type and region. The role of this approach in monitoring the progress towards the European Union Farm to Fork and Biodiversity strategies targets is therefore clear, particularly in relation to the ambitious target of reducing pesticide use and toxicity by 50% by 2030. 

Our framework provides essential ecological insights for biodiversity conservation and ecosystem preservation, providing policy-makers with spatially explicit data for better-tailored strategies. Additionally, by enabling comparisons between crops, regions, and EU Member States it can contribute as to developing protective, realistic, and scientifically sound regulatory frameworks.  

How to cite: Catarino, R., Galimberti, F., Bopp, S., Fellmann, T., Klinnert, A., Olvedy, M., Paracchini, M. L., Pistocchi, A., Rotllan-Puig, X., Terres, J.-M., Van Der Velde, M., and d'Andrimont, R.: Applying the Pesticide Load Index to characterize ecotoxicological impact from pesticide use in the EU, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15816, https://doi.org/10.5194/egusphere-egu24-15816, 2024.

EGU24-16407 | Posters virtual | BG8.9

EMBAL - European Monitoring of Biodiversity in Agricultural Landscapes 

Luca Kleinewillinghöfer, Clemens Baier, Carsten Haub, Dirk Lindemann, Rainer Oppermann, Lars Roggon, Laura Sutcliffe, and Oliver Buck

The 'European Monitoring of Biodiversity in Agricultural Landscapes' (EMBAL) is a monitoring initiative initiated by the European Commission that gathers information on the state of biodiversity in agricultural landscapes across EU member states. Developed within the EU Pollinator Monitoring Framework, EMBAL is a standardized and sample-based in-situ survey of 500x500m landscape sections (plots).

EMBAL provides comprehensive data, including general information on land use and land cover at parcel level, information about landscape elements, and specific vegetation data on a transect level in grassland and arable habitats. Both the methodology and the sampling frame are harmonized with LUCAS (Land Use and Coverage Area frame Survey).

Following a successful pilot in 2020, EMBAL was applied in all 27 EU member states in 2022 and 2023, surveying a total of 3,000 selected plots in both years. This extensive rollout served to gather harmonised baseline data on biodiversity across EU27 and provided a comprehensive field test of the EMBAL methodology across different European landscapes.

In this contribution, we offer an overview of the EMBAL 2022 and 2023 rollout, the EMBAL survey methods and parameters and provide an outlook on the results.

How to cite: Kleinewillinghöfer, L., Baier, C., Haub, C., Lindemann, D., Oppermann, R., Roggon, L., Sutcliffe, L., and Buck, O.: EMBAL - European Monitoring of Biodiversity in Agricultural Landscapes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16407, https://doi.org/10.5194/egusphere-egu24-16407, 2024.

EGU24-16609 | Orals | BG8.9

Evaluation of pesticide use restrictions near urban areas in the European Union 

Francesco Galimberti, Rui Catarino, Thomas Fellmann, Pietro Florio, Pieter Kempeneers, Ana Klinnert, Michael Olvedy, Alberto Pistocchi, and Raphael D'Andrimont

The European Commission’s strategies under the European Green Deal aim at reducing the risks to human health and the environment from pesticide use. One of the proposed policies to achieve that goal is a restriction in use of pesticides within and near urban areas. 
In this study, we aim to estimate the impact of a full pesticide use restriction on crops near urban areas at the EU scale, by combining available EU data on urban settlements and crops. We will achieve this by utilizing spatial layers from the Joint Research Centre (JRC), including the Global Human Settlement Layer (GHSL) and the EUCROPMAP 2018 integrated with information from the Corine Land Cover (CLC) 2018.
Using various buffer distances from urban areas, the study seeks to quantify the agricultural area and crop types that will be impacted by the full restriction in use. The results will also provide insights into the percentage of treated vs. non-treated crops present in these buffer zones, highlighting country and regional differences. The economic importance of crops, together with reduced crop yields can be explored as well. Additionally, reduction in health risk to residents can be estimated from information on crop-specific intensities in pesticide use.

How to cite: Galimberti, F., Catarino, R., Fellmann, T., Florio, P., Kempeneers, P., Klinnert, A., Olvedy, M., Pistocchi, A., and D'Andrimont, R.: Evaluation of pesticide use restrictions near urban areas in the European Union, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16609, https://doi.org/10.5194/egusphere-egu24-16609, 2024.

EGU24-16882 | Posters on site | BG8.9 | Highlight

Quantitative Measurement of Landscape Features in EU Agriculture: A Novel Indicator Approach  

Raphaël d'Andrimont, Jon Skøien, Talie Musavi, Momtchil Iordanov, Javier Gallego, Davide De Marchi, Renate Koeble, Irene Guerrero, Ana Montero-Castaño, Jean-Michel Terres, and Bálint Czúcz

The conservation and creation of landscape features is recognised as a key conservation tool to halt the loss of agricultural biodiversity in European farmland.

This study introduces a new indicator to quantify landscape features in EU agricultural land, based on the LUCAS Landscape Feature survey. We developed a comprehensive methodology to measure and categorise landscape features, distinguishing Woody, Grassy, Wet, and Stony LF types. Our approach gives a robust and reproducible estimate of the indicator at the EU Member State and possibly regional levels, based on a reliable and statistically representative sample of landscape features.

The methodology combines office-based photo-interpretation with field surveys collecting 3.8 millions field points, ensuring accuracy in determining the presence and type of landscape features within agricultural contexts. Together with information on biodiversity and ecosystem services, it will play a crucial role in evaluating the performance of major policies related to biodiversity conservation in agricultural lands, aligning with the Common Agricultural Policy and the EU Biodiversity Strategy for 2030. Besides, it will play a role in the assessment of natural based solutions for mitigating climate change effects, biodiversity loss and crop production (food) security.

Our findings reveal that, in 2022, landscape features covered 5.6% of EU agricultural land. Woody features were the most prevalent, followed by Grassy, Wet, and Stony features. The percentages of landscape features varied across EU Member States, with Malta and Cyprus exhibiting higher values.

The novel indicator developed is based on a comprehensive and reproducible method for quantifying these features, providing essential insights for policy and decision-making in sustainable agriculture.

How to cite: d'Andrimont, R., Skøien, J., Musavi, T., Iordanov, M., Gallego, J., De Marchi, D., Koeble, R., Guerrero, I., Montero-Castaño, A., Terres, J.-M., and Czúcz, B.: Quantitative Measurement of Landscape Features in EU Agriculture: A Novel Indicator Approach , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16882, https://doi.org/10.5194/egusphere-egu24-16882, 2024.

EGU24-17135 | ECS | Posters on site | BG8.9

Comparing crop calendars: phenology derived from Sentinel-2 data vs official data: The case of cereals in Andalusia. 

Miguel Angel García Pérez, Jose A. Caparros-Santiago, and Victor Rodriguez-Galiano

Obtaining specific field calendars for each crop is very useful information for farmers and public administration to understand and manage harvests. This information can be collected manually from each farm, but this approach is highly time and money consuming. It is possible to acquire it more efficiently using phenology estimates obtained through remote sensing. Common Agrarian Policy (CAP) and Geographical Information System of the Common Agrarian Policy (GISCAP) data were used to know the location of principal cereal plots in Andalusia, Spain. It included common wheat, durum wheat, triticale, oat, rye, barley, sorghum, maize and rice.  Several phenometrics from Sentinel-2 were obtained: start of the season (SOS), middle of the season (MOS), length of the season (LOS) and end of the season (EOS). This dataset was correlated and compared with sowing and harvesting data collected by the Spanish government.  The results showed a high correlation between SOS and sowing and between EOS and harvest for most of the studied crops.

Sowing for common wheat, durum wheat, triticale, oat, rye, and barley took place between October and December according to government calendars, while SOS generally started one month later, between November and January. However, in these crops, harvest and EOS occurred simultaneously, mostly in June. In the case of sorghum, maize and rice, which are summer cereals, their phenometrics differed from the others. Sowing and SOS for sorghum mostly occurred in April and March, and harvest and EOS in September and October, in typically at the same time. Maize sowing took place in March, SOS in April, and harvest and EOS in September. Finally, rice sowing occurred in May, SOS in June, harvest in October and EOS in November. This study shows that obtaining accurate crop calendars from Sentinel-2 phenological trajectories is feasible, providing valuable information for farmers and public administrations.

How to cite: García Pérez, M. A., Caparros-Santiago, J. A., and Rodriguez-Galiano, V.: Comparing crop calendars: phenology derived from Sentinel-2 data vs official data: The case of cereals in Andalusia., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17135, https://doi.org/10.5194/egusphere-egu24-17135, 2024.

EGU24-17997 | Posters on site | BG8.9

Optimized resolution of gridded data from European agricultural census 

Jon Olav Skøien, Nicolas Lampach, Helena Ramos, Rudolf Seljak, Renate Koeble, and Marijn van der Velde

The European agricultural census  in 2020 collected a large number of variables from the major share of all the farms within the European Union. There are many potential applications of such a data set, from direct estimates of agricultural indicators to use as input in more complex analytical models. However, the individual responses in the data set cannot be shared directly, as they are regarded as confidential information. Instead, the data must be aggregated to a level where individual responses cannot be identified, typically NUTS regions or grid cells. As a minimum, each aggregated value must be estimated from at least 10 farms (frequency rule). Additionally, a dominance rule requires an aggregated value to be treated as confidential if the 2 largest farms are responsible for more than 85% of the value within a grid cell.

Whereas such requirements are clear, there are many methods for creating grids that respect them. The distribution of data is usually not homogeneous, and different methods have varying effects on the result.  We will outline the advantages and drawbacks of certain methods and present the most promising one that involves grid cells of varying sizes. Whereas there are some examples of this method in the past, it will be the first time it is applied on a continental scale and high-resolution data set such as the European agricultural census data.

How to cite: Skøien, J. O., Lampach, N., Ramos, H., Seljak, R., Koeble, R., and van der Velde, M.: Optimized resolution of gridded data from European agricultural census, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17997, https://doi.org/10.5194/egusphere-egu24-17997, 2024.

EGU24-18505 | Posters on site | BG8.9

European maps of crop / livestock categories and N budget parameters (timeseries 2000 – 2018) based on disaggregated CAPRI model data 

Renate Koeble, Adrian Leip, Markus Kempen, Maria Bielza, Rui Catarino, Maria Luisa Paracchini, Linda See, and Marijn Van Der Velde

The agricultural sector holds the greatest reduction potential to limit adverse effects of reactive nitrogen in the environment. Assessing the negative impacts of excessive release of reactive nitrogen into the biosphere requires spatially explicit information to capture e.g. hot spots of nitrogen surplus, nitrogen use efficiency, the impact on sensitive ecosystems or on ground/drinking water quality.

The agricultural economic model CAPRI is one of the main tools applied by the European Commission for the ex-ante analysis of the impact of agricultural policies and agro-environmental legislation at regional level (NUTS2) in Europe. CAPRI builds on long-term time series of regional, national and international agricultural statistics (e.g. crop and livestock production, fertilizer use), market and trade data. Inputs (e.g. inorganic fertilizer) in CAPRI are explicitly linked to production which delivers the basis for connecting environmental indicators (e.g. nitrogen surplus) directly to individual activities.

To provide the link between the agro-economic model CAPRI and the impact assessment of nitrogen use in agriculture on the environment at higher spatial resolution, we developed a procedure to disaggregate CAPRI regional data and provide maps of nitrogen input/output, crop and livestock production for the time series 2000 – 2018 at the level of Farm Structure Units (FSU) for 26 EU member states and the UK. The FSU are built by the spatial intersection of a 10 x 10 km2 INSPIRE compliant grid, the CAPRI NUTS2 region borders and the soil mapping units of the Harmonized World Soil Data Base (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009), having a median area of 12 km2 (minimum 1 km2, maximum 100 km2).

The disaggregation procedure for 36 crop types and 18 livestock categories from the regional level to the FSU is driven by information from the gridded Farm Structure Survey (FSS, 2010) crop and livestock data at 10 x 10 km2 resolution, CORINE (2018) non-agricultural land cover shares, altitude and slope constraints for individual crops / crop classes derived from LUCAS survey data (https://ec.europa.eu/eurostat/web/lucas).

Nitrogen inputs from mineral fertilizer and manure are disaggregated from the regional level to the FSU following the crops’ requirements. N input from atmospheric deposition and N supply by biological fixation is taken into account at FSU level. N from mineralization of soil organic matter could not be taken into account due to lack of data. N losses from volatilization and surface run-off, N removal by harvest, N in crop residues complete the N flow data set in agricultural areas at FSU level.

How to cite: Koeble, R., Leip, A., Kempen, M., Bielza, M., Catarino, R., Paracchini, M. L., See, L., and Van Der Velde, M.: European maps of crop / livestock categories and N budget parameters (timeseries 2000 – 2018) based on disaggregated CAPRI model data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18505, https://doi.org/10.5194/egusphere-egu24-18505, 2024.

EGU24-19472 | Posters on site | BG8.9

Meta-analytic evidence on effective farming practices for climate change mitigation 

Simona Bosco, Andrea Schievano, Marta Pérez-Soba, Ana Montero-Castaño, Mathilde Chen, Giovanni Tamburini, Rui Catarino, Irene Guerrero, Maria Bielza, Vincenzo Angileri, Michael Assouline, Renate Koeble, Otho Mantegazza, Frank Dentener, Marijn Van der Velde, Maria Luisa Parracchini, Franz Weiss, Jean-Michel Terres, and David Makowski

In the context of climate change, high expectations have been put on the agricultural sector for reducing greenhouse gas (GHG) emissions and enhance carbon sequestration. Consequently, a large and growing number of studies have evaluated the efficacy of various agricultural practices for climate change mitigation. However, the scientific evidence is often heterogeneous and frequently contradictory, making it difficult to use to support policy decisions. Meta-analyses synthesise large data sets and have become the gold standard for providing scientific evidence to inform environmental and agricultural policies. However, a growing number of meta-analyses are now available on a specific topic, occasionally with conflicting conclusions, requiring a further level of synthesis to consolidate the findings.

We present the results of a systematic review of 693 published meta-analyses on the effect of farming practices on climate change mitigation. After a systematic search and review of the literature, we extracted data assessing the climate impacts of 34 farming practices and 123 comparisons of sub-practices with corresponding control practices, for a wide range of cropping and livestock systems around the world. From this dataset, we selected the farming practices that showed overall significantly positive effects on the reduction of GHG emission and/or on the increase of carbon sequestration. For cropland and grassland, we were able to identify a set of 35 mitigation sub-practices , including cover and catch crops, intercropping, leguminous crops, the use of enhanced efficiency fertilisers, soil amendment with lime and gypsum, different crop residue management techniques, water management practices, different conservation, restoration and management measures in grasslands, conservation and restoration of peatlands and wetlands, the conservation and creation of landscape features, as well as organic farming systems. For livestock, we identified seven effective mitigation practices, including livestock feeding techniques, manure land application techniques, manure storage techniques. A limited number meta-analyses reported the effect of a given practice on more than one GHG or on GHGs coupled with carbon sequestration together, limiting the exploration of interacting effects.

The systematic evidence map provides robust and encompassing literature based evidence on farming practices with established positive effect on climate change mitigation to support a wide community of inventory compilers, modellers and policymakers. Our review also identifies farming practices with remaining knowledge gaps and research priorities.

How to cite: Bosco, S., Schievano, A., Pérez-Soba, M., Montero-Castaño, A., Chen, M., Tamburini, G., Catarino, R., Guerrero, I., Bielza, M., Angileri, V., Assouline, M., Koeble, R., Mantegazza, O., Dentener, F., Van der Velde, M., Parracchini, M. L., Weiss, F., Terres, J.-M., and Makowski, D.: Meta-analytic evidence on effective farming practices for climate change mitigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19472, https://doi.org/10.5194/egusphere-egu24-19472, 2024.

EGU24-21429 | Orals | BG8.9 | Highlight

Assessing impacts of farming systems on biodiversity using predictive indicators: a gradient of complexity 

Christian Bockstaller, Emma Soulé, Bastien Dallaporta, and Clélia Sirami

Agriculture plays a major role in the erosion of biodiversity, which represents one of the exceeded planetary boundaries. In the quest for solution to mitigate impacts of farming systems on biodiversity, it is essential to have tools to assess these impacts. Besides a plethora of indicators using field measurement of abundance or/and species richness of one or several taxa, predictive indicators offer a compromise between feasibility and integration of processes. Such indicators do not require in situ measurements and enable linking the response of biodiversity to drivers like agricultural practices.

Here we review three examples of predictive indicators representing a gradient of complexity regarding the number of input variables on field practices and landscape structure, the number of output variables on biodiversity components, and the model structure. The three indicators are NIVA-Biodiversity, BioSyScan and I-BIO.

NIVA-Biodiversity assesses biodiversity at the landscape and regional level, assessing biodiversity through a global score, without any precision on taxonomic or functional components, based on the percentage of semi-natural habitats (SNH), field size and crop diversity. BioSyScan is calculated at field level and assesses the impacts of field management (e.g. tillage, fertilization, pesticides spraying) and landscape variables (e.g field size and SNH) on soil-dependent species and mobile species. Last, I-BIO considers direct impacts of cropping systems on five taxonomic groups (microorganisms, plants, soil invertebrates, flying invertebrates and vertebrates) and indirect impacts through trophic chains.  It includes more precise variables on field and landscape management than the two other indicators. The three indicators are based on mixed models using linguistic rules “if-then”. While I-BIO is based on the DEXi tool and remains totally qualitative, NIVA-Biodiversity and BioSyScan were designed using the CONTRA aggregation method integrating fuzzy subsets in the decision rules, to mitigate threshold effects and increase transparency. We will highlight the potential use of each indicator using case studies, discuss the pros and cons of each indicator, and present the research needs to ensure their scientific validity.

How to cite: Bockstaller, C., Soulé, E., Dallaporta, B., and Sirami, C.: Assessing impacts of farming systems on biodiversity using predictive indicators: a gradient of complexity, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21429, https://doi.org/10.5194/egusphere-egu24-21429, 2024.

EGU24-21456 | Orals | BG8.9 | Highlight

An indicator to monitor farmland biodiversity in OECD countries 

Wendy Fjellstad and Ulrike Bayr

The OECD uses a wide range of agri-environmental indicators to monitor effects of the agricultural sector on the environment. However, the only indicator of farmland biodiversity is the farmland bird index, and this is not reported by all member states. Therefore, work is ongoing to design a more general indicator of farmland biodiversity that can be reported by all member states.

There are many challenges in creating an indicator that can be applied across all OECD countries. These countries have very diverse farming systems, land ownership, climate, biophysical conditions, and species pools. In addition, there are big differences in the type and amount of data available with which to calculate an indicator. Some countries already have monitoring programmes, tailored to their specific national needs and priorities. It may be challenging to harmonize reporting across countries, when data are collected in different ways and from different sources.

As a first step, the OECD published in 2023 guidelines for the development of an OECD farmland habitat biodiversity indicator (https://doi.org/10.1787/09d45d55-en). The aim is to calculate an indicator based on all agricultural habitats within a country, both those of high nature value, but also the ordinary and those that are currently of very low value.

In 2024, several countries are testing calculation of the indicator using national data. This presentation will describe the proposed indicator and share experiences from work to calculate the indicator for Norway.

How to cite: Fjellstad, W. and Bayr, U.: An indicator to monitor farmland biodiversity in OECD countries, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21456, https://doi.org/10.5194/egusphere-egu24-21456, 2024.

Based on the background of climate change and rapid population & land urbanization, we developed the theoretical hypothesis and questions. As we know, urban usually have good education, hospital and housing, so many rural people flow to urban and indirectly take away industry and property. So rural communities face many challenges, such as less people, land, industry and property at least. For climate change, challenges from flooding, drought, heat wave, lower temperature, and frost timing. And opportunities maybe from Increasing and northward accumulated annual temperature (AAT10), and lengthen the growing season. For urbanization, challenges from abandonment, and less cropping frequency. And opportunities maybe from well-facilitated farmland, land unified management, and intelligent agriculture. Rural revitalization and urban-rural integration are two good measures for rural development policy not only in China but in many global counties. Yet, how to catch the rural people and agro-workers' eye, and improve the food supply ability are important questions. We will show some recent study results about geo-spatial change of croplands and its impacts on farming developments in China over the past two decades in this congress.

How to cite: Liu, Z.: Potential impacts of cropland dynamics on farming developments in China by analyzing a fused crop production data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22310, https://doi.org/10.5194/egusphere-egu24-22310, 2024.

EGU24-22312 | Posters on site | BG8.9

Identify the spatial-temporal pattern of the increased Cultivated land and its vulnerability in Northeast China from 2000 to 2020  

Jieyong Wang, Zhengjia Liu, Zehong Li, and Xiaoyong Liao

Ensuring compliance with China's “1.8 billion mu”(120 million hectares) cultivated land preservation policy is a fundamental goal of land policy. Northeast China has experienced significant cultivated land expan-sion due to rigorous compensation policies over the past two decades, re-sulting in sustainable increases in grain output. This research employs re-mote sensing data to examine the spatial-temporal pattern and vulnerability of newly increased cultivated land expansion in Northeast China and its potential impact on food security. Results indicate a 3.08% increase in newly increased cultivated land from 2000 to 2020, with the majority located in the Sanjiang Plain's humid area and Inner Mongolia's arid and semiarid regions. with 58.54% of it being at grade 6-10, and the reduced cultivated land all at grade 1. Additionally, 62.84% of the newly increased cultivated land was in ecologically fragile areas, while the rest were in mildly and severely vulnerable areas. Temperature insta-bility was negatively correlated with cultivated land expansion, while grain production was negatively correlated with cultivated land vulnerability. The increase in grain production at the expense of cultivated land ecology is a potential threat to national food security. The vulnerability of cultivated land is negatively and significantly related to grain yield, suggesting an adverse impact on national food security. The poor quality of newly increased cultivated land in Northeast China, characterized by ecological fragility, may lead to short-term gains in grain yield but not guarantee long-term stability. This study found a significant negative correlation between grain yield and cultivated land ecological vulnerability in Northeast China. Thus, protection measures should focus on increasing high-quality and ecologically sound cultivated land to ensure long-term grain production stability. Priority should be given to high-quality and ecologically sound cultivated land for inclusion in high-standard cultivated land construction zones to enhance protection efforts.

How to cite: Wang, J., Liu, Z., Li, Z., and Liao, X.: Identify the spatial-temporal pattern of the increased Cultivated land and its vulnerability in Northeast China from 2000 to 2020 , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22312, https://doi.org/10.5194/egusphere-egu24-22312, 2024.

EGU24-3603 | ECS | Posters on site | EOS4.3

Bridging the gap between climate scenarios and law - a roadmap for mutual contributions 

Haomiao Du, Edward Brans, Murray Scown, Hsing-Hsuan Chen, Vassilis Daioglou, Mark Roelfsema, Annisa Triyanti, Dries Hegger, Leila Niamir, Marleen van Rijswick, Liping Dai, Peter Driessen, Yann du Pont, Dennis van Berkel, and Detlef van Vuuren

To bridge the knowledge gap between climate scenarios and law, this presentation is aimed to demonstrate currently demanded mutual contributions by legal professionals and integrated assessment modellers on 1) how legal knowledge can be integrated into climate scenarios and 2) how scientific evidence generated from climate scenarios can better guide climate litigation cases. We expect that this could support judges in making trade-offs in climate-related court cases and could contribute to the acceptance of decisions by judges in such cases. Given the emissions gap and the measures that must be taken to comply with the Paris Agreement, the latter is likely becoming more relevant.

Regarding the first part, the results are based on an empirical research project on Improving the Integration of Legal Knowledge and Scholars in Climate Scenario Assessments (https://www.uu.nl/en/research/sustainability/improving-the-integration-of-legal-knowledge-and-scholars-in-climate-scenario-assessments) and a workshop  (https://www.uu.nl/en/research/sustainability/workshop-report-promoting-the-mutual-understanding-between-legal-and-governance-scholars-and-climate) resulted from this project held in May 2023. Via interviews and focus-group discussions with 24 experts in climate modelling, climate law and politics, and ethics, our research highlights four legal aspects for integration, which are: 1) implementation end enforcement of climate targets, 2) key normative principles, 3) legal uncertainties, and 4) the applicability of scenarios in regional and local legal contexts. Considering the challenges of integration due to epistemic distinctions between disciplines, experts held different opinions on the feasibility of integrating those four aspects. Regarding actionable steps for the short term, revising narratives and a ‘legal reality check’ are the most agreed ones. The former refers to adding legal obligations that safeguard justice, fairness and fundamental human rights - traceable to various treaties - to narratives of the global futures. The latter refers to scrutinising the ‘shared feasibility space’ between law on the one hand and modelled scenarios and emission reduction pathways on the other: it can be the compatibility of legal principles with modelled scenarios based on different assessment criteria (e.g. fair share of burdens), or to compare scenarios with and without regulatory boundary conditions in a specific jurisdiction on a specific mitigation solution (e.g. BECCS scenarios).

Regarding the second part, the currently ongoing research focuses on the adoption of authoritative scientific evidence from climate scenarios - typically the projections referred to in the IPCC reports - in climate litigation cases. First, inspired by the Daubert Criteria, this research explores the possibility of developing guidelines for judges to deal with scientific uncertainties contained in multiple projected futures and determining admissibility of scientific evidence. Second, seeing the increasing reference to ‘open norms’ (e.g. due diligence, fair share) and fundamental human rights (to private life or a healthy environment) in court cases, modelled scenarios could provide information for guiding judges in their interpretation of key concepts such as carbon budgets, fair share, emission gap, appropriate emission reduction obligations, and climate-induced harm and loss and damage. We expect that this could be beneficial to the supportability of judges' decisions in climate cases.

How to cite: Du, H., Brans, E., Scown, M., Chen, H.-H., Daioglou, V., Roelfsema, M., Triyanti, A., Hegger, D., Niamir, L., van Rijswick, M., Dai, L., Driessen, P., du Pont, Y., van Berkel, D., and van Vuuren, D.: Bridging the gap between climate scenarios and law - a roadmap for mutual contributions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3603, https://doi.org/10.5194/egusphere-egu24-3603, 2024.

EGU24-5662 | ECS | Posters on site | EOS4.3

Litigation challenging over-reliance on carbon dioxide removal requires quantitative feasibility assessment 

Oliver Perkins, Peter Alexander, Almut Arneth, Calum Brown, James Millington, and Mark Rounsevell

Carbon dioxide removal (CDR) is an emerging frontier in climate change litigation1. CDR must play an important role in achieving global climate targets, by compensating for hard-to-abate emissions (such as from international transport). Yet, over-reliance on CDR in government and corporate decarbonisation plans may serve as a strategy to commit to climate action on paper, whilst making inadequate present-day emissions’ reductions. Therefore, litigation may be necessary to highlight where CDR commitments contribute to a credible decarbonisation plan, and where they are primarily employed as a delaying tactic. Hence, litigation arguing that a given level of CDR deployment represents an unacceptable risk to the achievement of legal climate targets must have clarity around plausible levels of real-world delivery.

Land-based CDR methods, such as afforestation and bioenergy with carbon capture and storage, frequently appear in both modelled decarbonisation scenarios and government policies. Here, we argue that quantitative assessment of the feasible potential of land-based CDR is vital to the success of CDR-focused litigation. Firstly, we highlight key land system processes that will constrain real-world CDR delivery to levels well-below the techno-economic assessments presented in the IPCC 6th Assessment Report (AR6). These constraining processes include land tenure and food insecurity, monitoring and verification, and impermanence due to biophysical disturbances and policy change. Quantifying the likely impact of such factors can fast-track successful CDR litigation by demonstrating the scale of the gap between CDR pledges and plausible real-world potentials.

Further, after Perkins et al., 2, we outline research frameworks that can deliver a quantified feasible potential for land-based CDR within the IPCC AR7 process, and highlight emerging trans-disciplinary methods making progress towards this goal. These methods include geospatial coupled socio-ecological model ensembles, which can capture interactions and feedbacks between socio-economic and biophysical drivers in the land system at global scale. Typically, such ensembles include coupling of spatial agent-based models of land user behaviour with dynamic global vegetation models and non-equilibrium agricultural trade models - which can represent system shocks such as geopolitical instability and extreme weather events. We conclude by arguing that quantitative feasibility assessment must be made a high priority in CDR research to prevent widespread over-reliance on CDR in decarbonisation policies.

1. Stuart-Smith, R.F., Rajamani, L., Rogelj, J., and Wetzer, T. (2023). Legal limits to the use of CO2 removal. Science 382, 772–774. 10.1126/science.adi9332.

2. Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J.D.A., and Rounsevell, M. (2023). Toward quantification of the feasible potential of land-based carbon dioxide removal. One Earth 6, 1638–1651. 10.1016/j.oneear.2023.11.011.

How to cite: Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J., and Rounsevell, M.: Litigation challenging over-reliance on carbon dioxide removal requires quantitative feasibility assessment, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5662, https://doi.org/10.5194/egusphere-egu24-5662, 2024.

EGU24-8458 | ECS | Posters on site | EOS4.3

Save the Climate but Don’t Blame Us: Corporate Responses to Climate Litigation 

Noah Walker-Crawford

Fossil fuel companies are no longer denying anthropogenic climate change in recent climate litigation but question the validity of climate science for establishing legal responsibility. Past research on social movement legal mobilization has primarily focused on plaintiffs’ perspectives, showing how they use the judicial process as a site of knowledge production. Drawing attention to the other side, I conduct an analysis of scientific disputes in major climate change lawsuits and develop a typology for studying defendants’ evidentiary arguments. Defendants build evidentiary counter-narratives, challenge the substantive quality of plaintiffs’ claims, and attack the scientific integrity of compromising evidence. Litigants’ legal narratives and factual claims are linked to broader normative concerns about how the underlying issues should be resolved. Fossil fuel companies’ legal arguments reflect broader strategies to evade responsibility for climate change.

How to cite: Walker-Crawford, N.: Save the Climate but Don’t Blame Us: Corporate Responses to Climate Litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8458, https://doi.org/10.5194/egusphere-egu24-8458, 2024.

EGU24-12601 | ECS | Posters on site | EOS4.3

Towards Evaluating the Financial Responsibility of Carbon Majors for Climate-Related Damages 

Marina Andrijevic, Carl-Friedrich Schleussner, Jarmo Kikstra, Richard Heede, Joeri Rogelj, Sylvia Schmidt, and Holly Simpkin

In light of the global energy crisis and escalating climate change impacts, the liability of major fossil fuel companies is receiving heightened scrutiny, particularly in the context of climate litigation. This study initially establishes the feasibility of attributing climate damages to these companies. Utilizing the social cost of carbon methodology, we evaluate the damages inflicted by the top 25 oil and gas emitters from 1985 to 2018, comparing these to their financial profits. Our central estimate suggests partial damages of approximately 20 trillion USD, with the companies’ financial gains surpassing this by 50%, totaling around 30 trillion USD. This indicates the potential of carbon majors to cover their attributed damages while maintaining significant profits. In our analysis, we also explore how varying approaches to assigning responsibility and handling uncertainties in climate damages can markedly influence these findings. Additionally, we explore the role of sovereign wealth funds in perpetuating fossil-fuel derived wealth and the ensuing liability questions.

How to cite: Andrijevic, M., Schleussner, C.-F., Kikstra, J., Heede, R., Rogelj, J., Schmidt, S., and Simpkin, H.: Towards Evaluating the Financial Responsibility of Carbon Majors for Climate-Related Damages, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12601, https://doi.org/10.5194/egusphere-egu24-12601, 2024.

EGU24-15814 | ECS | Posters on site | EOS4.3

Quantifying the human-induced climate change impact on heat-related mortality events in Europe with Extreme Event Attribution Methods  

Thessa M Beck, Lukas Gudmundsson, Dominik L Schumacher, Sonia I Seneviratne, Hicham Achebak, and Joan Ballester

Numerous Extreme Event Attribution (EEA) studies have consistently shown that human-induced climate change has increased the likelihood of extreme heat events. The increasing relevance of these studies in the context of climate litigation underscores the demand for the quantification of climate change impacts. Heat, as the primary contributor to weather-related mortality on the European continent, has caused more than 61,000 heat-related deaths in Europe during the 2022 summer. We carry out this proof-of-concept study in which we apply Extreme Event Attribution methods combined with epidemiological models to quantify how anthropogenic warming has influenced extreme heat-related mortality events in Europe. In contrast to most health impact studies, we utilize open-access mortality data from Eurostat, which is available in near-real time.

Because of the complex, non-linear relationship between temperature and mortality, we conduct separate Extreme Event Attribution analyses for (i) temperature extremes and (ii) associated heat-related mortality events in 232 distinct administrative regions spanning over 35 European countries. Our findings reveal that the probability of the maximum weekly values observed in 2022 has increased 12-fold [95th CI 3.51-147.15] for temperature and tripled [95th CI 1.02-18.63] for mortality compared to the pre-industrial baseline. Notably, we identify significant geographical disparities, e.g. in Spain the mortality risk is even 30 times higher [95th CI 3.33 – 1218.14] due to anthropogenic warming.

We find a statistically significant trend in 70% [90%] of the regions at the 0.95 [0.90] significance level, and across all age and sex groups, except for women aged 65 years or less, indicating that anthropogenic warming affects almost the entire European population.

This study establishes a foundation for subsequent analyses, not only for heat-related mortality events observed on different temporal and spatial scales but also for enabling an examination of other weather events and associated health impacts. By combining climate sciences and techniques with epidemiology and health data, it is possible to calculate the contribution of climate change to changes in health risks and mortality burdens by sociodemographic categories, such as sex, age, socioeconomic level, or comorbidities, especially in vulnerable groups. This transdisciplinary work has to potential to provide key information for climate-related health lawsuits and opens the door to inter- and transdisciplinary perspectives on how to integrate geoscience and epidemiology insights in litigation.

How to cite: Beck, T. M., Gudmundsson, L., Schumacher, D. L., Seneviratne, S. I., Achebak, H., and Ballester, J.: Quantifying the human-induced climate change impact on heat-related mortality events in Europe with Extreme Event Attribution Methods , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15814, https://doi.org/10.5194/egusphere-egu24-15814, 2024.

EGU24-16721 | ECS | Posters on site | EOS4.3

Does climate change violate children’s rights? Investigating the use of scientific evidence in child and youth-led climate litigation 

Rosa Pietroiusti, Sam Adelman, Annalisa Savaresi, and Wim Thiery

Climate change is already increasing the frequency, intensity and duration of many extreme weather events around the world, as well as driving impacts on communities through slow-onset changes, and will continue to do so with each additional degree of warming. Young and future generations will face an ever-greater number of such events during their lifetimes, raising concerns regarding the intergenerational inequity inherent in climate change. In response to these concerns, child and youth-led climate litigation is emerging as an avenue to push for more ambitious climate policies at national and regional scales, by applying legal duties and obligations in a forward-looking way and presenting courts with  scientific evidence of observed and projected climate risks and impacts. Recent complaints led by young people, including, for example, Sacchi et al. v. Argentina et al., lodged in 2019 with the United Nations Committee on the Rights of the Child and Duarte Agostinho et al. v. Portugal et al., which was heard in 2023 by the European Court of Human Rights, have broken new ground by bringing the rights of children and future generations to the fore. Based on a review of recent and ongoing cases, we will investigate (i) what harms are claimed by youth plaintiffs, and (ii) whether, how and to what extent scientific evidence is used to support their claims. By comparing the cases in relation to their claims, jurisdictional frameworks, reference to human and/or children’s rights, and status, we will shed light on how youth applicants have addressed the main challenges of this specific category of climate litigation, including meeting the victimhood requirement, and what role evidence from the geosciences and other scientific fields has played.

How to cite: Pietroiusti, R., Adelman, S., Savaresi, A., and Thiery, W.: Does climate change violate children’s rights? Investigating the use of scientific evidence in child and youth-led climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16721, https://doi.org/10.5194/egusphere-egu24-16721, 2024.

EGU24-17250 | ECS | Posters on site | EOS4.3

From Glaciers to Courtrooms: Translating Natural Science Concepts into Legal Frameworks for Climate Litigation 

Randy Muñoz, Christian Huggel, Wilfried Haeberli, Martin Mergili, Adam Emmer, Lukas Arenson, and Matthieu Sturzenegger

The integration of natural science concepts into climate change litigation, particularly in cases related to glacier lake outburst floods (GLOFs) in mountainous regions like the Andes, faces significant challenges due to the differing nature of scientific and legal frameworks.

Scientific understanding of climate change impacts on phenomena such as GLOFs relies heavily on scenarios, modeling, and projections that evolve over time with advancements in technology and knowledge. These models need to be comprehensive, and consider an array of factors including glacier retreat, temperature changes and various risk factors. However, legal standards often require definitive proof of causation. There may arise a discrepancy creating  a gap in case of prevailing uncertainties inherent to high-mountain processes which may not always meet the exacting evidentiary requirements of litigation.

An illustrative example of this challenge is the case of a citizen in Huaraz, in the Andes of Peru, using a major German energy producer over the risks of a catastrophic flood from a GLOF at Lake Palcacocha. The German court’s decision to admit this case is groundbreaking in climate litigation. It implies a recognition of legal responsibilities of large emitters for potential losses and damages caused by anthropogenic climate change globally, provided a causal relation between emissions and risk can be established. This case exemplifies the challenge in linking complex scientific causation with legal accountability.

In the Palcacocha case, the German court defined to distinguish between i) the hazard and risk posed to the plaintiff in Huaraz, and ii) the attribution to anthropogenic climate change and the emissions produced by the defendant. Here we report on the geoscientific studies undertaken to analyze the hazard situation posed by potential rock and ice avalanches, impacting the glacial lake and producing potentially devastating floods in the city of Huaraz. Critical among other are concepts and methods to quantify probability of occurrence of an event, and the effect of cascading slope and mass flow processes.

In conclusion, the challenges in adapting natural science concepts for climate change litigation, particularly regarding GLOFs, stem from different concepts, standards of proof, and conceptual understandings in science and law. Bridging this gap is essential for effective climate litigation and requires innovative interdisciplinary approaches that facilitate the translation of scientific findings into legally cogent arguments. The framework, methods and standards we applied in the case of Palcacocha could serve for other litigation cases in similar environments, highly impacted and vulnerable to anthropogenic climate change. 

How to cite: Muñoz, R., Huggel, C., Haeberli, W., Mergili, M., Emmer, A., Arenson, L., and Sturzenegger, M.: From Glaciers to Courtrooms: Translating Natural Science Concepts into Legal Frameworks for Climate Litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17250, https://doi.org/10.5194/egusphere-egu24-17250, 2024.

EGU24-18367 | ECS | Posters on site | EOS4.3

Contributions of carbon majors to historical heatwaves 

Yann Quilcaille, Lukas Gudmundsson, Thomas Gasser, and Sonia I. Seneviratne

While human-induced climate change shows no sign of slowing down, calls to steer to a more sustainable path grow louder. Countries are sued for their lack of ambitious climate action, and high-emitting companies for their responsibilities. However, climate litigation is often impeded by the lack of scientific evidence directly relevant to the legal cases. Available attribution research can provide support for claims, but some key elements are still missing. First, event attribution studies are limited to a few selected events, depending on available researchers’ time and interests. Second, the contributions of high-emitting companies to recent extreme events has not yet been quantified. Here, we fill in both of these gaps. We present the first collective attribution of 149 historical heatwaves reported over the 2000-2021 period. We apply a well-established extreme weather attribution (Philip et al., 2020) to heatwaves reported in the EM-DAT database (EM-DAT, 2023). For each listed heatwave, we identify the event in observational data (ERA5, BEST) and CMIP6 data, then we estimate its occurrence probabilities for present and pre-industrial climate conditions. Subsequently, we calculate the contributions in global mean surface temperature of 110 fossil fuels and cement companies using their CO2 and CH4 emissions (Heede, 2014) and the reduced-complexity Earth system model OSCAR (Gasser et al., 2017). These contributions combined to the collective attribution allow for the calculation of the contributions of these carbon majors to all of the analyzed historical heatwaves. These carbon majors represent 76% of the CO2 emissions over 1850-2021, and half of this 76% is due to only six actors (nation-state of China for coal & cement; nation-state of the Former Soviet Union for coal, oil and gas; Saudi Aramco; Chevron; ExxonMobil; Gazprom). In terms of global mean surface temperature, these six majors contribute to 0.30°C, while the others contribute to an additional 0.34°C. The majority of heatwaves are made substantially more probable and intense due to these six carbon majors. Though, other carbon majors cannot be neglected, as their sole contribution may be enough to make some heatwaves possible. This attribution of a large number of heatwaves and the link to the contributions of the carbon majors will provide useful resources for climate litigation, paving the way towards their legal responsibility.

 

EM-DAT, CRED / UCLouvain: www.emdat.be, last access: 09.01.2024.

Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp, L., and Hauglustaine, D.: The compact Earth system model OSCAR v2.2: Description and first results, Geoscientific Model Development, 10, 271-319, 10.5194/gmd-10-271-2017, 2017.

Heede, R.: Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010, Climatic Change, 122, 229-241, 10.1007/s10584-013-0986-y, 2014.

Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177-203, 10.5194/ascmo-6-177-2020, 2020.

How to cite: Quilcaille, Y., Gudmundsson, L., Gasser, T., and Seneviratne, S. I.: Contributions of carbon majors to historical heatwaves, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18367, https://doi.org/10.5194/egusphere-egu24-18367, 2024.

EGU24-19683 | Posters on site | EOS4.3

Four roles for geoscientists in climate litigation 

Wim Thiery, Rosa Pietroiusti, Annalisa Savaresi, and Stefaan Smis

The number of climate change lawsuits is exploding,  and so is the need for scientific evidence on climate change in courtrooms. Here we identify four roles that climate researchers can take up in light of these recent developments: expert witness, party support, amicus curiae, and litigation-relevant research. For each role, we highlight recent examples and best practices, as well as pitfalls and their overcoming. These examples overall highlight the urgent need for interdisciplinary research between climate science and legal scholars to bring both research communities closer together. In addition, and in activities where exchange with litigators takes place, it is critical that ingestion of scientific information occurs right from the start of the litigation process.

How to cite: Thiery, W., Pietroiusti, R., Savaresi, A., and Smis, S.: Four roles for geoscientists in climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19683, https://doi.org/10.5194/egusphere-egu24-19683, 2024.

EGU24-20599 | Posters on site | EOS4.3

How stocks judge COPs: market impacts of climate conferences 

Robin Lamboll and Alaa Al Khourdajie

This study investigates the impact of Conference of the Parties (COP) meetings on the stock prices of oil companies and the broader implications for renewable energy sectors to examine the relationship between international climate negotiations and market responses in the energy sector. The analysis focuses on stock price movements and volatility within the oil and renewable energy industries. We look at the data of the 10 largest stocks in each category and investigate their behaviour during COP. The findings indicate that, with the exception of notable negative stock price movements during COPs 20 and 21 (before and during the signing of the Paris Agreement), COP meetings generally do not significantly influence the value of oil companies. There is also no impact on oil prices during COP itself, though some sign of disturbance in the period immediately afterwards. The study also addresses the renewable energy sector, finding no strong effects from most COP meetings but a notable decrease in stocks during COP6's failure. We conclude that the majority of COPs have not produced market signals indicating a green transition, although these signals are potentially detectable.

How to cite: Lamboll, R. and Al Khourdajie, A.: How stocks judge COPs: market impacts of climate conferences, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20599, https://doi.org/10.5194/egusphere-egu24-20599, 2024.

The Climate Litigation Network supports national organisations that are taking litigation action against their governments in respect of the adequacy and implementation of national climate policies and targets. This presentation will provide an overview of the role in science in climate cases that challenge governments’ overall emissions reductions (“framework cases”) – of which there are more than 100 globally. Drawing from a litigator’s perspective, it will address common legal questions (i.e., harm, causation, foreseeability and remedies) that arise in such cases, and provide examples of how science has been used in case studies. 

Across framework cases, scientific evidence has been critical to success. For example, many cases, including those based on human rights or tort law, require claimants to show how they have been impacted or have suffered harm. In this regard, supporting studies range widely, depending on the facts of the case. These could include studies concerning extreme weather events, flooding, landslides, impacts on crop production and availability to water, and impacts on health or culture. To establish legal liability, claimants typically must show that the government’s actions can be causally linked to the harm, and that the harm was foreseeable. In this regard, attribution science and climate science generally can play a role in evidencing why government action (or lack of action) is contributing to climate change impacts. In terms of remedies, several cases have sought to push governments to adopt emissions reduction targets that reflect their “fair share” of the remaining global carbon budget. Numerous fair share methodologies have been developed by academics, many of which seek to reflect obligations and principles set out in the United Nations Framework Convention on Climate Change and international environmental law. In some cases, there may also be questions concerning loss and damage, which could require detailed analyses of how much damage has been incurred, or could be incurred in future, due to the impacts of climate change.

Drawing on case studies from specific cases, this presentation will highlight the current deployment of science in climate cases against governments and explore new frontiers.

How to cite: Williamson, A.: Challenging governments’ response to the climate crisis: the role of science in climate litigation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21949, https://doi.org/10.5194/egusphere-egu24-21949, 2024.

EGU24-758 | ECS | Orals | EOS4.4

Méditerranée 2000: Nurturing climate & ocean awareness 

Pimnutcha Promduangsri, Pariphat Promduangsri, and Estelle Bellanger

Humans have been suffering increasingly from the escalating impacts of climate and ocean change.  Well known examples are droughts, flooding, wildfires, acidification, heatwaves, sea-level rise, extreme storms and biodiversity loss.  If global average temperature rises by more than 1.5°C above pre-industrial levels, multiple climate tipping points will be triggered, and indeed, some already are.  This is and will be devastating for people around the world, especially those in coastal areas.  Thus, the need for immediate and informed action has become urgent.

This presentation will outline some of the many concrete, local actions in the area of climate and ocean, undertaken by Méditerranée 2000 (Med2000), an environmental association in the South of France.  Since 1989, the association has committed its efforts and educational programs to promoting sustainable development.  Each year, the association educates more than 25,000 young people and adults, led by a team of ten specialized speakers.  Med2000’s initiatives include awareness campaigns about climate and ocean change, hands-on educational activities in local schools and events for the general public.

How to cite: Promduangsri, P., Promduangsri, P., and Bellanger, E.: Méditerranée 2000: Nurturing climate & ocean awareness, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-758, https://doi.org/10.5194/egusphere-egu24-758, 2024.

Academic researchers have long been advocates of various causes in the public arena; their public advocacy to take normative positions regarding various moral, political or social issues is not new. Today, however, in the face of the many challenges facing our society, the question of researchers' public positions, particularly in relation to the environment and climate change, is being raised anew. A number of climate scientists are committed in a variety of ways, from signing op-eds to participating in the work of NGOs or think tanks, supporting legal actions or writing blog posts. In addition, the development of traditional and social media has significantly increased the public exposure of these researchers. At the same time, serious questions are being raised within the research community. Many of its members are debating the ways in which researchers can engage in such public advocacy, its advisability, and even its very principle. However, these debates are currently taking place in informal settings and, given the extensive individual experience of a number of colleagues, it is probably time to engage in this discussion in a more collective and organised way, as is done in other research communities.

Here are some examples of questions that might be discussed. How can researchers engage in public advocacy safely and responsibly? What is the role of the scientist versus the expert versus the citizen versus the activist? Can a researcher be neutral when taking a public stance? What is the risk of appearing naive, manipulated or irrelevant? How should researchers deal with vested interests and private actors? Should the climate community research geoengineering? For whom should researchers develop climate services?

Because addressing these issues involves a tension between personal values that may go beyond those shared by the scientific community, they are essentially novel ethical questions. Some may be so intimidating that many researchers choose not to engage publicly. Care must therefore be taken to organise the exchange properly, for example by creating safe internal spaces for debate or by inviting experts from other disciplines.

The French CNRS Ethics Committee has recently published on opinions on these issues[1], which I will use as a starting point for a broader discussion.


[1]  https://comite-ethique.cnrs.fr/en/comets-opinion-freedom-and-responsibility-academic-researchers-public-advocacy/

How to cite: Guilyardi, E.: Freedom and Responsibility: the Ethics of Academic Researchers’ Public Advocacy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1344, https://doi.org/10.5194/egusphere-egu24-1344, 2024.

EGU24-2053 | Orals | EOS4.4

Perceiving Cape-Town-Geoethics (CTG) through Symbolic Universes (SU) 

Martin Bohle, Rika Preiser, and Eduardo Marone

Cultural milieus determine the worldviews and practices of individuals and groups, including the reception of norms that guide them. Semiotic Cultural Psychological Theory (SCPT) methods, such as Symbolic Universes (SU), describe relationships of reception, worldviews and practice, which also applies to geo-philosophical matters [1]. This essay outlines how geoethics, for example, the Cape Town Geoethics (CTG), might be received in different cultural milieus.

The Cape Town Statement on Geoethics was proposed in 2016 at the 36th IGC [2] and is the most accessible resource on geoethics. It bundles various concepts in a Kantian/Aristotelian virtue ethics framework, illustrated, for example, by the Geoethical Promise [3].

The SU method describes the understanding, insights, and behaviour of groups of people expressing their respective cultural milieus. Extensive fieldwork identified five SU for people of European (Western) cultures [4]. The SUs called "Ordered Universe", "Interpersonal Bond", "Caring Society", "Niche of Belongingness", and "Others' World" categorise milieus, for example, in terms of relation to power and institutions or sources of trust. They corroborated with the Kohlberg hierarchy of the level of societal coordination [5] that is applicable to associate CTG and the worldviews of individuals and groups [6].

Comparing CTG and SU indicates: (1) CTG resonates most positively with people of the cultural milieu “Ordered Universe” (highest Kollberg level); (2) in other milieus, the reception of the CTG will be “measured”; (3) reception will be adverse for the milieu “Others' World” (lowest Kohlberg level). Hence, considering the quantitative distribution of SUs (in Europe), European citizens' reception of CTG is likely restrained.

Given complex-adaptive social-ecological systems of the World and Nature couple world views, human practices, and societal and natural systems [7] (see example: [8]), whether variants of CTG “fitted to different milieus” should be developed is of practical relevance. The perception of norms and their acceptance or rejection is a system feature, of which geoethics should not be agnostic.

[1] Bohle M (2019) “Homo Semioticus” Migrating Out of Area? In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)Crisis. Springer Berlin Heidelberg, Cham, pp 295–307

[2] Di Capua G, et al. (2017) The Cape Town Statement on Geoethics. Ann Geophys 60:1–6. https://doi.org/10.4401/ag-7553

[3] Matteucci R, et al. (2014) The “Geoethical Promise”: A Proposal. Episodes 37:190–191. https://doi.org/10.18814/epiiugs/2014/v37i3/004

[4] Salvatore S, et al (2019) The Cultural Milieu and the Symbolic Universes of European Societies. In: Salvatore S, et al. (eds) Symbolic Universes in Time of (Post)crisis. Springer, Cham, pp 53–133

[5] Kohlberg L (1981) The Philosophy of Moral Development: Moral Stages and the Idea of Justice. Harber & Row, San Francisco

[6] Bohle M, Marone E (2022) Phronesis at the Human-Earth Nexus: Managed Retreat. Front Polit Sci 4:1–13. https://doi.org/10.3389/fpos.2022.819930

[7] Preiser R, Woermann M (2019) Complexity, philosophy and ethics. In: Galaz V (ed) Global Challenges, Governance, and Complexity. Edward Elgar Publishing., Cheltenham, pp 38–62

[8] Talukder B, et al. (2023) Complex Adaptive Systems-Based Conceptual Framework for Modeling the Health Impacts of Climate Change. J Clim Chang Heal 100292. https://doi.org/10.1016/j.joclim.2023.100292

How to cite: Bohle, M., Preiser, R., and Marone, E.: Perceiving Cape-Town-Geoethics (CTG) through Symbolic Universes (SU), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2053, https://doi.org/10.5194/egusphere-egu24-2053, 2024.

EGU24-2607 | Posters on site | EOS4.4

Geoethics literacy:  Clarifying values, principles and behaviour 

David Crookall, Pimnutcha Promduangsri, and Pariphat Promduangsri

Learning about geoethics is not easy partly because the area is relatively new (having emerged in the early 2010s), the concepts are sometimes difficult to fathom and geoethics touches on such a wide area of geoscience phenomena and on such a variety of human issues.

Learning through active, participatory engagement has been developing since the 1960s, and is now deployed, albeit sporadically, across the full educational and training spectrum (from the humanities, through the social sciences to the hard sciences).  Methods that have developed in this learning paradigm include project work, internships, experiential learning, simulation/gaming, values clarification and many more.  We contend that participatory methods are an effective way in which to learn, as supported by much research.

Our poster invites you to participate in a game-like, values clarification exercise.  We have developed a new version of an exercise that we have used in several places (Austria, Costa Rica, France, online) to unravel the knotty relations among values, principles and behaviours related to geoethical issues and dilemmas.

It is possible to play alone, but it is more enlightening and engaging to play in pairs or small groups.  Please bring a friend or two to our poster and participate in our exercise.  The basic process of the exercise can be adapted to your own specific areas of interest.  We look forward to seeing you – please bring a pencil.

(This poster was originally intended as a workshop in a short course, but our SC proposal was declined.)

How to cite: Crookall, D., Promduangsri, P., and Promduangsri, P.: Geoethics literacy:  Clarifying values, principles and behaviour, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2607, https://doi.org/10.5194/egusphere-egu24-2607, 2024.

EGU24-3568 | Posters on site | EOS4.4

Exploring the horizon of geosciences through the lens of geoethics 

Silvia Peppoloni and Giuseppe Di Capua

Geosciences play an indispensable role in the functioning of contemporary societies. Nevertheless, the technological aspects associated with the practical application of geoscientific knowledge, should not overshadow the fundamental contribution of geosciences to shaping human thought. Geosciences have not only influenced but continue to shape our perception of the world, its interrelationships, and evolution.

The ongoing ecological crisis, with its environmental, social, cultural, economic, and geopolitical implications, has stemmed from an imprudent trajectory in human development. Regrettably, there have been instances where geosciences have contributed to this irresponsible path. This oversight has led to an undervaluation of the social and cultural significance inherent in geological disciplines and the crucial role they can play in addressing current global challenges to support human societies.

Geoethics, as the ethics of responsibility towards the Earth system, is grounded in the comprehensive understanding provided by geoscientific knowledge of the complexity of reality. It stands out as the optimal tool for cultivating a new perspective on geosciences, recognizing them as fundamental disciplines crucial for addressing global environmental challenges. This recognition extends beyond technical considerations, emphasizing their cultural significance. By virtue of their epistemological foundations, the geosciences collectively represent an invaluable reservoir of knowledge for human civilization. They are indispensable for redefining the intricate relationship that binds us, as humans, to the Earth.

For this reason, geoethical thought should serve as a complementary element to knowledge in the education of geoscientists. It aims to furnish them with a principled framework and ethical values, offering guidance for any application of geoscientific knowledge to the natural environment and human communities. Additionally, geoethical thought is the ground on which to set a shared, global ethical foundation, facilitating the advancement of our interactions with nature. It seeks to actualize an ecological humanism that forms the basis for human well-being and a more sustainable development of socio-ecological systems. The geoethical perspective redefines the cultural significance and objectives of the geosciences. Geoeducation and communication emerge as fundamental tools for bridging the gap between geosciences and society. They play a crucial role in promoting geoscientific knowledge, highlighting not only its scientific value in providing technical solutions to the ecological crisis but also emphasizing the philosophical dimension of geosciences, the geosophy of living consciously and responsibly within the Earth system.

How to cite: Peppoloni, S. and Di Capua, G.: Exploring the horizon of geosciences through the lens of geoethics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3568, https://doi.org/10.5194/egusphere-egu24-3568, 2024.

EGU24-3586 | Posters on site | EOS4.4

An infrastructure for researching on geoethics and facilitating its international promotion 

Giuseppe Di Capua and Silvia Peppoloni

The development of the theoretical foundations of geoethics and its practical applications have had a notable boost in recent years, seeing the involvement of a growing number of scholars from different disciplines. This has increasingly necessitated the creation of spaces where reflections, discussions, results, and study materials can be shared. The network of scholar relationships has progressively developed physical and conceptual spaces for discussions. The goal has been to sustain conceptual consistency in geoethical thinking by anchoring reflections in the discipline's historical evolution and fostering further developments through open analysis, welcoming contributions from diverse disciplinary backgrounds. Today, what can be defined as a research infrastructure on geoethics and the promotion of its contents possesses a complex structure, serving as a convergence point for various cultural and scientific experiences.

At the core of this infrastructure lies the International Association for Promoting Geoethics - IAPG (https://www.geoethics.org), established in 2012. It consists of an Executive Committee, national sections, and Task Groups focusing on specific topics within geoethics. More recently, two new entities have augmented this infrastructure: i) the Commission on Geoethics of the International Union of Geological Sciences (IUGS), established in February 2023, that is the supporting branch of the IAPG to the IUGS and the IUGS body that officially deals with geoethics and social geosciences for the Union; ii) the Chair on Geoethics of the International Council for Philosophy and Human Sciences (CIPSH, an organization operating under the umbrella of UNESCO), established in December 2023, with the aim of expanding and reinforcing an international research network of institutions, not-governmental organizations, and individual scholars to foster interdisciplinary initiatives for bridging geosciences, humanities, and social sciences through geoethics.

The research infrastructure on geoethics has been enriched over time with two editorial initiatives: a) SpringerBriefs in Geoethics series by Springer Nature (https://www.springer.com/series/16482), founded in 2020 and supported by the IAPG, that envisions a series of short publications that aim to discuss ethical, social, and cultural implications of geosciences knowledge, education, research, practice and communication; b) the Journal of Geoethics and Social Geosciences (https://www.journalofgeoethics.eu/), a diamond open access publication of the National Institute of Geophysics and Volcanology (Rome, Italy) and supported by the IAPG, founded in 2021.

Finally, the research infrastructure on geoethics is complemented by the School on Geoethics and Natural Issues (the “Schola”), founded in 2019 (https://www.geoethics.org/geoethics-school). The “Schola” is a place for teaching and learning of the principles and values of geoethics in the light of the philosophy and history of Earth sciences. The intent is to provide background knowledge and the evaluation skills necessary to understand the complex relationship between human action on ecosystems and the decisions geoscientists make in the discipline that impact society, including improving the awareness of professionals, students, decision-makers, media operators, and the public on an accountable and ecologically sustainable development.

How to cite: Di Capua, G. and Peppoloni, S.: An infrastructure for researching on geoethics and facilitating its international promotion, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3586, https://doi.org/10.5194/egusphere-egu24-3586, 2024.

The ocean has started to attract more attention in the recent past with the notions of Blue Economy and Blue Growth becoming rallying points for a new frontier for investments [1]. Many countries and institutions prepare policy papers promising to end poverty, a push for new technologies and profits to fund the development. A recent systematic review of the literature [2], however, found no trace of articulated ethics and justice notions in midst of all the lofty hope and hype surrounding the often blurred concepts. The increasing financialisation of technological developments accelerated through digitalisation and the internet are creating increasing injustices to humans and harm to nature. But, as Rushkoff argues [3], the possibilities for feedback and more circular reasoning have potential to teach everybody that there is no escape from the natural world, thus weaning us from the hyperbole of permanent exponential growth. Here it is argued that critically engaged ocean and geo-sciences with their inherent message of a changing planet through deep time can contribute to debunking the ahistorical promise of fixing self-created problems by starting on a presumed ‘clean slate’. We frequently observe a pattern of wanting to solve the damage provoked by one technology with more technology, e.g. deep sea mining [4] or further technology development in fisheries and aquaculture [5]. At country level, these deliberately disruptive industrial approaches often pay little attention to working with the affected small-scale wild food producers who account for a quarter of global production. Instead, harnessing a combination of traditional and indigenous knowledges and providing intelligible access to the sciences holds significant potential for less destructive pathways. That would also be consonant with the promotion of knowledge co-creation during the UN Ocean Decade in pursuit of a vision of ‘the science we need for the ocean we want’. Practice of co-creation will require some rethinking of the self-image of many sciences and adaptations to typical project formulation and flows. In return, this is expected to produce valuable new insights in addition to opportunities for cooperation and blue justice as steps towards transformations based on ethical principles.

 

[1] World Bank. (2016). Oceans 2030: Financing the blue economy for sustainable development. Blue Economy Development Framework, Growing the Blue Economy to Combat Poverty and Accelerate Prosperity. World Bank Group, Washington DC.

[2] Das, J. (2023). Blue Economy, Blue Growth, Social Equity and Small-scale Fisheries: A Global and National Level Review. Studies in Social Science Research, 4(1):45 p. DOI: https://doi.org/10.22158/sssr.v4n1p38

[3] Rushkoff, D. (2022). Survival of the richest. Escape fantasies of the tech billionaires. Scribepublications, UK, ISBN 978-1-915590-24-4, 212 p.

[4] Zenghui Liu, Kai Liu, Xuguang Chen, Zhengkuo Ma, Rui Lv, Changyun Wei, Ke Ma. (2023). Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology, 33(9):1083-1115. https://doi.org/10.1016/j.ijmst.2023.07.007.

[5] FAO. (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. Rome, FAO. doi:10.4060/cc0461en

How to cite: Nauen, C. E.: Can geosciences help inserting social justice notions into Blue Economy narratives?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4054, https://doi.org/10.5194/egusphere-egu24-4054, 2024.

Science indicates that human impact on the planet's climate is clear. Over the past 30 years, climate change has shifted from being primarily a scientific concern to emerging as one of the defining environmental challenges within our society. However, science alone cannot guide us on how to address this crisis. This challenge is also about how we envision living together, what we collectively value, and the level of risk we are prepared to assume. It fundamentally pertains to the kind of society we aspire to, making education a pivotal component. Inspired by the Paris Agreement, the time has arrived for Climate Change Education. It derives its momentum from the aspirations and mobilization of the youth, making it the most potent transformative action in response to climate change.

Climate Change Education comes with unique and exciting opportunities. Firstly, it offers a chance to learn about science in general and climate science specifically, drawing from authoritative sources like IPCC reports. Secondly, it provides an avenue to acquire life skills, humanities knowledge, and insights into global citizenship, imparting a holistic perspective to the young generation on a global scale. Lastly, it fosters critical thinking, hopeful hearts, and empathy in an ever-evolving educational landscape. However, Climate Change Education presents numerous challenges as it strives to balance the development of cognitive, emotional, and practical aspects within existing educational systems. Educators need to be prepared for this unique combination of ‘head’, ‘heart’, and ‘hands’.

The mission of the Office for Climate Education (OCE) is precisely to empower educators in preparing young generations with a robust understanding of climate change and the skills needed to act as global citizens in a changing world. The OCE, driven by collaboration between climate science and educational communities, develops sets of pedagogical resources, offers teacher professional development opportunities, and facilitates networks of practice worldwide. As a pivotal participant in the newly established Greening Education Partnership, the OCE serves as a bridge between the global landscape of IPCC-based science and the specific needs of local primary and secondary educational systems in over 20 countries.

How to cite: Guilyardi, E. and Wilgenbus, D.: Exciting times for Climate Change Education – from global opportunities to local challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6101, https://doi.org/10.5194/egusphere-egu24-6101, 2024.

The National Association of State Boards of Geology (ASBOG) plays an essential role in supporting the licensing of applied geoscientists in more than 30 states in the United States [1] through promulgating model law, rules, and regulations for professional licensure, [2] by developing and implementing the Fundamentals of Geology (FG) and Practice of Geology (PG) exams, and [3] by providing related educational materials.  The content of the FG and PG exams is driven substantially by the results of Task Analysis Surveys (TAS) taken by practicing geologists and academic geologists.  Before 2023, the exams included content related to ethics reflected in the earlier TAS analytical summaries;  however, ethics content is not included in the 2023 TAS or, reportedly, in the current FG or PG exams.
     ASBOG has a history of including applied ethics in its products and organizational structure.  There is a "Code of Conduct/Harassment Policy and Performance Guidelines" for the ASBOG organization on its website (ASBOG.org).  The "Professional Geologist Model Licensure Law" states that each applicant must "submit a signed statement that the applicant has read and shall adhere to any code of professional conduct/ethics and rules established by the Board..." and that the application "be signed and sworn to by the applicant before a notary public" (ASBOG 2017, lines 844-847).  Its "Model Rules and Regulations" includes a sample "Code of Ethics" for licensed professional geologists (ASBOG 2019, p. 27-29).  
     Geoscience professional organizations in the US and internationally affirm the fundamental importance of ethics in academic and applied geoscience.  Virtually all professional organizations relevant to applied-geoscience practice in the United States (e.g., AAPG, AGI, AGU, AIPG, AEG, ASBOG, GSA, SIPES...) have some form of ethics code that their members are obligated to know and adhere to.  The International Association for the Promotion of Geoethics (IAPG -- www.geoethics.org) curates a list of codes of ethics/professional practice and provides publications and educational opportunities supporting geoethics.  Another essential resource is the "Teaching Geoethics" website (serc.carleton.edu/geoethics -- Mogk and Bruckner, 2014-23).
     Robert Tepel (1995) described the essential connection between licensure laws and professional ethics.  To the extent that there is a lack of ethics content in the current 2023 TAS, candidate handbook, exam preparation resources, and FG and PG exams, ASBOG sends a message that applied ethics might not be a core competency for licensed geoscientists -- a message for which there is essentially no support among geoscience professional organizations.
          I suggest that ASBOG collaborate with IAPG and other relevant organizations to address the problems or concerns that resulted in the reported elimination/reduction of ethics content in the application, preparation, and implementation of its FG and PG exams.  Licensed professional geoscientists must continue to understand that geoethics is foundational for their work within society.  For references and resources, visit CroninProjects.org/EGU-Geoethics2024/.

How to cite: Cronin, V.: The need to include ethics content in professional licensure exams in the US (and worldwide), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6136, https://doi.org/10.5194/egusphere-egu24-6136, 2024.

EGU24-6573 | ECS | Orals | EOS4.4

Proposal for a Geoethics Code for the Geoscientist Community of Chile 

Hernán Bobadilla, Luisa Pinto Lincoñir, Pablo Ramirez, Thiare González, José Benado, Nilda Lay, Tania Villaseñor, Millarca Valenzuela, Mohammad Ayaz Alam, and Alejandro Pérez

The proposal of the Geoethics Code (hereinafter “Code”) of the Geological Society of Chile arises as a strategic objective of the Geoethics Group within this institution. The Code encapsulates the principles and values that ethically guide and protect the professional decisions of geoscientists in Chile to protect society and the environment. Likewise, it establishes standards of conduct from the personal to the environmental dimension of professional and scientific practice. Consequently, the Code serves as a valuable tool to the geoscientist community in Chile, facilitating reflection and decision-making within an ethical framework.

Grounded in the principles and values defined by the Geoethics Group of the Geological Society of Chile and the Cape Town Geoethics Declaration of the International Association Promoting Geoethics (IAPG) from 2016 (Di Capua et al., 2017), the Code is built upon four titles: a) Professional and scientific work; b) Geosciences and its relationship with society; c) Geosciences and its relationship with the environment; and d) Contribution to new generations of scientists and professionals in Geosciences.

The construction strategy of the Code underscores the pivotal role of the Chilean geoscientist community. Thus, the Code proposal was enriched through consultations, including surveys, meetings, discussions, and seminars, engaging the Geoscientist Community of Chile to understand their perspectives on pertinent topics and challenges. Furthermore, consultations and reflections were conducted to validate the Code proposal before and during the XVI Chilean Geological Congress in 2023. Ultimately, the Code underwent validation with experts from the IAPG, including geoscientists representing Latin America. Consequently, the Code authentically represents the concerns and challenges of the national geoscientific community while also resonating with the international geoscientific community.

Financing

This project is sponsored by the Geological Society of Chile.

Acknowledgements

To the geoscientist community of Chile, the IAPG experts and other professionals who have participated in the process of construction and reflection on the titles of the proposed Geoethics Code.

References

Di Capua, G., Peppoloni, S., Bobrowsky, P.T., 2017. The Cape Town Statement on Geoethics. Annals of Geophysics, 60, Fast Track 7: Geoethics at the heart of all geoscience. doi: 10.4401/ag-7553.

Keywords

Geoethics Code, Principles and Values, IAPG, Geoscientist Community.

How to cite: Bobadilla, H., Pinto Lincoñir, L., Ramirez, P., González, T., Benado, J., Lay, N., Villaseñor, T., Valenzuela, M., Alam, M. A., and Pérez, A.: Proposal for a Geoethics Code for the Geoscientist Community of Chile, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6573, https://doi.org/10.5194/egusphere-egu24-6573, 2024.

EGU24-6593 | ECS | Posters on site | EOS4.4

Invitation to a research project on geography and climate education 

Pimnutcha Promduangsri

Educational approaches around the world are shaped by diverse geographical factors, including topography, climate, distance, urbanization and societal characteristics.  As a consequence, the methods employed for climate change education (CCedu) are expected to vary according to these geographical factors.

The United Nations Educational, Scientific and Cultural Organization (UNESCO) emphasizes the crucial role of CCedu in fostering an understanding of and effective response to the impacts of the climate crisis.  The Intergovernmental Panel on Climate Change (IPCC) highlights the importance of a globally conscious population for effectively addressing and adapting to climate change challenges.

However, rather than exploring the concept of CCedu or its effectiveness, my research project will focus on identifying the influence of geographical factors on climate change education/literacy.  In the long run, this project could potentially contribute to improving the effectiveness of CCedu.  I invite participants to visit my poster to discuss, share ideas and collaborate on this research project.

How to cite: Promduangsri, P.: Invitation to a research project on geography and climate education, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6593, https://doi.org/10.5194/egusphere-egu24-6593, 2024.

Environmental (in)justice arising from Climate change and urbanization exhibit uneven distributions, specifically impacting disadvantaged communities. While studies in the USA highlight the elevated heat exposure faced by low-income and ethnic minority groups, similar insights are lacking for other countries. This knowledge gap impedes a comprehensive understanding of environmental (in)justice experienced by various socio-economic and ethnic groups and hampers the identification of inadequacy in urban planning policies.

This research seeks to bridge the gap between social and environmental sciences to address environmental (in)justice by establishing a link between extreme heat (at both regional and country level) and socio-economic disparities for Australia and New Zealand. Using remotely sensed satellite data for Land Surface temperature mapping for summer (night time) and Census data of countries, the analysis explores various socio-economic indicators—such as education levels, age demographics, and the proportion of foreign populations.

Australia and New Zealand serve as pertinent case studies due to their distinct socio-economic landscapes and Indigenous populations. By recognizing the unequal distribution of urban heat and its disproportionate impact on vulnerable communities, there emerges a critical mandate to prioritize equitable urban planning policies. This research underscores the urgency for policymakers and urban planners to prioritize environmental justice interventions and integrate strategies that aim to reduce race and class disparities concerning urban heat. The findings also serve as a template for similar analyses globally; fostering inclusive, equitable and resilient urban landscapes.

How to cite: Chawla, J. and Benz, S.: Examining Race and Class Disparities in Urban Heat in Australia and New Zealand: Towards Environmental Justice in Urban Planning, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6662, https://doi.org/10.5194/egusphere-egu24-6662, 2024.

EGU24-7655 | Orals | EOS4.4

Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues 

Richard Herrington and Sarah Gordon

Leaders across geographical and political boundaries are united behind a pledge to deliver a net zero carbon world by 2050.  Society’s conundrum is that mining is an essential part of that delivery, yet is an activity regarded by many as unpalatable. Projects that have fallen short on ecological, ethical, or social grounds, serve to confirm to many that mining is currently not an industry to be trusted, rather than being the industry that could and should be empowering significant societal development.

Examples of societal failure include the incidents around the 2012 miners’ strike at the Marikana platinum mine in South Africa which escalated into violence and loss of life.  Failure on ethical grounds was most recently highlighted by the settlement of corruption claims in the Democratic Republic of Congo (DRC) where international mining company staff bribed country officials to secure “improper business advantages.”  Ecological failures are all too common and most visible in the failure of tailings storage facilities such as the 2015 Mariana (Brazil), 2019 Brumadinho (Brazil), and 2022 Jagersfontein (South Africa) dam disasters.

The challenge for those who explore, extract, and process the raw materials so vital for the energy transition, is to do so whilst delivering on true Sustainability right from the start of any project.  Mining disasters are rarely a surprise.  The proactive management of both threats and opportunities is therefore key to the urgent delivery of materials to secure our net zero future in a responsible manner.  We must ensure that this delivery is achieved by projects with wholly net positive outcomes for the environment and people.

How to cite: Herrington, R. and Gordon, S.: Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7655, https://doi.org/10.5194/egusphere-egu24-7655, 2024.

EGU24-8075 | Orals | EOS4.4

Can landslides provide geosystem services? 

Martin Mergili, Christian Bauer, Andreas Kellerer-Pirklbauer-Eulenstein, Jana Petermann, Hanna Pfeffer, Jörg Robl, and Andreas Schröder

The concepts of biodiversity and ecosystem services, focusing on the diversity of life and the services provided to humans by such diversity, in interaction with abiotic ecosystem components, are well established. Only recently, geosciences have started to challenge this rather biocentric view by highlighting that geodiversity – understood as the diversity of minerals, rocks, geological structures, soils, landforms, and hydrological conditions – provides substantial services to society and should be treated as equal partner to biodiversity. It was proposed to use the more general term natural services or, where geodiversity is much more relevant than biodiversity, geosystem services. Even though the term geosystem services is more and more employed in literature, it evolves only slowly into a commonly used concept with a clearly defined meaning. Interpretations range from all services associated with geodiversity which are independent of interactions with biotic nature, to the restriction to subsurface services. None or few of these concepts, however, include risks as negative services, or as costs of services, which is surprising as this would enable a more integrated vision on human-nature relationships. Only very recently, the potential of geosystem service maps to highlight both services and risks related to geomorphological processes was pointed out.

This work picks up landslides as a type of geomorphological process and landform, which is rather negatively connotated in society and associated with risks rather than with chances. We use landslides to develop a broader understanding of geosystem services, together with the common understanding of hazards and risks. We will (i) present a sound and integrated conceptual framework to consider landslides within the field of tension between risks and resources, and (ii) highlight a case study where landslides are used as cultural geosystem services for environmental education in the context of UNESCO Global Geoparks, which are considered important instruments for conserving and promoting geodiversity.

How to cite: Mergili, M., Bauer, C., Kellerer-Pirklbauer-Eulenstein, A., Petermann, J., Pfeffer, H., Robl, J., and Schröder, A.: Can landslides provide geosystem services?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8075, https://doi.org/10.5194/egusphere-egu24-8075, 2024.

EGU24-10646 | Posters virtual | EOS4.4

Protects and Heats 

Walter Tavecchio

The project “Protects and Heats” aims to safeguard the environment, to reduce the carbon dioxide emissions and the risk of collapse of buildings affected by earthquakes.

This is a new way to heat and cool buildings and at the same time mitigate the seismic vibrations.

 

The logic of the project is to create a discontinuity (Moat) in the ground in front of the structures to be protected, similar to damping methods that are implemented to dampen the vibrations produced by mechanical machines and without compromising the stability of the buildings themselves.

The project involves the construction of a double row of aligned micro piles and the insertion of HDPE and steel pipes inside the vertical drilling holes.

Closed circuit geothermal probes will be positioned, inside some vertical holes, with a low enthalpy closed circuit geothermal system.

The method of the project is achieved by combining two types of technologies:

-   The first concerns the interposition, between the direction of the seismic waves and the buildings, of a damping barrier.

The vertical barrier starting from the topographic surface will be positioned outside the buildings, generally orthogonal to the direction of the seismic waves.

-  The second concerns the installation of geo-exchange pipes, in the holes.

How to cite: Tavecchio, W.: Protects and Heats, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10646, https://doi.org/10.5194/egusphere-egu24-10646, 2024.

EGU24-12918 | Orals | EOS4.4

The most consequential ethical decision for geoscience  

Emlyn Koster and Philip Gibbard

A geological definition of the Anthropocene, shorthand for humanity’s cumulative disruption of the Earth-Human Ecosystem, looms as the planet-and-people focused UN approaches its Summit of the Future in New York City on 22-23 September 2024. The International Union of Geological Sciences (IUGS) “aims to promote development of the Earth sciences through the support of broad-based scientific studies relevant to the entire Earth system”. With the UN recently declaring that the planet is in peril and in need of a rescue plan, Anthropocene considerations with a geoethical lens are urgently needed.

Each potential new interval in the Geological Time Scale begins with a working group mandated by the International Stratigraphic Commission (ICS), in the case of the Anthropocene also by its Subcommission on Quaternary Stratigraphy (SQS). The Anthropocene Working Group (AWG) was formed in 2009. In 2010, its first chair Jan Zalasiewicz with co-authors Mark Williams, Will Steffen and Paul Crutzen recognized that “the Anthropocene represents a new phase in both humankind and of the Earth, when natural forces and human forces become intertwined, so that the future of one determines the fate of the other”. In 2015, the AWG’s second and current chair Colin Waters with ten co-authors posed the question "Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?" in the Bulletin of the Atomic Scientists. This was affirmed in 2019 and the AWG presented its recommendation to the SQS in early 2024. The remaining review and decision steps are the ICS and IUGS. Reflecting concerns of other geoscience scholars as well as of other professions and an anxious public, an opposing mindset advocates for an Anthropocene event that spans the cumulative and ongoing environmental impacts of Homo sapiens. It views Geological Time Scale protocols as unsuitable for archaeological and contemporary developments, regards unemotive references to humanity’s most abhorrent invention as distasteful, and visualizes the Anthropocene Event as valuably informing a new zeitgeist for our troubled world.

In 1950 astronomer Fred Hoyle anticipated that humanity’s first view of the Earth from space would revolutionize the course of history. Insofar as a ‘giant leap of mankind’ did not result from NASA’s Apollo 1969 lunar mission with its estimated 600 million viewers, the Anthropocene Event fuels an opportunity for geoscience to inform a realistic outlook during NASA’s upcoming Artemis lunar mission. With unique knowledge of once pristine environments, current climate change and incipient sea level rise, ongoing biodiversity loss and ecosystem disruption, finite energy and mineral resources, the geoscience profession should arguably have already become a crucial asset in this troubled world.

How to cite: Koster, E. and Gibbard, P.: The most consequential ethical decision for geoscience , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12918, https://doi.org/10.5194/egusphere-egu24-12918, 2024.

EGU24-13965 | Orals | EOS4.4

Ocean Futures: A New Paradigm and Teaching in the Age of Ocean Change 

Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, and Nick Bates

The new School of Ocean Futures (oceans.asu.edu) at Arizona State University (Tempe, AZ, USA) has embarked on a novel way of teaching ocean science with a forward-looking philosophy that centers on the current and future states of the ocean. While situated in Arizona State University’s main campus, it leverages the location of its two offshore campuses, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, and the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda. The Ocean Futures programs combine aspects of traditional ocean science teaching with ocean stewardship, partnerships, and Indigenous knowledge, and focus on the communities that live with the ocean and are affected by its rapid change. In this presentation we will introduce the curriculum of the new degree, as well as the challenges encountered, and best practices learned. Novel courses include “Introduction to Ocean Futures”, a capture course that aims at increasing the interdisciplinary knowledge of oceans, while actively seeking to increase diversity and retention in the field via inclusive pedagogical practices, the historical context of oceanography and an emphasis on developing a mindset of empowerment for change. It is followed by “Ocean Communities”, a course that immerses students through an ethnobotanical lens in global mountain to ocean cultural connections, while elaborating on how various human communities engage, exchange, and build relationships with regional resources. The students will receive hands-on aquatic knowledge through field courses at BIOS, the Sea of Cortez, Hawaii, and Antarctica. The curriculum culminates with an ocean workshop and capstone course that will allow the students to work directly with partners to address real-world challenges facing coastal communities and marine systems.

 

 

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., and Bates, N.: Ocean Futures: A New Paradigm and Teaching in the Age of Ocean Change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13965, https://doi.org/10.5194/egusphere-egu24-13965, 2024.

In the Anthropocentric era, the human-driven climate crisis has become a serious global issue. To mitigate the impacts of climate change, it is crucial for humans to adopt a more sustainable way of living. Human behaviors are shaped by their culture, where religious beliefs play important roles. As a result, people turned to religions for addressing with climate change issues.

Seeming to be unrelated, religions and climate issues have found connections through social systems and communication. By endowing climate issues with religions meanings, religions are able to resonate with the ecological crisis and take meaningful actions. Through this "resonance," religions contribute to climate issues by shaping worldviews, establishing sustainable habits, initiating actions, and influencing policies.

Religious communities have recognized the severity of the human-driven climate crisis. Their call for action reflects the fact that Taiwanese society has failed to respond to the climate crisis due to its endless pursuit of consumerism. To deal with the challenges, religious communities have advocated for “Ecological Conversion”, which persuade people to save the nature for the sake of God.

How religions can empirically contribute to environment issues has been a long-discussed topic. However, previous literatures only focus on the Western-Christian World. Countries with religious beliefs other than Judeo-Christian ethics are seldom discussed. To explore the relationship between religion and climate in Asian contexts, this research will focus on Taiwan, a multicultural country with various religions.

Using the sample data from the 2020 Taiwan Social Change Survey, this study aims to explore the relationship between religion and climate by conducting factor analysis and ordinary least squares regressions.

The evidence reveals a weak connection between religions and people's climate attitudes in Taiwan. Among all the religions in Taiwan, Buddhists and Christians tend to have the most eco-friendly attitudes. The social networks within these two religious communities foster an eco-friendly atmosphere, which highlights the importance of environmental conservation. However, when it comes to peoples’ willingness to pay, faith holders are less likely to show their supports.

By illustrating the religion-climate relationship in Taiwan, this study demonstrates how these two fields intersect in a non-Western society. It also provides implications for how religions can inspire people's willingness to engage in environmental conservation efforts.

How to cite: Tsui, C. H.: Do religions matter? The empirical study of the religion-climate relation in Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14027, https://doi.org/10.5194/egusphere-egu24-14027, 2024.

EGU24-14752 | Posters on site | EOS4.4

Towards sustainable management of georesources: the importance of Cooperation Projects to boost education on responsible and sustainable mining. The example of the SUGERE and GEODES projects. 

Giovanna Antonella Dino, Susanna Mancini, Dolores Pereira, Manuela Lasagna, Francesca Gambino, Guido Prego, Domingos Gonçalves, Aida Jacinto, Daud Jamal, Josè Loite, Hélio Nganhane, Nelson Rodrigues, and Pedro Dinis

Sustainable and responsible management of geo-resources requires a rethinking and redesign of our production and consumption patterns. Awareness of the natural environment as a common good to be preserved, and knowledge of the close link between the natural environment and the socio-economic system are prerequisites for a profound change in human attitudes at both individual and societal levels. In this context, training and education of all actors involved in the management of geo-resources is an indispensable starting point for the acquisition of critical, ethical, and conscious thinking and the technical skills necessary to solve local problems and initiate sustainable development.

The present research focuses on two consequential ERASMUS+ projects: SUGERE and GEODES. Both had the common goal of the international standardization of Higher Education training and teaching in Earth Sciences and Mining Engineering.

SUGERE (Sustainable Sustainability and Wise Use of Geological Resources) was successfully completed in September 2023, involved 3 European universities (from Portugal, Spain, and Italy) and 6 non-European universities (from Mozambique, Cape Verde, and Angola). The objective was to enhance capacity building for the responsible and sustainable use of geological resources by supporting the didactic organization and standardization of 5 degree courses at Bachelor, Master and Doctorate levels in Earth Sciences and Mining Engineering. Both online and face-to-face training sessions were organized in European and African universities.

GEODES, started in June 2023, represents the continuation of the SUGERE project and involves a total of 9 partners. The same 3 European universities and 6 African institutions, formally attributing teaching and training roles to 2 universities that participated in SUGERE, already achieved a good standard in terms of infrastructures and have long teaching experience in the field of geosciences, and receiving 4 young institutions from less favored regions of Angola and Mozambique.

SUGERE and GEODES projects aim to strengthen the role of geosciences in the development of up-to-date strategies for the sustainable management of natural resources and to implement new collaborations thanks to an international network focused on local economic and social development and respect for the natural environment in the geological-mining context. The culture of sustainability and the deepening of skills in the field of geological mining form the basis for the development of the critical thinking necessary for local problem solving, the acquisition of ethical values and the technical skills that underpin sustainable development.

Deepening technical skills in geomining from a sustainable perspective is crucial for developing critical thinking and acquiring ethical values necessary for solving local problems. SUGERE and GEODES contribute to this outcome with a solid network of research, training, sharing and exchange of expertise and research activities between European and non-European universities interested in mining issues. A careful analysis of the local economic development of the countries involved in the projects is required to achieve the most effective methods for the exploration and sustainable exploitation of underground georesources.

 

How to cite: Dino, G. A., Mancini, S., Pereira, D., Lasagna, M., Gambino, F., Prego, G., Gonçalves, D., Jacinto, A., Jamal, D., Loite, J., Nganhane, H., Rodrigues, N., and Dinis, P.: Towards sustainable management of georesources: the importance of Cooperation Projects to boost education on responsible and sustainable mining. The example of the SUGERE and GEODES projects., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14752, https://doi.org/10.5194/egusphere-egu24-14752, 2024.

Since time immemorial, nature, and by extension the ocean, have made positive contributions to the health of mankind. Whether it be fertile soil, pollination, medicine, taking part in mindfulness activities, or food, we as a species depend on the many services provided by the natural world.  Our environment can be linked to some fundamental determinants of health, such as clean air, clean water, and balanced nutrition, and emotional wellbeing.  Therefore, any environmental degradation as a result of climate change has undeniable tangible and intangible effects on human health all over the globe, and this is especially true in relation to mental health in populations occupying Large Ocean Island States (LOIS).   As climate change has led to an increase in extreme weather events, and the accompanying devastation, there has been a corresponding decrease in health and quality of life.  This presentation will explore how the impact of climate change and its corresponding impact on the ocean has enduring impacts, both physiologically and mentally.   Therefore, all of the processes and recommendations to combat climate
change will have important co-benefits to mental and physical health, and help to build resilience in the face of the dearth of resources faced by LOIS. This lack of resources must be urgently addressed, and solutions can be explored by fostering collaboration between mental health professionals and climate scientists to collect sufficient data. The resulting findings can be used to expedite access to the funds needed to implement the necessary levels of mitigation and adaptation specifically tailored to the infrastructural realities of LOIS.

How to cite: Alvarez de la Campa, S.: Climate Change, Ocean Health and Quality of Life - An Inextricable Connection in Large Ocean Island States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16730, https://doi.org/10.5194/egusphere-egu24-16730, 2024.

EGU24-17346 | Posters on site | EOS4.4

The importance of making geoethics a central concern of Sri Lankan education strategy 

Giuseppe Di Capua and Udaya Gunawardana

Like numerous regions worldwide, Sri Lanka faces significant environmental challenges that endanger its biodiversity, natural resources, and the well-being of its population. Predominant issues encompass water and air pollution, land degradation, deforestation, improper waste disposal, consequences of climate change, disaster risks, as well as the loss of biodiversity and geodiversity. The nexus between political, economic, and social factors contributes to these geo-environmental challenges, often exacerbated by the politicization of the environmental issues in Sri Lanka. However, it is crucial to acknowledge that human activities primarily drive these conditions. Gunnar Myrdal’s Soft State theory asserts that despite the existence of multiple governing bodies, regulations, and laws, humans strategically transcend the environment leading to the depletion of geo-environmental resources within a context of strong societal inequalities, particularly in developing countries influenced by the historical conditioning of colonial interests by developed nations. A philosophical exploration of this issue emphasizes the pivotal role of human indifference towards the environment and natural resources in causing these challenges. To address this issue effectively, a transformation in people's attitudes is imperative, and education emerges as the most potent tool for this purpose. However, a careful analysis of Sri Lanka's primary and secondary school curricula reveals an absence of a dedicated discipline addressing the philosophical and social dimensions of the geo-environmental matter. In light of this, the incorporation of subjects such as geoethics, which specifically addresses the ethical problems in the human-environment interaction, becomes paramount. Integrating geoethics into the educational framework, particularly at primary and secondary levels, stands as the foundation of a sustainable and responsible strategic approach to many societal and environmental problems. This educational strategy should envision as the most important solution to mitigate the majority of geo-environmental problems in Sri Lanka, fostering environmentally sensitive and responsible citizens.

How to cite: Di Capua, G. and Gunawardana, U.: The importance of making geoethics a central concern of Sri Lankan education strategy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17346, https://doi.org/10.5194/egusphere-egu24-17346, 2024.

EGU24-17614 | Orals | EOS4.4

Choice Question (MCQ) Peer Construction for Training Students as Climate Change decision-makers or Knowledge Spreaders 

Gérard Vidal, Charles-Henri Eyraud, Carole Larose, and Éric Lejan

After more than 40 years of reasoned alerts from the scientific community directed towards society, with minimal impact, a recent surge in the size and frequency of extraordinary climatic events has begun to reshape the perspectives of ordinary citizens. This situation underscores the challenge of directly influencing society with scientific evidence or models, emphasizing the crucial role of universities in training students who will occupy intermediate or elevated positions that may impact society at large.

While "Climate Fresk" has gained widespread popularity in higher education institutions as an effective tool for raising awareness about climate change and the intricate processes affecting our global earth ecosystem, concerns have arisen at the university level. The repetition of "Climate Fresk" or similar tools may be perceived as greenwashing practices, as university students are already well-acquainted with the issue. Hence, there is a need to surpass mere awareness in higher education.

As TASK Change Leaders at ENS-Lyon, we explored pedagogical and assessment tools provided by Sulitest. This initiative, extends beyond climate and ocean changes, it places a significant emphasis on various topics, including Sustainable Development Goals, earth limits, and driving processes of climate change. One of the major interest of the approach is to address all disciplines (scientific or non scientific).

We built a three-step strategy involving:

  • Administering a positioning test to enable students to assess their performance relative to the institution and the wider community.

  • Utilizing the looping tool from Sulitest, wherein small teams of students generate Multiple Choice Questions accompanied by a list of academic publications validating the terms of their questions. Subsequently, these questions are discussed in large interdisciplinary open groups, compelling students to articulate questions and answers intelligible across all disciplines.

  • Participating in the TASK to receive an assessment of their proficiency in sustainable development, evaluated by an external body.

This strategy, particularly the second step, empowers students to assume the role of a teacher or knowledge spreader in the face of a diverse peer community. It serves as a simulation of their potential future roles as educators, knowledge spreaders or decision-makers, instilling an understanding of the importance of providing validated sources and the challenges associated with crafting questions and answers comprehensible to all, preparing them for future teaching or decision-making scenarios. A notable byproduct is the creation of valuable pedagogical resources in a "connectivist MOOC flavor."

Beyond the training benefits, membership in the TASK Change Leaders group provides opportunities for discussions on the sustainability of education, green education, and competency frameworks, to apply to ourselves the concepts we are teaching.

How to cite: Vidal, G., Eyraud, C.-H., Larose, C., and Lejan, É.: Choice Question (MCQ) Peer Construction for Training Students as Climate Change decision-makers or Knowledge Spreaders, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17614, https://doi.org/10.5194/egusphere-egu24-17614, 2024.

EGU24-20953 | Posters on site | EOS4.4

Shaping Thriving Ocean Futures – Education to advance healthy coastal communities and marine systems 

Susanne Neuer, Stephanie Pfirman, Roberta Martin, Katie Kamelamela, Amy Maas, Andrew Peters, and Nick Bates

The new Ocean Futures program at Arizona State University (Tempe, AZ, USA) prepares students to become coastal and marine stewards, community leaders, innovators, and researchers capable of shaping the future of the world's oceans.  The program is taught and mentored by faculty and community leaders in an environment that supports our students’ individual and collaborative strengths, creativity, and diversity.  Students learn and work across disciplines, exploring global and local ocean dynamics, ecosystems, and stressors, engaging with community contexts and livelihoods, and advancing culturally-appropriate, reciprocal stewardship.  In support of ASUʻs mission of embeddedness and linking innovation to public value, graduates of the School of Ocean Futures are equipped with the knowledge and skills to work with diverse communities and partners to create innovative solutions for our changing world.

The School of Ocean Futures educational goal is to build student capacity to apply knowledge of coastal and marine systems coupled with community partnerships to help shape thriving futures, both locally and globally.  Students engage in research and work with partners in Arizona, the Bermuda Institute of Ocean Sciences (BIOS) in Bermuda, the Center of Global Discovery and Conservation Science in Hilo, Hawaii, the Sea of Cortez, and Antarctica.

Ocean Futures education at ASU is based on an innovative “cascade” curriculum.  The cascade starts with core classes in Introduction to Ocean Futures and Ocean Communities, followed by foundational courses in sciences and mathematics, an upper-level core class in Oceanography, electives focused on partnerships, stewardship, and advanced problem-solving, and culminates in an applied workshop and capstone course where students work with partners to transfer knowledge to action in addressing problems facing coastal communities and marine systems.

How to cite: Neuer, S., Pfirman, S., Martin, R., Kamelamela, K., Maas, A., Peters, A., and Bates, N.: Shaping Thriving Ocean Futures – Education to advance healthy coastal communities and marine systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20953, https://doi.org/10.5194/egusphere-egu24-20953, 2024.

Fifty years ago, Peter Berg developed a way to locate yourself within your bio-region, starting with your watershed. To begin, trace your water from precipitation to tap—and back to precipitation. Then, how much rain fell in your area last year? How much water does your household consume per month? What percentage of your town’s water supply goes to households? to manufacturing? to farming? to golf courses? to mining operations? to extinguishing fires? What pollutants affect your water supply? Once you can map your local water supplies, consider how manufacturing transistors, operating data storage centers and streaming videos impact international waters. With awareness of our daily lives’ impacts on local and international waters, we can create realistic limits.  

How to cite: Singer, K.: Mapping water from our tap to the watershed: A first step toward ecological limits  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21221, https://doi.org/10.5194/egusphere-egu24-21221, 2024.

This ongoing project integrates the concept of science diplomacy, conducting an in-depth exploration of the intricate interrelations among geo-bio-cultural diversity and its pivotal role in peace building, risk management, and climate action in Colombian cities and territories. Leveraging geodiversity assessment and its correlation with biodiversity, we explore how the bio-geo duplex interacts with ethnic diversity in Colombia. The aim is to develop initiatives aligned with the ancestral knowledge of indigenous, African-descended, farmers, and mixed-Colombian communities across cities and territories withing the geoethics concept.
In the realm of science diplomacy, our emphasis lies in cultivating international collaboration and knowledge exchange to tackle intricate societal challenges. We seek to foster dialogue and cooperation among traditional and nontraditional actors, advocating for the integration of scientific expertise with local and indigenous knowledge. The study provides a comprehensive analysis, considering historical, environmental, economic, social, and political contexts. It sheds light on how these interactions unfold and their diverse representations across Colombia, including the Caribbean, Pacific, and Andean regions.

How to cite: Marin-Ceron, M. I.: Science Diplomacy with Nontraditional Actors: Enhancing Geo-Bio-Cultural Diversity in Colombian Cities and Territories, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22117, https://doi.org/10.5194/egusphere-egu24-22117, 2024.

ERE2 – Renewable energy

EGU24-195 | ECS | Posters on site | ERE2.1

An observational study on the microclimate and soil thermal regimes under solar photovoltaic arrays 

Junqing Zheng, Yong Luo, Rui Chang, and Xiaoqing Gao

The high demand for low-carbon energy sources to mitigate climate change has prompted a rapid increase in ground-mounted solar parks. The implementation of photovoltaic (PV) significantly impacted the local climate and ecosystem, which are both poorly understood. To investigate the effects of a typical solar park on the Gobi ecological system, local microclimate and soil thermal regimes were measured year-round under and between PV arrays, at an applied solar park sited in Xinjiang, China. Our results demonstrated their seasonal and diurnal changes. Under solar PV arrays, the mean annual net radiation and wind speed decreased by 92.68% and 50.53% respectively. In contrast, PV panels caused an increase of the rear sides air by 10.12% with 0.87°C. South-facing PV panels reduced wind speed with the prevailing northerly wind below. In addition, the relative humidity rapidly decreased when snow covered the ground, but slightly increased from April to September. We found the soil under PV panels was cooler and tended to be a sink of energy during spring and summer whereas was more often a source during autumn and winter compared with the soil between PV panels. Observed data developed the understanding of the energy processes of solar parks in Gobi ecosystems and provided evidence to support the sustainable management of the solar park.

References:

Zheng, J., Luo, Y., Chang, R., and Gao, X., 2023. An observational study on the microclimate and soil thermal regimes under solar photovoltaic arrays. Solar Energy. 266, 112159.

How to cite: Zheng, J., Luo, Y., Chang, R., and Gao, X.: An observational study on the microclimate and soil thermal regimes under solar photovoltaic arrays, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-195, https://doi.org/10.5194/egusphere-egu24-195, 2024.

Wind resource assessment studies over large regions provide the basis for the preliminary identification of locations with promising wind energy prospects. In past studies, several authors have mapped the mean wind speed across large regions using spatial interpolation methods or machine learning models. In recent studies, more emphasis has been placed on mapping the entire wind speed distribution to evaluate the wind resource variability at unsampled locations. Most of these studies have assumed that the wind speed distribution across the entire region belongs to a single family of probability distribution functions and then processed to map the distribution parameters. A flexible non-parametric approach for wind speed distribution mapping is proposed in this study. The new approach is based on mapping various wind speed quantiles at some fixed percentile points in the region using a machine learning model. Then, at any unsampled location, these quantiles are used as input of an asymmetric kernel estimator of cumulative distribution function to recover the whole wind speed distribution. Asymmetric kernel estimators solve the probability leakage problem that appears when fitting symmetric kernels to bounded variables such as wind speed. The non-parametric approach for wind speed distribution mapping was more effective than a traditional approach based on mapping the parameters of a distribution function. In the best scenario, an improvement was observed between 6% (test samples) and 9% (cross-validation) of the Kolmogorov-Smirnov statistic between the observed and estimated wind speed distribution. The non-parametric approach is recommended for regions with highly variable wind regimes that cannot be captured by a single family of distribution functions.

How to cite: Houndekindo, F. and Ouarda, T.: Mapping wind speed distribution across large regions using machine learning and asymmetric kernel estimators., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1432, https://doi.org/10.5194/egusphere-egu24-1432, 2024.

EGU24-1609 | Orals | ERE2.1

SHIRENDA: A long-term high-resolution database of electricity demand and wind, hydro and PV renewable resources for Spain 

David Pozo-Vázquez, Guadalupe Sánchez-Hernandez, Antonio Jiménez-Garrote, Miguel López-Cuesta, Inés Galván-León, Ricardo Aler-Mur, Joaquín Tovar-Pescador, José Antonio Ruiz-Arias, and Francisco Santos-Alamilllos

Renewable energies (RES) will play a central role in national energy systems worldwide in the near future, boosted by the climate change issue and the ever-growing competitiveness of these energies. An example is the Spanish roadmap to produce 80% of its electricity from renewables by 2030.
However, the transition from the current generation mix to decarbonized energy systems is a formidable challenge, as they must be technically reliable and economically viable. To design such systems, the spatial and temporal variability of RES, combined with proper simulation tools, are determinant. In recent decades, energy system models have emerged as valuable tools for conducting these analyses. These models allow, for a specific region, the analysis of the optimal allocation and sizing of new renewable plants, taking into account the variability of generation and demand, energy costs, integration and the issue of transmission. The key input to these models is a database of RES resources in the study region. However, in many cases, the extent to which these databases represent the actual RES for a given country is far from optimal, reducing confidence in the results. In general, current RES databases face two main problems: 1) low reliability of energy estimates and 2) lack of adequate spatial and/or temporal resolution. In most cases, these problems arise from the lack of actual measurements for model training and validation.
In this work, we present SHIRENDA (Spanish High-resolution Renewable ENergies and Demand database), an enhanced open access database of Spanish renewable energies resources and demand. The database consists of hourly values of wind, solar photovoltaic and hydroelectric capacity factors (CF), together with electricity demand, covering the period 1990-2020, for each of the Spanish NUTS3 regions, which is an unprecedented spatial resolution so far. CFs and demand values were derived using state-of-the-art machine learning models based on: 1) actual values of installed RES capacities (Jiménez-Garrote et al, 2023); 2) real energy and demand data derived from the Spanish TSO and 3) meteorological data derived from the ERA5 reanalysis. The database covers the period 1990-2020, with the period 2014-2020 used for model training and validation purposes.
The SHIRENDA database has been developed within the framework of the MET4LOWCAR project, funded by the Government of Spain, and aims to gather the desirable characteristics to carry out reliable studies on modeling and analysis of energy systems, thus contributing to an adequate energy transition. Notably, the high spatial resolution allows the very high spatial variability of RES resources in the study region to be properly taken into account. At the same time, the high temporal resolution, along with the temporal coverage, allows for properly assessing the impact of climate variability, extreme meteorological conditions and compound events in a future decarbonized energy systems in Spain. 

 

Reference: Jimenez-Garrote et al, 2023. https://doi.org/10.1016/j.solener.2023.03.009

How to cite: Pozo-Vázquez, D., Sánchez-Hernandez, G., Jiménez-Garrote, A., López-Cuesta, M., Galván-León, I., Aler-Mur, R., Tovar-Pescador, J., Ruiz-Arias, J. A., and Santos-Alamilllos, F.: SHIRENDA: A long-term high-resolution database of electricity demand and wind, hydro and PV renewable resources for Spain, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1609, https://doi.org/10.5194/egusphere-egu24-1609, 2024.

In June 2023 Swiss people voted a new climate law that set a net-zero emission goal to be reached by 2050 via a full energetic transition from fossil fuels to renewables. The country’s Energy Strategy estimates that 7% (4.3 TWh) of future total renewable energy will be supplied by wind turbines, which requires an increase in the number of installed devices from the 37 currently operating to 760. Such an objective presents numerous challenges as available space is limited by technical restrictions, the country’s complex terrain, and competition with other types of land use.

Thanks to qualities like small size and weight, low noise emission levels, and the ability to operate with winds blowing from any direction at relatively low speed (> 2 m/s), vertical axis wind turbines (VAWTs) installed in urban areas are an attractive alternative to overcome the issues associated with large wind farms. Despite this, the potential for wind energy micro-generation in complex urban settings remains largely unexplored.

Private households use one third of all energy consumed in Switzerland, and residential renewable energy generation currently consists almost exclusively of photovoltaic (PV) panels which, in 2021, represented 78% of all solar systems operating in the country. No similar statistics are available for residential wind energy generation. Even in the scientific literature, current understanding of the interaction between wind and urban areas is limited, and the knowledge about urban wind resources is markedly inadequate to address the challenges posed by climate change to both local and global energy sectors.

Here we use use the Weather Research and Forecast (WRF) model to simulate mean near-surface wind speed over the cities of Lausanne and Geneva to assess the potential for wind energy generation. We perform simulations at 300 m grid spacing and across 85 vertical model levels, with hourly output interval throughout one entire year to identify diurnal and seasonal wind speed trends. We then use power curves of select VAWTs to translate mean wind speed data into potential electrical output maps and time series, over all model cells classified as urban.  

Our results show that mean wind speed is generally higher in Lausanne than in Geneva, especially at nighttime. Diurnal cycles evolve markedly differently between the two cities, although differences are at times minimized due to seasonal changes. The average potential for wind energy harvesting using VAWTs in urban environments varies with turbine size and geographical area. The average daily total energy generation potential is one order of magnitude greater in Lausanne compared to Geneva. In Lausanne, top generation is expected during the nighttime across most months, allowing for a good integration of photovoltaic generation. The opposite happens in Geneva where already lower peak wind speed, and associated energy generation, always culminate during the afternoon.

This research highlights the potential for urban wind energy micro-generation, drawing attention to the role of regional differences and the need and the importance of numerical simulations for quantitative assessments at the city and regional scales.

How to cite: Brandi, A. and Manoli, G.: Numerical assessment of urban wind energy micro-generation potential: a comparison between two Swiss cities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1770, https://doi.org/10.5194/egusphere-egu24-1770, 2024.

Short-term solar irradiance forecasts are becoming increasingly important as power grid operators have to deal with the uncertainty in incoming surface solar irradiance (SSI) and the expected photovoltaic (PV) power production. Geostationary satellites are an excellent source of spectral imagery of SSI-relevant atmospheric components over large geographical regions. The spectral measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation satellite form the basis of many SSI estimation and forecasting techniques [3], [4], [6]. These forecasting techniques usually rely on level 2 products to estimate SSI from reflectance but this induces a significant delay in the forecasting cycle. We demonstrate that using a deep learning regressor to estimate surface solar irradiance can drastically reduce this delay.

Previous machine learning-based methods for estimating SSI from geostationary reflectance imagers show great promise and can outperform state-of-the-art radiative transfer retrieval methods at the ground stations used as training sites [1], [2], [5]. Previous methods only use ground station SSI to train on, but point-wise estimators trained on a group of ground stations do not generalize well to out-of-sample ground stations, possibly because of changes in surface albedo [5].

To improve the generalization, we introduce a deep learning spatial convolution operator which is trained to emulate radiative-transfer SSI retrievals from spectral satellite imagery. Our SSI estimator model is fine-tuned on an extensive network of ground stations as a second training set. In this contribution, we will demonstrate the performance of the radiative transfer emulator, its applications and latency based on independent measurements from ground stations across Europe.

 

References
[1] H. Jiang, N. Lu, J. Qin, W. Tang, and L. Yao, “A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data,” Renewable and Sustainable Energy Reviews, vol. 114, p. 109 327, Oct. 1, 2019, ISSN: 1364-0321. doi: 10.1016/j.rser.2019.109327.
[2] D. Hao, G. R. Asrar, Y. Zeng, et al., “DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1° × 0.1° resolution,” Earth System Science Data, vol. 12, no. 3, pp. 2209–2221, Sep. 15, 2020, Publisher: Copernicus GmbH, ISSN: 1866-3508. doi: 10.5194/essd-12-2209-2020.
[3] Y. Lu, L. Wang, C. Zhu, et al., “Predicting surface solar radiation using a hybrid radiative transfer–machine learning model,” Renewable and Sustainable
Energy Reviews, vol. 173, p. 113 105, Mar. 1, 2023, ISSN: 1364-0321. doi: 10.1016/j.rser.2022.113105.
[4] Q. Paletta, G. Terren-Serrano, Y. Nie, et al., “Advances in solar forecasting: Computer vision with deep learning,” Advances in Applied Energy, vol. 11,
p. 100 150, Sep. 1, 2023, ISSN: 2666-7924. doi: 10.1016/j.adapen.2023.100150.
[5] H. Verbois, Y.-M. Saint-Drenan, V. Becquet, B. Gschwind, and P. Blanc, “Retrieval of surface solar irradiance from satellite imagery using machine learning: Pitfalls and perspectives,” Atmospheric Measurement Techniques, vol. 16, no. 18, pp. 4165–4181, Sep. 19, 2023, ISSN: 1867-8548. doi: 10.5194/amt-16-4165-2023.
[6] A. Carpentieri, D. Folini, D. Nerini, S. Pulkkinen, M. Wild, and A. Meyer, “Intraday probabilistic forecasts of surface solar radiation with cloud scale-dependent autoregressive advection,” Applied Energy, vol. 351, doi: 10.1016/j.apenergy.2023.121775.

How to cite: Meyer, A. and Schuurman, K.: Predicting surface solar irradiance from satellite imagery with deep learning radiative transfer emulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2452, https://doi.org/10.5194/egusphere-egu24-2452, 2024.

EGU24-2922 | Posters virtual | ERE2.1 | Highlight

Storm Daria: Societal and energy impacts in northwest Europe on 25-26 January 1990 

Anthony Kettle

Between late January and early March of 1990 Europe was hit by a sequence of severe winter storms that caused significant infrastructure damage and a large number fatalities. The storm sequence started with Hurricane Daria on 25-26 January 1990, which was one of the most serious events of the storm cluster, especially for the UK.  The low pressure centre moved in the west-northwest direction across Ireland, southern Scotland, and northern Jutland before moving further into the Baltic. The strongest winds south of the trajectory path caused significant damage and disruptions in England, France, Belgium, the Netherlands, and West Germany.   Media reports highlighted building damage, interrupted transportation networks, power outages, and fatalities.  There were also a series of maritime emergencies in the English Channel, North Sea, and Baltic Sea.  This contribution takes a closer look at Storm Daria, presenting an overview of meteorological measurements and the societal impacts, followed by an analysis of the North Sea tide gauge network to understand the storm surge and possible large wave occurrences.  The results for Storm Daria are compared with other serious storms of the past 30 years, highlighting similarities and differences in the patterns of storm impact.  Offshore wind energy was at the planning stage in this early period, but onshore wind energy was established in Europe, and the storm is an important case study of extreme meteorological conditions that that can impact energy infrastructure.  The 1990 winter storm sequence was analyzed in detail by the insurance industry because of the large damage costs, and evidence of an emerging climate change contribution was highlighted.

How to cite: Kettle, A.: Storm Daria: Societal and energy impacts in northwest Europe on 25-26 January 1990, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2922, https://doi.org/10.5194/egusphere-egu24-2922, 2024.

EGU24-4688 | ECS | Orals | ERE2.1

Effects of Upstream Obstacles on Energy Production of Solar and Wind Farms 

Abhirup Bhattacharya and Somnath Baidya Roy

Power production from a renewable energy (RE) source such as a wind farm or urban roof-top solar panel installation is highly sensitive to the obstacles around it, particularly those which are in the upstream direction. RE installations can avoid or minimize the effects of obstacles using proper planning. However, obstacles that come up after the plant is operational can lead to significant loss in power production and revenue. In this study we quantitatively explore two common examples – shading effect of neighbouring buildings on roof-top solar plants and wake effects of upstream wind turbines on offshore wind farms.

The first example considers a horizontal solar panel atop an urban building in a relatively congested neighbourhood. We built a model to quantify the shading effects of neighbouring tall buildings on the solar panel. The model calculates the position of the Sun on the celestial dome at every minute with astronomical accuracy. Then the solar irradiance is calculated for a clear-sky environment. After that the shadow profile is calculated and visualized for obstacle buildings with any height and at any distance. And finally, the loss in available insolation and the power production is calculated. The results show significant power loss due to the building shading effect. For example, a roof-top solar panel surrounded by a 20m taller building at 20m distance can reduce power generation by more than 50%.

The second example is where a new wind farm is constructed upstream of an existing wind farm. We used two different models to quantify the meteorological effects of the upstream wind turbines on downwind turbines. The first one involves Jensen Wake Model (JWM), a static wake recovery model to simulate the wake effects of upstream obstacle turbine on downwind turbine. The second approach makes use of the Wind Turbine Parameterization (WTP) in WRF. This method implements wake loss using a wind turbine power curve data and wake recovery through atmospheric vertical mixing. A case study has been conducted for a hypothetical offshore wind farm situated in Palk Strait between India and Sri Lanka by placing wind farms of different shapes and dimensions in the upwind direction. The results show a range of losses in annual power production between 3 – 12 MW, which roughly converts into €1.1M – €4.1M.

This study demonstrates that the effects of upstream obstacles on RE sources are non-trivial and can have serious impacts on the performance on RE installations. Currently, local zoning laws in India and many countries do not protect RE installations from future constructions that can act as obstacles. Hence, effective policies are required to safeguard the return on investments in the RE industry.

How to cite: Bhattacharya, A. and Baidya Roy, S.: Effects of Upstream Obstacles on Energy Production of Solar and Wind Farms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4688, https://doi.org/10.5194/egusphere-egu24-4688, 2024.

EGU24-4715 | Orals | ERE2.1 | Highlight

Impacts of Air Pollutant Emissions on Solar Energy Generation 

Fei Yao, Paul Palmer, Jianzheng Liu, Hongwen Chen, and Yuan Wang

Particulate matter (PM) in the atmosphere and deposited on solar photovoltaic (PV) panels reduce PV energy generation. Reducing anthropogenic PM sources will therefore increase carbon-free energy generation. However, we lack a global understanding of the sectors that would be the most effective at achieving the necessary reductions in PM sources. We combine well-evaluated models of solar PV performance and atmospheric composition to show that deep cuts in air pollutant emissions from the residential sector substantially benefit Asian PV power output. Specifically, halving residential emissions of PM would lead to an additional 10.3 TWh yr-1 and 2.5 TWh yr-1 of PV energy generation in China and India in 2020, respectively. Compared to the 2020 electricity generation of 261.6 TWh yr-1 and 54.4 TWh yr-1 from solar PV technology in China and India, respectively, these unrealised sources of energy generation represent an improvement of approximately 4-5%. While anthropogenic PM sources originate mainly from producers, they are responding to changes in domestic and international consumer demand. This raises a critical question about the extent to which consumers, who benefit from the emission process, should be responsible for the resulting unrealised, cleaner PV energy generation. Focusing on Northeast Asia (NEA), we investigate the source-receptor relationship of PV energy losses attributable to PM pollution among China, South Korea, and Japan by incorporating a new input-output model into the combined models of solar PV performance and atmospheric composition. Our findings reveal that the solar energy generation losses attributable to PM pollution in NEA caused by emissions produced in China surpass those linked to China’s consumption that stimulates emissions in China and elsewhere, with the disparity amounting to 9.3 TWh yr-1. Conversely, a reverse pattern is observed for solar energy generation losses linked to emissions produced versus induced by consumption in South Korea and Japan, where the disparities are found to be -0.023 TWh yr-1 and -0.231 TWh yr-1, respectively. In other words, when we consider international trade across NEA, we find there is diminished (augmented) responsibility for China (South Korea and Japan) in explaining PV-related energy losses attributable to PM pollution.

How to cite: Yao, F., Palmer, P., Liu, J., Chen, H., and Wang, Y.: Impacts of Air Pollutant Emissions on Solar Energy Generation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4715, https://doi.org/10.5194/egusphere-egu24-4715, 2024.

EGU24-4887 | ECS | Posters on site | ERE2.1

A parameterization scheme for the floating wind farm in a coupled atmosphere-wave model (COAWST v3.7) 

Shaokun Deng and Shengli Chen

Coupling Weather Research and Forecasting (WRF) model with wind farm parameterization can be effective in examining the performance of large-scale wind farms. However, the current scheme is not suitable for floating wind turbines. In this study, a new scheme is developed for floating wind farm parameterization (FWFP) in the WRF model. The impacts of the side columns of a semi-submersible floating wind turbine on waves are firstly parameterized in the spectral wave model (SWAN) where the key idea is to consider both inertial and drag forces on side columns. A machine learning model is trained using results of idealized high-resolution SWAN simulations and then implemented in the WRF to form the FWFP. The difference between our new scheme and the original scheme in a realistic case is investigated using a coupled atmosphere-wave model. Results indicate that the original scheme underestimates the power output of the entire floating wind farm in the winter scenario. On average, the power output of a single turbine is underestimated by a maximum of 694 kW (12 %). The turbulent kinetic energy decreases within the wind farm, with the greatest drop of 0.4 m2 s-2 at the top of the turbine. This demonstrates that the FWFP is necessary for both predicting the power generated by floating wind farms and evaluating the impact of floating wind farms on the surrounding environment.

How to cite: Deng, S. and Chen, S.: A parameterization scheme for the floating wind farm in a coupled atmosphere-wave model (COAWST v3.7), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4887, https://doi.org/10.5194/egusphere-egu24-4887, 2024.

EGU24-4945 | ECS | Orals | ERE2.1

Effect of Rainfall on Evolution of the wind turbine wake:A LES Study 

Xuefeng Yang and Shengli Chen

The rainfall directly affects wind turbine operation by eroding the turbine blades and changing their aerodynamic performance, however, little research has been conducted on the effects of rainfall on wake evolution. The present study simulates the impact of rainfall on wind turbine wake using a coupled LES-ADMR model, in which a double Euler method is employed for the rainfall injection. The numerical simulation results indicate that the rainfall reduces the wake wind speed in the sweep area while increasing it in the outer region of the upper blade tip, reaching up to 2.1% for increment. Rainfall also weakens the turbulence in the near wake and the outer region of the top tip (as much as 2.0%), with the influence extending up to 10 diameters downstream the wind turbine. These modifications are positively correlated with the rainfall intensity and inversely correlated with wind speed. By analyzing the rainfall-induced changes in MKE (Mean Kinetic Energy) and TKE (Turbulent Kinetic Energy) budget terms, the study reveals that the alteration of turbulent radial transport of MKE is the main cause of changes in wind speed, while the variation of shear production of  TKE is responsible for the turbulent intensity changes. The rainfall-induced change of  reynold stress u'w' is the root cause of the above phenomenons.

How to cite: Yang, X. and Chen, S.: Effect of Rainfall on Evolution of the wind turbine wake:A LES Study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4945, https://doi.org/10.5194/egusphere-egu24-4945, 2024.

EGU24-5042 | Orals | ERE2.1

West African operational daily solar forecast errors and their links with meteorological conditions 

Sandrine Anquetin, Léo Clauzel, Christophe Lavaysse, Guillaume Tremoy, and Damien Raynaud

With its commitment to reduce greenhouse gas emissions and harnessing the potential of renewable energy, the West African region is at the forefront of global environmental challenges. This work focuses on the specific aspect of solar energy, which holds significant promise in the region. High quality solar energy forecasts are necessary for solar plants and power systems management, while they remain poorly developed in this region, in particular because of the specificities of the West African climate. We evaluate the errors in Global Horizontal Irradiance (GHI) operational forecast models for two Sahelian solar power plants, Zagtouli in Burkina Faso and Sococim in Senegal, and investigate their links with local meteorological conditions, with a specific focus on clouds and dust aerosols.

This work begins by assessing aerosol products and our results support the use of the CAMS reanalysis for the assessment of Aerosol Optical Depth (AOD), particularly with respect to dust aerosols. We then assess the performance of three operational GHI forecast products: the Global Forecast System (GFS, NCEP/NOAA), the Integrated Forecast System (IFS, ECMWF), and SteadyMet (SM), developed by French company Steadysun, which is computed from the previously mentioned Numerical Weather Prediction (NWP) model outputs. The analysis reveals that IFS and SM outperform GFS in terms of forecast accuracy, with SM showing a slight advantage due to its probabilistic nature, which provides valuable information on forecast uncertainty.

Closer examination reveals a significant relationship between GHI forecast errors and local meteorological characteristics. These errors are more pronounced during the wet season, primarily attributed to cloud occurrence. Dust events are found to play a secondary role, particularly during the dry season. Correlation analyses underline the main link between forecast errors and cloudiness, while co-occurrence analyses highlight the fact that dust aerosol loading is a secondary factor in forecast errors for the GHI directly or for cloud representation (aerosol-cloud interaction).

How to cite: Anquetin, S., Clauzel, L., Lavaysse, C., Tremoy, G., and Raynaud, D.: West African operational daily solar forecast errors and their links with meteorological conditions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5042, https://doi.org/10.5194/egusphere-egu24-5042, 2024.

EGU24-6578 | Posters on site | ERE2.1

Evaluation of hub-height wind forecasts over the New York Bight 

Timothy Myers, Allison Van Ormer, Dave Turner, James Wilczak, Laura Bianco, and Bianca Adler

As offshore wind energy development accelerates in the U.S., it is important to assess the accuracy of hub-height wind forecasts from numerical weather prediction models over the ocean.  Leveraging approximately two years of Doppler lidar observations from buoys in the New York Bight, we provide an evaluation of 80-m wind speed forecasts from two weather models: the High-Resolution Rapid Refresh (HRRR) model and the Global Forecast System (GFS).  These two models have different horizontal (3 km vs 13 km) grid spacing, vertical layering, initialization methods, and parameterizations of boundary layer mixing and surface-atmosphere interactions.  Even with these differences, the models demonstrate similar and highly skillful short-term forecasts at three measurement sites (Day 1: root mean square error, RMSE, ≤ 2.4 m/s and r≥0.83; Day 2: RMSE≤3 m/s and r≥0.77).  Day-ahead forecasts also exhibit skill (Critical Success Index > ~0.5) in predicting quiescent winds and winds associated with maximum turbine power.  By Day 10, GFS forecasts on average have almost no skill.  Short-term forecast skill by the HRRR and GFS does not strongly depend on season or time of day, yet we find some dependence of the models' performance on near-surface stability.  Additionally, 5-14 day forecasts by the GFS exhibit lower RMSE during summer relative to other seasons.  The high skill of the HRRR and GFS short-term forecasts establishes confidence in their utility for offshore wind energy maintenance and operation.

How to cite: Myers, T., Van Ormer, A., Turner, D., Wilczak, J., Bianco, L., and Adler, B.: Evaluation of hub-height wind forecasts over the New York Bight, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6578, https://doi.org/10.5194/egusphere-egu24-6578, 2024.

EGU24-7587 | Orals | ERE2.1 | Highlight

Replacement of meteorological towers with ground-based remote-remote sensing sodars: How close are we?  

Ebba Dellwik, Sten-Ove Rodén, Johan Arnqvist, Mikael Sjöholm, Corinna Möhrlen, and Andre Gräsman

As wind turbines have grown in size, it has become ever more costly to make the necessary tower-based wind observations needed both for the pre-operation (siting) phase and for wind turbine operations. In response to this challenge, the wind energy scientific community has - over the last decades - focused on evaluating and improving ground-based remote-sensing technology. The development has often been done in close collaboration with the innovative companies dedicated to providing the new solutions for replacing the expensive meteorological towers to the market.

The project EARS4WindEnergy, which started in March 2023, represents one such effort. The project is focused on a re-exploration of the sodar technology, which preceded the later focus on wind lidars. Here, we present a benchmarking of the AQ510 sodar equipped with new signal processing technology with tall-tower data focusing on the three “must-perform” criteria of accurate wind speed, accurate turbulence intensity and a reliable identification of erroneous data. The complementary aspects of data availability and robustness in relation to current wind lidars is also discussed. Most of the presented data are taken at the Østerild test site in Northern Denmark, where a 244m tall tower allows for accuracy quantification over most of the sodar’s measurement range.

How to cite: Dellwik, E., Rodén, S.-O., Arnqvist, J., Sjöholm, M., Möhrlen, C., and Gräsman, A.: Replacement of meteorological towers with ground-based remote-remote sensing sodars: How close are we? , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7587, https://doi.org/10.5194/egusphere-egu24-7587, 2024.

EGU24-7725 | ECS | Orals | ERE2.1 | Highlight

Identifying weather patterns responsible for renewable energy production droughts in India 

Hannah Bloomfield, Kieran Hunt, and Isa Dijkstra

Energy systems across the globe are evolving to meet climate mitigation targets set by the Paris Agreement. This process requires a rapid reduction on nations’ reliance on fossil fuels and significant uptake of renewable generation (such as wind power, solar power, and hydropower). In parallel to the decarbonisation of the electricity sector, both the heat and transport sectors are electrifying to reduce their carbon intensity. Renewable energy sources are weather-dependent, causing production to vary on timescales from minutes to decades. A consequence of this variability is that there may be periods of low renewable energy production, here termed ‘renewable energy droughts’. This energy security challenge needs to be addressed to provide a consistent power supply and to ensure grid stability. India is chosen here as a study area as a region that already has a large existing proportion of renewable generation (42 GW of wind power, 61 GW of solar power and 51 GW of hydropower were installed as of October 2022) and a region that experiences good sub-seasonal predictability in large-scale patterns.

In this study, we use broad variety of data sources to quantify potential and realised capacity over India from 1979 to 2022 using the ERA5 reanalysis and a range of open source renewable energy installation data. Using gridded estimates of existing installed renewable capacity combined with our historical capacity factor dataset, we create a simple but effective renewable production model for each Indian state and at national level. We use this model to identify the timing of historical renewable energy droughts and then discuss potential weaknesses in the existing grid – particularly a lack of complementarity between wind and solar production in north India – and vulnerability to high deficit generation in the winter. The data produced here have all been made open access and the methods could easily be reproduced over any region of interest.

We then consider the weather patterns that could cause the largest renewable energy droughts over India and investigate potential sources of predictability. Existing large-scale daily weather types (based on large-scale wind map clustering) as well as novel patterns created by k-means clustering of more relevant variables for wind and solar power are used to investigate the different weather patterns causing renewable energy droughts. Renewable energy droughts largely occur during the winter season (January and February) and are caused by low seasonal wind speeds in combination with weather patterns bringing high cloud cover. These are mainly winter anticyclones and western disturbances.

Sources of potential sub-seasonal predictability are considered for the largest renewable energy droughts, including the Madden Julian Oscillation and Boreal Summer Intra-Seasonal Oscillation. Although both have a stronger relationship with high energy production days, links between phases of these two modes of variability and renewable energy droughts have been identified. These could help to provide early warnings for conditions that challenge supply security in the future.

How to cite: Bloomfield, H., Hunt, K., and Dijkstra, I.: Identifying weather patterns responsible for renewable energy production droughts in India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7725, https://doi.org/10.5194/egusphere-egu24-7725, 2024.

Long-term wind speed forecasting is still in its early stages, particularly in India. Due to lack of operational forecasts the Indian wind industry is forced to rely on climatological averages, that do not incorporate interannual variability. The overall goal of our study is to evaluate and enhance the capability of the Indian Institute of Tropical Meteorology Coupled Forecast System Version 2.0 (IITM CFSv2) model to forecast the summer monsoon (June-September) 10m wind speeds over India at seasonal scales as a part of the Monsoon Mission III program. The model runs were conducted in hindcast mode for the period 1981-2017. Initially, we conducted a systematic evaluation to assess the quality of the forecasts initialized in February and March for selected stations by comparing them against observations from the Global Summary of the Day (GSOD) dataset. Our findings indicate that the raw forecasts are poor quality with Symmetric Mean Absolute Percentage Error (SMAPE) in the 70% and 90% range.

Next, we developed calibration algorithms using ML techniques to improve the quality of the forecasts. Linear Regression, Random Forest, XGBoost, LSTM, Conv-LSTM, GRU were employed as regression models. The outcomes from the best-performing model demonstrate that calibration significantly enhances the quality of the forecasts. After calibration, the mean absolute error (MAE) values typically fall within the range of 0.5 to 0.9 m/s for most stations, though a few stations exhibit values exceeding 1 m/s, in contrast to the raw forecasts where the error range extends from 1.2 to 2 m/s. The SMAPE is reduced to between 30% and 60% after calibration. When compared with 30-year climatology, the calibrated forecasts in 60% of the stations show a positive Root Mean Square Error Skill Score (RMSESS) ranging from 0.01 to 0.3 whereas the scores for the raw forecasts are showing highly negative skill. This study demonstrates that ML based calibration is a promising technique that can significantly improve the quality of numerical model forecasts and perform significantly better than climatology.

How to cite: Banerjee, R. and Baidya Roy, S.: Long - term wind speed forecasting for the monsoon seasons at station scales over India: Integrating ML and Numerical techniques, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7873, https://doi.org/10.5194/egusphere-egu24-7873, 2024.

EGU24-8687 | Posters on site | ERE2.1

Improvement of Korea Meteorological Administration insolation Information by Applying Detailed Terrain Data 

Jinah Yun, Jinwon Kim, Minwoo Choi, Hee-Wook Choi, Yeon-Hee Kim, Sang-Sam Lee, Ki-Hoon Kim, and Chulkyu Lee

  As the proportion of renewable energy continues to rise, solar energy reaching the Earth's surface holds a significant share compared to other sources such as wind power. Efficient utilization of solar energy necessitates accurate data on surface insolation. Consequently, both domestically and internationally, there's active research into developing insolation mapping using various numerical models based on solar meteorological resources.
The Korea Meteorological Administration's KMAP (Korea-Meteorological Administration Post-processing), hereafter KM, provides insolation data. However, its limitation lies in the inability to realistically account for complex terrains like mountains due to the 1.5 km resolution of the Meteorological Administration's LDAPS (Local Data Assimilation and Prediction System), an operational local forecast model.
 This study analyzes the impact and characteristics of different resolutions of Digital Elevation Models (DEMs) on the accuracy of surface insolation calculations performed by KMAP-Solar, the solar energy mapping system of the Korea Meteorological Administration (1.5 km and 100 m). Comparison and verification against insolation data from 42 Korea Meteorological Administration Automated Synoptic Observation Systems (ASOS) stations reveal that the introduction of high-resolution DEM reduces land-averaged solar radiation biases by up to 32 Wm
−2 at all observation points, particularly accentuating its effect in regions with complex terrains.
The enhanced accuracy due to high-resolution DEMs is attributed to their ability to alleviate errors caused by differences in Sky View Factors (SVF) between high and low-resolution DEMs. Both DEM resolutions exhibit correlations between insolation and terrain elevation (SVF). However, high-resolution DEMs significantly underestimate these relationships compared to low-resolution DEMs, primarily in areas with high elevations where low-resolution DEMs inadequately represent steep terrains and/or small SVFs.
This study demonstrates that high-resolution DEMs provide a more realistic distribution of insolation by integrating a broader range of crucial terrain parameters, thus proving their significance in accurate insolation calculations compared to low-resolution DEMs. It is anticipated that this research will play a crucial role in supporting future solar energy studies, real-time prediction, and management within solar power plant installations and the power grid.

How to cite: Yun, J., Kim, J., Choi, M., Choi, H.-W., Kim, Y.-H., Lee, S.-S., Kim, K.-H., and Lee, C.: Improvement of Korea Meteorological Administration insolation Information by Applying Detailed Terrain Data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8687, https://doi.org/10.5194/egusphere-egu24-8687, 2024.

EGU24-8933 | ECS | Posters on site | ERE2.1

An Austrian case study on empowering ReduceData solar power forecasting using a ML-driven semi-synthetic data generator 

Petrina Papazek, Pascal Gfäller, and Irene Schicker

Heterogenous, location dependent solar power/PV installations entail individually different production. This is a challenge for power grid operators as to feed-in PV-production, besides its vast output variability, the grid operators need very high-resolution (temporal and spatial) power forecasts, ideally tailored to each of these sites. Technological advances along with the expansion of solar energy will often modify the initial setup of a production site, thereby significantly altering the production data over their record time. Inevitably inconsistent presentations of historic data or short record periods (e.g.: in case of newly build sites) pose challenges in the renewable sector. This induces a common issue in AI driven post-processing:  machine learning and AI powered forecasts heavily rely on sufficient, consistent historic data, more so if simulating expected production peaks in high temporal resolution is part of the requirements. To address the need of such reduced historic data, we aim at generating semi-synthetic data within the ReduceData project by providing a sufficiently represented and continuous data set across multiple data sources. Building on random forest models, we exploit spatial and temporal strongly associated non-reduced auxiliary data, such as satellite data products (e.g.: CAMS) and reanalysis fields (e.g.: ERA5).  Due to their limited nature, PV production records and high-resolution numerical models (e.g.: AROME) will be targeted by our semi-synthetic data generator. The presented case study focuses on nowcasting- to short-range forecasts in 15-minute update frequency tailored to selected solar power production sites in East-Austria. We study to what extent deep learning methods benefit from a consistent semi-synthetic data set built on different raw data sources, highlighting the added value of combining various sources via deep learning. Inputs for the AI-driven post-processing are, for instance, the climatology of satellite data and reanalysis, pvlib’s estimations, AROME surface parameters, and in-house nowcasting models (e.g.: IrradPhyD-Net). Different settings of the semi-synthetic data generator are evaluated by cross-validation. In most studied cases, we achieve a high skill compared to available classical and standard methods (e.g.: persistence, climatology). 

How to cite: Papazek, P., Gfäller, P., and Schicker, I.: An Austrian case study on empowering ReduceData solar power forecasting using a ML-driven semi-synthetic data generator, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8933, https://doi.org/10.5194/egusphere-egu24-8933, 2024.

To improve the process of solar energy production, we can utilize the downward
shortwave flux (DSSF) measurement, which constitutes a part of the satellite
derived total and diffuse downward surface shortwave flux (MDSSFTD) product.
MDSSFTD is issued by the Satellite Application Facility on Land Surface Analysis (LSA SAF).
However, its direct application in this area is inhibited by potential systematic
errors in the DSSF product. Therefore, this has to be addressed before the DSSF can be used downstream.

To this end, we implemented a neural network-based post-processing procedure
that uses previous temporal DSSF observations and additional predictors, such
as cloudiness and time of day, to generate a corrected DSSF value. The ground
truth for this regression task are the in-situ measurements across a variety of
locations in Slovenia. Additionally, the neural network produces DSSF estimates
in terms of quantiles, providing an uncertainty estimate of the corrected prediction itself.

We verified our new method on the aforementioned region over a period of
four years. We found that our neural network approach successfully reduces
the presence of systematic differences present in the DSSF. Additionally, the
neural network method outperforms a baseline look-up-table approach in terms
of multiple criteria, such as mean absolute error, bias, and error variability.

How to cite: Savli, M. and Mlakar, P.: Reduction of systematic differences of LSASAF shortwave solar radiation fluxes using neural networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9396, https://doi.org/10.5194/egusphere-egu24-9396, 2024.

EGU24-9862 | Posters on site | ERE2.1

Do offshore wind farms weaken or enhance surface wind and wave fields? 

Xiaoli Larsén, Jana Fischereit, Konrad Bärfuss, and Astrid Lampert

Over the North Sea, larger and larger part of the water surface is being covered by wind farms. Studies have shown consistent results regarding farm wake effects at hub height, characteristic of reduced wind speed and enhanced turbulence. Close to water surface, published studies using both measurements and modeling have suggested enhanced wind speeds sometimes, and reduced wind speeds some other times. Hence, this study investigates the research question: Do offshore wind farms weaken or enhance surface wind and wave fields?

We use the mesoscale atmosphere-wave-wake coupled modeling system that consists of the Weather Research and Forecast (WRF) model, Spectral Wave Nearshore (SWAN) model with the wave boundary-layer model (Du et al. 2017, Fischereit et al. 2022). We use the Fitch Wind Farm Parameterization scheme (Fitch et al. 2012), with four coefficients for the advection of the wind farm-generated Turbulence Kinetic Energy (TKE): a = 1, 0.25, 0.1 and 0, corresponding to larger and larger TKE advection. The model is used together with flight measurements of wind fields upwind, above and downwind of offshore wind farms, collected during the project WIPAFF (Bärfuss et al. 2019, Lampert et al. 2020). We use two case studies, one following Bärfuss et al. (2021) (with fetch effect) and one following Larsén and Fischereit (2021) (without fetch effect). 

There is no evidence of generally enhanced surface winds and waves in the presence of wind farms. Enhanced surface winds and waves can however be generated numerically when using e.g. a = 1, as a result of numerical distribution of excessive TKE and momentum generated at hub height down to the surface. The study suggests that the wake effect is rather sensitive to the value of a, regarding both horizontal and vertical distribution from the hub height. Measurements are needed to understand the distribution of turbine-generated TKE and to help defining a- value for specific conditions.

References:

Bärfuss, et al. 2019: In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight,  https://doi.pangaea.de/10.1594/PANGAEA.902845, 2019.

Bärfuss et al. 2021: The Impact of OffshoreWind Farms on Sea State Demonstrated by Airborne LiDAR Measurements. J. Mar. Sci. Eng.  9, 644. https://doi.org/10.3390/jmse9060644

Du J., Bolaños R. and Larsén X. 2017: The use of a wave boundary layer model in SWAN. J. Geophys. Res.:Oceans. DOI: 10.1002/2016JC012104, vol. 122, No 1, p42 - 62.

Fischereit, J., Larsén, X.G. and Hahmann A. 2022: Climate impacts of wind-wave-wake interactions in offshore wind farms. Frontier Energy Res. doi: 10.3389/fenrg.2022.881459. Vol. 10., 881459.

Fitch et al. 2012: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model, Mon. Weather Rev., 140, 3017–3038, https://doi.org/10.1175/MWRD-11-00352.1.

Lampert et al. 2020: In-situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight, Earth Syst. Sci. Data, 12, 935–946.

Larsén X. and Fischereit J. 2021: A case study of wind farm effects using two wake parameterizations in the Weather Research and Forecasting (WRF) model (V3.7.1) in the presence of low-level jets. Geo. Mod. Dev., 14(5), 3141-3158. https://doi.org/10.5194/gmd-14-3141-2021

How to cite: Larsén, X., Fischereit, J., Bärfuss, K., and Lampert, A.: Do offshore wind farms weaken or enhance surface wind and wave fields?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9862, https://doi.org/10.5194/egusphere-egu24-9862, 2024.

In the quest for accurate wind resource assessment crucial for the expansion of wind farms, this study tackles the scientific question of how varying time series lengths and temporal resolutions impact the estimation of wind resources, and introduce uncertainty into the assessment process. Recognizing the significant importance of considering temporal variability in wind speed distribution, we utilize in-situ observations from weather stations provided by the Norwegian Meteorological Institute, analyzing 1-hourly data spanning one to ten years. The study employs a comparative analysis of various wind speed distributions to determine the best-fit distribution for estimating wind resources. This process involves assessing the goodness-of-fit for each distribution under different time series lengths. Additionally, the study investigates the impact of temporal resolutions by examining data collected at 10-minute, hourly, daily, and monthly intervals from the same period and stations. The overarching goal is to systematically quantify uncertainty in wind resource estimation arising from the selection of wind speed distribution based on varying lengths and resolutions of time series data. The outcomes of this research aim not only to enhance the precision of wind resource assessments in the wind power sector but also to provide valuable insights applicable to fields influenced by wind conditions, including risk management and construction design. This study is financed by the Equinor academia project.

How to cite: Zhou, L. and Esau, I.: The impact of time series length and temporal resolution on wind resource assessment: a comparative analysis of wind speed distributions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10849, https://doi.org/10.5194/egusphere-egu24-10849, 2024.

EGU24-11653 | Posters on site | ERE2.1 | Highlight

Performance of Global Wind Atlas for Distributed Wind Resource Assessment in the United States 

Lindsay Sheridan, Danielle Preziuso, Caleb Phillips, Dmitry Duplyakin, and Heidi Tinnesand

Distributed wind projects, particularly those involving small wind turbines, are more subject to financial and temporal limitations than utility-scale wind energy. Onsite measurements are often not feasible or economically viable investments, leading to developers, analysts, and customers in the distributed wind community relying on wind resource models to establish generation estimates. One popular wind product used by the distributed wind community in the United States is the global, high-resolution Global Wind Atlas from the Technical University of Denmark and the World Bank Group.

Wind resource models are valuable tools for siting and establishing generation expectations but are not entirely accurate, which can lead to distributed wind customer dissatisfaction when actual energy generation does not meet pre-construction expectations. To enhance the understanding of the performance and limitations of utilizing Global Wind Atlas for wind resource assessment, this work presents the validation of the model wind speeds using meteorological towers across the diverse geography of the United States with measurement heights relevant to distributed wind hub heights (20 m – 100 m). The analysis expands to quantify the performance of Global Wind Atlas in representation of seasonal, diurnal, and interannual variability in the wind resource along with an assessment of wind shear accuracy at locations with measurements at multiple heights.

How to cite: Sheridan, L., Preziuso, D., Phillips, C., Duplyakin, D., and Tinnesand, H.: Performance of Global Wind Atlas for Distributed Wind Resource Assessment in the United States, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11653, https://doi.org/10.5194/egusphere-egu24-11653, 2024.

EGU24-12053 | Orals | ERE2.1

Evaluation and Bias Correction of the ERA5 Reanalysis for Wind and Solar Energy Applications 

James M. Wilczak, Elena Akish, Antonietta Capotondi, and Gilbert Compo

The applicability of the ERA5 reanalysis for estimating wind and solar energy generation over the contiguous United States is evaluated using wind speed and irradiance variables from multiple observational data sets.  After converting ERA5 and observed meteorological variables into wind power and solar power, comparisons demonstrate that significant errors in the ERA5 reanalysis exist limiting its direct applicability for a wind and solar energy analysis.  Overall, ERA5-derived solar power is biased high, while ERA5-derived wind power is biased low.  Errors for the shortest duration, most extreme solar negative anomaly events are found to be statistically reasonably well represented in the ERA5, when completely overcast conditions occur in both ERA5 and observations.  Longer duration events on weekly to monthly timescales, which include partially cloudy days or a mix of cloud conditions, have ERA5-derived solar power errors as large as 40%.  ERA5-derived solar power errors are found to have consistent characteristics across the CONUS region.  The negative bias errors in the ERA5 windspeeds and wind power are largely consistent across the central and northwestern US, and offshore, while the eastern US has an overall small net bias.  For weekly to monthly timescales, the uncorrected ERA5-derived wind power errors approach 50%.  Corrections to the ERA5 are derived using a quantile-quantile method for solar power, and linear regression of wind speed for wind power.  These corrections greatly reduce the ERA5 errors, including for extreme events associated with wind and solar energy droughts, that will be most challenging for electric grid operation, while also avoiding potential over-inflation of the reanalysis variability resulting from differences between point-measurements and the temporally and spatially smoother reanalysis values.

How to cite: Wilczak, J. M., Akish, E., Capotondi, A., and Compo, G.: Evaluation and Bias Correction of the ERA5 Reanalysis for Wind and Solar Energy Applications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12053, https://doi.org/10.5194/egusphere-egu24-12053, 2024.

EGU24-12318 | ECS | Posters on site | ERE2.1

Estimation of Diffuse Solar Radiation Models for a Tropical Site in Nigeria 

Olanrewaju Soneye-Arogundade and Bernhard Rappenglueck

Knowledge of solar radiation and its components in a particular area is crucial in studying solar energy and constructing solar energy devices due to the many advantages solar radiation has over fossil fuels. In this two-year study, conducted at a tropical site in Ile-Ife, Nigeria, from January 2016 to December 2017, twenty-one empirical models were proposed to estimate diffuse solar radiation using continuous solar radiation data. The models were divided into five groups and developed using relative sunshine duration and/or clearness index as input variables. The performance of five models from the literature was also examined and compared to measured data. The models' performance was evaluated using the Akaike Information Criteria (AIC), the Global Performance Index (GPI), and various statistical errors. Model 11, a quadratic model with clearness index as an input variable, had the lowest AIC (1.8098), AICC (4.8099), ∆AICC (0.0000), and GPI (-2.1796) values and was the most accurate model for estimating diffuse solar radiation at the study site and other locations with similar climatic conditions. None of the models selected from the literature was suitable for estimating diffuse solar radiation at the study site; hence, the proposed models performed better.

How to cite: Soneye-Arogundade, O. and Rappenglueck, B.: Estimation of Diffuse Solar Radiation Models for a Tropical Site in Nigeria, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12318, https://doi.org/10.5194/egusphere-egu24-12318, 2024.

EGU24-15512 | Posters on site | ERE2.1

Towards efficient methods for estimating spatio-temporal wind energy yields in mountainous regions 

Nora Helbig, Florian Hammer, Reinhard Bischoff, Michael Lehning, and Sarah Barber

Complex mountain winds provide a largely unknown wind energy potential. Mountainous terrain influences air flow by e.g., wind flow sheltering, ridge acceleration, channelling, deflections, blocking and recirculation. Its impact on the energy production of wind turbines has not yet been thoroughly quantified, but various studies show that it could be significant. To accurately assess the wind energy potential in mountainous terrain, spatio-temporal wind fields capturing local wind-topography interactions are required. Ground measurements can retrieve spatio-temporal wind fields, but even with a dense weather station network, atmospheric models are still needed to capture the full spatial variability. However, it is challenging to generate the necessary fine-scale wind fields over long timescales and large regions computationally efficiently. Wind farm planning in mountainous regions is therefore much more challenging and uncertain than in flat areas.

Here, we present our concept that addresses this challenge by evaluating and enhancing various state-of-the art computationally efficient downscaling methods (statistical and dynamical). These methods generate highly resolved spatio-temporal wind fields, considering dominant local wind-topography interactions. Using these fields, we can derive time-resolved wind energy yield potential. The evaluation involves assessing the methods across fine spatial scales (e.g., dekameter scale), large spatial extents (up to tens of kilometers), high temporal resolution (e.g., hourly scale), and long timescales (several years) in real Swiss mountain settings using wind field and energy production measurements. Our overall goal is to provide wind modelers and energy planners with recommendations for efficient methods for obtaining highly resolved spatio-temporal wind fields, enabling accurate energy yield estimations in mountainous terrain.

How to cite: Helbig, N., Hammer, F., Bischoff, R., Lehning, M., and Barber, S.: Towards efficient methods for estimating spatio-temporal wind energy yields in mountainous regions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15512, https://doi.org/10.5194/egusphere-egu24-15512, 2024.

With the rapid development of wind energy, the imperative for precise wind power predictions has intensified, with the crux lying in forecasting wind speeds. The accurate short-term (1 to 3 days) forecast of wind speeds at the hub height in boundary layer poses a significant scientific challenge. Generating such forecasts for wind farms 1 to 3 days in lead time necessitates reliance on global weather forecast products and the WRF model. In pursuit of heightened accuracy, artificial intelligence (AI) algorithms are employed to refine WRF-predicted wind speeds based on observational data.

This study draws upon observational data from five operational wind farms over three years, employing diverse deep time-series models, to examine the effectiveness and limitations of these models in post-processing corrections for WRF-predicted wind speeds. Based on our examination, we conclude that: 1) Transformer-based models have significant untapped potential, with the Pyraformer model emerging as a well-suited temporal model for post-processing corrections in wind speed and power predictions. 2) Traditional full-attention mechanisms are less effective, highlighting the importance of sparse attention as a vital approach for capturing temporal correlations in such problems. 3) The optimal model demonstrates a reduction of approximately 20% in RMSE for single-point post-processing corrections. In addition, wind speed prediction accuracy reaches around 86%, and power prediction accuracy is approximately 82%. 4) AI-based post-processing corrections may encounter challenges, including the underestimation for high-value and difficulties in reproducing forecasts below the average value.

How to cite: Xia, X. and Luo, Y.: Application of WRF-Based Single-Point Data Artificial Intelligence Post-Processing Correction Method in Practical Short-Term Wind Speed and Power Forecasting, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16521, https://doi.org/10.5194/egusphere-egu24-16521, 2024.

EGU24-17204 | Orals | ERE2.1

Improving Renewable Energy Forecasting with Meteomatics EURO1k Model 

Julie Thérèse Pasquier, Johannes Rausch, Matthias Piot, Julia Schmoeckel, Marco Thaler, Christian Schluchter, and Martin Fengler

The production of renewable energy from wind and solar sources is intricately linked to meteorological conditions, where wind speed and solar radiation play critical roles. Due to the success of renewable energies, wind turbines are increasingly placed in sites with complex terrain, while solar panels are increasingly situated in alpine areas. However, current weather models often struggle to accurately forecast the weather, especially over complicated topography, due to limitations in spatial resolution. This leads to inaccurate predictions of power production, impacting the efficiency and reliability of renewable energy systems. To address this challenge, Meteomatics developed the EURO1k model, the first pan-European weather model with a 1 km² spatial resolution, providing optimal forecasting for wind and solar power.

The EURO1k model offers a 48-hour forecast horizon, generating a new forecast every hour. In addition to standard data sources such as weather stations, radar, satellite data, and radiosondes, the EURO1k model also incorporates data from a network of Meteodrones - small, unmanned aircraft systems developed by Meteomatics - which collect vertical atmospheric profiles up to 6000m in altitude. The high resolution of the EURO1k model enables accurate representation of small-scale weather patterns, resulting in highly accurate and precise forecasts.

Meteomatics uses a forecast system that combines various global and regional weather models to predict wind and solar power, aiming to reduce average errors. Recently, EURO1k has been integrated into this system, improving intraday and day-ahead power production forecasts. The normalized root mean square error (nRMSE) was reduced by up to 8.1% for intraday and by up to 8.5% for the day-ahead wind power forecast. Furthermore, a comparison of day-ahead forecasts with actual production data, combined with balancing energy costs, demonstrates improved earnings with the addition of the EURO1k model. Indeed, the EURO1k shows especially better performance in weather situations with large uncertainties. This underscores the added value of EURO1k in power forecasting, enhancing the cost efficiency of renewable energies and fostering greater integration into the energy mix, thereby reducing CO2 emissions.

How to cite: Pasquier, J. T., Rausch, J., Piot, M., Schmoeckel, J., Thaler, M., Schluchter, C., and Fengler, M.: Improving Renewable Energy Forecasting with Meteomatics EURO1k Model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17204, https://doi.org/10.5194/egusphere-egu24-17204, 2024.

EGU24-17213 | ECS | Posters on site | ERE2.1

Comparing PV and Wind Models to Analyse Dunkelflaute Events in Ireland 

Boris Morin, Damian Flynn, Conor Sweeney, and Aina Maimo Far

The 2024 Government of Ireland Climate Action Plan aims to increase the share of renewable energy sources (RES) from 38% to 80% by 2030. In 2022, the installed capacity of wind power will surpass 4.5 GW, and the goal is to reach the same level as solar power by 2025. As the proportion of energy generated from these weather-dependent sources increases, there is a need to more accurately quantify periods when the energy generated from such sources is low for an extended period, in order to plan for appropriate reserve capacity.

The terms "Dunkelflaute" and “Renewable Drought” have been used to refer to extended periods of time when the capacity factor of both wind and solar power falls below a given threshold for a set period of time. In this study, we define a Dunkelflaute event as occurring when the combined capacity factor for wind and solar falls below a fixed threshold for at least 24 hours. The effect of choosing different values for this fixed threshold is also investigated in our study.

This study aims to investigate how the expected frequency and duration of Dunkelflaute events identified in different RES datasets may change depending on the assumptions made by the underlying RES datasets.

The first RES dataset investigated is an hourly estimate of electricity generation based on ERA5 climate variables, made by C3S Energy, which was produced using statistical and physical models. The C3S Energy dataset provides a time series of electricity supply from wind and solar photovoltaic and is trained using European Network of Transmission System Operators for Electricity (ENTSO-E) data.

This dataset has certain limitations. First, it assumes a homogeneous spatial distribution of the installed capacity of wind and solar energy production, to maintain a methodological coherence between the two RES sources. Second, the energy conversion models applied, contain simplifying approximations, such as using a single wind turbine model with a fixed hub height for all locations.

The second RES dataset has been created by the authors, which uses more detailed information about the location of the wind and PV farms. Relevant atmospheric variables are interpolated from ERA5 data to the location of each RES farm. In addition, the characteristics of the wind and PV panels at each farm are taken into account.

Both datasets are compared against the actual wind and PV capacity factor data supplied by the national grid operator of Ireland, EirGrid, for the year 2023, to indicate the performance of each model. The two datasets are then analysed across the full range of the time series, from 1979 to 2023, to determine the frequency and duration of all Dunkelflaute events during this period.

Differences in the identified Dunkelflaute events highlight the importance of considering results in the context of the driving data, which would be important for future policy decisions such as planning reserve capacity requirements, or locating future RES farms.

How to cite: Morin, B., Flynn, D., Sweeney, C., and Maimo Far, A.: Comparing PV and Wind Models to Analyse Dunkelflaute Events in Ireland, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17213, https://doi.org/10.5194/egusphere-egu24-17213, 2024.

EGU24-17394 | ECS | Orals | ERE2.1

How do convective cold pools influence the stability and turbulence conditions in the vicinity of wind turbines in Northern Germany? 

Jeffrey Thayer, Gerard Kilroy, Norman Wildmann, and Antonia Englberger

Convective cold pools routinely pass over the dense network of wind turbines in northern Germany, causing short-term changes in boundary-layer wind speeds (i.e., wind ramp events) and atmospheric stability. These large, rapid, and more-localized variations in the low-level kinematic and thermodynamic structure are difficult for numerical weather prediction models to forecast with sufficient spatial and temporal accuracy for utilization by wind turbine operators. As boundary-layer stability and winds strongly influence wind turbine structural loads, downstream turbulent wake behavior, and power generation, it is important to better understand how rapid changes in dynamic processes evolve within the vertical layer of wind turbine rotor blades (~50 - 150 meters altitude).

Using in-situ observations and high-resolution modeling focused on the WiValdi research wind park in Krummendeich, Germany, we examine how convective cold pool passages during July 2023 impact the inflow and turbulent wakes for two installed turbines with a hub height of 92 meters. Meteorological mast, Doppler wind lidar, and microwave radiometer observations provide upstream and downstream measurements of stability, vertical shear, and turbulence variations at ~1-minute resolution. While this measurement coverage adequately captures the cold pool evolution relative to each turbine, we remain somewhat limited by the fixed instrument locations for measuring upstream conditions and the three-dimensional turbulent wake structure. Therefore, we also utilize the mesoscale model WRF in large-eddy-simulation mode, with inserted generalized actuator disks acting as proxy wind turbines, to analyze far-upstream inflow conditions and three-dimensional wake characteristics during cold pool passages. The proposed work will provide a foundation for future analysis which will more robustly verify WRF output using additional WiValdi instrumentation.

How to cite: Thayer, J., Kilroy, G., Wildmann, N., and Englberger, A.: How do convective cold pools influence the stability and turbulence conditions in the vicinity of wind turbines in Northern Germany?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17394, https://doi.org/10.5194/egusphere-egu24-17394, 2024.

EGU24-17521 | ECS | Posters on site | ERE2.1

Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions 

Florian Ebmeier, Nicole Ludwig, Jannik Thümmel, Georg Martius, and Volker H. Franz

As heating is the largest factor of Greenhouse gases in the household sector, it should
be the focus of our decarbonisation efforts. Solar Thermal Systems (STS), which provide
heat based on solar energy, are a promising technology in this regard. However, STS
are prone to faults due to improper installation, maintenance, or operation, often leading
to a substantial reduction in efficiency, damage to the system, or even an increase in
energy cost. As individual monitoring is economically prohibitive for small-scale systems,
automated monitoring and fault detection should be used to address this issue.
We propose a data-driven neural network approach for fault detection in small-scale
STS, utilising probabilistic reconstructions from a long short-term memory (LSTM) based
Variational Autoencoder (VAE). Key factors in our approach are generalising from faultless
data to previously unseen systems and an anomaly score derived from an ensemble of
reconstructions. We apply this to an operational dataset provided by our industry partner,
which includes systems with different types of faults.
Our results show that our model can detect faults in STS with comparable performance
to the state-of-the-art expert-based system used by our industry partner. Furthermore, our
model can detect previously undetected faults, specifically those resulting from unexpected
behaviour in the control software or behaviours that were entirely unexpected and not
considered in the expert-based system. Thus, a combination of our model and the expert-
based system covers a broader range of faults than either system and is proposed for
further use in the industry partner’s application. Additionally, other providers without a
functioning expert-based system could build upon our work to get a minimal viable product
for fault detection in STS, purely based on data from existing systems and without the
need to install additional sensors or domain-specific knowledge.

How to cite: Ebmeier, F., Ludwig, N., Thümmel, J., Martius, G., and Franz, V. H.: Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17521, https://doi.org/10.5194/egusphere-egu24-17521, 2024.

EGU24-17552 | Orals | ERE2.1

Long range lidar for short term wind predictions for offshore wind parks 

Janina Bade, Hans-Jürgen Kirtzel, Leon Heinze, Piet Markmann, Gerhard Peters, Christoph Bollig, Sebastian Ulonska, Florian Jordan, and Guntram Huschenbeth

A novel lidar prototype for horizontal Doppler wind measurements with more than 30 km maximum range is presented. The request for such long-range measurements arose from the development of methods for improved prediction of potential and actual feed-in of wind power from offshore wind farms in the project WindRamp. The target is a short-term prediction horizon of up to 30 minutes.

The coherent lidar module is based on a robust fiber amplifier architecture developed within the project. This enables deployment in harsh environments in the future, e.g. at offshore wind farms. The emitted laser beam is eye save (class 1M).

In order to emulate operating conditions of an offshore platform, the system was deployed at the mouth of the Elbe river at 10 m above sea level with unobstructed view in a broad SW-sector. Scans between 204° and 304° azimuth at 0.35° Elevation were performed. The averaging time was 1 s and the angular speed 0.6° s-1.

The lidar performance is demonstrated by observations of wind fronts propagating through the observed area. The weather in North Germany during winter 2023/24 was characterized by unusual persistent precipitation, low hanging clouds and fog, which are unfavourable conditions for lidar operation. Therefore, the observed availability of valid data versus range represents a conservative estimate of the system’s potential.

How to cite: Bade, J., Kirtzel, H.-J., Heinze, L., Markmann, P., Peters, G., Bollig, C., Ulonska, S., Jordan, F., and Huschenbeth, G.: Long range lidar for short term wind predictions for offshore wind parks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17552, https://doi.org/10.5194/egusphere-egu24-17552, 2024.

EGU24-17848 | Posters virtual | ERE2.1

IEA Wind Task 51 – Minute and Seasonal Scale Forecasting Workshops for the Weather Driven Energy System 

Gregor Giebel, Caroline Draxl, Helmut Frank, John Zack, Corinna Möhrlen, George Kariniotakis, Jethro Browell, Ricardo Bessa, and David Lenaghan
The energy system needs a range of forecast types for its operation in addition to the narrow wind power forecast. Therefore, the notionally largest group world-wide discussing renewable forecasts, IEA Wind Task 51 “Forecasting for the Weather Driven Energy System” is reaching out to other IEA Technology Collaboration Programmes such as the ones for PV, hydropower, system integration, hydrogen etc. The three existing Work Packages (WPs) on NWP Improvements (WP1), Power and Uncertainty Forecasting (WP2) and optimal use of Forecasting Solutions (WP3), are complemented by thirteen work streams in a matrix structure.
 
The three work packages span three distinct areas of challenge in forecasting for the weather driven energy system. The first area is the continuing effort to improve the representation of physical processes in weather forecast models through both new high performance initializations and tailored parameterizations. The second area is the heterogeneity of the forecasters and end users, the full understanding of the uncertainties throughout the modelling chain and the incorporation of novel data into power forecasting algorithms. A third area is representation, communication, and use of these uncertainties to industry in forms that readily support decision-making in plant operations and electricity markets.

Task 51 focuses on facilitating communication and collaborations among international research groups engaged in the improvement of the accuracy and applicability of forecast models and their utility for the stakeholders in the wind industry, in the power sector and in the energy system.

The collaboration is also structured in work streams, more targeted around a particular topic and potentially spanning several work packages [1]. Two of those work streams are aligned around forecasting horizons, the one on Sub-seasonal to Seasonal (S2S) forecasting and the one on minute-scale forecasting. Both work streams had public workshops. The Seasonal Forecasting workshop was in Reading (UK) in May 2023, while the Minute Scale Forecasting workshop  was on 10/11 April 2024 in Risø (DK). While the S2S workshop was done in conjunction with WMO, the Minute Scale workshop had people from several other IEA Wind Tasks (Lidars, Wind Farm Flow Control and Hybrid Power Plants) as well as representatives of IEA PVPS Task 16 for the solar side in the committee. The poster will discuss the results of both workshops.

 

Reference: [1] https://www.iea-wind.org/task51/   The Task website, last accessed 10 January 2024

How to cite: Giebel, G., Draxl, C., Frank, H., Zack, J., Möhrlen, C., Kariniotakis, G., Browell, J., Bessa, R., and Lenaghan, D.: IEA Wind Task 51 – Minute and Seasonal Scale Forecasting Workshops for the Weather Driven Energy System, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17848, https://doi.org/10.5194/egusphere-egu24-17848, 2024.

As China strides towards its carbon neutrality target by 2060, the strategic planning of renewable energy distribution and power plant installations becomes imperative to fulfill the renewable energy penetration goals. This study presents a comprehensive assessment of the future projections of solar and wind power resources in China, utilizing the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) models. We examine various CMIP6 scenarios to project the geographical and temporal variations of solar and wind energy potential up to 2100. A verification assessment was carried out using terrestrial solar radiation and wind speed data sourced from 17 stations operated by the China Meteorological Administration (CMA). This evaluation revealed that the Meteorological Research Institute Earth System Model version 2-0 (MRI-ESM2-0) demonstrated overall superior performance in terms of correlation coefficients (R) and Root Mean Square Error (RMSE). Then MRI-ESM2-0 was selected to examine the spatial and temporal shifts in solar and wind potential in China. Notably, in the SSP585 scenario, a marked decrease in both PV power potential and wind power potential was observed. Additionally, the future spatial complementarity between solar and wind power in China was evaluated using the Pearson correlation coefficient and Kendall rank correlation coefficient and this was juxtaposed with the present complementarity. These maps provide a crucial reference for guiding the planning and management of renewable energy resources in China.

How to cite: Liao, Z., Xia, X., and Luo, Y.: Future Projections and Complementarity Assessment of Solar and Wind Power in China Using CMIP6 Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18234, https://doi.org/10.5194/egusphere-egu24-18234, 2024.

EGU24-18322 | ECS | Posters on site | ERE2.1

An evaluation of wind speed profiles in model-based reanalyses using ground-based measurements of high quality in the context of wind energy generation 

David Geiger, Dehong Yuan, Thomas Spangehl, Doron Callies, Jaqueline Drücke, Garrett Good, Frank Kasper, and Lukas Pauscher

Wind speed from atmospheric reanalyses is often used as input for modelling wind energy production in energy systems analysis. While some studies compare energy generation of wind turbines to those modelled from reanalysis data sets for specific sites, such analyses are usually aggregated to regional or national levels. However, nationwide evaluations using high quality wind speed measurements at heights relevant for modern wind turbines are still scarce. 

This paper presents a detailed comparison of high quality wind speed measurements of tall profiles with different reanalysis datasets at more than 75 locations in Germany measured by lidars and masts. Among the evaluated model-based products are the regional reanalysis COSMO-REA6, the global reanalysis ERA5 and the new European reanalysis CERRA. They are evaluated at different measurement heights using statistical analysis. All sites include measurement heights above 100 m and are suited for wind energy applications. This evaluation dataset provides good coverage of the relevant terrain ranging from offshore to the low mountain regions. Measurement locations are distributed all over Germany. Data was collected over multiple years (2012 – 2023) and measurement durations at individual locations range from months to multiple years. Many of the measurements were carried out adhering to the current standards used in wind resource assessment or have comparable quality. Thus, the dataset allows for a unique and comprehensive evaluation of the reanalysis datasets with respect to the representation of geographic and topographic features as well as seasonal patterns in the context of wind energy generation. 

To address current advancements in wind power generation, our analysis focuses on heights above 100 m to reflect the height of modern wind turbines. 

First analysis results using ERA5 and COSMO-REA6 indicate a distinct effect of the terrain on the model skill. Both reanalyses have a small median bias across all measurements with larger variations seen for ERA5. There is a height dependency in the bias of the wind speed, with positive (negative) biases for lower (higher) orographic measurement heights – i.e. the terrain height at which the lidar or mast is installed. The bias varies depending on the elevation of the measurement position in hilly/mountainous terrain. A clear correlation can be observed for the bias and the difference of the terrain height at the measurement location and the orographic height of the assigned model grid box. While for elevated lidar/mast positions (higher than the model grid cell) a clear tendency towards higher measured wind speeds can be observed the effect vanishes for measurement sites close to the orographic model height. 

How to cite: Geiger, D., Yuan, D., Spangehl, T., Callies, D., Drücke, J., Good, G., Kasper, F., and Pauscher, L.: An evaluation of wind speed profiles in model-based reanalyses using ground-based measurements of high quality in the context of wind energy generation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18322, https://doi.org/10.5194/egusphere-egu24-18322, 2024.

EGU24-18854 | ECS | Orals | ERE2.1

Solar Radiation Forecasts from Large Eddy Simulations and Observations using Ensemble Kalman Filtering 

Marleen van Soest, Harm Jonker, and Stephan de Roode

The increase in renewable energy production demands forecasting of wind and solar radiation due to their greater variability compared to non-renewable energy sources. The variability in solar energy is primarily caused by clouds. Large Eddy Simulation (LES) proves effective for high-resolution solar radiation prediction, capturing clouds like stratocumulus where large-scale models cannot. LES uncertainty in clouds primarily stems from initial conditions taken from these large-scale models. In this study, an ensemble Kalman filter assimilates observations into LES initial conditions. A large ensemble is created from a limited amount of LES runs by taking advantage of their internal variability. From this ensemble and measurements from the Cabauw measurement site, improved initial conditions are calculated for a range of stratocumulus cases. These cases are simulated without further interference. The method shows a 60% reduction in Root Mean Square Error (RMSE) for shortwave down solar radiation at the initial condition over the unfiltered initial condition. This improvement persists at 45% after 3 hours of simulation, showing the lasting impact of assimilated observational data on predictive accuracy. The decrease can be accounted to a combination of microphysical processes, energy fluxes from the lower boundary condition and the advective tendencies in the model. In future work, possible improvements to these processes will be identified and the method will be evaluated for other sites and cloud conditions.

How to cite: van Soest, M., Jonker, H., and de Roode, S.: Solar Radiation Forecasts from Large Eddy Simulations and Observations using Ensemble Kalman Filtering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18854, https://doi.org/10.5194/egusphere-egu24-18854, 2024.

The growing importance of the offshore wind energy sector emphasizes the need for projections of the long-term energy yield for existing and planned wind farm installations. In the North Sea, where wind farms are already pivotal to the electricity mix of the surrounding countries, the production capacity is set to increase tenfold by 2050. Studies suggest that, by 2050, the wind climate over the North Sea basin may differ significantly from the historical climate (Carvalho et al., 2021; Hahmann et al., 2022). Here, we combine an analysis of CMIP6 projections with an ERA5-driven, mesoscale wind farm simulation to further explore the impact of near-future wind climate changes over the North Sea on the energy production. First, an ensemble of 17 GCMs is reduced to 12 GCMs based on an analysis of the ability to represent the historical wind rose at 100 m MSL (1985-2014). Next, we identify future decades for each season where the wind rose exceeds the range of the historical decadal variability. Based on these extreme wind roses, we then apply a sub-sampling to a 30-year, ERA5-driven COSMO-CLM simulation covering the North Sea and incorporating a projected, 250 GW wind farm layout. Based on the sub-sampled datasets, we then quantify the impact of these extreme 10-year wind roses on the energy production of different wind farm clusters and compare this against an historical baseline.

How to cite: Borgers, R., Pinto, J., Meyers, J., and van Lipzig, N.: Future wind energy production over the North Sea for extreme, 10-year wind roses based on CMIP6-informed subsampling of an ERA5-driven RCM simulation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20273, https://doi.org/10.5194/egusphere-egu24-20273, 2024.

EGU24-20569 | Posters on site | ERE2.1

Investigation of air-sea interaction with a One-Way Coupling: MIKE 3 wave and WRF-LES 

Sima Hamzeloo, Xiaoli Guo Larsén, Alfredo Peña, and Jacob Tornfeldt Soerensen

The study aims to couple the Weather Research and Forecasting (WRF) [1] model of the large eddy simulation (LES) module with the MIKE 21 wave [2] model to study the effect of surface waves on the atmospheric flow over the North Sea. We provide a realistic surface wave field with MIKE 21 by forcing Era5 wind speed. We examine the effect of such wave fields on the atmosphere for a variety of met-ocean conditions, from normal to extreme conditions. The methodology involves applying simulated significant wave heights as the surface boundary for the WRF model, employing the LES module to capture the three-dimensional as well as smaller scales of turbulence that are unresolved by WRF-LES. The simulations will be validated using atmospheric and wave measurements in the North Sea, e.g., from the FINO 1 and 3 metocean research platforms. The preliminary results include the model outputs, including the spatial distribution of wind fields under different wave conditions.

[1] Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X. -yu. (2019). A Description of the Advanced Research WRF Model Version 4.1 (No. NCAR/TN-556+STR).

[2] https://www.mikepoweredbydhi.com/

How to cite: Hamzeloo, S., Guo Larsén, X., Peña, A., and Soerensen, J. T.: Investigation of air-sea interaction with a One-Way Coupling: MIKE 3 wave and WRF-LES, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20569, https://doi.org/10.5194/egusphere-egu24-20569, 2024.

EGU24-22047 | Orals | ERE2.1

Effect of Saharan dust storm events on the forecast of photovoltaic power generation in Hungary 

György Varga, Fruzsina Gresina, József Szeberényi, András Gelencsér, and Ágnes Rostási

The expansion of renewable energy sources is a major issue from the sustainability, climate policy and energy security perspectives. All of this expansion can be optimal if its potential is exploited to the best possible effect, and accurate forecasting of irradiance levels, both for existing and planned capacity, is essential.

Solar forecasting is the process of predicting the expected solar output from a photovoltaic (PV) system over a given period. This process is important for power system operators and utility companies who need to ensure that they can meet the electricity demand of their customers by balancing the supply and demand of energy on the grid.

Our research investigated the impact of mineral dust on photovoltaic power generation and day-ahead forecast. We analysed the year 2022, when the number of Saharan dust storm events identified in Hungary (n=16) set a new record. Our methods included satellite measurements, numerical simulations, air mass movement trajectory calculations and synoptic meteorological analyses, as well as laboratory analyses of the dust material that washed out with precipitation during Saharan dust storm events. During some episodes, a deficit of up to 500 MW between actual and predicted output was periodically detected, which required the use of expensive and polluting back-up capacity.

We have shown that the semi-direct effect of atmospheric dust particles on high-level cloud formation rather than their direct irradiance-reducing effect is responsible for the reduced accuracies of e short-term (24-h) PV energy production forecasts during these events.

The results were published in Varga et al. (2024). Effect of Saharan dust episodes on the accuracy of photovoltaic energy production forecast in Hungary (Central Europe). Renewable and Sustainable Energy Reviews 193, https://doi.org/10.1016/j.rser.2024.114289

The research was supported by the NRDI projects FK138692 and RRF-2.3.1-21-2021. The research was funded by the Sustainable Development and Technologies National Programme of the Hungarian Academy of Sciences (FFT NP FTA).

 

How to cite: Varga, G., Gresina, F., Szeberényi, J., Gelencsér, A., and Rostási, Á.: Effect of Saharan dust storm events on the forecast of photovoltaic power generation in Hungary, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22047, https://doi.org/10.5194/egusphere-egu24-22047, 2024.

EGU24-1227 | ECS | Orals | ERE2.3

Increases in extreme power shortage events of wind-solar supply systems worldwide 

Dongsheng Zheng, Dan Tong, Steven J. Davis, Yue Qin, Yang Liu, Rongchong Xu, Jin Yang, Xizhe Yan, and Qiang Zhang

Extreme power shortage events, especially occurred in wind-solar hybrid supply systems, are longstanding serious threats to safeguard energy security and socioeconomic stabilization. Here, 43 years of hourly reanalysis climatological data are leveraged to examine historical trends in defined extreme long-duration and low-reliability events in wind-solar systems worldwide. We find interannual and decadal uptrends in the two types of defined extreme power shortage events regardless of their frequency, duration, and intensity since 1980. For instance, duration of extreme low-reliability events worldwide has increased by 5.39 hours (0.113 hours y−1 on average) between 1980–2000 and 2001–2022. However, such ascending trends are unevenly distributed worldwide, with a higher variability in low- and middle-latitude developing countries but a smaller change in high-latitude developed countries. This observed uptrends in extreme power shortage events are primarily driven by increases in extremely low wind speeds instead of solar radiation. However, the changes in power shortage events and extremely low wind speeds are strongly disproportionated. Only 8.80% change in extremely low wind speed gives rise to over 30% variability in extreme power shortage events, despite a mere 1.26% change in average wind speed. Our findings underline that wind-solar hybrid supply systems will probably suffer from weakened power security if such upwards trends persist in a warmer coming future.

How to cite: Zheng, D., Tong, D., Davis, S. J., Qin, Y., Liu, Y., Xu, R., Yang, J., Yan, X., and Zhang, Q.: Increases in extreme power shortage events of wind-solar supply systems worldwide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1227, https://doi.org/10.5194/egusphere-egu24-1227, 2024.

EGU24-1409 | ECS | Posters on site | ERE2.3

Coupling economic & ecological models - the effect on biodiversity from energy grass production  

Josefin Winberg, Yann Clough, Cecilia Larsson, Johan Ekroos, and Henrik Smith

Bioenergy is expected to play a key role in the transition from fossil fuels to renewable energy sources, with biomass from grass and forestry pointed out as some of the main bioenergy sources in Northern Europe. The increased demand for biomass creates incentives for regional biofuel markets, assumed to replace imported biofuels in the substitution of fossil fuels in industries and the transport sector. In our study, we use coupled modelling of economic and ecological systems to investigate the potential landscape-scale impacts on biodiversity from increased production of lignocellulosic biomass for energy purposes in a farm-forest mosaic region in Southern Sweden. As a first step, we use the empirical and spatially explicit agent-based model AgriPoliS (Happe et al., 2006) to predict how profit-maximizing farmers respond to increased demand and price of ley biomass for energy purposes by changed farm structures and land use within a region, in response to. We expect that increased use of ley and grass biomass for energy could have a negative effect on fodder production, which in turn negatively affects dairy and livestock farming, ultimately with negative impacts on biodiversity if semi-natural grasslands (SNG) are abandoned or afforested. The impact on biodiversity from the resulting land-use changes is modelled in a second step, using a countryside species-area relationship model (cSAR) based on existing field data. By coupling the two models, we can predict the ecological impacts of changes in energy policies or markets, to ultimately understand if there are any tipping points for how much grass biomass can be used for energy until we have a decline in SNG and their associated biodiversity.

How to cite: Winberg, J., Clough, Y., Larsson, C., Ekroos, J., and Smith, H.: Coupling economic & ecological models - the effect on biodiversity from energy grass production , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1409, https://doi.org/10.5194/egusphere-egu24-1409, 2024.

EGU24-1511 | ECS | Orals | ERE2.3

Türkiye's Renewable Energy Outlook: GCM-Based Analysis and Future Projections Using the Extreme Gradient Boosting Algorithm 

Denizhan Guven, Omer Lutfi Sen, and Mehmet Ozgur Kayalica

The focus on global warming and climate change has prompted a substantial shift towards green energy technologies, which are crucial in shaping electricity generation capacity. Türkiye has actively been investing in renewable energy sources, such as wind, solar and geothermal, to reduce its dependency on imported fossil fuels and improve its energy security. In this study, we aimed to investigate the future of the electricity production in Türkiye under a changing climate using climate model projections and a machine learning algorithm. Thus, we first identified the most suitable Global Climate Models (GCMs) in simulating Türkiye's climate conditions, and then we evaluated how climate change, considering changing wind speeds, solar radiation, and temperature, will impact future electricity production in renewable energy output. We acquired historical data from 13 CMIP6 Global Climate Models, focusing on temperature, wind speed, and solar radiation parameters. Model resolution was standardized, and daily data for 120 grids in Türkiye were collected for 2010-2014. The performance of GCMs was assessed against ERA5/CRU-biased corrected datasets using metrics such as Kling-Gupta efficiency (KGE), modified index of agreement (md), and normalized root mean square error (nRMSE). A Multiple-criteria Decision Analysis (MCDA) method ranked the models based on performance, and Comprehensive rating metrics (MR) provided a unified score. Based on the result of MR, the top-performing models (ACCESS-CM2, INM-CM5–0, INM-CM4–8, and ACCESS-ESM-1-5) were ensembled, and then utilized to predict Türkiye's future climate using the Extreme Gradient Boosting Tree (XGBoost) algorithm. Projections were made for 2020-2064 under the SSP5-8.5 scenario. According to the results of the XGBoost forecast, solar power plant output is predicted to decrease across the country due to rising temperatures, with the largest drops in the Mediterranean (7.7-5.2%) and Eastern Black Sea (7.7-6.0%) regions. The Eastern Black Sea region, with low current solar potential, is deemed unsuitable for photovoltaic solar power plants in the future. Minimal decreases are anticipated in the Marmara (2.8-2.0%) and Southeastern Anatolia (2.8-4.4%) regions. Wind turbine electricity production is expected to increase, notably in Thrace (3.5-8.5%), northern Central Anatolia (3.5-8.5%), southern Southeastern Region (3.5-11.1%), and around Ağrı and Van provinces in Eastern Anatolia (3.5-6.0%). Conversely, the Eastern Black Sea, Uşak-Kütahya-Eskişehir-Bolu provinces in northwestern Anatolia (3.0-1.0%), and Mardin-Batman-Şırnak provinces in southeastern Anatolia (5.8-1.0%) may experience a decline in wind production potential. Overall, the study's findings align with existing literature, providing valuable insights into Turkey's future electricity production landscape under the influence of climate change and the transition to green energy technologies.

How to cite: Guven, D., Sen, O. L., and Kayalica, M. O.: Türkiye's Renewable Energy Outlook: GCM-Based Analysis and Future Projections Using the Extreme Gradient Boosting Algorithm, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1511, https://doi.org/10.5194/egusphere-egu24-1511, 2024.

EGU24-1723 | Posters on site | ERE2.3

Analysis of the optimal allocation of wind and solar PV capacities in a decarbonized power system in Spain using PyPSA 

Francisco Santos-Alamillos, David Pozo-Vázquez, Guadalupe Sánchez-Hernández, Antonio Jiménez-Garrote, Miguel López-Cuesta, Santiago DeFelipe-García, José Antonio Ruiz-Arias, and Joaquín Tovar-Pescador

The Spanish energy roadmap aims at producing around 80% of electricity from renewable energy by 2030, while reducing nuclear energy in a scenario of increasing demand. To this end, the target for installed capacity is 50 GW for wind energy (30 GW in 2022), 39 GW for solar PV (20 GW in 2022) and 2.5 GW for battery storage. Plans underway suggest even more ambitious goals.
We present the results of an analysis of the optimal spatial distribution of new wind and solar capacities in Spain. The study is carried out using the electrical system model PyPSA-Eur, which allows analyzing the optimal allocation and sizing of new renewable plants, taking into account the variability of generation and demand, energy costs, integration and the transmission issues. Two main scenarios are explored: 1) capital costs and 2) operational nuclear power amount (0/3/7 GW). The study assumes a 20% increase of demand by 2030 and a maximum total installed power of 160 GW. The generation and distribution networks used in PyPSA-Eur includes 9 nodes, homogeneously distributed in the study region. The model is fed with the Spanish High Resolution Renewable Energy and Demand (SHIRENDA) open access database for energy system analyses. Both combined the generation and distribution networks  and SHIRENDA allow adequately accounting for the very high spatial variability of the renewable resources in Spain. 
The results show that the new capacities should be installed in up to four of the nine regions (nodes) considered, although this strongly depends on the amount of nuclear energy. In particular, for scenarios with low nuclear power (0/3 GW) wind capacities should be installed mainly in the Galicia (northwest of the study area) and Aragón (northeast) regions, and solar PV in the regions of Murcia (southeast) and Aragón. For scenarios with fully operational nuclear energy (7 GW), the region of Andalusia (south) was also selected both for wind and solar PV. The intermediate nuclear power amount scenario (3 GW) is best from the costs standpoint. The curtailment is high (about 10%),  higher for wind, but reduces by 50% when nuclear energy is removed.
Overall, the results show that a homogeneous spatial distribution of new solar and wind capacities in the study region is far from optimal and that a better representation of the spatio-temporal variability of the renewable energy resources, as done in this study, is needed. Future work will explore the optimal ratio between solar PV and wind capacity, as well as the role of energy storage and demand management.

How to cite: Santos-Alamillos, F., Pozo-Vázquez, D., Sánchez-Hernández, G., Jiménez-Garrote, A., López-Cuesta, M., DeFelipe-García, S., Ruiz-Arias, J. A., and Tovar-Pescador, J.: Analysis of the optimal allocation of wind and solar PV capacities in a decarbonized power system in Spain using PyPSA, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1723, https://doi.org/10.5194/egusphere-egu24-1723, 2024.

EGU24-2792 | ECS | Orals | ERE2.3 | Highlight

Minimizing visual impacts of renewable energy technologies and its implications for potential, costs, and energy transformation pathways: A nationwide study on Germany 

Tsamara Tsani, Jann Michael Weinand, Tristan Pelser, Maximilian Hoffmann, Romanos Ioannidis, Rachel Maier, Stanley Risch, Felix Kullmann, Russell McKenna, and Detlef Stolten

The energy transition necessitates the massive deployment of large-scale wind turbines and solar photovoltaics (PV). However, numerous countries, including Germany, have experienced setbacks in the form of project cancellations and delays that impede the installation of these technologies, which are driven by various non-technical factors. Local opposition, prompted by concerns over the visual impact of renewable energy technologies on the surrounding landscape, is one of these. Past studies have sought to tackle this problem by incorporating the visibility of wind turbines into planning considerations and potential analyses. However, these analyses have been limited to small regions and do not account for the visibility of other renewable technologies, such as solar PV.

This study employs a nationwide, integrated, reverse-viewshed analysis, potential analysis, and techno-economic analysis. Furthermore, we evaluate the effects of designing renewable energy systems that are not visible in scenic or densely-populated areas on the remaining energy potential, energy system costs, and technological choices necessary to achieving net zero emissions by 2045. Installations visible from areas with different scenicness ratings (1–9) and population density thresholds are used to define scenarios to account for the sensitivity of visual impacts on different degrees of landscape scenicness and viewed by different population segments.

Our research reveals that wind turbines with the highest levelized cost of electricity (LCOE) in Germany coincide with those that are visible from the most scenic landscapes (scenicness level 9). Therefore, minimizing the visual impact of wind turbines by placing them out of sight from the most scenic landscape areas could align with cost-effectiveness objectives. However, if the visibility restrictions become too strict (e.g., that they not be visible from scenicness levels ≥ 5 or population densities ≥ 300 people/km2), there will not be enough wind power potential (e.g., the remaining 6.8 TWh/year or 2.4 TWh/year) to cost-effectively achieve German climate targets. Instead, PV systems, with a lower visual impact, would be more favorable and selected in the optimization to meet energy demands.

How to cite: Tsani, T., Weinand, J. M., Pelser, T., Hoffmann, M., Ioannidis, R., Maier, R., Risch, S., Kullmann, F., McKenna, R., and Stolten, D.: Minimizing visual impacts of renewable energy technologies and its implications for potential, costs, and energy transformation pathways: A nationwide study on Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2792, https://doi.org/10.5194/egusphere-egu24-2792, 2024.

EGU24-3162 | ECS | Posters on site | ERE2.3

Designing integrated and resilient multi-energy systems via multi-objective optimization and scenario analysis 

Marco Tangi and Alessandro Amaranto

Multi-energy systems (MESs), which integrate various technologies and energy vectors in a single unified framework, have proven to be effective and flexible tools for addressing the challenges faced by energy systems in a changing world. These include the need for decarbonization, increasing penetration of renewable energy sources, a push for decentralization and independence in energy markets, and rapidly shifting socio-economic and climatic conditions.

However, traditional modeling tools for MESs planning and management have several shortcomings. Existing multi-energy planning and modeling frameworks often prioritize minimizing a single monetary objective. Even when multiple objectives are considered, they are often monetized, reducing the problem to a single-objective approach and limiting the exploration of possible solutions. Additionally, MES planning struggles to account for uncertainties arising from climate and socio-economic variables, especially with the rise of non-programmable energy sources and frequent disruptions in global supply chains and energy stability.

The work hereby presented aims to overcome these limitations by developing modeling frameworks that allow for exploring various configurations of multi-energy systems based on non-comparable objectives. The goal is to extract trade-off solutions through optimization algorithms under different future scenarios. The framework integrates the single-objective configuration model CALLIOPE with multi-objective evolutionary algorithms to explore the decision space thoroughly. Multiple algorithms are tested, and the best-performing algorithm is used to extract optimal configurations under alternating scenarios of renewable energy generation potential and energy prices.

The new framework is tested on a synthetic case study based on the Sulcis Iglesiente (SI) Province in Sardinia, Italy, a region facing socio-economic challenges exacerbated by the planned phase-out of a local coal power plant. The analysis considers opportunities for investing in renewable resources, expanding the local renewable power pool, installing energy storage batteries, and transitioning from gas and oil boilers to heat pumps and biomass generators. Objectives such as air quality, energy independence, economic considerations, and emission targets are taken into account.

Results demonstrate that the new methodology allows for the extraction of multiple optimal configurations of the multi-energy system, incorporating different technology combinations based on the relative importance of objectives. Among the tested algorithms, EpsMOEA and OMOPSO perform the best, thoroughly exploring the decision space and returning unique optimal configurations. Scenario analysis reveals that the attractiveness of certain technologies, especially for heat generation, is highly sensitive to different objectives and scenarios. In contrast, others, such as onshore wind plants, remain favorable regardless of circumstances.

The methodologies presented in this work signify a significant step forward in finding optimal planning and management solutions for multi-energy systems. They successfully capture the intrinsic complexity of the problems considered, supporting the search for integrated, efficient, participatory, and sustainable solutions.

How to cite: Tangi, M. and Amaranto, A.: Designing integrated and resilient multi-energy systems via multi-objective optimization and scenario analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3162, https://doi.org/10.5194/egusphere-egu24-3162, 2024.

EGU24-3822 | ECS | Posters on site | ERE2.3

The benefits of distributed grid production: An insight on the role of spatial scale on solar PV energy 

Dimitrios Chatzopoulos, Athanasios Zisos, Nikos Mamassis, and Andreas Efstratiadis

The hydrometeorological processes associated with renewables are characterized by substantial spatiotemporal variability, and thus uncertainty, which is addressed through decentralized planning, thus taking advantage of scaling effects. The objective of this work is to provide a comprehensive investigation of the role of scale regarding solar photovoltaic production in Greece, which is one of the predominant renewables. By implementing macroscopic criteria in terms of solar potential (e.g., topography-adjusted radiation indices), we select a sufficient sample of well-distributed locations in Greece. For these points, hourly radiation and temperature data, derived from satellite products, are retrieved and validated against ground observations. Following this, we formulate a detailed simulation procedure that accounts for the two physical drivers and the panel characteristics (i.e., efficiency and temperature impacts due to heating), and we configure the baseline scenario by computing the individual production of each site. Next, to highlight the added value of distributed production and quantify the scaling effects in PV power production, we follow a Monte Carlo approach by randomly distributing PVs across the selected locations, to eventually provide a statistical analysis on the spatial and temporal domain and over different PV technologies.

How to cite: Chatzopoulos, D., Zisos, A., Mamassis, N., and Efstratiadis, A.: The benefits of distributed grid production: An insight on the role of spatial scale on solar PV energy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3822, https://doi.org/10.5194/egusphere-egu24-3822, 2024.

EGU24-3907 | Orals | ERE2.3

Extreme surface solar radiation events and implications for PV energy generation 

Doris Folini, Guillaume Senger, Boriana Chtirkova, Jan Wohland, and Martin Wild

In the context of climate science and climate change, extreme events take a prominent place because of their potentially devastating impacts on various aspects of society, from economic losses to premature deaths. Much effort has gone, in particular, into the study of heat waves and droughts. Extreme events in surface solar downwelling radiation (SSR) have, by contrast, gained little interest so far. This neglect is at odds with the prominent role that photo-voltaic (PV) energy production, which feeds on SSR, is to play in the future.

Based on daily-mean data from nine global climate models participating in the pre-industrial control experiment (piControl) of the Coupled Model Intercomparison Project-Phase 6 (CMIP6), we provide a descriptive analysis of extreme events in surface solar radiation (SSR) arising from internal variability of the climate system, with a geographical focus on central Europe, where we also anchor our analysis in 38 years of observed daily mean SSR data. Two kinds of extreme events are investigated: sustained radiation events (SREs, periods of L consecutive days with extremely high or low SSR on each single day) and cumulative radiation events (CREs, yearly minimum mean SSR over a period of L days). To explore the role of extreme SSR events in PV energy generation, we use the Global Solar Energy Estimator (GSEE, https://github.com/renewables-ninja/gsee).

Selected findings from our analysis include the following. In central Europe, the frequency of SREs shows an exponential dependence on L, their duration in days. High SREs are more frequent than low SREs over global land. CREs in central Europe are well described by Generalized Extreme Value statistics with a negative shape parameter, similar to wind and temperature extremes. PV production associated with low SREs in central Europe is roughly linear in SSR with little sensitivity to panel orientation, while for high SREs PV production depends non-linearly on SSR and sensitivity to panel orientation is pronounced. PV production of high SRE events in winter greatly exceeds PV production of low SRE events in summer. Our results are a first step in examining the characteristics and relevance of SSR extreme events, highlighting the need for further studies.

How to cite: Folini, D., Senger, G., Chtirkova, B., Wohland, J., and Wild, M.: Extreme surface solar radiation events and implications for PV energy generation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3907, https://doi.org/10.5194/egusphere-egu24-3907, 2024.

Ocean thermal energy conversion (OTEC) is a form of renewable energy that could potentially displace a significant amount of fossil-fuel generated electricity. Many multi-century simulations of the UVic Earth Systems Climate Model (UVic ESCM) are presented to better understand the climate change mitigation potential and the projected magnitude and significance of the impacts of widespread OTEC implementation at varying total power outputs (3, 5, 7, 10, and 15 TW). This study builds on previous research with the inclusion of a fully coupled atmospheric model, sea ice model, and comprehensive carbon cycle model. In high emission scenarios (Representative Concentration Pathway 8.5), OTEC was found to be able to briefly produce over 36 TW of power and power production rates of 6 TW and below were found to be sustainable on multi-millennial timescales. The study also included an emission reduction associated with OTEC that resulted in cumulative emission reductions of 1190-3600 Pg C by 2500 relative to a control scenario without OTEC deployment. Environmental impacts include globally averaged sea surface temperature decreases of 0.8-3ºC relative to control values, increased heat uptake at intermediate depths, and enhanced biological production. The implementation of OTEC was found to induce overturning cells in the North Pacific and cause significant relative increases in strength of the maximum Meridional Overturning Circulation globally with values ranging from 1.6 to 8.2 Sv by 2500, depending on the level of OTEC power generation. While caution is required and the engineering challenges would be large, early indications suggest that the large-scale implementation of OTEC could make a substantial contribution to climate change mitigation.

How to cite: Nickoloff, A., Olim, S., Eby, M., and Weaver, A.: Potential Climate Change Mitigation and Environmental Impacts from the Widespread Implementation of Ocean Thermal Energy Conversion , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4156, https://doi.org/10.5194/egusphere-egu24-4156, 2024.

Rooftop solar photovoltaics (RSPV) play a pivotal role in enabling countries and cities to transit to renewable energy and achieve net-zero emissions. Effective RSPV deployment hinges on understanding its spatiotemporal patterns and a city’s capacity to integrate it, considering the challenges of supply-demand inconsistency and grid security. Despite its importance, there is a lack of high-resolution data on RSPV in terms of both power generation and accommodation potential.

 

From the perspective of RSPV technical potential, its assessment has much larger complexity than utility-scale PV systems, as individual rooftop rather than a large site serves as the smallest unit for the assessment. Given the difficulty in mapping rooftop and its available space for RSPV installation, high resolution mapping of RSPV technical potential of an entire large country remains challenging. Current literatures on this topic reach a spatial resolution on 10-100 km2 scale, which is still hard to demonstrate details within cities, and fail to account rooftop availability for each individual pixel. From the perspective of RSPV deployment potential, current literatures tend to aggregate total RSPV supply with grid demand. As different types of buildings have different load intensity and patterns, such simplification would underestimate the variability of load-accommodation ability for RSPV.

 

To tackle these challenges, we develop an integrated framework that combines high-resolution RSPV potential assessment with consumption optimization based on building-related loads. For the technical potential evaluation, we employ a machine learning model, which integrates ~30 variables from different remote sensing images and spatial explanatory data, to quantify building rooftop area and height distribution on 1 km2 scale. A rooftop availability analysis is then applied for each 1 km2 pixel based on its building density, height and property. The RSPV capacity and hourly electricity potential are then calculated through combining available rooftop and radiation modelling. For the consumption analysis model, we first use building simulation to model the hourly power demand for different buildings (urban residential, public, industry and rural) in different cities. Combining hourly RSPV potential and building-related loads, we then optimize the RSPV deployment by profit maximization, with the constraint of a series grid-accommodation scenarios. Specifically, the grid-accommodation scenarios include minimum self-consumption and maximum peak-valley difference.

 

We apply our framework to China as a case, with a potential mapping for 3,596,668 1*1km2 pixels and deployment analysis for 369 prefecture-city for each kind of buildings. The results show that the total RSPV potential in mainland China amounts to 2785 GW, with 4631 TWh annual electricity potential. Urban residential, public, industry and rural buildings respectively takes up 7.6%,7.0%,24.9% and 60.5% for total potential. We quantify the deployable RSPV capacity under various local consumption and peak-valley difference constraints, ranking different building types in different cities based on levelized cost of energy (LCOE), value of solar (VOS), and emission reduction potential. The study concludes by discussing pathways to achieve renewable energy targets based on these findings.

How to cite: Shi, M. and Lu, X.: High spatiotemporal resolution mapping of rooftop solar technical and deployment potential in China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5238, https://doi.org/10.5194/egusphere-egu24-5238, 2024.

EGU24-6895 | ECS | Posters on site | ERE2.3

Impact of Sub-Hourly Resolution on the Design and Reliability of Residential Energy System Models 

Olalekan Omoyele, Silvana Matrone, Maximilian Hoffmann, Emanuele Ogliari, Jann Michael Weinand, Sonia Leva, and Detlef Stolten

Energy system optimization has become an indispensable tool for planning the energy transition. However, model accuracy has traditionally been limited to hourly resolution due to data availability and computational complexity. This study quantifies resolution-induced inaccuracies in hourly and sub-hourly energy system optimization models. It focuses on a self-sufficient residential building by converting minutely-resolved renewable supply and demand data from Milan, Italy into data at five-, ten-, 15-, 30-, and 60-minute intervals using both averaging and sampling methods.

The average hourly resolution shows an underestimation of 1.71% in the total annualized cost of the system compared to the minutely resolution. In the electrical sub-system, the photovoltaic inverter is predominantly affected, being twice as large at minutely resolution in order to handle supply and demand peaks on the sub-hourly scale. To test for reliability, the operational performance of the optimal system layouts obtained from different resolutions is tested with minutely-resolved data. Our results show that system designs obtained for lower resolutions are infeasible for minutely data with lost loads of up to 89.37 kWh per year or 1.37% of annual electricity demand. Depending on the value of the lost load cited in the literature, this accounts for up to €893.67 of yearly inconvenience costs. A second method based on regular sampling (i.e., taking every 60th value of the original time series) shows either an under- or overestimation of the total costs depending on the selected sample (there are 60 in total), with a tendency towards conservative design layouts. The two methods (sampling and averaging) reveal that hourly resolution could be sufficient with respect to total system cost approximations, but is unacceptable for sizing dynamically-operated components and strict reliability requirements.

Future research should seek to provide higher-resolved data on intermittent renewable energy sources and appropriately handle the resulting increased computational complexity of energy system models.

How to cite: Omoyele, O., Matrone, S., Hoffmann, M., Ogliari, E., Weinand, J. M., Leva, S., and Stolten, D.: Impact of Sub-Hourly Resolution on the Design and Reliability of Residential Energy System Models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6895, https://doi.org/10.5194/egusphere-egu24-6895, 2024.

EGU24-9038 | ECS | Orals | ERE2.3

Impact of flexibility costs on electricity systems depending on regional wind and PV capacities with an application to France. 

Samouro Dansokho, Alexis Tantet, Philippe Drobinski, and Anna Creti

The adequacy of electricity systems is strongly linked to the level of Variable Renewable Energies (VREs) penetration. To ensure supply-demand balance and in the absence of other sources of flexibility, Dispatchable Units (DUs) must be operated in a more flexible manner due to the variability of REs. We expect the DUs schedule to be strongly affected by the flexibility needed from base DUs in response to increasing VREs and taking flexibility into account may lead to using some peak DUs that would be unused in a standard merit order dispatch.

We develop and apply to France a methodology to assess the system cost response to the flexibility costs change due to VREs integration at the regional scale and the impact of the latter on DUs depending on their merit order position. 

Changes in the system cost due to flexibility are diagnosed from a residual demand for regional VRE mixes at different penetration levels optimized by the e4clim model. e4clim is a minimal optimal VRE investment model based on the minimization of a system cost assuming that dispatchable costs are a function of the aggregated dispatchable production only. Considering that the standard merit order holds and for prescribed marginal costs of production, the DUs are ranked by loadpoint and defined by their marginal and rental costs. Moreover, at time scales greater than 1 hour, there are few hard flexibility constraints. It is therefore assumed that flexibility can be modeled as costs, for instance because of the extra fatigue and human resources induced by more flexible operation of DUs. Among the different forms of flexibility, we focus on ramps and start-ups. Each producer is assigned a marginal ramp (resp.~ start-up) cost proportional to its fixed cost by a coefficient KR (resp.~KSU) determined using real data.

The variable costs of flexibility are obtained by multiplying these marginal costs by the ramps and start-ups diagnosed from e4clim.

For the reference value of KSU and 50% penetration of VREs, we find that the variable cost of start-ups contributes to 7% of the system cost and that is 3.6 times larger than the ramps contribution. Secondly, the base DUs have flexibility costs higher than the maximum flexibility cost without VRE. The middle producers see theirs decrease and they completely cancel out for the last producers since they are no longer used. Finally, for large VRE penetration (≥20%), we find that PV induces twice the flexibility need induced by wind and mostly affects base DUs while wind impacts all DUs more homogeneously. 

Although flexibility costs are lower than production costs, considering them in the optimization of DUs could reduce the system cost and result in a dispatch different from the standard merit order. Furthermore, flexibility costs could be significantly reduced by considering them in the optimization of the technological and geographical distribution of VREs. Finally, the sensitivity of our results to the estimates of the coefficients KSU and KR calls for more empirical studies of the marginal costs of flexibility. 

How to cite: Dansokho, S., Tantet, A., Drobinski, P., and Creti, A.: Impact of flexibility costs on electricity systems depending on regional wind and PV capacities with an application to France., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9038, https://doi.org/10.5194/egusphere-egu24-9038, 2024.

Weather-driven periods of low electricity production from renewable energy sources (RES) can result in so-called ‘energy droughts’, sometimes known by the German term ‘Dunkelflaute’. When these weather phenomena occur over a large geographical area for extended periods of time, and coincide with periods of high electricity demand due to cold temperatures (‘kalte Dunkelflaute’), these events pose a risk for maintaining resource adequacy in a future power system relying significantly on RES.

The most robust way of identifying energy droughts is to use hourly electricity market simulations to capture both the demand- and supply-side effects of different climate years, but these simulations are computationally intensive to perform and Transmission System Operators (TSOs) can typically only consider 30-40 historical climate years in resource adequacy studies. However, as vastly more climate data is becoming available from future climate projections, a robust way to identify ‘kalte Dunkelflauten’ from climate data alone is needed in order to identify challenging years to consider in resource adequacy studies. A variety of approaches for defining and analysing energy droughts can be found in the literature such as those which detect singular events by defining a threshold for renewable energy production (production drought) or how much (net) load is covered by RES (supply drought) (e.g. Raynaud et al., 2018), and those which use statistical methods to assess the risk of an energy drought within a predefined timespan (e.g. Ruhnau & Qvist, 2022). However, there is no clear consensus on which is the best method.

In this study we will present an evaluation of different methods to assess the risk of occurrence of such ‘kalte Dunkelflaute’ events, and validate these methods by comparing with results from detailed hourly simulations, with a focus on the Netherlands and Germany. By applying different detection methods to both existing and projected RES capacity, and using both historical and future climate data from a Pan-European Climate Database, we compare past and future risks posed by energy droughts.  As extreme ‘Dunkelflaute’ events are rare but their impact may be severe, comparing different approaches of how to statistically evaluate these events is an important contribution to evaluating resource adequacy, and assessing the resilience of the future energy.

 

References

  • Raynaud, B. Hingray, B. François & J.D. Creutin (2018). Energy droughts from variable renewable energy sources in European climates. Renewable Energy, 125, 578-589, https://doi.org/10.1016/j.renene.2018.02.130.
  • Ruhnau & S. Qvist (2022). Storage requirements in a 100% renewable electricity system: extreme events and inter-annual variability. Environmental Research Letters, 17(4), 044018, https://doi.org/10.1088/1748-9326/ac4dc8

How to cite: Biewald, B. and Zappa, W.: Evaluation of different methods for detecting 'kalte Dunkelflaute' events with respect to climate change projections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9590, https://doi.org/10.5194/egusphere-egu24-9590, 2024.

EGU24-10141 | Orals | ERE2.3

Site monitoring and activity detection of wind turbines with Planet and Sentinel-2 satellite data 

Philipp Gärtner, Claudius Wehner, Jan Siegismund, Johannes Albert, and Johannes Zschache

The ongoing energy transition presents us with the challenge of finding sustainable and efficient ways to generate renewable energy. In this context, wind energy plays a decisive role and contributes significantly to increasing the share of renewable energies in the energy mix. Strategic energy planning, effective repowering, decommissioning and the seamless integration of wind energy into the power grid require accurate location information of existing wind turbines. In this work, we present a) the precise, automated, Germany-wide identification and localization of wind turbines using high-resolution planetary data and b) an innovative approach to detect wind turbine activity using Sentinel-2 data. The detection of wind turbine activity is based on the different blade positions, including their shadow position, which is caused by slightly offset recording times of the spectral bands. The change is highlighted and classified using a Convolutional Neural Network. The presentation also discusses possible limitations and peculiarities of the methods used and emphasizes the relevance of remote sensing-based monitoring for the wind energy industry and environmental monitoring.

How to cite: Gärtner, P., Wehner, C., Siegismund, J., Albert, J., and Zschache, J.: Site monitoring and activity detection of wind turbines with Planet and Sentinel-2 satellite data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10141, https://doi.org/10.5194/egusphere-egu24-10141, 2024.

EGU24-11161 | ECS | Orals | ERE2.3

Large-scale green grabbing for wind and solar PV development in Brazil 

Michael Klingler, Nadia Ameli, Jamie Rickman, and Johannes Schmidt

Large-scale wind and solar photovoltaic (PV) infrastructures are rapidly expanding in Brazil. These low-carbon technologies can exacerbate land struggles rooted in historical inequities in land ownership, lack of regulation and weak governance. Here, we trace how green grabbing, i.e. the large-scale appropriation and control of (undesignated) public lands, both formally legal and illicit, for the development of wind and solar PV, has developed in Brazil throughout 2000 to 2021. We find that global investors and owners, mainly from Europe, are involved in 78% of wind and 96% of solar PV parks, occupying 2,148 km2 and 102 km2 of land, respectively. We also show that land privatization is the prevalent land tenure regime for securing access to and control over land, indicating significant transformations of prior (undesignated) public and common land. We conclude that green grabbing is a persistent, critical phenomenon in Brazil, requiring transparency and vigilant monitoring of land claims and tenure modifications.

How to cite: Klingler, M., Ameli, N., Rickman, J., and Schmidt, J.: Large-scale green grabbing for wind and solar PV development in Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11161, https://doi.org/10.5194/egusphere-egu24-11161, 2024.

EGU24-11505 | ECS | Posters on site | ERE2.3

Assessment of a Climate Reanalysis Product for Estimating Hourly Wind Energy Production in Italy 

Esraa Elmaddah, Marco Gaetani, Fabrizio Fattori, and Mario Motta

Recently, the Italian government has revised its national energy and climate plan (NECP) and has significantly increased its objective for wind energy capacity. However, climate change itself can affect the availability of wind resources, due to the increasing frequency of extreme weather conditions, and possible shifts in the mean climate conditions. Meanwhile, RSE has been developing the Meteorological Reanalysis Italian Dataset (MERIDA) to monitor climate variability in Italy over the last 20 years. MERIDA consists of a dynamic downscaling of the ERA5 global reanalysis using the WRF-ARW limited area model and provides hourly data. While MERIDA has a spatial resolution of 7 km, RSE has also developed MERIDA High-resolution for Renewable Energy Sources (HRES) with 4 km spatial resolution. MERIDA HRES represents an upgrade of MERIDA to describe the most relevant meteorological variables for applications related to renewable energy e.g. wind, air temperature, solar radiation.

This work presents an assessment of both MERIDA and MERIDA HRES hourly datasets for the estimation of wind power production in Italy. A comparative analysis has been conducted based on three different types of wind variables, namely: wind speed at 100 m height from MERIDA HRES, 100 m height wind speed extrapolated from MERIDA HRES wind speed at 10 m height, and 100 m height wind speed extrapolated from MERIDA wind speed at 10 m height. A wind power density model has been also developed as part of this work to estimate the wind energy production using wind speed variables. A validation for the results has been conducted vs the hourly actual wind energy output at bidding zone level based on historical data (from ENTSO-E). The results present the impact of both changes in spatial resolution and extrapolation of MERIDA datasets on the expected wind energy output vs the actual energy output.

How to cite: Elmaddah, E., Gaetani, M., Fattori, F., and Motta, M.: Assessment of a Climate Reanalysis Product for Estimating Hourly Wind Energy Production in Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11505, https://doi.org/10.5194/egusphere-egu24-11505, 2024.

EGU24-12011 | ECS | Posters on site | ERE2.3

CESM2energy: a modular climate-to-energy pipeline  

Luna Bloin-Wibe, Leonard Göke, Jonas Savelsberg, and Jan Wohland

Transitioning to renewable energy will be instrumental in mitigating the devastating effects of climate change. Because of the many unknowns in the design and dispatch of future energy systems, quantifying climate risk in the energy sector is challenging: in particular, renewable energy production and heating demand is highly reliant on meteorological conditions, which are variable in nature and shifting due to climate change.

It is therefore important to use large samples of renewable generation and demand, for current and future climates, in energy system modeling. However, lacking standardized ways to translate between the climate and energy model world, most existing studies rely on different assumptions and draw from a limited sample of available climate variables.

To this end, we created a modular climate-to-energy pipeline: starting with hourly output from the climate model CESM2, it bias corrects, translates, and scales to the various inputs of energy system models. We base the conversion on open-source tools: GSEE for solar power generation, windpowerlib for wind from climate model levels and demand.ninja for heating and cooling demand. The resulting pipeline ensures consistency of variables, with inputs and outputs tailorable to specific needs.

We use the pipeline to analyze seasonal cycles of energy generation and demand under different weather conditions, for current and future climates deploying the AnyMOD.jl framework for energy system modeling. Because of the modular approach, the pipeline could easily be adapted for other climate models and time-series, providing better evidence for climate-informed energy system planning.

How to cite: Bloin-Wibe, L., Göke, L., Savelsberg, J., and Wohland, J.: CESM2energy: a modular climate-to-energy pipeline , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12011, https://doi.org/10.5194/egusphere-egu24-12011, 2024.

It is widely acknowledged that relying on a single energy source is not viable and a mix of energy sources and carriers is required to achieve carbon neutrality [1]. Hydrogen has come to the forefront of discussion, particularly due to its potential for long-term storage.

Computational models based on mathematical optimization have been widely used in the literature, to better understand the role of hydrogen in energy systems with high shares of variable renewable energy sources (VRES). These models optimize dispatch and investment decisions for multiple energy sources and carriers over several decades. However, to maintain a holistic view of the system with reasonable complexity, it is common to decrease the temporal resolution.

Clustering hourly VRES time-series to a reduced set of representative periods is a particularly popular method in the literature. However, there is an inherent trade-off between short- and long-term dynamics: For example, clustering days enables a more accurate representation of diurnal features compared to clustering hours, although at the expense of considering seasonal trends. In the optimization problem, these features can have a direct impact on investments in short- or long-term storage, and, ultimately in VRES. Moreover, the clustered data suffers from a loss of chronology which is important for modeling long-term (hydrogen) storage and providing accurate operational and investment signals.

To address the research gap raised by [2], the approach of this modeling exercise is to analyze the performance of clustering hours (1) versus clustering days or weeks (2) in the context of storage and VRES investments. The analysis is based on different scenarios for VRES optimized in the energy system model GENeSYS-MOD co-developed by TU Berlin. To improve the shortcomings of (1) and (2), chronological clustering [3] and additional storage constraints [4] are tested and evaluated. Ultimately, the goal is not to derive normative conclusions for time-series aggregation methods and (hydrogen) storage modeling, but instead highlight different configurations and their performance under various settings.

 

[1]        L. Fan, Z. Tu, and S. H. Chan, ‘Recent development of hydrogen and fuel cell technologies: A review’, Energy Reports, vol. 7, pp. 8421–8446, Nov. 2021, doi: 10.1016/j.egyr.2021.08.003.

[2]        L. E. Kuepper, H. Teichgraeber, N. Baumgärtner, A. Bardow, and A. R. Brandt, ‘Wind data introduce error in time-series reduction for capacity expansion modelling’, Energy, vol. 256, p. 124467, Oct. 2022, doi: 10.1016/j.energy.2022.124467.

[3]        S. Pineda and J. M. Morales, ‘Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage’, IEEE Trans. Power Syst., vol. 33, no. 6, pp. 7162–7170, Nov. 2018, doi: 10.1109/TPWRS.2018.2842093.

[4]        L. Kotzur, P. Markewitz, M. Robinius, and D. Stolten, ‘Time series aggregation for energy system design: Modeling seasonal storage’, Applied Energy, vol. 213, pp. 123–135, Mar. 2018, doi: 10.1016/j.apenergy.2018.01.023.

 

How to cite: Reulein, D. and Pinel, D.: Time-Series Aggregation in Energy System Models: Navigating the trade-offs between short-term and long-term dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12640, https://doi.org/10.5194/egusphere-egu24-12640, 2024.

EGU24-13182 | ECS | Posters virtual | ERE2.3

Woody Biomass for the Developing Bioeconomy, a Billion-ton Report Update 

Maggie Davis and Matthew Langholtz

In the pursuit of net-zero targets, the United States Department of Energy releases the fourth in a series of national biomass resource assessments. Building on the studies conducted in 2005, 2011, and 2016, the Billion-ton 2023 (BT23) report, provides an advancement in the understanding of biomass resources in terms of quantity, spatial distribution, and economic accessibility. The goals of this report are to update to latest available input data (e.g., costs, yields, and economic inputs) and ensure equitable access to the latest biomass resource data and that results are findable, accessible, interoperable, and reusable (FAIR) through a data new portal. The assessment unveils nuanced regional variations in biomass availability, ranging from the immediate potential of forest wastes to the maturation of the market for woody energy crops cultivated on agricultural land. This presentation provides an assessment of renewable carbon resources potentially available from the forested and agricultural land bases in the CONUS. The analysis of biomass resources extends to forested landscapes, assessed using the Forestry Sustainability and Economic Analysis Model (ForSEAM). Additional biomass resources on agricultural land are modeled using the Policy Analysis System Model (POLYSYS), a partial-equilibrium linear programming model with a focus on the agricultural producer response. In collaboration with the U.S. Forest Service (USDA-FS), waste-based woody resources are assessed using Forest Inventory and Analysis (FIA) data and the Bioregional Inventory Originated Simulation Under Management (BioSUM) model. BioSUM models two case studies to determine the potential for trees and other waste resources to be harvested from forests, fostering resilience against the growing threat of wildfires. Throughout these analyses, sustainability constraints are incorporated including the net regeneration of forested stands, limitations on harvesting on steep slopes, and other good practices that would need to be applied based on local conditions. By providing detailed insights into woody biomass suitability for energy production, this research lays the groundwork for near-term woody biomass resource potential and a mature-market potential contributing to a developing bioeconomy. This comprehensive analysis underscores the pivotal role of biomass resources in steering the U.S. toward net-zero targets.

How to cite: Davis, M. and Langholtz, M.: Woody Biomass for the Developing Bioeconomy, a Billion-ton Report Update, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13182, https://doi.org/10.5194/egusphere-egu24-13182, 2024.

EGU24-15062 | ECS | Orals | ERE2.3

Temporally compounding energy droughts in European electricity systems with hydropower 

Lieke van der Most, Karin van der Wiel, Winnie Gerbens-Leenes, René Benders, and Richard Bintanja

As renewable energy capacities continue to grow (rapidly), the European electricity system will become vulnerable to extreme events in the form of energy droughts—periods of low production coinciding with high demand. In this work, we use a large model ensemble of 1600 years of daily climate data in conjunction with an energy production and demand modelling framework and consider present-day installed capacities to compute the full distribution of renewable electricity production and demand in the present-day climate. This approach enables us to examine in detail the specific events at the tail of the distribution that pose the highest risks to energy security.

In particular, this study focuses on energy droughts occurring once every ten years in six European countries: Sweden, Norway, Italy, Spain, France, and Switzerland, chosen because of their specific renewable energy mix including hydropower. We analyze energy drought events and their corresponding meteorological conditions and find that energy droughts result from processes that cause (temporally) compounding impacts in the energy and meteorological system. These processes can turn what might have been short-term droughts into prolonged, cumulative energy crises. For instance, low reservoir inflows in spring quadruple the chance of prolonged energy droughts: reduced snowpack and rainfall lower hydro-availability but also dry-out subsoils, increasing the chance of heatwaves and thereby extending the energy problems into summer.

We identify and evaluate three compounding energy/climate conditions and quantify the associated risks. These results can inform the energy modelling community where high-risk meteorological conditions can be applied in power system models to optimize and analyze the robustness of future energy system designs, and provide insights on the specific characteristics of the risks of multiyear energy droughts to policymakers and energy companies.

How to cite: van der Most, L., van der Wiel, K., Gerbens-Leenes, W., Benders, R., and Bintanja, R.: Temporally compounding energy droughts in European electricity systems with hydropower, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15062, https://doi.org/10.5194/egusphere-egu24-15062, 2024.

Large-scale energy system modelling plays a crucial role in the debate on energy system decarbonisation. It is common to use a bidding zone representation to model the European energy system due to the structure of the electricity market. However, this may underestimate infrastructure constraints at higher spatial resolutions. This question has been investigated in the literature, while methods for aggregating highly resolved data remain a research gap. In this study we explore various spatial resolutions using the sector-coupled energy system model Balmorel with a focus on the Danish energy system. The modelling framework will encompass detailed geospatial data of existing Danish power plants in combination with the atlite module for generating variable renewable energy (VRE) production profiles at different geographical locations. Utilising the further developed modelling framework in Balmorel, the impact of applying various spatial resolutions is thus investigated from a bidding zone, NUTS2, NUTS3, to municipal spatial resolution. Preliminary results indicate that transmission costs are underestimated at low spatial resolution. However, they remain a small part of total system costs at very high spatial resolution. Large operational differences are observed, which will be investigated further. These results will be discussed considering spatial aggregation methods and used to inform further research on a similar investigation at the European scale to advance the modelling of sector-coupled energy system models with high penetrations of VRE.

 

How to cite: Rosendal, M.: Analysis of Various Spatial Resolutions for Modelling Sector-Coupled Energy Systems, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15405, https://doi.org/10.5194/egusphere-egu24-15405, 2024.

EGU24-15765 | Posters on site | ERE2.3

Assessing the Spatiotemporal Variability and Complementarity of Renewable Energy Resources across Europe 

Amna Bibi, Ben Marzeion, Muhammad Shafeeque, and Gerald Lohmann

Europe's energy transition towards renewable sources is imperative for achieving sustainability and mitigating climate change. However, the intermittency of solar and wind power necessitates a detailed evaluation of their combined potential. This study analyzes the spatiotemporal distribution and variability of solar and wind power resources across Europe from 1979-2022, using ERA5 reanalysis data.

Empirical Orthogonal Function (EOF) analysis is used to characterize the spatiotemporal patterns of variability in irradiance and wind speed up to multidecadal timescales. Also, the variance of the estimates of the capacity factor (CF, i.e., electricity generation normalized to the installed capacity) is compared with EOF patterns.

Results show that the leading three modes of EOF represent the most variance in spatial distribution of irradiance and wind speed over Europe, with significant interannual and interdecadal fluctuations influencing spatiotemporal distribution. The temporal variance for offshore and onshore wind exhibits larger spatial heterogeneity. The spatial heterogeneity of the variance of solar CF is lower than that of wind power CF, but its amplitude is much higher in most regions. There is a negative linear correlation between the variance and mean of CF for both solar and wind power.

Southern Europe shows the lowest intermittency in solar power, while eastern and northern Europe exhibit a lower intermittency of onshore wind. Offshore wind potential is high over the Norwegian and Mediterranean Seas. We also identify areas of maximum complementary between solar and wind power resources, attempting to use large-scale datasets and established knowledge of patterns of climate variability to fulfill local-scale renewable energy requirements best. Future research will focus on developing advanced hybrid models to integrate diverse renewable energy sources, exploring their synergistic potentials.

How to cite: Bibi, A., Marzeion, B., Shafeeque, M., and Lohmann, G.: Assessing the Spatiotemporal Variability and Complementarity of Renewable Energy Resources across Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15765, https://doi.org/10.5194/egusphere-egu24-15765, 2024.

EGU24-17971 | ECS | Posters on site | ERE2.3

CFD, a radiative model, and a plant model to capture the interactions between solar panels, the atmosphere, the soil, and the plants in agrivoltaic configurations. 

Joseph Vernier, Sylvain Edouard, Baptiste Amiot, Mike Van Iseghem, Martin Ferrand, Didier Combes, Guillaume Schuchardt, and Patrick Massin
Currently, our understanding of the impact of agrivoltaic systems on the crops is limited. The presence of panels modifies the micro-climate and therefore the radiative, thermal, and aeraulic exchanges between the crop and its surrounding (S. Edouard, 2022). These modifications can lead to a loss of agricultural production, but also to a crop protection against meteorological events. Crop models, such as DSSAT, are not suitable to study the impact of solar panels on crop growth as spatial and temporal averages in the models hide spatial heterogeneities caused by the panels, and the sub-daily phenomena are not simulated. Computational fluid dynamic (CFD) allows high-fidelity simulations of multi-physics problems on different time and length scales (such as thermal hydraulics in power plants, or the drag of a wind farm). First CFD simulations applied to agrivoltaics have been carried out by (S. Zainaly, 2023), and by (H. J. Wiliams, 2023). Through Joseph Vernier’s PhD thesis, EDF R&D has initiated CFD modeling applied to agrivoltaics.
 
The CFD solver code_saturne simulates the flow over the panels, as well as the radiation, the temperature, and the humidity fields. Moreover, a 2 layers force-restore soil model computes the energy and the water exchanges between the soil and the atmosphere. The effect of the micro-climate on the photosynthesis and the plant stomatal resistance must be considered to accurately predict the plant growth. That is why, the soil-plant-atmosphere continuum model (A. Tuzet, 2003) has been implemented in code_saturne and a simplified study case composed of four solar panels has been built. First simulations of the modifications of the micro-climate by the solar panels and how it impacts the crops are very promising. Indeed, spatial heterogeneities are well simulated for the radiation, and the soil temperature (Figure 1-4), as well as for the wind speed (Figure 5, 6), the plant temperature, the photosynthesis, and the evapotranspiration. Simulations of the impact of shading on the soil water balance reveals that the plant’s energy balance is locally modified in a complex fashion that depends on the agrivoltaic power plant geometry. Water stress is considered, and it interferes with the plant's ability to photosynthesize and to transpire. Thanks to the coupling of code_saturne and the soil-plant-atmosphere continuum model, the plant state is simulated along the day for different weather conditions and agrivoltaic configurations. This is a first step towards a deeper understanding of the physical interactions within a photovoltaic system.

How to cite: Vernier, J., Edouard, S., Amiot, B., Van Iseghem, M., Ferrand, M., Combes, D., Schuchardt, G., and Massin, P.: CFD, a radiative model, and a plant model to capture the interactions between solar panels, the atmosphere, the soil, and the plants in agrivoltaic configurations., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17971, https://doi.org/10.5194/egusphere-egu24-17971, 2024.

EGU24-18667 | ECS | Orals | ERE2.3

Impact of climate change on high-VRE optimal mixes and system costs: the case of France. 

Joan Delort Ylla, Alexis Tantet, and Philippe Drobinski

High-Variable Renewable Energies (VREs) power systems are becoming a cornerstone of climate change mitigation policies across Europe. At the same time, committed and potential climate change will impact energy systems as a whole, both from the supply and demand side. Current power systems are expected to change drastically in the future, in particular in terms of VRE penetration. Finding the best mix for a given country is a complex problem that depends on multiple social, economical and political criteria. Instead of prescribing future capacities, economically optimal VRE mixes that ensure system adequacy can be used. We focus in this study on the impact of climate change on these optimal VRE mixes, as well as on the associated system costs. The study is narrowed to the case of France, which is a highly temperature sensitive country with high VRE potential resources. An ensemble of six model pairs from the EURO-CORDEX (CMIP5) project is used to obtain the meteorological variables of interest under different levels of climate change. The open source software e4clim is used to determine the economically optimal mixes. Socioeconomic scenarios of electrification are derived to study the effect of an increased base load and temperature sensitivity. We find that for the case of France increasing climate change tends to decrease demand. The PV resource is not affected significantly whereas the wind resource decreases over the whole country and up to 10 % in some regions. We show that these impacts lead to changing optimal VRE mixes. Although the installed photovoltaic (PV) capacity is not affected by climate change, except for its geographic distribution under some socioeconomic scenarios, so does the installed wind capacity. No matter the socioeconomic scenario, installed wind capacity is found to be the adjustment variable when demand decreases due to climate change: even though the wind capacity factor decreases, less capacity needs to be installed. In parallel, increasing levels of climate change lead to decreased system total costs: less VRE generation capacity is installed and generation costs for the dispatchable producers are decreased. These cost differences are up to 10 % and amount up to 6 G€ depending on the socioeconomic scenario considered. We finally find that the system marginal cost is not significantly affected by climate change. Underestimating future climate change in planification could thus lead to stranded wind farm assets up to 10 % of the installed fleet, corresponding to up to a 2 G€ loss. If stranded assets are avoided by anticipating the right climate change scenario, then adverse impacts of climate change are found to be minimal, since the cost for dispatchable producers tends to decrease and the system marginal cost is not affected. If only economically optimal VRE mixes were considered here, those can then be put under suboptimal climatic and socioeconomic conditions, paving the way to take into account the uncertainty related to climate change and socioeconomic development when dealing with VRE mix planification issues.

How to cite: Delort Ylla, J., Tantet, A., and Drobinski, P.: Impact of climate change on high-VRE optimal mixes and system costs: the case of France., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18667, https://doi.org/10.5194/egusphere-egu24-18667, 2024.

EGU24-18680 | ECS | Orals | ERE2.3

Optimising Submarine Cable Routes from Offshore Windfarms – Site Suitability Mapping 

Kevin Walsh, Paul Holloway, and Aaron Lim

The Irish Government’s Climate Action Plan aims to increase renewable energy generation capacity to 22GW by 2030, with at least 5GW of this to be produced by offshore wind. The potential to harness and develop this resource is significant; however not all areas offshore are suitable. Moreover, not all routes from windfarms to land are suitable for the submarine cables needed to transfer the energy produced offshore back to the onshore grid.

This research utilizes geospatial analysis to identify the optimal route selection for offshore export cables. The area under consideration for this research encompasses the South and West coasts of Ireland in the North Celtic Sea and Eastern Atlantic Ocean, areas under intense development for offshore wind, particularly floating wind platforms.

To achieve this, a geospatial repository of publicly available data was compiled to ensure the key features related to cable route feasibility were included in the spatial analysis. These layers included bathymetric, geological, and ecological data, as well as information on human activities in the area, to assess the potential hazards to a submarine cable within a particular region. Each variable was assessed as to its importance in the route selection model using criteria weights derived from the Analytical Hierarchical Process and expert opinion of a panel of industry representatives. The resulting data layers were combined into a suitability map of the seabed using a Weighted Overlay Analysis.

Individual offshore wind sites and coastal landfall sites were selected based on proposed developments. GIS route selection methods were then implemented, principally the least-cost path algorithm, to identify the optimal route.

The combined criteria map produced in this project classifies regions off the South and West coasts of Ireland into zones of suitability for cable routes and highlights the main areas along the coast most appropriate for cable landfall sites.  By using automated route selection tools in GIS along the suitability map surface, realistic paths along the seabed can be quickly designed to allow for adequate burial of the cable, and avoidance of obstacles, hazards and zones of exclusion.

The findings of this research indicate that distance from existing coastal substations is a key factor in terms of the economic viability of a cable route. Many windfarms will require more than one export cable, and with several windfarm proposals within the same coastal region, bottle necks at suitable landfall sites may be expected.

The results of the study provide a useful tool for policy makers and developers in the planning stage. In a broader context, these findings can be upscaled, customised and applied at a national level for other countries to allow a systematic approach to offshore renewable energy development.

How to cite: Walsh, K., Holloway, P., and Lim, A.: Optimising Submarine Cable Routes from Offshore Windfarms – Site Suitability Mapping, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18680, https://doi.org/10.5194/egusphere-egu24-18680, 2024.

EGU24-18985 | ECS | Orals | ERE2.3 | Highlight

Can Norway save the European Union's hydrogen ambition for 2030? 

Isabelle Viole, Koen van Greevenbroek, and Claudia Cheng

How competitive can Norway – one of the main natural gas suppliers to the European Union (EU) – be at exporting hydrogen to the EU? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual, B Moderate Onshore, C Accelerated Offshore. Applying a sector-coupled energy system model, we examine the economic, social and environmental implications of each scenario. Given a variety of cost assumptions in shipping, CCS and electrolysis, the pathways result in wide ranges of potential costs of hydrogen from 2-7€/kg hydrogen. In the cheaper scenarios A and B we identify roadblocks in social acceptance in either the expansion of onshore wind turbines, or in resistance against CCS technologies. Environmental trade-offs in land use change follow suit. Any of the pathways discussed requires fast investments in the necessary infrastructure paired with measures to increase social acceptance and to alleviate environmental impacts. Nonetheless, we show that Norway could supply a significant share of the EU’s hydrogen demand in the near-term future.

How to cite: Viole, I., van Greevenbroek, K., and Cheng, C.: Can Norway save the European Union's hydrogen ambition for 2030?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18985, https://doi.org/10.5194/egusphere-egu24-18985, 2024.

EGU24-19090 | ECS | Orals | ERE2.3

How important are hydrogen imports for European carbon neutrality? 

Koen van Greevenbroek, Johannes Schmidt, and Marianne Zeyringer

Hydrogen could play a crucial role in Europe's transition to carbon neutrality by 2050. However, the size and scope of the upcoming hydrogen sector is subject to great uncertainty due to unknown future costs, technological developments and competition with other energy carriers. The prospects of hydrogen imports from outside the EU is possibly subject to even greater uncertainty. Are hydrogen imports needed at all? Are they an essential element of the green transition? In the present work we use a multi-horizon energy system optimisation framework to investigate the rationale for EU hydrogen imports. In particular, we analyse when hydrogen imports may alleviate the most critical bottlenecks in achieving net carbon neutrality by 2050. The main bottlenecks of interest are rapid growth in renewable energy and hydrogen production. To ensure robustness of the results, we use near-optimal methods to map out a large variety of transition pathways under a number of different political and technological scenarios. The pathways are evaluated on cost and land-use impact inside Europe as well as potential upstream impacts of imported hydrogen. Using this holistic approach allows us to uncover when hydrogen imports are compelling and when they are dubious. 

How to cite: van Greevenbroek, K., Schmidt, J., and Zeyringer, M.: How important are hydrogen imports for European carbon neutrality?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19090, https://doi.org/10.5194/egusphere-egu24-19090, 2024.

EGU24-19829 | ECS | Posters virtual | ERE2.3

Spatiotemporal evolution and renewable energy potential in coal regions in transition 

Konstantina Pyrgaki, Pavlos Krassakis, Andreas Karavias, Theodoros Zarogiannis, Evangelia Zygouri, Anna Mpatsi, and Nikolaos Koukouzas

The WINTER project, funded by the EU, aims to develop a web GIS interactive platform that will be used as a tool for the management of coal regions in transition. The platform will guide and engage stakeholders by sharing best practices and addressing transition challenges in pilot regions at different transition stages.  The applied methodology involved a three-step process: 1) developing a geodatabase to import and standardize geospatial datasets; 2) training and implementing a Machine Learning (ML) approach [1]; and 3) identifying and quantifying land cover (LC) changes from 2018 to 2021. Particularly in Western Macedonia (Greece), the Amynteo mine, illustrated a green transition (Figure 1), converting mining areas to bare soil, vegetation and water bodies, indicating strong reclamation potential. In contrast, the Ptolemaida mine, still operational, illustrated minimal land cover changes. In Poland and specifically, in Konin region results highlighted mining expansion, affecting agricultural and wetland areas. On the other hand, the Kazimierz mine, which is already at a closure phase, exhibited a significant green transition, with a marked increase in vegetation land cover. 

The following step was the assessment for the potential for Renewable Energy Source (RES) implementation utilizing, open-source geospatial datasets, considering factors like elevation/slope, wind speed, solar radiation, and land cover/land use were used. Scenarios were designed to identify preliminary suitable areas for Photovoltaic (PV) and Wind Parks (WP) installations. In Western Macedonia, potential sites were identified adjacent to the Ptolemaida mine limits, with a significant area suitable for PV parks. In Konin, the analysis within mine boundaries revealed similar suitability for PV and WP, showing the highest potential for RES implementation. Specifically, in Western Macedonia, the potentially suitable areas for PV was higher, up to 34% of the total studied area, in contrast to the 12%-18% range observed in Konin's mines. Additionally, the potentially suitable sites for WP in Western Macedonia seem to be related due to geomorphological differences, whereas in Konin, the suitability analysis based on results within the boundaries of the open-pit mine.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101057228 (WINTER).

[1] Krassakis, P.; Karavias, A.; Nomikou, P.; Karantzalos, K.; Koukouzas, N.; Kazana, S.; Parcharidis, I. Geospatial Intelligence and Machine Learning Technique for Urban Mapping in Coastal Regions of South Aegean Volcanic Arc Islands. Geomatics 2022, 2, 297-322. https://doi.org/10.3390/geomatics2030017

How to cite: Pyrgaki, K., Krassakis, P., Karavias, A., Zarogiannis, T., Zygouri, E., Mpatsi, A., and Koukouzas, N.: Spatiotemporal evolution and renewable energy potential in coal regions in transition, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19829, https://doi.org/10.5194/egusphere-egu24-19829, 2024.

EGU24-19844 | Orals | ERE2.3

Analysis of Land Use Change at Wind Turbine Sites 

Christian Mikovits and Thomas Öberseder

A wind power plant's development causes a range of disturbances, both short-term and long-term. Wind turbine pads, access roads, substations, service buildings, and other equipment that physically occupy land or produce impermeable surfaces are examples of these disruptions. Development in forested areas, where more land must be removed around each turbine, is linked to extra direct impacts. Although the land cleared around a turbine pad does not produce impermeable surfaces, the quality of the ecosystem may be significantly degraded as a result of this alteration.

This work includes the outcomes derived from a sequence of data analytics. The analyses entail aggregating unprocessed data obtained from Copernicus Sentinel-2 satellite images covering the timeframe from 2015 to 2023. The development of algorithms tailored to distinct regions (such as EU countries and sub-regions) to identify alterations, together with the subsequent statistical examination of the alteration data, are essential elements of this procedure. The change dataset has a spatial resolution of 10m x 10m, which is the same as the input data from Sentinel-2. It is a binary raster dataset that visually shows the changes happening below and near the wind turbine sites that were built between 2015 and 2023. The statistical analysis includes the evaluation of this data and the examination of the changing raster, land-cover data, the biogeographical area, and terrain data. The statistical calculations are conducted for both individual wind turbines and wind parks comprising many wind turbines. 

How to cite: Mikovits, C. and Öberseder, T.: Analysis of Land Use Change at Wind Turbine Sites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19844, https://doi.org/10.5194/egusphere-egu24-19844, 2024.

Renewable energies (RES) infrastructure may imply local benefits and burdens. Local benefits might be, e.g., energy autonomy or trade tax income. Local burdens may be reflected, e.g., in house price losses or local opposition by citizens. From a justice perspective, this leads to our overarching research question: What would a just spatial distribution of local burdens and benefits of RES infrastructure look like and how could distributive spatial justice be achieved? With respect to the first part of the question (what would be a just distribution of benefits and burdens?), different answers may exist depending on one's understanding of distributive justice. With regard to the second part of the question (how to achieve a just distribution of benefits and burdens?), there are basically two possible approaches. Firstly, the distribution of local benefits can be addressed. By modifying the institutional framework and/or the spatial infrastructure deployment the spatial distribution of benefits can be adjusted to achieve a distribution of benefits and burdens being considered as just. Secondly, the distribution of local burdens can be targeted and affected in order to achieve a distribution of benefits and burdens considered as just. That is the focus of this paper. We assume local burdens being solely influenced by infrastructure deployment and local benefits being spatially equivalent to the burdens, thus not requiring separate consideration.

To examine our overarching research question, we use a numerical optimization model. We apply the model to the future spatial deployment of onshore wind power and utility scale solar photovoltaics (PV) in Germany in a fully renewable system. We optimize the deployment for given energy production targets with respect to a cost-effectiveness criterion and with respect to various alternative spatial distributive justice understandings. These relate to the equality principle, ability principle, and benefit-principle. By doing so, we shed light on three sub-questions: (1) Can spatial distributive justice of the RES deployment be improved and if so, to what extent? Our results show that, due to regional RES potential limitations, perfect justice cannot be achieved for any of the assumed concepts of justice. But our results also show that the current infrastructure allocation can be assessed as relatively unjust with regard to all assumed concepts of justice, and considerable improvements in justice would be possible by redistributing deployment in space. (2) What relevance do different normative assumptions have for the spatial distributional justice of the RES deployment? Our results reveal that the justice assessment of an allocation depends largely on the understanding of justice that is assumed. In addition, our optimizations demonstrate that it is easier to establish distributive justice between larger and fewer regions than between smaller and more regions. (3) To what extent are there trade-offs between pursuing spatial distributive justice and cost-effectiveness? We find that optimizing the RES deployment by levelized costs of electricity (LCOE) is comparatively unfavorable with respect to the assumed justice concepts. In turn, optimizing the spatial allocation of RES deployment by the assumed justice concepts increases LCOE by 1%-14%, compared to the cost-optimal allocation.

How to cite: Lehmann, P. and Reutter, F.: Spatial distributive justice for onshore wind power and utility-scale solar PV deployment – Optimizations for the case of Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19996, https://doi.org/10.5194/egusphere-egu24-19996, 2024.

EGU24-20555 | Posters on site | ERE2.3

The Influence of Meteorological Variables on Energy Demand in the Federal District of Brazil 

Helber Gomes, Dirceu Herdies, Luiz Fernando Santos, João Augusto Hackerott, Mário Quadro, Fabricio Daniel dos Santos Silva, Robinson Semolini, Bruno Dantas Cerqueira, and Djanilton Henrique Moura Junior

The effects of climate change are present in all segments of society in general, and especially in the energy segment. Brazil plays a leading role in the use of renewable energy, with the majority of its matrix coming from renewable sources. In this sense, evaluating the impact of meteorological variables on the injected energy load is fundamental for the efficient use of energy. The present study aims to analyze the influences of meteorological variables on the energy load demand in Brasília - Federal District, Brazil. We analyzed observed data from the National Institute of Meteorology (INMET) weather station, reanalysis data from the National Center for Environmental Prediction (NCEP), reanalysis from the European Center for Medium-Range Weather Forecast (ECMWF), Modern-Era Retrospective Analysis for Research and Application Aerosol Reanalysis (MERRA-2) and South American Mapping of Temperature (SAMeT). Pearson's correlation coefficient was used to quantify the linear relationship between the observed data from the meteorological station (INMET) and the monthly load injected in Brasília in the period 2016-2022. Subsequently, statistical metrics, commonly used for model checking, were applied to regularly spaced global numerical model datasets with assimilation: CFSR (NCEP), ERA5 (ECMWF), MERRA2 (NASA), and SAMET (INPE). A high direct correlation of the injected monthly load with the monthly averages of maximum and average temperatures (0.65 and 0.51), respectively, and an inverse correlation with the observed average relative humidity (-0.50) was noted. Furthermore, the representativeness of temperatures from the data sets was investigated, aiming to expand the analysis to other regions that do not have meteorological station data. In validating the maximum and average temperature, it was possible to identify a high representative potential of the sets covered. Highlights include SAMET and ERA5, which presented the highest correlation coefficients (higher than 0.90) and standard deviation proportional to observational data.

How to cite: Gomes, H., Herdies, D., Santos, L. F., Hackerott, J. A., Quadro, M., Silva, F. D. D. S., Semolini, R., Cerqueira, B. D., and Junior, D. H. M.: The Influence of Meteorological Variables on Energy Demand in the Federal District of Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20555, https://doi.org/10.5194/egusphere-egu24-20555, 2024.

EGU24-21977 | ECS | Posters on site | ERE2.3

Two million European single-family homes could abandon the grid by 2050 

Max Kleinebrahm, Jann Michael Weinand, Elias Naber, Russell McKenna, Armin Ardone, and Wolf Fichter

Rising energy procurement costs and declining capital costs for renewable technologies are provoking interest in self-sufficiency for individual buildings. In this study, we evaluate the potential of self-sufficient energy supply for 41 million freestanding single-family buildings in the European building stock under current and future (2050) conditions. We employ spatial microsimulation to derive a synthetic building stock, identify 4000 representative buildings and calculate weather-robust cost-minimal energy systems using a high-performance computing cluster. Subsequently, we train surrogate models to transfer the optimization results to the entire European building stock. Our analyses show that buildings in regions with low seasonality, high solar radiation and high electricity procurement costs have high potential for self-sufficiency. Under current techno-economic conditions, 53% of the 41 million buildings are technically able to supply themselves independently from external infrastructures by only using local rooftop solar radiation, and this proportion could increase to 75% by 2050. By paying a premium of up to 50% compared to grid-dependent systems with electrified heat supplies, building owners could make over two million buildings fully energy self-sufficient by 2050.

How to cite: Kleinebrahm, M., Weinand, J. M., Naber, E., McKenna, R., Ardone, A., and Fichter, W.: Two million European single-family homes could abandon the grid by 2050, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21977, https://doi.org/10.5194/egusphere-egu24-21977, 2024.

Energy communities (ECs) are expected to play a major role in the European Energy transition. However, quantitative evidence shows that these only represent a minor share of the installed capacity compared to commercial large scale installations. We argue that understanding better the conditions that facilitate of ECs emergence, will contribute to develop adequate strategies to foster their creation. In previous research we conducted an exploratory data analysis to understand the relation between the availability and quality of variable renewable energy sources (VRES) and ECs (Ramirez Camargo et al., 2023). This was done by calculating 38 indicators of VRES availability and quality for NUTS3 regions derived from four decades of ERA5 data, together with a data set of energy cooperatives (most common organizational form of ECs) as a proxy for ECs with less than 1,000 entries. With the publication of an extensive data set of citizen-led energy initiatives, agglomerating all sorts of ECs and with more than 10,000 entries (Wierling et al., 2023), we replicated the previously proposed methodology. The main results from previous research hold at the continental level:  There is a slight predominance of citizen-led energy initiatives where wind resources are high and opposite results for solar resources. Nevertheless, the considerably higher data availability allows for a detailed analysis at the country level. We observe that while countries with large numbers of citizen-led energy initiatives, such as Germany, drive what we observed at the continental level, there are countries such as Denmark and Ireland with high positive correlation between citizen-led energy initiatives and wind power capacity factors. There are also clear exceptions to the rule, such as the Czech Republic, with a high positive correlation to solar resources that reaches 0.731. At the country level, just as at the continental level, we see that clusters of citizen-led energy initiatives develop where VRES availability is high but it also becomes more evident that there are large differences in the concentration of citizen-led energy initiatives between NUTS3 regions of individual countries. Finally, we see a large unexploited potential for development of ECs in the regions of the continent that are rich in solar resources.

Ramirez Camargo, L., Lode, M., & Coosemans, T. (2023, Januar 13). Assessing the relevance of renewable energy resources availability for the existence of Energy Cooperatives in Europe. Volume 29: Closing Carbon Cycles – A Transformation Process Involving Technology, Economy, and Society: Part IV. Applied Energy Conference 2022. https://doi.org/10.46855/energy-proceedings-10327

Wierling, A., Schwanitz, V. J., Zeiss, J. P., von Beck, C., Paudler, H. A., Koren, I. K., Kraudzun, T., Marcroft, T., Müller, L., Andreadakis, Z., Candelise, C., Dufner, S., Getabecha, M., Glaase, G., Hubert, W., Lupi, V., Majidi, S., Mohammadi, S., Nosar, N. S., … Zoubin, N. (2023). A Europe-wide inventory of citizen-led energy action with data from 29 countries and over 10000 initiatives. Scientific Data, 10(1), Article 1. https://doi.org/10.1038/s41597-022-01902-5

How to cite: Ramirez Camargo, L. and Lode, M. L.: Evaluating the relevance of the availability of variable renewable energy resources for the existence of citizen-led energy initiatives in Europe, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22066, https://doi.org/10.5194/egusphere-egu24-22066, 2024.

EGU24-1601 | ECS | Orals | ERE2.4

The exploitation of resources created by human beings, an additional alternative for reducing emissions 

Isabel C. Gil García, Ana Fernández Guillamón, Adela Ramos Escudero, and Ángel Molina García

The urgency of mitigating emissions on our planet drives the exploration of various sources of clean energy. Natural resources, such as solar radiation, wind and water, provide the opportunity to transform them into forms of sustainable energy. In recent decades, the advancement of wind technologies has led the sector to reach full maturity, encompassing both large-scale wind energy generation in marine and terrestrial environments and the implementation of mini-wind solutions. However, we often underestimate the human activities, production processes or technological innovations that generate clean resources, without fully taking advantage of their potential. In this context, the central purpose of this work is to take advantage of wind gusts caused unnaturally and, through small wind power, convert them into clean energy. The proposal is organized in three phases: in the first, a data analysis is carried out that involves taking in situ samples of wind speed and an evaluation of wind potential; In the second stage, the energy conversion is carried out, selecting the mini-wind technology through multi-criteria evaluation methods and determining the amount of electrical energy to be generated; Finally, in the third phase, an analysis of results is carried out that covers different scenarios evaluated according to indicators such as the electricity consumption to be replaced, the quantification of avoided emissions and an economic analysis.

Acknowledgements: Project PID2021-126082OB-C22 funded by MICIU/AEI/10.13039/501100011033 and FEDER, EU

How to cite: Gil García, I. C., Fernández Guillamón, A., Ramos Escudero, A., and Molina García, Á.: The exploitation of resources created by human beings, an additional alternative for reducing emissions, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1601, https://doi.org/10.5194/egusphere-egu24-1601, 2024.

EGU24-3165 | Orals | ERE2.4

Driving energy systems with synthetic electricity prices 

Andreas Efstratiadis and Georgia-Konstantina Sakki

The electricity market across Europe, which is key driver of energy systems, has been subject to structural changes in the last years, in order to favor the penetration of renewables and foster decarbonization. A substantial guiding principle was the establishment of the Target Model, configurating a new era of the energy as a trading product. The corollary of this is that the market price became more dependent on socioeconomic disturbances and highly unpredictable events, such as financial, geopolitical and health crises. As a consequence, the variability of electricity prices has been substantially increased across all scales (intra-day, seasonal and long-run). In order to embed this major facet of uncertainty within energy systems modelling, we introduce a generic stochastic simulation framework to represent the market dynamics as a random process across scales. Key challenge is capturing the behavior of electricity prices that are characterized by significant peculiarities, such as volatility and spikes, as well as double periodicity, across seasons and within the intraday cycle. Further challenges are induced by the limited statistical information under the Target Model structure, and the need to implement within the synthetic data abnormal yet persistent shifts, as observed during the recent energy crisis. To stress-test our methodology, we simulate the quite different statistical response of the electricity prices in Greece and Portugal – two countries with similar economic conditions, fiscal compliance, and financial sector development.

How to cite: Efstratiadis, A. and Sakki, G.-K.: Driving energy systems with synthetic electricity prices, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3165, https://doi.org/10.5194/egusphere-egu24-3165, 2024.

Experiences with open-pit mine flooding in German lignite mining regions show that hydrogeochemical processes can become critical ecological and economic factors for the realisation of Pumped Hydropower Storage (PHS) projects. Depending on sulphide and oxygen availability as well as buffering and dilution processes, acid mine drainage and increased sulphate and metal concentrations can have negative impacts on ecosystems and groundwater resources as well as the installed PHS infrastructure. As part of the ATLANTIS project, this study aimed to quantify changes in water composition in the lower storage reservoir resulting from PHS operation under different hydrogeochemical boundary conditions.

For the present parameter study, data sets on hydrochemistry, hydrogeology and morphology of flooded German lignite mines were used to develop a numerical hydrochemical reaction path modelling framework. The chemical calculations were realised with PHREEQC (Parkhurst and Appelo, 2013), while the input and output data were managed via the Python-based simulation framework and PHREEQPY (Müller, 2022). The implemented parallelised workflow made it possible to analyse and evaluate more than 12,000 parameter combinations for various hydrogeological baseline scenarios. The influencing factors considered in these scenarios include the initial flooding of the open-pit mines, source terms due to precipitation, groundwater inflow and surface run-off, mineral availability in the sediments and the pumping cycles between the lower and upper storage reservoirs of the PHS installation.

The simulation results show that the volume of water migrating between the lower reservoir and its adjacent aquifers during the pumping cycles is too small to influence the water quality of the reservoir on the short term. The long-term availability of buffer capacities in the reservoir and the present mine waste dumps determine the eventual development of acidic or pH-neutral mine water. Sulphate concentrations are mainly influenced by dilution processes, what underlines the relevance of considering additional source and sink terms. Depending on these as well as the availability of oxygen and quantities of sulphide present in the adjacent sediments, the time required to achieve a chemical equilibrium in the lower storage reservoir varies from a few weeks to several years.

In summary, the operation of pumped storage power installations in former open-pit lignite mines can be safely realised if sufficient acid buffer capacities are available and dilution through additional water in- and outflows is sufficiently high.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS).

Literature

Müller, M. (2022): PhreeqPy - Python Tools for PHREEQC. https://www.phreeqpy.com/. Last accessed on 09.01.2024.

Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497.

How to cite: Schnepper, T., Kühn, M., and Kempka, T.: Pumped hydropower storage operation in open-pit lignite mines does not compromise the pit lake and groundwater chemistry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3947, https://doi.org/10.5194/egusphere-egu24-3947, 2024.

EGU24-4728 * | ECS | Posters on site | ERE2.4 | Highlight

Water and energy storage in the European Union: current situation and future challenges 

Emanuele Quaranta and Alberto Pistocchi

Water storage is a key element in the Water-Energy-Food-Ecosystem Nexus (WEFE Nexus). Water storage systems can be designed in different ways and for serving several purposes. Water storage is also associated to energy storage, when there are turbines that can produce energy (hydropower) from the stored water. More than 95% of the current energy storage in the European Union (EU), and worldwide, is stored in artificial reservoirs behind dams. In the EU there are 4491 large dams according to the ICOLD 2023 register of dams and 40% are for multiple uses. Overall, 48% of EU’s large dams are powered. The theoretical potential of energy storage Es in hydropower reservoirs (Es = k·h·V, V=reservoir volume in m3, h=head in m, k=coefficient for the units) is some tens of TWh in the EU. The theoretical potential so calculated is 9 TWh for pumped-hydropower storage (PHS) plants. However, the real technical storage capacity is much less than the theoretical one (1200 GWh in PHSs).

As the impacts of climate change have considerable effects on people and ecosystems, which are exacerbated by a rising demand for water due to population and economic growth, higher temperatures and decrease in precipitation in certain regions, water&energy storage capacity needs to increase in the future, and should consider the interdependence of water, energy and food security and ecosystems – water, soil, and land. In this contribution, the current state-of-the art of PHSs in the EU is discussed and the challenges are presented considering the recent developments at the European Commission and the results of the Clean Energy Technology Observatory. The sustainable development opportunities for PHS are discussed also considering the recent Horizon calls for projects launched by the European Commission and the ongoing discussions on water and energy storage needs, with focus on emerging technologies and strategies, e.g. sustainable refurbishment, digitalization, new electro-mechanical equipment and reservoir interconnection.

How to cite: Quaranta, E. and Pistocchi, A.: Water and energy storage in the European Union: current situation and future challenges, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4728, https://doi.org/10.5194/egusphere-egu24-4728, 2024.

EGU24-6138 | ECS | Posters virtual | ERE2.4

An integrated GIS-based approach to support the implementation of Hybrid Pumped Hydro Storage in the abandoned Kardia open-pit lignite mine, Western Greece 

Pavlos Krassakis, Andreas Karavias, Evangelia Zygouri, Christos Roumpos, Georgios Louloudis, Konstantina Pyrgaki, Nikolaos Koukouzas, and Thomas Kempka

Energy supply security is currently a key priority for all European countries, and with a global push towards a decarbonized future, safe and reliable energy storage becomes vital. The European Union (EU) has introduced the European Green Deal, an initiative with the objective of achieving carbon neutrality by 2050, effectively reducing greenhouse gas (GHG) emissions to zero. As Europe shifts away from fossil fuels, renewable energy sources like solar, wind, and hydropower gain prominence. Hydropower, especially hybrid pumped hydropower storage (HPHS) of excess energy from the electric grid and renewable sources, can contribute to energy security. In this context, modern geospatial technologies can be utilized as promising tools at a preliminary phase by policymakers and stakeholders to support decision-making regarding the implementation of HPHS systems in terms of spatial development and design strategy. The Geographic Information System (GIS) approach can mitigate financial costs, environmental impacts, and exposure to potential hazards such as landslides, earthquakes, and floods. Additionally, advanced geospatial approaches can maximize energy storage by calculating the best-fit options according to the morphological properties of the landscape and the end-user requirements.

In the current work, selected criteria were defined and weighted based on topographic and proximity criteria, utilizing multi-criteria decision-making (MCDM), particularly the Analytical Hierarchy Process (AHP). Regarding the abandoned Greek Kardia open-pit lignite mine, seven regions were identified and recognized as suitable for HPHS, with potential energy storage capacities ranging from 1.09 to 5.16 GWh [1]. The preliminary suitability of different areas within the mine boundaries was categorized, ranging from very low to very high scoring, providing a better understanding of the existing landscape's potential for HPHS implementation. The utilized methodology identified specific locations with the highest potential for constructing the upper reservoir of the envisaged HPHS system, introducing an innovative tool that can be applied to open pit mines globally.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS).

 

[1] Krassakis, P., Karavias, A., Zygouri, E., Roumpos, C., Louloudis, G., Pyrgaki, K., Koukouzas, N., Kempka, T., Karapanos, D. (2023): GIS-Based Assessment of Hybrid Pumped Hydro Storage as a Potential Solution 

How to cite: Krassakis, P., Karavias, A., Zygouri, E., Roumpos, C., Louloudis, G., Pyrgaki, K., Koukouzas, N., and Kempka, T.: An integrated GIS-based approach to support the implementation of Hybrid Pumped Hydro Storage in the abandoned Kardia open-pit lignite mine, Western Greece, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6138, https://doi.org/10.5194/egusphere-egu24-6138, 2024.

EGU24-6199 | ECS | Posters on site | ERE2.4 | Highlight

Floating solar power potential for the Alto Adige region of Italy 

Pranav Dhawan, Daniele Dalla Torre, Andrea Menapace, and Maurizio Righetti

This contribution investigates the untapped solar power potential across the lakes within the hydropower reservoirs nestled in the Alto Adige region of Italy. With the region housing more than 500 hydropower plants, amounting to approximately 90% of the regions electricity generation, these hydropower plants bear the burden of electricity generation within the region. Moreover, only 3.6% of the total energy is generated by solar energy. However, these plants boast large surface areas on the reservoirs which remains untapped. As the global energy demand surges and sustainable power sources become imperative, leveraging solar energy atop water reservoirs presents a promising opportunity. The study employs Geographic Information Systems coupled with solar radiation modelling to assess and quantify the solar energy capacity of these reservoirs. The region is characterized by a typical Alpine climatology with warm summers and cold and dry winters, and a complex topography of valleys and peaks. Considering the unique topographical characteristics and climatic conditions of the region, the research evaluates the feasibility and viability of harnessing solar energy over these reservoirs. Preliminary findings underscore the substantial yet underutilized solar power potential in this hydro-rich landscape, opening avenues for further renewable energy generation strategies. The outcome of this study is not only to contribute to enhancing the renewable energy portfolio of the region but also to advocate for innovative and sustainable approaches. This added power potential will be further utilized for reducing the load on hydropower plants during peak load times. Moreover, this can be integrated with pumped hydro storage systems for optimum electricity generation and flexibility of the energy systems.

How to cite: Dhawan, P., Dalla Torre, D., Menapace, A., and Righetti, M.: Floating solar power potential for the Alto Adige region of Italy, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6199, https://doi.org/10.5194/egusphere-egu24-6199, 2024.

EGU24-6474 | ECS | Posters on site | ERE2.4

Transforming Coal Pits into Renewable Energy Sources: The Potential of Pumped Hydro Energy Storage in the Bełchatów Lignite Mine 

Mikołaj Ostraszewski, Jakub Jurasz, and Bartosz Kaźmierczak

The energy transition faces key challenges, including enhancing energy storage potential due to renewable energy sources' intermittency and repurposing abandoned coal mines. An approach that addresses both of these problems comprehensively is the concept of using mine pits and mine spoil heaps as sites for the location of Pumped Hydro Energy Storage (PHES). Poland, as one of European Union's member states and one of the most coal-dependent countries in Europe, is also obliged to fulfil postulates related to the transformation of electricity system. This work focuses on use of the Bełchatów Lignite Mine (KWB-B) for construction of PHES plant. It was assumed that the pits would take over a role of lower reservoir, while heaps could be used as upper reservoirs. This should be accomplished through appropriate earthworks, construction and prior analysis in terms of soil bearing capacity. In our work GIS tools have been used to determine key parameters of the PHES system, which are reservoir volumes, usable head and land slopes. The energy losses associated with required length of a penstock have been determined for each alternative. The Colebrook-White formula has been used to calculate a pressure height losses in the pipelines. In next step, another factor affecting reduction in energy efficiency has been determined, which is a loss of water from the upper reservoir through evaporation. The evaporation model has been created based on Penman-Monteith equation, which combines water evaporation related to aerodynamics and solar radiation. Finally, process of filling the reservoirs has been analysed, which under spontaneous groundwater filling conditions is estimated to take up to 60 years. For this reason, the concept presented in this study assumes additional reservoir recharge from the Warta River, around 29 kilometres away.  According to the results of the analysis done, in the most realistic scenarios, an energy storage potential is between 16.4 and 36.2 GWh per cycle, operating at around 75% efficiency, producing between 9.7 and 13.7 TWh of electricity per year, which is around 45% of the energy produced annually by the nearby Bełchatów lignite-fired power plant. The proposed concept enables 2,5-5,5-fold increase of the closed loop PHES storage capacity in Poland. With plans to phase out this lignite-fired power plant by 2036, development of a hybrid renewable energy source is a promising alternative that could be implemented in this area, especially if the filling of reservoirs would be accelerated through additional supply from nearby rivers.

How to cite: Ostraszewski, M., Jurasz, J., and Kaźmierczak, B.: Transforming Coal Pits into Renewable Energy Sources: The Potential of Pumped Hydro Energy Storage in the Bełchatów Lignite Mine, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6474, https://doi.org/10.5194/egusphere-egu24-6474, 2024.

EGU24-6875 | ECS | Posters virtual | ERE2.4

Numerical modeling of a multi-storey solar still in transient mode 

Chukwumaobi Kingsley Oluah, Howard.O. Njoku, and Valentine Ekechukwu

Climate change has intensified the scarcity of available drinking water, posing a critical challenge to communities, particularly in rural Africa. In response to this pressing issue, our study investigates the transient behavior of a multi-storey solar still as a sustainable solution. The research focuses on harnessing the latent heat of vaporization from the first stage to heat subsequent stages, utilizing pre-heated water from a reservoir. Mathematical models for each stage were developed, and the Numerical modeling of the system was carried out using the finite-forward discretization scheme on Scilab software. Insolation data for Nsukka (Lat = 6.8567, Lon= 7.3958) were extracted from NASA-SSC Database. Results showcase the temperature distribution and distillate output at each stage. The first stage reached an optimal temperature of 325K, while the second and third stages maintained averages of 322K and 319K, respectively. Distillate outputs for the first, second, and third stages were 7.5Kg, 5.7Kg, and 3.8Kg, respectively. An overall still efficiency of 16% was achieved, hence the multi-story solar still presents a promising avenue to address the water scarcity challenges faced by vulnerable rural communities in Africa.

How to cite: Oluah, C. K., Njoku, H. O., and Ekechukwu, V.: Numerical modeling of a multi-storey solar still in transient mode, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6875, https://doi.org/10.5194/egusphere-egu24-6875, 2024.

EGU24-8940 | ECS | Posters on site | ERE2.4

Mapping the perceived potential of energy harvesters to increase the resilience of European water and energy infrastructure  

Ivana Stepanovic, Steven Frigerio, Bjarnhéðinn Guðlaugsson, and David Finger

Energy harvesters (EH) are devices designed to capture and convert mechanical energy from ambient sources, which can be converted into electrical energy employing piezoelectric materials. Energy harvesters can capture and convert energy from vortex-induced vibrations in water flows such as water piping, open channels, and natural streams. Harvested energy can be used or stored to power small electronic components such as wireless sensors. These renewable and environmentally friendly energy sources present a tremendous opportunity for clean, reliable off-grid energy production. In the EU–funded project H-HOPE (https://h-hope.eu/), energy harvesters are being designed and deployed for various environments to improve and enhance water and energy resilience. In Reykjavik, Iceland, EH can be implemented in geothermal pipes, providing energy for a sensor network in volcanically active areas where traditional powered sources may be unavailable. In Izmir, Turkey, EH can be implemented in the water supply systems, offering reliable electricity for monitoring drinking water quality. In Padova, Italy, EH can be installed in sewage systems, providing electricity for continuous water quality monitoring. In natural streams like fjords (West Fjords, Iceland) and lagoons (Venice, Italy), EH might be upscaled to power remote communities. However, the perceived potential for EH by local energy stakeholders is unknown. To address this, we conducted semi-structured interviews and expert surveys with relevant stakeholder groups to assess the perceived opportunities and challenges of implementing EH in the mentioned case studies. Preliminary results are visualized in causal diagrams, identifying positive and negative feedback loops of stakeholder perceptions. This analysis identifies both enablers and barriers to EH implementation. These findings will be used to develop a strategy for energy and water service providers to enhance the resilience of existing water and energy infrastructure across Europe and assess the potential uptake and validation of such technology by stakeholders.

How to cite: Stepanovic, I., Frigerio, S., Guðlaugsson, B., and Finger, D.: Mapping the perceived potential of energy harvesters to increase the resilience of European water and energy infrastructure , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8940, https://doi.org/10.5194/egusphere-egu24-8940, 2024.

EGU24-10643 | Posters on site | ERE2.4

Economics of hybrid pumped hydropower storage in open-pit coal mines: a case study for the Greek energy market 

Christopher Otto, Priscilla Ernst, Christos Roumpos, Georgios Louloudis, Eleni Mertiri, and Thomas Kempka

A dynamic techno-economic simulation model was developed in the present study to assess the capital and operational expenditures (CAPEX and OPEX) as well as economic benefits of a prospective Hybrid Pumped Hydropower Storage (HPHS) installation to be realised in a Greek open-pit coal mine. HPHS is not only limited to store excess energy produced by local renewable energy sources, i.e. photovoltaic and wind farms, but can also be applied to store of excess energy from the grid. The model accounts for losses incurring while charging the upper reservoir with water when excess energy from renewables and the electric grid is available as well as discharging the upper reservoir for electricity generation when the national electricity demand exceeds the energy provided by the grid. A charging and discharging scheme for the HPHS installation was dynamically calibrated by means of historic energy market data, including time-dependent national energy balances and electric grid costs. Revenues, expenditures and profits of the prospective HPHS implementation were calculated, and the key economic parameters Net Present Value (NPV), Internal Rate of Return (IRR) and Discount Payback Period (DPP) determined to account for the overall system profitability during its’ entire operational time. The model’s technical implementation and applicability for system performance optimisation are discussed in detail, especially in view of a profit-maximising energy storage scheme, which was developed and applied to stochastic grid cost development predictions to account for the HPHS installation’s potential future benefits. The model can be integrated with online real-time data to economically schedule HPHS operation in highly dynamic energy systems.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS).

How to cite: Otto, C., Ernst, P., Roumpos, C., Louloudis, G., Mertiri, E., and Kempka, T.: Economics of hybrid pumped hydropower storage in open-pit coal mines: a case study for the Greek energy market, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10643, https://doi.org/10.5194/egusphere-egu24-10643, 2024.

The energy transition from fossil fuels to clean energy is inevitable to limit climate change. Pumped storage hydropower can compensate for the balancing of load, provides various ancillary services, and integrates variable renewable energy in the grid. However, uncertainties such as market structure, long-term natural gas prices, variable renewable energy penetration, government incentives, and regulatory policy, making it difficult to develop a viable business case for new pumped storage hydropower project. This research article considers improving financial viability of new pumped storage hydropower project by reducing upfront capital cost by utilizing existing conventional hydropower resources and reducing pumping/charging costs by finding a potential site where a water stream reaches the upper reservoir directly. The fast-track, cost-effective, and environmentally friendly approach investigates the true potential of this configuration for the case study of 200 MW Paras pumped storage hydropower with integrated 300 MW Balakot conventional hydropower. The article considers numerous scenarios for both closed-loop and open-loop pumped storage hydropower and calculates the levelized cost of energy storage for all scenarios. The conclusion is that utilizing existing conventional hydropower resources and considering water stream entering directly into the upper reservoir decreases the overall levelized cost of energy storage from 13.73 to 11.77 US$ cents/kWh (14% decrease). Results of the levelized cost of energy storage can help experts, regulators, power producers, and investors realize the importance of pumped storage hydropower as a reliable, cost-effective, and sustainable energy storage technology to integrate variable renewable energy.

How to cite: Jehanzeb, N. and Ali, M.: Strategy to improve financial viability of pumped storage hydropower: Techno-economic analysis of pumped storage hydropower with existing conventional hydropower, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14403, https://doi.org/10.5194/egusphere-egu24-14403, 2024.

EGU24-14604 | ECS | Orals | ERE2.4 | Highlight

Energy transition modelling for Arctic off-grid communities 

Magnus de Witt

Fossil fuels are the most common energy source for electricity generation among remote Arctic communities. Around 80% of remote Arctic communities are predominantly dependent on fossil fuels. Even if some of the region's raw oil is extracted, the processed diesel must be imported. Transport is complicated and strongly dependent on weather conditions. The harsh Arctic weather conditions make fuel transportation is complex, risky, and costly, leading to an insecure primary energy supply and high fuel prices. For many inhabitants of remote Arctic communities, the high energy costs are a significant cost burden because unemployment, temporary jobs, and a resulting low income are common issues.

This presentation will focus on implementation strategies for renewable energy sources into the energy mix or remote Arctic communities, with the aim of lowering the energy cost burden. System dynamics (SD) was used as a methodology to analyze the implementation process. SD is a powerful tool to analyse complex systems with non-linear relationships, as it is expected to find them among the policy strategies for energy transition. Investing in renewable energy technology is a high-risk investment; therefore, the effects of such an investment must be well studied to gain an optimal result. Furthermore, remote communities are often facing financial issues, which limits investments in energy infrastructure. Therefore, the model is looking for affordable ways of investing in energy infrastructure. The model aims for a sustainable performance of the utility provider, whereas the electricity cost for the consumer can be lowered and the utility provider can perform well on a non-profit base.

The research indicates that renewables have a significant cost-saving potential. Despite all the positive effects, investment in renewables can be risky and a substantial commitment for small communities. Moreover, depending on the type of renewable energy source, there can be some environmental impact that must be considered as well. With a well-structured integration process, the most can be made out of the investment, which helps lower the energy cost burden even more.

How to cite: de Witt, M.: Energy transition modelling for Arctic off-grid communities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14604, https://doi.org/10.5194/egusphere-egu24-14604, 2024.

EGU24-14751 | Posters on site | ERE2.4 | Highlight

An interdisciplinary feasibility study on hybrid pumped hydropower storage of excess energy in open-pit coal mines 

Thomas Kempka, Priscilla Ernst, Krzysztof Kapusta, Nikolaos Koukouzas, Jaroslaw Darmosz, Christos Roumpos, and Tomas Fernandez-Steeger and the ATLANTIS project partners

Scheduled decommissioning of lignite mining in Europe requires innovative and economic strategies to support coal regions in transition. The R&D project ATLANTIS is funded by the European Research Fund for Coal and Steel and started in late 2021, aiming at an integrated feasibility assessment on transforming open-pit coal mines into hybrid energy storage projects. Hereby, repurposing of open-pit mines for hybrid pumped hydropower storage (HPHS) of excess energy from the electric grid and renewable sources available in the vicinity of open-pit mines in abandonment will contribute to the EU Green Deal, while increasing the economic value,

stabilising the regional job market and contributing to EU energy supply security. The main objective of ATLANTIS is the elaboration of a technical and economic feasibility study on HPHS in open-pit coal mines. The present contribution will provide insights into the R&D activities within the scope of the project. For that purpose, two target open-pit mines in Greece and Poland were investigated in detail, including analyses supported by geographic information systems (GIS) based on previously defined HPHS design criteria [1] as well as hydro(geo)logical, hydrochemical and geotechnical analyses. At the Polish Szczercow mine located in the Lodz Coal Basin a HPHS capacity of 350 MW can be realised with a hydraulic head difference of approximately 240 m, able to support even more than the currently planned build-out of about 250 MW renewable energy sources made up of wind and photovoltaic parks. A total capacity of 180 MW is feasible at the Kardia mine in the Ptolemais Basin in Greece, whereby the hydraulic head difference amounts to about 100 m. Here, a photovoltaic build-out of 1.2 GW is scheduled. Potential environmental impacts were addressed via an extended risk analysis, consisting of qualitative and quantitative and components integrated by means of feedback loops and supported by the experience of multidisciplinary experts in the fields of hydrogeology, hydrogeochemistry, geotechnics, mining engineering and socio-economics. Based on the findings of this assessment, mitigation measures for the high-ranked risks were defined and are already considered in the course of the specific mine abandonment processes. Dynamic economic models using day-ahead energy market data were implemented to optimise the HPHS operation and support decision making related to the operational modes. Furthermore, the results of the socio-economic footprint assessment undertaken highlight the regional benefits of the HPHS implementation as alternative to the previously envisaged restoration procedure. The elaborated feasibility study on HPHS in abandoned open-pit mines is a key contribution to the industrial partner’s decision making processes and further demonstrates the potentials for application of the project’s findings at the EU level.

 

[1] Krassakis, P., Karavias, A., Zygouri, E., Roumpos, C., Louloudis, G., Pyrgaki, K., Koukouzas, N., Kempka, T., Karapanos, D. (2023): GIS-Based Assessment of Hybrid Pumped Hydro Storage as a Potential Solution for the Clean Energy Transition: The Case of the Kardia Lignite Mine, Western Greece. Sensors, 23, 2, 593. https://doi.org/10.3390/s23020593

 

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS).

How to cite: Kempka, T., Ernst, P., Kapusta, K., Koukouzas, N., Darmosz, J., Roumpos, C., and Fernandez-Steeger, T. and the ATLANTIS project partners: An interdisciplinary feasibility study on hybrid pumped hydropower storage of excess energy in open-pit coal mines, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14751, https://doi.org/10.5194/egusphere-egu24-14751, 2024.

EGU24-15312 | Orals | ERE2.4 | Highlight

Renewable Electric Energy Storage Systems by Storage Spheres on the Seabed of Deep Lakes or Oceans 

Horst Schmidt-Boecking, Gerhard Luther, and Michael Düren

A new underwater pumped storage hydropower concept (U.PSH) is described that can store electric energy by using the high water pressure on the seabed or in deep lakes to accomplish the energy transition from fossil to renewable sources. Conventional PSH basically consists of two storage reservoirs (upper and lower lake) at different topographical heights. It needs special topographic conditions, which are only limitedly available in mountain regions. Furthermore, due to the lack of acceptance and the environmental impact, new conventional PSH projects are very unlikely to be built in larger numbers in Europe in the near future. The presented solution solves these issues by placing the storage system on the seabed, thus having other geographical requirements. It operates as follows: in contrast to well-known conventional PSH plants, which use two separated water reservoirs of different heights, the U.PSH concept uses the static pressure of the water column in deep waters by installing a hollow concrete sphere in deep water. Storage of electricity is achieved by using a reversible pump in the hollow sphere. Upon opening a valve, water flows into the sphere, driving a turbine/generator, thereby discharging the storage device. In order to re-charge, the water is pumped out of the sphere against the pressure of the surrounding water. The power and energy, respectively, are proportional to the surrounding water pressure at the seabed. The amount of energy stored depends on the water depth and the volume of the spheres. The spheres need a cable connection to the shore or to a close-by floating transformer station (e.g., an offshore wind plant). No other connections such as pipes are needed. The functional principle of this energy storage technology, its state of the art, its storage capacity and the shape and size of the required spheres are discussed in this paper.

 

How to cite: Schmidt-Boecking, H., Luther, G., and Düren, M.: Renewable Electric Energy Storage Systems by Storage Spheres on the Seabed of Deep Lakes or Oceans, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15312, https://doi.org/10.5194/egusphere-egu24-15312, 2024.

EGU24-15490 | ECS | Posters on site | ERE2.4 | Highlight

REFLOW: An Open-Source Workflow for Renewable Energy Potentials 

Tristan Pelser, Maximilian Hoffmann, Jann Michael Weinand, Patrick Kuckertz, and Detlef Stolten

The evaluation of renewable energy potentials is growing in importance across multiple sectors, including in energy planning, industry, research, and policymaking. Despite the abundance of research into regional-scale wind and solar potentials, the lack of reproducibility and transparent workflows consistently challenges validity. Typically, various steps in renewable energy potential assessments are conducted separately, often employing various software tools. For example, data processing may be conducted in a python environment, whereas land eligibility analysis utilizes Geographic Information System (GIS) software, and wind or solar simulations rely on specialized power simulation software. This fragmentation, as well as a general trend of not making data and code openly available, impedes efficiency, and hampers scientific reproducibility and transparency. Our research introduces a novel, Python-based open-source workflow to address this issue, which employs a pipeline management module (Luigi) for handling tasks and dependencies, and Docker to facilitate deployment. The Renewable Energy workFLOW (REFLOW) encompasses the entire process of potential assessments, from data acquisition to result validation, including critical steps like land eligibility assessment, explicit turbine placement, and wind or solar simulation. The workflow’s modular nature allows for integration of various software modules and methodologies, enhancing its adaptability to various scenarios. REFLOW can be executed in multiple operating systems and requires no significant programming knowledge. We demonstrate REFLOW’s capabilities for a wind power potential assessment of the North Sea region, conducting ocean eligibility exclusions, explicit turbine placings, and a simulation of wind power generation for a period of ten years, using data from the ERA-5 reanalysis and Global Wind Atlas. The entire workflow is fully reproducible, including all data acquisition and processing steps. Thus, REFLOW constitutes a significant step towards versatile yet reproducible renewable potential analyses.

How to cite: Pelser, T., Hoffmann, M., Weinand, J. M., Kuckertz, P., and Stolten, D.: REFLOW: An Open-Source Workflow for Renewable Energy Potentials, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15490, https://doi.org/10.5194/egusphere-egu24-15490, 2024.

Decommissioning of lignite mines in the course of phasing-out electric power generation from fossil fuels in the European Union (EU) is one of the strategic key pillars to reduce net greenhouse gas emissions by 55% compared to the 1990 levels until 2030, and achieving climate-neutrality by 2050. Germany’s emission reduction targets are even more ambitious with 65% and 88% scheduled for 2030 and 2040, respectively.

Repurposing phasing-out open-pit lignite mines into Hybrid Pumped Hydropower Storage (HPHS) installations for excess energy from the electric grid and renewable sources contributes not only to the EU Green Deal and EU energy supply security, but additionally increases the regional economic value and stabilises the job market. Pumped hydropower is well established for storing excess energy from the electric grid and for load balancing with a total installed capacity of 7.89 GW in Germany and a current total share of 78.6% in the energy storage sector. Total round-trip efficiencies of up to 85% and extraordinary high storage capacities compared to battery-based solutions can be realised. Another advantage of implementing the technology in former open-pit mines is that costs of constructing the two required storage reservoirs are significantly reduced due to the presence of the open-pit hole. Multiple open-pit lignite mines were closed in Germany in the past decades, and nine are expected to cease operation by 2038.

Several studies assessing the potentials for PHS based on existing reservoirs have been undertaken, but these do not yet consider the additional potentials of open-pit mines. The aim of the present study was to investigate the potential theoretical and technical power production and storage capacities becoming available by repurposing open-pit mines into HPHS installations. For that purpose, a database of German open-pit lignite mines was established. An analytical model was employed to determine the power production and storage capacities of 34 German open-pit lignite mines, of which 13 meet the previously defined site selection criteria. The results of the present study show that the currently installed energy storage potentials in Germany can be extended by additional 1.42 GW (increase by >18%), increasing the installed PHS capacity by 22.9% at the same time. These findings are essential to guide policy and decision makers involved in the German and EU energy transition. The methodology will be extended to member states of the European Union in the next step.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS).

How to cite: Ernst, P. and Kempka, T.: Pumped hydropower storage in open-pit mines can provide substantial contributions to the EU energy transition – a case study for Germany, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16405, https://doi.org/10.5194/egusphere-egu24-16405, 2024.

EGU24-17781 | ECS | Posters on site | ERE2.4

Stability of abandoned pit slopes - how groundwater and lake water control may support safety while flooding 

Ershad Ud Dowlah Pahlowan, Anika Braun, and Tomas Manuel Fernandez-Steeger

In Europe's move towards decarbonization, renewable energy emerges as a key player, with its swift expansion crucial for cutting carbon emissions. Addressing the modern energy scenario, an innovative energy storage solution: transforming abandoned open-pit mines into large-scale facilities using pumped-hydro power storage (PHS) technology. This system operates by elevating water during periods of low demand and releasing it to produce electricity when demand peaks, mirroring the function of traditional hydropower plants.

 

A significant hurdle in this transformation is the initial flooding of the mine pit to form the lower reservoir of the PHS system. This phase is marked by complex geotechnical challenges, especially in terms of mine slope stability, influenced by the difference in water head between the groundwater and the reservoir. A key aspect is to ensure an effective hydraulic head, particularly when the upper reservoir is positioned in areas with minimal head difference from the lower reservoir. Our approach revolves around managing the head difference between lake water and groundwater effectively, safeguarding mine slope stability for PHS operations. To achieve this, we compare two different approaches to maintaining the head difference between lake water and groundwater and assess the slope stability for different stages of flooding using the Limit Equilibrium Method (LEM). These approaches are aimed at refining the hydraulic head difference, thereby maximizing the energy generation capacity and promoting efficient, sustainable energy solutions, while ensuring safe operation in terms of slope stability.

How to cite: Pahlowan, E. U. D., Braun, A., and Fernandez-Steeger, T. M.: Stability of abandoned pit slopes - how groundwater and lake water control may support safety while flooding, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17781, https://doi.org/10.5194/egusphere-egu24-17781, 2024.

EGU24-18817 | Posters on site | ERE2.4

Analysis of socio-economic footprint for hybrid pumped hydropower storage of excess energy in open-pit coal mines 

Mariusz Kruczek, Krzysztof Kapusta, Thomas Kempka, Priscilla Ernst, Nikolaos Koukouzas, Jaroslaw Darmosz, Christos Roumpos, and Tomas Fernandez-Steeger and the and the ATLANTIS project partners

The transformation of coal regions into sustainable energy landscapes is a strategic aspect of the European Union's initiatives. This article is dedicated to the socio-economic impact of establishing hybrid pumped hydro storage (HPHS) systems in transitioning open-pit coal mines. The solutions analyzed are part of the ATLANTIS project, which aims to utilize the unique regional benefits these areas offer for HPHS implementation.

These coal regions, currently undergoing transformation, present distinct advantages for HPHS system deployment. Their existing infrastructure, coupled with the potential for integration with renewable energy sources, makes them ideal sites for sustainable energy projects. The ATLANTIS project enables the identification and assessment of these attributes to maximize both economic and socio-economic benefits, enhancing the value of these regions beyond their traditional mining roles.

A crucial element of this research is the quantification of the enhanced socio-economic footprint resulting from the HPHS system implementation. This includes a detailed analysis of how repurposing former coal mines into energy storage facilities can lead to broader economic revitalization and socio-economic development. The study examines the potential for job creation, stimulation of local economies, and overall improvement in community well-being.

By utilizing a comprehensive approach that incorporates regional economic, demographic, and market data, this article offers a holistic view of the socio-economic benefits of HPHS systems. It aims to provide valuable insights to policymakers, energy sector stakeholders, and affected communities, underscoring the potential of repurposed mining landscapes in the transition towards a more sustainable energy future.

The present study has received funding from the Research Fund for Coal and Steel—2020, under grant agreement No. 101034022 (ATLANTIS). 

How to cite: Kruczek, M., Kapusta, K., Kempka, T., Ernst, P., Koukouzas, N., Darmosz, J., Roumpos, C., and Fernandez-Steeger, T. and the and the ATLANTIS project partners: Analysis of socio-economic footprint for hybrid pumped hydropower storage of excess energy in open-pit coal mines, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18817, https://doi.org/10.5194/egusphere-egu24-18817, 2024.

EGU24-18880 | Orals | ERE2.4

Variability in solar based power generation at the Eastern Mediterranean 

Nikolaos Papadimitriou, Ilias Fountoulakis, John Kapsomenakis, Antonis Gkikas, Stelios Kazadzis, Christos Spyrou, Kyriakoula Papachristopoulou, and Christos S. Zerefos

The utilization of solar photovoltaic (PV) systems is pivotal towards reducing carbon dioxide emissions within the global energy infrastructure. Climate change is expected to affect atmospheric parameters such as cloudiness and aerosol, which are key drivers for the amount of solar radiation reaching the ground thus modifying solar-based power generation.

In this study, we investigate the spatial and the temporal variability of PV plant energy output at the Eastern Mediterranean during the period 1950-2100, with respect to the corresponding changes of the shortwave downwelling solar radiation, aerosols, cloudiness, and near-surface air temperature, which are crucial for estimating the solar energy production. The trends of the aforementioned variables, obtained from the analysis of gridded data retrieved from climate model projections, particularly from the “Region 4: Europe (EURO)” domain of the Coordinate Regional Downscaling Experiment (CORDEX). Aiming to achieve an optimal approximation of the changes in aerosol concentrations, we employed the CNRM-ALADIN63 Regional Climate Model (RCM) which interactively considers them. The boundary conditions are derived from projections of the CNRM-CERFACS-CM5 Global Climate Model (GCM) within the 5th phase of the Climate Model Intercomparison Project (CMIP5), encompassing the historical period (1951-2005) and future scenarios (2006-2100) under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. For the determination of the PV energy output, we performed numerical simulations with the Global Solar Energy Estimator (GSEE), considering as input values the downwelling solar radiation, air temperature, as well as the tilt, capacity, and orientation of the hypothetical solar panels. Data from the Copernicus Atmosphere Monitoring Service (CAMS) and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) datasets are also used for the intercomparison of the modelled downwelling solar radiation. Our results are in line with the findings of previous studies that assessed such changes capable of causing surplus or deficit in relation to solar energy production. Furthermore, we show that changes can vary significantly on a regional level.

Nikolaos Papadimitriou would like to acknowledge funding for the participation at EMS2023 from the COST Action HARMONIA (International network for harmonization of atmospheric aerosol retrievals from ground based photometers), CA21119. The work has been also supported by the action titled “Support for upgrading the operation of the National Network for Climate Change (CLIMPACT II)”, funded by the Public Investment Program of Greece, General Secretary of Research and Technology/Ministry of Development and Investments.

How to cite: Papadimitriou, N., Fountoulakis, I., Kapsomenakis, J., Gkikas, A., Kazadzis, S., Spyrou, C., Papachristopoulou, K., and Zerefos, C. S.: Variability in solar based power generation at the Eastern Mediterranean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18880, https://doi.org/10.5194/egusphere-egu24-18880, 2024.

EGU24-19151 | Posters on site | ERE2.4

Mapping the service areas of Great Britain's electrical infrastructure for whole systems energy decarbonisation 

Joseph Day, Grant Wilson, and Daniel Donaldson

Electrification of presently fossil fuel-based heating and transport is recognised as a likely pathway to a net-zero energy system. However, this vector shifting will involve a significantly increased demand on the electrical network. Therefore, it is important to understand the geography of the electrical network in order to accurately anticipate where these extra demands will occur and their impact on peak demand, to in turn determine if network reinforcement or other flexibility solutions would be required.

The area served by the same piece of electrical infrastructure, such as a medium voltage substation (also known as a primary) can be visualised by a polygon drawn around all the properties which are normally connected to that substation. This is a valuable addition to the energy data landscape which can enable analysis of local area-based decarbonisation scenarios. For the first time, our research group has compiled the shapefiles from the six separate regional Distribution Network Operator companies in Great Britain, into a single map and made the data available for public download on Zenodo (it has been downloaded over 150 times as of January 2024)[1].  The methods of deriving these boundaries also differ by region (most use a Voronoi polygon algorithm), so they are critically contrasted.

The main benefit of opening this data is to allow the open modelling community and other stakeholders to conduct their own analysis and develop use cases with a geographical unit (the primary substation) which is relevant to the energy network, rather than an administrative or political boundary for which lots of energy datasets are currently aggregated to. In one example of these use cases, we have used open government data on annual domestic energy consumption to determine the mean domestic gas consumption for each of the 4436 primary substations in Great Britain, and place them in a decile. This gives insight into the scale of energy required to be provided through that part of the electrical network rather than the gas network, should heat be electrified to varying degrees. As a fundamental dataset and combined with network monitoring data, our output could ultimately enable advanced models such as digital twins, with applications for near and long-term energy forecasting could be used for system planning.


[1] https://zenodo.org/records/8335354

How to cite: Day, J., Wilson, G., and Donaldson, D.: Mapping the service areas of Great Britain's electrical infrastructure for whole systems energy decarbonisation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19151, https://doi.org/10.5194/egusphere-egu24-19151, 2024.

EGU24-19423 | Orals | ERE2.4 | Highlight

Increasing the grid flexibility with unconventional operations in one of the largest Pumped Storage Units in EU: The tests of XFLEX Hydro in Frades II 

Alexandre Presas, David Valentin, Pedro Diogo, Alexander Jung, Greco Moraga, Monica Egusquiza, and Eduard Egusquiza

Pumped Storage Hydro (PSH) serves as a significant contributor to the transition toward net zero emissions, primarily due to its capacity to store large amounts of energy with very high round trip efficiency (RTE). This is especially important given the volatility and unpredictability associated with the current energy mix, largely influenced by sources like wind and solar. Managing these fluctuations poses operational challenges for pumped storage schemes.

 Within the EU's XFLEX Hydro project, various developments and operational strategies have been tested in one of the largest Pumped Storage Units globally, aiming to enhance actual Pumped Storage flexibility services. This paper provides an overview of the effects of some of the most demanding operations, such as fast ramps, variations in power as pumps, and hydraulic short-circuit operations in the hydraulic and mechanical components of the Pumped Storage Plant.

How to cite: Presas, A., Valentin, D., Diogo, P., Jung, A., Moraga, G., Egusquiza, M., and Egusquiza, E.: Increasing the grid flexibility with unconventional operations in one of the largest Pumped Storage Units in EU: The tests of XFLEX Hydro in Frades II, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19423, https://doi.org/10.5194/egusphere-egu24-19423, 2024.

EGU24-20832 | ECS | Orals | ERE2.4 | Highlight

Electric Heat Revolution: Navigating the Landscape of the Future Electricity Market 

Lavin (Zahra) Jafaripour and Andrew Lyden

As the global movement towards energy system decarbonisation gains traction, electrifying heating systems will emerge as a pivotal approach to reduce carbon emissions in the residential sector. Electrification promises a substantial reduction in greenhouse gas emissions, improved energy efficiency, and enhanced integration of renewable energy sources. Furthermore, electrified heating systems offer flexibility through demand response mechanisms, contributing to grid stability and resilience.

The challenges of electrifying heating systems are multifaceted, encompassing technical, economic, and societal dimensions. Technical challenges include addressing the intermittency of renewable energy sources, upgrading existing infrastructure, and ensuring grid reliability. Economic challenges involve the costs associated with technology adoption, potential impacts on energy bills, and financial considerations for both consumers and utilities. Societal challenges entail managing the transition for workers in traditional heating industries, addressing potential energy poverty concerns, and fostering public acceptance. Alongside these challenges, the transition to electrified heating has the potential to substantially influence the optimal design of the electricity market. The increased demand for electricity, particularly during peak heating periods, necessitates strategic modifications to market structure and operational frameworks. While there are numerous advantages and improvements associated with this transition, a comprehensive understanding of the impacts of the electrification of heating within the electricity market is currently lacking.

The main goal of this paper is to assess the advantages and challenges associated with electrifying heating systems, and potential changes that will take place in the electricity market as a consequence of this electrification. Through an extensive literature review, this paper seeks to contribute valuable insights for the development of strategies and policies aimed at fostering a sustainable and resilient electricity market, particularly in the evolving landscape of heating technologies.This study lays the groundwork for additional investigation into the complex relationship between heating electrification and the changing electricity market, providing important information for sustainable energy transitions.

 

How to cite: Jafaripour, L. (. and Lyden, A.: Electric Heat Revolution: Navigating the Landscape of the Future Electricity Market, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20832, https://doi.org/10.5194/egusphere-egu24-20832, 2024.

EGU24-22348 | Posters on site | ERE2.4

A Digital Twin for Energy Consumption Prediction and Thermal Comfort Monitoring in Residential Buildings 

Fateme Dinmohammadi and Mahmood Shafiee

The residential buildings are responsible for approximately one-quarter of the world’s energy consumption and they play an important role in mitigating global climate change [1]. To improve energy efficiency and reduce carbon emissions in the residential building sector, it is necessary to predict the energy consumption and thermal comfort under urban climate change. Nowadays, a large number of IoT sensors, smart devices, and controllers are employed in residential buildings to collect data in a real time and seamless way [2]. Emerging digital technologies such as digital twins and artificial intelligence (AI) have proven to be a powerful tool to provide dynamic, reliable, robust, and agile models for predicting and monitoring the energy consumption and air pollutant emission levels in industrial sectors. However, digital twins have received very little attention in the residential building sector [3]. The main aim of this study is to design and prototype a digital twin system for thermal comfort monitoring, visualization, tracking, energy management, prediction, and optimization in residential buildings under different indoor and outdoor conditions. Our digital twin model is built on the basis of a thermodynamic model incorporating building attributes such as heating methods, wall materials, etc. with real-time sensor and IoT information updates to deliver precise predictive foresight and also determine the different indoor and outdoor factors contributing the most to residential heating energy consumption and thermal comfort. The digital twin model will be tested on a dataset containing sensor data, building attribute features, and weather records during five heating seasons of residential buildings in a city in Russia that was published for the first time in 2020 by IEEE DataPort [4].

References

[1] United Nations Environment Programme (2020), The 2020 global status report for building and construction: Towards a zero-emission, efficient and resilient buildings and construction sector. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf.

[2] Dinmohammadi, F., Wilson, D. Understanding the End-Users and Technical Requirements for Real-Time Streaming Data Analytics and Visualisation, In: 26th International Conference on Automation and Computing (ICAC), 02-04 September 2021, Portsmouth, UK.

[3] Dinmohammadi, F., Han, Y., Shafiee, M. Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms, Energies 16 (9), 3748.

[4] Zorin, P.; Stukach, O. Data of Heating Meters from Residential Buildings in Tomsk (Russia) for Statistical Modeling of Thermal Characteristics of Buildings. Published on 5 October 2020. Available online: https://ieee-dataport.org/documents/data-heating-meters-residential-buildings-tomsk-russia-statistical-modeling-thermal.

How to cite: Dinmohammadi, F. and Shafiee, M.: A Digital Twin for Energy Consumption Prediction and Thermal Comfort Monitoring in Residential Buildings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22348, https://doi.org/10.5194/egusphere-egu24-22348, 2024.

EGU24-523 | ECS | Orals | ERE2.5

Downscaling CMIP6 climate projections to classify the future offshore wind energy resource and calculate the Levelized Cost of Energy of various wind farm designs in the Spanish territorial waters. 

Brieuc Thomas, Xurxo Costoya, Maite deCastro, Damián Insua-Costa, Martín Senande-Rivera, and Moncho Gómez-Gesteira

Spain has taken a significant stride towards its goal of installing 1 to 3 GW of floating offshore wind capacity by 2030. This was achieved through the implementation of a Maritime Spatial Planning (MSP) covering 19 designated areas, where it is expected the installation of offshore wind farms in the upcoming years. Therefore, it is of interest analysing the impact of climate change on offshore wind resource in these areas. To achieve a sufficiently high spatial resolution for this study, a dynamic downscaling of a multi-model ensemble from the 6th phase of the Coupled Model Intercomparison Project (CMIP6) was conducted using the Weather Research and Forecasting (WRF) model in the Spanish territorial waters, encompassing the Iberian Peninsula, Balearic Islands, and Canary Islands. Thus, wind data were obtained from the latest climate projections, with a 10-km spatial resolution and a 6-hour temporal resolution. The results were compared, for a historical period from 1985 to 2014, with data from the ERA5 reanalysis database and with observational data from buoys. The results of this validation process showed a great accuracy in the dynamical downscaling performed, generally better than when using data from the Coordinated Regional Climate Downscaling Experiment (CORDEX), which performed dynamical downscaling on data from several CMIP5 climate models. Future projections, from 2015 to 2100, were assessed under the Shared Socioeconomic Pathways (SSP) 2-4.5 and 5-8.5 scenarios. The findings of this study indicate a projected growth in Spain's offshore wind energy potential, especially in the Atlantic Ocean and around the Canary Islands.

Using wind speed data from simulations carried out with the WRF atmospheric model, the offshore wind energy resource was classified in the 19 areas involved in de Spanish MSP. This classification considered the wind power density but also factors such as resource stability, environmental risks, and installation costs. The results reveal significant diversity in wind resource classification within potential offshore wind farm areas, ranging from "fair" (3/7) to "outstanding" (6/7). The most promising areas for offshore wind farm development in the future are situated in the northwest of the Iberian Peninsula and the Canary Islands.

The identification of the most cost-effective solutions in each area involves determining the optimal combination of rated power and the number of turbines and comparing them across different locations to pinpoint the most economical sites for offshore wind energy exploitation. This economic analysis was done for a 25-year near-future period under the SSP 2-4.5 scenario, aligning with the expected operational lifespan of wind farms. This study includes the calculation of the Levelized Cost of Energy (LCOE) index, which gives an indication of the minimal price at which the electricity should be sold in order for the project to be profitable. The results highlight that the LCOE is lower for farms with a higher number of wind turbines featuring increased rated power. While the Canary Islands exhibit the most economically advantageous prices overall, other regions such as Galicia and Cataluña also boast promising areas.

How to cite: Thomas, B., Costoya, X., deCastro, M., Insua-Costa, D., Senande-Rivera, M., and Gómez-Gesteira, M.: Downscaling CMIP6 climate projections to classify the future offshore wind energy resource and calculate the Levelized Cost of Energy of various wind farm designs in the Spanish territorial waters., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-523, https://doi.org/10.5194/egusphere-egu24-523, 2024.

EGU24-1851 | ECS | Orals | ERE2.5

Impacts of extreme land-use change on wind profiles and wind energy according to regional climate models   

Jan Wohland, Peter Hoffmann, Daniela C.A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid

Humans change the climate in many ways, for example, by emitting greenhouse gases or by changing land-use. While studies typically investigate the joint effects of human activity, we here isolate the impact of afforestation and deforestation on winds in the lowermost 350 m of the atmosphere to better understand the role of forests in large-scale wind energy assessments. We use vertically resolved sub-daily output from two regional climate models and compare two extreme scenarios from the LUCAS simulations (Davin et al., 2020). Our results show that afforestation lowers wind speeds by more than 1 m/s in many locations across Europe even 300 m above ground and thus matters at wind turbine hub heights. While adapting the parameters in standard extrapolation allows to capture long-term mean winds well, it remains insufficient to compute wind energy potentials as it fails to capture essential spatio-temporal details, such as changes in the daily cycle. We therefore follow an alternative approach that leverages the vertical resolution of the regional climate models to account for wind profile complexity. Doing so, we report strong changes in wind energy capacity factors due to afforestation and deforestation: they change by up to 50 % in relative terms. Our results confirm earlier studies that land use change impacts on wind energy can be severe and that they are generally misrepresented with common extrapolation techniques.

 

References:

Davin, E. L., Rechid, D., Breil, M., Cardoso, R. M., Coppola, E., Hoffmann, P., Jach, L. L., Katragkou, E., de Noblet-Ducoudré, N., Radtke, K., Raffa, M., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Tölle, M. H., Warrach-Sagi, K., and Wulfmeyer, V: Biogeophysical impacts of forestation in Europe: First results from the LUCAS Regional Climate Model intercomparison, Earth Syst. Dynam., 11, 183–200, 2020, https://doi.org/10.5194/esd-11-183-2020, 2020

Preprint:

Wohland, J., Hoffmann, P., Lima, D. C. A., Breil, M., Asselin, O., and Rechid, D.: Extrapolation is not enough: Impacts of extreme land-use change on wind profiles and wind energy according to regional climate models, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2533, 2023

How to cite: Wohland, J., Hoffmann, P., Lima, D. C. A., Breil, M., Asselin, O., and Rechid, D.: Impacts of extreme land-use change on wind profiles and wind energy according to regional climate models  , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1851, https://doi.org/10.5194/egusphere-egu24-1851, 2024.

EGU24-2418 | ECS | Posters on site | ERE2.5 | Highlight

Assessing the future solar resources over India at 1.5°C and 2°C warming worlds 

Sushovan Ghosh, Dilip Ganguly, and Sagnik Dey

India aspires to increase its reliance on renewable energy sources to fulfil its climate commitments. Among renewables, Solar Photovoltaic (SPV) energy has grown rapidly around the world, including in India. However, little is known about how solar dimming and global warming may affect solar power over the region in the future. The production of SPV energy is influenced by meteorological parameters, highlighting the concerns related to grid stability, intermittency, and reliability caused by weather-induced variability.  

Under the Paris Agreement, all the nations agree to restrict the global warming to “well below” 2°C above pre-industrial levels and, if possible, “pursue” efforts to limit warming at 1.5°C. Therefore, it is imperative to understand future climate change and their spatial heterogeneity at 1.5°C and 2°C warming for developing  strategies for renewables.

This research examines the distribution and variability of India's solar resources by utilising state-of-art global climate models from Coupled Model Intercomparison Project phase 6 (CMIP6) and CMIP6 - NASA Earth eXchange Global Daily Downscaled Projections (NEX-GDDP). The analysis of global mean temperature changes reveals that the 2030s and 2040s will be the decade when majority CMIP6 models reach 1.5°C and 2°C warming under SSP2-4.5 (intermediate emission pathways) and SSP5-8.5 (high emission) scenarios respectively with respect to  pre-industrial period (1850–1900).

We find that under the intermediate (high) emission scenarios, the annual mean surface solar radiation over the Indian landmass will decrease by -8±3 Wm-2 (-5±2 Wm-2) relative to the baseline period (1985-2014) at 1.5°C global warming. An additional 0.5°C of warming (at a global warming level of 2°C) results in a comparatively smaller decline in surface solar irradiance with respect to baseline under both scenarios. At 1.5°C and 2.0°C global warming, most regions are anticipated to experience an increase in surface irradiance under the SSP5-8.5 scenario, as compared to SSP2-4.5. The magnitude and direction of change of aerosols, clouds and associated meteorological parameters needs to be explored further. 

This research will contribute to crucial planning and decision-making processes concerning India and other nations with similar interests.

How to cite: Ghosh, S., Ganguly, D., and Dey, S.: Assessing the future solar resources over India at 1.5°C and 2°C warming worlds, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2418, https://doi.org/10.5194/egusphere-egu24-2418, 2024.

EGU24-2672 | Posters on site | ERE2.5

An Evaluation of Solar Irradiance Projected by CMIP6 Models Toward Long-Term Projection of Climate Change 

Chang Kim, Hyungoo Kim, and Jin Young Kim

This study assesses the reliablity of CMIP6 models in projecting solar irradiance, a crucial aspect of climate dynamics. While extensive scrutiny has been given to historical data from 1975 to 2000, our primary focus is directed towards assessing the models' performance from 2010 to 2020 and their predictive efficacy for the future. Through a meticulous methodology involving statistical comparisons, validation against measurements, and consideration of external factors, we found that CMIP6 models commendably aligned with observed solar irradiance during the historical period, showcasing their adeptness in replicating past climate conditions. However, an in-depth analysis of the recent decade unveiled deviations from observed solar irradiance, prompting concerns regarding the models' adaptability to the swift pace of contemporary climate change. Shifting our gaze to the prospective view, we explore the models' robustness in adapting to emerging climatic trends and emphasize the necessity of continuous refinement, incorporation of real-time data, and a comprehensive understanding of external factors to enhance accuracy in future predictions. Rapid climate change introduces uncertainties such as aerosol concentrations, greenhouse gas emissions, and solar variability, posing challenges that necessitate constant model adjustment. The implications for climate change mitigation are significant, as reliable solar irradiance predictions inform decisions on renewable energy adoption, agriculture planning, and climate adaptation measures. In conclusion, this study bridges the gap between historical evaluations and future projections, providing valuable insights for policymakers, researchers, and stakeholders invested in mitigating the impact of climate change. Continuous refinement of CMIP6 models and a holistic approach to understanding external factors are crucial for building a robust foundation in addressing the challenges posed by climate change in the coming decades.

How to cite: Kim, C., Kim, H., and Kim, J. Y.: An Evaluation of Solar Irradiance Projected by CMIP6 Models Toward Long-Term Projection of Climate Change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2672, https://doi.org/10.5194/egusphere-egu24-2672, 2024.

EGU24-5810 | ECS | Orals | ERE2.5 | Highlight

Investigation of low wind events over Germany from high resolution regional climate models 

Irem Isik Cetin, Thomas Frisius, Elke Keup-Thiel, and Diana Rechid

Wind energy has become one of the most important mitigation options for climate change over the last decades. However, variability and availability of wind are also expected to be changed due to climate change. For this purpose, the KliWiSt project has been initiated to determine the influence of climate change on wind energy site assessments in Germany. Within the scope of the project, many aspects of climate change impacts on wind energy have been studied to determine uncertainties about the topic and to develop recommendations for actions. Although there are many studies in literature which evaluate the effects of climate change on wind in the upcoming decades, low wind events are scarcely investigated so far. However, low wind events pose a risk for achieving long term renewable energy targets and ensuring stability of the electricity grids. Wind drought is increasingly becoming a significant phenomenon which determines low wind energy production due to extreme low wind resources.

In this study, we have investigated the frequency of low wind events in Germany due to climate change until the end of the 21st century by using an ensemble of high-resolution regional climate model simulations available from the EURO-CORDEX initiative. We also evaluated the performance of the regional climate models with data from different observation stations and with re-analysis data sets. For our investigation we used thresholds of 2 m/s and 3 m/s for wind speed at 10 m and 100 m – respectively for – calculating “calm wind” climate indices. The threshold is determined as 3 m/s (at 100 m height) for low wind events since most of the wind turbines starts wind energy production at this value (“cut in” wind speed). We used two different benchmark data sets (ERA5 and CERRA) to determine historical variation of “calm days” over Germany and to evaluate the performance of the high-resolution regional climate models. Moreover, seasonal, annual, and spatial distributions of low wind events are investigated for Germany where the country has already a high installed wind energy capacity and ambitious renewable energy targets. The study aims to determine trend and frequency of low wind events in the past and future at different terrain conditions at different time scales from different regional climate models. The anticipated results of the study and the project are expected to give insight for policy makers and stakeholders from the renewable energy sector.* 

*This study is part of the project "The influence of climate change on wind energy site assessments (KliWiSt)" which is funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK).

How to cite: Isik Cetin, I., Frisius, T., Keup-Thiel, E., and Rechid, D.: Investigation of low wind events over Germany from high resolution regional climate models, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5810, https://doi.org/10.5194/egusphere-egu24-5810, 2024.

EGU24-5874 | ECS | Posters on site | ERE2.5

Comparing ERA5 and model data to observations for wind resource assessment – a case study from Tanzania  

Alexander Chamberlain-Clay and Elisabeth Thompson

The ERA5 reanalysis is established as a key source of gridded wind-speed information for much of the world, having better performance and higher resolution (30km) than other reanalysis products. It’s used as a source of truth for driving wind-power models, and verifying ML predictions, especially in the absence of observational measurements. However, verification of ERA5 has mostly focused on Europe and the northern hemisphere, not examining performance in low-observation regions such as East Africa, where wind power investment and green energy provision is crucial to climate goals. As part of the FOCUS-AFRICA project, this study investigates how well the ERA5 reanalysis represents the climatology of 19 different observation sites in Tanzania and compares them to 3 CORDEX-Africa models driven by ERA-Interim at a similar resolution to ERA5, and one convection-permitting 4.4km resolution model (CP4A). ERA5 is shown to perform poorly at representing inland wind climatologies in Tanzania, with Perkins skill scores of 0.21-0.62 (1 is perfect), in comparison to European inland stations showing an average a score of ~0.8 in previous studies. This is caused by underestimations of mean wind speed compared to observations for inland sites.  The CP4A model performs best with scores of 0.54-0.79, despite the fact this model is not forced by real-world conditions.

These results show the need for caution when using ERA5 as a basis for any wind resource assessment or model validation. It also indicates that wind resource in East Africa may be underestimated, which would have negative impacts on investment decisions in the region. 

How to cite: Chamberlain-Clay, A. and Thompson, E.: Comparing ERA5 and model data to observations for wind resource assessment – a case study from Tanzania , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5874, https://doi.org/10.5194/egusphere-egu24-5874, 2024.

EGU24-6025 | ECS | Orals | ERE2.5

From multi-decadal energy planning to hourly power dispatch: evaluating the reliability of energy projections in the Southern African Power Pool 

Arianna Leoni, Nicolò Stevanato, Angelo Carlino, Andrea Francesco Castelletti, and Matteo Giuliani

Development pathways for Sub-Saharan Africa project a substantial increase in population and living standards and, correspondingly, in the regional energy demand. To accommodate future energy needs, power and energy system communities have been developing least-cost optimization models to support long-term transformational energy system planning and the transition to carbon neutrality at the African continental scale.  

However, these models usually focus on annual or seasonal energy balances and overlook higher time resolution dynamics that can actually lead to short but impactful events when considering the expansion of renewable energy share. Indeed, the variability of renewable generation and power demand can lead to significant risks, including elevated electricity prices, transmission line overload, and power generation deficits. 

In this work, focusing on the Southern African Power Pool, we couple an energy system planning model, OSeMOSYS-TEMBA, and a power system model, PowNet, to obtain higher temporal resolution characterization of the energy system evolution in the future.

 OSeMOSYS-TEMBA is a long-term energy system planning model producing cost-optimal trajectories of capacity expansion for different technologies for all the countries in continental Africa with a seasonal resolution from 2015 to 2070. Yet, OSeMOSYS-TEMBA is not resolved enough to account for power grid reliability under high penetration of renewables, where flexible operations and power grid reliability are crucial, and might substantially affect model projections.

PowNet is a least-cost optimization model running on an annual horizon with hourly resolution and optimizes the dispatch of power from each source as well as the usage of transmission lines, constrained to the power capacity available according to the long-term energy planning provided by the OSeMOSYS-TEMBA model. We assess the difference in generation mix, the impact on transmission lines overloading, power generation deficits in 2030 under three climate policy scenarios: no climate policy, and constrained to 2.0°C and 1.5°C warming constraining emissions to a consistent pathway. 

Results indicate power generation deficits and transmission lines overloading are observed in many countries, especially during the night. These impacts are to be associated with insufficient total power system capacity to meet power demand due to the low time and spatial resolution of the energy system model. Indeed, the increased dependency on variable renewable resources, and a higher resolution demand profile emphasize the need to further expand total capacity, the importance of flexible generation adopting a diverse energy portfolio, and the potential benefits of increasing transmission lines’ capacity. Finally, the storage of unused water for future power generation within the available reservoirs might potentially reduce the power deficit. These results show the importance of the assumptions embedded in the energy system model and motivate methodological improvements to design coupled energy and power system pathways that remain reliable at high spatial and time resolution.



How to cite: Leoni, A., Stevanato, N., Carlino, A., Castelletti, A. F., and Giuliani, M.: From multi-decadal energy planning to hourly power dispatch: evaluating the reliability of energy projections in the Southern African Power Pool, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6025, https://doi.org/10.5194/egusphere-egu24-6025, 2024.

EGU24-6374 | Orals | ERE2.5

A wind energy resource analysis in the Iberian Penindula under climate projections 

M. Yolanda Luna, Javier Díaz-Fernández, Alonso García-Miguel, Carlos Calvo-Sancho, Ricardo Castedo, José J. Ortega, Pedro Bolgiani, Mariano Sastre, and María Luisa Martín

The wind resource in the Iberian Peninsula has been analyzed using wind climate projections from the XX century to the end of the XXI century of the SSP5-8.5 scenario obtained from the MRI-ESM2.0 global climate numerical model. Six-hour wind speed and direction are seasonally grouped and from them, both the production of electrical power and the intensity of wind energy have been estimated throughout the temporal record. Two periods are considered in the dataset: the historical (1950 – 2014) and the future (2015-2100) periods. The non-parametric Mann-Kendall trend test is applied to identify significant wind energy intensity trends and the non-parametric Mann-Whitney test is applied over the entire domain's all-grid points to statistically evaluate the significant differences between wind energy intensity of different time periods. For an estimation of the evolution of the electrical power throughout the XXI century, the latest generation wind turbine SG 7.0-170 from Siemens-Gamesa has been used as a reference. Considering winter as the season of maximum wind energy production, the results show a future higher electricity production compared to the selected historical period in almost the entire Iberian Peninsula, although there is a decreasing production trend throughout the century. The remainder seasonal results indicate a general drop in electrical power due to a decrease of wind resource in the whole Peninsula throughout the century, especially in autumn with significant losses of more than 2 MW of electricity production in many Portuguese areas on the western coast of the peninsula.

How to cite: Luna, M. Y., Díaz-Fernández, J., García-Miguel, A., Calvo-Sancho, C., Castedo, R., Ortega, J. J., Bolgiani, P., Sastre, M., and Martín, M. L.: A wind energy resource analysis in the Iberian Penindula under climate projections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6374, https://doi.org/10.5194/egusphere-egu24-6374, 2024.

This study presents the impact of climate change on the wind and solar power generation potentials over South Korea considering ensemble projections from downscaled high-resolution bias-corrected future climate change scenario data. Under future global warming, solar power potentials over South Korea are projected to decrease in spring (March-May) and winter (December-February) seasons relative to present climate in the late 21st century (2081-2100), particularly showing a relatively large decrease in the northern part of South Korea. The decrease tendency is more significant and larger in the high-CO2 emission scenario (SSP5-8.5) than the low-CO2 emission scenario (SSP2-4.5). The projected decrease in solar power potential in spring is mainly due to increased air temperature by future global warming and the decrease in winter is attributable to the projected increase in the air temperature and the decrease in solar radiation at the surface. Wind power potentials which are estimated with the wind energy density is generally projected to decrease with future global warming in all seasons except for summer. This decrease tendency is also larger in the late 21st century of the SSP5-8.5 scenario, especially over the southern part of South Korea in winter and spring and over the northern part in fall. These results may help optimize the regional renewable energy generation system development and plans

How to cite: Kim, S. T.: Changes in Solar and Wind Power Generation Potentials over South Korea under Future Global Warming., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7322, https://doi.org/10.5194/egusphere-egu24-7322, 2024.

EGU24-7974 | Orals | ERE2.5

Simulating Reserve Power Systems in Future Climates: Bias Adjustment Approaches for Regional Climate Projections 

James Fallon, David Brayshaw, John Methven, Kjeld Jensen, and Louise Krug

Critical infrastructure, such as telecommunications networks and hospitals, are in many cases required to have reserve power systems in place, mitigating transmission network failures and protecting against national power grid outage. A previous case study of Great Britain (GB) telecommunications assets implemented a temperature-driven model of infrastructure electricity demand (Fallon et al., 2023), used to plan reserve capacity installation sufficient to meet the highest anticipated 5-day periods of energy consumption (or other regulatory targets). Extending this work with climate models (UKCP18), we demonstrate that the capacity planning framework reliant upon reanalysis observations underestimates capacity installation appropriate to meet historic weather risk, while assessments are improved using historic period climate model outputs. Additionally, climate projections simulating future periods support further upgrading the installed reserve capacity beyond historic requirements.

Quantile-correcting bias adjustments of climate model outputs can address significant discrepancy between the model world and observations temperature distributions across the historic period (model timespan where global climate matches recent observations). Uncorrected, this climate model error leads to an exaggerated frequency of extreme temperature events, hence overestimating the reserve capacity requirement. But under a quantile-correcting approach, assuming a consistent underlying representation of the weather dynamics, the temperature distribution is adjusted to match the reanalysis distribution.

Temperature delta-shifts are calculated to represent the GB historic period climate variability observed across model ensemble members. The resulting infrastructure electricity demand timeseries are compared against timeseries produced from historic period temperature data adjusted by quantile delta mapping, demonstrating that reanalysis data alone is insufficient to capture the greater reserve capacity requirements predicted by quantile delta-mapping of climate model outputs in the historic time period.

Using future period climate model outputs, we compare three alternative treatments of model temperature timeseries simulating future climate: a delta-shift adjustment of reanalysis data, a regional trend-preserving mean bias adjustment, and quantile delta mapping. In each case, reserve capacity requirements increase (5% to 10% increase in a world 2.0°C above pre-industrial temperatures). There is significant variability across different model ensemble members, and sensitivity to individual weather years.

Reserve system operators can use the approaches outlined to make an informed assessment of the need for upgrading or installing new reserve systems, ensuring the stability and resilience of critical infrastructure assets. The consistent trajectories across different approaches and model ensemble members may improve confidence in results, whilst individual model ensemble members can be investigated to identify potential ‘worst case’ outcomes.

How to cite: Fallon, J., Brayshaw, D., Methven, J., Jensen, K., and Krug, L.: Simulating Reserve Power Systems in Future Climates: Bias Adjustment Approaches for Regional Climate Projections, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7974, https://doi.org/10.5194/egusphere-egu24-7974, 2024.

EGU24-8178 | ECS | Orals | ERE2.5

Strength of co-variability of energy droughts highly region dependent  

Bram van Duinen, Lieke van der Most, Michiel Baatsen, and Karin van der Wiel

The European electricity system is becoming increasingly dependent on weather conditions, which influence both electricity demand and production. Non-linear dependence of the electricity system on the weather conditions can lead to energy droughts – high demand coinciding with low renewable energy production – even under non-extreme meteorological conditions. Weather conditions driving energy droughts can transcend national boundaries, which leads to the possibility that multiple countries experience concurrent energy droughts, potentially leading to a widespread energy crisis. We examine the interplay between large-scale weather conditions and the risks of co-occurrence and opportunities of disjoint occurrence of energy droughts in renewable electricity systems in European countries. We analyse 1600 years of modelled energy data against meteorological conditions from large ensemble climate model simulations to identify patterns of co-variability of energy droughts in the present-day climate.

We find a strong spatial variability in the risk for concurrent energy droughts within Europe, depending on a country’s renewable energy mix and the region's response to specific large-scale meteorological patterns (weather regimes). Some countries, such as Latvia and Slovenia, mostly experience energy droughts isolated from their neighbouring countries. However, we also find clusters of countries that experience concurrent energy droughts. This is the case for the North Sea region, and many countries in central/eastern Europe. Here, there is limited potential for cooperation, putting these countries more at risk of energy crises. Finally, we differentiate between moderate and extreme energy droughts, which have different co-occurrence signatures. This implies that an interconnected electricity grid has potential to resolve some moderate events, but is less effective in the extreme events.

How to cite: van Duinen, B., van der Most, L., Baatsen, M., and van der Wiel, K.: Strength of co-variability of energy droughts highly region dependent , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8178, https://doi.org/10.5194/egusphere-egu24-8178, 2024.

EGU24-8655 | ECS | Orals | ERE2.5

Offshore Solar Farm Assessment and Uncertainty Determination for the United Arab Emirates 

Encarni Medina-Lopez, Jasmina Lazic, and Latifa Yousef

Floating offshore solar farms (OSF) are an attractive option for solar energy generation, as they help avoid land competition with other uses. Planning the deployment of OSF requires assessments for site selection, which are primarily based on energy yields, in addition to other considerations. The yields are determined through evaluations using climate and oceanic variables. Uncertainty in these variables can propagate to further uncertainty in yield estimations, which ultimately can lead to significant consequences in the cost of energy. In this work, we propose the development of a novel method to assess the viability of OSF considering insolation uncertainty, with a focus on the United Arab Emirates (UAE) region. Open-source satellite data is utilized to conduct initial site assessments, and produce a set of viable locations based on parameters that include solar irradiance, ambient temperature, sea surface temperature, wind speed and precipitation. Validation of the viable locations will be done through the deployment of meteorological instrumentation, to collect in-situ measurements for a minimum of one year. Machine learning techniques are examined to quantify the uncertainty, followed by determination of impacts on levelized cost of electricity (LCOE) and savings based on uncertainty reduction.

How to cite: Medina-Lopez, E., Lazic, J., and Yousef, L.: Offshore Solar Farm Assessment and Uncertainty Determination for the United Arab Emirates, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8655, https://doi.org/10.5194/egusphere-egu24-8655, 2024.

EGU24-11262 | ECS | Posters virtual | ERE2.5 | Highlight

Balancing seasonality in decarbonising electricity systems worldwide 

Anasuya Gangopadhyay, Rajat Masiwal, and Ashwin K Seshadri

Decarbonizing electricity grids across the world will be increasingly impacted  by systematic seasonal variation in wind speed and solar irradiance as well as seasonally varying patterns of demand, more so in the context of progressive decarbonization of energy services such as winter heating. These seasonal variations are governed by local meteorology which also has large-scale manifestations impacting entire electricity grid systems. Using ERA5 reanalysis, we quantify the amplitude of seasonality in wind speed and solar insolation across the world and consider the impacts on grid scale generation. Owing to effects of seasonal evolution of solar insolation as well as the seasonal cycle of cloudiness, the seasonal cycle amplitude for solar insolation at the surface is much larger in higher latitudes. For horizontal winds, high seasonal amplitudes are experienced in global tropical monsoon regions and higher latitudes associated with meridional shifts in mid-latitude zonal winds. In general, wind power availability is much higher in high-latitude winters.

Seasonal weather variation also drives electricity demand for heating and cooling, which is a major part of the total electricity consumption of many regions. While many large electricity consumers including China, US, India, and Brazil experience peak electricity consumption during summer, most European countries have higher demand during winter, giving a double peak structure for global monthly electricity demand. Many large electricity consuming countries experience nearly 40 percent variation in electricity demand between seasons. Solutions to bridge large seasonal variations in demand and generation, e.g. bulk energy storage, excess of wind and solar capacity, renewable portfolio design, and demand-side management present critical challenges.

This paper will consider whether a portfolio of such solutions is adequate to balance seasonal variability in supply and demand. We will characterize the main patterns of seasonal load variability across countries, explore whether within-country wind and solar variability are well matched with these patterns, and consider the role of excess capacity and storage in bridging the gaps, in context of limitations of seasonal-scale demand side management. Bridging seasonal-scale gaps and mitigating the impacts of various manifestations of seasonality remains an important roadblock towards net zero electricity systems worldwide, and we will survey the most promising solutions to this challenge.

How to cite: Gangopadhyay, A., Masiwal, R., and K Seshadri, A.: Balancing seasonality in decarbonising electricity systems worldwide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11262, https://doi.org/10.5194/egusphere-egu24-11262, 2024.

EGU24-15943 | ECS | Posters on site | ERE2.5

Achieving renewable energy-centered sustainable development futures for rural Africa 

Giacomo Falchetta, Adriano Vinca, Gregory Ireland, Marta Tuninetti, André Troost, Manfred Hafner, Edward Byers, and Ackim Zulu

Multi-dimensional and overlapping Nexus challenges affect many parts of rural sub-Saharan Africa. More than 90% of cropland is rainfed, less than one third of households have electricity at home, more than 15% of people report insufficient food intake and more than 40% of people live below the poverty line. Climate change impacts on vulnerable systems with limited adaptive capacity and strong population growth are increasing the magnitude of the challenge. As a result, there is a strong need for multi-level, multi-sector interventions (from national policies to regional/river basin-scale planning, to local planning and investment). To implement such actions, it is key to assess solutions (technology and investment) and appraise their feasibility and implementation potential (from both a policy and a financial point of view). In this study, we soft-link bottom-up process-based water and energy demand and techno-economic infrastructure assessment models into a multi-node, national Nexus-extended Integrated Assessment Model (MESSAGEix-Nexus) for supply and investment assessment. Based on the integrated modelling, we obtain an understanding of the role of an explicit consideration of (productive) energy access jointly with Water-Agriculture-Food interlinkages for rural Nexus infrastructure requirements, investment, and sustainable development objectives. This demonstrates how climate impacts and water and energy needs affect each other and jointly shape infrastructure and investment pathways. Then, by linking technical models with business models analysis, we are able to assess feasibility of implementation and appraise which are the key micro and macro determinants to ensure feasibility, investment, and uptake of small-scale Nexus infrastructure, crucial for rural development and adaptation to changing climate conditions. Altogether, our research demonstrates how national-scale integrated modelling with an explicit focus on Nexus interlinkages allows for assessing locally-relevant demand sources and investment needs, and their implications for sustainable development. In turn, this allows for deriving  policy and investment-relevant insights.

How to cite: Falchetta, G., Vinca, A., Ireland, G., Tuninetti, M., Troost, A., Hafner, M., Byers, E., and Zulu, A.: Achieving renewable energy-centered sustainable development futures for rural Africa, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15943, https://doi.org/10.5194/egusphere-egu24-15943, 2024.

EGU24-17572 | Orals | ERE2.5

Uncertainties in climate projections and the economics of wind farm portfolios 

Ana Lopez, Kai Lochbihler, and Gil Lizcano

The deployment of low carbon affordable energy generation technologies plays a crucial role to achieve the Paris Agreement long-term goal to reduce global greenhouse gas emissions to limit global temperature increase well below 2ºC above pre-industrial levels, and pursue efforts to limit it to 1.5º C above pre-industrial levels. In particular wind power installed capacity is projected to increase exponentially over the next few decades. Wind power generation is, however, weather-dependent. Therefore, understanding the variability of wind, how it might be affected by climate change, and how this affects the economics of wind projects seems vital as countries continue to invest in wind energy.

At the global level, the last IPCC report (IPCC AR6 WGIII, 2022) states that the climate change impact on future wind resources will be limited. Regional studies, however, show that wind resources are projected to increase for instance over Northern Europe and decrease over Southern Europe. In North America, various studies have low agreement for the changes on future resources, in part because the inter-annual variability is larger than the projected changes due to climate change. For South America, some studies find increases in wind resources in windy areas. In general, the compounding of the anthropogenic climate change signal with high spatial and temporal wind variability can lead to large uncertainties in the projected impacts of climate change on wind resources, and as a result, on the economics of a project. 

In this study we showcase a methodology to analyze the impact of climate change on the economic indicators of a portfolio of wind farm projects across Europe. Projections of changes in wind resources are obtained using an ensemble of Coupled Model Intercomparison Project 6 (CMIP6) global climate models statistically downscaled to correct biases and increase the spatial resolution. Uncertainties in climate projections are taken into account by considering an ensemble of climate models and different emissions scenarios as represented by the Shared Socioeconomic Pathways (SSPs) . A series of assumptions about the features of a representative wind farm and its key economic parameters (e.g. capital expenditures and operational costs) are made to compute two common economic indicators: the Internal Rate of Return (IRR) and the Levelized Cost of Energy (LCOE).

By varying the production following the different climate scenarios, we analyze the impacts of climate change on the economics of the portfolios for different time horizons in the future. We find that the effect of changes of resource on IRR and LCOE depend on the region, emissions scenario and projection period. In the short term, changes are often masked by the internal variability of the resource on the site.

We also discuss, from the point of view of our role as climate services provider for the wind industry, the limitations of the data provided in the CMIP6 experiment, and some of the data needs we have identified.

How to cite: Lopez, A., Lochbihler, K., and Lizcano, G.: Uncertainties in climate projections and the economics of wind farm portfolios, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17572, https://doi.org/10.5194/egusphere-egu24-17572, 2024.

EGU24-18490 | ECS | Orals | ERE2.5

The Nepalese theoretical hydropower potential in a changing climate 

Vera van der Veen, Sanita Dhaubanjar, Sonu Khanal, and Walter Immerzeel

With steep elevation gradients and an abundance of water, Nepal is one of the leading countries in hydropower capacity. This potential is largely unutilised; representing a significant untapped renewable energy resource that could help Nepal achieve its emissions target and improve its energy security. However, future climate projections suggest changes in discharge seasonality, which will impact the hydropower potential. Hence, we provide an estimate of current and future theoretical hydropower potential in the four large basins in Nepal, namely Mahakali, Karnali, Gandaki, and Koshi. We use current and future discharge simulated in the Spatial Processes in Hydrology (SPHY) model from a previous study to force the theoretical potential module in the Hydropower Potential Exploration (HyPE) model. The HyPE model set up for Nepal is run for 48 combinations of future climate scenarios, combining temperature change in the range of 3°C to 8°C and precipitation change in the range of -30% to 40%. Average monthly discharge components (baseflow, rainfall runoff, snowmelt, and glacier melt) are analysed separately for the reference period (1979-2018), mid-century (2036-2065), and end of century (2071-2100). For each time horizon, we evaluate the relative contribution of the discharge components to the theoretical hydropower potential and quantify the impact of future changes in discharge seasonality.

 

The Indian summer monsoon dominates the discharge patterns in Nepal. The historical water balance shows an overlap in the peak contributions from rainfall and glacier melt to discharge with both occurring in July and August. A shift in the peaks from these components is not apparent for the climate scenarios considered. However, the peak from snow melt contribution shifts one to two months earlier for most climate scenarios in all basins. Such shift in the seasonal discharge composition could prove promising for stabilizing year-round hydropower generation. At 5 km resolution, we estimate the total theoretical hydropower potential for the four Nepalese basins to be 1170 TWh/yr during the reference period. While challenges remain in accurately simulating discharge in mountainous and data-scarce basins in Nepal contexts using SPHY, the majority of the projections suggest a promising increase in the monthly average discharge and the subsequent monthly theoretical hydropower potential. We observe an increase in total Nepalese hydropower potential up to 22% for the mid-century and 36% by the end of the century. Variations across the basins occur and a decrease in hydropower potential is also observed for the dry future climate scenarios. However, it is important to note that theoretical potential may not be a realistic indicator for hydropower development. Only a small part of the theoretical potential may be technically and financially feasible and an even smaller part may be sustainable. Nonetheless, our research provides a first step to the identification of hydropower project sites considered within the context of a changing climate.

How to cite: van der Veen, V., Dhaubanjar, S., Khanal, S., and Immerzeel, W.: The Nepalese theoretical hydropower potential in a changing climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18490, https://doi.org/10.5194/egusphere-egu24-18490, 2024.

EGU24-3862 | ECS | Posters on site | ERE2.6

Integrated geothermal exploration of Hongchailin geothermal field in Taiwan using seismic velocity and resistivity tomography with unsupervised learning analysis 

Hong-Mao Huang, Hsin-Hua Huang, Yung-en Yu, Gong-Ruei Ho, Min-Hung Shih, Ya-Chuan Lai, Po-Li Su, Hung-Yu Yen, Tsung-Chih Chi, Cheng-Horng Lin, Jian-Cheng Lee, Yue-Gau Chen, and Sun-Lin Chung

Geothermal energy serves as one of sustainable and low-emission energy sources with the potential to mitigate climate change and enhance energy security. It offers a viable substitute for conventional fossil fuels or electrical energy. The Hongchailin area in Ilan, Taiwan has been considered as a potential geothermal energy field in recent years. To investigate possible geothermal sources in Hongchailin, a dense seismic array comprising 186 geophones is deployed over a 5 × 4 km area covering the probable geothermal field between August 2022 and January 2023. A vibroseis experiment was operated along multiple lines across the array with 12-second sweep-frequency signals from 6 to 96 Hz. To retrieve clear vibroseis-generated P-wave arrivals, we first remove the sweep signals from the raw waveforms by the cross-correlation method, and stack the processed waveforms from successive co-site shots with the Phase-Weighted Stacking (PWS) method to improve the signal-to-noise ratio. We use the Recursive-STA/LTA method for P-wave arrival picking. Visual inspection and additional criteria are made for confirming and refining the accuracy of P-arrivals. Lastly, a total of 41,095 P-arrivals are collected and used for seismic tomographic inversion. The velocity model shows several velocity anomaly zones in good spatial correlation with the resistivity model, although the resolvable depth of the model is limited to ~1 km. It demonstrates the active-source seismic tomography as a valuable geothermal exploration tool. Further, we employ unsupervised learning methods to classify and explore the resistivity-velocity relationships in each cluster. The preliminary results indicate a positive linear correlation for some regions but negative for some others, implying different materials such as rock composition or fluid content. These findings provide valuable insights for comprehensive understanding of geothermal resources in the Hongchailin area.

How to cite: Huang, H.-M., Huang, H.-H., Yu, Y., Ho, G.-R., Shih, M.-H., Lai, Y.-C., Su, P.-L., Yen, H.-Y., Chi, T.-C., Lin, C.-H., Lee, J.-C., Chen, Y.-G., and Chung, S.-L.: Integrated geothermal exploration of Hongchailin geothermal field in Taiwan using seismic velocity and resistivity tomography with unsupervised learning analysis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3862, https://doi.org/10.5194/egusphere-egu24-3862, 2024.

Nemrut Volcano, which surfaces in the north of Bitlis province in Türkiye, is one of the most important active members of the Quaternary volcano sequence in Eastern Anatolia. 


According to historical records, the last volcanic activity in the region was in 1441 in the north of Nemrut Caldera and the basalt flows formed as a result of this volcanic activity caused Nemrut to be one of the last known active stratavolcano volcanoes in Turkey. It is possible to talk about a formation mechanism in which the intense tectonism in Eastern Anatolia is also effective.


Nemrut Caldera, which has a surface area of approximately 36 km2, has a total of 5 lake formations, two of which are large, and Lake Nemrut is known as the second largest caldera lake in the world. Water temperatures in the lakes in the caldera vary between 16-41 0C. Hot water and gas outflows are observed in and around the caldera, which makes the region interesting for both geoscientists and geothermal energy investors. Due to the volcanic activity extending towards the north-east, there are hot water springs formed due to volcanism on the shore of Lake Van in the east of the region. 


The potential for geothermal energy applications in the region is still being investigated. In this context, the surface geology of the caldera and its surroundings was analysed and a series of hydrogeochemical investigations were carried out by taking samples from the hot and cold waters in and around the caldera and evaluating some critical elements. According to the results of chemical analyses and isotope analyses, since the hot-cold water mixture is intensely observed in the region, an exploration drilling to be carried out at the correct location in the region is also important in terms of understanding the reservoir levels and conditions.

How to cite: Tut Haklıdır, F., Şengün Çetin, R., and Görgülü, İ. S.: Geothermal exploration in the Nemrut Caldera and surroundings (Eastern Anatolia-Turkey): Trying to unlock of geothermal potential in one of the world's largest calderas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3906, https://doi.org/10.5194/egusphere-egu24-3906, 2024.

EGU24-5315 | ECS | Posters on site | ERE2.6

Reactivation of caldera structures in active extensional settings: implication for geothermal exploration 

Daniele Maestrelli, Giacomo Corti, Marco Bonini, Derek Keir, Eugenio Trumpy, Pietro Facincani, Paola Vannucchi, Chiara Del Ventisette, Domenico Montanari, and Federico Sani

Collapsed calderas are prominent volcano-tectonic features occurring in active tectonic settings and bear intrinsic risks associated with their explosiveness. Nonetheless, they also represent key targets for geothermal fluid exploration, their structures being often the preferential pathway for geothermal fluids migration. In active tectonic settings such as continental rifts, caldera faults may be reactivated, enhancing therefore their permeability. However, specific structures may be subject to clamping, consequently reducing their secondary porosity. Discriminating if and how caldera structures may respond to tectonic stresses, represents therefore a critical question to address when calderas become the locus of potential geothermal exploration. We performed an experimental series of analogue models of caldera collapse exploring whether caldera structures may reactivate under extensional tectonic conditions. This analysis is important for evaluating which caldera fault segments may be regarded as the best potential target for fluid interception. Our experimental series shows that regional extension and fault dip can explain the reactivation of specific caldera fault segments. In particular, outer normal ring faults do reactivate under extensional conditions only in the sectors trending orthogonally to the direction of extension. Conversely, inner outward-dipping reverse faults do not reactivate, likely because of their lower dip angle, whichever their trend might be. This implies that inward-dipping normal faults trending orthogonal to direction of extension likely increase their permeability, thus becoming a favourable locus for geothermal fluid migration and therefore a preferable target for exploration. Conversely, our models show that sectors of inward-dipping normal caldera faults trending parallel to the direction of extension may experience clamping, and so reducing their secondary permeability. Therefore, our setup, with due approximations and limitations, represents a useful predictive tool for identifying potential target structures for geothermal exploration at caldera sites. The model setup can also provide insights into similar caldera systems developing in other geological settings (e.g., compressional).

How to cite: Maestrelli, D., Corti, G., Bonini, M., Keir, D., Trumpy, E., Facincani, P., Vannucchi, P., Del Ventisette, C., Montanari, D., and Sani, F.: Reactivation of caldera structures in active extensional settings: implication for geothermal exploration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5315, https://doi.org/10.5194/egusphere-egu24-5315, 2024.